
J. LOGIC PROGRAMMING 1994: 19.20~321-350 321

LOGIC PROGRAM SYNTHESIS

YVES DEVILLE AND KUNG-KIU LAU

This paper presents an overview and a survey of logic program synthesis. Logic
program synthesis is interpreted here in a broad way; it is concerned with the
following question: given a specification, how do we get a logic program satisfy-
ing the specification? Logic programming provides a uniquely nice and uniform
framework for program synthesis since the specification, the synthesis process,
and the resulting program can all be expressed in logic.
Three main approaches to logic program synthesis by formal methods are de-
scribed: constructive synthesis, deductive synthesis, and inductive synthesis. Re-
lated issues such as correctness and verification, as well as synthesis by informal
methods, are briefly presented.
Our presentation is made coherent by employing a unified framework of terminol-
ogy and notation, and by using the same running example for all the approaches
covered. This paper thus intends to provide an assessment of existing work and a
framework for future research in logic program synthesis.

1. INTRODUCTION

Program synthesis refers to the elaboration of a program in some systematic manner, starting
from a specification, that is a statement describing what the program should do. A specifi-
cation may have many forms. We can distinguish formal specifications from informal ones.
For the latter, the synthesis process cannot be totally formalized and can only be partially
automated. We thus distinguish between synthesis by formal methods and synthesis by

informal methods.

Program synthesis in general has been an active area of research outside logic program-
ming. See [8,3,50, lo], for example, for a presentation of the major achievements. In the

Address correspondence to Yves Deville, Unit6 d’Informatique, Universiti Catholique de Louvain, Place
Ste Barbe, 2, B-1348 Louvain-la-Neuve, Belgium or Kung-Kiu Lau, Department of Computer Science,
University of Manchester, Oxford Road, Manchester Ml3 9PL, England.

Received May 1993; accepted January 1994.

THE JOURNAL OF LOGIC PROGRAMMING

0 Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

322 Y. DEVILLE AND K.-K. LAU

early days of logic programming, logic program synthesis was one of the first areas of active
research, mainly focusing on manual program derivation. By the middle eighties, however,
this work had dwindled considerably. More recently, it has become an active area of re-
search once again, this time focusing mainly on automated or semi-automated synthesis.
In this paper, we give a brief survey of the work to date in logic program synthesis.

Logic program synthesis is concerned with the following:

Given a (nonexecutable) specification, how do we get an (executable) logic
program satisfying the specification?

where the notions of “specification” and “executability” are interpreted broadly. For tack-
ling this problem, logic programming provides a uniquely uniform framework because the
specification, the synthesis process, and the resulting program can all be expressed in logic.

There are three main approaches to logic program synthesis by formal methods:

In the constructive approach,‘a conjecture based on the specification is construc-
tively proved, and from this proof, the specified program is extracted. We call this
approach constructive synthesis.

A more direct approach is to deduce clauses for the specified program directly from
the specification. We shall call this approach deductive synthesis.

Another approach can induce a program from a partial specification of the program.
The program is a generalization of the partial specification. We shall call this
approach inductive synthesis.

This survey covers all the above approaches. Related issues such as correctness and

verification, as well as synthesis by informal methods, will briefly be presented. This paper
does not cover some other synthesis approaches, such as knowledge-based synthesis [1091
or synthesis by inspection (see [7, S]), because very little work has been done using these
approaches in logic programming.

Thus, this survey covers only the program synthesis part of the so-called program de-

velopment area. Program development is a much larger area since it also includes other
aspects such as program analysis (e.g., abstract interpretation, termination) and program
transformation (e.g., fold/unfold, partial evaluation), inter alia (see related papers in this
Special Issue for other aspects of Program Development). Indeed, for the whole process
of program development, we should consider the realistic scenario depicted by the spiral:
(informal specification + incomplete formal specification + unsatisfactory program +
better specification + more satisfactory program, and so on). This scenario shows the
development process as a life-cycle, within which program synthesis enables a transition
from specification to program. We will not deal with this entire life-cycle in this survey.
Rather, we concentrate on synthesis methods. However, the reader should bear in mind the
larger context of program development.

The distinction between deductive program synthesis and program transformation is
rather subjective and often depends on the context of the research. A possible difference
could be that synthesis starts from some nonexecutable specification, which usually means a
nonrecursive description of the problem, while transformation usually starts from an already
executable description. Program transformation will be covered by a separate survey in this
volume. We shall not cover other related logic programming topics such as programming

‘Also known as the proofs-as-programs approach, after [4].

LOGIC PROGRAM SYNTHESIS 323

environments, inductive logic programming, and semantics.
Our aim for this survey is to provide a broad, extensive (and hopefully complete) survey

in the field of logic program synthesis. We shall give a coherent presentation using a unified
framework of terminology and notation, and the same running example for all the approaches
covered. By so doing, we shall attempt to expose the similarities and dissimilarities between
the different approaches, and to evaluate their respective strengths and weaknesses.

Given the space limit, it is not possible to describe all the theoretical background nec-
essary for a full treatment of the examples, or the theoretical difficulties and unsolved
theoretical problems for each method. Nevertheless, a basic knowledge of logic program-
ming will be sufficient to get a precise idea of the synthesis methods presented. However,
the reader will need to read the original papers for a deeper understanding.

We hope this paper provides an assessment of existing work and a framework for future
research in logic program synthesis.

The paper is organized as follows. In Section 2, we define and explain the basic concepts.
In Sections 3, 4, 5, and 6, we present an account of constructive synthesis, deductive
synthesis, inductive synthesis, and synthesis by informal methods, respectively. In each of
these sections, we describe the approach, show the running example for this approach, and
give a brief overview of existing methods using the approach. Finally, in Section 7, we
conclude with an assessment of existing work and proffer our views on the way ahead.

2. BASIC CONCEPTS

In this section, we first define and describe basic concepts such as specifications and pro-
grams, and then we introduce commonly used notions of program correctness, in the frame-
work of logic programming. Finally, we give an overview of correctness criteria and veri-
fication methods that have been proposed.

2.1. Specijications and Programs

A specification can be formal or informal; a program can be either a pure logic program
or a program in an existing logic programming language such as Prolog. An informal
specification describes what will be called the intended relation. This is the relation the
programmer/specifier has in mind when synthesizing a program.

Dejinition I. The intended relation for a predicate r (of arity n), denoted by T(r), is a set
(of n-tuples) of ground terms.

Example 2. A pair (11,/z) belongs to Z(incZuded) iff 11, 12 are ground lists, and all the
elements of It belong to 12.

The intended relation for a predicate r can also be seen as a specific (Herbrand) inter-
pretation for the predicate r.

In logic programming, formal specifications are usually expressed in some logic. Such
a specification will be called a logic specification.

Dejinition 3. A logic speciJication of a predicate r, denoted Spec(r), is a set of logical
formulas involving r.

324 Y. DEVULE AND K.-K. LAU

In the above definition, the form of the logic formulas defining a logic specification is
deliberately vague, to allow specifications by examples and incomplete specifications. The
logic formulas of a logic specification Spec(r) necessarily involve predicate r, but can also
contain other predicates defined within the specification, or defined elsewhere (primitives
or other specifications).

InExample4, thepredicatemember is assumed to beaprimitivesuch that member(H, L)

holds iff H is a member of list t. In practice, member can be specified in another speci-
fication, or together with the specification of included. The second logic specification in
Example 4 is a “specification by examples.”

Example 4.
Specl(included) = (included(Ll, L2) +=+ VX(member(X, Ll)

=+ member(X, L2) > 1
Specz(included) = { included([], [2, 11) ,

incZuded([l, 21, [l, 3,2, I]),
+ncluded([2, 11, [I) 1

A (pure) logic program can be seen as a particular case of a logic specification, where
the language is restricted to definite Horn clauses (also called program clauses). This is
called a program because it also has a procedural or operational semantics (SLD-resolution).
Sometimes, normal program clauses are used [80], allowing negations in the bodies of the
clauses.

Dej?nition 5. A logic program for a predicate r, denoted by Prog(r), is a set of program
clauses.

A logic program for a predicate r will normally contain clauses with the predicate r

in the head. In Example 6, it is assumed that the predicate member and remove-all

are primitives (with remove_all(H, L, NL) holding iff NL is the list L without all the
occurrences of H). This restriction amounts to assuming that the subproblems involved
have been, or will be, correctly implemented. They can thus be seen as primitives for
Prog(r). This simplification for programs (and for logic specifications) is made for ease of
understanding, and can be overcome by simultaneously considering Prog(r) (or Spec(r))

and its subproblems [33]. In the context of synthesis, such predicates are often included in
a background theory.

Example 6.
Progl(included) = { included([], L2) t

included([HjT], L7,) t member(H, L7_),

included(T, L2) }

Progz(included) = { incZuded([], [I) t
incZuded(Ll, [HIT]) t remove_all(H, Ll, NLl),

remove_all(H, T, NT2),

incZuded(NL1, NT2) }

Progs(incZuded) = { incZuded(Ll, L2) t -q(Ll, L2)

q(L1, L2) +- member(X, Ll),
-member(X, L2))

LOGIC PROGRAM SYNTHESIS 325

Finally, an (executable) Prolog program is a program written in the Prolog language.
The difference between Prolog programs and (pure) logic programs is that most Prolog
programs contain control information and/or side-effect procedure calls that destroy the
correspondence between the declarative semantics and the procedural one.

Most of the existing synthesis methods focus on the declarative aspects of logic program-
ming, and thus usually produce logic programs rather than (executable) Prolog programs.
This is not a weakness of the methods, but rather a deliberate separation of concerns. The
transition from a correct logic program to an executable correct Prolog program usually
amounts to the introduction of suitable control information [33]. We will not cover this
issue in this survey.

2.2. Correctness

Correctness (and verification) is complementary to program synthesis. We have to verify
that the synthesized program fulfills its specification, or more generally, that the synthesis
method is correct (or sound), that is, always producing correct programs.

Correctness criteria relate the intended relation, the logic specification and the logic
program, one to another. A logic specification and a logic program denote some relation,
according to some semantics. We here introduce correctness criteria which are parametric
with respect to the chosen underlying semantics.

Dejinition 7. Let Spec(r) be a logic specification. The meaning of Spec(r) is the set of
ground terms*

where +,Y denotes the chosen semantics for logic specifications.

Definition 8. Let hog(r) be a logic program. The meaning of Prog(r) is the set of ground
terms

P(r) = { t I f+og(r) bp r(t))

where bp denotes the chosen semantics for logic programs.

The semantics defines how a logic specification (program) should be interpreted. The
meaning of a logic specification (program) defines how the predicate r should be interpreted,
according to the specification (program) and the semantics.

The chosen semantics for logic specifications and logic programs also involve interpret-
ing (primitive) predicates not defined in the specification or in the program-for instance,
a possible approach is to add suitable formulas defining these predicates. An example of
possible semantics for a logic specification could be its classical logical consequences. For
a logic program, the semantics could be defined by its least Herbrand model, or by the
set of models of the completed programs Camp(P). We refer the reader to the survey on
semantics for a detailed presentation of semantic issues.

*We assume an underlying Herbrand universe built out of the specification language.

326 Y. DEVULE AND K-K. LAU

2.2.1. LOGIC PROGRAMS VERSUS LOGIC SPECIFICATIONS. We can define three correct-
ness criteria for logic programs with respect to logic specifications.

Dejbition 9. A logic program Prog(r) ispartially correct wrt alogic specification Spec(r)
iff P(r) C S(r).

Partial correctness requires that the meaning of the program be included in the meaning
of the specification. In other words, every answer computed by the program belongs to the
specification.

Definition 10. A logic program Prog(r) is complete wrt a logic specification Spec(r) iff

p(r) 2 S(r).

Completeness is the converse of partial correctness. It requires that the meaning of the
specification be included in the meaning of the program. It ensures that every specified
answer is computed by the program.

De$nition 11. A logic program Prog(r) is totally correct wrt a logic specification Spec(r)
iff P(r) = S(r).

Total correctness is thus the combination of partial correctness and completeness. Note
that total correctness does not necessarily imply, from a procedural point of view, that all
SLD-derivations for a given query are finite. By the completeness of SLD-resolution, each
correct answer corresponds with at least one finite SLD-derivation.

2.2.2. LOGIC SPECIFICATIONS VERSUS INTENDED RELATIONS. The usual correctness cri-
terion for logic specifications with respect to intended relations is the following:

DeJinition 12. A logic specification Spec(r) is totally correct wrt an intended relation I(r)
iff S(r) = T(r).

Total correctness here can be decomposed into partial correctness (also called consis-
tency here) (S(r) C I(r)) and completeness (S(r) 2 T(r)). In program synthesis, one
usually assumes the consistency of the specification, but not its completeness. Some in-
ductive synthesis methods explicitly consider incomplete specifications (e.g., specification
by examples). For instance, Specz(included) is consistent with Z(included), but not
complete.

2.2.3. LOGIC PROGRAMS VERSUS INTENDED RELATIONS. Similarly, the usual correct-
ness criterion for logic programs with respect to intended relations is the following:

Definition 13. A logic program Prog(r) is totally correct wrt an intended relation T(r) iff

p(r) = L?(r).

Total correctness here can also be decomposed into partial correctness (p(r) _C I(r))
and completeness (P(r) 1 Z(r)). When the intended relation is informal, such a criterion
cannot be established either formally or automatically. However, since the intended rela-
tion is a mathematical one, the correctness criterion can be established by mathematically

LOGIC PROGRAM SYNTHESIS 327

rigorous, although not formal, methods. Such correctness criteria can thus be used to guide
the synthesis process, especially when incomplete logic specifications are considered.

Similarly, one could also define equivalence criteria between logic specifications, or
between logic programs. Equivalence could then be decomposed into specialization and
generalization.

When negations are allowed in the logic programs and in the queries, the correctness
criteria (and the meaning of programs) are usually strengthened. For instance, besides
having P(r) = S(r), one may also require some equivalence between the negative atoms
in the meaning of the program, and the negative atoms in the meaning of the specification.

Whereas verification of a program proves its correctness, testing a program can show
its incorrectness. Testing a program can detect differences (if any) between the executable
program and the specification. Tools for debugging can provide some help to locate where
the problems are. Declarative debugging aims at detecting inconsistencies between the logic
program (i.e., its declarative meaning) and the specification. See the survey on programming
environments for a development of this subject.

2.3. Overview of Correctness Literature

Most of the literature on correctness could be described in terms of the above framework.
Depending on the specification language, the form of the logic programs (with or with-
out negations), and the chosen semantics, various approaches can be taken. For definite
programs, the underlying semantics is usually the least Herbrand model (or something
equivalent). We will not give a precise account of each piece of existing work. The reader
is referred to the cited references for a detailed presentation.

A first formulation of correctness criteria appeared in [30]. This has been systematized
and extended in [25] (see also [26,29]). The programs considered here are definite pro-
grams. Partial correctness and completeness include the idea of preconditions on the input.
A termination criterion is also proposed. Various verification methods are described: con-
sequence verification, computational induction, and structural induction.

Hogger’s work [57-591 is also based on definite programs. He proposes two families of
criteria: the first one relating the declarative semantics of the logic programs to the logic
specification, and the second one relating the procedural semantics of the logic program to
the logic specification. He also describes verification methods based on transformation and
derivation rules.

A similar approach is proposed in [5, 61, which discusses verification methods and
program equivalence. Program equivalence is also treated in [89, 78, 791. Notice that
Lever considers programs with negations. In [49], equivalence captures some observational
behavior (i.e., computation) of programs. Generalizations of programs, called extensions,
are proposed in [1021 in a framework for program development.

In [33], correctness criteria relate intended relations to logic programs with possible
negations. A first set of criteria relates the intended relation to the declarative semantics of
the (completion of the) logic program. A second set of criteria relates the intended relation
to the sequence of computed answer substitutions of the Prolog programs (derived from the
logic program). These criteria are used within a methodology for constructing programs,
rather than for verifying programs. The methodology also addresses the problem of types
in correctness criteria. Type problems in correctness criteria and in verification are also
handled in [94, 951.

328 Y DEVILLE AND K.-K. LAU

In [23, 34, 351, correctness criteria and verification methods based on proof trees are
proposed for definite programs. Programs with negations are also treated in [37].

Other verification methods are proposed in [62, 67,73, 691. However, the specification
language is here restricted.

In [2], a verification technique based on a Hoare-like inference rule is proposed for
verifying the partial correctness and the completeness of a definite program. A similar
approach is described in 1281. Another verification method, based on annotations and
procedural semantics, is presented in [36].

Correctness criteria have also been proposed in the framework of Inductive Logic Pro-
gramming (ILP). In this framework, the logic specification is a set of positive examples
(denoted by ,Spec+(r)), and possibly a set of negative examples (denoted by Spec-(r)).
Correctness criteria includes coverage of the positive examples by the logic program, what
is also called consistency or completeness (P(r) 2 Spec+(r)), and consistency of the
logic program with respect to the negative examples (P(r) E Spec-(r)), where P(r) is
the complement of P(r). See [90] for further references.

For defining the meaning of logic programs with negations, semantics other than the usual
completed program have been proposed, but not especially in the context of correctness: the
perfect model semantics [loll, the stable model semantics [48], the iterated least fixpoint
model [11, the well-founded semantics [1131, and others.

3. CONSTRUCTIVE SYNTHESIS

Constructive synthesis is an approach that originated in the functional programming para-
digm,3and is also known as the proofs-as-programs approach [4]. It has been the basis
of various existing program synthesis systems [93, 24, 531. Over the past few years, con-
structive synthesis has also become an active area of research within logic programming
[17,42].

In functional programming, constructive synthesis is based on the Curry-Howard isomor-
phism in constructive type theory [60], which states that there is a one-to-one relationship
between a constructive proof of an existence theorem and a program (i.e., a function) that
computes witnesses of the existentially quantified variables of the theorem. That is, from a
(constructive) proof of a formula of the form

Vi. 30. r(i, 0) (1)

one can extract a program such that for all inputs i, it computes an output o that satisfies
the specified relation r. Thus, the constructive synthesis process consists of two steps:

1. construct the formula (1) and prove it in a constructive logic;
2. extract from the proof a program for computing r.

It is worth emphasizing that the type theory is usually a higher-order (typed) logic, and the
extracted program is a function.

3We use this term in a wide sense, to encompass any related work such as Kleene’s work on realizable
predicates and Martin-L6f’s type theory, for instance.

LOGIC PROGRAM SYNTHESIS 329

3.1. Description of Approach

The original constructive synthesis approach based on the functional programming paradigm
may be adapted for logic program synthesis, as has been done by Bundy and Wiggins
[17, 1141 for instance. A different constructive synthesis formulation for logic program
synthesis, used by Fribourg [42], is based more directly on logic programming. However,
to acknowledge its origin in functional programming, we shall present constructive logic
program synthesis along the lines of the work of Bundy and Wiggins.

The key idea of Bundy and Wiggins’ adaptation is that a predicate (in a typed logic)
can be regarded as a truth-valued function, i.e., a predicate p(Xt : tl. . . . , X, : t,) can
be regarded as a function of type tl x . . . x tn + boole. This enables them to use the
constructive synthesis approach to synthesize predicates as functions. To extract a (first-
order) typed logic program from such a synthesis proof, they use a proof system based
on a first-order (typed) logic with a set of rules specially devised4for constructing logic
program fragments from the proof rules (see [116] for their definition and proof of their
correctness). It is worth emphasizing that Bundy and Wiggins extract (first-order) typed,
pure logic programs.

3.1.1. THE STARTING POINT. In the functional paradigm, constructive synthesis of a
program to compute a relation r starts from a theorem of the form

kVXL:tl,..., X,:t,.3Yl:t; ,..., Y,:t&.r(Xl,..., X,,Yl,..., Y,) (2)

wherexl,..., X, are input variables of types tl, . . . , t,, and YL, . . . , Y,,, are output vari-

ables of types ti, . . . , t;, respectively. This specification thus defines a relation between
the input and output variables of the program.

This theorem is usually referred to as the speci&ation theorem. However, it is more
accurate to call it the synthesis conjecture since it is the start of the synthesis process and it
has yet to be proved.

To adapt this synthesis conjecture for (typed) logic program synthesis, we encounter two
problems due to the differences between functional and logic programs:

l Unlike a functional program, a logic program can be used in more than one way,
i.e., in different input-output modes.

l Even for a chosen input-output mode, a logic program may produce many outputs
or none at all.

A solution to these problems is to consider only the all-ground mode [171. The relation r

can then be seen as a Boolean-valued function. Thus, the synthesis conjecture (2) becomes

+vx1 :t1,... ,X,:t,,.3B:booZe.r(X11..., X,)c, B (3)

where we have no output variables (as in (2)), but only input variables XL, . . . , X, (with
types tl, . . , tn, respectively); booze = {true, false}.

The meaning of the operator c-, is defined by

t- Formula c-, B iff
t Formula w (B

!- -Formula w (B
=book true)
=book false) I

4After the Curry-Howard isomorphism.

330 Y. DEVlL.LE AND K.-K. LAU

Thus, the function to be synthesized from (3) will be a logic program that is a decision
procedure for the predicate r (Xl, . . . , X,).

Note that in this all-ground mode approach, after a logic program has been synthesized,
it is necessary to verify that the program can be used in some specific mode. This is usual,
and it amounts to separating the logic part from the procedural one. Such a verification of
modes can be performed by using existing tools such as abstract interpretation.

3.1.2. THE END RESULT. Thus, a successful proof of the synthesis conjecture means
that a logic program exists which can answer a goal of the form r(X1, . . . , X,). The (pre-
defined) construction rules corresponding to the proof rules used in the steps of the proof
allow us to extract such a logic program. The end result of constructive logic program
synthesis is usually a typed, first-order, pure logic program.

3.1.3. THE SYNTHESIS PROCESS. Starting from a synthesis conjecture, the first step of
constructive synthesis is to produce a proof of this conjecture, for instance, in a typed (first-
order) constructive logic. Obviously, this is not a simple task in itself. It is usually carried
out on a mechanized proof system (which embodies the typed constructive logic), and
requires the use of very sophisticated (mechanized) development tools and proof assistants.
For instance, Bundy and Wiggins [17, 114, 1161 use a proof planner to guide and automate
parts of their proofs carried out in a proof development system.

From the proof of the synthesis conjecture, a program can be extracted. One possible
approach consists of regarding the proof itself as a program. This interpretive approach
is possible if we have an operational semantics for such proofs. Usually, though, a logic
program is mechanically extracted from the proof. This is possible because each proof rule
used in the proof system has an associated construction rule which has been pre-defined and
proved to be correct, allowing each step of the proof to generate the corresponding logic
clause(s).

Programs extracted from the constructive proofs are totally correct, assuming that the
proof system is sound, and that the construction rules associated with the proof system are

correct.

3.2. Example

For a logic program for incZuded(Ll, L2), the synthesis conjecture is

t- VL, : lists, L2 : lists. 3B : boole. included(Ll, L2) C, B

or, using the logic specification Specl(included) in Example 4 (Section 2.1),

!- VL1 : lists, L2 : lists. 3B : boole. VX . (member(X, Ll) =+ member(X, L2)) - B.

Applying induction on L 1 gives two subconjectures:

l (base case)

k VL2 : lists. 3B : boole .VX . (member-(X, 11) + member-(X, L2)) c-, B (4)

LOGIC PROGRAM SYNTHESIS 331

0 (step case)

T : lists
VL2 : lists. 3B : boole . VX . (member(X, T) =+ member(X, Lz)) C, B (5)
!- VL:! : lists. 3B : boole . VX . (member(X, [HIT]) =+ member(X, L2)) c, B

The program fragment that can be extracted at this point of the proof is

included(Ll, L2) + L1 = [I, . . .
incZuded(Ll, L2) +- L1 = [HIT], . . , (6)

Since the base case is always true, the first “. . .” can be replaced by true.

By using the definition of member, the step case gives rise to two more conjectures:

t- 3B : booze. VX. (X = H + member(X, L2)) C, B (7)

I- 3B : boole .VX . (member(X, T) =+ member(X, L2)) C, B (8)

(7) can be proved by a further application of induction, and (8) can be proved using the
induction hypothesis

VL2 : lists. 3B : boole . VX . (member(X, T) j member(X, L2)) c-, B

in the step case.
The second “. . .” in (6) can now be replaced by

member(H, L2) A included(T, L2)

and so the complete program extracted from the proof is

included(L1, L2) + LI = []

incZuded(L1, L2) t L1 = [HIT], member(H, L2), incZuded(T, L2)

Thesynthesized logicprogramis thus Prog3(included) fromExample6. Itis worthnot-
ing that a proof by induction on L2 of the synthesis conjecture would lead to
Proga(incZuded) [88].

3.3. Overview of Methods

Our description of constructive logic program synthesis is based on the work of Bundy and
Wiggins. They use a proof development system called Whelk, which is based on a Gentzen
sequent calculus and a first-order typed constructive logic. Whelk has been implemented
in a proof development environment called Mollusc. The precise notation and the details
of their proof system and proof planning techniques can be found in [17,20, 14,22, 16,21,
114, 1161. It is worth noting that they synthesize programs either in Prolog, or the new logic
programming language Giidel[56]. An analysis of modes for the synthesized programs is
made in [1151.

In contrast, Fribourg [42,44] uses a constructive approach based directly on logic pro-
gramming. His method starts from a set P of logic procedures for pre-defined predicates

332 Y. DEVtLLE AND K.-K. LAU

and a goal G of the form5

VX .3Y. q(X, Y) + r(X)

where q(X, Y) and r(X) are conjunctions of atoms defined in P. The variables in X and Y
are regarded as input and output variables, respectively. A proof of this goal will define a
procedure (for a new predicate) for computing Y from X. Fribourg performs the proof using
the extended execution system of Kanamori and Seki [73] on the pre-defined predicates.
The extended execution system is the standard Prolog interpreter with an extended form of
SLD-resolution and a restricted form of structural induction. Each inference rule applied
during the proof yields a corresponding logic procedure, thus enabling a logic program to
be extracted for the new predicate on completion of the proof.

Unusually, Fribourg’s method synthesizes programs that are guaranteed not only to be
(partially) correct with respect to the specification, but also to terminate.6Moreover, tail-
recursive programs can also be synthesized, although termination is not guaranteed for such
programs. To help automate proofs, his method makes use of simplification lemmas [43].

In [41], constructive synthesis techniques are used to deductively add atoms to a logic
program so that some correctness criteria with respect to a set of given logic properties are
satisfied.

4. DEDUCTIVE SYNTHESIS

Deductive synthesis starts from a specification, and derives or deduces a logic program ac-
cording to some pre-defined deduction rules. If the specification is a set of logic sentences,
then the synthesis process consists of deducing program clauses directly from the specifi-
cation. In this case, we can exploit fully the uniquely uniform framework provided by logic
programming for program synthesis. Verification of partial correctness of the synthesized
program reduces to showing that the deduction rules used are sound with respect to the
underlying specification semantics. The resulting logic program will then be a logical con-
sequence of the logic specification. It is therefore hardly surprising that almost all existing
deductive synthesis methods fall into this category. In general, however, synthesis may
have to be done using more sophisticated deduction strategies (possibly involving theorem
proving) which will ensure that the logic program synthesized will be correct with respect
to the specification.

4. I. Description of Approach

To give a general description of (first-order) deductive synthesis of logic programs, we
follow a formalization along the lines of [8 1, 821.

4.1.1. THE STARTING POINT. The starting point for deductive synthesis is a pair (M, Q)
where

1. M is a set of axioms (in some first-order language), containing the logic specification
Spec(r). This specification is a predicate defined by means of a de$nition axiom,

‘Fribourg calls such a goal an implicative goal.

6He considers a notion of existential termination.

LOGIC PROGRAM SYNTHESIS 333

i.e., an $-formula (in the language of M) whose head is the defined predicate.
Other auxiliary predicates can also be defined in this way.

2. Q is an instance (or a set of instances)70f the specified relation r for which we want
a program. Q thus represents a query.

M provides a general mathematical framework in which we can specify a large class
of programs (or problems). For example, M may contain a theory of lists (complete with
induction schemas, for instance).

The meaning of the pair (M, Q) is the set of atoms that are instances of Q (and hence of
r) and that logically follow from M, according to the underlying specification semantics.

4.1.2. THE END RESULT. To deduce a logic program only for the query specified by Q, a
small subset of the initial axiomatization M suffices in general. The synthesis process tries
to derive (step by step) such a subset in the form of a set of definite or normal clauses (i.e.,
a logic program P), in such a way that SLD or SLDNF (instead of full first-order logic) can
be used on these clauses to compute the answers to Q in an efficient way. In other words,
the synthesis process derives (using some methods) the program P in such a way that the set
of atoms that are instances of Q and that logically follow from M (under the specification
semantics) is equivalent to the set of atoms which logically follow from the completion of
P, Camp(P) (under the program semantics). The synthesized program P is thus totally
correct with respect to its logic specification Spec(r) for the query Q considered.

4.1.3. THE SYNTHESIS PROCESS. Starting from the pair (M, Q), a typical deductive
synthesis method performs a synthesis process that can be formalized as a sequence of the
form

(M U Do U Comp(Po), Q) =+ (M U Dt U Comp(Pl), Q) =k . . .
3 (M U 4 U Comp(P,A Q)

whereDoG... c Dn are sets of definition axioms for defining (new) predicates, DO = (};
PO E . . . g P,, are logic programs, PO = { }, such that

M U Dk U cOmp(Pk) b=, cOmp(Pk+l), for 0 5 k < n , (9)

where bs denotes the underlying specification semantics.
Condition (9) ensures that every program Pk of the sequence is partially correct with

respect to Spec(r).

Each step of the synthesis process thus consists of adding either a definition axiom or

a program clause that has been derived. The logic programs PI, . . . , P, are thus derived
incrementally, clause by clause, so that

Any chosen method for deriving the clauses will guarantee partial correctness as long as it
satisfies (9).

Total correctness, however, is a much more complex issue. In the formalization in
[81, 821, for example, an alternative to the standard completion of P is considered. This

7Not necessarily ground instances.

334 Y.DEVILLEANDK.-K.LAU

yields a criterion for determining when the synthesized program is totally correct (and hence
when to stop the synthesis process).

Finally, it is worth pointing out that, in general, this description of deductive synthesis ac-
cording to [8 1,821 does not apply to partial deduction (partially evaluating a logic program),
although at first sight it may appear to do so. The distinction, formalized in [83], is that
partial deduction derives (Corrrp(Pz), Q) from (Comp(Pt), Q), where Pt and 9 are logic
programs and Q is the chosen goal, whereas deductive synthesis derives (Camp(P), Q)
from (M, Q) where Comp(P> (or the completion of any program in general) is only a
small subsystem of M (or a speci~carionframework [83] in general).

Similarly, deductive synthesis can be distinguished from program transformation (based
on unfold or fold rules, for instance).

4.2. Example

Now, we show an example of a typical deductive synthesis process, where first-order logic
and SLD provide the specification and program semantics, respectively.

Suppose we have a theory of lists, Slisr, and we want to synthesize’s program for the
query incZuded(lt , ZQ) from the logic specification Spect(included) in Example4 (Section
2.1). Then, the starting point will be

where &ember is the following definition axiom for member

member(X, L) e L = [HIT] A X = H v member(X, T) (10)

and Dinc[&ed is, of course, just Specl (included).

The condition for partial correctness (9) here is

Slier U Dmember U &&ied U Dk U comP(pk) b comp(pk+l), for 0 5 k < n , (11)

where + denotes first-order consequence.
To synthesize a clause for included, we deduce it directly from Spect (included)

included(Ll, L2) _ VX. (member(X, L1) j member(X, L2))

as follows. Since we have

included([HlT], L2) _ VX. (member(X, [HIT]) =S member-(X, L2))
_ VX. (7member(X, [H 1 T]) v member(X, Lz))

we can deduce

included([HIT], L2) w VX. ((1X = H A -member(X, T)) v member(X, L2))

from Dmember (10).
Applying tbe distributivity law to the right-hand-side, we get

included([HIT], L2) +=+ VX. ((1X = H V member-(X, L2))A
(1member(X, T) v member(X, L2)))

w VX. ((X = H j member(X, L2))h
(member(X, T) =S member(X, Lz)))

LOGIC PROGRAM SYNTHESIS 335

which gives

included([HIT], L2) w member(H, L2) A included(T, L2)

Thus, we have deduced (12) from the axioms in

and so we can use its if-part, namely, the clause

included([HIT], L2) t member(H, L2), included(T, L2)

and put it in Pt. That is, we have performed the synthesis step

(slist U &ember U Din&&d, included(Ll, L2))
* (slist U Dmentber U Dincluded U Comp(Pl), incZuded(Ll, L2))

in such a way that (9) is satisfied, that is,

List U &ember U Dinchded k cOV(h)

(12)

(13)

thus ensuring the partial correctness of

P1 = {included([HIT], L2) t member(H, L2), included(T, L2)} .

Similarly, we could also derive the clauses

incZuded([], [I) +-
incZuded([H], [HI) +

included([], L2) t

from

(Slisr U &ember U Included U Comp(P1), included(L1, L2))

and add them to PI to get the
ensured by condition (9).

4.3. Overview of Methods

final program. The partial correctness of this program is

As mentioned earlier, most existing methods use (first-order) logic sentences for M, and
deduce logic clauses by correct inference rules directly from these logic sentences. That is,
first-order logic and SLD, respectively, provide the underlying specification and program
semantics.

Hansson and Tarnlund [61,52], and Clark [30,25,26] axiomatize the relations that they
wish to compute, as well as the data structures involved, as definition axioms in the form
of $-formulas in predicate logic. That is, their M is a set of zr-formulas, and their Q is
a single atomic query defined (or definable) in terms of atoms already defined in M. They
then deduce logic programs from the axiomatization either by logical deduction (natural
deduction in the case of [61,52]) or by symbolic execution (or re-writing) of Q together
with other rules for simplifying formulas such as equivalence substitutions (as in the case
of [30, 25, 261).

336 Y. DEVILLE AND K.-K. LAU

These methods guarantee partial correctness, but they require proofs of total correctness.
Hogger [57-591 also starts with a set of @-formulas for M and a single iff formula

for @x(r). He then treats the if-part without the head as a goal which is to be solved
by a resolution-like mechanism using a “logic procedure” consisting of the only-if part of
Spec(r>, as well as other relevant “clauses” from M which are necessary for solving this
goal. He calls this goal-directed derivation. Alternatively, he also carries out the derivation
using nonresolution inference rules. Hogger’s method also guarantees partial correctness,
but it requires proofs of total correctness.

Similar methods to the above have been proposed that are based on standard techniques
for logic program transformation, for example, by Kanamori and Horiuchi [68].

In contrast, the method of Lau and Prestwich [84, 851 is designed to be mechanizable.
Here, Spec(r) is also an @-formula and M is a set of @-formulas. However, the deduction
of the clause(s) for solving Q is automatically decomposed into subdeductions which, when
completed, are automatically composed into their parent deductions. This automation is
possible because the user has to specify the recursion pattern in the required procedure. This
method also guarantees partial correctness. Lau and Ornaghi [83] have proposed a method
for synthesizing totally correct programs using their formalization of deduction synthesis
in terms of SLDNF in [8 1, 821.

For specifications expressed by restricted classes of first-order logic formulas, it is possi-
ble to synthesize totally correct programs automatically. Such methods have been proposed
by Dayantis [31], Sato and Tamaki [Ill] who have implemented a compiler for translating
a class of first-order formulas directly into logic programs, and Kawamura [63,64].

Finally, there are some methods which may not at first sight seem to fall into this cate-
gory. Starting from the work of Bundy and Wiggins (see previous section), Kraan [65,661
developed a method for program synthesis that is based on proof planning. In planning
the proof that a (not yet synthesized) program meets its given specification, the program’s
body is represented by a meta-variable. The proof plan is completed by instantiating this
meta-variable to logical formulas deduced from the specification.

In the LOPS synthesis system [9], the specification is really an “input-output” synthesis
conjecture (as in constructive synthesis), and the specified program is derived by (various
strategies for) re-writing formulas as well as using domain knowledge to generate relevant
theorems. However, we may regard the domain knowledge as M, and Neugebauer [96,97]
has shown that LOPS can be re-cast as a deductive synthesis method for logic programs (as
well as programs in other target languages, even C!).

At this point, it is worth noting that Kreitz [70, 711 has studied program synthesis
at a meta-level, and has shown that the constructive and deductive approaches are fully

equivalent.

5. INDUCTIVE SYNTHESIS

Inductive synthesis refers to the process of formulating general rules from incomplete
information, such as examples. Inductive synthesis of programs is performed by means of
inductive inference, and is part of machine learning, a branch of AI. Inductive inference
is related to the concept of generalization (deductive synthesis is related to specialization)
and has received much attention in functional programming during the 1970s. It has been
an active area of research in logic programming since the early 1980s.

We shall first give a more precise description of inductive synthesis and show that in-
ductive synthesis of recursive logic programs has a specific niche within Inductive Logic

LOGIC PROGRAM SYNTHESIS 337

Programming (ILP). As an example of inductive synthesis, we shall then briefly present the
Model Inference System [105, 1061, before overviewing other existing approaches.

This section will not cover the entire Inductive Logic Programming area. Focus will
be put on methods aiming at solving “programming problems” (rather than at concept
learning), that is, problems where some recursion has to be synthesized. See [90,92] for a
complete survey and references on ILI?

5. I. Description of Approach

In the specific framework of (recursive) program synthesis from examples, it will also be
assumed here that the specifier/programmer “knows” (even if only informally) the intended
relation X(r). He is thus able to decide whether a given example belongs to the intended

relation or not.
In an inductive synthesis of logic programs, the logic specification Spec(r) is usually a

set of positive examples (denoted by Spa+(r)), and possibly a set of negative examples
(denoted by Spec-(r)). Examples are ground atoms. In some methods, the specification
can be constructed incrementally during the synthesis process.

The assumption that the specifier “knows” the intended relation is formalized by assum-
ing the consistency of the logic specification with respect to the intended relation. More
precisely:

.Spec+(r) 2 Z(r)

Spec-(r) _C Z(r)

where Z(r) denotes the complement of I(r). It is clear that a specification by examples is
usually intrinsically incomplete (i.e., Spec+(r) # Z(r)).

The objective of inductive synthesis is to infer a logic program Prog(r) that covers
at least all the examples: hog(r) must be consistent with respect to .Spec+(r) (i.e.,
P(r) 2 Spec+(r)) and with respect to Spec-(r) (i.e., P(r) C_ Spec-(r)). Given the
incompleteness of the specification, the synthesized program must also cover other unspec-
ified examples. Partial correctness with respect to the logic specification is thus irrelevant
here. The objective is to get a program that is totally correct with respect to the intended
relation, although such an objective cannot always be achieved in a fully automatic way.
Inductive synthesis thus aims at inferring some “natural” extension of the given examples.

Within the methods for inductive program synthesis, one can distinguish between the
trace-based approach and the model-based approach. In the trace-based approach, example
traces are first generated. A trace is a sequence of instructions executed by an unknown
program on some given input data. Then the traces are generalized into a program. This
program may be obtained by folding, matching, and generalizing the traces. Generalization
is required since traces are related to some specific inputs; folding is required in order to
form loops and recursion. In the model-based approach, synthesis aims at constructing a
finite axiomatization of a model of the examples. It thus makes an intensional representation
of a relation (i.e., a program) from the given (incomplete) extensional representation (i.e.,
the examples).

The model-based approach to inductive synthesis of logic program is better known as
Inductive Logic Programming (ILP). ILP is at the intersection of empirical (inductive)
learning and logic programming [91]. By empirical learning, we mean the elaboration
of a concept description from incomplete definitions. However, we concentrate here on
a specific class of logic programs, namely, the recursive ones. In this specific case, we

338 Y. DEVILLE AND K.-K. LAU

assume that a human specifier knows the intended relation. This underlines the algorithmic
focus of inductive synthesis compared to the more general scope of ILP (which also covers
concept learning).

5.2. Model Inference System

One of the first systems for synthesizing logic programs from examples is Shapiro’s Model
Inference System (MIS) [105,106]. It can also be seen as a special case of program debug-
ging [1061, where the initial program is empty. MIS is model-based. It is also incremental
in the sense that examples are introduced one by one. For each new example, the program
induced from the previous examples is updated to correctly handle this new example. A
key feature of MIS is the clause generator, which has the capacity of “enumerating” pos-
sible program clauses according to some subsumption relation computed by a refinement
operator. Such an enumeration is actually performed by searching the refinement graph
induced by the chosen refinement operator.

The general strategy behind a synthesis with MIS is the following. The initial program
is empty. For each new example, if it is a positive example that is not covered by the
program, a new clause covering this example is added to the program. If the new example
is a negative example that is covered by the program, then the covering clause is removed. If
the resulting program is inconsistent with respect to the previous examples, the program is
modified, using the above strategy. The resulting new program is then proposed to the user.
The generated programs are always consistent with respect to all the introduced examples.

Example 14. Let us sketch a possible dialogue between the specifier and MIS to synthesize
the included relation.

(Type) incZuded(Zist, list)

(Mode) incZuded(+, +), determinate

(Possibly used predicates) member(_, _), incZuded(_, _)

(El) incZuded([], [l, 21)
(Pl) incZuded(ll, 152) +

(E2) +ncEuded([I], [2])
(P2) incZuded([], 152) +

(E3) incZuded([l], [2, 11)
(P3) included([], L2) +--

incZuded([HjTl], L2) t member(H, L2)

(E4) -incZuded([l, 21, [l, 31)
(P4) incZuded([], Lz) +-

incZuded([HITl], L.2) t member(H, I%),
incZuded(T1, L2)

The specifier must first declare the predicate to be synthesized, its type, mode, as well as
the possible predicates used by the program. The declaration of the possibly used predicates
is necessary for the system to limit the size of the refinement graph. This will only contain
clauses involving the included or member predicates. After the presentation of example
(El), the synthesized program is (Pl), the most general clause for included. Example (E2)
forces the system to review this choice, and to take something less general. With example
(E3), the program must be generalized to cover the new example. A new clause is chosen by
the clause generator. It is as general as possible, while yielding a program consistent with

LOGIC PROGRAM SYNTHESIS 339

the previous examples. The presentation of example (E4) forces the system to reconsider
the second program clause, and the clause generator produces a less general one.

5.3. Overview of Methods

Fundamental notions for inductive synthesis are subsumption and generalization, as devel-
oped by [99, 100, 1031. Plotkin’s idea of least general generalization has been the basis of
most model-based approaches to the induction of logic programs. Generalization can be
used in two different ways, bottom-up or top-down. In a bottom-up approach, the example
included([], [1,2]) would yield the bottom element (least general) among the generaliza-
tions of the examples, that is, the program clause incZuded([], [l, 21) +. In a top-down
approach, such as in MIS, the clauses are enumerated from the most general to the most
specific. The example included([], [l, 21) would yield the top elements (most general)
among the generalization of the example, that is, the program clause included(ll, L2) t.

Top-down approaches as well as extensions and improvements of MIS have received
much attention in the ILP framework. A complete account of this work can be found in

[901.
Among the possible improvements of the MIS method, we mention the definition of more

sophisticated refinement operators for the clause generator, the introduction of background
knowledge, and predicate invention for the used predicates.

The combination of MIS and program schemata allows a further organization of the
search space [112, 751. This approach is especially adaptable to our specific case where
recursive programs have to be synthesized since recursive programs can often be classified
according to their design strategy (see Section 6.2).

The trace-based approach to program synthesis has received much attention in the context
of functional programming (see the survey [1071). In the logic programming context, the
trace-based approach has been reformulated in [51] by means of higher-order unification
in a type theory with recursion. There, logic program synthesis from examples is actually
also based on the constructive paradigm. A constructive proof for a concrete example of the
theory is first generated, then the proof is generalized into an inductive proof from which
a program can be extracted. In the context of program transformation, Compiling Control
techniques (e.g., [15]), is also related to the trace-based approach.

Specifications by examples can also be extended by allowing examples and properties
(i.e., logic formulas). In [38,40,39,41], logic program synthesis is performed by instantiat-
ing a divide-and-conquer program schema. The specification is composed of examples and
properties. The whole synthesis process combines inductive, deductive, and constructive
synthesis. Different synthesis methods are used for instantiating the different place-holders
of the program schema. One of the proposed methods, called Most Specific Generalization,
aims at inductively inferring a logic program from examples, but within a restrictive set-
ting. This method can successfully be applied to synthesize parts of a divide-and-conquer
schema.

6. SYNTHESIS BY INFORMAL METHODS

Some of the methods that have been studied in the literature are informal in the sense that
they start from an informal description of the intended relation. The primary objective of
such methods is not necessarily the full automation of the synthesis process, but rather the
elaboration of practical methods for the construction of logic programs. Usually, parts of

340 Y. DEVILLE AND K.-K. LAU

such construction processes are, or can be, automated, hence providing a computer-aided
environment for the development of logic programs (see also the survey on Programming
Environments).

Broadly speaking, there are two main informal approaches. The first one constructs a
logic program by structural induction, starting from the intended relation. It is informal in
the sense that the resulting logic program cannot be formally proven correct with respect to
the intended relation. We will not consider here the direct construction of Prolog programs
where the construction process is based on the operational semantics of Prolog. The second
approach starts with a program schema and “instantiates” it to obtain a logic program. In
logic programming, methods based on program schemata basically fall into the category of
informal methods because logic specifications are usually absent.

6.1. Program Construction by Structural Induction

Structural induction [18, 191 is a major technique for the construction and the proof of
correctness of programs. Basically, structural induction is a proof-by-induction method,
where the induction is on the structural form of some terms. The construction of a program
by structural induction is aconstruction where the reasoning is based on the structure of some
input parameter. Such a construction implicitly contains a correctness proof by structural
induction. Although initially introduced in the context of functional programming, it is
also well-adapted for logic program construction. Structural induction is also used in

constructive synthesis.
The construction of a logic program by structural induction can be seen as a framework

allowing a precise presentation of the “natural” (manual) construction of a logic program,
but based purely on declarative semantics.

To simplify notation, let us assume that we are dealing with a binary relation r(X, Y).

Given an intended relation I(r), the constructed logic program will have the following
form:

r(X, Y) +- Cl A F1

r(X, Y) t C,, A Fn

where, typically, each Ci A Fi will deal with one of the various cases of the induction param-
eter, with Ci determining a particular case of the induction parameter and the corresponding
Fi verifying that the intended relation holds in this case. In practice, each Ci will often be
a literal and each Fi a conjunction of literals (otherwise, a straightforward transformation
can lead directly to the form of a logic program).

The construction process consists of the following:

1. Choice of an induction parameter (X or Y).
2. Choice of a well-founded relation’over the type of the induction parameter.
3. Construction of the structural forms Ci of the induction parameter.
4. Construction of the structural cases.

In the construction process, the predicate r as well as the other predicates involved are

8A relation -C is well-founded over a set E iff there is no infinite decreasing sequence x1 z x2 . . >

Xi > . . . of elements of E.

LOGIC PROGRAM SYNTHESIS 341

interpreted according to their intended relations. The construction process is thus performed
within some intended Herbrand interpretation ‘H.

The structural forms of the induction parameter must cover all the possible cases. More
formally, the formula’

VX,Y. 3(ClV...VC,)

must be true in the intended interpretation 3-1. The formula Fi should satisfy the condition
that

vx, Y 3(Ci) =+ (r-(X, Y) -3 3(Ci A Fi))

is true in the intended interpretation 3-1.
Such an F; formula can be obtained by reduction to simpler subproblems (because of

the particular form of the induction parameter) and/or by a recursive use of T(S, t). It is,
however, crucial to show that s (or t) is smaller than the induction parameter according to
the chosen well-founded relation. The construction of the Fi is certainly one of the creative

tasks.
One can show that under the hypothesis that the construction process has been correctly

applied, the (completion of the) resulting logic program is totally correct with respect to
the intended relation [33]. We also have that the intended interpretation 7f is a model of
Camp(P), and that the interpretation of r is the same (i.e., the intended relation I(r)) in all
the Herbrand models of Camp(P). The choice of an induction parameter, a well-founded
relation, and the structural forms are important since different choices can lead to different,
although correct, logic programs.

The role of a well-founded relation is crucial to the correctness of the resulting program.
Without a well-founded relation, (incorrect) programs of the form r (X, Y) + r (X, Y) could
be constructed. From a procedural point of view, the well-founded relation also ensures the
termination properties of the program when the induction parameter is ground in the query
and in the recursive calls.

Example 15. Let us consider the intended relation Z(included) specified in Example 2.
In the intended interpretation l-t, included is interpreted as Z(included), member(H, L)
is true iff H is a member of the list L, and X = Y is true iff Y and Y are syntactically
identical. The construction proceeds as follows:

1. Choice of an induction parameter.
We choose Lt (arbitrarily).

2. Choice of a well-founded relation (over lists):
Given two lists 11~12, we define It < 12 iff It is the tail of 12.

3. Construction of the structural forms of L 1:
The possible structural forms of L t are L 1 empty and L 1 nonempty. Hence, the two
cases:

l Ll =[I
. L1 = [HIT]

These two forms covers all the possible forms because the following formula is true

‘The subformula 3(F) in the formula VX, Y .3(F). denotes the existential closure of F, except for
the variables X and Y.

342 Y. DEVILLE AND K.-K. LAU

in the intended interpretation 7-t:

VL1 . 3H, T. (L1 = [] v L1 = [HIT])

4. Construction of the structural cases:
For each structural form, we have to find a necessary and sufficient condition to
have included(Ll, L2) true in the intended relation.

l For L 1 = [I, the intended relation holds whatever the list L2 is. The structural
form is thus simply true. One can easily verify that the following formula is
true in the intended interpretation 3-1:

VLl, L2 . LI = [J =+ (incZuded(L1, Lz) + true)

l For L 1 = [H 1 T], a necessary and sufficient condition to have all the elements
of L1 belonging to L2 is to have H belonging to L2 and, all the elements of T
belonging to L2. That is,

member(H, L2) A included(T, L2)

Notice that T is smaller than L 1 according to the well-founded relation.
One could also easily verify that the following formula is true in the intended
interpretation 3c:

VL1, L2. (3H, T. L2 = [HIT]) =+
(included(Ll, L-J + L2 = [H]T]A member(H, L2)

A incEuded(T, L2))

The resulting program is then

incZuded(L1, L2) t L1 = []
incZuded(L1, L2) t L1 = [HIT], member(H, Lz),

included(T, L2)

This program can be easily transformed into Progl (included) given in Example 6. The
alternative choice for the induction parameter, that is L2, would lead to Progz(incZuded)
in Example 6.

6.2. Schema-Guided Program Construction

Programs can be classified according to their design strategies (divide-and-conquer, generate-
and, test, and so on). Informally, a program schema is a program template representing a
whole family of particular programs, all based on the same design strategy. These programs
can be obtained by instantiating the place-holders in the template to particular parameters
or predicates. It is therefore interesting to guide the construction of a program by a schema
capturing the essence of the chosen strategy.

Example 16 presents a (simplified) version of the divide-and-conquer schema, where the
“divide” (i.e., induction) is performed on the second parameter.

LOGIC PROGRAM SYNTHESIS 343

Example 16.
r(X, Y) t Minimal(Y), SoZve(X, Y)

r(X, Y) t NonMinimal(Decompose(Y, FirstY, RestY),

r(RestX, RestY),

Process(FirstY, FirstX),

Compose(FirstX, RestX, X)

Various methods can be used (knowledge-based, schema composition, deductivelcons-
tructiveiinductive synthesis, uses of algebraic properties of the specification, etc.), and they
can be combined for instantiating the different parts of the schema. For example, a possible
instantiation for the included problem could be the following:

incZuded(Ll, L2) +- L2 = [I, Ll =[I
incZuded(Ll, L2) + L2 = [HzlT2], remove_aZZ(H2, L2. NL2),

incZuded(NL1, NL2),

H2 = Hl,

insert(Hl, NLl, LI)

where remove-aZZ(H, L, NL) holds iff NL is the list L without all the occurrences of H,

and insert(H, NL, L) holds iff L is the list NL where k occurrences (for some k > 0) of
H have been added.

Given that N L 1 has no occurrence of HI, the atoms insert can be replaced by remove-all,

yielding Progz(incZuded) in Example 6.

6.3. Overview of Methods

Structural induction in logic program construction has already been seen in [30]. The
construction of an axiomatic definition of a relation is performed by case analysis on the
structural form of a parameter.

In Prolog textbooks, the usual guidelines for program construction are mainly based on
a very procedural approach, and mostly disconnected with structural induction [27,13,47].
It should be noted that in [1 lo], there is a clear distinction between the concept of a logic
program and a Prolog program.

The above presentation of program construction by structural induction is based on [33]
where methods are proposed for the systematic development of logic programs. These
methods cover the whole process, starting from the intended relation, constructing a logic
program, and deriving an executable Prolog program.

In functional programming, program schemata are used in deductive synthesis, such as
in the KJDS system [108, 1091, or in program transformation [55]. A formalization of a
strategy deriving global search algorithms from specifications is described in [7 11. Details
can also be found in [72]. In the context of logic programming, schemata were mostly used
for assisting the manual construction of logic programs.

In [45, 461, a hierarchy of logic program schemata is proposed. These are set in a
second-order logic framework, and reflect a divide-and-conquer design strategy. Divide-
and-conquer schemata are also proposed in [32,33] which incorporate generalization tech-
niques. The schemata are integrated in an environment for logic program development [54].
Various divide-and-conquer logic program schemata are carefully detailed in [41]. These

344 Y. DEVILLE AND K.-K. LAU

are used to guide inductive logic program synthesis.
Logic program schemata proposed in [98], cover different classes of problems and dif-

ferent design strategies.
Stepwise enhancement is proposed in [86,87,77,76,74] as a structured and procedural

approach to Prolog program development. Program schemata, called “skeletons,” isolate
the basic control flow structures. Skeletons can be extended by means of “techniques”
which can be applied to include extra computations in the skeletons. Different extensions
can also be combined. [12] discusses a similar system based on what the authors call
Cliches.

7. EVALUATION AND PERSPECTIVES

As we pointed out earlier, in this survey, we only intend to give a short introduction to the
various synthesis methods. It would be folly to pretend that these methods on their own
can tackle all the remaining problems or unsolved theoretical difficulties in logic program
synthesis, let alone program synthesis in general! The synthesis of a program from a
specification cannot be reduced to the choice of a method and the application of well-
defined rules to synthesize a correct program. With this caveat, we now conclude with a
brief summary, assessment, and discussion of existing work and potential future trends.

It is generally recognized that to achieve the goals of program synthesis, the best for-
malisms to use are declarative ones, such as functional and logic programming. The func-
tional programming community has been very actively pursuing this objective, mainly doing
constructive synthesis based on constructive type theory, and inductive synthesis from ex-
amples. In contrast, logic programmers have mainly concentrated on deductive synthesis.
Each of these approaches has its own strengths and weaknesses.

In constructive synthesis, although program extraction can be mechanized, producing
the proofs remains a nontrivial task and needs human interaction. In deductive synthesis,
program extraction is unnecessary (in logic programming at any rate), and each deduction
step can be automated, but the overall deduction strategy also needs human guidance.

Constructive and deductive synthesis are usually applied starting with a complete logic
specification to begin with. A problem with these approaches [Ill is that writing a logic
specification for a program is sometimes very much like writing the program itself. A
precise syntax has to be devised to completely codify the desired behavior, and one might
prefer to write the program directly in this syntax rather than using automated synthesis
systems. On the other hand, inductive synthesis from examples works very well. However,
it can create programs automatically only if they are small (two or three or four lines of
code), and the cost in execution time is exponential!

Synthesis by informal methods stresses what are the crucial creative steps within the
design of a program. It also enables us to abstract programming concepts such as pro-
gram schemas. As the starting specification is informal, these methods cannot be totally
automated, but can yield tools supporting interactive program synthesis.

Logic programming provides a nice uniform framework for program synthesis. On the
one hand, the specification, the synthesis, and the resulting program can all be expressed in
logic. On the other hand, logic specifications can describe complete specifications as well
as incomplete ones such as examples or properties of the relation to compute. The logic
programming paradigm thus offers a chance to present both kinds of information within the
same language, and treat them uniformly in a synthesis process.

Although presented separately in this paper, the different methods can be combined in
various ways. Constructive and deductive synthesis do not have to start with complete

LOGIC PROGRAM SYNTHESIS 345

specifications. It is reasonable to believe that the key to a general synthesis method lies

in a combination of the strengths of the different synthesis approaches. By studying these
different approaches in the framework of logic programming, we hope we have taken a first
step in the right direction.

Finally, in order to suggest or predict the future trends or directions of program synthesis,
it is useful to return to the general context of program synthesis. If we view computer
programming as a process of constructing executable code from (fragmentary) information,
then program synthesis shares with automatic programming the same objective of using a
machine to do computer programming. However, to paraphrase [104], it would be in
vain to hope that, thanks to automatic synthesis, there will be no more programming. It
is impossible to have user-oriented, general-purpose, and fully automatic programming
systems. At least one of these three desirable qualities has to be sacrificed. The required
input of such automatic systems needs to be carefully crafted, debugged, and maintained.
Thus, some “programming” tasks will still have to be done. To quote [1041,

“Automatic programming systems of the future will be more like vacuum
cleaners than like self-cleaning ovens.”

Realistically, then, program synthesis aims at abstracting the programming process,
letting the programmer concentrate on the really creative tasks involved. In this perspective,
the synthesis system thus becomes a partner rather than an independent agent, and we have
IA (Intelligence Amplification) rather than AI (Artificial Intelligence) [11 J. Automatic
programming will begin to have an impact on realistic programming by offering users tools
for interactive synthesis, and not by delivering some ultimate solution.

We would like to thank the referees for their valuable, detailed comments, and for their constructive criticisms

and suggestions, which have greatly improved this paper. We also thank Pierre Flener and Geraint Wiggins
for reading the draft and for their helpful remarks.

REFERENCES

I.

2.

3.

4.

5.

6.

7.

8.

Apt, K. R., Blair, H., and Walker, A., Towards a Theory of Declarative Knowledge, in:
J. Minker (ed.), Foundations ofDeductive Databases, Morgan Kaufmann, 1988.
Balogh, K., On an Interactive Program Verifier for Prolog Programs, in: Colloquia Muthe-
maticu Societutis Junos Bolyai 26, Mathematical Logic in Computer Science, Salgotarjan,
Hungary, 1978, pp. 11 l-142.
Balzer, R., A 15 Year Perspective on Automatic Programming, IEEE Transactions on
Software Engineering 1 I(1 1): 1257-1268 (Nov. 1985).
Bates, J. L., and Constable, R. L., Proofs as Programs, ACM Transactions on Programming
Languages and Systems 7(l): 113-136 (Jan. 1985).
Bossi, A., and Cocco, N., Verifying Correctness of Logic Programs, in: Proceedings of
TAPSOFT ‘89, LNCS 352, Springer-Verlag, 1989, pp. 96-l 10.
Bossi, A., Cocco, N., and Dulli, S., A Method for Specializing Logic Programs, ACM
Transactions on Programming Languages and Systems 12(2):253-302 (1990).
Barr, A., and Feigenbaum, E. A., (eds.), The Handbook of Artificial Intelligence, Morgan
Kaufmann, 1982.
Biermann, A. W., Guiho, G., and Kodratoff, Y., (eds.) Automatic Program Construction
Techniques, Macmillan, 1984.

346 Y. DEVILLE AND K.-K. LAU

9.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

21.

28.

29.

30.

31.

Bibel, W., and Homig, K. M., LOPS-a System Based on a Strategical Approach to
Program Synthesis, in: A. W. Biermann, G. Guiho, and Y. Kodratoff (eds.), Automatic
Program Construction Techniques, Macmillan, 1984, ch. 3, pp. 69-89.
Biermann, A. W., Automatic Programming, in: S. C. Shapiro (ed.), Encyclopedia of
Artificial Intelligence, John Wiley, 2nd extended edition, 1992, pp. 59-83.
Biermann, A. W., Personal Communication, 1993.
Barker-Plummer, D., Cliche Programming in Prolog, in: M. Bruynooghe (ed.), Proceedings
of Meta’90, 1990, pp. 47-256.
Bratko, I., PROLOG Programming for Artificial Intelligence, International Computer
Science, Addison-Wesley, 1986.
Bundy, A., Smaill, A., and Hesketh, J., Turning Eureka Steps into Calculations in Automatic
Program Synthesis, in: Clarke, S. L. H., (ed.), Proceedings of UKZT90,1990, pp. 221-226.
Bruynooghe, M., De Schreye, D., and Krekels, B., Compiling Control, Journal of Logic
Programming 6(1-2): 135-162 (1989).
Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., and Smaill, A., Rippling: A Heuristic
for Guiding Inductive Proofs, Research Paper 567, DAI, 1991. Submitted to Artificial
Intelligence.
Bundy, A., Smaill, A., and Wiggins, G., The Synthesis of Logic Programs from Inductive
Proofs, in: J. W. Lloyd (ed.), Proceedings of Esprit Symposium on Computational Logic,
Springer-Verlag, 1990, pp. 135-149.
Burstall, R. M., Proving Properties of Programs by Structural Induction, The Computer
Journal 72:41-48 (1969).
Burstall, R. M., Program Proving as Hand Simulation with a Little Induction, in: IFIP 74,
North-Holland, 1974, pp. 308-3 12.
Bundy, A., van Harmelen, F., Horn, C., and Smaill, A., The Oyster-Clam System, in: M. E.
Stickel (ed.), Proceedings of the 10th International Conference on Automated Deduction,
Springer-Verlag, 1990, pp. 647-648, Lecture Notes in Artificial Intelligence No. 449.
Bundy, A., van Harmelen, F., Hesketh, J., and Smaill, A., Experiments with Proofs Plans
for Induction, Journal of Automated Reasoning 7:303-324 (1991).
Bundy, A., van Harmelen, F., Smaill, A., and Ireland. A., Extensions to the Rippling-
Out Tactic for Guiding Inductive Proofs, in: M. E. Stickel (ed.), Proceedings of the JOth
International Conference on Automated Deduction, Springer-Verlag, 1990, pp. 132-146,
Lecture Notes in Artificial Intelligence No. 449.
Courcelle, B., and Deransart, P., Proofs of Partial Correctness for Attribute Grammars
with Applications to Recursive Procedures and Logic Programming, Information and
Computation 78(1):1-55 (1988).
Constable, R. L., et al., Implementing Mathematics with the NuPRL Proof Development
System, Prentice-Hall, 1986.
Clark, K. L., Predicate Logic as a Computational Formalism, Technical Report 791.59,
Imperial College of Science and Technology, Univ. of London, 1979.
Clark, K. L., The Synthesis and Verification of Logic Programs, Technical Report DOC
81/36, Imperial College, Sept. 198 1. (Revised version of a document which first appeared

in 1977.)
Clocksin, W. F., and Mellish, C. S., Programming in Prolog, Springer-Verlag, New York,

2nd edition, 1984.
Colussi, L., and Marchiori, E., Proving Correctness of Logic Programs Using Axiomatic
Semantics, in: K. Furukawa (ed.), Proceedings of ZCLP’91, MIT Press, 1991, pp. 629-642.
Clark, K. L., and Sickel, S., Predicate Logic: A Calculus for Deriving Programs, in:
Proceedings of IJCAI-77, 1977, pp. 419-420.
Clark, K. L., and Tamlund, S.-A., A First Order Theory of Data and Programs, in:
Proceedings of IFIP 77, North-Holland, 1977, pp. 939-944.
Dayantis, G., Logic Program Derivation for a Class of First Order Logic Relations, in:
Proceedings of IJCAI-87, 1987, pp. 9-14.

LOGIC PROGRAM SYNTHESIS 347

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Deville, Y., and Bumay, J., Generalization and Program Schemata: A Step Towards
Computer-Aided Construction of Logic Programs, in: Proceedings of North American
Conference on Logic Programming 1989, MIT Press, 1989, pp. 409-425.
Deville, Y., Logic Programming: Systematic Program Development, International Series
in Logic Programming. Addison-Wesley, 1990.
Deransart, P., and Ferrand, G., Logic Programming: Methodology and Teaching, in:
K. Fuchi and L. Kott (eds.), Proceedings of the French Japan Symposium, Aug. 1988, pp.
133-147.
Deransart, P., and Ferrand, G., A Methodological View of Logic Programming with Nega-
tion, Technical Report RR 10 11, INRIA, Apr. 1989.
Drabent, W., and Maluszynsky, J., Inductive Assertion Method for Logic Programs, in:
Proceedings of TAPSOFT ‘87, 2, LNCS 250, Springer-Verlag. 1987, pp. 167-18 1.
Ferrand, G., and Deransart, P., Proof Methods of Partial Correctness and Weak Complete-
ness for Normal Logic Programs, in: K. Apt (ed.), Proceedings ofJICSLP’92, MIT Press,

1992, pp. 161-174.
Flener, P., and Deville, Y., Towards Stepwise, Schema-Guided Synthesis of Logic Programs,
In T. P. Clement and K. K. Lau (eds.), Logic Program Synthesis and Transformation,
Workshops in Computing, Springer-Verlag, 1992, pp. 46-64.
Flener, P., and Deville, Y., Synthesis of Composition and Discriminate Operators for Divide-
and-Conquer Logic Programs, in: J.-M. Jacquet (ed.), Constructing Logic Programs, Wiley
& Sons, 1993.
Flener, P., and Deville, Y., Logic Program Synthesis from Incomplete Specifications,
Journal of Symbolic Computation: Special Issue on Automatic Programming, W. Bibel
and A. W. Biermann (eds.), 1993 accepted for publication.
Flener, P., Logic Algorithm Synthesis from Examples and Properties, Ph.D. thesis, Unite
d’Informatique, Universite Catholique de Louvain, Belgium, 1993.
Fribourg, L., Extracting Logic Programs from Proofs that Use Extended Prolog Execution
and Induction, in: Proceedings of 7th Int. Conference on Logic Programming, MIT Press,
1990, pp. 685-699.
Fribourg, L., Automatic Generation of Simplification Lemmas for Inductive Proofs, in:
V. Saraswat and K. Ueda (eds.), Proceedings of 1991 International Logic Programming
Symposium, MIT Press, 1991, pp. 103-l 16.
Fribourg, L., Extracting Logic Programs that UseExtended Prolog Execution and Induction.
in: J.-M. Jacquet (ed.), Constructing Logic Programs, Wiley & Sons, 1993.
Gegg-Harrison, T. S., Basic Prolog Schemata, Technical Report CS-1989-20, Dept. of
Computer Science, Duke University, 1989.
Gegg-Harrison, T. S., A Scheme-Based Approach to Teaching Recursive Prolog Program-
ming, Technical Report CS-1990-4, Dept. of Computer Science, Duke University, 1990.
Giannesini, F., Kanoui, H., Passero, R., and Van Caneghem, M., Prolog, Addison-Wesley,
1986.
Gelfond, M., and Lifschitz, V., The Stable Model Semantics for Logic Programming, in:
B Kowalski and K. Bowen (eds.), Proceedings of 1988 International Logic Programming
Symposium, MIT Press, 1988, pp. 1070-1080.
Gabrielli, M., Levi, G., and Meo, M. C., Observational Equivalences for Logic Programs,
in: K. Apt (ed.), Proceedings of JICSLP’92, MIT Press, 1992, pp. 131-145.
Goldberg, A. T., Knowledge-Based Programming: A Survey of Program Design and
Construction Techniques, IEEE Transactions on Software Engineering 12(7):752-768
(July 1986).
Hagiya, M., Programming by Example and Proving by Example Using Higher-Order
Unification, in: M. E. Stickel (ed.), Proceedings of CADE’90, Springer-Verlag LNCS 449,
1990, pp. 588-602.

348

52.

53.

54.

55.

56.

57.

58.
59.
60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

74.

Y DEVILLE AND K.-K. LAU

Hansson, A., A Formal Development of Programs, Ph.D. thesis, Dept. of Information
Processing and Computer Science and Computer Science, The Royal Institute of Technology
and the University of Stockholm, 1980.
Hayashi, S., A System Extracting Programs from Proofs, in: 3rd Working Conference on

the Formal Description of Programming Concepts, Ebberup, Denmark, 1986.
Henrard, J., and Le Charlier, B., Folon: An Environment for Declarative Construction of
Logic Programs, in: M. Bruynooghe and M. Wirsing (eds.), Proceedings of PLILP’92,

Springer-Verlag LNCS 63 1, 1992, pp. 2 17-23 1.
Huet, G., and Lang, B., Proving and Applying Program Transformations Expressed with
Second-Order Patterns, Acta Informatica II:3 l-55 (1978).
Hill, P., and Lloyd, J., The Giidel Report, Technical Report TR-91-02, Department of
Computer Science, University of Bristol, Mar. 199 1.
Hogger, C. J., Program Synthesis in Predicate Logic, University of Hamburg in: Proceed-

ings of AISB/GI Conference on Artificial Intelligence, 1978, pp. 22-27.
Hogger, C. J., Derivation of Logic Programs, J. ACM 28(2):372-392 (Apr. 1981).
Hogger, C. J., Introduction to Logic Programming, Academic Press, 1984.
Howard, W. A., The Formulae-as-Type Notion of Construction, in: J. P. Seldin and J.
R. Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lamda Calculus and

Formalism, Academic Press, 1980, pp. 479490.
Hansson, A., and Tarnlund, S.-A., A Natural Programming Calculus, in: Proceedings of

IJCAI-79, 1979, pp. 348-355.
Kanamori, T., Soundness and Completeness of Extended Execution for Proving Properties
of Prolog Programs, Technical Report TR-175, ICOT, May 1986.
Kawamura, T., Derivation of Efficient Logic Programs by Synthesizing New Predicates, in:
V. Saraswat and K. Ueda (eds.), Proceedings of 1991 Int. Logic Programming Symposium,

MIT Press, 1991, pp. 61 l-612.
Kawamura, T., Logic Program Synthesis from First Order Logic Specifications, in: Pro-

ceedings of Fifth Generation Computer Systems 92, Tokyo, 1992, pp. 463-472, Ohmsha.
Kraan, I., Basin, D., and Bundy, A., Logic Program Synthesis via Proof Planning, in: K.
K. Lau and T. Clement (eds.), Logic Program Synthesis and Transformation, Workshops in
Computing, Springer-Verlag, 1993, pp. l-14.
Kraan, I., Basin, D., and Bundy, A., Middle-Out Reasoning for Logic Program Synthesis, in:
D. S. Warren (ed.), Proceedings of 10th International Conference on Logic Programming,

MIT Press, 1993, pp. 441455.
Kanamori, T., and Fujita, H., Formulation of Induction Formulas in Verification of Pro-
log Programs, in: J. H. Siekmann (ed.), Proceeding of *th International Conference on

Automated Deduction, LNCS 225, Springer-Verlag, 1986, pp. 281-299.
Kanamori, T., and Horiuchi, K., Construction of Logic Programs Based on Generalized Un-
fold/Fold Rules, in: Proceedings of 4th International Conference on Logic Programming,

Melbourne, 1987, pp. 744-768.
Kanamori, T., and Kawamura, T., Preservation of Stronger Equivalence in Unfold/Fold
Logic Program Transformation (ii), Technical Report TR-403, ICOT, June 1988.
Kreitz, C., Towards a Formal Theory of Program Construction, Revue d’lntelligence

Arttjkielle 4(3):53-79 (1990).

Kreitz, C., Formal Mathematics for Verifiably Correct Program Synthesis, 1993,
Forschungsbericht, Technische Hochschule Darmstadt, Germany.
Kreitz, C., Meta-synthesis - Deriving Programs that Develop Programs, 1993.
Kanamori, T., and Seki, H., Verification of Prolog Programs Using an Extension of Execu-
tion, in: E. Shapiro (ed.), Proceedings of 3rd International Conference on Logic Program-

ming, Springer-Verlag, 1986, pp. 475489. LNCS 255.
Kirschenbaum, M., and Sterling, L., Prolog Programming Using Skeletons and Techniques,
Technical Report TR-90-109, Center for Automation and Intelligent Systems Research,
Case Western Reserve University, 1990.

LOGIC PROGRAM SYNTHESIS 349

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Kirschenbaum, M., and Sterling, L., Refinement Strategies for Inductive Learning of Simple
Prolog Programs, in: Proceedings of IJCAI’91, 1991, pp. 757-76 1.
Lakhotia, A., A Workshopfor Developing Logic Programs by Stepwise Enhancement, Ph.D.
thesis, Dept. of Computer Engineering and Science, Case Western Reserve University, 1989.
Lakhotia, A., Incorporating “Programming Techniques” into Prolog Programs, in: E. L.
Lusk and R. A. Overbeek (eds.), Proceedings of NACLP’89, MIT Press, 1989, pp. 426-440.
Lever, J. M., Combining Induction with Resolution in Logic Programming, Technical
Report, Ph.D. Thesis, Dept. of Computing, Imperial College, London, 1991.
Lever, J. M., Proving Program Properties by Means of SLS-Resolution, in: K. Furukawa
(ed.), Proceedings of ICLP’91, MIT Press, 1991, pp. 614-628.
Lloyd, J. W., Foundations of Logic Programming, Springer-Verlag, New York, 2nd edition,
1987.
Lau, K. K., and Ornaghi, M., Towards a Formal Framework for Deductive Synthesis of
Logic Programs, Technical Report UMCS-92-l l-2, Dept. of Computer Science, University
of Manchester, Nov. 1992.
Lau, K. K., and Ornaghi, M., An Incompleteness Result for Deductive Synthesis of Logic
Programs, in: D. S. Warren (ed.), Proceedings of 10th International Conference on Logic
Programming, MIT Press, 1993, pp. 456477.
Lau, K. K., and Ornaghi, M., A Formal View of Specification, Deductive Synthesis and
Transformation of Logic Programs, in: Y. Deville (ed.), Logic Program Synthesis and

Transformation, Workshops in Computing, Springer-Verlag, 1994, Proceedings of Third
International Workshop on Logic Program Synthesis and Transformation.
Lau, K. K., and Prestwich, S. D., Top-Down Synthesis of Recursive Logic Procedures from
First-Order Logic Specifications, in: D. H. D. Warren and P. Szeredi (eds.), Proceedings
of 7th International Conference on Logic Programming, MIT Press, 1990, pp. 667-684.
Lau, K. K., and Prestwich, S. D., Synthesis of a Family of Recursive Sorting Procedures,
in: V. Saraswat and K. Ueda (eds.), Proceedings of 1991 International Logic Programming
Symposium, MIT Press, 1991, pp. 641-658.
Lakhotia, A., and Sterling, L., Composing Recursive Logic Programs with Clausal Join,
New Generation Computing 6:21 l-225 (1988).
Lakhotia, A., and Sterling, L., Stepwise Enhencement: A Variant of Incremental Program-
ming, in: Proceecdings of Conference on Software Engineering, 1990.
Lombart, V., Wiggins, G., and Deville, Y., Guiding Synthesis Proofs, in: LOPSTR’93,
1993, Extended Abstract.
Maher, M. J., Equivalences of Logic Programs, in: J. Minker (ed.), Foundations of

Deductive Databases and Logic Programming, Morgan Kaufmann, 1988, pp. 627-658.
Muggleton, S., and De Raedt, L., Inductive Logic Programming: A Survey, Journal ofLogic
Programming, Special issue on “Ten Years of Logic Programming,” 1993 (submitted).
Muggleton, S., Inductive Logic Programming, New Generation Computing, 8(4):295-3 17,
1991.
Muggleton, S., (ed.), Inductive Logic Programming, Volume APIC-38, Academic Press,
1992.
Manna, Z., and Waldinger, R., A Deductive Approach to Program Synthesis, ACM Truns-
actions on Programming Languages and Systems 2(1):90-121, (Jan. 1980).
Naish, L., Specification = Program + Types, in: Proceedings of FST & TCS, Springer-
Verlag, LNCS, 1987.
Naish, L., Verification of Logic Programs and Imperative Programs, in: J.-M. Jacquet (ed.),
Constructing Logic Programs, John Wiley & Sons, 1993.
Neugebauer, G., The IO-Graph Method: Algorithm Design and Implementation, Submitted
to the Journal of Symbolic Computation, 1992.
Neugebauer, G., The LOPS Approach: A Transformation Point of View, in: K. K. Lau
and T. P. Clement (eds.), Logic Program Synthesis and Transformation, Workshops in
Computing, Springer-Verlag, 1993, pp. 80-8 1.

350 Y. DEVILLE AND K.-K. LAU

98.
99.

100.

101.

102.

103.

104.

105.

106.
107.

108.

109.

110.
111.

112.

113.

114.

115.

116.

O’Keefe, R. A., The Craft of Prolog, Logic Programming Series. MIT Press, 1990.
Plotkin, G. D., A Note on Inductive Generalization, in: B. Meltzer and D. Michie (eds.),
Machine Intelligence 5, Edinburgh University Press, Edinburgh (UK), 1970, pp. 153-163.
Plotkin, G. D., A Further Note on Inductive Generalization, in: B. Meltzer and D. Michie
(eds.), Machine Intelligence 6, Edinburgh University Press, Edinburgh (UK), 1971, pp.
101-124.
Przymunsinski, T., Perfect Model Semantics, in: B Kowalski and K. Bowen (eds.),
Proceedings of 1988 International Logic Programming Symposium, MIT Press, 1988, pp.
1081-1096.
Power, A. J., and Sterling, L., A Notion of Map Between Logic Programs, in: Proceedings
of 7th International Conference on Logic Programming, MIT Press, 1990, pp. 390-404.
Reynolds, J. C., Transformational Systems and the Algebraic Structure of Atomic Formulas,
in: B. Meltzer and D. Michie (eds.), Machine Intelligence 5, Edinburgh University Press,
Edinburgh (UK), 1970, pp, 135-151.
Rich, C., and Waters, R. C., Automatic Programming: Myths and Prospects, IEEE Com-
puter 21(8):40-51 (Aug. 1988).
Shapiro, E. Y., An Algorithm that Infers Theories from Facts, in: Proceedings of ZJCAZ’N,
1981, pp. 446-451.
Shapiro, E. Y., Algorithmic Program Debugging, MIT Press, 1983.
Smith, D. R., The Synthesis of LISP Programs from Examples, in: A. W. Biermann,
G. Guiho, and Y. Kodratoff (eds.), Automatic Program Construction Techniques, Macmillan,
1984, ch. 15, pp. 307-324.
Smith, D. R., The Structure and Design of Global Search Algorithms, Technical Report
KES.U.87.12, Kestrel Institute, Palo Alto, CA, 1988.
Smith, D. R., KIDS: A Semiautomatic Program Development System, IEEE Transactions
on Software Engineering 16(9): 1024-1043 (1990).
Sterling, L., and Shapiro, E., The Art of Prolog, MIT Press, 1986.
Sato, T., and Tamaki, H., First Order Compiler: A Deterministic Logic Program Synthesis
Algorithm, J. Symbolic Computation 8:605-627 (1989).
Tinkham, N. L., Induction of Schemata for Program Synthesis, Ph.D. thesis, Duke Univer-

sity, Durham, NC, 1990.
Van Gelder, A., Ross, K., and Schlipf, J. S., Unfounded Sets and Well-Founded Semantics
for General Logic Programs, in: Proceedings of 7th Symposium on Principles of Database
Systems, 1988, pp. 221-230.
Wiggins, G., Bundy, A., Kraan, I., and Hesketh, J., Synthesis and Transformation of Logic
Programs from Constructive, Inductive Proof, in: T. P. Clement and K. K. Lau (eds.), Logic
Program Synthesis and Transformation, Workshops in Computing, Springer-Verlag, 1992,
pp. 27-45.
Wiggins, G. A., Negation and Control in Automatically Generated Logic Programs, in:

A. Pettorossi (ed.), Proceedings of META-92, 1992.
Wiggins, G., Synthesis and Transformation of Logic Programs in the Whelk Proof De-
velopment System, in: K. Apt (ed.), Proceedings of JlCSLP’92, MIT Press, 1992, pp.

35 l-365.

