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Abstract

Flow modelling in a compound channel is a complex matter. Indeed, due to the smaller
velocities in the floodplains than in the main channel, shear layers develop at the
interfaces between these subsections, and the channel conveyance is affected by a
momentum transfer corresponding to this shear layer, but also to possible geometrical
changes in a non-prismatic reach.

In this work, a one-dimensional approach, the Exchange Discharge Model (EDM), is
proposed for such flows. The EDM accounts for the momentum transfer between
channel subsections, estimated as proportional to the velocity gradient and to the
discharges exchanged through the interface; where two main processes are identified :
(1) the turbulent exchange, due to the shear-layer development; and (2) the geometrical
transfer, due to cross-sectional changes. The EDM is successfully validated for
discharge prediction, but also for water-profile computation, through comparison with
existing laboratory and field measurements.

The momentum transfer due to turbulent exchanges is then studied experimentally,
theoretically and numerically. At first, new experimental data, obtained by using
Particle Tracking Velocimetry techniques, are presented : the periodical vortex
structures that develop in the shear layer are clearly identified and characterised.
Secondly, a hydrodynamic linear stability analysis enables to predict quite successfully
the wave length of some observed vortices. Lastly, an Unsteady-RANS numerical
method is used to simulate the perturbation development. The estimated vortex wave
lengths agree again with the measurements and the theoretical predictions, although
vortices merging occurs in the simulation results, which was actually not observed
experimentally. The velocity-profile prediction is found improved when the effect of
vortices is considered, thanks to the corresponding additional shearing.
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The geometrical transfer is also investigated experimentally and numerically. Novel
experiments are designed, with the measurements of the flow in a compound channel
with symmetrically narrowing floodplains. The mass transfer and the evolution of the
flow distribution along the channel length are clearly observed. A significant additional
head loss due to this transfer is measured, in accordance with the EDM hypothesis.
Measured water profiles are finally compared successfully with the EDM predictions.

In addition to the EDM development and validation, the so-called Lateral Distribution
Method (LDM) is also investigated and the significance of the secondary-currents
models proposed by previous authors for this method is discussed. When considering
the velocity-profile prediction, the effect of these helical secondary currents is again
clearly highlighted, by using dispersion terms in the Saint-Venant equations. However,
the actual physical meaning of the related dispersion coefficients remains uncertain. In
addition, an extended LDM is also proposed and discussed for non-prismatic flow
modelling, using the new narrowing-channel data set.



Résumé

La modélisation des écoulements dans les rivières à plaines inondables est
particulièrement complexe. En effet, la vitesse de l'eau étant plus faible sur la plaine
d'inondation que dans le lit mineur, une couche de cisaillement se développe à
l'interface entre ces sous-sections. La débitance totale de la rivière est dés lors réduite, à
cause du transfert de quantité de mouvement qu'occasionne la présence de la couche de
cisaillement, mais aussi de part les changements de géométrie qui peuvent se produire
dans un lit non-prismatique.

La présente thèse propose, pour la représentation de tels écoulements, une nouvelle
approche uni-dimensionnelle dénommée Modèle des Débits d'Echange ("Exchange
Discharge Model" – EDM). Le transfert de quantité de mouvement entre les sous-
sections de la rivière est pris en compte par l'EDM comme étant proportionnel au
gradient de vitesse entre celles-ci et aux débits échangés à travers leur interface. A cette
interface, deux phénomènes sont essentiellement présents : (1) un échange turbulent, dû
au développement de la couche de cisaillement; et (2) un transfert géométrique,
correspondant aux changements de section. L'EDM est validé avec succès pour la
prédiction du débit et pour le calcul de lignes d'eau, par comparaison avec des données
existantes de laboratoire et de terrain.

Le transfert de quantité de mouvement dû à l'échange turbulent est ensuite étudié
expérimentalement, théoriquement et numériquement. De nouvelles mesures sont
obtenues, au moyen d'une technique de vélocimétrie par suivi de particules. Les
structures périodiques qui se développent dans la couche de cisaillement sont clairement
identifiées et caractérisées. Deuxièmement, une analyse linéaire de stabilité
hydrodynamique permet de prédire théoriquement les longueurs d'onde de quelques
tourbillons qui ont été observés expérimentalement, et ce avec succès. Enfin, un modèle
numérique, de type "Unsteady-RANS", est utilisé pour simuler la croissance des
tourbillons dans la couche de cisaillement. Encore une fois, les longueurs d'onde
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obtenues correspondent relativement bien avec les valeurs mesurées et prédites
théoriquement; bien que les coalescences de tourbillons qui se produisent
numériquement n'aient pas été observées expérimentalement. La prédiction des profils
de vitesse est améliorée, lorsque l'effet des tourbillons est considéré, grâce à la
contrainte de cisaillement additionnelle que ceux-ci génèrent.

Les transferts géométriques sont également explorés expérimentalement et
numériquement. Une nouvelle campagne expérimentale a été réalisée, en considérant
l'écoulement dans un lit composé symétrique, dont les plaines d'inondation se
rétrécissent progressivement. Le transfert de masse entre sous-sections et la
redistribution des débits qui lui est associée sont clairement observés au long du canal.
Une importante perte de charge additionnelle due à ce transfert est mesurée, en
concordance avec les hypothèses de l'EDM. Finalement, les lignes d'eau mesurées sont
reproduites avec succès par un calcul utilisant l'EDM.

En complément au développement et à la validation de l'EDM, la "Lateral Distribution
Method" (LDM) est également utilisée, avec pour objectif la clarification du rôle des
termes de courants secondaires proposés par différents auteurs. Par rapport à la
prédiction du profil de vitesse, l'effet de ces courants secondaires est très marqué. Il est
ici reproduit en utilisant des termes de dispersion dans les équations de Saint-Venant.
Cependant, le sens physique des valeurs des coefficients de dispersion qui doivent être
utilisés est discutable. Par ailleurs, une LDM étendue, pour les écoulement en lits non-
prismatiques, est proposée et commentée, en utilisant le nouveau jeu de données pour le
canal convergent.
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Introduction

1. Rivers and floods

Rivers have attracted almost every civilisation, as they provide many contributions to
human well-being : water for household consumption, irrigation and industry;
sustainable energy; convenient transportation links; and valuable wild-life habitat.
Human mind is easily captivated by their power, sometimes peaceful in scenic
landscapes, sometimes devastating when flooding.

Due to the demographic pressure in the last centuries and to the consequently increased
use of rivers, larger settlements have developed on the river floodplains. This has
resulted in amplified loss of life and increased economic costs when flooding occurs.
Today, flood disasters account for about a third of the losses due to natural disasters
throughout the world and are responsible for more than half the fatalities. Trend
analyses show that these figures have been increasing significantly in recent years (Berz
2000).

Figure 0.1 : Flood on River Meuse, Belgium, 1993 (Photo MET-SETHY)

River engineers were therefore more and more solicited to mitigate flood impacts.
Former responses for flood control first consisted in heavy alleviation works, such as
dikes and detention reservoirs. Unfortunately, this possibly overvalued confidence in
the ability of man to master nature often resulted in moderate or poor outcome, due
among other things to unanticipated morphological responses of the rivers, or in worst
cases to dike breaches. Nowadays, more sustainable solutions are preferably adopted :
more space is allocated to rivers, respecting or reconstituting their natural floodplains,
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by withdrawing dikes and abandoning possible settlements areas or using them only
seasonally (see e.g. Bhattacharyya and Bora 1997).

The engineer's challenge regarding flood modelling consists thus mainly in predicting
maximum water levels and flood propagation speeds, as a function of river bed and
watershed topography, either natural or artificially alleviated. On the one hand,
hydrological models should provide the actual discharge corresponding to a given rain,
but increased difficulty raises from the increased runoff from the watershed due to
urbanisation and from the possibly heavier rains due to global climate changes. On the
other hand, hydraulic models account for flood propagation in the river bed, for the
water levels reached at a given discharge, and for morphological consequences of the
floods. This time, the main difficulty – to be investigated in the present work – is
probably the complexity of the flow resulting from the complicated cross-section of the
river flowing overbank.

Figure 0.2 : Flood propagation in watershed and river bed : the hydrologic cycle
(Linsley and Franzini 1972)

2. Flow in compound channels

Dealing with the hydraulic modelling of flood, the river engineer has to consider the
flood propagation along the river; the identification of flooded areas; the design of
discharge channels; the dike breaches risk; the morphological effects of the flood; etc.
In almost all cases, the stage-discharge relation in a given reach cross-section will be
one of the fundamental component of the solution.

Whereas the estimation of the water level corresponding to a given discharge is
nowadays an easily handled problem in channels with single cross-section, the problem
gets worse when the river enters its floodplains. Indeed, when the floodplains not only
serve as detention ponds but also carry part of the discharge, the flow complexity is
dramatically increased (Figure 0.3).
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The velocity in the floodplains is generally lower than in the main-channel, due to the
shallower water level and to the higher roughness in often more vegetation-covered
areas. As a result of this velocity gradient, a shear layer is observed at the interface
between the main channel and the floodplains. This shear generates large scale turbulent
structures, typically large vortices with vertical axis (Figure 0.4), and a consequent
momentum transfer from the main-channel to the floodplains : the main-channel
conveyance decreases, while the floodplains one increases significantly.

Figure 0.3 : Flow structure in a compound channel (Shiono and Knight 1991)

Figure 0.4 : Large vortices observed at the interfaces between the main channel
and the floodplains of a compound channel (Sellin 1964)

Although a two-dimensional model could partly take this effect into account, one-
dimensional models are usually preferred, due to computational costs, as the reach
lengths to be investigated could require huge meshes; and due to data availability, also
linked to survey costs. When seeking to estimate the stage-discharge relation in a
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compound section, as required by a one-dimensional model, the momentum transfer
must thus clearly be taken into account.

The problem complexity rises one step more when the river is no longer modelled as a
prismatic compound channel, but as a non-prismatic main channel meandering in non-
prismatic floodplains, corresponding to actual river geometry as observed in nature. Due
to the channel meandering, water flowing in the floodplains now crosses over water
flowing in the main channel, resulting in increased interactions and exchanges that
should also be considered in the flow modelling (Figure 0.5).

Figure 0.5 : Flow structure in a meandering compound channel (Sellin et al. 1993)

3. Scope of this work

Since the early works by Sellin (1964), many researchers have investigated compound-
channel flow and several computational methods have been proposed in order to model
the stage-discharge relation. As will be presented in Chapter 1 – State of the art, two
recent methods have gained the most credit : the Ackers' method and the various forms
of the Lateral Distribution Method (LDM). These methods provide accurate discharge
prediction, together, when using the LDM, with the velocity distribution along the
cross-section width.

However, both methods are mainly designed for modelling uniform flow in a prismatic
channel : using them for non-uniform flow or for a meandering channel could thus
reveal hazardous. Some other imperfections make their use not straightforward : the
Ackers' method is an empirical method that requires the estimate of several geometrical
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parameters. Good engineer skills and judgement is necessary when estimating these
parameters for a natural geometry, in such a way that this preliminary step of the
method could be difficult to automate. On the other hand, the LDM is theoretically well
founded. Only the term representing the effects of the secondary currents remains
empirically estimated. Unfortunately, part of the LDM accuracy rests on this term
whose value could be difficult to extrapolate to natural channels as it is deduced from
laboratory experiments and differs for each data set.

Improvement of these methods, or alternative methods development, seems therefore
valuable if it tends towards (1) better theoretical background; (2) at least equivalent
accuracy; (3) applicability to non-prismatic channels; and (4) easier use in
computational programs. The main objective of the present work is to propose such an
alternative method.

The proposed Exchange Discharge Model (EDM) accounts for the momentum transfer
between the main channel and the floodplains, estimated as proportional to the velocity
gradient between both subsections and to the discharges exchanged through the
interface. The so-called exchange discharges originate from both a turbulent exchange
in uniform flow, i.e. the mass transported by turbulent structures such as the large
vortices with vertical axis; and from a net mass transfer due to geometrical changes in
non-prismatic channels (Figure 0.6). The EDM equations are then developed in order to
express the effects of the momentum transfer as an additional loss to be added to the
head loss due to bed friction, for water-profile computation purpose.

Figure 0.6 : Flow exchanges as modelled by the Exchange Discharge Model

Only two additional coefficients need to be estimated in the EDM formulation. Their
values present only little variations when fitted to a large number of data set, in such a
way that unique values can be adopted for all applications. With such fixed parameters,
the EDM produces accurate discharge predictions for all the prismatic channels tested,
with errors of generally less than 5 %. Satisfactory results are also obtained for the non-
prismatic geometries investigated, including slightly meandering channels. Although it
was not tested in the frame of the present work, it is anticipated that the EDM could also
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produce good results for meandering channels with higher sinuosity (in the range 1.5),
as it is founded on the modelling of a momentum transfer mechanism rather than on an
empirical relation.

4. Contents outline

The present work is divided into three main parts : the first one presents the Exchange
Discharge Model itself, together with some other fundamental equations; the second
part explores tentatively the momentum transfer mechanism associated with the
turbulent exchanges; and the third part introduces new experimental measurements
attempting to quantify the momentum transfer associated with mass transfer in a non-
prismatic geometry.

In the first part, a state-of-the-art chapter reviews some significant contributions to the
understanding of the flow behaviour in a compound channel, together with most of the
one-dimensional methods proposed up to now. The two-dimensional Saint-Venant
equations, or shallow-water equations, are then presented, as they will be used, in the
second and third parts, for flow investigations based on two-dimensional modelling.
The Lateral Distribution Method is also developed and a tentative clarification of the
secondary current term significance, to be tested in the continuation of this work, is
proposed. Lastly, the Exchange Discharge Model is developed extensively and
significant results are presented.

The momentum transfer due to turbulent exchanges is investigated in the second part of
this work. Some new experimental observations using digital imagery techniques are
detailed, quantifying the periodical vortex structures due to the shear layer at the
interface between the main channel and the floodplains. These periodical structures are
also explored through a hydrodynamic stability analysis and through numerical
simulations. A tentative model of the momentum transfer due to the horizontal vortices
is developed in relation with the Exchange Discharge Model. In addition, the effect of
the helical secondary currents on the velocity profile is tentatively modelled, using
dispersion term in the Saint-Venant equations, and the results are discussed in relation
with the LDM secondary current term.

The mass and momentum transfer due to geometrical changes of non-prismatic channels
is finally investigated in the third part. The flow in a compound channel with
symmetrically narrowing floodplains is studied experimentally : in such a geometry, the
momentum transfer occurs as in meandering channels, although no curvature effect
exists, enabling thus an easier comparison with the Exchange Discharge Model. In
addition, two-dimensional modelling is performed and a proposed extension of the
LDM to non-prismatic flow is tested. Lastly, the flow near the critical depth is
experimentally observed : indeed, although the channel remains prismatic, due to the
water level variations, this flow is actually non-prismatic and constitutes a final test case
for the EDM.
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Fundamental physics and
associated equations

A flood on the Yang-Tse River,
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Chapter 1 
Compound-channel flow and one-dimensional
modelling : State of the art

1.1 Introduction

This brief state-of-the-art review intends to present some selected significant
contributions to compound channel flow modelling. The available observations
concerning compound channel flow structures are summarised; while, according to this
work's main objective – the development of a theoretically sound one-dimensional
model – the quality of results that can be obtained with one-dimensional formulae are
also emphasised. Previous works relative to the modelling of periodical structures and
to the mass transfer in non-prismatic geometries will be further investigated in
introduction Chapters of Part II and III of this work.

It should be noted that a considerable amount of research papers have been published on
the topic, as compound channels have been investigated quite extensively since the
early sixties, and as more research is still underway. A complete literature survey is out
of the scope of this work. However, the interested reader may refer to the extensive
literature search by Hollinrake (1987; 1988; 1989; 1990; 1992) for work prior to '90.
For an updated state-of-the-art review, the reader should refer to the IAHR monograph
to be published by Knight et al. (2002).

1.2 Pioneer investigations

The estimation of the stage-discharge relation in a given river cross-section has been a
challenge for hydraulicians since the early developments of the discipline. Antoine de
Chézy, in the year 1775, and Pierre Louis Georges Du Buat, in 1779, were the first to
publish algebraical formula for uniform flow calculation (Rouse and Ince 1954). During
the 19th century, many empirical formulae were proposed, based on sets of laboratory
and fields measurements. Among those pioneer, Manning (1889) proposed two
empirical formulae, founded on large amount of data, collected by himself or available
in the literature :
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where U is the flow mean velocity; R is the cross-section hydraulic radius (ratio of the
section area A to the wetted perimeter P); S0 is the channel bed slope; g is the gravity
constant; m is the atmospheric pressure, expressed as a column of mercury height (m =
0.76 m, for S.I. units system); and C and C' are two constant, depending of the channel
bed and wall composition.

Although Manning preferred the first of these two formulae, only the second one (1.2)
has been retained by engineers. It has become one of the most widespread and used
friction formula, probably thanks to the good results obtained and to its monomial
aspect that makes it easier to use. Most of present textbooks now quote it in the form
(e.g. French 1985; Chaudhry 1993) :
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where Q is the discharge; and n is the so-called Manning roughness coefficient. Tables
of Manning coefficient values according to the channel bed material and condition can
be found in almost all open channel hydraulic textbooks. It should also be pointed out
that this formula is dimensionally non-homogeneous and that the form (1.3) stands for
SI units (Yen 1992).

However, the use of the Manning formula (1.3) should be restricted to channels with an
almost uniform velocity distribution in the cross-section. The Manning formula must be
adapted for application to compound channels, in which the velocity in the main
channel is larger than on the floodplains, due to the deeper section and to the generally
lower roughness. Indeed, when water starts to flow on the floodplains, the wetted
perimeter increases suddenly and the hydraulic radius decreases accordingly, leading to
a discharge underestimation. Lotter (1933) has therefore suggested to divide the channel
cross-section in subsections where the velocities are more homogeneous (Figure 1.1),
namely the main channel and the two floodplains. The discharge is then estimated in
each subsection separately, and the whole section discharge Q is obtained by addition of
the subsection discharges Qi. Using the Manning formula (1.3) in each subsection, the
following equation is obtained :
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where subscript i stands for subsection i. This method is nowadays called the Divided
Channel Method (DCM); by opposition to the simple application of equation (1.3) to
the whole channel, which is called the Single Channel Method (SCM).

Using the DCM, the division limits between the subsections can be either vertical, as
suggested by Lotter (Figure 1.1), diagonal or horizontal (Figure 1.2). As discussed
below, several authors have investigated which definition of the division lines provides
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the best results. The most common and practical choice remains nevertheless the
vertical ones, that are also easier to implement in a numerical model. The DCM has
been therefore widely used in water-profile computational software such as HEC-Ras
(HEC 1998).

Figure 1.1 : Cross section of a compound channel, division in subsections

(a)

(b)

(c)

Figure 1.2 : Divided channel method, possible subsection divisions :
(a) vertical; (b) diagonal; and (c) horizontal

Sellin (1964) is one of the first who investigated experimentally the behaviour of the
uniform flow in a compound channel. He showed that the DCM overestimates the
discharge in a compound channel for a given water depth, and he observed the large
vortices with vertical axis located at the interface between the main channel and a
floodplain (Figure 0.4). These vortices are due to the shearing between fast and slow
moving water in the respective subsections, and they generate a momentum transfer
from the main channel to the floodplain. As a result, the velocity decreases in the main
channel and increases in the floodplain, resulting in a global conveyance reduction.

Further works have thus attempted to improve or correct the DCM; and some alternative
methods were also proposed. Some of these works are described below.
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1.3 Shear layer analysis

One of the first investigation on the influence of the division lines choice using DCM is
due to Posey (1967). Using experimental data of flow in a compound channel, SCM
was compared to the DCM, with vertical (Figure 1.2a) or diagonal (Figure 1.2b)
division lines. In this particular case, the SCM was found better for the lower discharges
while the DCM with vertical division lines provided the best results for higher overbank
flow. Yen and Overton (1973) suggested that the best division line would be a division
line where the shear-stress equals zero. On the basis of velocity distribution
measurements, they identified such lines, found almost diagonal. Unfortunately, these
lines have to be adapted for each given discharge or water depth.

Several authors began to investigate the bed shear stress τb distribution in a compound
section, in relation to the stage-discharge curve : the shear stress is found to present
locally a maximum value on the floodplain, near the interface with the main channel, as
a consequence of the local velocity acceleration due to the momentum transfer (Ghosh
and Jena 1971; Myers and Elsawy 1975). The observation of a local minimum τb value
in the main-channel centre line, with two adjacent local maximum, indicated the
presence of counter-rotative helical secondary-currents (Knight and Hamed 1984).

On the basis of such bed shear-stress measurements, Myers (1978) performed a
momentum balance analysis of each subsection as defined by the DCM, and defined the
apparent shear stress τa, acting on the vertical division lines and expressing the
momentum transfer between main channel and floodplain. For the lower relative depth
Hr (ratio of the depth on the floodplains H-h to the depth in the main channel H, see
Figure 1.1), this apparent shear stress was found to be as great as 25 % of the main-
channel subsection weight component and as 200 % of the floodplain weight
component, clearly discarding the DCM approach.

Various empirical relations linking the apparent shear-stress to the cross-section
parameter were proposed, as summarised in Table 1.1. Expressing the apparent shear
stress as a Reynolds stress ''vua ρ=τ , and using a model similar to the Prandtl mixing

length concept, Ervine and Baird (1982) suggested that the apparent shear stress is
proportional to the square of the velocity gradient ∆U between main channel and
floodplains. The other formulae quoted in Table 1.1 are mainly based on dimensional
analysis. All of them enable the correction of the DCM and the estimation of the actual
discharge. However, it should be pointed that, although referring to almost the same
geometrical parameters, the numerical coefficients of all these formulae present a large
scattering. Indeed, each formula refers to one particular tested geometry and is therefore
difficult to apply to other data (Knight and Shiono 1996).

Some alternative methods, again based on the DCM, were also developed during the
same period. Nicollet and Uan (1979) proposed the DEBORD method, on the basis of
an empirical correction of the subsection conveyances. This method is still widely used
in France. Dracos and Hardegger (1987) proposed an empirical correction of the



Chapter 1 : State of the art 13

Manning roughness coefficient to be used with the DCM in order to get the actual
discharge. Unfortunately, such a correction discards the relation between the actual
velocity U and the bed shear stress τb, although the latter is also of interest when
sediment transport is under consideration. Smart (1992) proposed another empirical
roughness correction formula; but also highlighted the discontinuity in the staged-
discharge curve just above bank level : for small relative depth Hr, the discharge is
sometimes lower than the bankfull discharge, due to the momentum transfer. Lambert
and Myers (1998) proposed to use a weighted addition of the discharges computed by
the DCM with vertical (Figure 1.2a) and horizontal (Figure 1.2c) division lines. Lastly,
it should be pointed out that Wormleaton and Hadjipanos (1985) also showed that, even
if the total discharge is roughly approximated by the DCM, the error on the estimated
subsection discharges Qi can be up to 60 %.

Table 1.1 : Some empirical apparent shear stress formulae

Authors Formula

Ervine and Baird 1982 ( )250
U

N f
a ∆=τ (1.5)

Wormleaton et al. 1982 ( )
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Prinos and Townsend 1984 ( )
514.0129.1
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Wormleaton and Merrett 1990 ( ) ( ) ( ) 519.0354.0451.1325.3 bBhHUa −−∆=τ − (1.9)

where ∆U is the velocity difference between main channel and floodplain; Nf  is the
number of floodplains; H and h are respectively the main-channel and bankfull depth;
B and b are respectively the whole channel and the main-channel width (Figure 1.1)

The study of compound channels has not been restricted to one-dimensional modelling.
Krishnappan and Lau (1986) used a tri-dimensional simulation with a k-ε turbulence
model, while Keller and Rodi (1988) used a depth-averaged two-dimensional k-ε model.
Both study produced satisfactory results for both the velocity and the bed shear-stress
predictions.
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1.4 The Flood Channel Facility experiments

1.4.1 Experimental campaign

Prior to the mid-'80, almost all experiments on compound channel flow were performed
in small- or medium-scale university facilities. Intending to perform such experiments
at a larger scale and for higher Reynolds numbers, the U.K. Science and Engineering
Research Council founded the building of a large scale Flood Channel Facility (FCF),
settled at H.R. Wallingford (Knight and Sellin 1987). The whole FCF is 56-m long and
10-m wide, with a bed slope S0 = 1 × 10-3 and a maximum discharge of 1.08 m3/s
(Figure 1.3). In a first stage (Series A), various straight channel geometries were tested,
involving variation of (1) the floodplain width; (2) the main-channel bank transverse
slope; (3) the number of floodplains; and (4) the floodplain roughness (smooth cement
finishing or rough, using vertical rods). All the data obtained during this first series have
been edited by Knight (1992). Some significant results of the research teams associated
to this program are presented hereafter. Some results from the further experimental
series concerning meandering channels (Series B) and mobile beds channels (Series C)
will be discussed in a next paragraph.

Figure 1.3 : General view of the Flood Channel Facility
at H.R. Wallingford (Knight and Shiono 1990)

Wormleaton and Merrett (1990) investigated the bed shear stress distribution and
developed the apparent shear stress formula (1.9) quoted above. The roughness
coefficient variation was explored by Myers and Brennan (1990) who showed that, as
already observed in previous studies, the roughness coefficient estimated for the whole
channel presents a sudden increase when the river begins to flow overbank. The
estimated main-channel roughness increases, while the floodplain one decreases, as a
result of the momentum transfer.
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The local velocity distribution, the velocity turbulent fluctuations and the Reynolds
stresses were measured by Knight and Shiono (1990), using a Laser Doppler
Anemometer (LDA). The vertical distribution of the shear stress τzx was found to be
highly non-linear in the interface zone, indicating strong secondary currents
development. The transverse velocity component fluctuations v' in this area revealed
periodical oscillations, confirming the presence of the large vortices with vertical axis
already observed by Sellin (1964), although no frequency analysis has been provided up
to now. Except at the interface area, the vertical velocity profiles are close to the
classical logarithmic profile; and, from velocity and bed shear-stress measurements, it is
found that the friction coefficient is almost constant in each channel subsection.

Complementary experiments were performed for a main channel skewed to the
floodplains (Elliott and Sellin 1990). These experiments in the FCF were also repeated
at a smaller scale by Jasem (1990). Both investigations revealed the stronger
interactions that will be observed in meandering channel : when the floodplain flow
crosses over the main-channel flow, a strong interaction occurs and helical secondary
currents are driven within the main channel. This interaction generates a channel
discharge reduction up to 10 % (Sellin 1995).

1.4.2 Ackers empirical method

Analysing the new data sets, Ackers (1992, 1993) defined two adimensional
parameters : (1) the coherence COH, equal to the ratio between SCM- and DCM-
computed channel conveyance; and (2) the discharge adjustment factor DISADF, equal
to the ratio between the actual discharge and the discharge estimated by the DCM. The
coherence is a measure of the degree of interaction to be expected in a compound
channel : a small coherence value indicates large floodplains and a probably intensive
interaction, while a coherence value close to the unity indicates a single channel
behaviour, with a low interaction. The discharge adjustment factor shows the accuracy
of the discharge estimation by the DCM. It is also an indication on how to correct the
DCM in  order to improve its results.

Figure 1.4 gives a typical plot of the DISADF variation with the relative depth Hr =
(H - h) / H, i.e. the ratio between floodplain and main-channel depths. Ackers identified
four distinct behaviour for four distinct water level regions. Using the FCF data and
additional data from previously published works, he developed four empirical equations
correcting the DCM in each given region. These empirical equations are function of
several parameters such as the relative water depth Hr, the main-channel and floodplain
width b and B, the bank slope, the bank level, etc. A sequence of tests enables selection
of the appropriate formula.
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Figure 1.4 : Ackers' method, DISADF values for the FCF 02 series (Ackers 1993)

The Ackers' method produces accurate discharge predictions and has been successfully
applied to natural rivers. This method is now recommended by the U.K. National River
Authority. One should however remember this method is an empirical one. Moreover,
the determination of the geometrical parameters involved in the Ackers' formulae is
sometimes tedious, for example when dealing with non-symmetrical geometries having
different bank levels on both main-channel sides, and requires some engineer skills and
judgement (Wark et al. 1994).

1.4.3 Lateral distribution method

Alternative methods, based on a two-dimensional approach, have also been developed
by several researchers of the FCF party (Wormleaton 1988, Knight et al. 1989, Wark et
al. 1990). These methods assume a uniform steady flow in a prismatic channel,
resulting, by depth averaging the Navier-Stokes equations, in a one-dimensional relation
defining the longitudinal velocity. The distribution of the latter may thus be determined
along the cross-section, together with the bed shear stress. These so-called Lateral
Distribution Method (LDM) incorporates eddy viscosity and, sometimes, also includes
secondary currents effects.

The roughness is estimated either by a Manning coefficient (e.g. Wark et al. 1990) or by
a Darcy-Weisbach friction factor (e.g. Knight et al. 1989). The eddy viscosity is either
assumed proportional to the shear velocity U* (e.g. Knight et al. 1989) or estimated
using a mixing length model (Lambert and Sellin 1996). The effects of secondary
currents can be modelled by some constant parameter (Shiono and Knight 1991) or as
proportional to the square of the longitudinal velocity (Ervine et al. 2000). No all
authors account for this effect which is sometimes modelled through an artificially
increased eddy viscosity coefficient (Wark et al. 1990), producing accurate discharge
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prediction but lower quality velocity profiles. An increase of the roughness coefficient
is also possible for that purpose, but this discards the relation between the velocity and
the bed shear stress (Shiono and Knight 1991).

These Lateral Distribution Methods will be further discussed in Chapter 3, where a
tentative clarification of the significance of the secondary current term is also proposed.

1.5 Recent progress

1.5.1 Tri-dimensional modelling

Parallel to the attempts for developing stage-discharge formulae, several authors
investigated further the tri-dimensional structure of the flow in a compound channel,
experimentally and numerically.

Quite simultaneously to the FCF experiments, Tominaga and Nezu (1991) performed
detailed measurements of the tri-dimensional flow structure in a compound channel,
using a LDA system. The helical secondary currents in the main channel and on the
floodplains were clearly depicted, and the influence of the corner between the main-
channel bank and the floodplain on the structure of these currents was highlighted
(Figure 1.5). Using a 3D algebraic stress model, Naot et al. (1993a-b) reproduced quite
successfully these observations, with a rather good representation of the longitudinal
velocity distribution and of the secondary current pattern.

Figure 1.5 : Measured secondary currents in a compound-channel section
(Tominaga and Nezu 1991)

Using a 3D Large Eddy Simulation model, Thomas and Williams (1995) computed the
flow in an asymmetric compound channel. When compared with the measurements of
Tominaga and Nezu, the time-averaged velocity distribution proved to be satisfactorily
modelled. However, although they were using a LES model, Thomas and Williams did
not provide information on their results regarding the velocity fluctuations and related
turbulence structure, such as periodical vortices.
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Hosoda et al. (1998) used a non-linear k-ε model to reproduce the turbulence structures
development in an asymmetric channel. Modelling a sufficiently long channel, they
observed the growth of horizontal vortices and the formation of helical secondary
currents, corresponding, at least qualitatively, with the experimental observations.

1.5.2 Flow in meandering channels

Toebes and Sooky (1967) investigated the flow in a meandering compound channel and
the subsequent reduction in conveyance. Later, considerable information was gathered
from the FCF series B experiments. Sellin et al. (1993) gave a complete description of
the flow structure in a meandering channel (Figure 0.5), in which a strong interaction
takes place due to the floodplain flow crossing over the main-channel flow. Between the
main-channel meander apex, floodplain flow plunges into the channel, generating a
strong helical secondary current. As a result, the helical secondary current in the
meandering apex is found rotating in the opposite direction at it would have been if only
driven by centrifugal forces as in an inbank flow; and part of the water flowing in the
main channel is ejected on the floodplain when leaving the apex. These observations
were later confirmed with detailed LDA measurements by Shiono and Muto (1998).

Several stage-discharge modelling attempts were produced, using FCF results, together
with additional data sets. Ervine et al. (1993) investigated the value of the ratio F*
between the actual measured discharge and a modified DCM evaluated discharge. For
this purpose, they used a DCM with a horizontal division line (Figure 1.2c), which
corresponds to the plane where the main shear occurs. The floodplain area was divided
in two subsections : the first one including the whole meandering belt, the second one
for the outside zones. Ervine et al. (1993) found that the ratio F* is significantly lower
than unity, indicating the strong influence of the interaction process when compared to
the bed friction. The ratio F* value reduces when channel sinuosity increases, when the
main-channel aspect ratio reduces (width to depth ratio) and when the meander belt
width increases compared to the total floodway width. Greenhill and Sellin (1993)
developed and validated a computational model, based on the same modified DCM. In
order to take into account additional shearing between subsections, they calculated the
subsection wetted perimeter by taking into account a part of the division lines.

Researches regarding meandering channels will be further reviewed in Chapter 11,
introducing Part III of this work, that deals with flow in non-prismatic channels.

1.5.3 Mobile bed experiments

Further experimental series in FCF, and in other university facilities, are now concerned
with sediment transport in compound channels. It has already been observed that the
main-channel bed forms are deeply affected when the river flows overbank, and that the
sediment coming out of the main channel can settle on the floodplains (Benson et al.
1997). The bed load rate also increases when water reaches the bank level, due to
stronger secondary currents (Ervine et al. 1997).
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Cassells et al. (2001) recently studied the influence of the mobile bed on the stage-
discharge relation in straight compound channels, while Lyness et al. (2001) performed
similar investigations for meandering compound channels. They found that, due to deep
bed forms, the main-channel roughness can be higher than the floodplain one, resulting
in a modified momentum transfer mechanism. However, this latter point may be
questionable when considering natural rivers, as the grain size of the sediment used for
the experiments is rather coarse when compared to the model scale.

1.5.4 Unsteady flow experiments

Unsteady flow modelling in a compound channel is also of interest and the steady flow
formulae should be tested in such extended conditions. Stephenson and Kolovopoulos
(1990) performed comparison between the DCM and several corrected methods such as
the apparent shear stress equation (1.8) by Prinos and Townsend. Although their study
shows clear discrepancies between various methods, the lack of experimental data did
not permit to identify the most appropriate one. Using some experimental data, Abida
and Townsend (1994) showed that the DCM produced accurate results, only if some
momentum transfer correction was included.

New experimental measurements of unsteady flow in a straight compound channel were
obtained by both Tominaga et al. (1994, 1995) and Jayaratne et al. (1995). Detailed
velocity measurements were achieved in small-scale flume, with rather steep discharge
hydrograph. Jayaratne et al. showed that, logically, when water-depth increases, main-
channel water flows through the floodplains, while when water-depth decreases,
floodplain water flows into the main channel. This effect resulted into a strong
hysteresis in the stage-discharge curve, as depicted by Tominaga et al.

Recently, results from similar experiments in meandering compound channels were
reported by Watanabe and Fukuoka (2001), showing similar hysteresis.

1.6 Perspectives for the present work

From this brief state-of-the-art review, one will retain that the most accurate stage-
discharge prediction methods for compound channels are currently the Ackers method
and the LDM. However, the Ackers method is empirical and do not really reflect the
actual flow processes occurring in compound channels. Its parameters are also
sometimes difficult to define for natural channels. On the other hand, the LDM has a
theoretical basis and provides accurate stage-discharge and velocity profile prediction,
as far as an suitable parameter calibration is provided. This parameter calibration may
sometimes reveals tedious when the secondary-current term is considered, as this term
remains partly empirical.

Both this methods were designed for prismatic compound channels and their extension
to non-prismatic channels can be hazardous, mainly for an empirical method such as
Ackers' one. Methods specific to meandering compound channels are also available.
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Unfortunately, up to now, such methods are still empirical. Moreover, their formulation
do not enable a smooth transition from prismatic to non-prismatic channel modelling :
for example, Greenhill and Sellin method for meandering compound channels is a DCM
with an horizontal division line, while Ackers method is founded on a correction of the
DCM with vertical division lines.

The review of the previous work briefly presented here highlighted the need for a better
model, preferably physically founded rather than empirically built, which could produce
accurate stage-discharge prediction and should enable the modelling of non-prismatic
compound channels in the same way as for prismatic channels. The Exchange
Discharge Model (EDM : Bousmar and Zech 1999a), to be developed in Chapter 4 and
investigated further through all this work, attempts to meet these objectives.

The EDM is partly founded on works by Yen et al. (1985), who first considered the
momentum transfer due to mass transfer between subsections in a non-prismatic flow;
and by Bertrand (1994), who defined an exchange discharge through the interface. This
exchange discharge, modelling the turbulent flow exchanges due to the large horizontal
vortices, is assumed to be proportional to the velocity difference between main channel
and floodplain and to the interface area. A momentum transfer equal to the product of
this exchange discharge by the velocity difference is estimated by Bertrand, and enables
a correction of the DCM.



Chapter 2 
The Saint-Venant equations

2.1 Introduction

The Saint-Venant equations – also called shallow-water equations – describe the
behaviour of a two-dimensional flow with a free surface, using depth-averaged values
of the velocity components and assuming an hydrostatic pressure distribution along a
vertical. Although one of this work main purpose is to develop a one-dimensional
model, two-dimensional numerical simulations will be used as a numerical laboratory in
Parts II and III, completing the experimental observations. Being easier to solve
numerically, these two-dimensional equations are preferred to solving the full three-
dimensional Navier-Stokes equations. Indeed, even if only the depth-averaged velocity
field is computed, the results obtained from those simulations will prove to be sufficient
in most of the cases.

However, the effects of the discrepancies between the depth-averaged and the local
values of the velocities are occasionally suspected to have an influence on the computed
depth-averaged velocity profile, mostly in the presence of strong helical secondary-
currents. Such secondary currents will be encountered in the second part of this work,
dedicated to the turbulent exchanges in a uniform flow. Therefore, for some
computations, dispersion terms, taking into account these discrepancies, will be added
to the Saint-Venant equations. The dispersions terms will also be significant when
dealing with the Lateral Distribution Method, in Chapter 3. Since the inclusion of the
dispersion terms in the Saint-Venant equations is not common, the complete derivation
of these equations, including the additional terms, will be given here. A new model will
also be proposed for the evaluation of these dispersion terms.

The Saint-Venant equations can be obtained either by depth-averaging the Navier-
Stokes equations, or by writing the mass and momentum balances for a control volume.
Although the latter is more intuitive, it is based on already depth-averaged velocities
and the dispersion terms can not be derived through this approach. The depth-averaging
approach will thus be used in this Chapter, following Yulistiyanto (1997) and Liggett
(1994), while the momentum balance approach will be used in Chapter 4, for
developing the one-dimensional Saint-Venant equations to be used by the Exchange
Discharge Model.
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2.2 Depth-averaging of the Navier-Stokes equations

2.2.1 Definitions, boundary conditions

The Navier-Stokes equations to be depth-averaged are the following (see e.g. Rodi
1980) :
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where x, y and z are respectively the longitudinal, transverse and vertical directions; u, v
and w are the local velocity components, respectively in the x-, y- and z-directions (see
Figure 2.1); p is the pressure; ρ is the density of water; g is the gravity constant;  and υ
is the molecular viscosity. A Reynolds averaging of the local velocity components has
been used, where u , v  and w  are the Reynolds averaged velocities; and u', v' and w'
are their turbulent fluctuations, whose products define Reynolds turbulent stresses. In
the present work, the shear stresses due to molecular viscosity will be neglected
compared to the Reynolds stresses, as they are usually several order of magnitude
smaller.

The depth-averaging will be performed along the z-direction, between the bed level zb

and the free-surface water level zw. The depth-averaged longitudinal U and transverse V
velocity components are thus defined as :
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where H = zw – zb is the water depth (see Figure 2.1).
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Figure 2.1 : Definition sketch of the axis directions and velocity components

The free-surface boundary condition is defined by assuming that a particle present on
the surface at a given time will remain on it (Liggett 1994). The free-surface is thus
defined by

( ) ( ) 0,,,,, =−= ztyxztzyxS w (2.3)

simply expressing that the variable z gets the value zw defining the free-surface. The
substantial derivative D/Dt of this equation (2.3) equals zero, which means that a
particle on the free-surface remains on the surface, giving thus
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where subscript w stands for free-surface values.

The bed boundary condition is obtained similarly :
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where subscript b stands for bed values, and where the temporal derivative of zb equals
zero, as a fix bed hypothesis is used.

Furthermore, a hydrostatic pressure distribution is assumed. This implies that, in the
vertical momentum equation (2.1d), the vertical accelerations and the shear stresses are
neglected compared to the pressure term. The equation is then simplified as
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and, by integrating over the depth, one obtains

( ) aw pzzgp +−ρ= (2.7)

where the pressure pa at the free-surface is set equal to zero.

2.2.2 Continuity equation

Integrating the continuity equation (2.1a) along the depth gives
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where the integration and differentiation operators have to be inverted using the
Leibnitz rule :
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The three terms in the left-hand side of (2.8) are thus written as
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Grouping again those three terms, and using the definitions of depth-averaged velocities
U and V given by (2.2), the continuity equation becomes
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Using the boundary conditions (2.4) and (2.5), one finally gets :
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where the temporal derivative of the free-surface level zw is replaced by the temporal
derivative of the water depth H, as the bed level zb remains fixed.

2.2.3 Momentum equation in the x-direction

When the momentum equation in the x-direction (2.1b) is integrated along the depth z,
one obtains
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As for the continuity equation, the Leibnitz rule is used to invert the integration and
derivation operators. Using the fixed bed hypothesis and the definition of depth-
averaged longitudinal velocity U (2.2), the acceleration term – the first term in the left-
hand side of (2.13) – gives

( )
t

z
uUH

tt

z
u

t

z
udzu

t
dz

t
u w

w
b

b
w

w

z

z

z

z

w

b

w

b
∂

∂
−

∂
∂

=
∂

∂
+

∂
∂

−
∂
∂

=
∂
∂

∫∫ (2.14)

The first convection term – the second term in the left-hand side of (2.13) – gives
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The integration of the velocity product 
2

u  in the first term of the right-hand side of
(2.15) will generate the first dispersion term. Indeed, one expects to express this term as
a function of the depth-averaged longitudinal velocity U. The local velocity u  varies
along the depth z (Figure 2.2). The depth-integration of its squared value is thus
different from the square of the depth-averaged velocity U. Several authors suggest to
use the so-called Boussinesq coefficient β in order to take into account this difference
(Yen 1973; Liggett 1994) :
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However, most of these authors then assume that this Boussinesq coefficient equals
β = 1, neglecting thus the dispersion effect. In the present approach, the dispersion
terms will rather be developed explicitly. Therefore, one uses the identity
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Figure 2.2 : Typical vertical velocity profiles

The integration of the square of u  in (2.15) can be written as :
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where the second term in the right-hand side equals zero, as the integration of u  along
the depth equals U; and the third term is the so-called dispersion term. Equation (2.15)
finally gives
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In the same way, the second convection term in (2.13) becomes
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and the third convection term of (2.13) simplifies to
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The Leibnitz rule applied to the pressure term in (2.13) – first term in the right-hand
side – gives :
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Using the hydrostatic pressure distribution (2.7), this term becomes
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where the x-direction (longitudinal) channel bed slope can be defined as
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Lastly, using again the Leibnitz rule, the shear-stress terms become :
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It is then assumed that the shear stress at the free-surface is negligible. The second, fifth
and seventh term in the right-hand side of  (2.25) equal thus zero. On the other hand,
regarding the shear stresses at the bed, the third and sixth terms (stresses along vertical
planes) will be assumed negligible compared to the eightieth term (stress along the
horizontal plane). The shear stress terms (2.25) reduce thus to
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where the bed shear stress τb is also expressed as

fx
b SHg=

ρ
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(2.27)

defining Sfx as the head slope in the x-direction.
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The depth-averaged x-wise momentum equation (2.13) is obtained by the addition of
(2.14), (2.19), (2.20), (2.21), (2.23) and (2.26) :
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where the two last terms of the left-hand side equal zero, due to the boundary conditions
at the free surface (2.4) and the bed (2.5). Using the definitions (2.24) of the bed slope
S0x and (2.27) of energy slope Sfx, and grouping the x-derivatives, one obtains
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The so-called "non-conservative" form of (2.29) is obtained by subtracting the
continuity equation (2.12) multiplied by U, and by dividing the resulting equation by
H :
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Depth-averaged shear stresses τxx and τxy can be defined as :
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Writing back the bed slope S0x as a function of zb, one gets at last
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2.2.4 Synthesis

As a result, the Saint-Venant equations can be summarised as (Yulistianto 1997) :
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where (2.33a) is the continuity equation (2.12); (2.33b) is the x-wise momentum
equation (2.32); and (2.33c) is the y-wise momentum equation, obtained similarly to
(2.32).

The same equations are given by Rodi (1980), including the dispersion terms, but with
an opposite sign than in (2.33). As the dispersion terms development is not given, one
can presume that the sign given by Rodi is erroneous. However, Rodi then assumes that
those terms can be neglected in most cases, concurring thus with the authors who
present a Boussinesq coefficient β (2.16) then taken equal to 1, as already pointed out
(Yen 1973; Liggett 1994).

The next paragraphs of this chapter present the models that will be used for the bed
friction terms Sfx and Sfy; for the turbulent shear stresses τxx, τxy, τyx and τyy; and for the
dispersion terms.

2.3 Bed friction modelling

Several models of the head losses due to bed friction, expressed as energy slope Sfx and
Sfy (2.27), have been proposed. Two of them will be used in the present work : the
Manning equation and the Darcy-Weisbach equation. The Manning equation, developed
empirically and of easy use (Manning 1889), is widely used by practitioners. Extensive
tables of Manning-coefficient values are provided. It should nevertheless be pointed out
that Manning equation is strictly valid only for rough flow, and that, in some cases, the
Manning coefficient can be found to vary with water depth. On the other hand, the
Darcy-Weisbach equation reflects more clearly the relation between roughness and
turbulence regime, as it has been developed from simple pipe flow experiments (French
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1985). As this work intends to meet practical concerns, the Manning equation will be
preferred. However, the Darcy-Weisbach equation will sometimes be used concurrently,
for comparison purposes, as it was also used by several authors.

For a uniform flow (i.e. water surface parallel to the bed, i.e. energy slope Sfx is equal to
the bed slope S0), the one-dimensional Manning formula (1.3) is written as :

2/1
0

3/2

S
n

R
U = (2.34)

where U is, in this case, the mean section velocity (total discharge Q divided by the
cross-section area A); R is the cross-section hydraulic radius (ratio between cross-
section area A and wetted perimeter P); and n is the Manning roughness coefficient.

For non-uniform flow, it is classically assumed that the energy slope Sf equals the bed
slope S0 of a channel in which a uniform flow occurs at the same discharge and with the
same cross-section area (French 1985).

For two-dimensional modelling, the hydraulic radius in a given zone can be estimated
as equal to the local water-depth H, as far as the transverse bed slope remains small.
Separating both x-wise and y-wise components of the friction slope, the Manning
equation can be written as :
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where U and V stand now again for the depth-averaged velocities.

The Darcy-Weisbach equation is given as :
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where f is the dimensionless Darcy-Weisbach friction coefficient. For two-dimensional
flow, one writes similarly :
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Besides the energy slope, the bed shear velocity U* should also be estimated using the
friction models. Indeed, the value of U* is required by the turbulence models presented
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in the next subsection. The shear velocity is defined as a function of the bed shear stress
τb (2.27) :

0* SRgU b =
ρ
τ

= (2.38)

It can also be expressed as

( )22* VUcU f +=  (2.39)

where cf is a friction factor, to be estimated either by the Manning equation (2.35) or by
the Darcy-Weisbach equation (2.37) :
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2.4 Turbulent shear stress modelling

2.4.1 Boussinesq eddy viscosity

The depth-averaged Reynolds shear stress terms in the Saint-Venant equations (2.33)
are modelled using the Boussinesq eddy viscosity concept. In analogy with molecular
viscosity, the shear stresses are assumed to be proportional to the Reynolds-averaged
velocity gradients (Rodi 1980) :
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where υt is the eddy viscosity; δij is the Kronecker symbol (δij = 1 for i = j; and δij = 0
for i ≠ j); and k is the kinetic turbulent energy.

For the depth-averaged shear stresses, the Boussinesq assumption is written as :

k
x

U
t

xx

3
2

2 −







∂
∂

υ=
ρ

τ
;   








∂
∂

+
∂
∂

υ=
ρ

τ
=

ρ

τ

x

V

y

U
t

yxxy

and k
y

V
t

yy

3
2

2 −







∂
∂

υ=
ρ

τ
(2.42)

The eddy viscosity υt is either assumed constant; or estimated by an algebraic equation
or by a one- or two-equations model. Such models are presented next, according to Rodi
(1980).
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2.4.2 Algebraic models

The easiest eddy viscosity model would be the constant eddy viscosity model. However,
it is expected that this constant eddy viscosity will vary with the flow conditions : a
different value has to be estimated for each location and time. Such a model has thus
only a limited application range. It has only been used in the first stage of the numerical
program testing, but not in practical computations.

For a shallow-water flow, the bed friction may be the main source of turbulence. In this
case, a widely used turbulence model for depth-averaged modelling assumes that the
eddy-viscosity is proportional to this bed friction, estimated through the shear velocity
U* (2.38), and to the water-depth H :

HUt *λ=υ (2.43)

where λ is an adimensional eddy-viscosity factor (λ ≈ 0.135 for wide laboratory flumes,
according to Rodi 1980; λ ≈ 0.16 for laboratory flumes, λ = 0.6 .. 2.0 in natural rivers,
according to Wark et al. 1990)

If the main turbulence source to be considered is the transverse shearing, the Prandtl
mixing length concept may be used, for example in its simplified form :

y

U
lmt ∂

∂
=υ 2 (2.44)

where lm is the mixing length. This mixing length equation will not be used in the two-
dimensional computations presented in this work, but it will be referred to in both
Chapter 3 and Chapter 4, regarding respectively the LDM and the Exchange Discharge
Model development.

2.4.3 One- and two-equation models (k-l and k-εε)

Rastogi and Rodi (1978) propose a depth-averaged version of the classical tri-
dimensional k-ε model by Launder and Spalding (1974). In this model, the turbulent
kinetic energy k is related to the large-scale turbulent motion and to the turbulence
velocity-scale, while the dissipation ε is related to the turbulence length-scale. The latter
corresponds to the smaller scale where dissipation due to molecular viscosity occurs,
controlling thus the whole energy dissipation process.

The eddy viscosity is estimated by

ε
=υ µ

2k
ct (2.45)

where cµ = 0.09 is a constant. The depth-averaged kinetic energy k and dissipation ε are
estimated through two semi-empirical transport equations :
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where σk, σε, c1ε and c2ε are constants, whose values are given in Table 2.1. The
significance of the terms in both (2.46a) and (2.46b) can be described as follows (Rodi
1980) : the left-hand side terms stand for the temporal variation and for the transport by
convection of the variables k and ε. The two first terms in the right-hand side of the
equations stand for the turbulent diffusion of the variables. The Ph term corresponds to
the turbulent kinetic energy production, due to the interaction between the turbulent
shear stress and the depth-averaged velocity gradient :
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The terms Pkv and Pεv are source terms, who absorb all the secondary terms originating
from non-uniformity of vertical profiles. The main contribution to these terms arises
from significant vertical velocity gradients near the bed : they express therefore the
turbulent kinetic energy production due to bed friction; and Rastogi and Rodi (1978)
assume they are related to the shear velocity U* (2.38) :
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where cf is the friction coefficient as defined by (2.40); and c2ε and cµ are the constants
introduced in (2.45) and (2.46).

Table 2.1 : Values of the constants in the depth-averaged k-ε model (Rodi 1980)

cµ σk σε c1ε c2ε

0.09 1.0 1.3 1.44 1.92
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Nadaoka et Yagi (1998) developed a depth-averaged modelling of periodical turbulent
structures, that will be presented and used in Chapter 8. Their computation is founded
on a one-equation model, which is a simplification of the complete k-ε model. The
turbulent kinetic energy k is estimated through the transport equation (2.46a); while the
turbulence length-scale ld is defined algebraically. This length-scale is assumed to be
proportional to the water depth h, as the bed friction is the main turbulence source :

ld = ξ H (2.49)

where ξ is a constant. Nadaoka and Yagi suggest a value around ξ = 0.1. The dissipation
ε, whose value is to be given in (2.46a), is estimated as :

d
d l

k
c

2/3

=ε (2.50)

where cd = 0.17 is a constant. Using (2.50) in the eddy viscosity υt definition (2.45), the
latter can be directly related to the kinetic energy k and to the length-scale ld :
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t lkclk
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c 2/12/1 '==υ µ (2.51)

where c'd = cµ /cd = 0.17/0.09 is a constant.

2.5 Dispersion terms modelling

The dispersion terms that appear in the Saint-Venant equations (2.33) take into account
the effect of non-uniformity of the vertical profiles of local velocity components u and v
(Figure 2.2). This non-uniformity results from the bed friction effect for the longitudinal
velocity component u; and from the secondary currents development for the transverse
velocity component v. The process of generation of secondary currents will be browsed
further in Chapter 9, dedicated to the effect of the dispersion terms on the computed
velocity profile. However, it can already be pointed out that two main sources of
secondary currents are identified (Nezu and Nakagawa 1993). The so-called secondary
currents of Prandtl's first kind are driven by centrifugal force and are observed in non-
uniform flow, mostly in curved channels (Figure 2.3a); while secondary currents of
Prandtl's second kind are turbulence-driven secondary currents : they are observed even
in uniform flow and are due to non-homogeneity and anisotropy of turbulence (Figure
2.3b).

Yulistianto (1997; Yulistianto et al. 1998) developed a dispersion-term model dedicated
to curved flow around a cylinder, thus relevant for secondary currents of first kind. In
this model, the dispersion terms are written as diffusion terms, and are thus proportional
to derivatives of the depth-averaged velocities U and V. In the present study, only
secondary currents of second kind will be considered, because the flow is uniform and
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the depth-averaged transverse velocity V equals zero. This discards thus Yulistianto's
expressions.

(a) (b)

Figure 2.3 : Secondary currents (a) of first kind, in a curved channel (Chang, 1988);
(b) of second kind for a uniform flow (Nezu et Nakagawa, 1993)

A new dispersion model is thus proposed. On one hand, a proportionality relation
clearly exists between the local velocities u and the depth-averaged velocity U. On the
other hand, as discussed in Chapter 9, the turbulence non-homogeneity, that generates
secondary currents of second kind, mainly depends on the longitudinal velocity U. The
intensity of secondary currents and, as a consequence, the transverse velocity v value,
will both be proportional to this longitudinal velocity U (Bousmar and Zech 2001a).

As a result, it is suggested to estimate the dispersion terms as a function of the square of
this depth-averaged longitudinal velocity U, by defining three proportionality factors :
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where the proportionality factors χuu, χuv and χvv will be called dispersion coefficients.

Using this dispersion term model, the Saint-Venant equations (2.33) are finally written
as :
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2.6 Numerical modelling

Two numerical models will be used to solve the Saint-Venant equations. Both are
classical finite differences models, based on a Mac-Cormack integration scheme,
insuring second order precision in both space and time.

The first one is written for a staggered grid, insuring a very good mass and momentum
conservation during the resolution. Such a condition is required for the uniform flow
modelling with cyclic boundary condition, to be performed in the second part of this
work. The second model is written for a curvilinear collocated grid. As the mesh is
collocated, some continuity and surface instability problems will be faced. However, the
curvilinear grid is required in order to perform computations with boundary fitted mesh
for the non-prismatic geometries investigated in the third part of this work. Indeed, it
turned out to be too difficult to build this curvilinear grid using a staggered mesh and
finite differences, at least within the frame of this work. The discretisation of the
equations, together with additional details on the numerical models are provided in
Appendix 1.



Chapter 3 
The Lateral Distribution Method

3.1 Introduction

The transverse distribution of the depth-averaged longitudinal velocity U is of primary
interest when modelling compound channel flow. This distribution can be obtained
from the two-dimensional Saint-Venant equations developed in the previous Chapter.
However, this can be  costly as it requires the complete resolution of a set of partial
derivative equations. For cases where only the transverse distribution of velocity is
needed, instead of the whole two-dimensional velocity field, several authors suggested
to use a simplified method aimed solely at the determination of this distribution. The so-
called Lateral Distribution Method (LDM) is derived from a depth-averaging of the
Navier-Stokes momentum-conservation equation in the streamwise direction. Assuming
a permanent uniform flow, this equation reduces to a single ordinary differential
equation, which is easier to solve (Wormleaton 1988, Knight et al. 1989, Wark et al.
1990).

As quoted in Chapter 1 – State of the art, the basic LDM equation takes into account the
effects of bed friction and of lateral turbulent friction. Shiono and Knight (1990)
proposed an extended equation, considering also the helical secondary-currents effect,
resulting in a better prediction of the bed shear-stress distribution. Ervine et al. (2000)
recently suggested a secondary-current term formulation also adapted for flow in non-
prismatic channels. Unfortunately, none of the proposed secondary-current terms has a
clear physical meaning. Their calibration rests thus on partly empirical formulations and
can sometimes be tedious.

In the present chapter, a new extension of the LDM to non-prismatic compound
channels is proposed, where the physical meaning of the secondary current term is
tentatively clarified. The classical LDM is first derived from the depth-averaging of
simplified Navier-Stokes equations. The proposed extended LDM is then obtained by
directly simplifying the Saint-Venant equations with dispersion terms, as obtained in the
previous Chapter. The possible significance of several terms due to the non-prismaticity
is highlighted.

The secondary current term significance in prismatic flow will be further discussed in
Chapter 9, where secondary-currents effect in uniform flow is modelled through
dispersion terms. The proposed extended LDM will be tested in Chapter 13, by using
new data from experiments in non-prismatic channels.
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Figure 3.1 : Lateral Distribution Method : reference and variable definition

3.2 Derivation of the Lateral Distribution Method

3.2.1 Simplification and depth -averaging of the Navier-Stokes equations

One of the first LDM presented is due to Knight et al. (1989), who developed it on the
basis of the streamwise momentum Navier-Stokes equation (2.1b), rewritten with z
normal to the bed rather than vertical :
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where ( u , v , w ) are Reynolds averaged local velocity components, respectively in the
x- (streamwise, parallel to the bed), y- (lateral) and z- (normal to bed) directions (Figure
3.1); ρ is the density of water; X is the x-wise component of gravitational forces which
equals the longitudinal bed slope S0x time the gravity constant g; p is the pressure; υ is
the molecular viscosity; and ( uu ′′ρ− , vu ′′ρ− , wu ′′ρ− ) are the Reynolds turbulent

shear stresses.

This momentum equation (3.1) is then simplified by assuming a permanent ( 0=∂∂ t )

and uniform ( 0=∂∂ x ) flow; and by neglecting the viscous friction ( )u2∇υ  in regard

of the Reynolds stresses :
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This simplified equation (3.2) expresses the balance between gravitational driving force
and momentum transfer resulting from both secondary currents (left-hand side) and
turbulent exchanges (Reynolds stresses in the right-hand side).

This equation (3.2) is now depth-averaged, by integration in the normal direction z, over
the water depth H, between the bed level zb and the free-surface water level zw. The bed
level zb can vary across the channel width; while the water level is assumed to be
horizontal in the transverse direction ( 0=∂∂ yzw ), as a consequence of a one-

dimensional flow hypothesis.

For the depth-integration of the first convection term (left-hand side of 3.2), the
differentiation and integral operators are inverted using the Leibnitz rule (2.9) :
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where the two last terms equal zero, as the velocity on the bed is supposed null
( 0)( =

bzvu ) and as the water surface is assumed horizontal in the transverse direction

( 0=∂∂ yzw ).

The second convection term in the left-hand side of (3.2) equals zero, as the vertical
component of the velocity w is null on both the channel bed and the water surface :
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The first Reynolds stress (second term in the right-hand side of 3.2) is also handled with
the Leibnitz rule, assuming a zero-velocity on the bed and a horizontal water surface :
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where τxy is the depth-averaged Reynolds shear stress, as defined by (2.31).

Finally, the second Reynolds stress is depth-integrated :
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where τbed and τsurf are horizontal projections of respectively the bed and the surface
shear stresses. The surface shear stress τsurf, corresponding between others to wind
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effects, is neglected. The horizontal projection of the bed shear stress τbed is replaced by
the actual bed shear-stress value τb, times the ratio between the actual bed perimeter

yS y ∆+ 2
01  and its horizontal projection ∆y, in order to take into account the

transverse bed slope S0y due to river banks (Figure 3.2).

Figure 3.2 : Projection of the actual bed shear stress τb on an horizontal plane

Using (3.3) to (3.6), the simplified x-wise momentum Navier-Stokes equation (3.2)
finally writes, when depth averaged :
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where the right hand term is the so-called secondary current term and corresponds to the
effect of the secondary circulation in the channel. It is generally replaced by a depth-
averaged value ( )dvuρ :
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Using models of the bed friction τb, of the turbulent shear stress τxy and of the secondary
currents, as a function of the depth-averaged longitudinal velocity U, this general LDM
equation (3.8) will reduce to an ordinary differential equation, whose solution will give
the velocity U distribution along the transverse direction y.

3.2.2 Bed friction and turbulent shear stress modelling

Knight et al. (1989) used a Boussinesq eddy viscosity model for τxy and assumed an
eddy viscosity υt proportional to the water depth H and to the shear velocity U* (2.43) :
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where λ is the adimensional eddy viscosity. Using the Darcy-Weisbach friction law
(2.36) to express the value of the bed shear stress τb and of the shear velocity U*; and
neglecting at this stage the secondary-current term, the LDM equation is finally given
by :
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where f is the Darcy-Weisbach friction factor. This equation can be solved numerically,
and Knight et al. also proposed an analytical solution. The parameter calibration was
relatively straightforward, and reasonably close estimates of longitudinal velocities and
total channel discharge were obtained for a natural river test-case, using values of the
adimensional eddy viscosity in the range λ = 0.2 ... 3.0.

Wark et al. (1990) developed an equation similar to (3.10), but in terms of the
longitudinal unit flow q = UH, and using the Manning friction law (2.34) instead of the
Darcy-Weisbach law :
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where n is the Manning friction factor. Good estimates of the velocity profiles were
obtained for small-scale laboratory flumes, for the large-scale Flood Channel Facility at
Wallingford (FCF), and for a natural river, using realistic values of the friction
coefficient and values of the adimensional eddy viscosity that are allowed to vary in the
range λ = 0 ... 0.24, with different values on main-channel and floodplain,.

A last version of the LDM without secondary-current term was proposed by Lambert
and Sellin (1996), using the Prandtl mixing length model (2.44) for estimating the eddy
viscosity, and assuming that the mixing length lm is proportional to the local water depth
H :
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where Cml is a proportionality constant, taken equal to Cml = 0.6. Using an appropriate
value of the friction factor, good estimates of the velocity profile are obtained for the
FCF experiments, without further parameter adjustment.

3.2.3 Modelling of secondary currents

Wormleaton (1988) proposed an almost empirical way of modelling the effect of
secondary currents by considering an additional eddy viscosity in the interface area :

sst lUhU s* λ+λ=υ (3.13)
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where λs is a parameter; Us is an appropriate velocity-scale; and ls is a length scale
representing the shear layer width. This additional eddy viscosity stands for velocity-
gradient generated turbulence, while the first part of the eddy viscosity stands for bed-
friction generated turbulence.

Although the velocity profiles are accurately reproduced by all of the above methods,
Shiono and Knight (1990) showed that this was achieved at the detriment of the bed
shear-stress profile prediction. Indeed, if the effect of secondary currents is neglected,
additional bed and/or turbulent friction have to be added in order to obtain the true
velocity profile. This additional bed friction jeopardises the relation between the depth-
averaged velocity and the bed shear stress; in such a way it becomes impossible to get
both profiles predicted accurately at the same time.

Shiono and Knight (1990) proposed thus a secondary current model in order to improve
the LDM results. The depth-averaged product in the right hand term of the general
LDM equation (3.8) is assumed to present linear variations in the y-direction on the
floodplain and on the main-channel, in such a way that its derivative can be replaced by
one constant on the floodplain and by another constant on the main-channel. This
linearity assumption was verified by Shiono and Knight (1991), who estimated the left-
hand part of (3.8) from the FCF data, as the direct estimation of the quoted depth-
averaged product induced to too much inaccuracies. The LDM now writes :
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where Γ is the secondary-current term, corresponding to helical-current effect. It is
assumed to be constant in each channel sub-section.

Shiono and Knight (1991) developed an analytical solution of (3.14) and obtained
accurate estimates for both velocity and bed shear-stress profiles, compared to some of
the FCF experiments. Knight and Abril (1996), using a numerical solution of (3.14),
investigated more FCF results. They found that the dimensionless eddy viscosity value
λ can remain constant along the whole channel width, and that it has a low influence
when compared to the secondary current term Γ. They also proposed empirical relations
enabling the calibration of all the parameters f, λ and Γ, for the investigated FCF cases.
These relations were not applied to calibrate the LDM for another channel geometry
than the tested ones, and it seems their extrapolation could be hazardous.

Ervine et al. (2000) proposed a new expression for the secondary current term of the
LDM, aimed at the modelling of both uniform and non-prismatic flow. They assume
that both the local velocities u  and v  are proportional to the depth-averaged
longitudinal velocity U. The depth-averaged product in the secondary current term of
(3.8) is thus proportional to the square of the depth-averaged velocity U, similarly to the
dispersion terms, as suggested in the previous Chapter. This new version of the LDM is
written as :
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where K is a proportionality factor.

Ervine et al. (2000) proposed an analytical solution of their new LDM (3.15). They
obtained good agreement for the velocity profile for several FCF straight channel cases,
with values of the proportionality factor Kc = 0.25 % on the main-channel, and Kf = 0 on
the floodplains, but without indicating if they used the actual roughness coefficient or a
fitted value (no information on the bed shear stress results is available). For meandering
geometries, also investigated in the FCF, accurate estimates of the velocity profiles are
obtained, with values of the secondary current parameter in the range Kc = 1 … 5.5 %
on the main-channel, and Kf = 0 … 2 %; the bed shear stress results are presented for
one case and show good agreement with the measured data. Although the K values are
greater for meandering cases than for prismatic ones, no clearer link is established
between the parameter K and the channel geometry.

Discussing Ervine et al. paper, Bousmar and Zech (2001b) suggested that the secondary
current term could be separated in two parts, corresponding respectively to a dispersion
term in uniform flow (helical secondary currents) and to a transverse convection term
(mass transfer due to non-prismaticity). In the next part of this Chapter, an extended
version of the LDM is derived directly from the depth-averaged Saint-Venant equations,
in order to clarify this distinction, and to investigate the weight of all the terms,
including those that are neglected in the classical LDM.

3.3 Extended Lateral distribution method

3.3.1 Simplification of the two-dimensional equations

As developed in Chapter 2, the x-wise Saint-Venant momentum equation (2.33b) is
written as :
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where both sides have been multiplied by ρH, in order to get a form similar to the
classical LDM.

Assuming a permanent uniform flow, the x-direction momentum equation (3.16)
reduces to a form similar to the LDM (3.7) :
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The last term of the right hand side has been written in (3.17) as it arise from the depth-
averaging of the vu  product in the right hand side of (3.7) – see the term development

(2.20). For uniform flow, this term will be null, as the transverse velocity component V
equals zero; while, in non-uniform flow, it corresponds to the mass transfer occurring
between main-channel and floodplains. The remaining dispersion term corresponds thus
clearly to the secondary-current term developed by Shiono and Knight (1990). The
secondary-current term of Ervine et al. (2000) corresponds to both terms of the right
hand part of (3.17), as it is used also in non-prismatic flow, where V differs from zero.

Nevertheless, using (3.17) or similar LDM equations for non-prismatic flows seems a
rather crude assumption, as other terms of (3.16) could be non-negligible : at least the
acceleration term ( xUUH ∂∂ρ ) and the pressure term ( xHgH ∂∂ρ ) should be taken

into account; while the streamwise turbulent friction and dispersion terms are expected
to remain small when the flow is gradually varied.

3.3.2 Extension to non-prisma tic flow

To obtain the extended LDM equation, the acceleration and pressure terms in (3.16) are
grouped with the bottom slope term, in order to define the energy slope Se :
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With this definition, and neglecting the streamwise turbulent friction and dispersion
terms, the x-direction momentum equation (3.16) reduces to the proposed extended
form of the LDM :
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This new expression differs from (3.17) as the bed slope is replaced by the actual energy
slope, which is no more equal to the bed slope in the non-uniform flow case. This
modification of the LDM can be paralleled with the classical assumption used for one-
dimensional modelling, specifying that the head loss for a given reach is equal to the
head loss in the reach for a uniform flow having the same hydraulic radius and average
velocity (French 1985). It should be quoted that Lyness et al. (1997) used a similar
assumption, but without formally extending the LDM equation, when they used the
Wark et al. LDM equation (3.11) to compute conveyance tables to be used for a flood
routing simulation.
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As for the general LDM equation (3.7), the extended LDM (3.19) requires some further
assumptions, in order to express all its terms as function of the main unknown U. In this
case, the friction slope is estimated using the Manning friction law; the turbulent
friction is modelled using the Boussinesq assumption, with the eddy viscosity
proportional to the shearing velocity U*; while, in a first stage, the energy slope Se will
be estimated on the basis of one-dimensional measurements (see Chapter 13) and will
thus be written Se1D.

For the non-prismatic flow modelling, the dispersion term is estimated using the Shiono
and Knight secondary current term Γ. Indeed, the mass transfer between subsections,
due to the non-prismaticity, is expected to restrain the helical secondary current
development on the floodplain and to control their behaviour in the main-channel (see
experimental data in Chapter 12). It is thus expected that the secondary-current Γ term
will have no influence on the floodplains, and will have a lower influence than the mass
transfer in the main-channel. It will therefore be neglected in most of the simulations.

The mass-transfer secondary-current term requires an estimate of the transverse velocity
V that will be gathered from the continuity equation (2.33a) : indeed, for non-prismatic
channels, as already suggested by Ervine et al. (2000), it is expected that the ratio
κ = V/U between the transverse and longitudinal depth-averaged velocity components
will be a constant depending mainly of the channel geometry. The extended LDM to be
tested in Chapter 13 writes thus finally :
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It should be observed that the last term of the right-hand part of (3.20), corresponding to
the mass-transfer current, differs from the Ervine et al. expression (3.15), as the
parameter κ is outside the derivative, and as it is expected to have a value explicitly
linked with the non-prismatic channel geometry.

3.4 Numerical solution of the LDM

As already quoted, analytical solutions of the LDM equation have been proposed, at
least for the Shiono and Knight (3.14) and for the Ervine et al. (3.15) versions.
However, such analytical solutions have not been proposed for all version of LDM.
Moreover, the use of an analytical solution is generally not easy when dealing with a
natural geometry. A numerical solution can therefore be preferred, as it fits easily to
almost every geometry and, as its adaptation for a modified equation is quite
straightforward.

In the present work, the LDM numerical solution is obtained by writing the differential
equation in a discrete form, using the finite differences method (Figure 3.3). This
reduces the LDM equation to a set of quadratic algebraic equations linking together the
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velocities Ui at each node of the mesh. At the boundaries, a no-slip condition is used by
setting the velocity equal to zero along the walls. The so-defined set of equation is
solved either by a Newton-Raphson method, or by any other appropriate method.

Figure 3.3 : Discrete mesh for the LDM numerical solving

When the U*H model is used for the eddy viscosity, a more efficient solution can even
be found, by using the identity

y

U

y

U
U

∂
∂

=
∂
∂ 2

2
1

(3.21)

in the LDM equation (3.14), as suggested by Abril (1995). As the friction term is also
proportional to the square of U, all the equation can be rewritten as a function of 2U
rather of U. When expressed in discrete form, the LDM reduces now to a set of linear
equations linking the square of velocities 2

iU . As the matrix corresponding to this set of

equation is tridiagonal, its inversion is almost trivial.

In order to achieve sufficient precision, a high density mesh can be used with, typically,
1000 nodes in a cross-section (Lyness et al. 1997). However, some numerical tests
reveals that similar precision is already obtained with less than 100 nodes. On the other
hand, it should be noted that internal vertical walls can not be modelled in such a
solution. In fact, the same problem also occurs with the analytical solutions. Such
internal vertical walls are therefore usually replaced by steep oblique walls, as done by
Keller and Rodi (1988) in their two-dimensional model.



Chapter 4 
The Exchange Discharge Model

4.1 Introduction

As explained in the general introduction, the main objective of the present work is the
development of a new one-dimensional method aimed at estimating the stage-discharge
relation in a compound channel, founded on theoretical rather than empirical basis. It is
intended that the Exchange Discharge Model (EDM) proposed in this chapter will meet
this objective.

The EDM (Bousmar and Zech 1999a) improves the classical Divided Channel Method
(DCM, 1.4) by taking into account the effects of the momentum transfers through the
interface. Discharges through the interface between main channel and floodplain are
considered, which can be due to both turbulent exchange and geometrical transfer. The
momentum transfer is assumed to be proportional to these exchange discharges and to
the velocity difference between the main channel and the floodplain. Accurate stage-
discharge estimations are obtained; while the momentum correction enables the use of
actual roughness coefficients, corresponding to the actual river bed material.

Both the turbulent exchange and the geometrical transfer defined by the EDM will be
further studied, respectively in Part II and Part III of this work.

An additional feature of the EDM is its formulation in term of an additional head loss,
to be summed with the DCM-estimated friction losses. Indeed, although the estimation
of the stage-discharge relation is the main focus of such a method, its use in water-
profile computation models is also of some concern. Such programs usually solve the
Bernoulli equation (for example by the standard step method) between consecutive
cross-sections, requiring thus an estimate of the head loss Sf between those sections, as a
function of actual discharge, water depth, bed roughness and geometry.

It is traditionally assumed that the head loss for a specific reach is equal to the head loss
in the reach for a uniform flow having the same hydraulic radius and average velocity
(French 1985). Using, for example, the Single Channel Method (SCM) with the
Manning formula (1.3), the head loss Sf writes
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where Q is the discharge; A and R are the cross-section area and hydraulic radius,
depending on the water depth H; n is the roughness coefficient; and K is defined as the
conveyance of the cross-section.

Such a head loss equation can also be expressed for the DCM (1.4), by isolating the bed
slope S0 in the left-hand side of the equation. Using the Ackers' method or the LDM, the
bed slope can not be isolated so easily. Conveyance K tables are thus used (see e.g.
Lyness 1997) : such a table is obtained from a stage-discharge table, computed for a
given bed slope, and then divided by this bed slope square root. However, such a
method is less straightforward; and, when using the LDM with Shiono and Knight's Γ
secondary current term (3.14), it can be shown that the result will not be independent of
the initial bed slope value. In the case of the EDM, the additional loss formulation will
enable to avoid this conveyance-table calculation.

The EDM was primarily developed for steady flow modelling. The extension to
unsteady flow could be straightforward, using the classical assumption that the head
loss in unsteady flow equals the head loss computed for steady flow. However, when
compound channels are considered, the unsteadiness of the water level generates extra
mass transfer between subsections, as pointed out by Jayaratne et al. (1995). In order to
investigate the significance of this effect on the water profile predictions, the EDM has
been tentatively extended to unsteady flow, by taking into account this new exchange
discharge in the momentum transfer estimation (Bousmar et al. 1998). Some results of
this extended EDM are discussed at the end of this chapter.

Figure 4.1 : Flow exchange at the interfaces between main channel and floodplains

4.2 Exchange Discharge Model development

As seen in Chapter 1, in straight compound channels, due to the shear layer at the
interface between main channel and floodplain, large scale vortices and strong
secondary currents appear. These vortices and currents can be seen as a turbulent
exchange discharge through the interface (Figure 4.1). Rather than giving an estimate of
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an apparent shear stress, Bertrand (1994) proposed to model the momentum transfer
between subsections by the product of the mass of water flowing through the interface
by the velocity gradient at this interface.

This model is then easy to extend to non-uniform and/or non-prismatic flows where a
lateral discharge occurs through the interface due to a modification of flow distribution
in the subsections (Yen et al. 1985). This geometrical transfer discharge (Figure 4.1) can
be added to the turbulent exchange to get a global estimation of the momentum transfer.
Up to now, the model does not take into consideration channel sinuosity and the
associated secondary currents.

4.2.1 Governing equations

In this paragraph, the one-dimensional Saint-Venant equation are developed on the
basis of a momentum equilibrium rather than on the depth-averaging of the Navier-
Stokes equations, as in Chapter 2. Indeed, dealing now with a whole channel or a
channel subsection, the main focus is on the global exchange processes rather than on
the local influence of non-uniformity of the velocity vertical profiles, as it was the case
when developing the dispersion terms.

Figure 4.2 : Momentum equilibrium for a compound-channel subsection

For this development purpose, let thus consider that each subsection of a compound
channel acts as a channel submitted to a lateral flow per unit length qL, which is
decomposed into an inflow component qin and an outflow component qout, in such a way
that conservation of mass may be written :

outinL qqq
x
Q

t
A

−==
∂
∂

+
∂
∂

(4.2)

where A is the cross-section area; and Q is the discharge. Inflow and outflow are locally
mutually exclusive for geometrical transfer (in the same way as for tributary inflow).
For turbulent transfer, however, both incoming and exiting flow components are
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simultaneously considered, yielding a resultant mass transfer equal to zero, but a
momentum transfer which is not, as will be developed below.

Using the principle of conservation of momentum which states that the net rate of
momentum flux into a control volume plus the sum of the forces (gravity, friction,
pressure) acting on the control volume is equal to the rate of accumulation of
momentum within the control volume, the momentum equation can be derived for a unit
length (Figure 4.2) :
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where ρ is the density of water; g is the gravity constant; S0 and Sf are respectively the
bottom and the friction slope, the later estimated for example by (4.1); U = Q/A is the
mean velocity in the considered section; H is the water depth; and uL is the velocity of
the lateral inflow in the direction of the main flow. In (4.3), the lateral flows qin and qout

stand for the sum of the left and the right components, which will be considered
separately later in the development. It is noticeable that inflow and outflow convey
different momentum since their initial velocities are not the same. Developing (4.3), it
can be obtained :
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where z is the water level, equation (4.4) may be simplified, subtracting to (4.4) the
continuity equation (4.2) multiplied by U :
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showing that only the lateral inflow influences the momentum, whereas the outflow
effect is implicitly included in the kinetic head variation. Such a result is given by
Chaudhry (1979, page 443), but without demonstration. The equation (4.6) is also in
agreement with the developments by Yen (1973) and by Lai (1986), at least if only
inflow occurs. An important consequence of this asymmetry between in- and outflow
effect is therefore that momentum transfer due to turbulence exists even if the average
mass transfer is equal to zero.

In the case of steady flow, the first term of (4.6) disappears, and the partial derivative in
the second term, with an opposite sign, may be defined as a head loss per unit length Se :
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where the lateral inflow has now been divided into right side r and left side l inflow
(Figure 4.2), for further application to a compound channel subsection. For a floodplain,
only one side inflow will exist (i.e. flowing from the main channel); but for the main
channel, both inflows can be present. The slope Sa is defined as the additional head loss
due to the exchange discharges at the interface, to be added to the friction slope, in the
given subsection. We can define the ratio χ = Sa / Sf of this additional loss to the friction
loss, so that the above equation becomes :

e fS = S ( )1 + χ (4.8)

and
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In a compound channel, an additional loss ratio and a friction slope will be defined in
each subsection i, namely χi and Sfi. However, the total energy slope Se is the same in all
subsections, as we suppose a one-dimensional modelling. This assumption means that
the river adjusts its energy budget in such a way that no more difference in head subsists
between adjacent subsections.

For its evaluation, the exchange discharge q is divided in two parts : the first, qt, is
related to turbulent momentum flux, the second, qg, is associated to the mass transfer
due to changes in geometry.

4.2.2 Turbulent momentum flux

The turbulent exchange discharge has to be estimated by a turbulence model. A model
analogous to a mixing length model in the horizontal plane was selected because it is
simple enough to lead to a global development of the relation between stage, discharge
and energy slope presented later. Such a model presents similarities with, for example,
Ervine and Baird (1982) apparent shear stress formula (1.5) and Lambert and Sellin
(1996) LDM (3.12). Although this model is simple, when compared with experimental
data, it will prove to give better results than classical methods and, anyway, accurate
enough for water profile computations in natural rivers, in regard to the other
inaccuracies involved in the problem.

Both lateral inflows qcf
t  and q fc

t , respectively from the main channel to a floodplain and

from this floodplain to the main channel, are assumed to be equal to the product of the
depth-averaged turbulent part of the transverse velocity v'  by the interface area per

unit length (H-hf ), where H and hf are the water and the bank levels above the main-
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channel bottom (Figure 1.1). The transverse velocity v'  is assumed to be proportional

to the absolute value of the longitudinal velocity difference between subsections
|Uc - Uf | (Bertrand 1994) :
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where ψ t  is the proportionality factor. The turbulent exchange qcf
t  being an oscillating

discharge, it is assumed to be equal to the dual exchange q fc
t  through the same interface.

It should be noted that the turbulent interaction for the straight channels [see (4.7) and
(4.10)] developed using the turbulent exchange discharge can be shown equivalent to
the one developed using the apparent shear stress concept with a mixing length model
(Ervine and Baird 1982; Smart 1992). Furthermore, the exchange discharge model is
more complete as it also takes into account the geometrical transfer discharges in order
to model non-uniform or non-prismatic flows.

4.2.3 Exchange discharge due  to change in geometry

Let us now consider a floodplain subsection f. Due to changes in geometry, the
conveyance in the floodplain increases or decreases in such a way that the floodplain
discharge also varies, forcing through the interface a geometrical transfer discharge qcf

g

or q fc
g  equal to this variation (Yen et al. 1985).

For an increasing floodplain conveyance, we have for a unit length :

q fc
g = 0       and      q

dQ

dx

dK

dx
Scf

g f f

ff= = 1 2/ (4.11a)

and for decreasing floodplain conveyance :

q
dQ

dx

dK

dx
Sfc

g f f

ff= − = − 1 2/       and      qcf
g = 0 (4.11b)

where the Sff variation is neglected on the interval where dKf /dx is evaluated. We can
generalise in the form :

q
dK

dx
Sfc

g g
fc

f

ff= ψ κ 1 2/       and      q
dK

dx
Scf

g g
cf

f

ff= ψ κ 1 2/ (4.12)

where κfc and κcf take the appropriate values, respectively (0, 1) for dKf /dx > 0 and (-1,
0) for dKf /dx < 0. A proportionality factor ψ g  has also been included.

The geometrical transfer discharge corresponds to the additional secondary currents
experimentally observed in channels where such mass transfer occurs (Elliott and Sellin
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1990) : the shear stress increases when water is flowing from floodplain to main
channel, and reduces when water is flowing from main channel to floodplain. An
appropriate calibration of the proportionality factor ψ g  will take this effect into

account.

4.3 Practical evaluation of the flow

Two main practical problems can be solved by the exchange discharge model :
(1) Given a channel bottom slope and a water level in a known cross-section, estimate
the discharge for rating curve computation; and (2) given a discharge and a water level
in a known cross-section, estimate the corresponding energy slope for water-profile
computation. Assuming a friction law and using equation (4.8), it is possible to answer
those two problems. Manning's equation has been chosen as it is the most widely used
in practical cases. This links the discharge Qi to the friction slope Sfi in each subsection i
and then to the energy slope Se for the whole cross-section, using equation (4.8) and the
definition of the ratio χi :
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By this equation, the subsections velocities Ui can be evaluated and a complete
expression of the ratio χi can be derived from equations (4.8), (4.9), (4.10) and (4.12).
This expression is particularised to the three subsections of a compound channel (Figure
1.1), assuming that main-channel velocity is greater than floodplain one. After
simplification, it gives :
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where subscript 2 stands for the main channel and subscripts 1 and 3 for the floodplains.

This system defines the values of the ratios χi as a function only of water depth, cross-
section geometry and roughness and thus, independently of the discharge value.
Bertrand (1994) calculates ratios similar to χi using equation (4.9) with velocities
evaluated from DCM. Due to the fact that the resulting velocity corrections are
sometimes higher than 50 % for flow on floodplains with low water depth, this method
may be inaccurate. Equations (4.14), written in implicit form, avoid such a problem.
When the channel is a straight symmetrical one with uniform flow, this non-linear
system of 3 equations with 3 variables simplifies and an analytical solution can also be
found : this particular solution is detailed in Appendix 2, together with a numerical
solution procedure for the general problem.

Given the values of χi , it is possible to compute the subsection discharges Qi by the
corrected Manning equation (4.13) for an assumed uniform flow at a given water depth
H with an energy slope Se postulated equal to the channel bottom slope S0 if the latter
may be defined. The total discharge Q in the cross-section is the sum of the corrected
subsection discharges :
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In fact, the discharge is now computed in a similar way as the Divided Channel Method,
but with corrected conveyance Ki

* in each subsection :

( )
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=
+1 1 2χ

(4.16)

Equation (4.15) also leads to a direct computation of the energy slope for a given
discharge, a given water level and the associate cross-section geometry. For practical
water profile computation, one can either use a corrected cross-section conveyance table
using equation (4.16), or develop another equation giving a global correction χ for the
whole cross-section as a global exchange discharge additional loss Sa to be added to the
friction slope Sf computed from the Divided Channel Method :
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where χ = Sa /Sf is the corresponding global ratio.

Introducing the discharge Q from (4.15) into (4.17), a value of the ratio χ can be found
as a function of the subsection ratios χi and conveyances Ki :
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Even if this last expression is less efficient from a computational point of view than the
conveyance tables, as it leads to extra algebra, it can be useful for analysis as it allows
to separate the head loss due to compound channel interaction from the one due to bed
friction. It is also more consistent if other additional losses have to be added (minor loss
at a bridge, for example).

4.4 Calibration of the turbulent exchange parameter ψψt

The presented Exchange Discharge Model (EDM) involves only two parameters which
have to be characterised : the parameter ψ t  which is the proportionality factor for

turbulent exchanges at the interface, and ψ g  which is a correction factor for the

geometrical transfer discharge.

The value of the factor ψ t  was evaluated from published experimental data in straight

prismatic channels, where no geometrical transfers occur. The first data set used for
calibration is the Flood Channel Facility (FCF) one (Knight 1992), which is one of the
most complete and accurate available in the literature. Nine different geometries were
tested investigating the influence of four parameters : (1) Floodplain to main-channel
width ratio B/b; (2) Number of floodplains Nf ; (3) Main channel bank slope sc; and (4)
Floodplain roughness (see Table 4.1).

For each of the nine tested geometries, a stage-discharge curve was computed using the
EDM with some assumed values of the ψt factor, and with a roughness value of
n = 0.010 s/m1/3. This roughness coefficient was estimated from FCF Series 04 single
channel experiments, using the Manning formula (1.3). The EDM results were
compared to the measured data and the ψ t  factor adjusted for minimising the

discrepancy. For this purpose, an unbiased error indicator was used, expressed as the
sum of the squared deviation between measured and computed discharges for each
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water level, following Khatibi et al. (1997). Figure 4.3 shows that the model produces
very good results with a value of the ψ t  factor constant for all the water depths in a

given geometry. Table 4.1 gives the adjusted ψ t  factor value for each of the 9

geometries, showing also that the mean deviation between data and computed values is
generally less than 3 %. The discharge reduction compared to the DCM is in the range 5
to 15 % for the smooth floodplains and in the range 5 to 40 % for the rough ones.

Table 4.1 : Wallingford FCF data : geometrical data and optimal ψt values for EDM
calculations.

Series B/b Nf sc Floodplains
roughness

Optimal ψt Mean
deviation

01 5.56 2 1 smooth 0.179 1.4  %

02 3.50 2 1 smooth 0.113 2.2  %

03 1.83 2 1 smooth 0.122 2.8  %

06 3.50 1 1 smooth 0.266 4.0  %

07 3.50 2 1 rough 0.093 2.5  %

08 4.00 2 0 smooth 0.267 3.0  %

09 4.00 2 0 rough 0.118 2.0  %

10 3.14 2 2 smooth 0.162 2.4  %

11 3.14 2 2 rough 0.093 2.7  %

When the geometry change, a variation of the ψ t  value is possible as it is a

proportionality factor for this particular geometry : Table 4.1 shows that the optimised
values of ψ t  are in the range 0.09 to 0.27. As the optimal ψ t  variation does not seem to

be correlated with geometrical parameters, the mean value of ψ t  through the 9 series is

finally adopted, giving ψ t = 0.16.

Nevertheless, for prismatic channels, a low sensitivity of the EDM discharge prediction
to ψ t  is observed around the optimal value, so that this rather rough estimation does not

jeopardise the model accuracy, even when compared, for example, with Ackers' method
(see next paragraph). A low sensitivity to the ψ t  value around its optimal value will

also be observed below, for water profile computation performed for a field case, where
the channel is meandering.
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Figure 4.3 : Uniform-flow discharge : calculation against Wallingford FCF data.
EDM used with optimal ψt values as defined in Table 4.1

4.5 Uniform flow in prismatic channels

4.5.1 Stage-discharge relation

With the adopted averaged value of ψ t , the stage-discharge curves are computed once

again for the Flood Channel Facility experiments, but also for four new sets of data,
used here to validate the model (Ghosh and Jena 1971; Wormleaton et al. 1982; Knight
and Hamed 1984; Asano et al. 1985). These sets were not previously used for
calibration as the experiments were performed at smaller scale, presenting more data
dispersion and thus a less dependable fitting.



58 Part I : Fundamental physics

Table 4.2 : Data sets used for EDM validation

Authors Nbr of
geometry

b/H B/b Nf sc nf /nc

FCF (Knight 1992) 9 5.0 .. 7.0 1.8 .. 5.6 1 .. 2 0 .. 2 1.0 .. 4.0

Ghosh and Jena 1971 1 2.0 1.4 2 0 1.0

Wormleaton et al. 1982 4 1.2 4.2 2 0 1.0 .. 2.0

Knight and Hamed 1984 8 1.0 2.0 .. 4.0 2 0 1.1 .. 3.3

Asano et al. 1985 6 5.0 .. 15.2 1.4 .. 3.3 2 0 1.0

Stage-discharge curves were also computed using the Single Channel, Divided Channel,
Ackers and Lateral Distribution methods as presented above. Absolute values of the
relative errors are computed for the various geometries and water levels, using the four
methods. Figure 4.4 presents the mean values of these errors for each geometry. The
SCM gives mean relative errors between 10 and 30 %, while the DCM errors are
between 5 and 50 %. The Ackers method yields errors that are generally less than 5 %
but isolated data sets can give errors up to 20 %.

The LDM is used in Wark's formulation (3.11), with Manning roughness and a value of
0.16 for the non-dimensional eddy viscosity. For the tested cases, it produces quite
inaccurate results compared to the published ones (Wark et al. 1990), with errors greater
than Ackers' results but smaller than the DCM ones. This is probably due to the use of a
constant roughness according to water depth, which was assumed in order to be in
similar conditions for all the tested methods.

The EDM results present errors between 5 and 10%. Both the Ackers and EDM
methods lead to improved agreement for each data set. The errors are sometimes
reduced to a tenth of their SCM or DCM values. Finally, comparison between the
Ackers and EDM methods indicates that the accuracy of both methods is of the same
order of magnitude. However, it should be pointed out that Ackers' method is empirical,
and used all the above data for calibration (Ackers 1992), excepted the Ghosh's data;
moreover, each data set was used to fit one of the parameters, in such a way that high
accuracy could be expected for this method.

The flow distribution between main channel and floodplain was also investigated.
Figure 4.5 shows results for Wallingford Flood Channel series 03. Compared to DCM
computation, the EDM leads to a reduction of the main channel discharge to 85-90 %,
and an increase of the floodplains one to 120 % for high water levels, and up to 200 %
for the lowest ones. It can be seen that, even if perfectible, the proposed method gives
thus better results than the classical DCM.
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Figure 4.4 : Mean errors on discharges estimation for a given data set
with SCM, DCM, Ackers and EDM (ψt = 0.16) methods
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Figure 4.5 : Flow distribution between main channel (mc) and floodplain (fp) :
calculation against FCF Series 03 data

Bank level

Figure 4.6 : Validation against field observations : River Severn at Montford Bridge,
U.K., computed stage-discharge curves for nc = 0.0307 and nf = 0.0338

A last stage-discharge comparison was performed using a natural stream cross-section :
the River Severn at Montford Bridge (Knight et al. 1989). The Manning roughness
coefficients used are those obtained by Ackers (1992) for a best fitting of his method to
the data. Figure 4.6 shows that the EDM gives again better results than the SCM and the
DCM as it leads to a DCM correction of up to 16 %. The obtained agreement is
equivalent respectively to that resulting from Ackers' Method which gives a mean error
of 0.3 % with a 2.7 % standard deviation (Ackers 1992), and to that resulting from
LDM which gives a mean error of 2.7 % with a 2.3 % standard deviation, while EDM
mean error is 2.7 % with a 4.4 % standard deviation. Moreover, it should be noted that
no specific parameters fitting ( ψ t  or roughness) was carried out for this calculation

which demonstrates the robustness of the new model.
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4.5.2 Bed shear stress distribution

In addition to the calculation of the stage-discharge relation, information regarding the
bed shear stress τb distribution is also of interest, when sediment transport mechanisms
are considered. Although the EDM do not compute the transverse velocity distribution
but only subsection discharges and mean velocities, bed shear stress estimates can be
obtained from these mean velocities and compared to measurements.

The bed shear stress distribution, measured along the cross-section with a Preston tube,
is given by Figure 4.7 for one of the FCF series 02 tests (Knight 1992). Comparison are
then performed with this actual distribution, rather than with subsection-averaged values
of the measurements. Indeed, one has to keep in mind that extreme shear stresses are
generally more significant regarding the mobilisation of sediments.

From Figure 4.7, it is clear that the EDM underestimates the shear stress in the main
channel (0.00 < y < 0.90 m), whereas the DCM gives a greater value. In the floodplain
(0.90 < y < 3.15 m), the EDM lightly overestimates the shear stress, while the DCM
gives an underestimation. A combined use of both DCM and EDM could give an
envelope of the actual shear values.

Figure 4.7 : Bed shear stress distribution : calculation against FCF test 020501 data

The discrepancy exhibited by the EDM was investigated further as it could be due to the
use of a wrong friction model. From the experimental data, it can effectively be seen
that the FCF operates in smooth turbulent conditions (Myers and Brennan 1990; Ackers
1991) while the EDM was developed using Manning equation which is strictly only
suitable for rough turbulent flow. A new version of the EDM was thus tested, using
Darcy-Weisbach friction law.

A modified Blasius friction law (Ackers 1991) is used to get the Darcy-Weisbach f
value :

2.02.0 −= Ref (4.19)
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where Re is the Reynolds number of the flow, defined as Re = 4UR/ν with R and ν
standing respectively for the section hydraulic radius and the kinematic viscosity of the
water. Used in Darcy-Weisbach law (2.36), this expression gives a "Manning look-
alike" relation between mean velocity U, friction slope Sf , section geometry and
roughness :
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where k becomes the roughness parameter.

With this friction law, new expressions of EDM χi ratios are easily developed. The
calibration gives a ψ t  value close to the one obtained from Manning law and the new

corresponding bed shear stress distribution is plotted on Figure 4.7. This does not
significantly improve the approximation of the shear stress versus the experimental data
but it proves that the EDM can be generalised to other friction models than the Manning
law.

Two reasons for the EDM relative failure to predict the bed shear stress could be
suggested : (1) an error in estimating the subsection discharges; and (2) the influence of
the velocity distribution. On one hand, the discharge distribution between subsections as
calculated by the EDM presents some small discrepancies with measured data (Figure
4.5), although the overall performance is rather satisfactory. On the other hand, the
relation between bed shear stress and velocity is not linear but quadratic (2.38).
Therefore, it is clear that, for non-uniform velocity distribution as observed in each
subsection, the square of the subsection mean velocity will differ from the mean value
of the local velocity square. This could also partly explain the discrepancy between
local and subsection-averaged bed shear stress.

4.6 Calibration of geometrical-exchange parameter ψψg

After calibration for uniform and prismatic flows, the Exchange Discharge Model was
tested against available non-prismatic flow data for calibration of the geometrical
exchange parameter ψ g . Meandering channel data were not used as they imply bend

effects that could interfere with the geometrical transfer process investigated. Two sets
of experiments were finally selected that present a rectilinear main channel skewed to
rectilinear floodplains. The first one comes from the FCF Series A (Elliott and Sellin
1990) with two different skewing angles. The second one is at a smaller scale and
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presents a narrower main channel but data are available for both smooth and rough
floodplains (Jasem 1990). For this calibration, the value of the turbulent exchange
parameter ψ t  is assumed to remain constant at ψ t = 0.16, as the two types of exchanges

are modelled independently, even if their effects are finally combined.

Figure 4.8 : Discharge in skewed channels : EDM calculation against FCF data (Elliott
and Sellin 1990), discharges expressed as fraction of the discharges computed by the

DCM

Figure 4.9 : Discharge in skewed channels : calculation against Jasem's data (1990)

Figure 4.8 presents the stage-discharge data for one of FCF data, where the discharges
are normalised for legibility with respect to the DCM computed discharges. It shows
that the standard EDM for prismatic flows ( ψ t = 0.16, ψ g = 0) overestimates the

discharge, whereas taking the geometrical transfer discharge into account without
correction factor ( ψ t = 0.16, ψ g = 1) increases the head losses and leads to a discharge

underestimation. After some adjustments, the best agreement was obtained by taking
into account half the geometrical transfer discharge ( ψ t = 0.16, ψ g = 0 5. ). It is

presumed that this factor is due to the modelling of the velocity profile transverse



64 Part I : Fundamental physics

evolution as 3 discrete values rather than gradually varied, leading then to an
overestimation of the momentum transfer.

The model, with this geometrical exchange correction factor ψ g = 0 5.  was tested

against Jasem's data (Figure 4.9). Due to the too narrow main channel, for the smooth
floodplains case, the compound channel acts as a single one : SCM, DCM and EDM
give all the same correct result and their comparison is not significant. In the rough
floodplains case, the complete Exchange Discharge Model gives satisfactory results and
its prediction fits well the measured discharges.

The use of a same value of ψt in the non-prismatic and in the prismatic cases could be
questioned. Indeed, the geometrical transfer could affect the turbulent structures that
generates the turbulent exchange. For the smallest geometrical transfer, probably both
processes coexist, although this should be verified through additional experimental
measurements. Therefore, it seems acceptable to use the whole value of the turbulent
exchange, with ψt = 0.16. For larger geometrical transfer, all the turbulent exchange is
certainly cancelled out. In this case, the turbulent exchange discharge becomes thus
negligible with regard to the geometrical transfer discharge, no matter what value is
selected for ψt. As an illustration, typical values of the ratio between the transfer
discharge qg and the turbulent exchange discharge qt can be computed for the FCF
skewed-channel experiments reported on Figure 4.8. For the lower water depth (H =
0.175 m), this ratio is in the range 0.50 .. 1.00, and both exchange processes probably
exist; while, for the larger water depth (H = 0.30 m), the ratio is larger than 10, and the
turbulent exchange is now negligible.

Finally, it should be noted that the calibration of the geometrical correction factor
ψ g = 0 5.  was only done for geometries with a maximum skew angle of 9° between

main channel and floodplains, while larger angles are often observed in the field.
Further experimental comparisons are thus needed to validate this calibration for larger
skew angle. Nevertheless, the following case study indicates that good results could
probably be obtained, even for a meandering channel.

4.7 Case study : River Sambre, Belgium

Up to now, the Exchange Discharge Model proved to give good results when used for a
stage-discharge or derived prediction. Here, it is tested in its additional head loss form
(4.17) for water profile computation, with the correction applied individually to each
cross-section. For this purpose, the EDM was included in a water profile computation
software called AXERIV, previously developed at UCL under the name CADRIV
(Zech et al. 1988). This software is based on the standard step-method for solving the
Bernoulli equation (French 1985) and is thus very similar to most of the usual
commercial packages, like for example HEC-Ras (HEC 1998).
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The upgraded AXERIV software was tested for a 4 km meandering reach of River
Sambre, Belgium (Figure 4.10). Grassland floodplains which extend on both sides of
the main channel were flooded several times during the last years. The river is partly
regulated by dams, and there is no pseudo-uniform flow possible due to control by a
downstream weir : a gauging curve can only be obtained from complete water profile
computations. Accurate geometric data (with cross-section profiles known at intervals
of about 100 m, including floodplains) are available. Eighteen flood events were
recorded for both inbank and overbank flows. For each of them, discharge was
measured together with upstream and downstream water depths.

Figure 4.10 : River Sambre, Belgium : plan view of channel and floodplains,
typical cross-section

These data were used to get an accurate and realistic calibration of the river roughness
parameters, in order to be able to estimate discharge values and flooding of floodplains
for future flood events. As no intermediate water levels were recorded along the reach,
global roughness coefficients were estimated for the whole reach : one for the main
channel and one for both floodplains. Both roughness coefficients are taken constant
with flow depth and are not affected by seasonal variation as all the recorded floods
only occurred in winter.

For each gauged discharge, a water profile was computed from the corresponding
measured downstream depth and tentative roughness coefficients. The upstream
computed water level was then compared to the measured one. For inbank gauged flows
(discharge less than 100 m³/s), the fitting between computed upstream level and
measured data gives a main-channel Manning's roughness coefficient of nc = 0.026.

Overbank flow calculations were then performed in the same way to get the value of the
roughness coefficient for the floodplains. Three different methods were used : the
Single Channel Method, the Divided Channel Method (using HEC-Ras) and the
Exchange Discharge Model. They are synthesised on Figure 4.11 : each gauged
discharge presents its specific downstream water level, the upstream calculated levels
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are shown compared to the measured values. Manning roughness coefficients obtained
from calibration are reported in Table 4.3.

Figure 4.11 : Water-profile computation in River Sambre, Belgium.
Measured downstream water levels, measured and computed upstream water levels

(lines between points are only drawn for figure legibility)

Table 4.3 : Manning roughness coefficients used for water-profile computation in River
Sambre

Method Main channel : nc Floodplain : nf

SCM 0.026 0.026

DCM 0.026 0.100

EDM 0.026 0.031

The results first demonstrate that it is no more possible to use the SCM with the same
roughness value as in the main channel, as the energy slope (difference between up- and
downstream levels) is over-estimated for low overflow. HEC-Ras (DCM) gives better
results, as the energy slope evolution is better estimated. Nevertheless, computations
with various floodplains roughness coefficients show that its value can vary in the range
nf = 0.100 .. 1.000 which are quite unrealistic when compared to the character of the

floodplains as observed in the field.

Finally, the Exchange Discharge Model gives the best results : the correlation between
measured and computed energy slope is very good. An accurate floodplains roughness
coefficient can be estimated as nf = 0.031, which is coherent with field observations on
grasslands. The head loss distribution along the reach length for a given profile
(Q = 205 m³/s) shows that the additional loss due to interaction can represent up to 25 %
of the total losses (Figure 4.12).
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Figure 4.12 : Head loss distribution along the reach of River Sambre,
for the discharge Q = 205 m3/s : friction loss evaluated by the DCM

and additional loss evaluated by the EDM

In order to check the assumed mean value of ψ t = 0.16 after calibration, a small

sensitivity analysis was performed. A 15 % reduced value of ψ t = 0.13 was tested and

the floodplain roughness was estimated with the EDM in the same way as previously.
As the additional loss decreases, the friction one has to increase and the floodplains
roughness coefficient becomes nc = 0.032, which is only 3 % higher and still coherent
with field observations. It proves that the EDM sensitivity to his ψ t  value is not too

high and that its calibration does not necessarily need to be improved for practical
application.

4.8 Extension of the EDM to unsteady flow

4.8.1 Momentum transfer in unsteady flow

As seen above, the EDM proved to produce satisfactory results for steady flow
computation in both prismatic and non-prismatic compound channels. Similarly, good
results could thus be expected for unsteady flow computation. However, when unsteady
flow occurs, additional mass transfer between main channel and floodplains are
observed, due to the filling or emptying of the floodplains, following water level
variations. This additional mass transfer generates an additional momentum transfer that
should be taken into account. The present paragraph investigates the significance of this
effect, through an extension of the EDM that considers this geometrical transfer
discharge due to unsteady flow.
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The extension of the Exchange Discharge Model to unsteady flow is thus founded on
two assumptions : (1) the friction slope Sf can be estimated in the same way as the
friction slope in steady flow; and (2) the additional geometrical transfer qgu due to
unsteady flow generates a momentum transfer in the same way as the other exchange
discharges qt and qg considered formerly. The first assumption enables the estimation of
the friction slope required in the one-dimensional Saint-Venant equation (4.6) on the
basis of a uniform-flow equation like the Manning's one. The EDM additional loss is
similarly added to the friction term of the Saint-Venant equation. The second
assumption simply states the momentum transfer is equal to the multiplication of the
velocity difference with the sum of three exchange discharges : (1) the turbulent
exchange qt; (2) the steady-flow geometrical transfer qg; and (3) the so-called unsteady-
flow geometrical transfer qgu resulting from the additional geometrical transfer.

Figure 4.13 : Volume conservation for a floodplain reach during unsteady flow

The value of this unsteady geometrical transfer discharge qgu can be found from the
mass balance written for a floodplain reach (subsection f) during a time interval ∆t
(Figure 4.13)
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where ∆Vf and ∆H are the variation of the water volume in the floodplain and of the
water level in the channel, during the time interval ∆t; Bf is the mean width of the
floodplain; dx is the length of the reach; and Qf is the floodplain discharge.

The time interval ∆t is then defined short enough to assume that qg and qgu are constant,
and that the discharge Qf varies linearly, during the interval. The integration of (4.22)
leads after simplifications to
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Given the definition of qg by (4.11), at the time t, (4.23) becomes
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and we finally get the value of the unsteady geometrical transfer discharge qgu
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showing that the water entering or leaving the floodplain (Bf ∂H/∂t) comes either from
the main channel (qgu), or from the upstream reach of the floodplain (∂/∂t (∂Qf /∂x)).

The distribution between both supplying sources will depend on the relative flood wave
celerity. For floodplains acting only as storage volume, the floodplain discharge Qf is
equal to zero and, according to (4.25), the water level increase on the floodplain results
only from a filling by the main channel. If the floodplain conveyance is not negligible,
the floodplain discharge will also lightly contribute to the volume increase. For
example, it counts for 5 to 10 % of the feeding in the test case presented in the next part.

4.8.2 Flood wave simulations

This extended EDM model was incorporated in a one-dimensional unsteady flow
computational model solving the Saint-Venant equations by an explicit predictor-
corrector McCormack scheme (Garcia-Navarro and Saviron 1992). In this numerical
scheme, the unsteady geometrical transfer discharge qgu is easy to estimate : while a first
value of qgu for the predictor step is given as a result of the previous time step, a second
one is then evaluated using the water levels produced by the predictor-step, before
processing to the corrector step.

Numerical simulations were performed for comparison with the experimental data of
Tominaga et al. (1995). Their test flume was 11.5 m long, with a 0.20-m width main
channel flanked by two 0.20-m width symmetrical floodplains. The main-channel depth
was 59 mm and the bed slope was fixed at S0 = 0.001. The measurement section was
located 7.5 m downstream from the entrance. A controlled flood wave was imposed
upstream, with discharge increasing linearly from 3 to 20 l/s. The time to reach the
flood peak was either Tp = 60 s or Tp = 120 s. The downstream end of the channel was a
control section. As no roughness value was published, the present computations are
performed with an estimated roughness coefficient equals to nc = nf = 0.010,
corresponding to the perspex walls of the flume. These values seem to be confirmed by
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the correct prediction of the water level, in steady-flow condition, just before the
begining of the flooding.

Figure 4.14 presents the water level evolution in the measurement section, for the
hydrograph with peak time Tp = 60 s. Three simulations where performed : one with the
classical DCM, one with the steady-flow EDM (including turbulent qt and steady
geometrical qg exchanges), and the last one with the unsteady-flow EDM (also
including unsteady geometrical exchange qgu). The rising stage is well estimated by the
three models. For the falling stage, all three methods slightly underestimate the water
level, and the unsteady EDM gives the best prediction.
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Figure 4.14 : Water level evolution with time (Tp = 60s)
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Figure 4.15 : Velocity-stage loop curve (Tp = 120s)
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Figure 4.16 : Subsection velocities evolution with time (Tp = 120s)

Figure 4.15 presents velocity-water level loop curves for both main channel and
floodplain. All the three methods present curves of similar aspect when compared to
experimental data but fail to model it accurately. One explanation is to be found in
Figure 4.16 which presents measured and computed velocities as a function of time,
showing that the computed one does not match the measurements. Indeed, during such a
short flood event in a rather short flume, it is possible in the experiments that the flow
does not reach a velocity distribution corresponding to the uniform flow, whereas the
computation always assumes such uniform-flow velocity distribution.

4.8.3 Additional head loss analysis

The evolution according to the time of the friction slope Sf and of the additional head
loss Sa is presented on Figure 4.17. During the stage rise, the discharge increase is
relatively greater than the rise of the water level and of the corresponding conveyance.
As a result, the friction slope is higher than the channel bottom slope S0 = 0.001. It is
only later, during the recession, that the discharge decrease leads to lower friction. This
may explain the loop shape of the velocity-stage curves of Figure 4.15. The friction-
slope peak at 170 s corresponds to the end of floodplain emptying : as the momentum
transfer suddenly disappears, the water level decreases and the friction slope arises.

The evolution of additional losses is easier to explain when referring to Figure 4.18 that
presents the discharge exchanged through the interface between the main channel and a
floodplain. As the floodplains in the actual case are not so wide, the turbulent exchange
discharge qt is significantly higher than the geometrical ones. It should be noted that its
maximum value, higher than 1 l/s/m, is not negligible compared to the peak value of the
total channel discharge of 20 l/s.

The steady-flow geometrical transfer discharge qg is negative during the flooding, as the
floodplain conveyance decreases downward. Indeed, since the channel discharge
increases according to the time, the water profile is rather steep at the downstream end
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of the channel, leading to a downward decreasing water depth on the floodplains.
During the recession, the profile will be more parallel to the channel bottom and the
steady-flow geometrical transfer will reduce to zero.
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Figure 4.17 : Friction slope and additional loss evolution with time (Tp = 60s)
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Figure 4.18 : Exchange discharges evolution with time (Tp = 60s)

The geometrical transfer discharge qgu due to unsteadiness is positive toward the
floodplains during the rising stage as the water level is increasing. For this particular
example, it approximately counterbalances the steady-flow geometrical transfer,
resulting in a sum near zero. For this reason, the additional loss from the unsteady EDM
computation is lower than from the steady-flow model, giving lower water profiles due
to lower total head losses (Figure 4.14). During the stage recession, the floodplains are
emptying (with a maximum discharge just when flow is leaving floodplains, at 165 s),
the geometrical transfer due to unsteadiness is negative and the associated momentum
transfer slows down the main channel, corresponding to higher additional loss (Figure
4.17), with a peak when water is completely leaving the floodplains.

From these results, one can conclude that the extended EDM for unsteady flow seems to
reproduce appropriately existing phenomena : during flooding, the momentum transfer
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increases the floodplains discharge and does not interfere with main channel. During
recession, it enlarges the main-channel losses in such a way that floodplains emptying
may be delayed.

However, one should point out that the hydrographs experimentally investigated by
Tominaga et al. (1995) are maybe unrealistically steep when considering natural rivers.
If we assume that Tominaga et al. flume is a scale representation of a 20-m wide main
channel, using a Froude similitude, the corresponding discharges and peak times are
respectively Q = 300 .. 2000 m3/s and Tp = 10 or 20 minutes. Excepted maybe in urban
area, the peak time in natural rivers is several order of magnitude longer. The unsteady-
flow transfer discharge is thus expected to be also several order of magnitude lower in
natural rivers. Accordingly, the corresponding momentum transfer can be neglected in
most of the cases, and has to be strictly considered only when dealing with rapidly
growing floods.

4.9 Summary of the method (steady flow case)

4.9.1 Discharge Computation

For computing the discharge Q as a function of water depth (stage-discharge curve),
required data are : (1) The channel cross-section; (2) the mean bottom slope S0; and (3)
an estimation of the Manning roughness coefficients ni for each subsection.

The following steps have to be carried out :

1. For the given water depth H, estimate the corresponding cross-section geometrical
parameters for each subsection : area Ai , hydraulic radius Ri, conveyance Ki

(=Ai Ri
2/3/ni ), and bank level hi .

2. If applicable (non-prismatic flow), estimate the rate of change of the conveyances of
the floodplains κi j dKf /dx as described by equation (4.12).

3. Compute ratio χi values by solving equation (4.14) with a value of ψ t  = 0.16 and

ψ g  = 0.5, using the procedure described in Appendix 2 : solve equations (A2.13)

and (A2.12) for auxiliary variable Xi by Newton-Raphson method and then get χi

from equation (A2.9).

4. Compute the discharge Q by equation (4.15).

A numerical example of such a calculation is given in Appendix 2.
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4.9.2 Energy Slope Calculation

For estimating an energy slope Se as a function of water depth (water profile
computation), required data are : (1) The discharge Q; (2) the channel cross-section; and
(3) an estimation of the Manning roughness coefficients ni for each subsection.

The following steps have to be carried out :

1. For the given water depth H, estimate the corresponding cross-section geometrical
parameters for each subsections : area Ai , hydraulic radius Ri, conveyance Ki

(=Ai Ri
2/3/ni ), and bank level hi .

2. Estimate the rate of change of the conveyances of the floodplains κi j dKf /dx as
described by equation (4.12).

3. Compute ratio χi values by solving equation (4.14) with a value of ψ t = 0.16 and

ψ g = 0.5, using the procedure described in Appendix 2 : solve equations (A2.13)

and (A2.12) for auxiliary variable Xi by Newton-Raphson method and then get χi

from equation (A2.9).

4. Compute the global ratio χ value by equation (4.18).

5. Compute the correct energy slope Se by equation (4.17).

4.10 Conclusion

A new model of main channel to floodplain interaction in compound channels so-called
the Exchange Discharge Model has been presented in this chapter. The momentum
transfer is estimated as the product of the velocity difference at the interface by the
discharge exchanged through this interface due to turbulence. The turbulent exchange
discharge is estimated by a model analogous to a mixing length model including a
proportionality factor ψ t  which is found to be reasonably constant from comparison

with experimental data.

The Exchange Discharge Model improves the stage-discharge prediction for
experimental data and natural data if compared to the classical Single Channel and
Divided Channel Methods. Its accuracy is similar to Ackers' Method but the model
presents the advantage to be a physically-based model without numerous parameter
fitting. It is also as accurate as the Lateral Distribution Method for natural rivers and
rather better for experimental flume, when no specific calibration are used.

For non-prismatic flows, the Exchange Discharge Model is extended by taking into
account, in the momentum transfer, a mass transfer corresponding to the geometrical
change. The EDM supplies then satisfactory stage-discharge results for the skewed
channel case tested, providing that a reduction coefficient ψ g = 0 5.  is applied to the
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geometrical transfer discharge. This reduction can not be completely explained on basis
of the existing experimental data. More experimental data, as developed in Part III, are
therefore needed.

Lastly, the momentum transfer is formulated in the Exchange Discharge Model as an
additional head loss, thus enabling practical water-profile computations. The proposed
model can be easily implemented in most of the commonly-used software packages.
Tested for a case study on River Sambre in Belgium, the model gave correct flow
predictions when used with realistic roughness coefficient values held constant for all
water depths. This was not the case with the widely-used HEC-Ras software (that uses
the Divided Channel Method).

A extension of the EDM for unsteady flow is also proposed, taking into account the
additional unsteady-flow geometrical transfer discharge and the corresponding
momentum transfer. The computational results obtained using this extension seem to
reproduce appropriately some of the basic flow processes measured experimentally. It
should be pointed out that this unsteady-flow geometrical transfer discharge is only
significant when dealing with sudden events in urban areas, presenting rapidly growing
discharge. Its effect can be neglected when considering more natural river conditions.

As a conclusion, the proposed EDM, which yields accurate results for both prismatic
and non-prismatic cases, and which is easy to use, even in water-profile computations,
seems to meet the objectives of developing a new theoretically founded method for
compound channel discharge estimation. However, the proposed model raises new
questions regarding : (1) the validity of the turbulent exchange discharge model; and (2)
the significance of both calibration parameters. These points will be further investigated
in the next two parts of this work. In Part II, modelling of the periodical turbulent
structures generating the turbulent exchange discharge will be performed, and a
tentative model of these structures, enabling a better understanding of the parameter ψt

significance, will be proposed. In Part III, experimental measurements of the
geometrical transfer discharge and corresponding momentum transfer will be performed
in a compound channel with symmetrically narrowing floodplains, enabling further
discussion of this transfer.
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Chapter 5 
Periodical turbulent structures in compound channels :
State of the art

5.1 Introduction

When developing the Exchange Discharge Model in Chapter 4, a so-called turbulent
exchange discharge was defined at the interface between main-channel and floodplain.
This turbulent exchange discharge, and the associated momentum transfer, may allow to
model the effect of the large periodical structures observed at the surface of a
compound-channel flow (Figure 5.1) on the stage-discharge relation. The turbulent
exchange was defined as being proportional to the interface area and to the velocity
difference between subsections. The proportionality factor ψt was said to be similar, in
some degree, to a kind of mixing length.

Figure 5.1 : Large periodical structures at the surface
of a compound-channel flow (Sellin 1964)

The purpose of the second Part of this work is therefore to investigate further this
exchange discharge concept and to clarify the significance of the ψt parameter. At first,
the periodical structures will be further investigated using new experimental
measurements, hydrodynamic stability analysis and numerical computations. Using
those results, a qualitative description of the observed large vortices will be proposed,
together with a tentative modelling of the corresponding exchange discharge and
momentum transfer.
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As an introduction, this brief chapter will review some significant previous works
regarding these periodical structures. The findings relevant to the present work will be
highlighted.

5.2 Experimental observations

As quoted in Chapter 1, Sellin (1964) was the first to report the observation of large-
scale turbulent structures at the surface of a compound channel (Figure 5.1). Using
aluminium powder scattered on the water surface and a camera moving downstream at
constant velocity, he highlighted the presence of large vortices, whose vertical axis are
located near the interfaces between main channel and floodplains. By analysing the
pictures, the distances between adjacent vortex centres were estimated. The frequency
distribution of these distances – or wave length – showed a clear peak for a wave-length
value that equals twice the main-channel width, for this particular channel geometry.

Alavian and Chu (1985) also investigated experimentally the vortex structures in an
experimental compound-channel flow. They performed an hydrodynamic stability
analysis of the parallel shear flow corresponding to the measured velocity profiles.
Analysing the neutral stability curves, as a function of the bottom-friction coefficient,
they showed that the latter has a stabilising effect on the flow.

Figure 5.2 : Measured wave number α of large eddies,
as a function of Reynolds number (Tamai et al. 1986)

Tamai et al. (1986) achieved systematic measurements for several compound
geometries, in both open-channel and closed-channel flow. The vortex wave lengths
were recorded through hydrogen-bubble wire flow-visualisation techniques; and, as in
Sellin's experiments, a clear periodicity was observed. With reference to hydrodynamic
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stability analysis, they suggested that the observed wave length could correspond to the
most rapidly amplified perturbation of the mean flow. Indeed, for increasing Reynolds
number, Figure 5.2 shows that the measured wave-number of the large eddies tends
towards the wave number of the most amplified perturbation for inviscid flow, as
computed by Michalke (1964) – see below.

Similar experiments were performed by Meyer and Rehme (1994), but for air flow in a
closed duct presenting a kind of compound-channel shape. Using Laser-Doppler
Anemometry (LDA), they also identified clear periodical structures. The length scale of
large eddies was found to be geometry-dependent, but almost independent of the mean
velocity.

Fukuoka and Watanabe (1995, 1997) particularly investigated the influence on the
turbulent structures of a vegetation-covered area located just at the interface between the
main channel and the floodplain. They achieved vortices wave-length measurements in
a laboratory flume. Additionally, they observed similar vortices at the surface of an
actual river, using aerial photography.

Using Particle Imaging Velocimetry (PIV) together with LDA, Nezu and Nakayama
(1997) were able to give a more complete description of the tri-dimensional flow
structures in a compound channel (Figure 5.3). Their experiments highlighted time-
discontinuities of the helical secondary-currents previously observed through time-
averaged LDA measurements (Tominaga and Nezu 1991), as quoted in Chapter 1. The
resulting intermittent upward flows along the main-channel bank have therefore strong
interaction with the horizontal vortices observed at the interface.

Figure 5.3 : Two- and tri-dimensional flow structures in a compound channel
(Nezu and Nakayama 1997)
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Using similar PIV techniques, Lukowicz and Köngeter (1999) also investigated the
development of the horizontal vortices at the interface. They showed that, in some
degree, the vortex shape could be described by an Oseen-vortex equation. This point
will be further developed in Chapter 10, where the Oseen-vortex equation will be
presented and compared with some results from the present work.

5.3 Modelling of periodical structures

5.3.1 Hydrodynamic stability analysis

As quoted in the previous paragraph, several authors used hydrodynamic stability
analysis in order to get information on the development of horizontal vortices. The main
purpose of such an analysis is to determine whether a small perturbation of a given flow
(the so-called basic flow) will grow up (instability) or will be damped (stability); and, as
a function of selected parameters depicting the basic flow, to define neutral stability
curves, separating stable and unstable flows. In the compound-channel case, the basic
flow to be considered is a parallel shear flow, for which general results are already well
documented (Drazin and Reid 1981). A more complete presentation of the
hydrodynamic stability analysis of a parallel shear flow will be given in Chapter 7, with
application to compound channels; while some significant previous works are already
mentioned here.

Tamai et al. (1986) suggested that the vortex wave length could correspond to the wave
length of the most rapidly amplified perturbation in the mean flow. However, they only
referred to the early works of Michalke (1964) who analysed the stability of a general
two-dimensional parallel shear flow, on the basis of the two-dimensional Navier-Stokes
equations. Further information could thus be gathered from extended analysis
considering the complete shallow-water equations, including the bed friction.

Such an analysis, already suggested by Alavian and Chu (1985), was fully developed by
Chu et al. (1991), for an inviscid flow (Re → ∞). Chu et al. considered either a depth or
a bed-friction transverse variation, that generates a basic flow whose velocity profile is
modelled either by a hyperbolic-tangent function (mixing-layer flow) or by a
hyperbolic-secant function (jet flow) (Figure 5.4). Assuming a rigid water surface, they
developed an extended stability-analysis equation and investigated temporally growing
perturbations. Their results showed the stabilising effect of the bottom friction : for a
friction coefficient high enough, and for a bed level variation smooth enough (weak
shearing), the flow becomes stable for any perturbation wave-length.

Fukuoka and Watanabe (1995, 1997) also considered bed-friction effects, but using a
non-linear stability analysis, limited to the second order mode. They obtained a very
good agreement with their experimental results for channel with vegetation-covered
area at the interface between subsections.
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Figure 5.4 : Geometries and velocity profiles analysed by Chu et al. (1991) :
the velocity profiles are created either by varying friction coefficient (b, e),

or by varying depth (c, f)

Modelling the instabilities of wakes (such as an island wake), Chen and Jirka (1997)
included the viscosity effect in their analysis. However, the stability results became
almost independent of the viscosity variations as soon as Reynolds number are larger
than Re = 103. On the other hand, the bed-friction stabilising effect was again
highlighted. In addition, Chen and Jirka considered not only temporal growing of the
perturbations but also spatial growing, in such a way that the flow does no more need to
be considered as periodical in space.

Experimental investigation and instability analysis of the spatial growth of a single
mixing-layer in a compound channel has been performed by Chu and Babarutsi (1988)
and by van Prooijen and Uijttewaal (2001). These observations show that, due to the
mixing-layer confinement by river walls, a maximum value of the vortex wave-length
exists, and vortices merging is limited to a certain extend.

A last improvement of the analysis is proposed by Ghidaoui and Kolyshkin (1999).
They performed a stability analysis for shallow-water flow, that allows water-surface
level variation, in opposition to the rigid-lid assumption previously used. They showed
that the classical rigid-lid assumption tends to overestimate the instability domain
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extension; while the wave length corresponding to the most amplified perturbation
seems to remain constant.

Research by Chu et al., Chen and Jirka, Ghidaoui and Kolyshkin, etc. clearly improved
the stability analysis results. Nevertheless, they mostly focused on the neutral curve
determination which is classically the main target of such an analysis; while, for the
present work, following Tamai et al., the determination of the wave length
corresponding to the most amplified perturbation should be the main objective. This
latter point will thus be the aim of Chapter 7. Chu et al.'s equations will be used for that
purpose, as it has been showed that the bed-friction effect was dominating, compared to
the viscosity and to the water-level variations.

5.3.2 Numerical computation

As quoted in Chapter 1, many authors attempted to model numerically the flow in a
compound channel (Krishnappan and Lau 1986; Keller and Rodi 1988; Naot et al.
1993a; etc.). However, most of them used time-averaged modelling; or, even when
using Large Eddy Simulation (Thomas and Williams 1995),  they only analysed time-
averaged results. Only a few authors performed unsteady modelling and investigated the
periodical structures in a compound channel or in a partly-vegetated channel generating
a similar shear layer.

Nadaoka and Yagi (1998) developed such unsteady simulations, using a depth-averaged
model called SDS-2DH. This model represents explicitly the large horizontal vortices
due to the transverse shearing; while the small-scale turbulence effect is implicitly
modelled through an eddy-viscosity corresponding to the so-called "Sub-Depth-Scale
turbulence". When applied to a partly-vegetated channel case, large horizontal vortices
actually developed; and the resulting velocity profile and velocity variations were
satisfactorily reproduced, when compared with experimental data. The additional shear-
stress due to the corresponding momentum transfer was of the same order of magnitude
as the shear-stress due to the sub-depth-scale turbulence. In similar numerical
experiments, Ikeda (1999) found that large-eddy shear-stress could even stands for 75 %
of the whole shear stress.

Tri-dimensional numerical experiments by Hosoda et al. (1998) should also be pointed
out, as they modelled the development of both helical secondary-currents and large
horizontal-vortices in a compound channel, using an Unsteady-RANS model. Their
results correspond, at least qualitatively, to available observations of these structures
(such as in Nezu and Nakayama 1997).

However, in the present work, Nadaoka and Yagi model will be preferred as it is based
on a depth-averaged modelling, which is much simpler to implement than a 3-D model
as the Hosoda et al. one Moreover, it seems that this depth-averaged model has not been
applied to compound channels before. Full developments and results will thus be
presented in Chapter 8.



Chapter 6 
Experimental measurements of periodical structures

6.1 Introduction : experimental set-up

As pointed out in the previous Chapter, few measurements of periodical structures are
available for flow in compound channels. New experimental measurements were
therefore initiated, with two main objectives : (1) obtain a complete data set, giving
information on the periodical structures, but also including stage-discharge curves and
velocity profiles; and (2) benefit from new measurement techniques, such as Particle
Tracking Velocimetry (PTV), to investigate not only the structure in itself, as done by
Nezu and Nakayama (1997), but also its periodicity characteristics. The measurements
were performed for an asymmetric compound-channel cross section (Figure 6.1), in
such a way that a unique shear layer will be observed at the interface between the main-
channel and the single floodplain.

The asymmetric cross section has been constructed with coated plywood in the UCL
compound-channel flume. This flume is basically 10-m long, 1.20-m wide (only 0.80 m
of the available width were used in the present experiments), and is set to a bottom
slope S0 = 0.99 × 10-3. It is supplied upstream through a 2-m length stilling tank and has
a downstream 1-m length outlet tank, with an adjustable weir. The total available
discharge is 30 l/s. Classical measuring devices include an electromagnetic flowmeter,
for the discharge; an automatic point gauge installed on a trolley, for the water levels;
and a Pitot tube, for the velocities. Further details on both equipment and measuring
procedures are available in Appendix 3.

Figure 6.1 : Cross section of the experimental asymmetric compound channel

Observations of the turbulent structures were performed using a Particle-Tracking
Velocimetry (PTV) system : the flow free-surface was seeded with floating tracers,
whose successive positions were recorded using a digital camera (Figure 6.2). Post-
processing of the recorded images included the identification of the tracers and the
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reconstruction of their trajectories; while further analysis enabled the detection of the
periodical structures and an estimation of their wave length.

This Chapter will first present classical measurements performed in the asymmetric
compound section : (1) stage-discharge curve, necessary for setting a uniform-flow
water depth in the following experiments; and (2) velocity profiles, required for
comparison with the velocity profiles from the PTV measurements. The PTV technique
and results are then presented. Lastly, some tentative point-measurements of the
velocity temporal variations are reported, using an Acoustic Doppler Probe.

Figure 6.2 : Experimental set-up for Particle Tracking Velocimetry

6.2 Stage-discharge curve

The stage-discharge curve is obtained from water-depth measurements, in uniform-flow
conditions. As detailed in Appendix 3, the uniform flow for a given discharge is
achieved by adjusting the downstream water level, until the water profile is parallel to
the channel bed. The stage-discharge curve for the asymmetric compound-channel
cross-section (Figure 6.1) is plotted on Figure 6.3.

For comparison, the stage-discharge curve is also computed using the EDM. A Manning
roughness coefficient equal to n = 0.0107 s/m1/3 is selected for both main channel and
floodplain. This value is obtained from isolated main-channel stage-discharge
measurements (see Chapter 11), and no further fitting is required, demonstrating again
the validity of the EDM.

For further experiments, four discharge values are selected, covering relative depth Hr

in the range 0.10 .. 0.40 (Table 6.1). Relative depth less than Hr = 0.10 would also be of
interest, as it is expected that the shear layer is strongest at the lower floodplain depth,
due to the increase of the velocity difference between main channel and floodplain.
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However, when the main-channel water depth is less than H = 54 mm, measurement
becomes almost impossible on the floodplain, due to too low local water depth (H – h =
4 mm) : the Pitot tube diameter is larger than the water depth; while PTV tracers enter
in contact with the bed and do not float anymore. On the other hand, relative depths
higher than Hr = 0.40 are less interesting for the present investigation. Indeed, the
velocity gradient reduces and the shear layer weakens. Tri-dimensional structures
become dominant in such a way that the horizontal vortices have a lower influence. At
such depths, the section starts to behave again as a single channel.

Figure 6.3 : Stage-discharge curve, asymmetric compound channel :
measured and computed values

Table 6.1 : Selected discharges and water depths for further experiments

Case Q (l/s) H (mm) Hr

LCA 08   7.8 54.4 0.10

LCA 10 10.0 63.9 0.23

LCA 12 12.0 68.8 0.30

LCA 16 15.9 78.9 0.38

6.3 Velocity profiles : Pitot-tube measurements

For the four selected uniform-flow cases (Table 6.1), velocity measurements are
performed using a Pitot tube. The main measurement section is located at the station x =
7 m in the flume, although measurements are also performed in other sections for
control purposes. The typical measurement lattice is depicted on Figure 6.4. It includes
11 vertical lines, with 5 to 7 points on each line in the main channel, depending on the
water depth; and with 1 to 3 points in the floodplain.
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A typical distribution of the velocity longitudinal component u is given on Figure 6.5,
for the LCA 10 case (Q = 10 l/s) at x = 7 m. Although the measurement mesh is dense
enough to get accurate depth-averaged velocities, it is not sufficient to get detailed
observation on flow features such as the surface-velocity decrease due to helical
secondary currents. However, at this stage, the velocity difference between main
channel and floodplain is already clearly seen; while the momentum transfer due the
shear layer also appears : velocities in the floodplain are clearly increased near the
interface, and slightly decreased in the main channel.

Figure 6.4 : Typical measurement mesh for Pitot tube

Figure 6.5 : Longitudinal velocity u distribution, LCA 10, x = 7 m

The depth-averaged velocities U are then estimated from the local measurements, and
the resulting profile are given on Figure 6.6. The profiles at x = 7 m present the typical
shape of a compound-channel flow : the velocity is higher in the main channel than in
the floodplain; and, due to momentum transfer, the velocity gradient is smoothed at the
interface, with a local velocity reduction in the main channel and a local velocity
increase in the floodplain. When the discharge and water depth increase, the velocity
increases slightly in the main channel and significantly in the floodplain, resulting in a
reduction of the velocity difference.

From the velocity profile measurements at successive stations (see LCA 10 on Figure
6.6), one can wonder if the uniform-flow condition is effectively achieved. Indeed,
although the water surface profile is parallel to the channel bottom, at the point-gauge
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measurement precision, the velocity profile clearly evolves along the channel, with
velocity increasing in the main channel and decreasing in the floodplain. As a result, the
discharge distribution between subsections changes also according to the position, as
shown by Figure 6.7.
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Figure 6.6 : Pitot-tube measurements : depth-averaged velocity profiles
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It is presumed that this effect is due to an ill-conditioned upstream condition in the
flume. Indeed, it is observed that the flow enters the flume with an almost uniform
velocity, resulting in an over-discharge in the floodplain. The flow then has to adapt its
distribution towards uniform-flow distribution, generating accordingly a small mass
transfer from the floodplain to the main channel. However, this flow-distribution change
seems not large enough to affect the parallelism between the water profile and the bed,
at least in respect of the measurement device accuracy.

A better flow distribution could be obtained either by using a longer flume, or by
modifying the inlet tank arrangement. Whereas the first solution is not possible for the
existing facility, the second one has not been used in the present work, due to a lack of
time. It is then assumed that, in the measurement section at x = 7 m, the flow is close
enough from uniform-flow condition to get valuable observations of periodical
turbulent structures. Indeed these structures are expected to have a growth rate large
enough. As a result, their shape should be not much influenced by the inlet conditions.
They depend thus mainly on the geometry of the flume and on the overall velocity
difference, which, in the measurement section, corresponds almost to uniform-flow
condition.

A similar ill-conditioning of the upstream velocity distribution is expected for the three
other cases (LCA 08, LCA 10 and LCA 16), although detailed measurements were not
performed. Only for the LCA 08 case, an additional velocity profile was measured at
x = 5 m (Figure 6.6a). This profile shows clear discrepancies with the profile at x = 7 m,
due probably to the upstream-distribution ill-conditioning, but also to a lower
measurement accuracy in this section. Indeed, the water depth on the floodplain (H – h
= 4.4 mm) is close to the Pitot-tube diameter (4 mm), in such a way the latter perturbs
quite significantly the flow, and thus the measurement accuracy. Moreover, with such
small water depth, the flow is very sensitive to small discontinuities of the channel bed,
such as the joints between the plywood plates, located at x = 2, 4, 6 and 8 m.

0

2

4

6

8

10

0 2 4 6 8 10

Station x [m]

D
is

ch
ar

g
e 

d
is

tr
ib

u
ti

o
n

 [
l/s

]

Main channel

Floodplain

Figure 6.7 : LCA 10 : evolution of the discharge distribution along the channel
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For further analysis and comparison, the shear-layer widths ls have been estimated from
the above velocity profiles. This estimation is obtained by fitting to the measured depth-
averaged profiles an hyperbolic-tangent function, similar to the profiles whose stability
will be investigated in the next Chapter :
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where Um is the velocity at the inflexion point yinfl; Us is half the difference between
maximum and minimum velocity; and ls is the estimated shear-layer width.

These shear-layer widths are summarised in Table 6.2. Large scatter is observed, partly
due to the low number of measurement points available on the velocity profile.
However, from the estimates at x = 7 m, it seems that the medium discharges have a
finer shear layer. The larger shear-layer width for Q = 8 l/s could be due to the larger
velocity difference between both subsections, but also to the lower measurement
accuracy on the floodplain. At the largest discharge (Q = 16 l/s), the larger value of the
shear-layer width may be due to a weaker shear layer whose limits are more difficult to
locate accurately. Lastly, it should be pointed out that the estimated shear-layer widths
correspond to developed flow, including the vortices smoothing effect on the velocity
profile; and not to an unperturbed basic flow as will be defined in the Stability Analysis
(see Chapter 7).

Table 6.2 : Shear-layer width ls [m] estimated from the Pitot-tube measurements

LCA 08 LCA 10 LCA 12 LCA 16

x = 5 m 0.039 0.037 - -

x = 7 m 0.100 0.057 0.067 0.090

6.4 Particle-Tracking Velocimetry process

The surface-velocity field of the investigated flow is measured using a Particle-Tracking
Velocimetry (PTV) system. The PTV system used in the UCL laboratory has been
initially developed for dense granular-flow observation, by Capart et al. (2001), but has
also been used in the past for surface velocimetry, using floating tracers (Devriendt et
al. 1998). It is based on the analysis of a sequence of images depicting the
displacements of the tracers dispersed on the flow surface.

The succession of operations for this analysis process is :
1. Identification of particle centres on each image;
2. Matching of particles between successive images;
3. Reconstruction of the particle trajectories and estimation of the particle

velocities.
These operations will be further explained below.



92 Part II : Turbulent exchange

As shown by Figure 6.2, the pictures are obtained from cameras set about 4 m above the
flow surface. Two coupled digital cameras were used, each of them having a resolution
of 256 × 256 pixels, in such a way the image size equals 512 × 256 pixels. A typical
image, from the LCA 08 sequence, is given on Figure 6.8. One pixel on the image
equals 3.35 mm, and the frame rate is 25 Hz. Each sequence is 40-s long, and counts
1000 images.

Figure 6.8 : LCA 08, typical image of the floating tracers

The floating tracers are expanded-polystyrene (EPS) pearls, with a diameter 4-6 mm.
These EPS pearls were selected for several reasons : (1) their floating ability; (2) their
white colour that contrasts well with the dark flume bottom; (3) their size, larger than a
pixel, and resulting thus in good visibility on the images, but also small enough to
follow the local flow velocity; and (4) their availability at low cost. However, as many
floating particles, due to their light weight, these pearls are subject to the surface-
tension effect and tend to agglomerate in clusters. This clustering effect partly reduces
the number of discernible particles and therefore the precision of the measurement,
although the identification algorithm can separate the clusters into individual particles.
The clusters are most noticeable in the downstream area of slow-moving flows, and thus
mainly in the LCA 08 case, where the slowest velocity is observed (see the clusters in
the floodplain on Figure 6.8). Some tedious adjustment of the particle spreading at the
flow surface are thus necessary in the begin of each run, in order to get the highest
tracer density with as few clusters as possible.

Once the image sequence is archived, the analysis begins. Prior to the identification of
the particles, two successive filterings are operated : (1) a low-pass filter; and (2) a high-
pass filter. The low-pass filter is used for smoothing the image and eliminating parasitic
light spots, due to for example lighting reflections on surface waves. The high-pass
filter then enables to highlight the high-contrast areas corresponding to white particles
on dark flume bottom, even if the primitive lighting of the picture area is uneven. From
such a filtered image, the identification algorithm implemented by Capart. et al. (2001)
locates the particles with a subpixel accuracy of about ¼ pixel size.
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Next step is the identification of a particle position on successive images. Capart et al.
(2001) developed therefore a robust matching method based on the Voronoï diagram :
for a set of points in a plane, the Voronoï construction designates the splitting of the
plane into polygonal regions (or "cells") such that each polygon encompasses the region
of the plane which is nearest to one given point than to any other point. It has been
found that such a Voronoï diagram for a set of particles is only weakly deformed when
the particles move with the flow, in such a way it is a good and robust indicator for
particle matching (Figure 6.9). In the present experiments, the particles are much more
sparse than in a granular flow and such a robust algorithm is probably not necessary.
However, it was found easier to use this analysis tool as it was already available and
operational.

Figure 6.9 : Voronoï matching algorithm : (a) image of a granular flow,
with identified particles; (b) Voronoï diagrams for two successive images;

and (c) displacement vectors (Capart et al. 2001)

In addition to the matching step, some filtering is performed, in order to eliminate
possible mismatches. Trajectories are then constructed by following particles through
the entire image sequence, and velocities are calculated as the ratio of the distance
between two successive positions of the particle and the time interval between the two
corresponding images.

The results analysis will then be performed on the basis of both time-averaged velocity
profiles and instantaneous velocity fields. The time-averaged velocity profiles will
enable comparison and cross-validation with Pitot-tube measurements; while some
information on the flow structures will already be gathered. The instantaneous velocity
fields analysis will take advantage of all the possibility offered by this measurement
technique. The velocity fields will be interpolated on a regular grid, for identifying
periodical variations. The trajectories, based on actual particle positions, will lastly be
investigated in a moving frame, in order to highlight the vortex structures.
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6.5 Velocity profiles : PTV results

Time-averaged velocity profiles are extracted from the surface-velocity field obtained
by PTV : 20 intervals are defined in the transverse direction y; all the velocities
corresponding to tracers located in one interval are then averaged, in time and in x-wise
direction; and the velocity standard-deviations in each interval are also estimated.
Figure 6.10 gives the velocity longitudinal- and transverse-component (U, V) profile for
the LCA 08 case (Q = 8 l/s). Velocity intervals equal to one time the standard deviation
are also plotted, giving an indication of the amplitude of the velocity variations.

The profiles of the longitudinal component of the velocity (Figure 6.10) are quite
similar to those gathered from Pitot-tube measurement (see Figure 6.6). The velocity
difference between main channel and floodplain is clearly depicted. The effect of the
momentum transfer is observed near the interface, where the floodplain velocity
increases while the main-channel velocity decreases, resulting in a velocity-profile
smoothing. Logically, the PTV-measured velocity is higher than the depth-averaged
Pitot-measured velocity, as the bottom velocity is lower than the surface one. However,
when considering only the measurement points nearest to the free surface, the Pitot-
measured velocity compares more adequately with the PTV-measured velocity (Figure
6.11).

Further information can be gathered from the analysis of the profile of the velocity
transverse component (Figure 6.10). The transverse component is positive in the first
half of the main channel (y < 0.20 m), and negative in the second half (0.20 < y <
0.40 m), indicating that, at the surface, the water flows towards the main-channel centre
line. This result hints to the existence of secondary-current cells in the main channel, in
accordance with previous observations (Tominaga and Nezu 1991, see Figure 1.5).
Negative transverse velocity is also observed in the floodplain (y > 0.40 m). This
probably does not indicate helical secondary currents as in the main channel, but seems
to be a consequence of the ill-conditioned upstream discharge-distribution already
quoted above (§ 6.3). This means that a geometrical transfer could still exist around x =
7 m. This point will be further investigated in the next paragraph.

Finally, the standard deviation of the velocity transverse-component (Figure 6.10) also
gives interesting indication on the flow behaviour. Indeed, this standard deviation is
noticeably larger in the interface area (0.40 < y < 0.50 m), showing that the transverse-
velocity variation amplitude is larger in this area, probably as a result of horizontal
vortices development.

Figure 6.12 gives the surface-velocity profile for the four tested cases. When compared
with the LCA 08 case, similar observations are obtained for the three other cases, at
least for part of the conclusions regarding : (1) the velocity difference between
subsections; (2) the momentum transfer influence on the velocity longitudinal-
component profile; and (3) the development of secondary-current cells in the main
channel, as depicted by the velocity transverse-component profile. On the other hand,
two of the LCA-08 conclusions are no longer valid : (1) the geometrical transfer seems
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less marked in the transverse velocity profile; and (2) the larger standard deviation of
the transverse velocity is no more observed at the interface. The latter point indicates
maybe weaker vortices; or, at least, weaker information on these vortices, as will be
discussed in the next paragraph.
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The repeatability of the velocity profile measurements has been checked for the LCA 12
case. Using two sequences of images, taken at different time, two velocity profiles were
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estimated. It has been found that both profiles superposed perfectly, giving therefore
some further confidence in the measurement accuracy.
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Figure 6.12 : Longitudinal and transverse surface-velocity profiles, PTV measurements

6.6 Periodical structures analysis

6.6.1 LCA 08 case

An instantaneous velocity field for LCA 08 case is plotted on Figure 6.13. As in the
time-averaged velocity profile (Figure 6.10), the velocity is higher in the main channel
(y < 0.40 m) than in the floodplain (y > 0.40 m). In the floodplain, some tendencies can
be observed from the velocity transverse-component variations. For x < 6 m, a current
develops towards the main channel. This current corresponds to the negative time-
averaged transverse velocities observed previously on the floodplain (Figure 6.10). It
could be due to the mass transfer generated by the ill-conditioned upstream discharge
distribution. Another explanation could be the presence of a joint at x = 6 m (see Figure
6.8) : this joint creates a small bump on the flume bottom. Although this bump height is
less than 1 mm, it is significant when compared to the 4.4 mm water depth on the
floodplain. This second explanation of the observed mass transfer could also justify the
fact that the latter disappears when x > 6 m.

Another interesting feature of the velocity field on the floodplain (Figure 6.13), for
x > 6 m, is the alternation of positive and negative transverse velocity components in the
x-wise direction, that could already indicate the presence of vortex structures. However,
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these structures are generally more easily identified on a vorticity field. The velocity
field is therefore interpolated towards a regular grid (25 × 25 mm), using the linear
interpolation function available in Matlab software. Indeed, although it is also possible
to compute a vorticity field from the irregular mesh corresponding to the actual particles
position, this computation is more computer-time consuming, and has been found to be
too sensitive to the density of the particles. The vorticity Ω is estimated as

x
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∂
∂

−
∂
∂

=Ω (6.2)

The vorticity field corresponding to the velocity field from Figure 6.13 is plotted on
Figure 6.14. Positive vorticity is observed in the boundary layer corresponding to the
left bank of the main-channel (y < 0.15 m), and negative vorticity occurs in the shear
layer at the interface (0.30 m < y < 0.50 m), corresponding to the velocity gradient. In
the shear layer, some spots of higher vorticity amplitude exist (y = 5.7, 6.0 and 6.4 m),
indicating the probable presence of vortices. When considering a sequence of vorticity-
field plots, these spots are roughly observed to move in the flow direction. However,
due to the particle density, the accuracy of the vorticity plots is not enough to clearly
identify these structures throughout the whole image sequence. Therefore, the periodic
features of these structures can not be estimated with this method.

An alternative method is therefore used, based on the velocity transverse-component
analysis near the interface area. Indeed, when periodical vortices exist at the interface,
this velocity transverse-component is expected to presents alternating positive and
negative values. Figure 6.15 gives the transverse velocity variation with time, at
x = 6.30 m. This graph shows the existence of periodical oscillations corresponding to
the expected periodical vortices. A Fourier analysis enables to identify a clear peak in
the spectrum for a period T = 3.63 s (Figure 6.16).

Figure 6.13 : LCA 08, instantaneous surface-velocity field
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Figure 6.14 : LCA 08, vorticity field. Positive vorticity is in red and negative vorticity is
in blue.

Figure 6.15 : LCA 08, transverse velocity V variation with time, near the interface
( y = 0.44 m; x = 6.30 m)

Figure 6.16 : LCA 08, transverse velocity V : spectral analysis (y = 0.44 m; x = 6.30 m)
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In order to improve this vortex period assessment, the previous analysis is extended to
all the interface points along the image-frame length. Figure 6.17 gives the velocity
variation for all the points of the regular grid at y = 0.44 m. This transverse position has
been chosen close to the interface, but not at the interface itself (y = 0.40 m), where the
transverse velocity is less clearly identified due to the presence of higher velocity flow
in the main channel, and, also, due to the lower density of particles. The latter can be
explained by the presence of the main-channel helical secondary-currents that were
identified previously from the time-averaged velocity profiles. As these helical
secondary-currents create a surface flow towards the main-channel axis, the particles in
the main channel tends to accumulate around this centre axis, as will be depicted by the
trajectories plot (Figure 6.19).

The transverse-velocity variation plot on Figure 6.17 shows again the alternation of
positive and negative velocities. It also shows that, for y < 6 m, only positive transverse
velocities are observed, as pointed out on the instantaneous velocity field (Figure 6.13).
This gives credit to the mass-transfer explanation founded on the influence of the joint
at y = 6 m. A Fourier analysis of the transverse-velocity variation is then performed for
each station x, and the calculated spectrum are given on Figure 6.18. As for the x =
6.30 m station, a clear peak is observed at T = 3.63 s on most of the image-frame length.

Figure 6.17 : LCA 08, transverse velocity V variation with time, near the interface
(y = 0.44 m). The red line indicates the x = 6.30 m station (Figure 6.15).

The black line is one structure track.
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Another result can be obtained from the analysis of Figure 6.17. Indeed, the transverse
velocities are found to vary with time at a given station, but also to vary with space at a
given time, indicating the presence of a row of vortices in the shear layer. The pattern of
diagonals depicting higher and lower transverse velocities corresponds thus to the
displacement of the vortex structures with regard to the time. The vortex celerity can
then be estimated from the slope of such a diagonal, as the one outlined in black on
Figure 6.17 :

m/s1075.0
s16
m72.1

==
∆
∆

=
t
x

c (6.3)

This celerity is clearly lower than the longitudinal velocity at the interface (Figure 6.10),
indicating that the vortices move at the floodplain velocity, and that their centres are
therefore probably located more on the floodplain itself than on the interface. On the
other hand, from this vortex celerity c = 0.11 m/s and from the vortex period T = 3.63 s,
one also gets an estimation of the vortex wave length λ = T c = 0.39 m.

Using the vortex-celerity value, it is now possible to plot the particle trajectories in a
frame moving at this vortex celerity. Vortices can clearly be identified from Figure 6.19
and Figure 6.20 that show these trajectories. As inferred from the celerity value, the
vortex centres are located on the floodplain. This observation is in accordance with the
location of the standard-deviation peak on the time-averaged transverse-velocity plot
(Figure 6.10). It also explains why the velocity plots were more clear when taken in the
floodplain than just at the interface (as for Figure 6.15).

Figure 6.18 : LCA 08, transverse velocity V : spectral analysis (y = 0.44 m).
High spectrum-density is plotted in red.
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Figure 6.19 : LCA 08 : particle trajectories, in a frame moving at the velocity c =
0.11 m/s. Abscissa 0 of the moving frame corresponds to the right end of the image

frame at the begin of the sequence. Red points indicate the initial point of a trajectory.
Green and red lines stand for particles whose displacement are mainly towards

respectively right or left bank..

Figure 6.20 : LCA 08 : particle trajectories, in a frame moving at the velocity
c = 0.11 m/s. Close-up vue.

It should be pointed out that this observation could be an artefact due to the choice of
the moving-frame velocity : only the particles moving at the same velocity have their
trajectories perpendicular to the interface and produce an apparent vortex pattern.



102 Part II : Turbulent exchange

However, when the moving-frame velocity differs from the vortex celerity c, it has been
observed that no clear structures appear.

From the trajectories picture, one can also estimate a vortex wave-length. From
neighbouring-vortices observation, the latter seems to be in the range λ = 0.33 .. 0.50 m;
while an overall survey identifies around 12 vortices in the interval 0.67 < x < 5.67 m,
giving thus λ ≈ 0.42 m. Both estimates are found almost in accordance with the value
λ = 0.39 m calculated from vortex celerity c and period T values.

Lastly, as already pointed out in previous analysis, the effect of the helical secondary
currents is clearly seen on Figure 6.19, where the concentration of the particles in the
main-channel centre is obvious.

6.6.2 Other cases analysis

Similar analysis are performed for case LCA 10, 12 and 16, but with lower quality
results. Reasons for this relative failure could be as follow : (1) when the relative depth
Hr increases, the velocity gradient and the shearing reduce, in such a way that the
horizontal turbulent structures become weaker; (2) as the velocity increases, a given
structure will be observed for a shorter time in the image frame and will thus be more
difficult to identify; and (3) also due to higher velocity, the helical secondary currents
will be stronger in the main channel, withdrawing more particles from the interface
area, and reducing thus the measurement precision in the area of main interest.

Results are given in Table 6.3 for the four cases investigated. As explained just above,
the results quality decreases when the discharge and water depth increase : first, the
vortices are less discernible on the trajectory plot, i.e. for all cases except LCA 08.
Then, for larger discharges, no more clear peak can be identified on the Fourier analysis
of the transverse velocity at the interface : for LCA 12, depending on the station x
considered, two peaks could be pointed out; while for LCA 16, the signal is too noisy to
identify any peak. On the other hand, transverse-velocity plots similar to Figure 6.17
show positive and negative velocities alternation for all the cases, although more noisy;
and a perturbation celerity c can always be estimated.

Table 6.3 : Periodical turbulent structures characteristics, PTV measurements

Case Period
T [s]

Celerity
c [m/s]

Interface velocity
U(y = 0.40 m) [m/s]

Wave length
λ [m]

LCA 08 3.63 0.108 0.206 0.39

LCA 10 2.35 0.238 0.265 0.56

LCA 12 2.35 or 4.40 0.286 0.318 0.67 or 1.26

LCA 16 - 0.343 0.397 -

The analysis of the available results shows that the wave length λ tends to increase with
the water depth. This observation could be explained by the reduction of the bed-friction
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influence, according to the growing water depth : the turbulent structures can then
develop larger in the transverse direction; and, consequently, could have larger overall
size. The perturbation celerity c also increases with the water depth, as a result of the
mean-velocity increase; but, in all the cases, it is found lower than the interface velocity.
Lastly, the period T decreases with increasing discharge : this could also be explained
by the higher mean velocity, as the structures move faster in front of a fix observer.

6.7 Additional ADV velocity measurements

Some tentative additional instantaneous local velocity-measurements are performed
using a Sontek Acoustic Doppler Velocimetry probe. The particular 2D-3D side-looking
probe-configuration used (Figure 6.21) enables the measurement of both longitudinal
and transverse velocity-component at a rate of 25 Hz, as soon as the local water depth is
larger than 2 cm. For water depth larger than 5 cm, all the three velocity components are
available. However, the latter case will not be achieved in the present experiments, as
the area of interest is located just above bank level. On the other hand, not all the 2D
measurements will be satisfactory, as it is observed that the flow is strongly affected by
the presence of the probe.

Figure 6.21 : Sontek 2D-3D side-looking ADV probe

The most interesting measurement points are those located near the interface. Figure
6.22 shows that measurements are performed at ∆y = 5 cm intervals in main channel,
and also in floodplain, when water depth is sufficient. The probe is always located
outside the interface area, in order to limit the disturbance of the flow and of the
turbulent structures. When this condition is achieved, the time-averaged longitudinal
velocities are satisfactorily close to those measured with the Pitot-tube.
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Figure 6.22 : ADV measurements, typical measurement points

Figure 6.23 : LCA 08, transverse velocity variation at the interface,
 x = 7 m, y = 0.40 m, z = 50 mm

Figure 6.24 : LCA 08, spectral analysis of the transverse velocity-component at the
interface, x = 7 m, y = 0.40 m, z = 50 mm

Figure 6.23 gives a typical transverse-velocity plot for LCA 08 case, just above main-
channel bank level. Oscillations due to the periodical structures can clearly be
identified. The spectral analysis for a 160 s long time period is given in Figure 6.24, in
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which a peak can be identified for a period T = 4.3 s. The velocity measurements at the
other stations are similarly analysed and peak periods are also estimated when the
measurements are not too noisy. The turbulent-structures period is finally found to be in
the range T = 3.9 .. 4.3 s. Although slightly larger, this period is close to the one
obtained from the PTV measurements analysis.

The three other cases are similarly investigated. Although the results are generally more
scattered when the water depth increase, some tentative period estimates can be
extracted (Table 6.4). The period interval obtained is generally too large to give some
conclusion. One can only observe that the period values are in the same range for the
ADV measurements than for the PTV ones; and, as already observed from the PTV
values, the period tends to reduce when discharge and water depth increase.

Table 6.4 : Periodical turbulent structures period : ADV measurements

Case TADV [s] TPTV [s]

LCA 08 3.9 .. 4.3 3.63

LCA 10 1.5 .. 3.9 2.35

LCA 12 1.5 .. 1.8 2.35 or 4.40

LCA 16 0.6 .. 0.9 -

6.8 Conclusion

Measurements of the flow in an asymmetric compound-channel section have been
presented. Classical measurements with a Pitot tube show the existence of the velocity
gradient between the main-channel and the floodplain. The surface-velocity field has
also been investigated using a PTV technique. When considering time-averaged
velocities, the velocity gradient is also identified; while, from the transverse-component
analysis, one infers the existence of secondary-current cells in the main-channel. When
considering the standard deviation of this velocity transverse-component, it is clear, at
least for the lowest water depth investigated, that the exchange is more important at the
interface between main channel and floodplain.

The analysis of the instantaneous velocity field obtained from the PTV measurements
allows the identification of the vortices at the interface. Some characteristics of these
periodical structures have been estimated : period T, celerity c and wave-length λ (see
Table 6.3). For increasing discharge, the celerity c and wave-length λ increase, while
the period T decreases. In all the cases, the vortex centres are located on the floodplain.

An additional result is the identification of some points to be improved in order to get
better measurements when planning a further experimental campaign. Due to the
secondary-current cells in the main-channel, the surface tracers tends to concentrate on
the main-channel centre line and to leave the area of interest : the experimental set-up
should take this phenomena into account, at least by spreading the tracers on the water
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surface as close as possible to the image frame. The second point to be improved is the
discharge distribution at the flume entrance : due to this ill-conditioned upstream
condition, a mass transfer from the floodplain to the main channel occurs on the whole
channel length, and perturb the observations, as the flow is not as perfectly uniform as it
could be expected.

Another point to be investigated further is the spatial development of the shear-layer
perturbation. Indeed, when measuring in only one section, one assumed that the
perturbation has reached a stationary state in this measurement section. However,
according to further analytical and numerical investigations in next Chapters, it would
be useful to observe the growth of the shear-layer perturbation, in order to see if the
wave length of vortices remains constant along the channel length, or if the vortices
merge. Actually, it could be expected that, due to the presence of the walls, or even due
to the bed friction, some constrain exists that limit the maximum wave length of the
vortices during their spatial growth, but this point has to be verified experimentally.



Chapter 7 
Hydrodynamic stability analysis of a shear layer

7.1 Introduction

When attempting to analyse the large vortices observed at the interface between the
main channel and a floodplain of a compound channel, an accurate understanding of the
process of vortex generation is of primary importance. As already pointed out, these
vortices are generated by the shearing at the interface between subsections, as a result of
the velocity gradient. The physical mechanism governing their development is the so-
called Kelvin-Helmholtz instability.

This Kelvin-Helmholtz instability process is described e.g. by Drazin and Reid (1981,
p. 14). Let us consider the basic two-dimensional flow of incompressible inviscid fluids
in two horizontal parallel infinite streams of opposite velocities (Figure 7.1). This flow
constitutes a very simplified model for mixing-layer situations, such as stratified flow or
compound-channel flow. In this simplified situation, all the vorticity is concentrated in
the vortex sheet separating the two flows of opposite velocities.

Figure 7.1 : Kelvin-Helmholtz instability : growth of a sinusoidal disturbance of a
vortex sheet. The positive vorticity is normal to the paper, and the local strength of the

sheet is represented by the thickness of the sheet. The curved arrows indicate the
directions of the self-induced movement of the vorticity in the sheet, and show (1) the

accumulation of vorticity at points like C; and (2) the general rotation about points like
C, which together lead to exponential growth of the disturbance (Drazin and Reid 1981)
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Let now consider an initial disturbance which slightly displaces the sheet so that its
elevation becomes sinusoidal. As, in an inviscid fluid, each vortex line is carried with
the fluid and induces a rotating flow, positive vorticity will be swept away from points
like A towards points like C (Figure 7.1). As a result, the vorticity accumulated at C will
induce clockwise velocities around this point and thereby amplify the sinusoidal
displacement of the vortex sheet; leading to an exponential growth of the disturbance,
so long as the disturbance remains small enough not to significantly change the basic
flow; and to the development of individual vortices located on the initial shear layer.

Hydrodynamic Stability Analysis provides mathematical tools for analysing and
modelling these Kelvin-Helmholtz instabilities, as well as more complex similar
situations. In a hydrodynamic stability analysis, one first defines a basic flow, satisfying
general flow equations like the Navier-Stokes or the Shallow-water ones. The purpose
of the analysis in then to determine if this basic flow will remain stable when exposed to
a small perturbation. The investigated perturbation also satisfies the flow equations and
is generally assumed to be a periodical function. Adding the perturbation function to the
basic flow, one can then simplify the flow equations to a differential equation, whose
solution finally enables to determine whether the perturbation will grow up (instability)
or will be damped (stability), as a function of its wave length.

In the present work, the basic flow whose stability will be investigated is a parallel
shear flow, either corresponding to a mixing layer, in the asymmetric compound-
channel case, or to a jet flow, in the symmetric compound-channel case. The stability of
these flows will be described by using either the Rayleigh equation, for inviscid flows,
or the Orr-Sommerfeld equation, for viscid flows. These classical equations will be
developed hereafter, and then they will be extended to take into account the bed friction
that appears in the Shallow-water equations. As the neutral stability curves (limit
between stable and unstable flow) obtained from these equations have been widely
investigated previously, the present work will focus only on the most amplifying
perturbations. Indeed, Tamai et al. (1986) suggested that the observed vortices
correspond to these most amplifying perturbations and, accordingly, that their wave
length should be the same.

7.2 The Rayleigh equation

The Rayleigh equation describes the stability of a parallel flow subjected to a periodic
perturbation, in an inviscid fluid (Re → ∞). The so-called parallel flow is a basic flow
where the velocity components are all parallel to the streamwise x direction,
corresponding e.g. to some stratified flow, to mixing-layer or to jet flow. The Rayleigh
equation is founded on the two-dimensional Navier-Stokes equations, i.e. the tri-
dimensional Navier-Stokes equations (2.1) where the third velocity component w in the
z-direction is assumed equal to zero, z being indifferently a vertical or an horizontal
direction. A fundamental hypothesis is also the linearization of the equations, assuming
that the perturbations are small enough to neglect the terms resulting from a product of
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two perturbation components. The following development is largely inspired from
Betchov and Criminale (1967), and from Drazin and Reid (1981).

The two-dimensional Navier-Stokes equations write

0=+ yx vu (7.1a)

( )yyxxxyxt uuXpuvuuu +υ+=ρ+++ (7.1b)

( )yyxxyyxt vvpvvvuv +υ=ρ+++ (7.1c)

where, compared to (2.1), the continuity equation (7.1a) multiplied respectively by u
and v has been subtracted to the momentum equations (7.1b) and (7.1c). The partial
derivatives are now designed by indices, for the sake of conciseness. In these equations,
u(x,y,t) and v(x,y,t) are the velocity components in the x- and y-directions respectively;
p(x,y,t) is the pressure; X is the mass force; and υ is the fluid viscosity.

For the given external force X and boundary conditions, it is assumed that the equations
(7.1) admit a steady solution, with a flow parallel to the x-direction, that constitutes the
basic flow (U, V, P) :

U = U(y),    V = 0,    P = P(x) (7.2)

where the pressure P only vary in the x-direction (a pressure gradient in the y-direction
would generate a non-zero transverse velocity V, which is incompatible with the
parallel-flow hypothesis). The Rayleigh equation will be developed for this general
basic flow, while its particular shape will be specified later for each case to be studied
(e.g. for a TANH(y) function describing the velocity profile in an asymmetric
compound channel).

The actual flow is then obtained by addition of the steady basic flow (U, V, P) and an
unsteady perturbation (u', v', p' ) :

u = U(y) + u'(x,y,t) (7.3a)

v = v'(x,y,t) (7.3b)

p = P(x) + p'(x,y,t) (7.3c)

The perturbation is assumed to be small compared to the basic flow. As already pointed
out, the purpose of the present analysis is to estimate the variation of the amplitude of
this perturbation with time, and thus to determine wheter it will grow up or be damped.

The so-defined actual flow (7.3) is also a solution of the flow equations (7.1). Writing
these flow equations (7.1) for this actual flow (7.3), and subtracting the same flow
equations (7.1) written for only the basic flow (7.2), one gets
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0=′+′ yx vu (7.4a)

( )yyxxxyyxxt uupvvUvuuuUu ′+′υ=ρ′+′′+′+′′+′+′ (7.4b)

( )yyxxyyxxt vvpvvvuvUv ′+′υ=ρ′+′′+′′+′+′ (7.4c)

The perturbation being small, the products of two perturbation components in (7.4) are
assumed negligible (linearization of the equations) :

0=′+′ yx vu (7.5a)

( )yyxxxyxt uupUvuUu ′+′υ=ρ′+′+′+′ (7.5b)

( )yyxxyxt vvpvUv ′+′υ=ρ′+′+′ (7.5c)

The resulting equations are then easier to solve, as they are now linear for the
perturbation components constituting their unknowns. As a result, the perturbation
evolution can be described by a sum of periodical solutions of (7.5). These solutions
will be periodical both in time and in x-direction (main direction of the flow). They will
be written as the real part of complex exponential functions :

u'(x,y,t) = u(y) eiα(x-ct),     v'(x,y,t) = v(y) eiα(x-ct),     p'(x,y,t) = p(y) eiα(x-ct) (7.6)

where u(y), v(y) and p(y) are complex functions defining the shape of the perturbation
in the y-direction; c is the perturbation celerity; and α is the perturbation wave number :

λ
π

=α
2

(7.7)

where λ is the perturbation wave length.

Both wave number α and celerity c are complex numbers, in such a way that their
imaginary part implies an exponential growth (or damping) of the perturbation. The
imaginary part of c generates a temporal growth of the perturbation; while the
imaginary part of α also generates a spatial growth of the perturbation (e.g. a wake
instability behind a fixed body, such as the Karman vortex street).

In the present work, one will focus on temporal growth of the perturbation, as one
consider turbulent structures in uniform flow, far from any up- or downstream boundary
conditions. The wave number α is thus imposed to be a positive real number, while the
celerity is complex : c = cr + i ci. The product αci defines the perturbation growth rate.
Indeed, from (7.6), one gets (Riahi 2000, p. 49) :

t
u

u
ci ∂

′∂
′

=α
1

(7.8)
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For a growth-rate positive value, the perturbation (7.6) will grow up exponentially;
while it will be damped for a growth-rate negative value. Lastly, αci = 0 indicates
neutral stability.

 Using the perturbation definition (7.6) in the equations (7.5), the latter reduce to a
system of ordinary differential equations :

iαu + vy = 0 (7.9a)

iα (U-c) u + Uy v + iα ρp  = υ (uyy - α2 u) (7.9b)

iα (U-c) v + ρyp = υ (vyy - α2 v) (7.9c)

In the last part of this development, the viscosity terms will be neglected, assuming a
large Reynolds number (inviscid flow hypothesis : Re → ∞). The equations (7.9) will
be used in their complete form when developing the Orr-Sommerfeld equation (see §
7.4.1).

The pressure component p of the perturbation can be eliminated from (7.9), by deriving
(7.9b) with regard to y, replacing py in (7.9c), and subtracting (7.9a) multiplied by Uy :

iαu + vy = 0 (7.10a)

vu 







α+

−α
= 2i

cU

U yy
y (7.10b)

The Rayleigh equation is finally obtained by deriving (7.10a) with respect to y, and
replacing uy in (7.10b)

vv 







α+

−
= 2

cU

U yy
yy (7.11)

This equation defines an eigenvalue problem. Having defined appropriate boundary
conditions, one has to find pairs of eigenvalues (α, c) for which an eigenfunction v
exists. This eigenfunction v has to be a solution of the Rayleigh equation (7.11) and to
satisfy these boundary conditions. The computed pairs of eigenvalues will then define
the stability and instability area of the flow, according to the sign of the resulting
growth rates αci.

7.3 Analysis of an inviscid shear layer

7.3.1 Velocity profile and boundary conditions

Using the Rayleigh equation (7.11), one can now investigate the stability of a single
shear layer, separating two semi-infinite areas where the flow is parallel to the shear
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layer. The basic-flow velocity profile is modelled by an hyperbolic tangent function
(Figure 7.2) :

U* = Um* + Us*  TANH (y*/ls*) (7.12)

where Um* is the mean velocity; 2 Us* is the difference between the maximum and the
minimum velocities, measured far from the shear layer area; and ls* is a measure of the
shear-layer width. The star designates dimensional values. Indeed, for a general
analysis, one prefers to use dimensionless values of velocity and length, obtained by
using Us* and ls* as scaling factors, respectively :

** sUUU =    and   ** slyy = (7.13)

The values of the scaling factors can be defined as a function of the dimensional values
describing the velocity profile (Chu et al. 1991) :

Us* = (U2* - U1*)/2 (7.14a)

1

0*

*
**

−

=








=

y

ss dy
dU

Ul (7.14b)

where ls* is estimated as a function of the slope of the velocity profile (7.12) at its
inflexion point (y* = 0), where this slope is maximum.

Figure 7.2 : Velocity profile for a shear layer flow, modelled by a TANH(y) function

Using these scaling factor definitions, the dimensionless velocity profile finally writes

U = Um + TANH (y) (7.15)

When studying the temporal growth of the disturbance, the mean velocity Um can be set
equal to zero, without loss of generality. This means that the reference used is then a
Lagragian reference, corresponding to an observer moving at the flow mean velocity.
With regard to the Rayleigh equation (7.11), one can notice that this reference change
will only affect the real part of the wave celerity cr, from which the mean velocity Um

value should be subtracted.
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Lets now consider the Rayleigh equation (7.11) far from the shear layer. The term
Uyy /(U-c) becomes negligible in comparison with the α2 term, as the velocity U tends to
a constant value. Approximate solutions are thus

v(y) = A1 e
αy + A2 e

-αy,      for y >> 0 (7.16a)

v(y) = A3 e
αy + A4 e

-αy,      for y << 0 (7.16b)

where A1, A2, A3 and A4 are constants.

As the shear layer is the only perturbation source, the perturbation v' has to disappear
when moving far from it. This implies that A1 and A4 must be equal to zero. With such
values of the constants, the solutions (7.16) define the boundary conditions for the
eigenvalue problem.

7.3.2 Simulation results

The so-defined eigenvalue problem can be solved numerically, using the basic trial and
error procedure described by Betchov and Criminale (1967). For a given value of the
wave number α, a tentative value of the wave celerity c is set. The Rayleigh equation
(7.11) is then integrated, for example between y = -3 and y = 3 (where
U (y = ± 3) = ± 0.995 and Uyy = ± 0.020, see (7.15)). The boundary condition (7.16b) is
used as initial condition in y = -3. The value of the eigenfunction v(3) found at y = 3 is
compared with the boundary condition (7.16a), and the value of c is adapted until the
eigenfunction v(y) matches both its boundary conditions (7.16a) and (7.16b). This
numerical solution is further explained in Appendix 4.
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Figure 7.3 : Eigenvalues of the Rayleigh equation, for a velocity profile U = TANH(y)
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Table 7.1 : Eigenvalues of the Rayleigh equation, for a velocity profile U = TANH(y)

α ci α ci α ci α ci

0.000 1.0000 0.0000 0.500 0.3749 0.1874

0.100 0.8598 0.0860 0.600 0.2882 0.1729

0.200 0.7019 0.1404 0.700 0.2086 0.1460

0.300 0.5775 0.1733 0.800 0.1346 0.1077

0.400 0.4705 0.1882 0.900 0.0654 0.0588

0.445 0.4262 0.1897 1.000 0.0000 0.0000
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Figure 7.4 : Eigenfunction v(y) for the maximum growth rate (α = 0.445),
and corresponding vorticity function ω(y)

Eigenvalues of the Rayleigh equation, for a hyperbolic-tangent function velocity profile,
were first computed by Michalke (1964). These values are plotted on Figure 7.3 and
summarised in Table 7.1. The maximum growth rate (7.8) equals α ci = 0.1897 and is
obtained for the wave number α = 0.445. Both real and imaginary part of the complex
eigenfunction v(y) are given on Figure 7.4. Used with the periodical perturbation
definition (7.6), this eigenfunction depicts the additional velocity field due to the
perturbation. The eigenfunction u(y) is obtained from the derivative of the eigenfunction
v(y), using (7.10a).

The vorticity field of the studied flow consists of both the basic flow and the
perturbation vorticity :

),,()( tyxy ω′+Ω=ω (7.17)

The basic flow vorticity Ω(y) corresponds to the vortex sheet used as simplified model
when investigating the Kelvin-Helmholtz instability
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while the additional vorticity ω'(x,y,t) due to the perturbation can be expressed as a
periodical function, obtained from the eigenfunction u and v
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(7.19)

where the derivative of u(y) is obtained from v(y) by (7.10b). Both real and imaginary
parts of the complex eigenfunction ωω(y) are given on Figure 7.4.

The complete vorticity field (7.17) is given on Figure 7.5, again for α = 0.445. In this
figure, the adimensional time has been set equal to t = 0. However, this does not mean
that no perturbation exists, as, from a mathematical point of view, the perturbation
growth starts at t = - ∞. From a physical viewpoint, the initial time t0 should be selected
to fit the initial perturbation amplitude : v0 = 0i cte α−v .

From Figure 7.5, it is clear that the vorticity field is affected by the perturbation. For the
non-perturbed basic flow, the maximum amplitude of the vorticity ω(y) was equally
located on the axis y = 0, with a maximum absolute value of |ω|max = 1. Once the
perturbation has developed, the flow presents periodical structures. Pair of vorticity
peaks are found alternately on both sides of the shear layer. When the perturbation will
further develop, one can expect that the vorticity peaks in such a pair will interact
together and, finally, merge in a unique vortex, leading thus to the vortices pattern
observed experimentally. However, this merging process implies further growth of the
perturbation, that can not be captured by the present linear analysis, as the linearization
used in the development of Rayleigh equation is no longer valid.
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Figure 7.5 : TANH(y) velocity profile : disturbed vorticity field, α = 0.445
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A clue of the weakness of this linear analysis can also be seen in the maximum vorticity
evolution. Indeed, as quoted by Michalke (1965a), the vorticity transport is governed by
Helmholtz equation, which writes for a two-dimensional flow

0=
∂

ω∂
+

∂
ω∂

+
∂
ω∂

=
ω

y
v

x
u

ttD
D

(7.20)

This means that, in such a flow, no vorticity source exists and the total vorticity remains
constant along its trajectory. For this particular case, the vorticity maximum was |ω|max

= 1 for the unperturbed flow, whereas it is now |ω|max > 1.2 (see Figure 7.5), which is in
contradiction with Helmholtz equation (7.20).

Developing a non-linear stability analysis, limited to the third order, Michalke (1965a)
obtained a perturbed-flow vorticity maximum closer to the unperturbed one. In the
perturbed-flow vorticity field, the two iso-vorticity lines corresponding to the maximum
of the unperturbed-flow vorticity were found closer to each other in the non-linear
analysis than in the linear analysis. From this observation, Michalke concluded that,
using higher order analysis, the maximum vorticity line would remain unique and only
roll-on, in a vortex row aligned with the shear layer axis (Figure 7.6). It should be
pointed out that, unlike the vorticity field, the maximum growth rate and the related
wave number (α = 0.445) seem not to be affected by this extension to a non-linear
analysis.

Figure 7.6 : Vorticity field, extrapolation from a non-linear analysis (Michalke, 1965a)

Using a complex value for α and a real one for c, Michalke (1965b) also investigated
the spatial development of a perturbation of the hyperbolic-tangent-function basic flow.
The maximum growth rate is obtained for a wave number αr = 0.403 slightly lower than
in the temporal growth analysis. The perturbation growth is rather fast : starting from an
initial perturbation whose amplitude equals 0.0005 of the unperturbed flow maximum
velocity, the whole development of a vortex is obtained in only 2 wave lengths (using a
linear analysis).

This last result is not relevant for comparison with the numerical experiences in Chapter
8, where only temporal growth will be studied, using periodical boundary conditions.
On the other hand, one can expect that such spatial growth of the perturbation occurred
in the physical experiments (see Chapter 6). Although the wave number giving the
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maximum growth rate differs slightly between both cases, comparisons remain possible
between the spatial growth observed experimentally and the temporal growth as
investigated in this Chapter and numerically modelled in Chapter 8. The large
calculated growth rate also gives confidence in the fact that fully developed vortices
were observed in the experiments. However, only a non-linear analysis could tell if the
observed vortices still have the initial wave length or have merged together in larger
one. This point will be further discussed in § 7.7.2, where the UCL experimental results
are compared with the present stability analysis.

7.4 Viscous flow analysis

7.4.1 The Orr-Sommerfeld equation

The effect of viscosity on the linear stability analysis results will be briefly described in
this paragraph, for the classical hyperbolic-tangent function velocity profile (7.15). The
stability of such a viscous parallel flow is depicted by the Orr-Sommerfeld equation.
The latter is obtained from the flow equations (7.9) expressed for periodical
perturbations (7.6). Similarly to the Rayleigh equation development, the pressure p and
the u are successively eliminated from the equations (7.9), and the Orr-Sommerfeld
equation finally writes (Betchov and Criminale 1967), using a non-zero viscosity υ :

)2(
i

))(( 422 vvvvvv α+α−
α
υ

−=−α−− yyyyyyyyy UcU (7.21)

This equation is now a fourth order differential equation; and it effectively reduces to
the Rayleigh equation (7.11) when the viscosity υ is neglected.

The boundary conditions for a hyperbolic-tangent function basic flow are obtained as
for the Rayleigh equation : far from the shear layer, the second derivative of the velocity
profile Uyy becomes negligible. For y > 3, the Orr-Sommerfeld equation (7.21) admits a
solution
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where the pn values are obtained by replacing v in (7.21) by its value (7.22) :
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where U is estimated at y = 3 (U ≈ 1). The decay of the perturbation when y grows
implies that A1 = A3 = 0.

Similarly, for y < -3, the solution of the Orr-Sommerfeld equation (7.21) has the form
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where the qn values are
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where U is now estimated at y = -3 (U ≈ -1). One has B2 = B4 = 0 as the perturbation
decays far from the shear layer.

With these boundary conditions, the Orr-Sommerfeld equation (7.21) defines a new
eigenvalue problem that can be solved numerically, as done for the Rayleigh equation.
Details on the solution procedure are given in Appendix 4.

7.4.2 The viscous shear-layer

The Orr-Sommerfeld equation eigenvalues are presented for 3 viscosity values
(υ = 0.100, 0.050 and 0.020), corresponding to Reynolds number Re = 10, 20 and 50;
where the Reynolds number is defined for the shear layer, using as velocity and length
scale the velocity difference Us* and the shear-layer width ls* respectively :

υ
=

** ss lU
Re (7.26)

The wave-celerity eigenvalues ci and the growth rates αci are given respectively on
Figure 7.7 and Figure 7.8, as a function of the wave number α, with reference to the
inviscid flow results previously obtained. The eigenvalues corresponding to the
maximum growth rate are summarised in Table 7.2. From these results, it is clear that
the viscosity has a stabilising effect on the shear layer. As the wave celerity decreases,
the growth rate also decreases. It even becomes lower than zero, reducing the wave-
number interval in which the flow is unstable. The maximum growth rate is also
obtained for a lower wave number, when the viscosity increases, giving a larger
perturbation wave length λ (7.7).

The stabilising effect due to the viscosity can be explained by the resulting increased
diffusion, that has a smoothing effect on the velocity profile, and thus on the
perturbation. This diffusion process is clearly depicted by the vorticity field (Figure
7.9) : the vorticity peak values decrease with lower Reynolds number. Similarly, the
two vorticity peaks observed on both sides of the shear layer in the inviscid case are less
distinct when the viscosity increases. Nevertheless, the viscosity increase does not lead
to the merging of these two peaks, which can only be captured by a non-linear analysis.
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Figure 7.8 : Viscous shear layer : perturbation growth rate, according to the viscosity

Table 7.2 : Eigenvalues of the Orr-Sommerfeld equation, at maximum amplification

Re υ α cr ci αci

10 0.100 0.3410 0.0196 0.2955 0.1008

20 0.050 0.3710 0.0047 0.3630 0.1347

50 0.020 0.4080 -0.0001 0.3979 0.1624

∞ 0 0.4450 0.0000 0.4262 0.1897
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Figure 7.9 : Viscous shear layer : vorticity field,
at maximum amplification, according to the viscosity

Although the previous results show that the viscosity has a significant effect on the
instability of the shear layer, it is also clear that this effect reduces rapidly with
increasing Reynolds number : for a Reynolds number as low as Re = 50, the results are
already very close to the inviscid analysis results. The shear-layer Reynolds numbers of
the experiments related in the previous Chapter are in the range Re = 10000, when
computed with the molecular viscosity υ = 10-6 m2/s : the corresponding flows can thus
considered as inviscid for further analysis, similarly to previous studies (e.g. Chen and
Jirka 1997).
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7.5 Extension for shallow-water flow

7.5.1 Extension of the Rayleigh equation for bed friction

Results from the previous paragraphs indicate that, regarding the wave length of the
vortices that will develop, an inviscid linear analysis can provide interesting results,
even if limited to the simulation of a perturbation temporal-growth. Only if the vortices
shape is to be investigated, a non-linear analysis should be required. On the other hand,
in the whole analysis, it has been assumed that the velocity profile was generated by
appropriate mass-force field or boundary conditions. For the practical cases to be
investigated in this work, the governing equations are no more the two-dimensional
Navier-Stokes equations, but the Shallow-water equations. This means that the velocity
profile will now be governed by both the cross-section shape and the bed friction. In
order to investigate how the stability results are affected by these effects, the Rayleigh
equation will now be extended to shallow-water flow, according to Chu et al. (1991)

Chu et al. (1991) proposed to develop a stability equation from the Shallow-water or
Saint-Venant equations (2.33). A rigid-lid approximation is used, assuming that the
water level remains constant with time, although small pressure variations are allowed,
due to the perturbation. Using the partial derivative notation defined in § 7.2, the
Shallow-water equations write now

( ) ( ) 0=+ yx vHuH (7.27a)

ut + u ux + v uy + g (zw)x = - 22 vuu
H

c f + (7.27b)

vt + u vx + v vy + g (zw)y = - 22 vuv
H

c f + (7.27c)

where H is the local water depth, variable with y, but constant with x and t, according to
the rigid-lid assumption; zw is the water level; and cf is the friction factor, defined by
(2.40). The notations u and v are adopted for the depth-averaged longitudinal and
transverse components of the velocity, not to be confused with the basic flow notation U
and V.

The basic flow, parallel to the x-direction, is expressed by

U = U(y),    V = 0,    Zw = Zw(x) (7.28)

where the water level only vary with x, due to the rigid-lid assumption. This basic flow
has to satisfy (7.27b) :

g (Zw)x = - g S0x = - 
H

c f U2 (7.29)
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where S0x is the channel bed slope. This condition (7.29) shows that the longitudinal
velocity U only depends on the energy slope, equal to the bed slope in uniform-flow
condition, on the local water depth H and on the friction factor cf.

The actual flow in the channel is then obtained by the addition of the steady basic flow
(U, V, Zw) and an unsteady perturbation (u', v', zw' ), as in the Rayleigh equation
development :

u = U(y) + u'(x,y,t) (7.30a)

v = v'(x,y,t) (7.30b)

zw = Zw(x) + zw'(x,y,t) (7.30c)

Replacing the variables in the flow equations (7.27) by their values (7.30), simplifying
with the basic flow (7.29), and neglecting the perturbation product terms (linearization
hypothesis), one gets

( ) ( ) 0=′+′ yx HvHu (7.31a)

u't + U u'x + v' Uy + g (zw' )x  = - u'U
H

c f2 (7.31b)

v't + U v'x + g (zw' )y = - v'U
H

c f (7.31c)

Assuming periodical values for the perturbation, as in (7.6), the flow equations become

iαu + vy + Hy /H v = 0 (7.32a)

- iαc u + iαU u + Uy v + iα g zw = - uU
H

c f2 (7.32b)

- iαc v + iαU v + g (zw)y = - vU
H

c f (7.32c)

The water level component zw of the perturbation can be eliminated from (7.32), by
deriving (7.32b) with regard to y, replacing (zw)y in (7.32c), and subtracting (7.32a)
multiplied by Uy :

vy = - iαu - Hy /H v (7.33a)
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Although it would be possible to eliminate the u values in (7.33b) using (7.33a), the
system of two equations will be used in its present form, in order to keep a more legible
mathematical expression. It should be pointed out that, when the friction coefficient cf

and the bed-level variation Hy equal zero, the equations (7.33) reduce to (7.10), giving
simply the classical Rayleigh equation. The boundary-conditions definition and the
numerical solution of (7.33) are similar to the ones already described for the Rayleigh
equation.

Looking forward to study a velocity profile defined by the classical hyperbolic-tangent
function and in accordance with (7.29), Chu et al. (1991) used either a continuously
variable friction [cf ≈ (TANH(y))-2, constant value of H], or a variable water depth [H
≈ (TANH(y))-2, constant value of cf ], as depicted on Figure 5.4. However, in the present
study, one seeks to analyse the flow stability in a channel with a piece-wise cross-
section (Figure 7.10), corresponding to the classical laboratory flumes. The velocity
profile will nevertheless be approximated by an hyperbolic-tangent function (7.15), for
further comparison with classical results presented above. One assumes therefore that
the velocity profile (7.29) defined according to the channel geometry is smoothed by
viscosity, even though this viscosity is neglected in the stability analysis.

Figure 7.10 : Velocity profile for a shear layer flow, modelled by a TANH(y) function,
in a piece-wise cross section
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In the present case, the mean velocity Um in the hyperbolic-tangent velocity profile
(7.15) can no longer be set equal to zero. Indeed, its value will affect the result through
the bed friction terms in (7.27) which are proportional to U 2. On the other hand, the
scaling factor Us* and ls* are defined according to (7.14).

7.5.2 Influence of the bed friction

First results are computed for a channel with vertical main-channel banks (s = 0).
However, the friction on the vertical wall is neglected in the equations (7.33), together
with the derivative Hy, in order to avoid the resulting discontinuity in the solution.
Although this approximation is questionable (see next paragraph), this allows a first
investigation of the sensitivity of the solution to the bed friction and will enable
comparison with previous results from § 7.3. The Manning friction law is used. The
length scale is set equal to the main-channel depth (ls* = H*), and the relative water
depth is equal to Hr = 0.5.

The wave celerity c and growth rate αci are shown on Figure 7.11 and Figure 7.12,
according to the wave number α, for several friction factor values. The values
corresponding to the maximum amplification are summarised in Table 7.3. The bed
friction is found to have a stabilising effect, as observed by Chu et al. (1991) : the
perturbation growth rate reduces when the friction factor increases, and the wave-
number interval for which the flow is unstable reduces accordingly. Unlike the growth
rate, the wave number giving the maximum amplification is not or slightly affected by
the friction increase.
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Figure 7.13 : Vorticity field at the maximum amplification, cf = 0.02

Table 7.3 : Wave celerity and wave number at maximum amplification, according to the
friction factor cf

cf α cr - Um ci α ci

0.000 0.445 0.0000 0.4262 0.1897

0.002 0.450 -0.0039 0.3955 0.1780

0.010 0.450 -0.0198 0.2937 0.1322

0.020 0.455 -0.0378 0.1690 0.0769
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A last result to be pointed out is the decrease of the value of the real part of the wave
celerity cr . For the lower wave-numbers, this real part is less than the basic-flow
velocity at the interface Um : this means that the perturbation moves with a velocity
equal to the velocity somewhere on the floodplain (U < Um); and, therefore, that its
mass centre is shifted on the floodplain (y < 0). This effect could indicate a slowing
down of the flow due to the friction on this floodplain. However, this effect has almost
disappeared at the wave number corresponding to the maximum amplification. Indeed,
Figure 7.13 shows the vorticity field at the maximum amplification, for cf = 0.02, and
indicates only a small asymmetry, with a higher vorticity in the main-channel area
(y > 0).

7.5.3 Influence of the channel geometry

A first parameter investigated is the bank slope s, with s = 1 and s = 2 values. The
length scale is still ls* = H*; the relative depth is 0.5; and the friction parameter equals
cf = 0.002. The ratio between the shear-layer width 2 ls* and the bank width s h* equals
therefore 4 and 2 respectively.

The growth rates are given on Figure 7.14, and the eigenvalues corresponding to the
maximum amplification are summarised in Table 7.4. When comparing the s = 1 case
with the s = 2 case, it is clear that a steeper bank implies a less stable flow : the flow is
unstable for a larger interval of wave number and the maximum growth rate is also
larger. The wave number corresponding to the maximum amplification is also slightly
larger. For both cases, the real part of the wave celerity cr is smaller than the interface
velocity Um, indicating as previously a shifting of the vortex centres to the floodplain.
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Table 7.4 : Wave celerity and wave number, according to the bank slope s (cf = 0.002)

s α cr – Um ci α ci

0 0.450 -0.0039 0.3955 0.1780

1 0.590 -0.3034 0.3221 0.1901

2 0.480 -0.2902 0.3653 0.1753

One should expect that the solution of the vertical-bank case (s = 0) is in continuity with
the solutions of both previous cases. However, the vertical-bank case is more stable and
present less shifting to the floodplains. This is probably due to some approximations
made in its solution. The friction on the internal vertical bank was indeed neglected,
together with the derivative of the water depth at this vertical bank. Accordingly, this
last result should be considered circumspectly.

The second parameter to be investigated is the effect of the walls that constrain the
perturbation development. For that purpose, a new boundary condition for the
perturbation eigenfunction v(y) is introduced, simply stating that

v(ywall) = 0 (7.34)

where ywall is the position of the wall (Betchov and Criminale 1967).

Two first simulations are performed with respectively one and two walls, at ywall = - 3 or
3. The friction is neglected (cf = 0) and the bank slope set equal to 0. The computed
wave celerity c and growth rate αci are given, according to the wave number α, on
Figure 7.15 and Figure 7.16. The growth rates corresponding to the maximum
amplification are summarised in Table 7.5.

When only one wall exists, one observes a non-symmetry of the perturbation, and the
real part of the wave celerity is affected (cr – Um ≠ 0) : the vortices do not travel at the
interface velocity Um anymore. When symmetric walls are considered, this effect
disappears.

In both cases, the growth rates are lower than in the unconfined case, mainly for the
lower wave number α. Indeed, the presence of the walls inhibits partly the vortices
development. This phenomena is enhanced for the longer wave length λ (i.e. smaller
wave number α), as the unconfined vortex diameter would be larger than the existing
distance between the walls. However, this effect is less present for the medium wave
numbers, corresponding to the maximum growth rates. The maximum amplification is
therefore obtained for wave numbers close to the unconfined-case one; while only the
growth rate is lower.

The constraining effect of the walls increases when the distance between the walls
reduces. Indeed, smaller wave-length vortices (or larger wave number) will be affected.
As shown by Table 7.5, for walls settled at ywall = - 2; 2, the maximum growth rate
drops to αci = 0.0948; while the corresponding wave number is not modified.



128 Part II : Turbulent exchange

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

Alpha

C
i, 

C
r-

U
m

No wall
1 wall (y = - 3)
2 walls

Ci

Cr - Um

Figure 7.15 : Wave celerity c according to the numbear of walls (cf = 0)

0.00

0.04

0.08

0.12

0.16

0.20

0.00 0.20 0.40 0.60 0.80 1.00

Wave number αα

G
ro

w
th

 r
at

e 
αα

 *
 C

i

No wall
1 wall
2 walls

Figure 7.16 : Growth rate αci , according to the number of walls (cf = 0)

Table 7.5 : Wave celerity and wave number, according to the number of walls

Number
of wall

α cr - Um ci α ci

0 0.445 0.0000 0.4262 0.1897 cf = 0.000

1 0.470 0.0451 0.3667 0.1723 "

2 0.490 0.0000 0.3185 0.1560 "

2 0.485 0.0000 0.1954 0.0948 ywall = - 2; 2

2 0.495 -0.0016 0.2901 0.1436 cf = 0.002
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When bed friction is taken into account, similar results are observed, and the
conclusions of the previous paragraph regarding the bed-friction influence are verified :
the maximum growth rate reduces, while the wave number increases only slightly.

Although not investigated further in this Chapter, one expects that the constraining
effect of walls on a confined flow will be further enhanced when a non-linear stability
analysis is considered. Indeed, due to the non-linear effects, small vortices tend to
merge together into larger ones. In the case of confined flow, the further development of
these larger vortices is constrained by the wall. This effect will be clearly demonstrated
in the numerical simulations presented in the next Chapter. On the other hand, this
means also that, even if merging process occurs in experimental conditions, there could
be a kind of maximum vortex size observable for each given channel geometry.

7.6 Analysis of a symmetric compound channel flow

7.6.1 Classical results : jet flow

When symmetrical compound channels are considered, two parallel shear layers will be
observed corresponding to the two interfaces between the main channel and each
floodplain. This situation roughly corresponds to a jet flow, of which the stability has
been investigated by many authors (see Betchov and Criminale 1967; Drazin and Reid
1981). The basic flow for a jet is classically represented by a hyperbolic-secant-square
function (Bickley jet) :

U = SECH2(y) (7.35)

As the velocity tends towards zero, far from the jet, the perturbation will also decay and
the boundary conditions can be expressed similarly to the hyperbolic-tangent case
(7.16).

When solving the Rayleigh equation for such a velocity profile (7.35), two distinct
eigenvalues of the wave celerity c are found for a range of wave number α (Figure
7.17). This means that two modes of instability exist for the jet flow : (1) Mode I is
called the even mode, as its eigenfunction v is symmetric; and (2) Mode II, called the
odd mode, as its eigenfunction v is antisymmetric. The resulting vorticity fields are
depicted on Figure 7.18 : accordingly, the instability modes are also respectively quoted
as sinuous and varicose modes.
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Figure 7.18 : Jet-flow instability modes : vorticity and velocity fields.
(a) Mode I : Even or Sinuous mode;  and (b) Mode II : Odd or Varicose mode

(velocities are plotted in a moving frame)
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Table 7.6 : Jet-flow stability : eigenvalues and growth rate at maximum amplification

Mode α cr ci αci

I – sinuous 0.902 0.451 0.178 0.161

II – varicose 0.518 0.715 0.089 0.046

The growth rates αci of the perturbation are given on Figure 7.19 for both instability
modes. In all cases, the sinuous mode I is found to be more unstable than the varicose
mode II. This can easily be understood when considering the velocity field depicted by
Figure 7.18 : the longitudinal velocity variations in the varicose mode are much larger
than in the sinuous mode; and such a perturbation is therefore more difficult to obtain
from the basic flow. It can also be observed from Figure 7.17 that, for both modes, the
real part of the wave celerity cr tends to cr = 2/3 for a growing wave number α. This
particular value of cr, which corresponds to the neutral stability, equals the basic-flow
velocity at its inflexion points. This means also that, when the varicose mode is
considered, the vortices move faster than the velocity at the interface, and slower than
this velocity when the sinuous mode is considered. The eigenvalues and growth rates
for the maximum amplification are summarised in Table 7.6.

7.6.2 Adapted velocity profile

Whereas the hyperbolic-secant-square function (7.35) fits well the velocity profile of a
jet flow, this function is no longer appropriated when studying symmetrical compound-
channel flow. Figure 7.20 shows a typical velocity profile for such a flow (Wallingford
FCF 020501 case, Knight 1992). It is clear that this velocity profile presents two shear
layers steeper and more separated than in the classical Bickley jet. In order to study the
actual compound-channel flow stability, an appropriate function should be used for
basic-flow modelling. In the present work, it is proposed to use the sum of two
hyperbolic-tangent functions, with a shifted abscissa :
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The shifting factor yshift* is chosen in order to normalise the jet width : for each shear-
layer width ls*, its value is selected in such a way that the distance between both
inflexion points of the velocity profile equals 1.

The Rayleigh equation is solved for the velocity profile (7.36), with several values of
the shear-layer width ls*. Figure 7.21 presents the corresponding stability results, where
the wave number α is multiplied by the shear-layer width ls*, as the scaling factor is
now the shifting factor yshift*. This results show that, when the shear-layer width
reduces, the mode I (sinuous) becomes more stable, while the mode II (varicose) is
more unstable. Indeed, the distance between both shear layers increases and their
interaction decreases : the velocity variations observed on Figure 7.18b for the varicose
instability mode of the Bickley jet are therefore less important, and this mode can
develop more easily.

For shear-layer widths ls* less than 0.50, the two instability modes are found almost
indistinguishable. The maximum amplification is obtained for a corrected wave number
in the range αls* = 0.438 .. 0.461, which is close to the wave number at maximum
amplification for the TANH(y) velocity profile : α = 0.445 (Table 7.1). This means that,
for such widths, both shear layers could behave almost independently; and results from
single shear-layer analysis may be applicable.
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It should be pointed out that similar results were obtained by Michalke and Schade
(1963), from stability analysis of piece-wise trapezoidal velocity profile, presenting also
a reduction of the ratio between the shear-layer and the jet width.

These results are quite interesting, as actual velocity profiles in compound channels
present such steep shear-layers. Typically, for the FCF 020501 velocity profile plotted
on Figure 7.20, the ratio of the shear-layer and the jet widths equals 0.20, in such a way
that both shear layers are almost independent. One can therefore benefit from all the
observations previously obtained for the single shear-layer, including the influence of
bed friction and geometry.

7.7 Applications

7.7.1 FCF Series 06 (single shear layer)

In the paragraph 7.5, the influence of friction and geometry parameters on the stability-
analysis results has been reviewed. This stability analysis will now be particularised to a
given geometry, to be investigated numerically in the next Chapter. Indeed, whereas one
expects that the non-linear effects taken into account by the numerical simulation will
affect the final results, due to vortices merging, the first part of the instability
development will remain in the linear-assumption domain and comparison between the
numerical results and the present analysis will be valuable.
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The geometry selected for this single shear-layer analysis is the asymmetric compound-
channel case investigated in the Flood Channel Facility Series 06 tests (Knight 1992),
where the main channel is bordered by a unique floodplain. For this geometry, accurate
velocity profiles were measured, enabling comparison with the numerical simulation
results. Unfortunately, neither for the present Series 06, nor for other experiments in the
FCF, estimation of the periodical-structures wave length are available : maybe such an
estimate could be gathered from the raw LDA velocity measurements made in several
geometries (see e.g. Knight and Shiono 1990), but it seems that nobody has already
published such results.

The relevant parameters of the FCF Series 06 geometry are as follow. The main channel
is 1.65 m width (ywall* = 1.65 m), and has a h* = 0.15-m height bank, with a bank slope
s = 1. The floodplain is 2.25 m width (ywall* = - 2.25 m). Investigated water depths in
the main channel are in the range H* = 0.16 .. 0.30 m (Table 7.7). The friction factor cf

is estimated from the Manning roughness-coefficient value n = 0.01106 s/m1/3 (see §
8.2.2). The basic-flow parameters are estimated from numerically-computed
unperturbed velocity profiles (see Chapter 8), by fitting an hyperbolic-tangent function
(7.12) (Table 7.7). Indeed, the measured velocity profiles can not be used as basic
flows, as they already present enlarged shear layers, due to the perturbation
development.

The extended Rayleigh equation (7.33) is integrated for the given geometry and basic
flows; and the eigenvalues corresponding to the maximum amplification are
summarised in Table 7.8. The maximum amplification is obtained for wave numbers in
the range α = 0.653 .. 0.766, with the smallest wave number α (or larger wave length λ)
observed at the largest depth H*. The growth rates αci are larger for the small depths.
This could be explained by a higher shear in these cases, due to the higher velocity
difference between subsections. In all the cases, the wave celerity cr is lower than the
flow velocity at the interface Um, indicating that the vortices move at a velocity closer to
the floodplain velocity.

Table 7.7 : FCF Series 06 : water depth and velocity profile characteristics
(dimensional values)

Label H* [m] Um* [m/s] Us* [m/s] ls* [m]

060101 0.15826 0.483 0.346 0.029

060201 0.16505 0.524 0.332 0.047

060301 0.17619 0.583 0.313 0.081

060401 0.18836 0.641 0.296 0.118

060501 0.19793 0.683 0.285 0.149

060601 0.21348 0.748 0.269 0.199

060701 0.24781 0.879 0.243 0.313

060801 0.30185 1.064 0.214 0.499
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Table 7.8 : FCF Series 06 : growth rate and wave celerity at the maximum
amplification

Label α ci α ci cr - Um

060101 0.766 0.269 0.206 - 0.377

060201 0.744 0.282 0.210 - 0.360

060301 0.734 0.287 0.210 - 0.356

060401 0.722 0.290 0.210 - 0.349

060501 0.712 0.293 0.208 - 0.344

060601 0.695 0.296 0.206 - 0.333

060701 0.663 0.298 0.198 - 0.307

060801 0.653 0.274 0.179 - 0.263

In order to investigate the results sensibility to the length scale ls*, two additional tests
are done for the 060501 case, with ls* = 0.100 and 0.200. Indeed, as the bank height and
the wall positions have fixed dimensional values, their adimensional values will change
according to ls* and will affect the analysis results. The wave number and growth rate at
maximum amplification are summarised in Table 7.9. It is found that the wave-number
value is clearly affected by the length scale ls*, with the lowest value corresponding to
the smallest length scale. An additional result concerns the dimensional wave length λ*
of the vortices, which is significantly affected by the change of length scale, not so
much due to the wave-number change, but simply due to scaling change.

For the sake of further comparison with numerical results, the velocity and vorticity
field of the perturbed flow are plotted on  for FCF 060501 case (ls* = 0.149 m). Pairs of
vorticity peaks are clearly identified on both sides of the interface (y* = 0 m); while a
vorticity discontinuity is also observed at this interface, due to the bed level angular
point. The velocity field, plotted in a frame moving at the interface velocity Um, shows
noticeable vortices, located on the interface.

Table 7.9 : FCF 060501 : growth rate, wave celerity and wave length at maximum
amplification

ls* [m] α ci α ci cr - Um λ* [m]

0.100 0.674 0.316 0.213 - 0.306 0.932

0.149 0.712 0.293 0.208 - 0.344 1.315

0.200 0.736 0.276 0.203 - 0.371 1.707
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Figure 7.22 : FCF 060501 : velocity (arrows) and vorticity (grey scale) field of the
perturbed flow, at maximum amplification (x- and y-position axis are in dimensional

values)

Lastly, it should be pointed out that the Reynolds numbers (7.26) corresponding to the
investigated basic flow are in the range Re ≈ 50, unlike the previous estimation from §
7.4.2. Indeed, in the present case, a turbulent viscosity υt ≈ 10-3 m2/s is used for the
velocity-profile computations (see Chapter 8). As a consequence, and according to §
7.4.2 results, one can expect a small reduction of the actual wave-number and growth-
rate values, compared to the inviscid-analysis values given in Table 7.8.

7.7.2 UCL flume (single shear  layer)

Similar calculations are performed for the UCL flume with an asymmetric floodplain.
For this data set, experimental values of vortex wave-length are available for several
cases, as seen in the previous Chapter. The geometry of the channel is given by Figure
6.1, and the investigated test cases are summarised in Table 6.1. The basic-flow
parameters (Table 7.10) are again estimated from numerically-computed unperturbed
velocity profiles (see Chapter 8), by fitting an hyperbolic-tangent function (7.12). For
solving the extended Rayleigh equation, one uses a value of the bank slope equal to s =
1, as it has been found above (§ 0) that taking s = 0 and neglecting simultaneously the
friction on the vertical bank could lead to an underestimation of the wave number at the
maximum amplification.

The wave number and growth rate at the maximum amplification are given in Table
7.11. The wave numbers are now in the range α =  0.65 .. 0.85, while the growth rate
are in the same range as for the FCF Series 06. The wave celerity cr is again lower than



Chapter 7 : Hydrodynamic stability analysis 137

the flow velocity at the interface Um, indicating that the vortices move at a velocity
close to the floodplain velocity : this result is in accordance with the experimental
observations.

Table 7.10 : UCL flume : water depth and velocity profile characteristics (dimensional
values)

Label Hr H* [mm] Um* [m/s] Us* [m/s] ls* [m]

LCA 08 0.10 54.4 0.249 0.159 0.040

LCA 10 0.23 63.9 0.311 0.138 0.052

LCA 12 0.30 68.8 0.308 0.163 0.054

LCA 16 0.38 78.9 0.342 0.158 0.062

Table 7.11 : UCL flume : growth rate and wave celerity at the maximum amplification,
calculated and measured vortex wave length

Label α ci α ci cr - Um λ* calc.
[m]

λ* meas.
[m]

LCA 08 0.841 0.212 0.177 -0.473 0.299 0.39

LCA 10 0.722 0.274 0.198 -0.365 0.453 0.56

LCA 12 0.681 0.292 0.199 -0.327 0.498 0.67 – 1.26

LCA 16 0.643 0.309 0.199 -0.284 0.606 -

Lastly, the dimensional wave-length λ* of the perturbations are calculated from the
wave-number values, and compared to the experimental values, when available (Table
7.11). Both values are found to compare rather satisfactorily : for each case, both
calculated and measured wave-lengths have close values, although the measured one is
in all cases around 30 % larger than the calculated one (when the experimental value of
λ* = 0.67 m is considered for LCA 12). Moreover, the variation of the wave-length
according to the discharge is similar for calculated and measured values.

Several causes could explain the underestimation of the vortex wave-length by the
stability analysis, when compared to the measurements : (1) the linear analysis
assumption; (2) the influence of the bank slope value s; or (3) an experimental error. In
a non-linear analysis, vortices are allowed to merge together and to grow up to larger
wave length. However, the ratio between experimental and calculated wave lengths
indicates that, if such growing occurs, it is rapidly stopped, probably as a result of the
constraining of the flow by the channel banks. Secondly, a wrong estimation of the
vortices wave-length could be due to the treatment of the main-channel vertical bank.
Indeed, results from § 0 indicate that similar differences between the wave numbers can
be obtained when varying the bank slope in the interval s = 0 .. 2. Lastly, as pointed out
in Chapter 6, a mass transfer exists between subsections, due to the upstream discharge-
distribution ill-conditioning. The periodical structures could thus be affected due to this
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mass-transfer and its effect on the velocity profile : as quoted in Chapter 6 conclusion,
further experimental investigations are required to observe the vortices development
along the channel length.

7.7.3 Sellin's data (double shear layer)

The last geometry investigated is the flume used by Sellin, for which vortex wave-
length measurements are available (Sellin 1964). Sellin's flume is 0.456-m wide, with a
bed slope of S0 = 0.00085 (Figure 7.23). From the uniform-flow experiments reported in
his paper for an isolated single channel, the flume roughness can be estimated as equal
to n = 0.0064 s/m1/3. As quoted in Chapter 5, Sellin measured that the vortex wave-
length equals twice the main-channel width, that means λ* = 228 mm. This wave length
was observed for a water depth around H* = 52 mm, and corresponds to the vortices on
Figure 5.1.

Figure 7.23 : Sellin flume geometry

Figure 7.24 : Sellin flume : computed velocity profile and TANH function.

The basic flow is again estimated from a numerically-computed unperturbed velocity
profile (see Chapter 8). This velocity profile is given of Figure 7.24. When fitting an
hyperbolic-tangent function to one of the shear layers, this shear-layer width can be
estimated as ls* = 24.7 mm. This width is less than a quarter of the main-channel
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velocity-profile width (distance between the two inflexion points), and, according to the
analysis in § 0, the stability of the basic flow can be investigated by considering only
one shear layer, rather than a jet-flow profile.

As for the UCL flume, a bank slope equal to s = 1 in used for this analysis. The
maximum growth rate equals αci = 0.217 and is obtained for a wave number α = 0.719.
The corresponding wave length equals λ* = 216 mm and agrees very well with the
experimental estimation of λ* = 228 mm. It should be noticed that, according to this
result, the vortices observed by Sellin still have the initial wave-length of the most
amplified perturbation. This could indicate that, in this case, the perturbation was not
significantly affected by non-linear effects and that no vortices merging occurred, as if
the perturbation lateral development was constrained on one side by the floodplain bank
and, on the other side, by the main-channel symmetry axis.

7.8 Conclusions

The various stability analysis quoted and developed in this Chapter give some more
insight into the initial perturbation development in the shear layer at the interface
between a main channel and a floodplain. Such analysis provide values of the wave
number α, and of the wave length λ, for which the perturbations will grow the fastest.
For cases where non-linear effects and merging phenomena can be neglected, these
wave lengths are expected to match the vortices wave-lengths observed in compound
channels.

Two parameters have been found to affect significantly these preferential wave lengths,
namely the bed friction and the cross-section geometry. Other parameters were
investigated but showed lower influence : the viscosity and the wall effect. When non-
linear effects are not considered, perturbation temporal-growth, as investigated here,
and spatial-growth, not considered in this work, gave rather similar wave length for the
maximum amplification. For symmetrical compound channels, when the main channel
is wide enough, when compared to the shear-layer width, both shear layers were found
to behave almost independently.

Several computations were performed for actual geometries. Wave number α and wave
length λ at the maximum amplification were estimated for (1) the FCF Series 06
(asymmetrical channel); (2) the UCL experiments as described in the previous Chapter;
and (3) Sellin's experiments (symmetrical channel). The FCF results will solely be used
for the validation of the numerical simulation in next Chapter, as no periodical-
structures wave-length estimations are available in this data set.

When compared with the UCL measurements, the stability analysis seems to
underestimate the vortex wave-length, although similar variations according to the
water depth are observed. This could be due to vortex merging and growing processes,
occurring in the experiments, but not taken into account by the linear stability analysis.
However, either the treatment of the bank slope in the calculations, or the experimental
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imperfections due to the ill-conditioned upstream discharge distribution, could also
explain this discrepancy. For Sellin's experiments, a very good matching has been
obtained between measured and estimated wave lengths. This would clearly indicate
that no merging occurred between vortices in the shear layers of this channel, due to the
main-channel small width.

From both these comparisons, one can conclude that the stability analysis produces
satisfactory results, at least in cases where the linear assumption remains valid; and that
no vortex merging actually occurred, due to geometrical constraining.



Chapter 8 
Numerical modelling of periodical structures
in a compound-channel flow

8.1 Introduction : SDS-2DH numerical model

As quoted above, the Part II of the present work is dedicated to the modelling of
periodical turbulent structures, such as large vortices with vertical axis, which were
identified by several authors at the interface between the main channel and a floodplain
of a compound channel (see Chapter 5), and for which new measurements are also
reported in Chapter 6. Indeed, these horizontal vortices are expected to be responsible of
the momentum transfer observed between subsections, as modelled by the EDM (see
Chapter 4). The Chapter 7 has shown that an hydrodynamic stability analysis could help
in predicting the initial development of such periodical structures. However, non-linear
effects, not taken into account in the stability analysis, are responsible for further
growth and development of the turbulent structures. The purpose of this Chapter is thus
to extend the analysis, through the use of a numerical model that will account for all
non-linear effects.

As the phenomena to be investigated is mainly two-dimensional, a depth-averaged
model will be preferred to a complete three-dimensional model solving the Navier-
Stokes equations, in order to limit the programming complexity and the computational
cost. The model that will be used is the so-called SDS-2DH model by Nadaoka and
Yagi (1998). This model, whose principle will be described below, produces indeed
satisfactory results when modelling horizontal vortices due to transverse shearing in
partly-vegetation-covered  channels. The model had not been applied to compound-
channel geometry yet; but it was expected that it could produce similarly good results.

According to Nadaoka and Yagi (1998), the turbulence structure of a shallow-water
flow is characterised by the coexistence of 3D turbulence, having length scales less than
the water depth, and horizontal two-dimensional eddies with much larger length scales.
As a result, the spectral structure of such a flow can be depicted as on Figure 8.1 : a first
peak corresponds to the horizontal 2D vortices generated by the transverse shearing. In
this area, an inverse cascade of spectral energy can be observed, due to processes like
vortex pairing; while a direct attenuation also exists, due to dissipation by bottom
friction. A part of this dissipated energy may be supplied to 3D turbulence, at higher
wave-number α; while bottom friction may also directly provide 3D turbulent energy.
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The SDS-2DH model is then defined according to this flow structure (Nadaoka and
Yagi 1998) : the large horizontal vortices are computed explicitly, using the shallow-
water equations (2DH) that includes transverse-shearing terms; while the small-scale 3D
turbulence is implicitly modelled as "Sub-Depth Scale turbulence" (SDS). The Sub-
Depth Scale turbulence effect on the depth-averaged flow is taken into account through
an eddy viscosity υt = υSDS. The latter is estimated by using the one-equation turbulence
model k-l (see § 2.4.3) : the length scale ld is assumed to be proportional to the water
depth H (2.49 : ld = ξH); while a depth-averaged transport equation is used for the
turbulent kinetic energy k (2.46a). Indeed, as the 2D vortices generate part of the 3D
turbulence, it is suggested that 3D turbulent kinetic energy could be transported
accordingly by the 2D structures.

Figure 8.1 : Turbulent energy spectrum in a depth-averaged flow with a shear layer,
according to Nadaoka and Yagi (1998)

This proposed SDS-2DH model is somewhat difficult to categorise with reference to
classical model types. Its principle is similar to Large Eddy Simulation (LES), or even
Very Large Eddy Simulation (VLES), according to the length scales to be modelled.
Indeed, similarly to the SDS-2DH model, LES and VLES models solve explicitly the
large turbulence scales, while the smaller scales are modelled implicitly, using a so-
called subgrid model (Ferziger and Peric 1996). However, when the grid size reduces,
LES results tend towards the results obtained from a Direct Navier-Stokes (DNS)
simulation, in which all turbulence scales are modelled, from the larger one to the
smaller one, that corresponds to molecular dissipation. This means that, when
decreasing the grid size, an LES subgrid model will converge towards molecular
viscosity. From a strict viewpoint, the SDS-2DH model thus can not be considered as
LES since, for smaller grid size, it will not converge to molecular viscosity. There are
two reasons for that : (1) the model is based on a transport equation of the kinetic-
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energy; and (2) it is based on a depth-averaging hypothesis. Most likely this will not
jeopardise the results obtained with this model, as the smaller scales to be explicitly
computed are much larger than the scales at which molecular dissipation occurs; but it
remains a weakness from the theoretical point of view.

On the other hand, as the k-l turbulence model used in the SDS-2DH model is based on
a Reynolds averaging of the velocities and on Reynolds shear stresses, it could be
categorised as a Reynolds-Averaged Navier-Stokes (RANS) simulation (Ferziger and
Peric 1996). Such a RANS simulation basically considers a steady flow, in which a
time-averaged (i.e. Reynolds averaged) velocity u  can be isolated from its fluctuating
value uuu ′+=  (see Figure 8.2a) :
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where t0 is a reference time; and Ta is the time interval on which the averaging is
performed. From a mathematical point of view, this interval Ta length should tend
towards infinity; but, from a practical point of view, it will be long enough, as soon as it
is much greater than the typical-fluctuation time-scale Ts :

as TT << (8.2)

The effects of the turbulence is then accounted through Reynolds-averaged shear
stresses τij = '' ji uuρ−  (2.41), and a turbulence model as the ones detailed in Chapter 2.
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Figure 8.2 : RANS methods, time-averaging of the velocity : (a) steady RANS;
and (b) unsteady RANS (fine line : actual velocity u, bold line : averaged velocity u )

However, in the present SDS-2DH simulations, unsteady velocities are considered, as
the large-scale turbulence is computed explicitly. Consequently, this model is of the
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Unsteady Reynolds-Averaged Navier-Stokes (URANS) kind. This means that the
velocities are no more averaged on a time interval Ta tending towards infinity, but on a
time interval that is short enough for still capturing explicitly the large-scale structures
of time-scale Tl (see Figure 8.2b) :
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with

las TTT <<<< (8.4)

The effect of the small-scale turbulence is then accounted through Reynolds-averaged
shear-stress models similar to the ones used in RANS simulations.

The validity of the URANS modelling will rely on the condition (8.4) : indeed, in order
to define a Reynolds-averaged velocity that encompasses all the small-scale fluctuations
and that varies according to the large-scale structures, the latter have to be several order
of magnitude larger than the small-scale fluctuations (Ts < 10-4 Tl ). Following Nadaoka
and Yagi, it is expected that, for the considered depth-averaged shear flow, this
condition is satisfied, as the observed vortices are quite large, but also as part of the
small-scale 3D turbulence is already averaged through the depth-averaging. However,
when planning further works, it would be interesting to investigate the actual turbulence
spectrum of a compound-channel flow, in order to verify Nadaoka and Yagi
assumption; while the use of the Sub-Depth Scale model, instead of a subgrid model as
in classical LES, should also be questioned.

The Saint-Venant equations, including the SDS-2DH model, are solved with a
MacCormack scheme, for a staggered grid, as described in Appendix 1. Several
compound-channel test-cases will then be investigated in the present Chapter : (1) an
asymmetrical geometry from the Wallingford Flood Channel Facility (FCF Series 06);
(2) Sellin (1964) experiments in a symmetrical cross-section; and (3) the asymmetrical
cross-section tested in the UCL flume (see Chapter 6). A detailed presentation of the
FCF 06 simulations will be given, including comparison with the stability-analysis
results and with the measured-velocity profiles. Comparison with Sellin and UCL data
will then focus on the actual periodical-structures size and shape. An analysis of the
additional shearing due to the horizontal vortices will be given in Chapter 10.
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8.2 FCF Series 06 simulations : values of the parameters

8.2.1 Geometry and mesh size

The FCF 06 cross section is given on Figure 8.3 : the main-channel-bottom width equals
1.50 m, the bank height is h = 0.15 m, the bank slope is sc = 1, and the floodplain-
bottom width is 2.25 m. The flume length is 57 m, and the longitudinal bed slope equals
S0 = 1.027 × 10-3. The investigated water depth and discharge are summarised in Table
8.1 (Knight 1992).

Three different node spacing will be used : (1) 0.15 × 0.15 m2; (2) 0.05 × 0.05 m2; and
(3) 0.03 × 0.03 m2. The node positions are defined in such a way that, in the interface
area (1.65 < y < 1.80 m), the bed level values in the staggered grid are specified exactly
on the cross-section ridges (see Figure 8.3). The outside banks (y < 0 m and y > 4.05 m)
are not modelled but are replaced by vertical walls, in such a way that no mesh
adaptation is required when varying the water depth H. It is expected that this
approximation will not affect the periodical-structures modelling, as the walls influence
on the shear-layer is mostly limited to a constraining effect. In the longitudinal
direction, the whole flume length (57 m) will be included in the computational domain,
in a first stage; while further tests will be performed for a shorter length (19 m), in order
to reduce the computational time. The domain sizes are summarised in Table 8.2.

Figure 8.3 : FCF 06, cross-section and mesh definition
(j identifies the mesh indices in the transverse direction)

A free-slip condition is used at the boundary walls; while a cyclic condition is used
between the downstream and the upstream boundaries. The computation is initiated
from an unperturbed uniform-flow. The computer rounding errors are then allowed to
grow in such a way that vortices may appear and develop for the most amplifying wave
number. In a typical run, this vortex-generation process will take about 50000
computing steps. An estimate of the maximum time steps ∆t is given in Table 8.2,
according to the condition (A1.18) defined in Appendix 1. The proportionality factor ξ
linking the SDS-turbulence length-scale ld to the water depth H (2.49) is set equal to
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ξ = 0.2. Nadaoka and Yagi (1998) suggested a value of ξ = 0.1, but the latter was found
to produce unstable simulations in several cases.

Table 8.1 : FCF 06, investigated water depths and discharges (Knight 1992)

Case Relative depth Hr Water depth H Discharge Q

060101 0.05 0.158 m 0.224 m3/s

060201 0.10 0.165 m 0.238 m3/s

060301 0.15 0.176 m 0.265 m3/s

060401 0.20 0.188 m 0.293 m3/s

060501 0.25 0.198 m 0.343 m3/s

060601 0.30 0.213 m 0.395 m3/s

060701 0.40 0.248 m 0.593 m3/s

060801 0.50 0.302 m 0.929 m3/s

Table 8.2 : Mesh characteristics, computational domain sizes and estimated maximum
time steps

Mesh size Flume 57-m length Flume 19-m length Max. time step ∆t

0.15 × 0.15 [m²] 380 × 27 - 0.0360 [s]

0.05 × 0.05 [m²] 1140 × 81 380 × 81 0.0107 [s]

0.03 × 0.03 [m²] 1900 × 135 - 0.0057 [s]

8.2.2 Roughness coefficient

The roughness-coefficient value has to be carefully estimated in these simulations.
Indeed, as already discussed when developing the Lateral Distribution Method (Chapter
3), one attempts to estimate accurately both the velocity and the bed shear-stress values,
which are linked together by the roughness coefficient. This means that the actual
roughness coefficient, corresponding exactly to the bed material, should be used.
Otherwise, fitting the roughness-coefficient value, in order to predict correctly the
velocity profile, would jeopardise the bed shear-stress estimation. Indeed, such a fitted
roughness coefficient would also include the effect of additional losses due to secondary
currents.

The FCF bed is made of smoothed concrete. Its Manning roughness coefficient is
estimated on the basis of single-channel experiments, with water depth varying in the
range H = 0 .. 0.30 m (FCF Series 04 and FCF Series IB, see Knight 1992). As the
computations will be performed using a two-dimensional model, the local water-depth
H is used in the Manning equation (1.3) instead of the hydraulic radius R :
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Local Manning n values are then estimated from 12 velocity profiles, measured at
different water depths in the FCF single channel. The resulting Manning-coefficient
profiles are given on Figure 8.4. Most of the computed values are in the range n = 0.010
.. 0.012 s/m1/3. The smallest roughness is observed above the inclined channel bank (y >
0.75 m), and the highest roughness is observed just besides this bank (0.60 < y <
0.75 m). This can be explained by the transverse shearing in this area. The flow
accelerates near the walls and decelerates just besides, resulting in the observed
roughness variations. Neglecting the values too close of the walls (y > 0.825 m), an
averaged Manning-roughness coefficient is found equal to n = 0.01106 s/m1/3.

A validation of this Manning-coefficient value is possible by testing the relation
between the velocity U and the bed shear-stress τb. The latter can be expressed as a
function of the velocity U by using its definition (2.27) written for a uniform flow (Sfx =
S0), and by replacing the slope S0 value using Manning equation (8.5) :
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The roughness values n calculated according to (8.6), from the velocity U and the bed
shear-stress τb measurements (Knight 1992), are plotted on Figure 8.5 for the FCF
060501 case. The so-calculated roughness coefficients are found in good agreement
with the previous estimate of n = 0.01106 s/m1/3.
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Figure 8.5 : FCF 060501, Manning roughness coefficient n calculation,
from velocity U and bed shear-stress τb measurements

8.3 Typical-simulation analysis : FCF 060501 case

8.3.1 Unperturbed-flow velocity profile

The FCF 060501 case (Hr = 0.25, see Table 8.1) will be studied as a typical case, in
order to investigate in some details the main features of the SDS-2DH model results
(Bousmar and Zech 2000). Other cases will then be explored in § 8.4, which presents a
short sensibility analysis of the computational results to several parameters. Prior to the
description of the periodical turbulent-structures development, the unperturbed-flow
velocity profile is also shortly commented, as it has been used as basic flow in the
previous Chapter (see § 7.7.1).

The unperturbed-velocity profile is obtained by solving the Saint-Venant equations,
with the appropriate shear-stress model, on a simplified mesh having the same width as
the one used for the complete simulation, but with a length limited to 4 nodes in the
longitudinal direction. In this way, thanks to the cyclic boundary condition, unperturbed
uniform-flow conditions are easily obtained, without having to program a specific
method of the LDM type.

Unperturbed-velocity profiles are given on Figure 8.6, computed on the 0.05 × 0.05 m2

mesh, with a roughness value n = 0.01106 s/m1/3 and the k-l equations of the SDS-2DH
model. Similarly to classical results, the velocity is underestimated on the floodplain
and slightly overestimated in the main channel, as the actual roughness coefficient has
been used and as no momentum-transfer mechanism is modelled. This result is also not
surprising, as one of the purposes of this chapter is precisely to improve such velocity-
profile computations through the modelling of periodical turbulent structures.
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Figure 8.7 : FCF 060501, unperturbed velocity U profiles,
SDS-2DH turbulence model (ξ = 0.2), influence of mesh size

Results on Figure 8.6 are given for several different values of the parameter ξ that links
the SDS-turbulence length scale ld to the water depth H. As the shear stresses τij are
directly proportional to this factor ξ, the velocity profile is logically affected by its
value : smoother profiles are observed for larger ξ values. Consequently, the shear-layer
width ls* of the unperturbed-flow velocity profile varies accordingly and could thus
influence the results of the stability-analysis, as well as the wave length of the periodical
structures in the numerical simulations. This point will be shortly discussed in the
sensitivity analysis.
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Another interesting result is the mesh size influence on the unperturbed velocity profile
(Figure 8.7). While some minor discrepancies are observed near the interface, between
the velocity profiles computed with the 0.15 × 0.15 m2 mesh and with the 0.05 × 0.05
m2 mesh; the profile computed with the 0.03 × 0.03 m2 mesh is not discernible from the
0.05 × 0.05 m2 one. This indicates that, when considering the unperturbed-flow velocity
profile, the use of the 0.05 × 0.05 m2 mesh is sufficient.

In order to assess the value of the basic-flow parameters for the hydrodynamic stability
analysis performed in the previous Chapter, a hyperbolic-tangent function (7.12) is
fitted on the floodplain (y > 1.65 m) to the velocity profile computed with ξ = 0.2 and a
0.05 × 0.05 m2 mesh (Figure 8.8). Indeed, in this area, no geometrical effect, such as the
bank transverse slope, affects the velocity. According to this fitting, the velocity scale
equals Us* = 0.285 m/s, and the shear-layer width equals ls* = 0.149 m, as quoted in
Table 7.7.
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Figure 8.8 : FCF 060501, unperturbed velocity U profiles,
fitting of a TANH function

8.3.2 Perturbation development

The SDS-2DH model is now applied to the whole 0.05 × 0.05 m2 mesh, and the
rounding errors are allowed to grow up. The time step is set equal to ∆t = 0.0025 s, and
the simulation is run until t = 300 s. The perturbation apparition and growth is depicted
by Figure 8.10 and Figure 8.11. Figure 8.10 gives the velocity field between t = 100 s
and t = 175 s, in a frame moving at the interface velocity; and Figure 8.11 gives the
vorticity field, between t = 100 s and t = 275 s, for a larger window. The superposition
of both velocity and vorticity fields is given on Figure 8.9, at the time t = 150 s.
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The flow evolution can be described as follow : at the time t = 100 s, no perturbation is
visible and the velocity field is still uniform. The shear layer reduces to a vortex sheet,
located at the interface between main channel and floodplain. The instability appears in
the time interval t = 100 .. 125 s. At t = 125 s, vortices are clearly identified in the
velocity field; the vortex sheet is oscillating, on the whole channel length, and already
tends to break into separate vortices. From t = 125 s to t = 150 s, the vortices develop
more and extend transversally, increasing consequently the shear-layer width. After t =
150 s, the initial vortices are completely developed, and begin to merge together into
larger ones. This merging process can be clearly identified at t = 175 s. After a while,
however, the merging process stops and the vortices size remains approximately
constant with reference to the time. This indicates probably that the vortices have reach
their maximum size, and that any further growth or merging is constrained by the
channel walls, that limit the transverse vortex development.

It can be observed that the velocity field observed before vortices merging matches at
least qualitatively the velocity field obtained from the stability analysis (Figure 7.22);
whereas, as expected, the numerical vorticity field is more convincing, as it presents
only one vorticity peak per vortex, instead of two in the stability analysis results.

The evolution of the perturbation can similarly be observed on the transverse velocity V
plot at the interface between main channel and floodplain (Figure 8.12). Before t =
110 s, the velocity remains constant, and no perturbation is visible. From t = 110 s to t
= 130 s, a periodic variation appears, that grows exponentially, according to the stability
analysis predictions. Then, the variation amplitude becomes constant, as if the vortices
development was temporarily stopped, probably due to the stabilising effect of the bed
friction and of the viscosity due to the SDS model. However, as from t = 150 s, and
mostly t = 170 s, the velocity period increases step by step, indicating the begin of the
vortices merging.

Figure 8.9 : FCF 060501, vorticity and velocity field in a moving frame, at t = 150 s
 (only a part of the computational domain is shown)
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Figure 8.10 : FCF 060501, velocity field in a moving frame (only a part
of the 57-m length computational domain is shown, the position y reference

is shifted of 0.15 m, in comparison with Figure 8.3)
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Figure 8.11 : FCF 060501, vorticity field
(only a part of the 57-m length computational domain is shown)
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Figure 8.11 (continued)
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Figure 8.12 : FCF 060501, transverse velocity V evolution, at the interface (y = 1.65 m)

8.3.3 Vortices characteristics

As the numerical-simulation results agree at least qualitatively with the hydrodynamic-
stability-analysis predictions, some quantitative values will be extracted for further
comparison, namely the wave length and the growth rate of the vortices.

The perturbation growth rate is estimated by fitting an exponential function aeθt to the
transverse velocity V plot on Figure 8.12, where a is a constant and θ is the dimensional
growth rate, whose value is found equal to θ = 0.256 s-1. The wave length of the vortices
is obtained from a Fourier analysis of the transverse velocity V longitudinal profile,
along the interface. At t = 125 s, a clear peak is observed in the spectrum at λ = 1.46 m
(Figure 8.13). This value is in accordance with the first estimate one could get from the
analysis of the vorticity plot at the same time (Figure 8.11). At t = 175 s, the spectrum is
less clear, and several peaks corresponding to the merged vortices can be identified. The
transverse velocity V variation with time (Figure 8.12) is also investigated in the time
interval t = 100 .. 200 s, and the spectrum peak is observed for a period T = 2.56 s
(Figure 8.14). Accordingly, the vortices celerity c can finally be estimated as

m/s57.0
s56.2
m46.1

==
λ

=
T

c (8.7)

These perturbations characteristics can be compared with the predictions by the stability
analysis (see Table 7.8), provided the appropriate scaling factor are used (see § 8.3.1) :
ls* = 0.149 m for the lengths, Us* = 0.285 m/s for the velocities, and ts* = ls* / Us* =
0.522 s for the time. As shown by Table 8.3, the difference between the wave-length
values is not greater than 10 %, indicating a rather good matching between both results.
For both stability analysis and numerical simulation, the wave celerity values are also
close. As the interface velocity equals Um = 0.64 m/s, in both cases, the celerity values
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denote that the vortex centres are shifted towards the floodplain. The larger difference
between the growth-rate values is probably due to the difficulty to define it accurately
from the numerical results; but also to non-linearity and viscosity effects in the
numerical simulations.

Figure 8.13 : FCF 060501, transverse velocity spectral analysis, at t = 125 s and 175 s

Figure 8.14 : FCF 060501, transverse velocity spectral analysis,
at the interface, in the time interval t = 100 .. 200 s

Table 8.3 : FCF 060501, vortices characteristics

Wave length λ Wave celerity c Growth rate αci

Stability analysis 1.31 m 0.59 m/s 0.208

Numerical simulation 1.46 m 0.57 m/s 0.134
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8.3.4 Velocity and bed shear-s tress profiles

The longitudinal-velocity U and bed shear-stress τb profiles are given on Figure 8.15
and Figure 8.16 respectively, before and after the perturbation development. Due to the
growth of the vortices, the shearing increases, and the shear-layer becomes wider,
resulting in smoothed profiles in the interface area. These smoothed profiles seem to
match the measured data better than the profiles of the unperturbed flow, at least in the
interface area; and the enlarged shear-layer width is closer to the observed value. This
would indicate that the SDS-2DH model computes appropriately the momentum
transfer due to the horizontal vortices.

However, on the floodplain, at a distance from the interface, the velocity and bed shear-
stress are no longer affected by the perturbation, and the model underestimates their
values. Assuming that the roughness estimation from § 8.2.2 is correct, this indicates
that the SDS-2DH model misses some shearing on the floodplain. The missing
additional shearing could originate from the helical secondary-currents, that are
expected to be the main source of momentum transfer on the floodplains (Knight and
Shiono 1996). Indeed, such currents are not taken into account in the present simulation
with a depth-averaged model. The next Chapter will present an attempt to model their
effects through the use of dispersion terms in the Saint-Venant equations, as suggested
in Chapter 2.

On the other hand, the profiles inaccuracy near the left main-channel bank (y < 0.50 m)
are probably due to the combined use of a vertical wall and of a free-slip condition. This
results in an underestimation of the shearing in this area and in an overestimation of the
velocity and bed shear stress.

Finally, the water-level variations during the simulation of the perturbation development
are given on Figure 8.17. An horizontal transverse profile of the water level has been
used as initial condition. As shown by Figure 8.17a, before the perturbation
development (at t = 100 s), a 2 mm level difference is observed between the main
channel and the floodplain. This difference is due to the velocity difference between
both subsections. The numerical model manages to get an horizontal specific-energy
profile rather than an horizontal water level. When the perturbation amplifies, the
averaged water level still presents a transverse level difference but the profile is
smoothed, due to the shear-layer enlargement. Moreover, as shown by Figure 8.17b,
significant periodic longitudinal variations of the water depth are observed. The
minimum water depths correspond to depressions in the vortices centre. These water-
level variations constitute an inconsistency with the hydrodynamic stability analysis,
where a rigid-lid assumption was used for the water surface (§ 7.5.1), and could also
explain part of the discrepancies observed when comparing the results of these two
methods (Table 8.3).
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Figure 8.15 : FCF 060501, longitudinal-velocity U profile,
before (t = 0 s) and after (t = 300 s) perturbation development
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Figure 8.16 : FCF 060501, bed shear-stress τb profile,
before (t = 0 s) and after (t = 300 s) perturbation development

(a) (b)

Figure 8.17 : FCF 060501, water depth variations during perturbation development :
(a) transverse profile (values averaged along x); (b) longitudinal profile at the interface
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8.4 Sensitivity analysis, for the FCF 06 simulation

8.4.1 Mesh resolution

A first parameter to be investigated in this sensibility analysis is the mesh resolution.
The three mesh sizes quoted in Table 8.2 are successively tested. For the 0.15 × 0.15 m2

and the 0.03 × 0.03 m2, the perturbation development is almost similar to the one
observed for the 0.05 × 0.05 m2 case, as described in previous paragraph. However, the
time at which the perturbation appears is significantly larger for the coarser mesh (Table
8.4).

The vorticity field before vortices merging is given on Figure 8.18. From this Figure, it
is clear that the 0.15 × 0.15 m2 mesh is too coarse to provide satisfactory results (Figure
8.18a). For the two finer meshes, a similar vortex shape is obtained, although the 0.05 ×
0.05 m2 mesh presents some vorticity unevenness, for example at x = 9 m. This could
also indicate that, to some extend, this mesh is also too coarse.

(a)

(b)

(c)

Figure 8.18 : FCF 060501, vorticity field before vortices merging 
(part of the computational domain) : (a) 0.15 × 0.15 m2 mesh, t = 200 s;

(b) 0.05 × 0.05 m2 mesh, t = 150 s; and (c) 0.03 × 0.03 m2, t = 125 s
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Table 8.4 : FCF 060501, mesh size influence on the perturbation development

Mesh size Development time Wave length λ Growth rate αci

0.15 × 0.15 m² 180 s 1.96 m 0.092

0.05 × 0.05 m² 110 s 1.46 m 0.134

0.03 × 0.03 m² 110 s 1.27 m 0.130

Table 8.5 : FCF 060501, mesh Reynolds numbers Rem

Mesh size Averaged value Main channel Interface
(peak value)

Floodplain

0.15 × 0.15 m² 132 55 308 200

0.05 × 0.05 m² 44 18 93 65

0.03 × 0.03 m² 26 11 55 40

Some indications on the mesh resolution can be gathered from the mesh Reynolds
number

( )
t

m

xVU

υ

∆+
=Re (8.8)

where ∆x is the mesh size and υt = υSDS is the turbulent viscosity used in the calculation
(see e.g. Peyret and Taylor 1983). This mesh Reynolds number indicates the ratio
between the convection and the dissipation scales. When its value is less than Rem < 4
(for two-dimensional computations), the mesh is fine enough to capture explicitly all the
scales involved in the flow, as the convection processes are modelled from the largest
scale to the dissipation scale. When the mesh Reynolds-number value is higher, part of
the smaller turbulent structures will not be captured by the simulation.

Estimations of the mesh Reynolds numbers for the three cases investigated are given in
Table 8.5. This shows clearly that, for all the cases, their is a mesh under-resolution, in
such a way that part of the smaller-scale structures are indeed not captured. This
observation is in accordance with the simulation principle as presented in § 8.1.
However, for the coarser mesh, the mesh Reynolds number is so high that even the
largest structures are not captured adequately. In order to achieve a mesh Reynolds
number Rem = 4, corresponding to a resolution high enough to capture all the structures,
one should use a grid size in the range 0.003 × 0.003 m2.

As such a mesh has 100 times more nodes than the 0.03 × 0.03 m2 one, this would lead
to a prohibitive calculation time. Indeed, the simulation for the 0.03 × 0.03 m2 mesh
already took around 400 CPU-hours on a 120 Mhz processor (HP Exemplar SPP1600).
Probably the simulation speed could be improved by introducing a random noise in the
initial conditions, instead of relying on the growth of rounding errors. However, since
one is also interested by the process of vortex merging, which also takes some time to
develop, this would only reduce the computation time by 40-50 %.
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(a)

(b)

(c)

Figure 8.19 : FCF 060501, vorticity field after vortices merging, t = 300 s (part of the
domain) : (a) 0.15 × 0.15 m2 mesh; (b) 0.05 × 0.05 m2 mesh; and (c) 0.03 × 0.03 m2

After the merging of vortices, similar observations can be made (Figure 8.19) : the mesh
under-resolution clearly affects the 0.15 × 0.15 m2 mesh vorticity field, while the two
finer mesh present almost similar vorticity fields. This latter point is of great interest as
it is expected that such merged vortices will actually be observed in compound
channels. Accordingly, no significant difference is observed between the time-averaged
velocity profiles corresponding to these two finer mesh resolutions. Probably no further
difference would be observed for a simulation performed using the ideal 0.003 ×
0.003 m2 mesh proposed above.

Anyway, one should also keep in mind that the development of large-scale structures
remains the main focus of this work. Therefore, one has to compromise between the
mesh resolution and the computation time. Accordingly, further simulations have been
performed using the 0.05 × 0.05 m2 mesh. Indeed, the mesh refinement did not affect
the velocity profile results, and it should also be noted that the vortex wave length and
growth rate did not change significantly between this selected mesh resolution and the
finer 0.03 × 0.03 m2 mesh (Table 8.4).
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8.4.2 Computational-domain length

Another parameter that could influence the simulation results is the computational-
domain length L. Indeed, when the perturbation develops, the vortex wave length must
be a divisor of this domain length, due to the cyclic boundary condition. On the other
hand, it is interesting to reduce this length, in order to limit the computation time.
Several simulations were thus performed to investigate this domain-length influence :
(1) for the whole FCF flume length (L = 57 m); (2) for a third of this length (L = 19 m);
and (3) for additional smaller length (with decrements of ∆L = 0.5 m).

The computed vortex wave lengths λ are summarised in Table 8.6. All the computed
values are in the range λ = 1.375 .. 1.462 m. It can be observed that, when the domain
length L reduces the number of vortices changes in such a way that the vortex wave
length remains as close as possible to the one for the maximum amplification. However,
no significant variations of the growth-rate value are observed between the tested
domain length. Accordingly, a domain length equal to L = 19 m is selected for the
further investigations, leading to a maximum possible error of 6 % on the vortex wave-
length estimation.

Table 8.6 : FCF 060501, computational-domain length L influence of the vortex wave
length λ and on the number of vortices observed in the domain. Smaller and larger
divisors indicate the wave length that would be obtained by decreasing or increasing
the number of vortices by 1

Domain length L Wave length λ Nbr. of vortices Smaller divisor Larger divisor

57.0 m 1.462 m 39 1.500 m 1.425 m

19.0 m 1.462 m 13 1.583 m 1.357 m

18.5 m 1.423 m 13 1.542 m 1.321 m

18.0 m 1.385 m 13 1.500 m 1.286 m

17.5 m 1.458 m 12 1.591 m 1.346 m

17.0 m 1.417 m 12 1.546 m 1.308 m

16.5 m 1.375 m 12 1.500 m 1.269 m

8.4.3 Water depth

The influence of the water depth H in investigated by simulating the 8 cases tested in
the FCF 06 Series (see Table 8.1). According to the typical simulation from § 8.3, the
following parameters are used throughout all the cases : (1) SDS-2DH model with
ξ = 0.2; (2) 0.05 × 0.05 m2 mesh, on a 19-m length domain; (3) time step ∆t = 0.0025 s;
and (4) roughness coefficient n = 0.01106 s/m1/3, according to § 8.2.2. The unperturbed-
flow velocity-profile characteristics are summarised in Table 7.7.
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As shown by Figure 8.20, the vorticity field presents significant differences when the
water depth varies. Comparing the H = 0.198 m and H = 0.248 m cases (Figure 8.20b
and c), one observed that the vortex wave length and transverse expansion enlarge with
the depth, as the stabilising effect due to the friction on the floodplain bottom decreases.
On the other hand, considering the H = 0.165 m case (Figure 8.20a), as the wave length
reduces when the water depth decreases, the mesh resolution becomes too low and the
vorticity field presents unevenness, as with the 0.15 × 0.15 m2 mesh at H = 0.198 m
(Figure 8.18a).

These first observations are confirmed when performing spectral analysis as in § 8.3.3.
The vortex wave length λ, growth rate αci and celerity c are summarised in Table 8.7.
Both the wave length and the celerity are found to increase according to the water depth
H, while the results are less clear regarding the growth rate, probably due to the larger
inaccuracies involved in its estimation (by fitting an exponential curve).

(a)

(b)

(c)

Figure 8.20 : FCF 06, vorticity field before vortices merging (part of the computational
domain) (a) FCF 060201, H = 0.165 m, t = 100 s; (b) FCF 060501, H = 0.198 m, t =

150 s; and (c) FCF 060701, H = 0.248 m, t = 125 s
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Table 8.7 gives also the comparison between the numerical results and the stability-
analysis results. The wave lengths, λ, are poorly estimated by the numerical model for
the lower water depths, maybe due to the low mesh resolution; while the values match
together almost perfectly for the larger water depths, where the mesh resolution is better
when compared to the vortex size (Figure 8.21). As already pointed out, the growth rate
αci values estimated from the numerical simulations present much scattering. However,
they are found in the same range as the values from the stability analysis (Figure 8.22).

Lastly, the vortex celerity c values computed numerically and by the stability analysis
agree very well together (Figure 8.23). This result is not surprising, as this celerity
depends strongly on the interface velocity Um, whose value estimated from the
numerical simulation is imposed as a basic flow for the stability analysis. On the other
hand, for both estimations, the vortex celerity is found to be lower than this interface
velocity, indicating again that the vortex centres are shifted to the floodplains.

Table 8.7 : FCF Series 06, vortex characteristics, numerical computation and stability
analysis

Case Wave
length λ

(numerical)

Wave
length λ

(stab. anal.)

Growth rate
αci

(numerical)

Growth rate
αci

(stab. anal.)

Celerity
c

(numerical)

Celerity
c

(stab. anal.)

060101 0.463 m 0.238 m 0.018 0.206 0.11 m/s 0.35 m/s

060201 0.864 m 0.397 m 0.074 0.210 0.33 m/s 0.40 m/s

060301 1.000 m 0.693 m 0.151 0.210 0.46 m/s 0.47 m/s

060401 1.462 m 1.027 m 0.176 0.210 0.53 m/s 0.53 m/s

060501 1.462 m 1.315 m 0.134 0.208 0.57 m/s 0.59 m/s

060601 1.900 m 1.799 m 0.171 0.206 0.65 m/s 0.65 m/s

060701 2.941 m 2.966 m 0.127 0.198 0.88 m/s 0.80 m/s

060801 4.750 m 4.801 m 0.136 0.179 1.01 m/s 1.00 m/s

In a second stage, the velocity U and the bed shear-stress τb profiles corresponding to
the flow after vortex merging are compared with the available measurements from the
FCF (Figure 8.24 and Figure 8.25). As observed in the FCF 060501-case analysis (§
8.3.4), the additional shearing due to the vortex development in the shear layer tends to
improve the velocity and the bed shear-stress predictions in the interface area.

For the lower water depths (Hr = 0.05 .. 0.15) both velocity and bed shear stress are
accurately modelled on the floodplain. In the main-channel, the velocity is partly
underestimated (y < 1 m), whereas the bed shear-stress value is correct. This could be
due either to an erroneous roughness-coefficient value, or to the approximations made
when modelling the bank. The hypothesis of an erroneous roughness-coefficient seems
however improbable, as the ratio of the velocity and the bed shear stress is correctly
reproduced in the other parts of the section and in all the other geometries.
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Figure 8.21 : FCF 06, vortex wave length λ according to the water depth H :
numerical-simulation and stability-analysis results
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Figure 8.22 : FCF 06, vortex growth rate αci according to the water depth H :
numerical-simulation and stability-analysis results
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Figure 8.23 : FCF 06, vortex celerity c according to the water depth H :
numerical-simulation and stability-analysis results
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Figure 8.24 : FCF 06, velocity profiles : experimental data and numerical results
(before vortices development, t = 0 s, and after vortices merging, t = 300 s)
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Figure 8.25 : FCF 06, bed shear-stress profiles : experimental data and numerical
results (before vortices development, t = 0 s, and after vortices merging, t = 300 s)
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For middle water depths (Hr = 0.20 .. 0.30), the conclusions are similar to the
observations for the FCF 060501 case. Both the velocity and the bed shear stress are
underestimated on the floodplain, probably due to the development of helical secondary
currents, not modelled in the present simulation. In the main channel, the velocity is
correctly estimated near the interface; while it is now overestimated near the left bank,
as the shearing on the latter in neglected by the free-slip condition used.

For the higher water depths (Hr = 0.40 .. 0.50), the velocity and the bed shear stress are
clearly underestimated on the floodplain and overestimated in the main channel. Indeed,
for the FCF 060801 case (Hr = 0.50), the measured velocity profile is almost flat,
indicating that the channel behaves now almost as a single channel. Such a behaviour
implies obviously the development of significant tri-dimensional structures that are not
captured by the present two-dimensional simulation.

The influence of the vortices modelling on a two-dimensional simulation results has
thus been explored for a range of water depths and compared with experimental results.
From this comparison, one can conclude that the modelling of the vortices improves to
some extent the modelling of velocity and bed shear-stress profiles for lower water
depths (Hr ≤ 0.30); although a modelling of the helical secondary-currents is probably
necessary for further improvement of the result in the floodplain area. For the larger
water depths (Hr ≥ 0.40), the secondary-currents and the associated tri-dimensional
structures become dominant, and the horizontal vortex development does no longer
affect the flow significantly.

8.4.4 Influence of other parameters

The influences of the roughness-coefficient and ξ-parameter on the numerical results
were tested through some additional simulations. The main effect of these parameters is
a modification of the shear-layer width of the unperturbed-velocity profile. The
perturbation growth rate and the vortex wave length are affected accordingly.

Rather than proceeding further with such an analysis of the influence of the SDS-2DH
turbulence-model parameters, it is probably more interesting to investigate the use of
other turbulence models, and to test a true LES model on this problem. However, such
further developments are out of the scope of the present work.

8.5 Sellin's flume simulation

A simulation is now performed for the flume geometry used by Sellin (Bousmar and
Zech 2001c). As described in § 7.7.3 and Figure 7.23, this flume has a symmetric
compound cross-section, 456-mm wide, with 44.5 mm-high floodplains. Although no
velocity-profile measurement was published for this flume, this geometry is still of
interest since an estimate of the wave length of the observed vortices is provided
(λ = 228 mm, see Chapter 5), for a water depth H ≈ 52 mm.
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Numerical simulations are performed using a 3 × 3 mm2 mesh (1000 × 152 nodes), a
time step ∆t = 0.001 s, a SDS-2DH parameter ξ = 0.1, and an roughness-coefficient
value n = 0.0064 s/m1/3. The latter may seem rather low. However, it has been fitted on
the basis of the uniform-flow experiments in single channel reported by Sellin (1964).
As the vertical main-channel banks can not be depicted in the numerical mesh, oblique
banks are used, with a slope s = 0.13 (a bank is represented by 3 nodes). The roughness-
coefficient value is artificially increased to n = 0.0300 s/m1/3 for these nodes, in order to
reproduce the additional bed shear existing on the bank, when compared with an
horizontal bottom. The corresponding velocity profiles (unperturbed and perturbed) are
given on Figure 8.26.
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Figure 8.26 : Sellin's flume, numerical velocity profile,
before and after perturbation growth

The perturbation growth is depicted on Figure 8.27, which shows the vorticity and
velocity fields, at different times. The perturbation appears around t = 30 s and grows
until t = 50 s. Then, vortex merging occurs until t = 70 s. Table 8.8 gives a comparison
of the vortices characteristics observed experimentally, estimated with the stability
analysis, and computed from the present simulation. For the latter, the vortex wave
length before vortex merging is used (at t = 50 s). Indeed, it is found that, with this
value, the three available results agree surprisingly well together : the wave length λ
estimated by the stability analysis is within 5 % of the measured one, and the numerical
result within 10 %. For both cases, the wave celerity is lower than the interface velocity
Um = 0.28 m/s, indicating a shifting of the vortices towards the floodplains, as observed
experimentally (see Figure 5.1).
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(a)
t = 40 s

(b)
t = 50 s

(c)
t = 60 s

(d)
t = 70 s

Figure 8.27 : Sellin's flume, vorticity and velocity field,
according to SDS-2DH simulation

Table 8.8 : Sellin's flume, vortices characteristics

Wave length λ Growth rate αci Wave celerity c

Experimental 228 mm - -

Stability analysis 216 mm 0.217 0.23 m/s

Numerical simulation
(before merging, t = 50 s)

250 mm 0.113 0.22 m/s



Chapter 8 : Numerical modelling of periodical structures 171

8.6 UCL flume simulations

Lastly, simulations were performed for the asymmetric compound-channel geometry
investigated in the UCL flume (Chapter 6). The simulation parameters are : a 10 ×
10 mm2 mesh (500 × 80 nodes); a time step ∆t = 0.0025 s; a SDS-2DH parameter
ξ = 0.1; and an roughness-coefficient value n = 0.0107 s/m1/3. As for Sellin's flume, the
vertical wall between the main channel and the floodplain is depicted by an inclined
wall, with a slope s = 0.2 (the bank is here represented by 2 nodes). The roughness-
coefficient value is artificially increased to n = 0.0317 s/m1/3 for these nodes, in order to
reproduce the additional bed shear existing on the sloping bank. The roughness
coefficient is also increased on the channel side banks, in order to moderate the free-slip
condition effect. The unperturbed-flow velocity profiles are given on Figure 8.28, and
their characteristics are summarised in Table 7.10.
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Figure 8.28 : UCL flume, measured and computed velocity profiles

Conclusions similar to the ones for FCF 06 can be made regarding the velocity-profile
variation according to the water depth H : the velocity prediction is improved in the
shear-layer area; while, for the larger discharges, the velocity remains underestimated
on the floodplain. However, in this case, the measured data is also questionable, as an
ill-conditioned upstream discharge distribution has been reported in Chapter 6.

A typical vorticity field evolution is given on Figure 8.29, for the LCA 10 case (Hr =
0.23). For this particular case, the vortices appears at t = 160 s, and the merging starts
around t = 180 s. As for previous simulations, it is observed that the vortices develop
mainly in the floodplain, although some vorticity field oscillations are also observed in
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the main channel at t = 200 s. Similar plots are obtained for the LCA 12 and LCA 16
cases. On the other hand, no clear vortices were identified in the LCA 08 simulation
results, even when using a refined 5 × 5 mm2 mesh. Probably this failure may be
attributed to the low mesh resolution.

(a)
t = 170 s

(b)
t = 180 s

(c)
t = 190 s

(d)
t = 200 s

Figure 8.29 : UCL flume, LCA 10 case, vorticity field according to the numerical
simulation (floodplain is above the shear layer (y > 0.40 m), and main channel is below

(y < 0.40 m))

The vortex wave lengths λ, estimated before vortex merging, are reported in Table 8.9
and Figure 8.30, for comparison with the experimental values and with the stability-
analysis estimates. Some scattering is observed between the three estimates, as the
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numerical values are 30 % lower than the measured ones. However, a similar tendency
is observed for the three sets of values, with the vortices wave length increasing
according to the water depth. For the LCA 10 case, the vortices wave length λ = 0.71 m,
obtained after vortices merging is also reported. This value is found to be larger than the
experimental one, indicating either an erroneous estimate, either a not fully developed
flow perturbation.

Table 8.9 : UCL flume, comparison of the estimated vortices wave lengths λ (m)

Case Hr Experimental λ Stability anal. λ Numerical λ

LCA 08 0.10 0.39 0.30 -

LCA 10 0.23 0.56 0.45 0.38 (0.71)

LCA 12 0.30 0.67 – 1.26 0.50 0.45

LCA 16 0.38 - 0.61 0.71
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Figure 8.30 : UCL flume, comparison of the estimated vortices wave lengths λ

This last comparison validates the numerical approach only partially. Probably better
results could be obtained with a more refined grid. Repeating similar tests with a true
LES turbulence model would also be helpful. However, the remarks formulated in the
conclusion of Chapter 6 regarding the possible experimental weaknesses should also be
taken into account before rejecting definitely one or the other model.

8.7 Conclusion

The numerical simulations with the SDS-2DH model of Nadaoka and Yagi (1998) are
possibly based on a questionable hypothesis. Indeed, this model operates according to a
LES principle (compute explicitly the larger turbulence scales and model the smaller
ones) but uses a URANS method (transport equation for the kinetic energy).
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Nevertheless, several significant results are obtained with this method : (1) the vortex
development in the shear layer is qualitatively reproduced; (2) the vortex wave length
estimated before vortex merging agrees satisfactorily with prediction of the
hydrodynamic stability analysis; (3) the same vortex wave length before merging agrees
very well with the measured wave length from Sellin's experiments, and, to a lower
extend, with the UCL measurements; and (4) due to the vortex development, the
computed velocity and bed shear-stress profiles are improved in the interface are, when
compared to FCF measurements.

On the other hand, two key questions remain unanswered : (1) the influence of the
merging process; and (2) the underestimation of the floodplain velocity.

It as been suggested that the latter point is due to the helical secondary currents that
exist in the channel but are not taken into account by the depth-averaged modelling.
This point will be further investigated in the next Chapter, by adding the dispersion
terms in the Saint-Venant equations in order to model the additional momentum transfer
due to these currents.

Regarding the merging process, in the Chapter 7 on the stability analysis, it was
suggested that, due to non-linear effects, vortices in the shear layer would merge
together to form larger ones. Such merging processes are indeed observed in the
numerical results; and, due to the flow constraining by the channel walls, the flow
stabilises for some maximum merged-vortex wave length. However, when compared
with the available experimental results, bearing also in mind the measurement accuracy,
it seems that the observed vortices would better match with the non-merged vortices in
the numerical simulation than with the merged ones. It should be pointed out that this
result agrees with the observations of Tamai et al. (1986). In this case, the measured
wave lengths of vortices were also close to the characteristics of non-merged vortices,
estimated by linear stability analysis, indicating thus that no merging would have
occurred (see Figure 5.2).

It is unfortunately impossible to give a definitive explanation for this last result, as it
could be due either to an experimental error, or to a numerical problem. Accordingly,
two suggestions could be proposed for further work. First, as already noticed in Chapter
6 conclusions, new experimental investigations should not only focus on the
characteristics of developed vortices, but also on the development process itself, by
observing the flow along the whole channel length starting from the inlet tank, in order
to distinguish a possible merging process. Secondly, the choice of the Nadaoka and
Yagi's numerical model should be questioned, and maybe a true LES model should be
adopted. Additionally, the mesh resolution should also be improved in some cases,
keeping of course in mind the computation time. Lastly, simulations of the spatial
growth of the perturbations, instead of the temporal growth, could lead to better results
in the comparisons with the experimental results, although such simulations require
more complex boundary conditions than the cyclic condition used in this work.



Chapter 9 
Secondary-currents modelling through
dispersion terms

9.1 Introduction

In the previous Chapter, a depth-averaged numerical model, including Sub-Depth Scale
turbulence, was applied for compound-channel flow modelling. Results from this SDS-
2DH model reproduced well the development of the vortices with vertical axis at the
interface between main channel and floodplains. The effect of these vortices in terms of
momentum transfer was evidenced by its influence on the transverse profile of the
depth-averaged longitudinal velocity component. Nevertheless, even if the velocity
predictions around the interface were clearly improved, the velocity on the floodplains
remained underestimated away from the interface (Figure 8.15).

The easiest way to overcome this underestimation would be to decrease the roughness
coefficient on the floodplains. Unfortunately this would lead to an underestimation of
the bottom shear stress, for which an accurate prediction is also of interest for the river
engineer. In fact, the discrepancy between measured and computed velocities has to be
explained by the presence of helical secondary currents (Shiono and Knight, 1996).
These currents transfer a part of the momentum transversally and are accordingly
expected to increase the velocity on the floodplains if taken into account in the
numerical simulations. Of course, such secondary currents can be modelled thoroughly
only by 3D modelling. But their effect can also be introduced in depth-averaged
modelling, through the addition of a secondary-current or a dispersion term. Such an
example of a secondary-current term is given by the Shiono and Knight LDM (3.14).

In this Chapter, after a short review of the present knowledge on secondary-currents
origins, the values of the parameters of the dispersion model proposed in § 2.5 are
estimated. Then the influence of the dispersion terms on the velocity profile is explored
in conjunction with the effect of large vortices, as obtained in the numerical simulations
of the previous Chapter.

9.2 Origin of secondary currents

As pointed out in § 2.5, several sources of secondary currents can be identified,
depending on the flow conditions (Table 9.1) : (1) the secondary currents of Prandtl's
first kind are driven by centrifugal forces in curved channels (see e.g. Chang, 1988); and
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(2) the secondary currents of Prandtl's second kind are due to turbulence anisotropy in
prismatic channels (Nezu and Nakagawa, 1993). For prismatic compound-channel flow,
the anisotropy of turbulence due to the presence of the re-entering corner also generates
Reynolds stresses as well as corresponding secondary currents (Tominaga and Nezu,
1991).

Table 9.1 : Sources of secondary currents

Curved channel Narrow channel
(B < 2 H)

Wide channel
(B > 2 H)

Compound channel

Centrifugal forces Anisotropy of
turbulence, due to

walls, corner effect.

Anisotropy of
turbulence, due to
bed and/or flow

perturbations

Anisotropy of
turbulence, due to

walls, corner effects

uv 30.0max ≈ uv 03.0max ≈ uv 03.0max ≈ uv 04.0max ≈

The turbulence-anisotropy effect can be explained by using the transport equation for
the longitudinal vorticity Ω. The latter is obtained from the Navier-Stokes equations
(2.1), written for  uniform steady flow, by deriving the y- and the z-wise momentum
equation according to z and y, respectively, and by subtracting one resulting equation
from the other (Nezu and Nakagawa 1993) :
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where v  and w  are the Reynolds averaged velocities; v' and w' are the velocity

fluctuations; wv ′′  is a Reynolds stress; and υ is the molecular viscosity.

According to Nezu and Nakagawa (1993), the convection terms (left-hand part of 9.1)
and the diffusion term (last term in the right-hand side) can be assumed to be negligible
with regard to the generation and Reynolds stress terms (first and second terms in the
right-hand side). The vorticity equation (9.1) then reduces to
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This shows clearly that the turbulence anisotropy (difference between 2v′  and 2w′ ) due
to the channel geometry generates the Reynolds stresses. The latter will then produce
longitudinal vorticity and secondary currents. In order to solve (9.3), a model for the
generation term has to be adopted; while the Reynolds stress is developed according to
the Boussinesq model (2.41) :
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For a narrow channels (width B ≤ 2 × water depth H), Ikeda (1981) proposed the
following model for the generation term, assuming a periodic distribution of the bed
shear-stress τb :
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where τb,averaged is the width-averaged value of τb; U* is the averaged shear velocity; and
δ and k are parameters. Solving (9.3) with this model (9.5) shows that the dominating
secondary currents are obtained for k = π. The corresponding velocity field is given by
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where κ is the Karman constant. Such an idealised velocity field is given by Figure 9.1.
However, in actual channels, due among other things to the effect of the walls, the
velocity field will be more complex and a "corner effect" will be observed : two
superposed secondary-current cells are observed in each channel half section (Figure
9.2). An upstream current is observed near the wall and a downstream one exists in the
channel centre; while the cell corresponding to Ikeda's model is pushed back in the
bottom area. As a result of the downstream current in the channel centre, the maximum
longitudinal velocity is no more observed at the free surface, but at some distance below
this surface.

In wider channels (width B > 2 × water depth H), secondary-current cells are still
observed, although the walls can only influence the flow in a part of the channel width.
It is expected that the turbulence anisotropy that generates the secondary currents is due
to small perturbations, either in the flow itself, or on the channel bed (Nezu and
Nakagawa 1993). The secondary currents in a wide channel generally appear in counter-
rotating pairs, and the cell width is approximately equal to the water depth H.

In compound channels, additional turbulence anisotropy is due to the re-entering corner
at the interface between main channel and floodplain, as observed by Tominaga and
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Nezu (1991) and depicted on Figure 1.5. This additional anisotropy reinforces the
upward current along the main-channel bank, in such a way that stronger secondary
currents are observed in this subsection. In the floodplain, similar secondary-current
cells are observed near the interface, and are expected to be present on the whole
subsection width. Unfortunately, available detailed measurements on the floodplain are
generally limited in extension to an area close to the interface.

For all the considered cases, it can be concluded that the secondary-current generation
processes are controlled by the main flow anisotropy. As a consequence, the transverse
velocity component v  will be proportional to the longitudinal component u  (see Table
9.1). Another observation of interest is that the secondary-current cell width is generally
of the same range as the water depth H; and that the idealised velocity field computed
by Ikeda can be a good first approximate of the secondary-current cells, at least in the
wide channels. The corresponding velocity profile will therefore be used to calibrate the
dispersion model proposed in § 2.5.

Figure 9.1 : Idealised secondary currents, in a narrow prismatic channel,
according to Ikeda's model (9.6) (Nezu et Nakagawa, 1993)

Figure 9.2 : Narrow prismatic channel, corner effect on the longitudinal
and transverse velocity fields (Nezu and Nakagawa 1993)
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9.3 Dispersion-model cal ibration

As the longitudinal velocities u  are proportional to their depth-averaged value U, and

as results from the previous paragraph indicate that the transverse component v  is also
proportional to this depth-averaged value, it has been proposed that the dispersion terms
are proportional to the square of the depth-averaged velocity U (2.52) :
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where χuu ,χuv and χvv are defined as the dispersion coefficients.

The value of the so-defined dispersion coefficients should ideally be deduced either
from theoretical considerations or from experimental data. A theoretical estimation can
be obtained by assuming a classical logarithmic profile for the longitudinal velocity
component u  (Nezu and Nakagawa 1993) :
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where the constant values are chosen according to Schoemaker (1991), who calibrated a
roughness function for the FCF flume : κ = 0.41 and A = 0.375. The Ikeda profile (9.6a)
is used for the transversal component v  (Figure 9.3), with the abscissa y and the δ
parameter values chosen to get the maximum velocity approximately equal to v max

≈ 0.04 U (according to Table 9.1). Indeed, the absolute values of the coefficients χuv and
χvv are expected to be maximum at the secondary-current cell centres, as v  is maximum
there, and to be null between two adjacent cells.

Figure 9.3 : Typical vertical profiles of local longitudinal and transverse velocity
components, for a wide channel, with H = 0.2 m and U* = 0.045 m/s.
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The dispersion terms are found to be rather independent of the water depth. Their
estimation for H = 0.20 m is given in Table 9.2. According to the ratio between the
longitudinal and the transverse velocities, the χuu value is one order of magnitude larger
than the values of the χuv and χvv coefficients.

A second estimation of the dispersion-coefficient values can be obtained from
experimental data, in this case from the Flood-Channel-Facility (FCF) data set (Knight,
1992), as the latter is also used for results comparison. This data set provides LDA
measurements of u  and v  values at several locations in the main channel and on the
floodplains, for about 10 different geometries or water depths. Unfortunately, few
points are available on each vertical on the floodplains (from 1 to 4), and the
measurements have to be used carefully as the experimenters faced probe orientation
problems that could lead to inaccurate values of v  (Shiono and Knight 1991).

The velocity products 2)( Uu − , ))(( VvUu −− and 2)( Vv −  are estimated at each

available point of each vertical, and dispersion-coefficient values are obtained from
(9.7). The integration in (9.7) is made using the trapezoid rule. For that purpose, the
values of the velocity products at the free-surface are assumed equal to their values at
the highest point on the vertical (constant extrapolation); while the values at the bed are
set equal to the values at the lowest available point. Such an approximation appears as
rather crude. However, due to the few points available, a theoretical velocity profile,
such as (9.8) or (9.6a), can not be fitted more accurately to the data to be integrated.

Figure 9.4 gives the so-estimated dispersion-coefficient profiles. For the χuu coefficient
(Figure 9.4a), almost constant values are obtained in the main channel, with χuu ≈
0.0080 (y < 0.75 m). More scattering is observed above the main-channel bank (0.75 < y
< 0.90m); while the floodplain values are lower : χuu ≈ 0.0020 (y > 0.90 m). These
lower floodplain values are probably due to the fewer measurement points available on
each vertical; as 4 points per vertical are available only for the FCF 080501 and FCF
100501 cases. In these cases, the χuu coefficients are found slightly larger and it is
expected that their values could equal χuu ≈ 0.0080 if enough measurement points were
available. Consequently, this constant value χuu = 0.0080 will be assumed on the whole-
channel width.

Keeping in mind this inaccuracy of the estimated coefficients for the floodplain, the two
other dispersion coefficients χuv and χvv can be investigated (Figure 9.4b and c). Their
values are found to present a linear growth from the main channel central axis to the
interface with the floodplain; and equal maximum values are obtained for all the tested
geometries. These coefficients then present a linear decrease through the floodplain, but
with more scattering, probably due again to the fewer number of points available on
each vertical. A unique secondary-current cell, extending on the whole channel width,
could be expected from such a coefficient profile, although this seems not realistic in
regard to the width-to-depth ratio.
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Figure 9.4 : Dispersion coefficients estimated from the LDA measurements in the FCF
(part of the section)

Table 9.2 : Estimated maximum values for the dispersion coefficients

χuu χuv χvv

Theoretical (log law and Ikeda) 0.0077 0.0014 0.0005

Experimental (FCF) 0.0080 0.0015 0.0004
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The dispersion coefficient values (or maximum values) are synthesised in Table 9.2, for
both theoretical calculation and experimental estimation. In spite of all the inaccuracies
involved in these estimations (simplified secondary-current model and sparse
measurements), both set of coefficients are found to be almost equal, giving some
confidence in their estimated value.

9.4 Numerical results

Numerical simulations are performed for the asymmetrical geometry of the FCF 060501
case, previously investigated using the SDS-2DH model (§ 8.3). In this case, numerical
simulations showed that the velocity-profile prediction is improved in the interface area,
when accounting for the horizontal vortices generated in the shear layer. On the other
hand, at a distance from the interface, the floodplain velocity was underestimated. As
the actual roughness coefficient value of n = 0.01106 s/m1/3 was used (according to
§ 8.2.2), it was concluded that this velocity difference was due to the helical secondary-
current effect. The present simulation enables thus to validate this explanation, by using
simultaneously the SDS-2DH model for the horizontal vortices and the dispersion terms
for the helical secondary currents (Bousmar and Zech 2001a).

 

Figure 9.5 : FCF 060501, velocity profiles : for common simulation, with SDS-2DH
only, and with SDS-2DH and dispersion (theoretical values of the dispersion

coefficients)

Figure 9.5 shows the computed velocities compared with the experimental data for the
flow without vortices (common simulation) and with vortices, thanks to the SDS-2DH
model. As already noticed, taking into account the vortices effect improves clearly the
velocity prediction in the shear-layer area. But, as already pointed out, the transverse
extension of the influence of vortices is not large enough for increasing sufficiently the
computed velocities. Moreover, as already said, changing the roughness-coefficient



Chapter 9 : Secondary-currents modelling 183

value to make the floodplain velocities more exact would damage the accuracy of the
bed shear-stress prediction.

On Figure 9.5, the results of a similar simulation are also depicted, now including the
dispersion terms, with dispersion-coefficient values as deduced previously : constant
χuu = 0.0080, linearly variable χuv and χvv, with maximum values χuv = 0.0015 and χvv =
0.0005 (see Table 9.2). Although not sufficient, the effect of the dispersion terms is
perceptible, mainly in the shear-layer area.

The dispersion-term effect can be better explained by considering the x-wise momentum
equation (2.53b). Assuming a uniform steady flow, this equation reduces to a form
similar to the LDM and expresses the balance of four terms : (1) the bottom slope S0 = -
∂zw/∂x; (2) the friction slope Sfx; (3) the turbulent shear stress τxy (corresponding to the
SDS-2DH model); and (4) the dispersion term :
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ρ

τ

∂
∂

−= (9.9)

In this balance, the momentum available through the bottom slope S0 is mainly
dissipated by the friction slope Sfx, while the shear stress due to turbulence and the
dispersion can either dissipate or produce momentum. As the longitudinal velocity U is
proportional to the square root of the friction slope, due to the use of Manning equation
(2.35), the weight of the term Sfx in (9.9) will define the velocity profile.

In the main-channel area, for a velocity quite constant along y, the positive gradient of
χuv leads to a positive value of the dispersion term. There is an additional dissipation,
the friction slope reduces and, as shown by Figure 9.5, the computed velocity is lowered
accordingly. On the floodplain, a negative gradient of χuv allows to add momentum and
to increase slightly the velocity. Nevertheless, it is clear that the dispersion-coefficient
values estimated a priori are too small to improve significantly the velocity prediction.

According to these comments, Figure 9.6 and Figure 9.7 show, for velocity and bed
shear stress respectively, the results of a trial-and-error fitting of the dispersion
coefficient χuv. To obtain an accurate velocity value, it was necessary to use dispersion-
coefficient value varying between χuv = - 0.0100 and χuv = 0.0020, thus up to 6 times
greater than the theoretical one. Such large values are in fact needed in order to get a
sufficient gradient of χuv on the floodplain and, accordingly, a sufficient value of the
dispersion term in (9.9). Nevertheless, even if this fitted dispersion-coefficient value
gives an accurate modelling of the velocity, it is difficult to explain in term of physical
process. Indeed, it would correspond to a unique secondary-current cell on the
floodplain, which is unrealistic when considering its width-to-depth ratio; as for such a
width to depth ratio, numerous cells with a width comparable to the water depth
(H = 0.05 m) would have been expected.
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Figure 9.6 : FCF 060501, velocity profile : dispersion with optimised-coefficient values

Figure 9.7 : FCF 060501, bed shear-stress profile : dispersion with optimised-
coefficient values

9.5 Conclusion

The influence of the helical secondary currents on the floodplain velocity in a
compound-channel flow can be simulated by the use of dispersion terms. A similar
calibration of the dispersion model proposed in § 2.5 is obtained using either theoretical
relations or experimental measurements. However, an adapted calibration of the
dispersion coefficient is required to produce an accurate modelling of both velocity and
bed shear-stress profiles; and the so-fitted dispersion coefficients are difficult to explain
in term of turbulence structures.
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It should be pointed out that Shiono and Knight (1991) obtained a quite similar result
when developing their secondary-current term Γ for the Lateral Distribution Method
(see Chapter 3). Indeed, along both main-channel and floodplain width, they observed a
linear variation of the depth-averaged value of the velocity product in the right-hand
side of the LDM equation (3.8). They suggested accordingly to use a constant value Γ
for the derivative of this product.

According to the developments in Chapter 3, for a uniform flow, both secondary-current
term in the LDM and dispersion term in the Saint-Venant equations should represent the
effect of the same phenomena [see (3.8), (3.14), (3.17) and (9.7)] :
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Using the optimised value of the dispersion coefficient χuv (Figure 9.6), a Γ value can
thus be estimated for the FCF 060501 case. This value is almost constant on the
floodplain, where Γf = - 0.063. For comparison, Shiono and Knight (1991) obtained a
value of Γf = - 0.123 for the FCF 020501 case (symmetrical channel with same water
depth and floodplain width as FCF 060501); while Knight and Abril (1996) obtained a
value of Γf = - 0.119 for the same case. As the other parameters of the simulations
(roughness and turbulent friction) are not exactly the same, it can be concluded that both
dispersion and LDM values of Γ match satisfactorily together. On the other hand, in the
shear-layer area, the value of Γ calculated from the dispersion coefficient (9.10) does no
more fit with Knight and Abril estimation, but, in this case, the momentum transfer due
to the horizontal vortices is already taken into account through the periodical-structures
modelling by the SDS-2DH model.

Finally, one can conclude that modelling the secondary currents through the use of
dispersion terms produces results quite similar as the one obtained by using of a
secondary-current term Γ in the LDM, as suggested by to Shiono and Knight (1991).
However, the physical meaning of the dispersion term is easier to analyse.
Unfortunately, this analysis shows that the optimised dispersion coefficient used can not
be interpreted in terms of secondary-current cells.

As a consequence, further works should still focus on the momentum-transfer
mechanisms that exist on the floodplain and that could justify the observed velocity
increase. Probably it could be useful to consider again this problem from an
experimental viewpoint, with the particular objective of improving the description of
the turbulence structures on the floodplain.





Chapter 10 
Tentative modelling of the momentum transfer
associated with the turbulent exchange

10.1 Introduction

The numerical results from two-dimensional simulations in Chapter 8 have shown that
the horizontal vortices play an important part in the momentum transfer between main
channel and floodplains, although the effect of secondary currents is also significant on
the floodplain, as seen in Chapter 9. This last Chapter of the Part II will propose some
exploratory suggestions that could help to understand this momentum transfer and to
model it. These suggestions will also enable tentative links with the momentum-transfer
modelling by the Exchange Discharge Model (EDM) developed in Chapter 4.

First of all, the additional shear stress due to the presence of the horizontal vortices will
be estimated from the numerical results. Indeed, this additional shear stress is
responsible for the momentum transfer between subsections. This shear stress will also
be compared with models of eddy viscosity. Secondly, in parallel with this additional
shear-stress analysis from a time-averaged viewpoint, the local-momentum balance will
be investigated at some given time and the momentum-transfer process will be further
highlighted. Lastly, a tentative modelling of the vortices, using a Oseen- (or gaussian-)
vortex equation, will point out significant parameters, with reference to the momentum
balance. These three analysis will be performed for the FCF 060501 case, already
investigated in details in § 8.3.

10.2 Additional shear stress

The diffusion processes in the numerical simulations are controlled by two sources of
transverse shearing : (1) the shear stress corresponding to small turbulence scales,
estimated by the SDS-2DH model; and (2) the additional shear stress due to the large-
scale structures. The SDS-2DH shear stress τS is estimated by the Boussinesq equation
(2.42), with the eddy-viscosity value  υS defined by equation (2.51). The large-scale-
turbulence shear stress τL can be estimated through a Reynolds averaging of the velocity
field. The averaged velocities )(yU  and )( yV  are obtained (1) by averaging the local

velocities U(x,y,t) and V(x,y,t) along the channel length; and (2) by using ensemble
averaging of the velocity field, given at several different times :
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where L is the computational-domain length; and nt is the number of different times for
which the ensemble averaging of the velocity field is processed. The fluctuations U'(x,
y, t) and V'(x, y, t) are defined as

)(),,(),,( yUtyxUtyxU −=′    and   )(),,(),,( yVtyxVtyxV −=′ (10.2)

and the large-scale-turbulence shear stress τL can be estimated as a Reynolds shear
stress :
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Both shear-stress values are plotted on Figure 10.1 for the FCF 060501 case, after the
vortex-merging process. The averaging is performed for the L = 19 m computational
domain, using the results at the times t = 350 s; 355 s .. 400 s. This figure clearly shows
that the additional shear stress τL due to the horizontal vortices has a maximum value in
the interface area (y = 1.65 m), corresponding to the momentum transfer between
subsections.
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Figure 10.1 : FCF 060501, SDS-2DH τS and large-scale-turbulence τL

shear-stress profiles

Table 10.1 : FCF 060501, shear-stress values at the interface (y ≈ 1.65 m)

Apparent shear stress τa

(experimental)
Small-scales shear stress τS

(SDS-2DH model)
Large-scales shear stress τL

(10.3)

8.93 N/m2 1.55 N/m2 5.00 N/m2
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The observation of this important additional shear stress in the interface area can be
related with the concept of an apparent shear stress τa, defined on the vertical division
line between subsections, as presented in § 1.3. A value of the apparent shear stress τa =
8.9 N/m2 was estimated from the FCF 060501 measurements, on the basis of the
momentum balance of the subsections (Knight 1992). Adding the additional large-scales
shear stress τL to the small-scales shear stress τS, the total shear at the interface in the
numerical simulations is found in the same range as this experimental value (Table
10.1).

From the large-scales-turbulent stress τL profile, it is also possible to compute the value
of the actual eddy viscosity υL corresponding to these large structures, using the
Boussinesq eddy-viscosity definition (2.41) :

yU

VU
L ∂∂

′′−
=υ (10.4)

This large-structures eddy viscosity υL is given on Figure 10.2, according to the velocity
gradient yU ∂∂  plotted on Figure 10.3, together with the viscosity υS defined by the

SDS-2DH model. This actual eddy viscosity presents its largest value in the interface
area, where the vortices are the most developed. The υL profile unevenness at y =
0.50 m and y = 3.25 m correspond to velocity-gradient values close or equal to zero.
They are not significant in the present analysis, as they are out of the shear-layer area.

The large-scale eddy-viscosity υL profile presents some shape similarities with the
velocity-gradient profile. It is therefore interesting to test the validity of the Prandtl
mixing-length model (2.44) that links both these values :

y

U
lmL ∂

∂
=υ 2 (10.5)

The estimated values of the mixing-length lm are given on Figure 10.4. Only the
significant values, located in the shear-layer area, are plotted. The mixing-length lm

presents two plateau's : the first in the main-channel (1.00 < y < 1.50 m) and the second
in the floodplain (1.65 < y < 3.00 m). This could indicate that the mixing-length model
is, at least, partially appropriate for the present problem : indeed, the transition between
both plateau's corresponds to the main-channel bank, where the bed level is not
constant. As Prandtl's mixing length is defined for a general two-dimensional flow, it
can not account for the water-depth change occurring in the present case. However, the
ratio between the two plateau values is not in accordance with the corresponding water-
depth ratio Hr = 0.25.
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Figure 10.2 : FCF 060501, SDS-2DH υS and large-scale-turbulence υL viscosity
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Figure 10.3 : FCF 060501, averaged longitudinal-velocity U , and velocity gradient
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Figure 10.4 : FCF 060501, Prandtl mixing-length lm profile
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This last observation could be due to the effect of the large value of the SDS-viscosity
υS when compared to the υL value (Figure 10.2). A further simulation is thus tentatively
performed, starting from the already perturbed velocity field, but using now a constant
SDS-viscosity υS = 0.25 × 10-3 m2/s, which is a tenth of the maximum υS value observed
in the main channel for the previous simulation. The resulting large-scale-turbulence
shear stress τL and mixing length lm are given respectively on Figure 10.5 and Figure
10.6.
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Figure 10.5 : FCF 060501, simulation with constant υS : SDS τS

and large-scale-turbulence τL shear-stress profiles
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Figure 10.6 : FCF 060501, simulation with constant υS :
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Observations similar to the ones for the variable-viscosity simulation can be made. The
additional shear-stress τL peak is observed in the interface area, and is now one order of
magnitude larger than the SDS shear stress τS. It should also be pointed out that this
shear-stress τl profile appears as very skewed. It is not symmetric, as in a classical shear
layer, probably due to the water-depth variation across the interface. Regarding the
mixing-length lm values, two plateau's are again obtained, respectively in the main
channel and in the floodplain. For this simulation, the transition between both values is
smoother. The plateau values lm are also around twice larger than the ones obtained with
the larger SDS viscosity. However, their ratio does not match better with the water-
depth ratio Hr.

A last clue of the possible validity of the mixing-length model is to be found in the
mixing-length lm value. Indeed, the latter is expected to be closely linked with the large
turbulent-structures scale (Liggett 1994). In the present case, the mixing-length value on
the floodplain equals lm = 0.28 m, which is found at least in the same range as the shear-
layer width ls* = 0.50 m estimated after the vortex merging.

10.3 Momentum balance

The momentum-transfer process will now be further explored through the local balance
of the momentum flow in each subsection. This balance is established on the basis of
the Saint-Venant x-wise momentum equation (2.29), written in the conservative form.
In the present analysis, the bed and friction slopes are assumed to be in equilibrium, and
the diffusion terms (SDS turbulence) are neglected. The main-channel momentum-flow
Mc(x) in a given section is obtained by transverse integration of the momentum flow
along the main-channel width :

( )∫ +ρ=
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The momentum-flow variation DMc is obtained by deriving Mc with regard to the
channel length x, and by adding the temporal derivative of UH :
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The floodplain momentum-flow Mf (x) and its variation DMf are defined similarly,
performing the integration along the floodplain width. According to the x-wise
momentum equation, one gets finally the following balance :

fc DMDMUVH =−=ρ (10.8)
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where ρUVH equals the local shear force acting on the vertical division line at the
interface. Its length-averaged value corresponds to the large-scale-turbulence shear
stress τL (10.3), multiplied by the water-depth H.

Thanks to the cyclic boundary condition used in the simulations, it is possible to analyse
the momentum-flow variations along the channel length at a given time. Such an
analysis is similar to an analysis of the temporal variation of the momentum flow, for a
pseudo-steady flow corresponding to the vortices development at the time investigated.
Figure 10.7 gives the spatial variation of the momentum-flow at t = 150 s, when vortices
are developed but not yet merged together (see Figure 8.11). This graph shows first that
the balance (10.8) is actually verified. The small discrepancies observed are due to
neglected slope terms and SDS-turbulence shear.

Figure 10.7 depicts the alternation of positive and negative transverse shearing,
corresponding to the oscillating turbulent-exchange discharge suggested by the EDM. In
fact, this illustrates that the momentum-transfer mechanism is not governed by an
explicit net momentum transfer. The total momentum available remains almost constant
(see Table 10.2), but, as suggested by Figure 10.8, a part of the main-channel
momentum is temporarily transferred to the floodplain, between vortices (B); while the
main-channel presents its maximum momentum flow only at stations corresponding to
the vortex centres (C). As a result, the averaged momentum flow is decreased in the
main-channel and increased on the floodplain.
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This explanation is further validated by Table 10.2 that presents the momentum-flow
values in each subsection and in the whole channel at some given times. The length-
averaged values show first that, in accordance with classical explanations of the
momentum transfer in a compound channel, the momentum flow decreases in the main-
channel when vortices develop, while it increases on the floodplain, resulting however
in a reduction of the total channel momentum. Secondly, the local values at vortex
centre and between vortices show the alternation of increased and decreased momentum
flow, as described above (Figure 10.8), while the total momentum remains almost
constant for a given time.

Figure 10.8 : Schematic view of the supposed momentum transfer mechanism

Table 10.2 : FCF 060501, subsection momentum-flow values

Time t (s) Location Mc (N) Mf (N) Mc + Mf (N)

0 Averaged 598.8 43.3 642.1

125 Averaged 593.9 44.9 638.8

At vortex centre 595.1 43.5 638.6

Between vortices 592.5 46.5 639.0

150 Averaged 589.7 46.1 635.8

At vortex centre 592.4 42.1 634.5

Between vortices 586.1 50.1 636.2

300 Averaged 578.7 47.1 625.8

At vortex centre 585.0 39.3 624.3

Between vortices 572.7 54.7 627.4
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10.4 Vortex model

As suggested in the previous paragraph, the momentum transfer mechanism is closely
linked with the vortex behaviour. Indeed, the longitudinally-averaged transverse shear
force τLH depends on the local shear force ρUVH; and the latter depends on the vortex-
circulation θ∫=Γ dvr , where v stands now for the tangential velocity at a distance r

from the vortex centre. As pointed out in Chapter 5, Lukowicz and Könteger (1999)
showed that the shape of the vortices they observed in compound channel can be
approximated by an Oseen-vortex equation. The shape of vortices obtained in the
present simulations will be similarly compared with the Oseen equation, and its links
with the general parameters of the flow will be shortly discussed.

The equation describing the Oseen vortex, or Gaussian vortex, is obtained by the
integration of the two-dimensional Navier-Stokes momentum equation, written for
cylindrical coordinates, assuming an axial symmetry and neglecting the gravity effect
(Truckenbrodt 1968) :
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where r is the distance from the symmetry centre; and v(t, r) is the tangential velocity.
The radial velocity equals zero, due to the axial symmetry assumption. Integrating
(10.9), one gets the vortex velocity distribution as a function of the distance to the
vortex centre
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where Γ∞ is the circulation at r = ∞; rt is a radius scale; and t0 is an initial time.

The corresponding circulation profile is given by
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For small radii r < rt, the Oseen vortex behave like a rigid body, and the velocity and
circulation increase accordingly (Figure 10.9). For the large radii r > rt, the Oseen
vortex behave like a potential vortex : the circulation remains constant Γ → Γ∞, and the
velocity decreases asymptotically to zero. In an unconstrained situation, the radius scale
rt will grow with time and the vortex will develop accordingly.
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Figure 10.9 : Oseen vortex, velocity v and circulation Γ profiles, for Γ∞ = 1 and rt = 1

Figure 10.10 : FCF 060501 case, t = 150 s, unit-discharge-fluctuation field (U'H, V'H)
and intensity of the tangential velocity v (part of the domain)

In the present case, it is suggested that the vortices observed in a compound-channel
flow can be approximated by Oseen vortices, linearly superposed to the averaged flow.
Figure 10.10 shows such a vortex from the FCF 060501 simulation, at t = 150 s, where
the fluctuations (U', V') of the velocities are given by (10.2), and where the velocities
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are multiplied by the water depth H, in order to depict more clearly the continuity
through the interface between subsection. Although the plotted vortex do not present a
perfect axial symmetry, its shape agree approximately with the Gaussian vortex, with a
rigid-body centre and a decrease of the tangential velocity at a further distance.

For further analysis, vortex-circulation profiles are given on Figure 10.11, at the time t =
125 s and t = 150 s, the latter corresponding to the vortex plotted on Figure 10.10. The
vortex-circulation estimated with the Oseen equation (10.11) agrees well with the
numerically computed one, as far as appropriate values of the circulation Γ∞ and of the
radius scale rt are used. For radii larger than r = 0.50 m, the quality of the matching
between both profiles decreases, as the numerically-simulated vortices are limited in
space, due to other adjacent vortices and to the walls, whereas the Oseen vortex
develops in an infinite space.
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Figure 10.11 : FCF 060501, vortex circulation : computed values and Oseen equation
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Table 10.3 : Oseen vortices, characteristic values, compared to the averaged flow

Length scale Circulation scale

Oseen equation, t = 125 s rt = 0.10 m Γ∞ = 0.16 m2/s

Oseen equation, t = 150 s rt = 0.11 m Γ∞ = 0.17 m2/s

Averaged flow U , t = 150 s ls* = 0.27 m 2π ls* Us* = 0.48 m2/s

The Oseen-equation parameter Γ∞ and rt values are summarised in Table 10.3. Due to
the vortex development, the values at t = 150 s are slightly larger than at t = 125 s.
These values are compared with typical values from the averaged-flow profile )(yU .

Indeed, it can be expected that the observed vortices are closely linked to the flow in
which they develop. The typical length scale for the averaged flow is the shear-layer
width ls*, which is almost three times larger than the vortex-radius scale rt. This shear-
layer width could be linked with the radius 3rt where the Oseen-vortex circulation has
reach the value Γ∞ (see Figure 10.11), meaning that, outside this area, the flow could be
dominated by the averaged flow. On the other hand, it could also be suggested that the
vortex circulation is proportional to the velocity difference 2Us* between the main
channel and the floodplain, at least when considering the driving of the rigid-body part
of the vortex. However, a first comparison between the actual circulation and an
estimation based on both length and velocity scale ls* and Us* is not convincing.

10.5 Conclusion

When developing the EDM, it has been assumed that the momentum transfer
corresponding to the turbulent-exchange discharge qt (4.10) can be expressed as

( )f
tt hHUUUq −∆∆ψ=∆ (10.12)

where ∆U is the velocity difference between main-channel and floodplain. This
expression was founded on a model analogous to a mixing-length model.

The analyses in the present Chapter have shown that, when considering a two-
dimensional modelling, the mixing-length model was indeed appropriate for depicting
the momentum transfer, and that the estimated mixing length could probably be linked
to a certain extend with the shear-layer width. The momentum-transfer mechanism in
itself has also been depicted through momentum-balance analysis, showing the effect of
the actual alternation of the direction of the flow through the interface. This effect is
similar to the EDM-supposed oscillating turbulent-exchange discharge. Lastly, some
vortex characteristics have been investigated, through a comparison with the Oseen-
vortex equation. This showed again that the velocity difference between subsection and
the shear-layer width are significant parameters. Regarding the EDM, whereas the
velocity difference is explicitly used in the momentum transfer expression (10.12), the
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shear-layer width is expected to be linked with the ψt parameter, which was already
identified as a mixing-length-related parameter (see Chapter 4).

All the presented results should obviously be extended to other test cases, in order to
identify possible relations between the quoted parameters. However, before performing
these additional analyses, the weaknesses of the two-dimensional numerical model
should be corrected. Among these weaknesses, the main point to handle is probably the
SDS-turbulence model, as it has been showed that using a lower υS value could strongly
influence the estimation of the large-scale-turbulence shearing.

Nevertheless, these results already tend to indicate an appropriate modelling by the
EDM of the momentum-transfer mechanism due to horizontal vortices. However,
whereas the EDM has proved to give accurate results for whole-cross-section discharge,
some weakness regarding the subsection discharge prediction was also reported in
Chapter 4. According to the present results, the cause of this failing is not to be looked
for in the vortex modelling. Probably the secondary-current effect investigated in
Chapter 9 could justify partly this problem, as nothing in the EDM can handle this
phenomena.





Part III

Geometrical transfer

A flood on the Yang-Tse River,
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Chapter 11 
Flow in non-prismatic compound channels :
State of the art

11.1 Introduction

When developing the Exchange Discharge Model in Chapter 4, a so-called geometrical-
transfer discharge was defined at the interface between main-channel and floodplain, in
addition to the turbulent-exchange discharge already investigated in Part II of this work.
This geometrical-transfer discharge results from cross-section-area changes on the
channel length, when floodplains width varies due either to the main-channel
meandering, or to a valley constriction. Through the associated momentum transfer, the
EDM attempts to model the effect on the stage-discharge relation of such a mass
transfer between subsections.

The purpose of the third Part of this work is therefore to investigate further this
geometrical-transfer concept and to clarify the significance of the ψg parameter used in
its modelling. New experiments have been specifically designed for that purpose : flow
measurements are performed in a symmetrical compound channel with narrowing
floodplains, rather than in a meandering compound channel as in most of the previous
studies dealing with non-prismaticity. Indeed, in such a geometry, the effect of mass
transfer can be clearly highlighted, without additional curvature effects as in a
meandering case.

After a short state-of-the-art supplement given in this Chapter, new experimental results
will be presented for the novel geometry suggested above. These results will be used to
validate both the extended Lateral Distribution Method proposed in Chapter 3, and the
EDM. Lastly, one will shortly present and discuss some additional measurements made
in a prismatic channel where geometrical transfer occurs due to the flow non-uniformity
near a control section.

11.2 Flow in a meandering compound channel

11.2.1 Experimental observations

Toebes and Sooky (1967) performed some of the first experiments on meandering
compound channels. They investigated the stage-discharge relationship for several
geometries and measured a higher conveyance-reduction in meandering channels than
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in prismatic channel, due to the stronger interaction between the floodplains and the
sinuosity of the main channel. They also observed that, for the overbank-flow case, the
helical flow in the main-channel meanders rotates in the opposite direction compared to
the inbank-flow case, due to floodplain water crossing over the main-channel.

The large scale Wallingford Flood Channel Facility (FCF) enabled the investigation of a
complete set of meandering compound channels geometries (Sellin et al. 1993). These
experiments again highlighted a conveyance reduction that increases with the main-
channel sinuosity. Nevertheless, this sinuosity effect decreases with increasing water
depth on the floodplain, as the floodplain flow becomes predominant. The secondary-
current pattern was also depicted more accurately (Figure 11.1). In the crossover
fraction of the main channel, floodplain water plunges into the main channel, reaching
the channel bottom around its centre line; while in bend apex, a part of main-channel
water is ejected towards the downstream floodplain. In both areas, strong mass transfer
were thus observed, with corresponding momentum transfer. Using Laser-Doppler
Anemometer measurements in a smaller flume, Shiono and Muto (1998) have
confirmed the previous observations and shown the predominance of the horizontal
shearing in the generation of secondary currents.

Figure 11.1 : Flow structure in a meandering compound channel (Sellin et al. 1993)
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11.2.2 Skewed compound channels

A second set of experiments related to mass transfer was performed in the FCF for the
simplified geometry given on Figure 11.2, where a straight main-channel is skewed to a
straight floodplain (Elliott and Sellin 1990). The same kind of experiments has also
been performed at a smaller scale by Jasem (1990). In both cases, the main effects of the
mass transfer due to skewness were clearly identified : (1) the velocity decreases in the
main channel, due to the inflow of slower water from the narrowing floodplain; (2) the
velocity increases on the enlarging floodplain, due to the inflow of faster main-channel
water; (3) the total conveyance decreases; and (4) a momentum transfer is associated to
the mass transfer, and has been quantified as an apparent shear stress at the interface.
The development of a helical secondary-current was also observed, presenting a similar
shape as in the meandering case, with a plunging zone around the centre line of the
main channel.

Figure 11.2 : Typical skewed channel geometry, as investigated
by Elliott and Sellin (1990) and Jasem (1990)

11.2.3 Calculation advances

Using the FCF meandering-channel results, Greenhill and Sellin (1993) developed an
adapted version of the Divided Channel Method (DCM), dedicated to meandering
channel modelling. In the classical DCM for prismatic channels, the compound-channel
cross-section is divided by vertical division lines into three sub-sections (Figure 1.1),
and the total discharge is then calculated as the sum of the 3 subsections discharges
computed separately. In their method, Greenhill and Sellin propose a cross-section
division adapted to meandering channels, using an horizontal division line at the main-
channel bank level (Figure 11.3). This results in the following subsections : (1) the
inbank part of the main-channel, (2) the floodplain within the meander-belt width, and
(3) the floodplain outside the meander belt. Moreover, the length of the division lines
between both floodplains parts is added to the wetted perimeter of the floodplain
subsection 2 in order to decrease its hydraulic radius and to reduce its conveyance, as a
substitute to the momentum effect of the mass transfer. Although this method proved its
accuracy against FCF data, some of its parameters, like the meander-belt width or the
inbank depth, could be difficult to estimate for natural rivers.

Ervine et al. (1993) used the same approach of an adapted DCM to analyse FCF data,
but without developing a computational strategy. They defined the ratio F* between the
actual measured discharge and the discharge evaluated by the adapted-DCM. A low
value of this ratio F* indicates a high momentum transfer. Such low F* values are
observed (1) when channel sinuosity increases; (2) when the main-channel aspect ratio
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reduces (width to depth ratio); and (3) when the meander-belt width increases compared
to the total floodway width.

Shiono et al. (1999) recently proposed an empirical formula, based on a quite large set
of data. This formula gives good results on the tested data but, like most of empirical
formulae, could be difficult to apply to other situations. Lastly, Ervine et al. (2000)
developed a new version of the Lateral Distribution Method, as presented in Chapter 3,
equation (3.15). This LDM includes a secondary-current term taking into account
transverse velocities in the cross-section of a meandering compound-channel; but,
again, it requires a parameter that has to be empirically estimated.

Figure 11.3 : DCM modification by Greenhill and Sellin (1993) : definition of
subsections and of the meander belt.



Chapter 12 
Experimental measurements of the flow
in a symmetrically narrowing compound channel

12.1 Introduction

As detailed in Chapter 1 and 11, both prismatic and meandering compound-channels
geometries have been extensively investigated in laboratory flumes. While several
computational methods have been successfully developed for prismatic channels (see
Chapter 1), fewer methods have been proposed for meandering channels. These
methods (presented in § 11.2.3), are either empirical or not fully compatible with the
prismatic channel ones, as they use subsection divisions dedicated to meandering
geometry. One of the difficulties linked with the interpretation of meandering channel
experiments and with the subsequent development of computational methods is the
superposition of mass transfer and effects of secondary currents due to curvature.

Figure 12.1 : Plan view and typical cross-section of the tested geometries;
(a) 6-m length narrowing floodplains; (b) 2-m length narrowing floodplains;

and (c) prismatic channel with 200-mm width floodplains.

The present Chapter investigates therefore a simplified configuration with a straight
main-channel, flanked by two symmetrical narrowing floodplains (Figure 12.1). It is
expected that, due to the decrease of floodplains width, a mass transfer will occur from
floodplain to main channel, that is similar to the one observed in a meandering channel
of, at least, small sinuosity. On the other hand, thanks to the symmetry of the studied
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geometries, the secondary currents generated in the main-channel will affect weakly the
momentum balance between floodplains and main channel, and will probably develop
less than in a meandering channel.

From the experiments, the flow structure will be depicted in details, the mass transfer
will be evaluated, and the momentum balance between floodplains and main channel
will be estimated quantitatively. A second set of experiments is performed in a
prismatic compound channel, enabling the comparison between the flows in a similar
cross-section, with and without mass transfer. This comparison will highlight the
additional head loss due to this mass transfer, which will be found to be significant with
regard to the frictional losses. Lastly, these results will then be used in next Chapters to
validate the extension of the LDM proposed in Chapter 3 for non-prismatic geometry;
and the geometrical-transfer modelling in the EDM. The additional head loss computed
by the EDM will be compared with the measured one.

12.2 Experimental set-up

Experiments were performed in the UCL compound-channel flume already depicted in
Chapter 6. This flume is 10-m long and 1.20-m wide, with a bottom slope set at
S0 = 0.99 × 10-3, and a maximum available discharge Q = 30 l/s. A complete description
of this facility and of its equipment is given in Appendix 3.

A symmetrical compound cross-section was build in this flume using coated plywood,
with two floodplains 400-mm width and 50-mm high (Figure 12.1). Movable vertical
plywood embankments were used to form the different channel planform geometries :
(1) main-channel only; (2) prismatic symmetrical compound channel with 200-mm
width (Figure 12.1c) or 400-mm width floodplains; (3) non-prismatic symmetrical
compound channel with floodplains narrowing from 400-mm to 0-mm width on a 6-m
length (converging angle θ = 3.8° : Figure 12.1a) or on a 2-m length (converging angle
θ = 11.3° : Figure 12.1b).

Detailed flow measurements were performed in the narrowing geometries, for several
discharges and water depth (Wilkin and Jacquemart 2001; Bousmar et al. 2001). For
each given discharge, the downstream water level was adjusted, using the tailgate, in
such a way that the backwater profile reaches a given water depth in the central cross
section [x = 5 m], where the floodplain width is 200 mm. For 3 selected relative water
depth Hr = (H-h)/H = 0.2; 0.3 and 0.5 in this central cross section, this will enable the
comparison of the velocity distribution between similar cross-section geometries but
with different discharges and mass-transfer rates. For comparison, detailed velocity
distributions were also measured for uniform flows in the prismatic channel with 200
mm-width floodplains, at the same relative depths. Table 12.1 summarises all the tests
performed.
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Table 12.1 : Experimental cases : geometries and discharges Q tested for the given
relative water depth Hr at x = 5 m

Geometry Q [l/s]
for Hr = 0.2

Q [l/s]
for Hr = 0.3

Q [l/s]
for Hr = 0.5

Floodplains narrowing
from 400 to 0 mm in 6 m

10.0 10.0; 12.0 12.0; 16.0;
20.0

Floodplains narrowing
from 400 to 0 mm in 2 m

10.0 10.0; 12.0 12.0; 16.0;
20.0

Prismatic, floodplains 200 mm width 9.9 13.4 27.6

For each test in narrowing-floodplains geometries, both water levels and velocities were
measured at selected locations. Water levels were recorded along the main-channel
centre line and along transverse profiles. Velocities and velocity directions were
measured in 4 cross sections (Figure 12.1) : (1) the channel entrance [x = 0 m]; (2) the
entrance of the narrowing reach [x = 2 or 4 m, for the 6- or 2-m narrowing length,
respectively]; (3) the central cross section, where the relative depth is imposed
[x = 5 m]; and (4) the end of the convergence [x = 8 or 6 m].

As explained in Appendix 3, water levels were measured using an automatic point
gauge meter mounted on a trolley above the flume. The gauge absolute precision is 0.1
mm but, due to small surface oscillations, the actual precision is estimated to 0.2 mm
when water is flowing. Velocities were measured using a Pitot tube connected to a low
differential pressure manometer. The overall accuracy is estimated to be better than
2 %, by comparison between the discharge obtained by integration of the local velocity
measurements and the discharge measured using the electromagnetic flowmeter. The
velocity directions were measured using a home-made vane, with an absolute precision
of 0.5 °. This precision is rather low, regarding the small transverse velocity
components observed in the main-channel, where direction measurements should thus
be considered from a qualitative viewpoint. However, on the floodplains, the transverse
velocity components are greater and the relative measuring precision is increased.

The roughness coefficient for the flume was estimated using 11 discharge
measurements for uniform flows in the isolated main channel, established by adjusting
the downstream level using the tailgate. The Manning roughness coefficient for the
plywood was found to be equal to n = 0.0107 m/s1/3. The discharges in uniform flow
were also measured for the two prismatic compound channels and a very good fitting
was obtained between the measured discharge and the ones computed by the EDM
without any further roughness-value adjustment (Figure 12.2). This provides an
additional validation of the EDM, for prismatic compound-channel flow.
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Figure 12.2 : Uniform flow in main-channel only and in prismatic compound channel
(floodplain width = 200 or 400 mm) : measured data and EDM-computed values

12.3 Experimental results  : flow description

The longitudinal water profiles measured for the case of 2-m long contraction are
plotted on Figure 12.3. Specific flow behaviour can already be identified for the 3
successive parts of the geometry. In the upstream prismatic part of the channel
(0 < x < 4 m), the water depth remains constant or increases slightly for the highest
discharge (M1 profile) as the flow increases its specific energy before entering the
constricting reach. In the constricting reach (4 < x < 6 m), there is a plunging profile, as
the flow is accelerated. The water level slope increases logically for an increasing
discharge at a given water depth; or for a decreasing water depth at a given discharge
(M2-kind profile). In the downstream prismatic reach (where only main-channel flows,
6 < x < 10 m), there is either a M1 or a M2 profile, depending on the level imposed by
the tailgate. The scattering of some profiles is due to cross-waves generated by the angle
between the contracting and the prismatic sections. These cross-waves are more
apparent for the M2 than for M1 profiles. Similar observations are obtained for case of
6-m long contraction.

Transverse water profiles were also measured but, in no case, significant level
differences were observed between the main-channel and the floodplains, with regard to
the measurement accuracy (± 0.2 mm).
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Figure 12.3 : Measured water profiles, 2-m length narrowing case. Tailgate is adjusted
in such a way that the water level at station x = 5 m remains constant for a given Hr

Figure 12.4 : Velocity distribution on half-channel width, 2-m length narrowing case,
Hr = 0.3, Q = 12 l/s : (a, c, e) longitudinal velocity components (m/s); (b, d, f)

transverse velocity components (m/s); (a-b) x = 4 m; (c-d) x = 5 m; (e-f) x = 6 m

The distribution of longitudinal and transverse velocity components is given on Figure
12.4 for 3 cross-section (x = 4, 5 and 6 m) of the 2-m length narrowing case, for relative



212 Part III : Geometrical transfer

depth Hr = 0.3 at x = 5 m and discharge Q = 12 l/s. This shows clearly the effects of the
contraction : (1) the maximum velocity increases along the channel, as the cross-section
area decreases; (2) the flow on the floodplain presents a transverse component towards
the main-channel, corresponding to the water forced to leave the floodplain; (3) as a
result, there is locally a slight decrease of the longitudinal velocity component in the
main-channel, near the interface, due to the inflow of slower water from the floodplain;
(4) the transverse component of the velocity, above the bank level, develops until the
main-channel centre line (this mass transfer enables the modification of the flow
distribution); and (5) in cross-section planes, this surface current seems to generate a
secondary current cell in the inbank part of the main-channel. Similar observations are
obtained for the other cases.

The depth-averaged longitudinal-velocity profiles for the same case is given in Figure
12.5. Again the flow acceleration is clearly depicted and, although the difference
between maximum and minimum velocity does not change in value, the ratio of this
difference to the maximum velocity is decreasing. Indeed, to ensure the mass balance
depicted by the continuity equation (4.2) when the floodplain width decreases, the
velocity has to increase in the downstream part of the floodplain, while another part of
the discharge is transferred to the main-channel. The velocities are plotted in plan view
on Figure 12.6, where depth-averaged values have been computed separately for
velocities measured respectively above and below the bank-top level. The flow direction
on the floodplains is obviously forced by the embankment angle. This direction is also
observed in the downstream cross-section, for the velocities at the limit of the
floodplain. In the main-channel, the separation of the velocities above and below bank-
top level highlights the development of a secondary current cell driven by the floodplain
transverse velocities. The slight outwards component of the bottom velocity in the
downstream section confirms this secondary flow.
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Figure 12.5 : Depth-averaged velocity profiles, 2-m length narrowing case,
Hr = 0.3, Q = 12 l/s
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Figure 12.6 : Plan view of depth-averaged velocities, 2-m length narrowing
case, Hr = 0.3, Q = 12 l/s : above bank level (solid arrows)

and below bank level (dotted arrows)

Figure 12.7 : Schematic view of the flow structure in a compound channel
with narrowing floodplains

All these observations on the flow structure are synthesised on Figure 12.7 : (1) due to
the narrowing floodplains, a transverse current is forced from the floodplain to the
main-channel; (2) this current enters the main-channel and, due to symmetry, plunges to
the channel bottom around the centre-line; and (3) as a result, a helical flow is generated
in the inbank part of the main-channel, rotating back from the centre-line at the bottom
to the channel bank. This flow structure is found to be very similar to the one observed
in meandering channel, as described in the Chapter 11 (Figure 11.1). Only the effect of
sinuosity is of course not observed here. It gives thus confidence in the fact that the
constriction case could supply information about the meandering case and that the
related model developments could have a wider validity.
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12.4 Discharge distribution

The mass transfer between floodplains and main-channel is of primary importance in
the development of the observed secondary currents and of the subsequent momentum
transfer. The mass transfer can be estimated from the evolution of the discharge
distribution along the channel, as plotted on Figure 12.8 for the 6-m length narrowing
test cases. It is observed that, for a given geometry and a given relative depth Hr in the
central section, the curves corresponding to different total discharges are superposed.
This shows that the discharge distribution is almost independent of the total discharge,
and, consequently, of the overall frictional losses.

This observation should be compared with the water profiles plotted on Figure 12.3. For
a given geometry and a given water depth in the central section, the upstream water
level does not change significantly according to the total discharge and, thus, the
respective cross-sectional areas of the floodplain and of the main-channel subsections
do not change with the discharge, between the entrance and central cross-sections. This
indicates once again that the discharge distribution in the converging channel is mainly
governed by the geometry and is relatively independent of the frictional losses.

The velocity distributions given in Figure 12.9 for several configurations with a relative
depth of Hr = 0.5 confirm the similarity between the given flows. While the velocity
amplitude depends on the total discharge and, thus, on the frictional losses; neither this
total discharge, nor the related frictional losses, nor the floodplain converging angle
influence significantly the velocity and discharge distribution. In the three plotted cases
the local deceleration of the main-channel velocity near the interface is observed due to
the floodplain inflow. The velocity fields present the same aspect and relative intensity.
The fact that the velocity distribution does not depend of the friction is of prime interest,
when developing a model of the flow. It gives confidence in the EDM estimation of an
additional head loss Sa governed by the geometry, whose amplitude is proportional to
the frictional losses (see Chapter 4, equation 4.8).

Some further information can be gathered from the discharge distribution evolution
given by Figure 12.8 : (1) For a lower water depth, the mass transfer will be lower, as
the initial floodplain discharge is also lower; (2) the floodplain discharge evolution
seems linear for the lower water depths, while, for higher water depth (Hr = 0.5) the
mass transfer in the second half of the converging reach (x > 5 m) is higher than that in
the first (x < 5 m). The latter observation is found in accordance with the increased
water-level slope at the end of the converging section (Figure 12.3).

From Figure 12.8, it is also observed that a small mass transfer exists before entering
the converging reach (x < 2 m). Although the flow could indeed anticipate the mass
transfer that will occur in the converging reach, just as it increases its specific energy
before the contraction, this mass transfer is more probably a bias due to an erroneous
discharge distribution forced at the flume entrance, as observed in the asymmetric
channel experiments in Chapter 6. The discharge distribution tends towards uniform-
flow distribution in the prismatic reach, but this section is not long enough therefore.
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Figure 12.8 : Discharge distribution between subsections, 6-m length narrowing case

Figure 12.9 : Longitudinal velocity distributions (m/s) at x = 5 m, with Hr = 0.5 : (a) 6-
m length case, Q =12 l/s; (b) 6-m length case, Q = 20 l/s; and (c) 2-m length case, Q =

16 l/s

Lastly, the discharge distributions for the converging-floodplains cases, at x = 5 m, can
be compared with the discharge distribution in the reference prismatic cases (Figure
12.10), as the cross-section geometry is the same for all cases at this station. The
discharge distribution is found to be roughly the same for converging geometry and for
the equivalent prismatic geometry.
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Figure 12.10 : Discharge distribution between subsections at x = 5 m.
Cv6 and Cv2 stand respectively for 6-m and 2-m narrowing cases (dotted bars);

Pri stands for the prismatic reference-case (plain colour bars)

However, one should point out that the measured discharge distribution is not exactly
the same in the converging and in the prismatic cases. The floodplain discharge is
always slightly larger in the converging case than in the prismatic one. As detailed in
Table 12.2, this larger discharge fraction on the floodplains is mainly observed for the
lower water depths (Hr = 0.2; 0.3), with a discharge ratio between floodplains and main
channel up to 25 % larger for the converging case, when compared to the prismatic one,
at Hr = 0.2. This could be due either to the ill-conditioned upstream discharge-
distribution as quoted above; or to the fact that, in a non-prismatic channel, the flow
does not adapt instantaneously its discharge distribution to the actual cross-section
geometry, but needs some distance for this adaptation.

The possible correspondence between discharge distributions is of first interest, as one-
dimensional flow modelling usually assumes that the friction loss in a given section is
equal to the loss in an equivalent prismatic reach for a uniform flow having the same
hydraulic radius and averaged velocity (French 1985) : accordingly, such an assumption
implies also for the discharge distribution to be the same in the actual section and in the
corresponding prismatic reach. Due to the ill-conditioned upstream discharge-
distribution in the experiments, this assumption can unfortunately not be definitely
validated. Further experiments, with a corrected inlet condition, would therefore be
required.
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Table 12.2 : Discharge distribution between subsection for the narrowing-floodplain
cases, compared to the prismatic reference case (Pri)

Case
(length / Hr / Q)

Total discharge

Qtot [l/s]

Main-channel
discharge
Qmc [l/s]

One floodplain
discharge
Qfp [l/s]

Floodplain
discharge ratio

2 * Qfp / Qtot [%]

Pri (Hr=02) 9.95 9.09 0.43 0.087

Cv6/0.2/10 9.98 8.89 0.54 0.109

Cv2/0.2/10 10.00 8.98 0.51 0.102

Pri (Hr=03) 13.42 11.26 1.08 0.161

Cv6/0.3/10 9.92 8.26 0.83 0.167

Cv6/0.3/12 11.95 9.85 1.05 0.176

Cv2/0.3/10 9.98 8.20 0.89 0.178

Cv2/0.3/12 11.99 9.82 1.08 0.181

Pri (Hr=05) 27.57 19.35 4.11 0.298

Cv6/0.5/12 12.01 8.35 1.83 0.305

Cv6/0.5/16 15.84 10.96 2.44 0.308

Cv6/0.5/20 19.65 13.49 3.08 0.313

Cv2/0.5/12 12.00 8.25 1.88 0.313

Cv2/0.5/16 15.94 11.11 2.42 0.303

Cv2/0.5/20 20.01 13.84 3.09 0.309

12.5 Momentum analysis

Using the available experimental data, the momentum fluxes in and between floodplain
and main-channel are evaluated; and the momentum balance is checked according to the
momentum equation (4.3), where all the terms are grouped in the left hand member, for
a steady flow :

( ) ( ) 00
2 =ρ−ρ+ρ+ρ−

∂
∂

ρ+ρ
∂
∂

linoutf uqUqgASgAS
x
H

gAAU
x

(12.1)

Figure 12.11 gives these results for typical cases. The momentum are computed
respectively for (1) one floodplain; (2) half the width of the main-channel; and (3) half
the width of the whole cross-section. The momentum gradients are estimated at three
location of the converging reach, by discrete finite difference between the available
cross-sectional data : (1) at the first quarter of the narrowing reach [x = 3.5 m or 4.5 m,
for the 6-m and 2-m long narrowing cases respectively]; (2) at the middle [x = 5 m]; and
(3) at the last quarter [x = 6.5 m or 5.5 m]. The frictional losses are estimated using
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either Sf from the Manning equation (4.1) for the subsections, or Se from the EDM
relation (4.17) for the whole section, which is justified by the rather good results
obtained by this method for the stage-discharge estimations in the present study (Figure
12.2).

For each case, the sum of all the terms of momentum equation (12.1) is given.
Considering it also includes the experimental data inaccuracies, this balance error is
found to be relatively low. It is observed that the highest errors are associated with the
highest discharge and smaller water depth. Regarding the influence of the discharge,
even if the absolute error increases, it should be pointed out that the error weight seems
to be quite constant when compared with the other terms of the balance.

The discharge Q = 12 l/s, for a relative water depth Hr = 0.3 at x = 5 m, in the 6-m
length narrowing case (Figure 12.11a), will be analysed as a typical case. Regarding the
whole channel balance, we observe that the friction slope ρgASf is not exactly balanced
by the bottom slope - ρgAS0. The latter is slightly higher, as the flow is not uniform and
as the actual water level is greater than the normal depth that would be observed in a
prismatic channel with the same cross-section, bottom slope and discharge. The balance
is obtained thanks to both the convection term ( ) xAU ∂ρ∂ 2  and the pressure term

xHA ∂∂ρg . The convection term has a positive value, due to the acceleration in the

convergence; and the negative value of the pressure term indicates a plunging water
profile; while the increase of absolute value of both terms along the channel is in
accordance with the increased water level slope observed on the water profile (Figure
12.3). These convection and pressure terms are up to twice larger than the slope-terms
- ρgAS0 and ρgASf ; while their difference, that is one order of magnitude smaller,
equilibrates the slope terms difference ρgA(Sf – S0). This shows already that the
convection phenomena are not negligible when compared to the friction and have thus
to be taken into account when attempting to evaluate the momentum equilibrium.

The same balance is observed in the main-channel, although the convection term has
increased with the pressure term. The equilibrium is now only obtained by taking into
account the momentum transfer term - ρqinuL due to the inflow from the floodplain
which has almost the same weight as the slope terms.

In the floodplain balance, the momentum transfer term ρqoutU has the same weight than
in the main-channel, while all other terms are significantly lower. As a result, the lateral
flow is the main term in the momentum equilibrium for the floodplain. The negative
value of the convection term can be explained by the cross-sectional area reduction for
the narrowing floodplains, which exceeds the influence of the acceleration.

Other useful information can be gathered from comparison with the other cases given
on Figure 12.11. For the 2-m length narrowing case (Figure 12.11b), the converging
angle is three times the converging angle of the 6-m length case. As a result, the
longitudinal convection, lateral flow and pressure terms are observed to be around three
times their values for the 6-m length case, while the friction and bottom slope terms are
not affected.
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Figure 12.11 : Momentum balance, according to momentum equation (12.1) :
(a) 6-m length case, Hr = 0.3, Q = 12 l/s; (b) 2-m length case, Hr = 0.3, Q = 12 l/s;
(c) 6-m length case, Hr = 0.5, Q = 12 l/s; (d) 6-m length case, Hr = 0.5, Q = 20 l/s.

'rho ql ul' stands either for -ρqinuL (main-channel) or for ρqoutU (floodplain).



220 Part III : Geometrical transfer

-0.50

-0.25

0.00

0.25

0.50

3.5 5 6.5 3.5 5 6.5 3.5 5 6.5

Station x [m]

M
o

m
en

tu
m

 G
ra

d
ie

n
t 

[N
/m

] 
  

Whole section Main-channel Floodplain

(c) 6 / 0.5 / 12

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

3.5 5 6.5 3.5 5 6.5 3.5 5 6.5

Station x [m]

M
o

m
en

tu
m

 g
ra

d
ie

n
t 

[N
/m

] Whole section Main-channel Floodplain

(d) 6 / 0.5 / 20

Figure 12.11 (continued)

For the same discharge, but with higher water depth Hr = 0.5 (Figure 12.11c), due to
slower velocities, the convection term decreases slightly compared to the case Hr = 0.3
(Figure 12.11a). The pressure term becomes positive in the first part of the converging
section, according with the observation that the water-surface slope is less than the
bottom slope in this part of the channel. This special behaviour could be explained by
the rather high downstream level imposed to the water profile. Due to the higher cross-
sectional area available, the friction term reduces and the bottom slope term increases.
When the discharge increases to Q = 20 l/s, for the same water depth (Figure 12.11d),
all the convection, pressure and friction terms increase according to the discharge, while



Chapter 12 : Experimental measurements 221

the bottom slope term remains the same. However, even for this high discharge, the
flow is clearly dominated by the convection and not by the friction, and the lateral flow
terms remain significant in the balance.

12.6 Head loss analysis

In order to estimate the contribution of the mass and corresponding momentum transfer
to the total head loss, the latter has been estimated from the water profile measurements
and compared to the frictional losses estimated from the prismatic-channel experiments,
where no geometrical transfer is expected. The head profile (Figure 12.12) is
approximated by adding to the water profile the kinetic energy αU 2/2g computed with
the mean velocity (total discharge divided by the whole cross-section area). For
computational convenience, the Coriollis coefficient α has been taken equal to 1. These
head values have been checked locally, in the four cross-sections where detailed
velocity measurements are available and no significant discrepancies have been found.
The head loss at x = 5 m is then given by the slope of the curve fitting the energy
profile.

For estimating the friction loss Sf, we use the Manning equation (4.1), which requires
the knowledge of conveyance K. The latter is estimated from the tests in the prismatic
channel with 200-mm-wide floodplains (Figure 12.1c), where uniform flow prevails, in
such a way that, for these tests, the friction loss Sf equals the bed slope S0.
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Figure 12.12 : Water and energy profile, 6-m length case, Hr = 0.5, Q = 20 l/s

The total head loss Se and the friction loss Sf are given on Figure 12.13 for all the tested
cases. It is clearly observed that the total head loss is greater than the friction loss. This
difference demonstrates the significance of the additional loss Sa due to the mass and
momentum transfer induced by the geometrical changes. The difference increases with
the converging angle, while the ratio between this difference and the friction slope Sf
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remains constant for an increasing discharge Q at a given water depth Hr. This shows
that the additional loss increases with the mass transfer but also remains proportional to
the whole discharge. As a conclusion, the additional loss ratio χ = Sa/Sf is mainly driven
by geometrical parameters and thus by convection phenomena, as it is independent of
the discharge. EDM results also represented on Figure 12.13 will be discussed in
Chapter 14.
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12.7 Conclusion

Experimental results have been presented for the flow in a compound channel with
symmetrically narrowing floodplains. Water profiles and velocity distribution have been
measured. The flow structure is found to be similar to the one observed in meandering
compound channels : the floodplain-width change induces a mass transfer towards the
main-channel. A transverse current is then observed in the upper part of the main-
channel, plunging to the channel bottom around its centre line and generating an helical
current in the inbank part of the channel.

The significance of the momentum transfer associated with the mass transfer has been
highlighted, in terms of momentum balance for the floodplains and for the main-
channel, but also in terms of additional head loss for the whole cross-section. This
additional head loss increases according to the water depth, to the converging angle and
to the discharge. However, its ratio to friction loss is independent of the discharge,
indicating that the additional loss is mainly driven by geometrical aspects.

These observations give confidence in one of the main assumptions made during the
EDM development, which states that the ratio between additional loss and friction slope
in only driven by cross-section geometry, and not by discharge. The validity of the
EDM for geometrical-transfer modelling will be further investigated in Chapter 14.





Chapter 13 
Extension of the Lateral Distribution Method
for a non-prismatic geometry

13.1 Introduction

Using the experimental measurements from Chapter 12, the proposed extension of the
Lateral Distribution Method (LDM) for a non-prismatic geometry (3.20) will be applied
and discussed in the present Chapter :
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where Se is the energy slope; Γ is the secondary-current term defined by Shiono and
Knight; and κ = V/U is the ratio between transverse and longitudinal components of the
velocity

As explained in Chapter 3, this extended LDM (13.1) intends to take into account the
effects of the flow non-prismaticity on the depth-averaged velocity profile by : (1) using
the actual energy slope Se, instead of the bed slope S0; and (2) defining an adapted
secondary-current term, which accounts for the mass-transfer and which is proportional
to the ratio κ between transverse and longitudinal components of the velocity.

The complete two-dimensional model will also be used in this Chapter, in order to
verify the relative weight of the different terms in the extended LDM equation. This 2D
model solves the Saint-Venant equations, using a MacCormack scheme for a curvilinear
grid, as detailed in Appendix 1.

Four narrowing-floodplain test cases are selected from Chapter 12 for further analysis.
These cases, together with the prismatic-channel reference cases are summarised in
Table 13.1. Three cases from the 6-m long contraction series have been selected,
covering both water-depth and discharge variations; while a fourth case from the 2-m
long contraction series will be used to investigate the influence of the converging angle
θ variation. In Table 13.1, the energy-slope estimates Se1D are the one obtained in
§ 12.6 from the one-dimensional water profile (see Figure 12.12); while the ratio κ
estimation will be discussed below.
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Table 13.1 : Parameters of the experiments to be modelled

Case Converging
angle θ

[°]

Water depth
at x = 5 m

[mm]

Discharge
Q

[l/s]

Estimate of
the energy
slope Se1D

Estimate of
the ratio
κfp = V/U

Estimate of
the ratio

κmc = V/U

Cv6/05/20 3.8 100 20 0.84 × 10-3 0.07 0.01

Cv6/05/12 3.8 100 12 0.31 × 10-3 0.07 0.01

Cv6/03/12 3.8 71.5 12 0.99 × 10-3 0.07 0.01

Cv2/05/20 11.3 100 20 1.29 × 10-3 0.20 0.06

Pri05 Prismatic 100 27.6 0.99 × 10-3 0.00 0.00

Pri03 Prismatic 71.5 13.5 0.99 × 10-3 0.00 0.00

13.2 Prismatic channel simulations

Simulations were first performed for the two reference situations Pri05 and Pri03, using
the helical secondary-current term Γ; and setting Se = S0 = 0.99 × 10-3 and κ = 0 as the
flow is uniform and in a prismatic channel. The computed velocity profiles are plotted
on Figure 13.1 and Figure 13.2. The Manning roughness coefficient is set at
n = 0.0107 s/m1/3, according to the calibration performed using isolated main-channel
flow data (§ 12.2). A good fitting between measured and computed velocities is
obtained with λ = 0.05; Γmc = 0.30 and Γfp = -0.10 for the Pri05 case; and Γmc = 0.20
and Γfp = -0.05 for the Pri03 case. The dimensionless eddy viscosity λ value is slightly
lower than the usual ones, maybe due to the smaller scale of the flume. However,
Knight and Abril (1996) have shown that this parameter influence was small compared
to the secondary-current parameter Γ. The latter presents values closer to the usual ones.
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Figure 13.2 : Pri03 case, measured and LDM-computed velocity profiles

13.3 Extended-LDM simulations

The velocity ratio κ = V/U on the floodplains can be estimated either from actual
measurements, or a priori from the channel geometry. Indeed, if the direction of the
flow is assumed to be parallel to the converging embankments, the velocity ratio κ
equals the tangent of the converging angle θ (Table 13.1). For comparison, actual ratio
κ values obtained from the experimental data are plotted of Figure 13.3. For the larger
discharge cases (Q = 20 l/s : Cv6/05/20 and Cv2/05/20), the measured κ values are
close to the estimated one, at least along the embankments. The κ value on the
floodplain decreases when approaching the main-channel, probably indicating a gradual
alignment of the velocities with the main-channel axis.

For the lower discharge cases (Q = 12 l/s : Cv6/05/12 and Cv6/03/12), the measured κ
values are lower than the estimated one. This could be the consequence of a lower mass
transfer rate between the floodplains and the main-channel. However, the evolution of
the discharge distribution between floodplain and main-channel is the same for the
Cv6/05/20 and Cv6/05/12 cases, as show by Figure 12.8, indicating that the mass
transfer rate is the same. A cause for this discrepancy is thus probably the rather low
precision (0.5 °) of the micro-vane used for measuring the local velocity direction (see
§ 12.2 and Appendix 3). Indeed, it has been pointed out that this angle measurement is
probably meaningful, from a quantitative viewpoint, only for the larger velocities and
angles, which is the case for Cv6/05/20 and, mainly, Cv2/05/20.

For the main-channel, as the water depth increases, the transverse velocity and the κ
ratio are lower than in floodplains, for a same mass transfer. The transverse velocity is
also expected to decrease linearly towards the main-channel axis, due to the channel
symmetry. However, for simplicity, a constant value of κ will be used in a first stage.
Indeed, as the longitudinal velocity gradient yU ∂∂  tends to zero in the vicinity of the

main-channel axis, an error on the κ value will not jeopardise the simulation results. The
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values of κmc = 0.01 and κmc = 0.06 will be used respectively for the Cv6 and Cv2
series. These values correspond to the maximum κ values experimentally observed in
the main-channel, near the interface with the floodplains, where the full mass transfer
enters the main-channel.
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Extended-LDM results for non-prismatic channels are first presented for the Cv6/05/20
case (Figure 13.4). Simulation is initially performed with the classical LDM (3.10),
without any secondary current. Both main-channel and floodplains velocities are clearly
overestimates. A second attempt, using the Shiono and Knight secondary-current term Γ
(3.14), as calibrated for the reference situation with the same water depth (Pri05) : this
gives lower velocities, but again overestimated. Probably a better fitting would be
possible by adjusting the Γ values, but it would miss physical meaning. It should also be
pointed out that, as the Γ term encompasses the velocity value, its value will not remain
constant when varying the bed or the energy slope, contrarily to the roughness n and to
the adimensional eddy viscosity λ, which are independent of the velocity.

The results of the extended LDM (16), without Γ, are also presented on Figure 13.4.
The computed velocities are clearly underestimated on the floodplain, and slightly
overestimated in the main-channel. The transverse velocity gradient yU ∂∂  is found to

be too large, probably since the mass-transfer secondary-current term induces too much
shearing. Adjusting the ratio κ value would reduce this shearing, but it would also lead
to unrealistically low values of κ. It could also be conjectured that setting the velocity
equals to zero at the wall, as imposed by the no-slip condition, could have a major
influence on the whole profile, due to this increased shear.

The influence of the boundary condition is therefore tested. The results are improved
when using a free-slip condition instead of the no-slip condition (Figure 13.5), but not
decisively : indeed, the velocity remains underestimated on the floodplains and
overestimated in the main channel. A further improvement could be obtained by using
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simultaneously both helical Γ and mass-transfer κ currents : it was indeed observed that
the mass-transfer generates significant helical currents, at least in the main-channel (see
§ 12.3). For that purpose, the value of Γ is, in a first stage, selected as equal to the one
calibrated for the reference case. The velocities are now correctly estimated in the
middle of the main-channel but remain underestimated on the floodplains.
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Similar results were obtained for the other converging channel cases. Better adjustment
would be possible by tuning the parameters, but this tedious fitting is beyond the scope
of the present study, as it would jeopardise the physical meaning of these parameters.
Before any fitting of this kind, a full two-dimensional simulation is developed. It is
expected that this simulation will enable to investigate the relative weight of all the
terms of the LDM equation (13.1). This could help to identify the causes of the poor
results of this extended LDM, when compared with the measured velocities.

13.4 Two-dimensional modelling

13.4.1 Numerical model

The Saint-Venant equations (2.33) are solved numerically, using a finite difference
model and a Mac-Cormack scheme, as detailed in Appendix 1. The size of the
curvilinear boundary-fitted mesh is 201 × 31 nodes, respectively in the channel
longitudinal and transverse directions. A no-slip condition is used along the wall and a
symmetry condition is used at the channel axis. The Manning roughness-coefficient
local value n2D is estimated in order to get an actual roughness equals to n1D = 0.0107
s/m1/3 in each channel subsection. Indeed, as the friction slope computation is based on
the water depth H rather than on the actual hydraulic radius R, a corrected value of the
roughness coefficient has to be used : n2D = n1D (H/R)2/3. According to the flume
geometry, for a mean water-depth H = 0.10 m in the main channel, the roughness
coefficient equals nmc = 0.0124 s/m1/3 in the main-channel, and nfp = 0.0114 s/m1/3 in the
floodplains. An eddy viscosity proportional to the shear velocity U* is used (2.43), with
λ = 0.1; and the dispersion terms are neglected. The measured upstream unit discharge q
and downstream water level H are used as boundary conditions. The simulation is
allowed to run until the maximum water-level and velocity variations between two time
step are lower than a given limit (typically 10-6 m and 10-6 m/s).

Typical results for the Cv6/05/20-case simulation are given on Figure 13.6. The mass
transfer from the floodplain to the main channel is well depicted by the velocity field;
while the water level decreases, due the flow acceleration, in accordance with the
downstream-imposed water level.

Detailed results are given on Figure 13.7. The water-depth longitudinal profile (Figure
13.7a) and the longitudinal-velocity U profiles (Figure 13.7b) are correctly simulated,
when compared with the measured data. The computed transverse-velocities V (Figure
13.7c) present more deviation from the data, mainly at the 2-m station (entrance of the
converging section) and at the 8-m station (end of the converging section). This could
be due to : (1) the inaccurate velocity-direction measurements, as quoted previously; (2)
the ill-conditioned upstream discharge-distribution, although the latter has been taken
into account in the upstream boundary condition; or (3) to some actual geometry
unevenness (e.g. at the joint between 2 bottom plywood plates) that was not
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incorporated in the numerical model. Indeed, it should be noted that no joint is present
at the 5-m station, where the transverse-velocity profile is satisfactorily computed.

A last result of interest is the specific energy of the flow, given on Figure 13.8. This
specific energy e, or head is computed as :

( )22

2
1

VU
g

ze ++= (13.2)

The specific energy plot on Figure 13.8 is in accordance with the previous results : as
the water level transverse slope equals zero (Figure 13.6), the specific-energy transverse
variation matches the longitudinal-velocity U profile (Figure 13.7b). However, this
result is surprising, as it is usually expected that the specific energy presents a
horizontal transverse profile, and that the velocity is oriented according to the largest
head gradient. Maybe this behaviour could be due to the no-slip condition used at the
wall. This condition generates losses near the wall, that are not taken into account by the
specific energy definition (13.2). Due to lack of time, this point has not been further
investigated in the present work, as all other results were satisfactory, but it should be
handled in a next study.

Figure 13.6 : Cv6/05/20 case, two-dimensional model results : water level z and
velocity field (for half a section)
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Figure 13.7 : Cv6/05/20 case, two-dimensional model : (a) Water-depth H longitudinal
profile; (b) longitudinal velocity U profiles (for half a section); and (c) transverse

velocity V profiles (for half a section)
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Figure 13.8 : Cv6/05/20 case, two-dimensional model results : specific energy e

13.4.2 Momentum balance

Using the two-dimensional simulation results, the weights of the terms of the x-
momentum equation (2.33b) are evaluated at several locations. This will enable further
comparison with the extended LDM equation (13.1). For analysis purpose, (2.33b) is
presented in a non-dimensional form, by dividing it by ρgH :
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(13.3)

where the temporal derivative tU ∂∂  is expected to be equal to zero, as the solution is

obtained for a permanent flow. This term is therefore written in the right-hand side of
(13.3), in order to be compared to the summation of all the other terms, that corresponds
to the balance error. According to the computation convergence criteria, its absolute
value should be less than 2.5 × 10-3 (with ∆t = 0.004 s)
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The weight of the different terms of (13.3) are plotted on Figure 13.9 for three stations
(x = 2; 5; and 8 m) and several transverse position y. At all the location investigated, the
balance error is found smaller than expected.

General observations can be gathered from the x = 5 m station balance (Figure 13.9b).
As expected, the acceleration ( xUgU ∂∂ ) and pressure ( xH ∂∂ ) terms are no more

negligible in regard of the bottom slope (-S0x). On one hand, the acceleration term is
positive excepted near the wall, indicating that the flow is accelerating. At the wall, a
negative acceleration term is observed, corresponding to a flow deceleration. Indeed,
due to the obstruction by the wall, the flow direction has to change from streamwise to
transverse, towards the main channel. The transverse velocity component increases,
while the longitudinal component decreases, in accordance with the continuity equation.
On the other hand, the negative pressure term is in accordance with the water-level
decrease. The next main term in the balance is the friction slope (Sfx), which is larger on
the floodplains, due to the lower water depth.

However, near the wall and near the interface between the main channel and the
floodplain, the transverse convection ( yUgV ∂∂ ) – corresponding to the mass-

transfer secondary-current – is locally larger, and even dominant in the momentum
balance, as a result of the combined effect of the large transverse velocity V and of the
large gradient of longitudinal velocity U. Except in these same area of large velocity
gradient, the transverse eddy friction τxy remains low; while the longitudinal eddy
friction τxx is always negligible, as expected.

The same results are observed at the x = 8 m station (Figure 13.9c), with a larger
acceleration and a greater water depth slope; while, at the x = 2 m station (Figure 13.9a),
the acceleration are lower and the water depth is still increasing, indicating that the flow
is still accumulating energy before entering the converging section (M1 profile).

It should be pointed out that those results are roughly in accordance with the similar
momentum balance, previously computed from the experimental data (Figure 12.10).
However, the transverse variation of all the terms is more clearly depicted by the
present analysis, as the numerical results are available with a finer resolution than the
experimental ones.
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Figure 13.9 : Cv6/05/20 case, momentum balance (13.3) for half a section, according to
two-dimensional numerical results : (a) x = 2 m station; (b) x = 5 m station;

and (c) x = 8 m station
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13.5 Improvement of the Extended LDM

The momentum balance (Figure 13.9) and the specific energy plot (Figure 13.8)
presented above enable a further discussion of the extended LDM (13.1). This
demonstrates clearly that, as assumed when developing this equation in Chapter 3, the
longitudinal shear-stress τxx is indeed negligible, while the acceleration and pressure
terms have to be taken into account. Nevertheless, it shows also that the latter are not
constant along the channel width, in such a way that the longitudinal energy slope Se

can no more be estimated as a one-dimensional energy slope Se1D. This is notably the
case near the wall.

The longitudinal energy slope Se2D (y) estimated locally from the two-dimensional
model is given on Figure 13.10 for the Cv6/05/20 case, at the x = 5 m station. While this
slope is slightly lower than the one-dimensional Se1D one in the main-channel; it is
several times larger near the walls, as a consequence of the longitudinal-velocity U
deceleration. As a consequence, using the one-dimensional energy slope Se1D in the
whole channel leads to a momentum balance deficit near the wall and, accordingly, the
velocity decreases erroneously, as observed above.
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Figure 13.10 : Cv6/05/20, longitudinal energy slope Se2D (y) for half a section,
as estimated from the two-dimensional model results

At last, a corrected simulation of the extended LDM is thus performed using the local
energy slope Se2D (y) estimated from the two-dimensional model, and the results are
given by Figure 13.11 for the four selected test-cases, with different water depths,
discharges and converging angles. Using the a priori estimated values of κ (Table 13.1)
and Γ = 0, a noticeably accurate fitting is obtained between the computed and the
measured velocities, when compared to the previous attempts. As the roughness
coefficient n was not adjusted, it is expected that the bottom shear stress profile would
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be also correctly modelled, even if it was not measured for this particular data set, and if
comparison are therefore not possible.

From the latter, it can be concluded that it is possible to use the extended LDM with
physically meaningful parameters values, although it requires also a accurate estimate of
the local energy slope that is not always available. Using previous version of the LDM,
it was also possible to get an accurate fitting, as far as enough data was provided for
empirical calibration of the LDM parameters; which made it uncomfortable for a purely
predictive use. The extended method presented here also requires extra data, but enables
a better understanding of the parameters meaning. In this way, it is considered as a step
forward for compound-channel flow modelling and understanding.
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Figure 13.11 : Measured and Extended-LDM computed – using Se2D (y) – velocity
profiles : (a) Cv6/05/20 case; (b) Cv6/05/12 case; (c) Cv6/03/12 case; and (d)

Cv2/05/20 case. λ = 0.05; Γ = 0; κ according to Table 13.1
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Figure 13.11 (continued)

13.6 Conclusion

The present Chapter has investigated the application of the LDM to flow in non-
prismatic channels : experimental results from Chapter 12 have been compared with the
results of the extension of the LDM to non-uniform flow proposed in Chapter 3.

In this extended LDM, the energy slope is used instead of the bed slope. This energy
slope is computed as the sum of the acceleration, pressure and bottom-slope terms. A
new secondary-current term is also defined, corresponding to the mass transfer due to
non-prismaticity. This term is estimated according to the ratio κ between the transversal
and longitudinal depth-averaged velocity components. This ratio κ value is found to
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depend mainly of the continuity equation and, as a consequence, of the channel
geometry. It is assumed to have a constant value in each channel subsection.

First simulations were performed by using a one-dimensional approximate of the energy
slope Se1D, and by estimating a priori the parameter values. No fitting of the latter was
allowed. Unsatisfactory results were obtained from these simulations. Results of a
complete two-dimensional modelling demonstrated that : (1) the acceleration and
pressure terms are indeed not negligible; and (2) the energy slope is not constant along
the channel width, due to the decrease of the velocity longitudinal-component, in the
vicinity of the wall.

Using the actual distribution of longitudinal energy slope Se2D (y) along the channel
width, instead of the one-dimensional estimate, correct velocity-profiles predictions are
obtained. Although this energy slope distribution is uneasy to assess, the other
parameters of the proposed extended LDM have interesting properties, when compared
with the calibration process of secondary-current models previously developed for the
LDM : (1) they have a clear physical meaning; (2) they can be a priori estimated; and
(3) they are relevant for non-prismatic flow modelling.





Chapter 14 
Validation of the EDM
for non-prismatic compound channels

14.1 Water-profile computations

In this short Chapter, the experimental results from Chapter 12 will be used for further
validation of the Exchange Discharge Model (EDM), presented in Chapter 4. The
particular geometry tested will enable to investigate the geometrical transfer process and
the ψg factor significance.

Water profile computations are therefore performed with the EDM, using the AXERIV
software (Bousmar and Zech 1999a). For each case, the measured water depth is used as
downstream condition, while the measured discharge gives the upstream condition. The
roughness coefficient is set equal to nc = nf = 0.0107 s/m1/3, according to single-channel
measurements from Chapter 12. Measured and computed water profiles are then
compared for several conditions : (1) using DCM; (2) using EDM without mass transfer
(ψg = 0); and (3) using EDM with entire mass transfer (ψg = 1).

Typical results are plotted on Figure 14.1, for four selected cases. Both the DCM and
the EDM without mass transfer underestimate the head losses and the resulting water
levels in all cases. The EDM with mass transfer gives better results, provided a ψg = 1
value is used, contrarily to the former calibration that gave ψg = 0.5 (see Chapter 4).

The largest discrepancy between measured and EDM computed water-profiles is
obtained in the upstream and converging reaches of the 6-m length case, with Hr = 0.5
and Q = 20 l/s (Figure 14.1b). However, for this particular case, noticeable cross-waves
are observed in the downstream prismatic section, in such a way the downstream water-
level condition, to be used in the computation, is more difficult to assess. As the
computed water-profile parallels well the measured one, it is expected that, with a
slightly corrected downstream condition, both profiles could coincide. A lower
discrepancy is also observed for the 2-m length case, with Hr = 0.5 and Q = 12 l/s, but
only in the upstream prismatic reach (Figure 14.1d). This discrepancy, less than 1 mm,
is supposed to a consequence of the ill-conditioned upstream discharge-distribution, that
generates extra losses on the floodplains, not taken into account by the numerical
modelling.
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The specific-energy profiles on Figure 14.1 present also interesting features. Although
the EDM-computed water-profiles (ψg = 1) match the measured ones, the corresponding
specific-energy profiles are not consistent with the measurements for all the investigated
cases. For the lower water level (Hr = 0.2, Figure 14.1c), the measured specific-energy
seems better estimated by the DCM; while its value is correctly modelled by the EDM
(ψg = 1) only for the higher water depth (Hr = 0.5, Figure 14.1b and d).
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Figure 14.1 : Water-level and specific-energy profiles, measured and computed values :
(a) 6-m length case, Hr = 0.3, Q = 12 l/s; (b) 6-m length case, Hr = 0.5, Q = 20 l/s;

(c) 2-m length case, Hr = 0.2, Q = 10 l/s; and (d) 2-m length case, Hr = 0.5, Q = 12 l/s
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Figure 14.1 (continued)

This observation is probably due to a difference in the specific-energy profile
calculation. Indeed, the specific-energy is computed as the sum of the water level z and
the kinetic energy αU2/2g : for computational convenience, the measured values were
estimated using a Coriollis coefficient α taken equal to 1 (see § 12.6); while an estimate
of its actual value is used in the EDM calculation. Due to the larger velocity differences
at lower water depths (Hr = 0.2 .. 0.3), the difference between the actual α value and 1 is
also larger, and could explain the observed gap between measured and computed
specific-energy for these cases.
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14.2 Discharge distribution

As shown by Figure 14.2, the computed discharge distribution differs from the
measured one, probably partly due to the ill-conditioned upstream discharge distribution
in the experimental cases quoted above. Indeed, while the computed discharge
distribution remains constant in the upstream prismatic section, the measured one
evolves and progressively approaches the EDM one.

However, as depicted by Figure 14.3, the EDM seems also to underestimate slightly the
floodplain discharge, when compared with the prismatic-reference case data, contrary to
previous observation in Chapter 4, where EDM overestimated the floodplain discharge
(Figure 4.5). Due to this floodplain-discharge underestimation by the EDM, but also to
the ill-conditioned upstream distribution, the measured floodplain discharge is larger
than the computed one, and, accordingly, the mass transfer in the converging reach is
higher in the experiments. As a result, the observed momentum transfer increases also.
This could explain why the momentum transfer has also to be intensified in the
computation, through the use of a higher ψg value than expected, in order to fit the
measurements
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Figure 14.3 : Discharge distribution between subsections at x = 5 m.
Experimental (prismatic reference-case and 6-m length converging-case)

and EDM-computed values (ψg = 1)

Given the ψg higher value, the inaccurate discharge distribution seems not affect further
the computed water profile (Figure 14.1). Indeed, in the upstream area, the water level is
higher than the uniform depth given on Figure 12.2. As a result, the friction slope Sf is
small and errors in its estimation only slightly affects the water profile. In the
converging reach, although the computed and measured discharge distributions are
different, their evolutions are parallel and, thanks to the higher ψg, the resulting
momentum transfers are also similar, leading to a relatively small error on the computed
water profile. In the downstream reach, the whole discharge flows in the main-channel
and the upstream discharge distribution exerts no more influence.

14.3 Head loss analysis

To conclude this validation, the computed total head loss Se, friction loss Sf and
additional loss Sa are compared on Figure 14.4 with the experimental values from
Figure 12.13, for all the tested cases. For all the cases, the friction loss is accurately
modelled (error generally less than 5 % for the 6-m length narrowing case, and less than
10 % for the 2-m case). The total loss, and thus the additional loss, is overestimated for
the lower water depth (Hr = 0.2 and 0.3), mainly for the higher converging angle (2-m
length narrowing case); while it is correctly estimated for the higher water depth
(Hr = 0.5).
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Figure 14.4 : Head loss Se, friction loss Sf and additional loss Sa,
experimental and EDM-computed values (ψg = 1)

However, as the water profiles were properly modelled for almost all these cases, it is
likely that this error has only an influence on a small length of the profile computation
and does not affect the whole result. On the other hand, the good results obtained for the
friction loss and, in several cases, for the total head loss, give confidence in an
appropriate additional loss modelling by the EDM.
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14.4 Conclusion

Comparison are presented between the experimental data and computations using the
EDM. The EDM-predicted discharge distribution does not fit with measurements, but
the latter are influenced by a questionable upstream set-up. Taking this into account
through the use of a higher ψg value, the computed water profiles fit well the
measurements; and friction loss and total head loss are properly estimated, at least for
the higher water depths.

A conclusion of this Chapter is thus an improved validation of the EDM. Unfortunately,
due to the ill-conditioned upstream discharge distribution, no definitive calibration of
the ψg coefficient can be supplied. Further experimental data are thus still required, with
a more appropriate upstream discharge distribution. On the other hand, symmetrically
enlarging floodplains should also be investigated, in order to study the mass transfer
from the main channel to the floodplains.





Chapter 15 
Additional experimental results and EDM validation :
Flow near critical depth

15.1 Introduction

In the previous Chapter, the validity of the EDM has been investigated for the
modelling of the momentum transfer due to the geometrical mass-transfer in a non-
prismatic channel. The geometrical-transfer effect will now be explored in an ever more
simple geometry, but with still more complicated flow features : a prismatic compound
channel is considered, with a control section as downstream boundary condition. As the
water level reduces when approaching this control section, the discharge distribution
varies accordingly, and strong geometrical transfers between floodplains and main
channel are observed. Due to the water-level decrease, the main-channel water depth
will even become lower than the bank height, despite the fact that water can still flow
on the floodplains. This results in two-dimensional features of the water-surface
(transverse slope) that have to be taken into account.

The two-dimensional numerical model developed in this work could probably provide
interesting information on this particular situation. However, due to a lack of time and
of measured data, it has been chosen to restrict the present investigation to one-
dimensional modelling. Two main objectives will be considered : (1) assess the possible
limit of validity of such an approach; and (2) test once more the EDM validity. After a
short state-of-the-art review on critical flow in compound channels, some experimental
results will be presented and compared to EDM computations (Bousmar and Zech
1999b).

15.2 Critical flow in a compound channel : state of the art

In compound channels, two critical depths can be observed for some cross sections.
Blalock and Sturm (1981) first observed experimentally two minima in the specific-
energy curve (Figure 15.1a). In order to calculate the two corresponding critical depths,
they calculated the specific-energy values, using for the kinetic energy value αU2/2g a
Coriollis coefficient α estimation based on the DCM discharge distribution. According
to Blalock and Sturm, for an increasing water depth H (due e.g. to a bed slope S0

decrease, at a constant discharge Q), the first critical depth is below the bank level and
corresponds to the transition from super- to subcritical flow in the main channel (Figure
15.1b). At the beginning of overbanking, supercritical flow appears in floodplains while
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flow remains subcritical in the main channel. The second critical level is then above the
bank level and corresponds to the depth where flow changes from super- to subcritical
in the floodplains. Strong two-dimensional aspects are observed in the flow between
those two depth (Blalock and Sturm, 1983).

Those two-dimensional features were confirmed by Yuen and Knight (1990) who
observed super- and subcritical flow in a same cross-section for a given water depth.
Due to the momentum transfer, the velocity in the floodplains is higher in the interface
zone : an higher Froude number is thus observed in this zone, which is the last to
become subcritical. Yuen and Knight measured a relative inaccuracy of Blalock and
Sturm's critical-depth estimation, as the latter neglects the momentum transfer between
subsections. Sturm and Sadiq (1996) observed, at critical depths, lower water levels in
the main channel than in the floodplains, invalidating locally the one-dimensional flow
modelling. Nevertheless, by direct integration of an adapted gradually varied flow
equation, using a corrected Froude number, they obtained good agreement of computed
water profiles with experimental data, for depths quite close to the critical ones.

The purpose of the current Chapter is to enlarge such comparisons with experimental
data. For water-profile computation, the Standard Step Method will be used, using the
AXERIV Software (Bousmar and Zech 1999a) as it is closer to the methods found in
commercial package.

Figure 15.1 : Flow transitions in a compound channel : (a) specific energy curve,
(b) location of super- and subcritical flow in subsections

15.3 Experimental results

Measurements were performed in the UCL compound-channel flume (see Appendix 3).
As quoted above, the prismatic geometry is tested, with two symmetrical floodplains
400-mm wide, extending on the whole channel width (Figure 15.2). The longitudinal
bed slope is set to S0 = 0.85 x 10-3. The weir is completely lowered, in order to have a
control section near the flume downstream-boundary, with water falling in the outlet
tank at the station x = 10 m.



Chapter 15 : Flow near critical depth 251

Figure 15.2 : Cross section of the experimental symmetrical compound channel
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Figure 15.3 : Measured water profiles, along the centre line of the main channel

Two measured water profiles are presented, for discharges Q = 10.0 l/s and Q = 13.5 l/s
(Figure 15.3 and Figure 15.4). For the 10.0 l/s discharge, the downstream limits of the
flooded area in the floodplains were at station x = 8.5 m on the right floodplain and at x
= 9.5 m on the left one (see Figure 15.5). In this case, the last wet half-meter was almost
still water retained by surface tension on the plywood.  For the 13.5 l/s discharge, the
floodplains were flooded till the downstream control section. Figure 15.3 gives the
water profiles measured along the centre line of the main channel. Irregularities in the
profiles are due to channel bed irregularities, this sensibility to geometry could be
explained by the proximity to the critical depth.
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Figure 15.4 : Transverse water profiles at given stations : (a) Q = 10 l/s;
and (b) Q = 13.5 l/s (for half a section)
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Figure 15.5 : Photographs of the outlet section at Q = 10 l/s and Q = 13.5 l/s

Figure 15.4 shows level differences in the profile across the channel similar to the ones
observed by Sturm and Sadiq (1996). These differences are observed in the last meter of
the 13.5 l/s profile, with water level falling under the bank level, and in the last 1.5 m of
the 10 l/s profile, where the floodplains are emptying into the main channel. In these
areas, an important lateral velocity component from floodplains to main channel was
observed (Figure 15.5).

15.4 Critical-depth analysis

For a 10 l/s discharge, the analysis of the specific energy curve (Figure 15.6) according
to Blalock and Sturm predicts a unique critical depth in the main channel at 39.9 mm.
The measure of a water depth of 30.2 mm, at the outlet section, and of 41.5 mm, 0.20 m
upstream from the outlet (see Figure 15.3), confirms this prediction. The critical depth
is thus located a few centimetres upstream from the outlet edge.
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Figure 15.6 : Specific energy curve, calculated for discharges of 10, 13 and 13.5 l/s

For the 13.5 l/s discharge, the two downstream levels of the water profile in the main
channel are measured at 51.6 and 37.5 mm while the same sections in the floodplain
both present a 56.0 mm depth (see Figure 15.4b). The critical depth is computed as
unique at 57.4 mm, and seems thus overestimated. As it was proposed by Yuen and
Knight (1990), this could be explained by a wrong estimation of the specific energy, the
computation of which neglects the momentum transfer influence. Indeed, for a slightly
smaller discharge (13 l/s), a double critical depth appears, at 47.4 and 56.3 mm (Figure
15.6). Actually, the transition between a double and a unique critical depth is thus not so
clear, due to the absence of two-dimensional aspects in the model.

15.5 Water-profile computations

Water profiles were computed using a classical resolution of the one-dimensional
steady-flow Bernoulli equation by the Standard Step Method (French, 1985). The
computations were performed with : (1) the Single Channel Method (SCM); (2) the
Divided Channel Method (DCM); and (3) the Exchange Discharge Model (EDM), with
a value of  ψg = 0.5, as calibrated in Chapter 4. As the standard step method is unable to
compute profiles crossing the critical depth, the downstream water level fixed for
computation was chosen as the last measured point of the water profile above the
computed critical depth. The cross-sections of the flume were carefully measured to
model also the water surface irregularities. In order to get accurate simulations, even in
steep water-slope areas near the critical depths, an interval of 0.20 m between cross-
sections was selected.



Chapter 15 : Flow near critical depth 255

30

40

50

60

70

80

0 2 4 6 8 10
Station x (m)

W
at

er
 le

ve
l z

 (
m

m
)

Data

Single Channel calc.

Divided Channel calc.

EDM calc. (a) Discharge 10 l/s

bank level

30

40

50

60

70

80

90

0 2 4 6 8 10
Station x (m)

W
at

er
 le

ve
l z

 (
m

m
)

Data

Single Channel calc.

Divided Channel calc.

EDM calc. (b) Discharge 13.5 l/s

Figure 15.7 : Measured and computed water profiles, computation starting from critical
depth :  (a) Q = 10 l/s; and (b) Q = 13.5 l/s

For the 10 l/s discharge (Figure 15.7a), EDM clearly produces the best results with a
quite accurate simulation of the surface irregularities. The results can be improved only
in the downstream area. It could be due to the closeness of the control section and to the
subsequent influence of vertical velocities at this point; but also to two-dimensional
flow features, just upstream of this control section. A better agreement can be obtain if
the downstream condition is taken, for example, 1 m upstream from the outlet (Figure
15.8a). In this case, the agreement of the EDM is very good compared to the
measurement precision, even for the 3 downstream metres of the flume. The generally
better results of the EDM proves its ability to model accurately the sudden conveyance
reduction and the resulting water-slope increase that occurs when water just exceeds the
bank level, generating the momentum transfer.
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Figure 15.8 : Measured and computed water profiles :  (a) Q = 10 l/s, computation
starting from x = 9 m; and (b) Q = 13.5 l/s, computation starting from x = 8.6 m

For the 13.5 l/s discharge (Figure 15.7b), none of the 3 methods gives directly
satisfactory results. The  SCM is clearly inapplicable as the profile computation is cut
off at 6 m section, due to a local rise of the critical depth (the latter also computed by
SCM), that thus intersects the water profile. Only the EDM seems to model accurately
the upstream part of the profile, where the latter approaches the uniform depth. Slightly
better results for the downstream area can again be obtained by taking the downstream
condition at a greater distance from the outlet (Figure 15.8b), upstream of the two-
dimensional flow area. The small distance between the water profile and the critical-
depth profile, along almost the whole channel, could explain the difficulty to get better
results for this discharge
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15.6 Conclusion

Two water profiles were measured in a compound channel with a control section as
downstream condition. In both cases, two-dimensional components appeared on the
water surface near the critical depth. It is found that specific-energy curve analysis,
performed according to Blalock and Sturm (1981) fails in estimating accurately the
critical depth above floodplains level, probably because the momentum transfer
between subsections is not taken into account.

Using the EDM, an accurate modelling of the upstream part of the water profile is made
possible. On the other hand, none of the tested methods succeed in modelling the profile
in areas adjacent to critical depth, probably due to the observed two-dimensional
characteristics. Better results are only obtained when the downstream condition is
imposed at some distance upstream of the control section, where the flow surface is
again one-dimensional. In this case, the EDM gives again the best results, when
considering the whole length of the computed water profile.

In order to improve this analysis, velocity measurements should be made in the
downstream part of the flume. This would enable the mapping of the Froude number of
the flow, and, accordingly, the exact location of the critical sections in both main
channel and floodplains. Using such observations, critical-depth estimations could at
least be validated; while a better assessment of the one-dimensional model limits would
be facilitated.





Conclusion

1. Summary of the results

In the present work, the flow in a compound channel has been investigated using
theoretical, experimental and numerical modelling. A one-dimensional model, the
Exchange Discharge Model (EDM), has been proposed as a general framework for flow
modelling and analysis. The momentum-transfer mechanisms in prismatic and non-
prismatic channels have been deeply explored. Consequently, the first part of this
conclusion will summarise the most significant results of this research work; while the
second part will propose some improvement possibilities that could constitute
objectives for further studies.

The Exchange Discharge Model takes into account the momentum-transfer effect on the
channel conveyance through an additional head loss, to be added to the friction loss
estimated by the classical Divided Channel Method. The momentum transfer is
therefore modelled as proportional to the discharges exchanged through the interface
between the main channel and the floodplain, and to the velocity difference between
both subsections. Two sources of exchange discharges are identified : (1) a turbulent-
exchange discharge, due to the large-scale horizontal vortices that develops in the shear
layer at the interface; and (2) a geometrical-transfer discharge, due to the mass transfer
that occurs in non-prismatic channels, or in non-uniform flow conditions.

Using the EDM, the actual channel-roughness values can be adopted, and only two
additional parameters (ψt and ψg) have to be assessed. It has been found that, in a first
approximation, constant values could be given to both parameters. With these values,
the EDM-predicted discharges match measured data with a better accuracy than the
classical Single Channel and Divided Channel Methods, and with the same accuracy as
the Ackers and the Lateral Distribution Methods. Water profiles are accurately
calculated by the EDM. The prediction of the flow distribution between subsection is
also improved, but with a lower accuracy than for the total discharge estimation.

The turbulent-exchange process has been investigated experimentally, analytically and
numerically. Using experimental velocity-field measurements obtained by a PTV
technique, an analysis method has been developed to identify periodical-structures
characteristics. The vortex wave lengths obtained from the experiments, from a linear
hydrodynamic stability analysis and from a numerical simulation, are found in fairly
good agreement. However, the influence of the vortices-merging process could not be
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definitively evaluated : indeed, it seems that the experimentally-observed vortex wave
lengths match better with the wave lengths estimated before than after vortices merging
in the numerical simulation, whereas, one should expect that vortices merging actually
occurs in the experiments.

Additionally, it has been found that the presence of the vortices improves the
numerically-predicted velocity profiles, at least in the shear-layer area; while the
computed velocity remains underestimated on the floodplain, probably due to the
secondary-currents effect. A detailed analysis of the shear stress at the interface and of
the related momentum-transfer process tends to indicate that the effect of the large
horizontal vortices is adequately modelled by the EDM; and that the EDM weakness
regarding the flow-distribution prediction could also be imputed to the secondary-
currents effect.

On the other hand, the geometrical-transfer process has been investigated
experimentally, through flow measurements in a compound channel with symmetrically
narrowing floodplains, for which no curvature-driven currents should be observed,
when compared to the meandering geometries investigated by previous authors.
Nevertheless, it has been observed that secondary currents driven by the geometrical
transfer are quite similar to the currents previously depicted in the cross-over area of a
meandering compound channel.

When comparing measurements performed in the same cross section and with the same
water depth but with a different discharge, it has been noticed that the flow distribution
does not depend on the total discharge, but only on geometrical parameters.
Accordingly, this validated the assumption made during the EDM development, that the
ratio between the additional loss due the geometrical transfer and the friction loss is
independent from the whole-channel discharge.

When compared with the water profile measurements, the EDM gave satisfactory
results, although an increased value of the ψg parameter had to be used. This need for an
increased ψg value has been imputed to an underestimation of the floodplain discharge
by the numerical simulation : as a result, the mass transfer reduced and the ψg value had
to be increased in order to get an unmodified geometrical momentum transfer. Two
reasons for this floodplain-discharge underestimation were suggested : (1) the effect of
an ill-conditioned upstream discharge distribution; and (2) the erroneous flow-
distribution estimation by the EDM.

Lastly, some reflections were proposed regarding the secondary-current modelling in
the Lateral Distribution Method (LDM), and attempting to improve the physical
meaning of the parameters used in such models. On one hand, the helical secondary
currents observed in prismatic channels were investigated using a dispersion-term
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modelling : results similar to the one of the Shiono and Knight LDM were obtained, but
the dispersion coefficients used therefore had no physical meaning in term of
secondary-currents pattern. On the other hand, a tentative extension of the LDM for
non-prismatic channels was proposed, replacing the bed-slope term by an energy-slope
term, and defining a secondary-current term strictly proportional to the actual transverse
velocity. Accurate results with this extended LDM were obtained only when a non-
constant value of the energy slope across the channel width was considered.

2. Perspectives for further works

In the present work, the EDM has been validated for prismatic-channel modelling.
Regarding non-prismatic geometries, it has only been tested for small mass-transfer
rates : for a slightly-meandering river geometry in the River-Sambre test case, and for
limited converging angles in the narrowing-floodplains experiments. It is expected that
the EDM geometrical-transfer modelling is appropriate for larger mass-transfer rates.
However, the EDM validation should be extended to such meandering compound
channels with larger sinuosity, for example using data from the FCF Series B
experiments (Sellin et al. 1993).

Promising results were obtained from the investigations of the periodical turbulent
structures in the shear layer between the main channel and a floodplain. However, two
weaknesses were identified : (1) the merging-process modelling, linked with the wall-
constraining effect; and (2) the secondary-current effect on the floodplain velocity.
Additionally, the numerical simulations would benefit of an improved Sub-Depth-Scale
modelling, closer to an actual LES model.

In order to explore further the possible vortices merging, it could be useful to switch
from the perturbation temporal-growth analysis to a spatial-growth analysis, that
corresponds better to experimental conditions. This spatial growth could be observed
experimentally by repeating the PTV measurements for several stations along the
channel length; as far however as the inlet-tank configuration is adapted in order to
correct the ill-conditioned upstream discharge-distribution observed in the experiments
reported in Chapter 12. Whereas the extension of the stability analysis to perturbation
spatial-growth should not be too difficult, the extension of the numerical simulations
will require adapted upstream and downstream boundary conditions, enabling a random
initial perturbation to be introduced in the computational domain.

On the other hand, new experimental observations of the secondary-currents
development on the floodplains are necessary, in order to assess better their effect on
the momentum balance. Whereas the horizontal vortices were rather easily captured
using surface velocimetry, the identification of secondary-current cells probably
requires the measurement of the instantaneous velocity field in a cross-section vertical
plane. Such a measurement will be much more difficult, as the ratio between the
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longitudinal velocity and the transverse and vertical velocities is rather large.
Accordingly, the tracers used for flow visualisation will move fast through a vertical
observation plane, resulting in very small transverse displacements to be measured.
Maybe a tri-dimensional stereoscopic particle-tracking method such as the one recently
developed at the UCL (Spinewine et al. 2001) could provide some interesting results.

When investigating the geometrical-transfer process, the flow was experimentally
studied in a novel geometry with symmetrically narrowing floodplains, providing
interesting observations. Such experiments should be pursued with a corrected upstream
discharge distribution, in order to reduce the incertitude regarding the actual discharge
distribution in a non-prismatic reach, with reference to the corresponding discharge
distribution in a prismatic reach with a similar cross-section. On the other hand, whereas
the narrowing geometry enables the observation of a geometrical transfer from the
floodplain to the main channel, the opposite geometrical transfer should also be
investigated, using a compound channel with symmetrically enlarging floodplains.

As pointed out above, the EDM validation should be enlarged to the FCF meandering-
channel geometries. If possible, analyses similar to the one made for the symmetric
geometry should be performed, regarding the flow distribution in a non-prismatic
geometry and in the corresponding prismatic reach, but also by estimating the actual
mass-transfer rates.

Lastly, it could be interesting to enlarge this work to morphological processes
associated with compound-channel flow. Indeed, it has been observed both
experimentally (Benson et al. 1997) and in the field (Woo and Kim 1997) that sediment
transport occurs from the main channel to the floodplains, resulting in large deposits on
the floodplains. Such transport processes are certainly linked with the exchange
discharges proposed in the EDM development. As a consequence, the EDM could
constitute an interesting framework for modelling such phenomena.



Appendices

A flood on the Yang-Tse River,
 in Hergé (1946), Le Lotus Bleu
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Appendix 1 
Numerical solution of the Saint-Venant equations

A1.1 Introduction

This appendix present the numerical methods used for solving the Saint-Venant
equations, or shallow-water equations, (2.33) that have been developed in Chapter 2 :
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where the friction terms Sfx and Sfy are given by (2.35); and the turbulent shear stress are
modelled using the Boussinesq assumption (2.42). The dispersion terms are here
neglected, for the sake of conciseness : their development using the finite-difference
method would be similar to the development of the other terms considered in this
appendix.

As quoted in the conclusion of Chapter 2, two numerical models are used in this work
for solving the Saint-Venant equations. Both are classical finite-difference models,
based on a MacCormack integration scheme, insuring second order precision in both
space and time. The first one is written using a staggered mesh; while the second model
is written using a curvilinear collocated mesh. The staggered mesh is used for uniform-
flow modelling in Part II, and the collocated mesh is used for non-prismatic channel
modelling in Part III.

This Appendix 1 presents briefly both finite-difference models, the MacCormack
scheme with the related stability criterion, and the boundary conditions.

A1.2 Discrete approximation using a staggered mesh

The first spatial discretisation makes use of a staggered "marker-and-cell" (MAC) mesh
(Harlow and Welsh 1965), slightly adapted for shallow-water flow modelling. In such a
mesh, the velocities U and V are defined for positions situated at a middle distance



278 Flow modelling in compound channels

between the points where the bed level z are defined (Figure A1.1). In addition to the
classical MAC mesh, proposed for compressible-flow modelling, bed-level values zb

need also to defined, as shallow-water flow is here considered. These values zb are given
for points located at the centre of squares formed by 4 points where the water-level
value z is defined. This location enables an easy estimation of the bed level value at any
point of interest (z, U, V) using a linear interpolation. Such a staggered mesh provides a
good coupling between the velocities and the water depth, insuring a very good mass
and momentum conservation during the resolution (Ferziger and Peric 1996) : this
condition is indeed required for the uniform-flow modelling with cyclic boundary
condition, to be performed in the second part of this work.

Figure A1.1 : Staggered "MAC" mesh definition, for shallow-water flow modelling

In order to facilitate the programming, the fractional indices from Figure A1.1 are
replaced by entire values as depicted by Figure A1.2, where points with the same
indices are grouped in shadowed areas. Additionally, the values of the viscosity υt, and
of the turbulent kinetic energy k are defined at the same locations as the water level z.

Figure A1.2 : Staggered MAC mesh, nodes numbering with entire indices
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Each equation from (2.33) is then discretised with a computational molecule centred on
the location where the value varying with the time is defined : on the water-level z
definition point for the continuity equation (2.33a) and for the turbulent kinetic energy
transport equation (2.46a); on the longitudinal-velocity U definition point for the x-
momentum equation (2.33b); and on the transverse-velocity V definition point for the y-
momentum equation (2.33c).

The first order derivatives in the momentum equations are written using in alternation a
forward and a backward difference operator, corresponding respectively to the predictor
and the corrector steps of the MacCormack scheme (see below). The first order
derivatives in the continuity equation and the second order derivatives (diffusion terms)
are written using centred difference operator. When the value of a variable is needed on
a point different of its definition point, this value is interpolated from adjacent values.

Accordingly, the discretised continuity equation (2.33a) writes at the node (i, j) :
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where U
ijH  and V

ijH  stands for interpolated values of the water-depth, at the definition

points of U and V :
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and where the temporal derivative ∂Hij /∂t becomes ∂zij /∂t, as the bed level zb remains
constant. The computational molecule of (A1.1) is given on Figure A1.3.

Figure A1.3 : Staggered MAC mesh, computational molecule
for the continuity equation (A1.1)
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The momentum equations (2.33b) and (2.33c), with the shear-stress definition (2.42) are
discretised in a similar way. Their computational molecules are given on Figure A1.4.
For the predictor step (forward difference operator), these equations write :
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where the values of Sfx ij and Sfy ij are estimated using (2.35), with respectively the
velocity values (Uij,

m
ijV ) and ( m

ijU , Vij); 
Z
ijH  and B

ijH  stands for interpolated values of

the water-depth, at the definition points of z and zb :
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and where the values m
ijU , m

ijV  and m
ijtυ  are defined as the mean of the four neighbouring

values, respectively at the definition points of V, U and zb :
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Figure A1.4 : Staggered MAC mesh, computational molecules
for the momentum equations (A1.3)

The discretisation of the turbulent kinetic-energy transport equation (2.46a) is obtained
similarly, centred on the z point, with a computational molecule larger than the
continuity-equation one, due to the term Ph, which writes :
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A1.3 Discrete approximation using a curvilinear collocated mesh

The second spatial discretisation makes use of a curvilinear collocated mesh. As the
mesh is collocated, some continuity and surface-instability problems will be faced,
when compared with the staggered mesh. However, the curvilinear mesh is required in
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order to perform computations with boundary-fitted mesh for the non-prismatic
geometries investigated in the third part of this work. Indeed, it turned out to be too
difficult to build this curvilinear mesh using a staggered finite-difference formulation, at
least in the frame of this work.

As depicted on Figure A1.5, the curvilinear mesh is defined in the (x, y) space, with the
U and V velocities aligned with the x and y directions; and it is linked through a
transformation function to a rectangular grid in the (ξ, η) space. The derivatives in the
(x, y) space are expressed in the (ξ, η) space by a variable change (Ferziger and Peric
1996). For example, the derivatives of the velocity U are now written in the (ξ, η)
space :
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where J is the Jacobian matrix of the transformation function that links the curvilinear
and the rectangular meshes
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where the values of the partial derivatives in the Jacobian matrix have been expressed
using centred difference operators.

Figure A1.5 : Curvilinear mesh definition

The Saint-Venant equations (2.33) are discretised as for the staggered mesh, using here
for all the first order derivatives a forward or a backward difference operator,
respectively for the predictor and the corrector steps of the MacCormack scheme. The
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Jacobian matrix J (A1.8) is estimated at the points where the equation is solved.
Centred difference operators are used for the second order derivatives.

A1.4 MacCormack integration scheme

Whereas the spatial derivatives have now been developed as a function of discrete
values of the variables, using finite-difference operators, the temporal derivative in each
equation still needs to be discretised. A MacCormack scheme is used for that purpose. It
will be presented here for the general equation

)(tF
t

=
∂
ϕ∂

(A1.9)

where ϕ is the variable to be time integrated; and F(t) is the value of the other terms of
the equation, estimated at the time t, using the discrete approximation of the spatial
derivatives.

The MacCormack scheme is a two-steps explicit integration scheme (Chaudhry 1993)
between time n and time n + 1. In the first step (predictor step), the value of F is
estimated at the time n, as in an explicit Euler scheme :

n
n

F
tt

=
∆

ϕ−ϕ
=

∂
ϕ∂ *

     or    nn Ft∆+ϕ=ϕ* (A1.10)

where ϕ* is the first estimate of the variable ϕ value at the time n + 1.

In the second step (corrector), the value of F is estimated at the time *, using the value
ϕ* estimated by the predictor step. As this value is an estimate of the variable value at
the time n + 1, this step is similar to an implicit Euler scheme, although the computation
remains here explicit :

*
**

F
tt

n

=
∆

ϕ−ϕ
=

∂
ϕ∂

      or     *** Ftn ∆+ϕ=ϕ (A1.11)

where ϕ** is a second estimate of the variable ϕ value at the time n + 1.

The variable value at the time n + 1 is finally given by the mean value of ϕ* and ϕ**,
corresponding to a trapezoidal scheme, without implicit computations :

( ) ( )*
2
1

***
2
11 FFt nnn +∆+ϕ=ϕ+ϕ=ϕ + (A1.12)

In order to simplify the programming, the definition (A1.11) of ϕ** can be replaced by
the following expression, similar to the ϕ* definition (A1.10)

**** Ft∆+ϕ=ϕ (A1.13)
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Accordingly, the ϕ value at the time n + 1 writes :

( ) ( ) ( )*
2
1

**
2
1

**
2
11 FFtFt nnnnn +∆+ϕ=∆+ϕ+ϕ=ϕ+ϕ=ϕ + (A1.14)

which is similar to (A1.12).

This scheme provides second-order accuracy in time, which means that the truncation
error due to the discretisation is proportional to (∆t)2. In order to get also a second order
accuracy in space, one needs to use forward and backward difference operators in
alternation for the spatial derivations, as noted in the previous paragraphs.

As the MacCormack scheme is an explicit scheme, its numerical stability is ensured
only when the time step satisfies some given criterion. For a one-dimensional purely
advective flow (υt = 0), the stability criterion is given by the Courant-Friedrichs-Lewy
(CFL) condition (Chaudhry 1993) :
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∆
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±
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t
cU (A1.15)

where Hgc =  is the celerity of a tiny wave on the flow surface. When the flow is

purely diffusive, the stability condition for a one-dimensional flow is given by
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where Rem = U ∆x / υt is the mesh Reynolds number (Peyret and Taylor 1983).

For an advective and diffusive one-dimensional flow, both conditions (A1.15) and
(A1.16) combine together, and Peyret and Taylor (1983) propose the following
condition :
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(A1.17)

Finally, for a two-dimensional flow, Yulistiyanto (1997) developed the following
condition, which is an extension of (A1.17) :
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A1.5 Boundary conditions

Several boundary conditions have to be imposed : on the wall (free-slip or no-slip
condition), and at the upstream and downstream boundaries (cyclic condition, or
imposed depth or discharge). In the case of the staggered mesh, it is convenient to
define fictitious nodes (Figure A1.6), where the variable values are fixed in such a way
that the evolution of the variables at a computational node near the boundary can be
estimated as at any other inner node.

Figure A1.6 indicates the nodes where fictitious values have to be ascribed for a wall-
condition definition. The first variable is the transverse velocity, whose value equals
zero, as no flow is possible through the wall :

Vj=0 = 0 (A1.19)

Accordingly, the water-surface slope in the direction normal to the wall equals also
zero. This gives the value of the water level zj=-1 at the fictitious node :
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    or    zj=-1 = zj=0 (A1.20)

Figure A1.6 : Staggered mesh, definition of fictitious nodes (j=-1) for boundary
treatment, with the computational molecules for the inner nodes

The longitudinal-velocity Uj=-1 value can be prescribed using either a free-slip, either a
no-slip condition. In the free-slip condition, the velocity gradient through the wall is
assumed to equal zero. Consequently, the velocity value at the fictitious-node is
obtained similarly to the water level (A1.20) :
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For the no-slip condition, one has to assign a null-velocity value at the wall, whereas the
fictitious node where one can fix a value is behind the wall. The value Uj=-1 at this
fictitious node is obtained thanks to Taylor-series developments (Peyret and Taylor
1983) that give

( )walljjj UUUU 86
3
1

011 +−= ==−= (A1.22)

where Uwall = 0 is the velocity at the wall.

When using the cyclic boundary condition for the upstream and downstream
boundaries, the velocities values at the fictitious nodes are simply copied from the
corresponding inner node at the other end of the computational domain. Only the water-
level values require a special treatment. Indeed, due to the bed slope, in a uniform flow,
the water level z at the upstream end of the flume is higher than at the downstream end,
while the water depth H remains constant (Figure A1.7). As a consequence, the water
level at a fictitious node (e.g. at the upstream end of the domain) writes

zi=-1 = zi=imax + ∆zb (A1.23)

where imax is the indices of the downstream-section nodes; and ∆zb is the bed-level
difference between the upstream and the downstream end of the domain.

Figure A1.7 : Cyclic boundary condition, bed-level correction

For the curvilinear mesh, the boundary conditions are defined almost similarly, although
the variable values are now ascribed on the boundary nodes themselves. At the walls,
instead of the transverse velocity V, the velocity normal to the direction of the local
boundary is set equal to zero. On the other hand, as a given discharge and a given water
depth have to be used respectively as upstream and downstream conditions, a classical
characteristics method is used to link the variable values at the boundary with the values
at the adjacent inner node (Chaudhry 1993).



Appendix 2 
Practical solution of the Exchange Discharge Model

A2.1 Introduction

In order to use the Exchange Discharge Model (EDM) presented in Chapter 4, the ratios
χi of the additional loss Sa and the friction slope Sf have to be estimated, by solving the
system of equations (4.14) :
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When the channel is a straight symmetrical one with uniform flow, this non-linear
system of 3 equations with 3 variables simplifies and an analytical solution can be
found. For the general problem, a numerical solution procedure has to be used. Both
these solutions will be presented in this Appendix, together with a numerical example.
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A2.2 Symmetrical Case : analytical solution

In a symmetrical channel with uniform flow, the following simplifications can be
applied to the equations (4.14) : (1) The geometrical transfer terms κi j dKi /ds disappear;
and (2) some geometrical parameters are symmetrical : A1 = A3 , R1 = R3 , n1 = n3 and
h1 = h3 . As a consequence, the floodplain χi ratios are also equal : χ1 = χ3 ; and the
system of 3 equations (4.14) reduces to 2 equations :
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Assuming that the main-channel velocity is higher than the floodplain one, the solutions
of the system must satisfy the following conditions :

-1 < χ1 ≤ 0 (A2.2a)

0 ≤ χ2 (A2.2b)
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meaning that : (1) The floodplain velocity is accelerated due to the momentum transfer
from the main channel (A2.2a); (2) the main channel velocity is reduced (A2.2b); and
(3) the floodplains velocities remain slower than the main channel one (A2.2c).

If we define an auxiliary variable X as
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the system (A2.1) finally reduces to one equation :
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which is a quadratic equation with 2 possible solutions :
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with p defined as

p
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The positive sign is selected for the square root term in (A2.5) as only this root satisfy
the conditions (A2.2) rewritten as

0 < X ≤ 1 (A2.7a)
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The final solution of the system (4.14) for a uniform flow in a symmetrical and
prismatic channel is thus :
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where X is given by (A2.5), with a p value defined by (A2.6).

Although such a solution for a prismatic symmetrical channel is of limited practical
applicability, it has been useful for computations relative to typical experimental-flume
geometries, when fitting the ψt parameter value.
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A2.3 General Case : numerical solution

To get a numerical iterative solution of the system (4.14) for the general case, we first
define three auxiliary variables :
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The system (4.14) becomes :
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and must satisfy the following conditions, assuming again that the velocities in the main
channel are higher than in the floodplains :

0 11< ≤X ;   1 2≤ X    and   0 13< ≤X (A2.11a)
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Equations (A2.10a) and (A2.10c) can be seen as quadratic equations respectively of X1

and X3 : extracting the roots and selecting the appropriate ones (only the X1+ and X3+

roots satisfy the condition given by (A2.11b)), after simplifications, we get an
expression of X1 and X3 as a function of X2 :
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Using these expressions in equation (A2.10b), we finally get a single function of X2 that
has to be equal to zero :
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as X1/X2 and X3/X2 are defined as functions of X2 by equations (A2.12).
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The value of X2 can finally be found using a Newton-Raphson resolution of equation
(A2.13), with an initial value of X2 = 1. Getting the value of X2 as a function of the
cross-section geometrical parameters, we finally obtain the values of the χi ratios from
the Xi definition (A2.9).

A2.4 Numerical example

As an example, the EDM calculation of a compound-channel discharge is applied for
the particular case of the test 020501 in Wallingford FCF. The geometrical data of the
section are given by Knight (1992) (see Figure 1.1) : main-channel half width b = 0.75
m; section half width B = 3.15 m; bank level above channel bottom h = 0.15 m; bank
slope sc = 1. The bottom slope is S0 = 1.027 × 10-3 and the Manning roughness
coefficients can be estimated at nc = 0.010 s/m1/3 and nf = 0.010 s/m1/3.

The calculation is done according to the steps presented in the summary of the method
(§ 4.9.1), with a water level in test 020501 equal to H = 0.198 m, using, for the sake of
generality, the numerical solution presented in § A2.3.

1. As the channel is symmetrical, parameters will be equal for both floodplains. The
computed subsection areas are A A1 3 01091= = . m 2  and A2 0 3338= . m 2 ; the
hydraulic radii are R R1 3 0 047= = . m  and R2 0174= . m ; the subsection

conveyances are K K1 3 1421= = . m s3  and K2 10 384= . m s3 ; and the bank level are
h h1 3 015= = . m .

2. There is no geometrical transfer discharge so that 0=dsdK f .

3. The numerical solution of (4.14) is calculated by the Newton-Raphson method,
according to § A2.3. For the first iteration, a value X2 = 1 is assumed. With that
value, equations (A2.12) give X1 /X2 = X3 /X2 = 0.6947 and equation (A2.13) gives
F (1) = 0.7007. The derivative of F (X2 ) is estimated numerically :

( ) ( ) ( )dF X

dX

F X F X2

2

2 20 001

0 001
2 5765=

+ −
= −

.

.
. (A2.14)

and the correction to X2 is given by the Newton-Raphson method :

( )
( )

dX
F X

dF X dX2
2

2 2

0 2719= − = . (A2.15)

A second iteration is thus carried out with X2 = 1.2719. At the end of the third
iteration, we get X2 = 1.2452; X1 /X2 = X3 /X2 = 0.6464 and F (X2) = 2 × 10-3. The
corresponding χi values are χ1 = χ3 = - 0.3521; and χ2 = 0.5506 (A2.9). These values
are found equal to those computed by the analytical solution up to the fourth digit.
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4. The corrected conveyance are estimated by equation (4.16) : sm765.1** 3
31 == KK

and sm339.8* 3
2 =K ; and the discharge is finally given by equation (4.15) :

Q = 03804 3. m s .

This discharge computed by the EDM is found to be close to the measured one Q =
0.3832 m3/s. The discharge computed by the SCM would have been Q = 0.3396 m3/s;
and by the DCM, Q = 0.4239 m3/s. This proves once again the efficiency and accuracy
of the EDM.





Appendix 3 
UCL flume : experimental set-up

A3.1 Flume description

In order to support the experimental part of this work, a new compound-channel flume
has been specifically build in the UCL Laboratory (see Marchal and Philippe 1998).
This flume is 1.20-m wide, and its overall length equals 14 m (Figure A3.1 and Figure
A3.2). This length comprises : (1) a 10-m long measurement section, with a coated-
plywood bottom; (2) a 2-m long inlet tank; and (3) a 2-m long outlet tank. The bed
slope is variable in the interval S0 = 0 .. 0.03, thanks to a pair of coupled adjustment
jacks. In order to facilitate this adjustment process, the flume has been build on a unique
frame.

Figure A3.1 : UCL compound-channel flume, general view

The discharge is supplied through an upstream reservoir with constant level (see Figure
A3.2), in such a way that an accurate discharge control is possible, independently from
the pump working. Flow rate in the interval Q = 0 .. 30 l/s is available, and discharge
measurement is operated by an electromagnetic flowmeter. Several equipment are used
in order to still the flow at the supply-pipe end and in the inlet tank : (1) a coco-fibres
mat, wrapped around the pipe; (2) a honeycomb screen, ensuring parallel flow; and (3) a
vertical contraction, for the transition to the measurement section (Figure A3.3). It is
thought that this contraction design could be related with the ill-conditioned upstream
discharge distribution observed in Chapter 6 and Chapter 12. The downstream level is
controlled through an adjustable weir.



296 Flow modelling in compound channels

Figure A3.2 : UCL compound-channel flume

(a) (b)

Figure A3.3 : Inlet tank, stilling devices and vertical contraction

A two-directional measurement trolley is fixed above the flume. Both its x- and y-wise
positions are recorded automatically.
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A3.2 Measuring devices

The classical measuring devices used during this work are summarised in Table A3.1.
The performed measurements include : (1) discharge; (2) level (bed and water); (3)
velocity; and (4) velocity direction. As already quoted, the discharge is measured with
an electromagnetic flowmeter, with a 0.5 % precision.

The levels were measured using either an electronic or an automatic height gauge, both
mounted on the measurement trolley. The electronic height gauge is used with a sharp-
ended stem. Its absolute precision is 0.01 mm. However, due to water surface
oscillations, the measurements accuracy is expected to be limited to 0.10 mm. The
automatic point gauge is a Water-Level Follower (WAVO), from Delft Hydraulics
(Figure A3.4). Its functioning is based on a vibrating needle that is automatically
maintained at the water-surface level. As the vibrating needle is suspended at the end of
a chain, great care is required when moving the trolley, in order to limit its pendulum
movements.

(a) (b)

Figure A3.4 : Water-Level Follower (WAVO) : (a) general view;
and (b) close-up of the vibrating-needle device

Velocities are measured by a 4-mm diameter Pitot tube, connected to a low differential
pressure manometer. Classically, the velocity U is estimated as

( )
ρ
−

φ= sd pp
U

2
(A3.1)

where pd and ps are respectively the dynamic and the static flow pressures, recorded
through the axial and the lateral holes of the Pitot tube; ρ is the specific mass of water;
and φ is a correction factor. This φ factor accounts for the differences between the actual
and the idealised flow lines along the Pitot-tube head, and for the corresponding losses
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(Troskolanski 1962). For the present tube, its value has been experimentally estimated
at φ = 0.90. By comparison of the averaged velocity field and the actual discharge,
measured by the electromagnetic flowmeter, the velocity-measurement accuracy is
estimated to be around 2 %. It has been noted that a careful adjustment of the zero
reading from the pressure manometer is necessary to get accurate measurements of low
velocities. This adjustment is performed by by-passing the Pitot tube and connecting
both entries of the manometer to a still-water vase.

Table A3.1 : Measuring devices used in the UCL flume

Device Producer
[serial number]

Measurement
range

Measurement
precision

[estimated]

Electromagnetic flowmeter
"Magmaster"

ABB Kent-Taylor
[V 11632 / 5 / 6]

0 .. 100 l/s 0.5 %

Electronic height gauge
"HDS-20M"

Mitutoyo
[0001830]

0 .. 250 mm 0.01 mm
[0.10 mm]

Automatic height gauge
"Water-Level Follower"

Delft Hydraulics
[WAVO – 73 W 166]

0 .. 100 mm 0.10 mm
[0.20 mm]

Pitot tube, 4 mm diameter Airflow .. [2 %]

Differential manometer
"LPM 9481"

Druck
[16612]

-10 .. 10 mbar 0.1 %

Micro vane UCL 0 .. 30 ° [0.5 °]

(a) (b)

Figure A3.5 : Micro vane, for velocity direction measurement
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The velocity-direction measurements are performed using a UCL-made micro vane
(Figure A3.5). This micro vane is 5 cm long and 0.5 cm height. Its end has a fishtail
shape, in order to increase its sensibility for the lowest transverse velocities. The micro
vane is fixed on a low-friction rotational-displacement transducer for automatic reading
purpose. Due to some difficulty encountered during the micro-vane construction, it is
not perfectly symmetric. As a result, its zero fitting is unfortunately uneasy, in such a
way that the measurement precision is estimated to be not better than 0.5 °.

A3.3 Measuring procedures

A3.3.1 Bed slope

In order to measure the flume bed slope, the downstream weir is set at its highest
position and the measurement section is filled up with still water (Q = 0 l/s). The water
depth H is then recorded as several stations, using the electronic height gauge : at each
location, the zero reading is set for the bottom level, and the horizontal water level is
measured accordingly. A linear regression through the measured points gives finally the
requested bed slope S0.

A3.3.2 Water profile

Water profiles are measured using the WAVO mounted on the trolley, which is pushed
by hand on the whole channel length. During this travelling, one measurement per
10 cm is recorded. In each case, the profile is also measured during the return travel, in
order the validate the measurement.

Two corrections are necessary for a proper use of the WAVO data : (1) a reference level
has to be set; and (2) the WAVO local level depends on the trolley rails and has to be
corrected accordingly. The reference level is fixed on the central axis of the flume
bottom, at the downstream end of the measurement section, corresponding to its lowest
point.

Figure A3.6 : Level measurement correction, according to the trolley rails level
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The second adjustment is necessary as the WAVO measures a water level zm relative to
its actual position on the trolley rails (Figure A3.6); whereas one is interested by the
actual water level za relative to a horizontal reference plane. This actual level za is
obtained by subtracting to the measured level zm a previously-recorded measurement of
the rails position zr, relative to a reference plane. This correction value zr is obtained by
setting an horizontal water level, as for the bed slope measurement, and by recording the
water profile using the present procedure.

The stage-discharge relation can finally be measured by setting uniform flows for a
range of discharges. The uniform flow condition is obtained by adjusting the
downstream tailgate level until the measured water profile is found parallel to the flume
bottom. It is expected that this process gives the uniform water-depth value with an
accuracy equal or better than 0.20 mm.

A3.3.3 Velocity distribution

Velocities in a cross-section are recorded according to a given measurement mesh. This
mesh density is decided according to the measurement purpose : when only the
discharge distribution is of interest, 4 or 5 points are fixed at different levels on 4-5
vertical in the main-channel, and 1 to 3 points are fixed on 4-5 verticals in each
floodplain. This mesh density is only increased (up to 10 points on a vertical in the
main-channel) when one is also interested in the detailed flow structure. When a
symmetric cross-section is investigated, the measurements are generally limited to half a
section.

The local velocities are then depth-averaged (using a trapezoid-integration rule), and an
estimate of the discharge is obtained by a second integration on the section width. This
discharge estimate is compared with the actual discharge measured by the
electromagnetic flowmeter, and the resulting error is uniformly distributed over the
local measurements.

A transverse velocity is obtained as the product of the corresponding longitudinal
velocity, measured with the Pitot-tube, and the tangent of the velocity direction,
measured with the micro-vane. According to the difficulty encountered for setting the
zero reading, an estimate of the resulting error is given by the depth-averaged transverse
velocity at the channel axis, which is expected to equal zero in a symmetric cross-
section. This error is again uniformly reported on all the direction measurements.

In order to facilitate the experimental work, most of the measurements procedures
described above have been implemented in a data acquisition program "HydroCAP",
written using the Labview software from National Instruments. This program enables an
automatic recording and formatting of the measurements made using the WAVO, the
Pitot tube and the micro vane.



Appendix 4 
Hydrodynamic Stability Analysis :
Numerical solution of the eigenvalue problem

A4.1 Inviscid shear layer

The eigenvalue problem to be solved for the inviscid shear-layer stability analysis
(§ 7.3) is defined on one hand by the Rayleigh equation (7.11), or by its predecessor
system (7.10) :

vy = - iα u (7.10a)

vu 







α+

−α
= 2i

cU

U yy
y (7.10b)

where the velocity U profile is defined by the hyperbolic-tangent function (7.15)

U = Um + TANH (y) (7.15)

and, on the other hand, by the boundary conditions (7.16) :

v(y) = A2 e
-αy      for y >> 0 (7.16a)

v(y) = A3 e
αy      for y << 0 (7.16b)

In order to solve this problem, one seeks for pairs of eigenvalues (α, c) for which an
eigenfunction exists. A basic trial-and-error procedure is used for that purpose (Betchov
and Criminale 1967). The solution steps are as follow :

1. Set a value for the wave number α (positive real number, 0 < α), for which the
problem will be solved,

2. Set a tentative value for the wave celerity c (complex number, c = cr + i ci),

3. From a pair of values (u, v) defined according to one of the boundary conditions,
compute the eigenfunctions u and v by numerical integration of the Rayleigh
equation, using e.g. a Runge-Kutta method of 4th order (see below, § A4.3),

4. Compare the eigenfunctions values with the boundary condition at the other end of
the integration interval, and correct the c value accordingly, until the eigenfunctions
match the boundary condition,

5. Repeat the same procedure for other wave-number α values.
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As the Rayleigh equation (7.11) is a second-order differential equation, it is necessary to
use the auxiliary variable u in order to reduce the problem to the pair of first-order
equations (7.10), that can be solved by the Runge-Kutta method.

In the present case, the integration is performed on the interval -3 < y < 3, with a step
∆y = 0.01. At the boundary, the condition (7.16) can be rewritten :

vy = α v      for y << 0 (A4.1a)

vy = - α v      for y >> 0 (A4.1b)

or, replacing vy by u, according to (7.10a) :

v + i u = 0      for y << 0 (A4.2a)

v - i u = 0      for y >> 0 (A4.2b)

The integration starts form (A4.2a) at y = - 3. As the differential equations are
homogeneous, the initial variables can be defined with an arbitrary factor. For example,
one can use v = 1 + i 0 and u = 0 + i 1, that satisfy the condition (A4.2a). The integrated
eigenfunction will have to satisfy the condition (A4.2b) at y = 3.

An automatic search of the c value for which the eigenfunction satisfies this boundary
condition (A4.2b) is performed by defining the corresponding target function F(c) :

F(c) = v(3) - i u(3) (A4.3)

where v and u are the eigenfunction obtained by the Runge-Kutta integration. One looks
then for the c value for which this target function equals zero.

Using a plausible initial value for c, the solution can be obtained by a Newton-Raphson
method in a few iterations. As both the target function F(c) = Fr + i Fi and the unknown
c = cr + i ci are complex, one has in fact to solve a system of two equations with two
unknowns. The increments ∆cr and ∆ci to be added to cr and ci are chosen in such a way
that the target function F equals zero for c + ∆c. Using the Taylor development for
F(c + ∆c) as a function of F(c) and its partial derivatives, one gets
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where the partial derivatives are estimated as

r

r

r dc

cFdccF

c
F )()( −+

=
∂
∂

   and   
i

i

i dc

cFdccF

c
F )()i( −+

=
∂
∂

(A4.5)



Appendix 4 : Solution of the eigenvalue problem 303

where dcr and dci are small increments; and F(c+dcr) and F(c+i dci) are evaluated by
two additional Runge-Kutta integrations of the Rayleigh equation (7.10), using the
incremented celerity values.

For the inviscid shear layer defined by a hyperbolic-tangent function (7.15), one has cr =
Um. Only the ci value has then to be explored when seeking for the root of the target
function. For other cases, including friction or geometry changes, the value cr = Um is a
good approximate to start the eigenvalue search.

Once the eigenvalues (α, c) and the eigenfunction v have been computed, one observes
that the latter is symmetric in the complex plane, with reference to the y = 0 station. In
order to facilitate the visualisation and the reading of this eigenfunction, it is common to
multiply it by a given factor (corresponding to the arbitrary factor quoted above), in
such a way that vr is antisymmetric (vr(0) = 0) and vi is symmetric.

A4.2 Viscous shear layer

In the case of the viscous shear layer, the eigenvalue problem is defined by the Orr-
Sommerfeld equation (7.21)

)2(
i

))(( 422 vvvvvv α+α−
α
υ

−=−α−− yyyyyyyyy UcU (7.21)

where, again, the velocity U profile is defined by the hyperbolic-tangent function (7.15);
and by the boundary conditions (7.22-24) :

∑
=

=
4

1

)(
n

yp
n

neAyv     for y >> 0 (7.22)

where A1 = A3 = 0; and

2/1

4

2/1

3

21

i1i1 







υα
−

+α−=







υα
−

+α=

α−=α=
cU

p
cU

p

pp
(7.23)
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where B2 = B4 = 0; and
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The Orr-Sommerfeld equation (7.21) is again integrated by the Runge-Kutta method, in
the present case, from y = 3 to y = - 3. For this purpose, one defines the auxiliary
variables vy, vyy and vyyy; and one sets values for the wave number α and the viscosity υ.

However, an additional difficulty is faced when dealing with the initial-conditions
choice for this integration, as the ratio A4/A2 between both part of the boundary
condition (7.22) is unknown. This constitutes therefore an additional unknown to be
solved, together with the celerity c. On the other hand, two target functions are also
available, as one seeks to get B2 = B4 = 0 in (7.24). The problem will be solved through
two integration passes, with different values for A2 and A4, and by taking benefit from
the linearity of the equation (Betchov and Criminale 1967).

For the first pass, one sets A2 = 1 and A4 = 0. Accordingly, the initial condition for the
integration is given by (7.22) written at y = 3 :
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For the second pass, one sets A2 = 0 and A4 = 1. The initial condition is obtained
similarly.

For each integration pass, using the Runge-Kutta method, one gets the values of the
variables v, vy, vyy and vyyy at y = -3. Deriving three times the boundary condition (7.24),
the resulting system of four equations can be solved for the four unknowns Bn :

( )( )vvvv 2
3

2
322

3
1 2

qq
q

e
B yyyyyy

y

α−−α+
α−α

−
=

α−

(A4.7a)

( )( )vvvv 2
3

2
322

3
2 2

qq
q

e
B yyyyyy

y

α+−α−
α−α

=
α

(A4.7b)

( )( )vvvv 3
22

322
33

3 2

3

qq
qq

e
B yyyyyy

yq

α−α−+
α−

=
−

(A4.7c)

( )( )vvvv 3
22

322
33

4 2

3

qq
qq
e

B yyyyyy

yq

α+α−−
α−

−
= (A4.7d)

where q3 is defined by (7.25).

As the Orr-Sommerfeld equation (7.21) is linear, the final values of B2 and B4 are
obtained for any arbitrary values of A2 and A4 by superimposing results obtained from
the above integrations :

B2 = A2 (B2)I + A4 (B2)II (A4.8a)

B4 = A2 (B4)I + A4 (B4)II (A4.8b)
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where indices I and II stands for Bn values obtained by the above integrations using
respectively (A2, A4) = (1,0) and (A2, A4) = (0,1).

As the first target function writes B2 = 0, using (A4.8a) the value of the ratio A4/A2

equals

( )
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B

B

A

A
−= (A4.9)

Setting A2 = 1 (as the solutions are given for an arbitrary factor, thanks to the equation
homogeneity), and according to (A4.8b), the second target function B4 = 0 writes now
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BB (A4.10)

As for the inviscid shear layer, the Newton-Raphson method is use to find the value of
the celerity c that cancels out this target function (A4.10).

The search process for the eigenvalue c and eigenfunction v of the Orr-Sommerfeld
equation (7.21), for given values of the wave number α and of the viscosity υ, can be
summarised as follow :

1. Set a tentative value for the wave celerity c (complex number, c = cr + i ci),

2. Set the initial condition (A4.6) at y = 3, using A2 = 1 and A4 = 0,

3. Integrate the Orr-Sommerfeld equation (7.21) for the on the interval y = 3 .. –3,
using the Runge-Kutta method,

4. Estimate the values of (B2)I and (B4)I, according to the variables v, vy, vyy and vyyy

values at y = –3 by (A4.7b) and (A4.7d),

5. Repeat the same process, using A2 = 0 and A4 = 1 for the initial condition, in order to
assess the values of (B2)II and (B4)II,

6. Compute the value of the target function B4 (A4.10) for the c value set in step 1, and
correct this c value accordingly, using the Newton-Raphson method, until B4 = 0.

A4.3 The Runge-Kutta method

The Runge-Kutta method is a numerical method aimed at the integration of a first-order
differential equation (or a system of first-order differential equations), such as

),( yF
dy
d

ϕ=
ϕ

(A4.11)

where ϕ is the function to be integrated; and y is the integration variable. An initial
condition has to be defined, for example giving the value of the function ϕ = ϕ0 at
y = y0.
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The Runge-Kutta integration method proceeds by steps for determining the ϕ values at
distinct nodes (see e.g. Hirsch 1988). Let yi be the position of a node where the value ϕi

is already known, and yi+1 the position of a node where the value ϕi+1 has to be
calculated. Between these nodes, separated by the increment ∆y, one has therefore to
find the increment ∆ϕ such as ϕi+1 = ϕi + ∆ϕ. A first estimation of this increment value
can be obtained by

( )ii yFy ,I ϕ∆=ϕ∆ (A4.12)

The Runge-Kutta method is a fourth-order method : this means that the integration error
is proportional to (∆y)4. To obtain such a precision, four successive refinements of the
increment estimation are necessary. The first estimation is given by (A4.12), and the
three additional estimations are as follow :
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The value of the function ϕ at y = yi+1 is finally given by
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