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LOGIC PROGRAM SYNTHESIS 

YVES DEVILLE AND KUNG-KIU LAU 

This paper presents an overview and a survey of logic program synthesis. Logic 
program synthesis is interpreted here in a broad way; it is concerned with the 
following question: given a specification, how do we get a logic program satisfy- 
ing the specification? Logic programming provides a uniquely nice and uniform 
framework for program synthesis since the specification, the synthesis process, 
and the resulting program can all be expressed in logic. 
Three main approaches to logic program synthesis by formal methods are de- 
scribed: constructive synthesis, deductive synthesis, and inductive synthesis. Re- 
lated issues such as correctness and verification, as well as synthesis by informal 
methods, are briefly presented. 
Our presentation is made coherent by employing a unified framework of terminol- 
ogy and notation, and by using the same running example for all the approaches 
covered. This paper thus intends to provide an assessment of existing work and a 
framework for future research in logic program synthesis. 

1. INTRODUCTION 

Program synthesis refers to the elaboration of a program in some systematic manner, starting 
from a specification, that is a statement describing what the program should do. A specifi- 
cation may have many forms. We can distinguish formal specifications from informal ones. 
For the latter, the synthesis process cannot be totally formalized and can only be partially 
automated. We thus distinguish between synthesis by formal methods and synthesis by 

informal methods. 

Program synthesis in general has been an active area of research outside logic program- 
ming. See [8,3,50, lo], for example, for a presentation of the major achievements. In the 
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early days of logic programming, logic program synthesis was one of the first areas of active 
research, mainly focusing on manual program derivation. By the middle eighties, however, 
this work had dwindled considerably. More recently, it has become an active area of re- 
search once again, this time focusing mainly on automated or semi-automated synthesis. 
In this paper, we give a brief survey of the work to date in logic program synthesis. 

Logic program synthesis is concerned with the following: 

Given a (nonexecutable) specification, how do we get an (executable) logic 
program satisfying the specification? 

where the notions of “specification” and “executability” are interpreted broadly. For tack- 
ling this problem, logic programming provides a uniquely uniform framework because the 
specification, the synthesis process, and the resulting program can all be expressed in logic. 

There are three main approaches to logic program synthesis by formal methods: 

In the constructive approach,‘a conjecture based on the specification is construc- 
tively proved, and from this proof, the specified program is extracted. We call this 
approach constructive synthesis. 

A more direct approach is to deduce clauses for the specified program directly from 
the specification. We shall call this approach deductive synthesis. 

Another approach can induce a program from a partial specification of the program. 
The program is a generalization of the partial specification. We shall call this 
approach inductive synthesis. 

This survey covers all the above approaches. Related issues such as correctness and 

verification, as well as synthesis by informal methods, will briefly be presented. This paper 
does not cover some other synthesis approaches, such as knowledge-based synthesis [ 1091 
or synthesis by inspection (see [7, S]), because very little work has been done using these 
approaches in logic programming. 

Thus, this survey covers only the program synthesis part of the so-called program de- 

velopment area. Program development is a much larger area since it also includes other 
aspects such as program analysis (e.g., abstract interpretation, termination) and program 
transformation (e.g., fold/unfold, partial evaluation), inter alia (see related papers in this 
Special Issue for other aspects of Program Development). Indeed, for the whole process 
of program development, we should consider the realistic scenario depicted by the spiral: 
(informal specification + incomplete formal specification + unsatisfactory program + 
better specification + more satisfactory program, and so on). This scenario shows the 
development process as a life-cycle, within which program synthesis enables a transition 
from specification to program. We will not deal with this entire life-cycle in this survey. 
Rather, we concentrate on synthesis methods. However, the reader should bear in mind the 
larger context of program development. 

The distinction between deductive program synthesis and program transformation is 
rather subjective and often depends on the context of the research. A possible difference 
could be that synthesis starts from some nonexecutable specification, which usually means a 
nonrecursive description of the problem, while transformation usually starts from an already 
executable description. Program transformation will be covered by a separate survey in this 
volume. We shall not cover other related logic programming topics such as programming 

‘Also known as the proofs-as-programs approach, after [4]. 
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environments, inductive logic programming, and semantics. 
Our aim for this survey is to provide a broad, extensive (and hopefully complete) survey 

in the field of logic program synthesis. We shall give a coherent presentation using a unified 
framework of terminology and notation, and the same running example for all the approaches 
covered. By so doing, we shall attempt to expose the similarities and dissimilarities between 
the different approaches, and to evaluate their respective strengths and weaknesses. 

Given the space limit, it is not possible to describe all the theoretical background nec- 
essary for a full treatment of the examples, or the theoretical difficulties and unsolved 
theoretical problems for each method. Nevertheless, a basic knowledge of logic program- 
ming will be sufficient to get a precise idea of the synthesis methods presented. However, 
the reader will need to read the original papers for a deeper understanding. 

We hope this paper provides an assessment of existing work and a framework for future 
research in logic program synthesis. 

The paper is organized as follows. In Section 2, we define and explain the basic concepts. 
In Sections 3, 4, 5, and 6, we present an account of constructive synthesis, deductive 
synthesis, inductive synthesis, and synthesis by informal methods, respectively. In each of 
these sections, we describe the approach, show the running example for this approach, and 
give a brief overview of existing methods using the approach. Finally, in Section 7, we 
conclude with an assessment of existing work and proffer our views on the way ahead. 

2. BASIC CONCEPTS 

In this section, we first define and describe basic concepts such as specifications and pro- 
grams, and then we introduce commonly used notions of program correctness, in the frame- 
work of logic programming. Finally, we give an overview of correctness criteria and veri- 
fication methods that have been proposed. 

2.1. Specijications and Programs 

A specification can be formal or informal; a program can be either a pure logic program 
or a program in an existing logic programming language such as Prolog. An informal 
specification describes what will be called the intended relation. This is the relation the 
programmer/specifier has in mind when synthesizing a program. 

Dejinition I. The intended relation for a predicate r (of arity n), denoted by T(r), is a set 
(of n-tuples) of ground terms. 

Example 2. A pair (11,/z) belongs to Z(incZuded) iff 11, 12 are ground lists, and all the 
elements of It belong to 12. 

The intended relation for a predicate r can also be seen as a specific (Herbrand) inter- 
pretation for the predicate r. 

In logic programming, formal specifications are usually expressed in some logic. Such 
a specification will be called a logic specification. 

Dejinition 3. A logic speciJication of a predicate r, denoted Spec(r), is a set of logical 
formulas involving r. 
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In the above definition, the form of the logic formulas defining a logic specification is 
deliberately vague, to allow specifications by examples and incomplete specifications. The 
logic formulas of a logic specification Spec(r) necessarily involve predicate r, but can also 
contain other predicates defined within the specification, or defined elsewhere (primitives 
or other specifications). 

InExample4, thepredicatemember is assumed to beaprimitivesuch that member(H, L) 

holds iff H is a member of list t. In practice, member can be specified in another speci- 
fication, or together with the specification of included. The second logic specification in 
Example 4 is a “specification by examples.” 

Example 4. 
Specl(included) = ( included(Ll, L2) +=+ VX( member(X, Ll) 

=+ member(X, L2) > 1 
Specz(included) = { included([], [2, 11) , 

incZuded([l, 21, [l, 3,2, I]), 
+ncluded([2, 11, [I) 1 

A (pure) logic program can be seen as a particular case of a logic specification, where 
the language is restricted to definite Horn clauses (also called program clauses). This is 
called a program because it also has a procedural or operational semantics (SLD-resolution). 
Sometimes, normal program clauses are used [80], allowing negations in the bodies of the 
clauses. 

Dej?nition 5. A logic program for a predicate r, denoted by Prog(r), is a set of program 
clauses. 

A logic program for a predicate r will normally contain clauses with the predicate r 

in the head. In Example 6, it is assumed that the predicate member and remove-all 

are primitives (with remove_all(H, L, NL) holding iff NL is the list L without all the 
occurrences of H). This restriction amounts to assuming that the subproblems involved 
have been, or will be, correctly implemented. They can thus be seen as primitives for 
Prog(r). This simplification for programs (and for logic specifications) is made for ease of 
understanding, and can be overcome by simultaneously considering Prog(r) (or Spec(r)) 

and its subproblems [33]. In the context of synthesis, such predicates are often included in 
a background theory. 

Example 6. 
Progl(included) = { included([], L2) t 

included([HjT], L7,) t member(H, L7_), 

included(T, L2) } 

Progz(included) = { incZuded([], [I) t 
incZuded(Ll, [HIT]) t remove_all(H, Ll, NLl), 

remove_all(H, T, NT2), 

incZuded(NL1, NT2) } 

Progs(incZuded) = { incZuded(Ll, L2) t -q(Ll, L2) 

q(L1, L2) +- member(X, Ll), 
-member(X, L2) ) 
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Finally, an (executable) Prolog program is a program written in the Prolog language. 
The difference between Prolog programs and (pure) logic programs is that most Prolog 
programs contain control information and/or side-effect procedure calls that destroy the 
correspondence between the declarative semantics and the procedural one. 

Most of the existing synthesis methods focus on the declarative aspects of logic program- 
ming, and thus usually produce logic programs rather than (executable) Prolog programs. 
This is not a weakness of the methods, but rather a deliberate separation of concerns. The 
transition from a correct logic program to an executable correct Prolog program usually 
amounts to the introduction of suitable control information [33]. We will not cover this 
issue in this survey. 

2.2. Correctness 

Correctness (and verification) is complementary to program synthesis. We have to verify 
that the synthesized program fulfills its specification, or more generally, that the synthesis 
method is correct (or sound), that is, always producing correct programs. 

Correctness criteria relate the intended relation, the logic specification and the logic 
program, one to another. A logic specification and a logic program denote some relation, 
according to some semantics. We here introduce correctness criteria which are parametric 
with respect to the chosen underlying semantics. 

Dejinition 7. Let Spec(r) be a logic specification. The meaning of Spec(r) is the set of 
ground terms* 

where +,Y denotes the chosen semantics for logic specifications. 

Definition 8. Let hog(r) be a logic program. The meaning of Prog(r) is the set of ground 
terms 

P(r) = { t I f+og(r) bp r(t) ) 

where bp denotes the chosen semantics for logic programs. 

The semantics defines how a logic specification (program) should be interpreted. The 
meaning of a logic specification (program) defines how the predicate r should be interpreted, 
according to the specification (program) and the semantics. 

The chosen semantics for logic specifications and logic programs also involve interpret- 
ing (primitive) predicates not defined in the specification or in the program-for instance, 
a possible approach is to add suitable formulas defining these predicates. An example of 
possible semantics for a logic specification could be its classical logical consequences. For 
a logic program, the semantics could be defined by its least Herbrand model, or by the 
set of models of the completed programs Camp(P). We refer the reader to the survey on 
semantics for a detailed presentation of semantic issues. 

*We assume an underlying Herbrand universe built out of the specification language. 



326 Y. DEVULE AND K-K. LAU 

2.2.1. LOGIC PROGRAMS VERSUS LOGIC SPECIFICATIONS. We can define three correct- 
ness criteria for logic programs with respect to logic specifications. 

Dejbition 9. A logic program Prog(r) ispartially correct wrt alogic specification Spec(r) 
iff P(r) C S(r). 

Partial correctness requires that the meaning of the program be included in the meaning 
of the specification. In other words, every answer computed by the program belongs to the 
specification. 

Definition 10. A logic program Prog(r) is complete wrt a logic specification Spec(r) iff 

p(r) 2 S(r). 

Completeness is the converse of partial correctness. It requires that the meaning of the 
specification be included in the meaning of the program. It ensures that every specified 
answer is computed by the program. 

De$nition 11. A logic program Prog(r) is totally correct wrt a logic specification Spec(r) 
iff P(r) = S(r). 

Total correctness is thus the combination of partial correctness and completeness. Note 
that total correctness does not necessarily imply, from a procedural point of view, that all 
SLD-derivations for a given query are finite. By the completeness of SLD-resolution, each 
correct answer corresponds with at least one finite SLD-derivation. 

2.2.2. LOGIC SPECIFICATIONS VERSUS INTENDED RELATIONS. The usual correctness cri- 
terion for logic specifications with respect to intended relations is the following: 

DeJinition 12. A logic specification Spec(r) is totally correct wrt an intended relation I(r) 
iff S(r) = T(r). 

Total correctness here can be decomposed into partial correctness (also called consis- 
tency here) (S(r) C I(r)) and completeness (S(r) 2 T(r)). In program synthesis, one 
usually assumes the consistency of the specification, but not its completeness. Some in- 
ductive synthesis methods explicitly consider incomplete specifications (e.g., specification 
by examples). For instance, Specz(included) is consistent with Z(included), but not 
complete. 

2.2.3. LOGIC PROGRAMS VERSUS INTENDED RELATIONS. Similarly, the usual correct- 
ness criterion for logic programs with respect to intended relations is the following: 

Definition 13. A logic program Prog(r) is totally correct wrt an intended relation T(r) iff 

p(r) = L?(r). 

Total correctness here can also be decomposed into partial correctness (p(r) _C I(r)) 
and completeness (P(r) 1 Z(r)). When the intended relation is informal, such a criterion 
cannot be established either formally or automatically. However, since the intended rela- 
tion is a mathematical one, the correctness criterion can be established by mathematically 
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rigorous, although not formal, methods. Such correctness criteria can thus be used to guide 
the synthesis process, especially when incomplete logic specifications are considered. 

Similarly, one could also define equivalence criteria between logic specifications, or 
between logic programs. Equivalence could then be decomposed into specialization and 
generalization. 

When negations are allowed in the logic programs and in the queries, the correctness 
criteria (and the meaning of programs) are usually strengthened. For instance, besides 
having P(r) = S(r), one may also require some equivalence between the negative atoms 
in the meaning of the program, and the negative atoms in the meaning of the specification. 

Whereas verification of a program proves its correctness, testing a program can show 
its incorrectness. Testing a program can detect differences (if any) between the executable 
program and the specification. Tools for debugging can provide some help to locate where 
the problems are. Declarative debugging aims at detecting inconsistencies between the logic 
program (i.e., its declarative meaning) and the specification. See the survey on programming 
environments for a development of this subject. 

2.3. Overview of Correctness Literature 

Most of the literature on correctness could be described in terms of the above framework. 
Depending on the specification language, the form of the logic programs (with or with- 
out negations), and the chosen semantics, various approaches can be taken. For definite 
programs, the underlying semantics is usually the least Herbrand model (or something 
equivalent). We will not give a precise account of each piece of existing work. The reader 
is referred to the cited references for a detailed presentation. 

A first formulation of correctness criteria appeared in [30]. This has been systematized 
and extended in [25] (see also [26,29]). The programs considered here are definite pro- 
grams. Partial correctness and completeness include the idea of preconditions on the input. 
A termination criterion is also proposed. Various verification methods are described: con- 
sequence verification, computational induction, and structural induction. 

Hogger’s work [57-591 is also based on definite programs. He proposes two families of 
criteria: the first one relating the declarative semantics of the logic programs to the logic 
specification, and the second one relating the procedural semantics of the logic program to 
the logic specification. He also describes verification methods based on transformation and 
derivation rules. 

A similar approach is proposed in [5, 61, which discusses verification methods and 
program equivalence. Program equivalence is also treated in [89, 78, 791. Notice that 
Lever considers programs with negations. In [49], equivalence captures some observational 
behavior (i.e., computation) of programs. Generalizations of programs, called extensions, 
are proposed in [ 1021 in a framework for program development. 

In [33], correctness criteria relate intended relations to logic programs with possible 
negations. A first set of criteria relates the intended relation to the declarative semantics of 
the (completion of the) logic program. A second set of criteria relates the intended relation 
to the sequence of computed answer substitutions of the Prolog programs (derived from the 
logic program). These criteria are used within a methodology for constructing programs, 
rather than for verifying programs. The methodology also addresses the problem of types 
in correctness criteria. Type problems in correctness criteria and in verification are also 
handled in [94, 951. 
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In [23, 34, 351, correctness criteria and verification methods based on proof trees are 
proposed for definite programs. Programs with negations are also treated in [37]. 

Other verification methods are proposed in [62, 67,73, 691. However, the specification 
language is here restricted. 

In [2], a verification technique based on a Hoare-like inference rule is proposed for 
verifying the partial correctness and the completeness of a definite program. A similar 
approach is described in 1281. Another verification method, based on annotations and 
procedural semantics, is presented in [36]. 

Correctness criteria have also been proposed in the framework of Inductive Logic Pro- 
gramming (ILP). In this framework, the logic specification is a set of positive examples 
(denoted by ,Spec+(r)), and possibly a set of negative examples (denoted by Spec-(r)). 
Correctness criteria includes coverage of the positive examples by the logic program, what 
is also called consistency or completeness (P(r) 2 Spec+(r)), and consistency of the 
logic program with respect to the negative examples (P(r) E Spec-(r)), where P(r) is 
the complement of P(r). See [90] for further references. 

For defining the meaning of logic programs with negations, semantics other than the usual 
completed program have been proposed, but not especially in the context of correctness: the 
perfect model semantics [loll, the stable model semantics [48], the iterated least fixpoint 
model [ 11, the well-founded semantics [ 1131, and others. 

3. CONSTRUCTIVE SYNTHESIS 

Constructive synthesis is an approach that originated in the functional programming para- 
digm,3and is also known as the proofs-as-programs approach [4]. It has been the basis 
of various existing program synthesis systems [93, 24, 531. Over the past few years, con- 
structive synthesis has also become an active area of research within logic programming 
[17,42]. 

In functional programming, constructive synthesis is based on the Curry-Howard isomor- 
phism in constructive type theory [60], which states that there is a one-to-one relationship 
between a constructive proof of an existence theorem and a program (i.e., a function) that 
computes witnesses of the existentially quantified variables of the theorem. That is, from a 
(constructive) proof of a formula of the form 

Vi. 30. r(i, 0) (1) 

one can extract a program such that for all inputs i, it computes an output o that satisfies 
the specified relation r. Thus, the constructive synthesis process consists of two steps: 

1. construct the formula (1) and prove it in a constructive logic; 
2. extract from the proof a program for computing r. 

It is worth emphasizing that the type theory is usually a higher-order (typed) logic, and the 
extracted program is a function. 

3We use this term in a wide sense, to encompass any related work such as Kleene’s work on realizable 
predicates and Martin-L6f’s type theory, for instance. 
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3.1. Description of Approach 

The original constructive synthesis approach based on the functional programming paradigm 
may be adapted for logic program synthesis, as has been done by Bundy and Wiggins 
[ 17, 1141 for instance. A different constructive synthesis formulation for logic program 
synthesis, used by Fribourg [42], is based more directly on logic programming. However, 
to acknowledge its origin in functional programming, we shall present constructive logic 
program synthesis along the lines of the work of Bundy and Wiggins. 

The key idea of Bundy and Wiggins’ adaptation is that a predicate (in a typed logic) 
can be regarded as a truth-valued function, i.e., a predicate p(Xt : tl. . . . , X, : t,) can 
be regarded as a function of type tl x . . . x tn + boole. This enables them to use the 
constructive synthesis approach to synthesize predicates as functions. To extract a (first- 
order) typed logic program from such a synthesis proof, they use a proof system based 
on a first-order (typed) logic with a set of rules specially devised4for constructing logic 
program fragments from the proof rules (see [116] for their definition and proof of their 
correctness). It is worth emphasizing that Bundy and Wiggins extract (first-order) typed, 
pure logic programs. 

3.1.1. THE STARTING POINT. In the functional paradigm, constructive synthesis of a 
program to compute a relation r starts from a theorem of the form 

kVXL:tl,..., X,:t,.3Yl:t; ,..., Y,:t&.r(Xl,..., X,,Yl,..., Y,) (2) 

wherexl,..., X, are input variables of types tl, . . . , t,, and YL, . . . , Y,,, are output vari- 

ables of types ti, . . . , t;, respectively. This specification thus defines a relation between 
the input and output variables of the program. 

This theorem is usually referred to as the speci&ation theorem. However, it is more 
accurate to call it the synthesis conjecture since it is the start of the synthesis process and it 
has yet to be proved. 

To adapt this synthesis conjecture for (typed) logic program synthesis, we encounter two 
problems due to the differences between functional and logic programs: 

l Unlike a functional program, a logic program can be used in more than one way, 
i.e., in different input-output modes. 

l Even for a chosen input-output mode, a logic program may produce many outputs 
or none at all. 

A solution to these problems is to consider only the all-ground mode [ 171. The relation r 

can then be seen as a Boolean-valued function. Thus, the synthesis conjecture (2) becomes 

+vx1 :t1,... ,X,:t,,.3B:booZe.r(X11..., X,)c, B (3) 

where we have no output variables (as in (2)), but only input variables XL, . . . , X, (with 
types tl, . . , tn, respectively); booze = {true, false}. 

The meaning of the operator c-, is defined by 

t- Formula c-, B iff 
t Formula w (B 

!- -Formula w (B 
=book true) 
=book false) I 

4After the Curry-Howard isomorphism. 
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Thus, the function to be synthesized from (3) will be a logic program that is a decision 
procedure for the predicate r (Xl, . . . , X,). 

Note that in this all-ground mode approach, after a logic program has been synthesized, 
it is necessary to verify that the program can be used in some specific mode. This is usual, 
and it amounts to separating the logic part from the procedural one. Such a verification of 
modes can be performed by using existing tools such as abstract interpretation. 

3.1.2. THE END RESULT. Thus, a successful proof of the synthesis conjecture means 
that a logic program exists which can answer a goal of the form r(X1, . . . , X,). The (pre- 
defined) construction rules corresponding to the proof rules used in the steps of the proof 
allow us to extract such a logic program. The end result of constructive logic program 
synthesis is usually a typed, first-order, pure logic program. 

3.1.3. THE SYNTHESIS PROCESS. Starting from a synthesis conjecture, the first step of 
constructive synthesis is to produce a proof of this conjecture, for instance, in a typed (first- 
order) constructive logic. Obviously, this is not a simple task in itself. It is usually carried 
out on a mechanized proof system (which embodies the typed constructive logic), and 
requires the use of very sophisticated (mechanized) development tools and proof assistants. 
For instance, Bundy and Wiggins [ 17, 114, 1161 use a proof planner to guide and automate 
parts of their proofs carried out in a proof development system. 

From the proof of the synthesis conjecture, a program can be extracted. One possible 
approach consists of regarding the proof itself as a program. This interpretive approach 
is possible if we have an operational semantics for such proofs. Usually, though, a logic 
program is mechanically extracted from the proof. This is possible because each proof rule 
used in the proof system has an associated construction rule which has been pre-defined and 
proved to be correct, allowing each step of the proof to generate the corresponding logic 
clause(s). 

Programs extracted from the constructive proofs are totally correct, assuming that the 
proof system is sound, and that the construction rules associated with the proof system are 

correct. 

3.2. Example 

For a logic program for incZuded(Ll, L2), the synthesis conjecture is 

t- VL, : lists, L2 : lists. 3B : boole. included(Ll, L2) C, B 

or, using the logic specification Specl(included) in Example 4 (Section 2.1), 

!- VL1 : lists, L2 : lists. 3B : boole. VX . (member(X, Ll) =+ member(X, L2)) - B. 

Applying induction on L 1 gives two subconjectures: 

l (base case) 

k VL2 : lists. 3B : boole .VX . (member-(X, 11) + member-(X, L2)) c-, B (4) 
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0 (step case) 

T : lists 
VL2 : lists. 3B : boole . VX . (member(X, T) =+ member(X, Lz)) C, B (5) 
!- VL:! : lists. 3B : boole . VX . (member(X, [HIT]) =+ member(X, L2)) c, B 

The program fragment that can be extracted at this point of the proof is 

included(Ll, L2) + L1 = [I, . . . 
incZuded(Ll, L2) +- L1 = [HIT], . . , (6) 

Since the base case is always true, the first “. . .” can be replaced by true. 

By using the definition of member, the step case gives rise to two more conjectures: 

t- 3B : booze. VX. (X = H + member(X, L2)) C, B (7) 

I- 3B : boole .VX . (member(X, T) =+ member(X, L2)) C, B (8) 

(7) can be proved by a further application of induction, and (8) can be proved using the 
induction hypothesis 

VL2 : lists. 3B : boole . VX . (member(X, T) j member(X, L2)) c-, B 

in the step case. 
The second “. . .” in (6) can now be replaced by 

member(H, L2) A included(T, L2) 

and so the complete program extracted from the proof is 

included(L1, L2) + LI = [] 

incZuded(L1, L2) t L1 = [HIT], member(H, L2), incZuded(T, L2) 

Thesynthesized logicprogramis thus Prog3(included) fromExample6. Itis worthnot- 
ing that a proof by induction on L2 of the synthesis conjecture would lead to 
Proga(incZuded) [88]. 

3.3. Overview of Methods 

Our description of constructive logic program synthesis is based on the work of Bundy and 
Wiggins. They use a proof development system called Whelk, which is based on a Gentzen 
sequent calculus and a first-order typed constructive logic. Whelk has been implemented 
in a proof development environment called Mollusc. The precise notation and the details 
of their proof system and proof planning techniques can be found in [ 17,20, 14,22, 16,21, 
114, 1161. It is worth noting that they synthesize programs either in Prolog, or the new logic 
programming language Giidel[56]. An analysis of modes for the synthesized programs is 
made in [ 1151. 

In contrast, Fribourg [42,44] uses a constructive approach based directly on logic pro- 
gramming. His method starts from a set P of logic procedures for pre-defined predicates 
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and a goal G of the form5 

VX .3Y. q(X, Y) + r(X) 

where q(X, Y) and r(X) are conjunctions of atoms defined in P. The variables in X and Y 
are regarded as input and output variables, respectively. A proof of this goal will define a 
procedure (for a new predicate) for computing Y from X. Fribourg performs the proof using 
the extended execution system of Kanamori and Seki [73] on the pre-defined predicates. 
The extended execution system is the standard Prolog interpreter with an extended form of 
SLD-resolution and a restricted form of structural induction. Each inference rule applied 
during the proof yields a corresponding logic procedure, thus enabling a logic program to 
be extracted for the new predicate on completion of the proof. 

Unusually, Fribourg’s method synthesizes programs that are guaranteed not only to be 
(partially) correct with respect to the specification, but also to terminate.6Moreover, tail- 
recursive programs can also be synthesized, although termination is not guaranteed for such 
programs. To help automate proofs, his method makes use of simplification lemmas [43]. 

In [41], constructive synthesis techniques are used to deductively add atoms to a logic 
program so that some correctness criteria with respect to a set of given logic properties are 
satisfied. 

4. DEDUCTIVE SYNTHESIS 

Deductive synthesis starts from a specification, and derives or deduces a logic program ac- 
cording to some pre-defined deduction rules. If the specification is a set of logic sentences, 
then the synthesis process consists of deducing program clauses directly from the specifi- 
cation. In this case, we can exploit fully the uniquely uniform framework provided by logic 
programming for program synthesis. Verification of partial correctness of the synthesized 
program reduces to showing that the deduction rules used are sound with respect to the 
underlying specification semantics. The resulting logic program will then be a logical con- 
sequence of the logic specification. It is therefore hardly surprising that almost all existing 
deductive synthesis methods fall into this category. In general, however, synthesis may 
have to be done using more sophisticated deduction strategies (possibly involving theorem 
proving) which will ensure that the logic program synthesized will be correct with respect 
to the specification. 

4. I. Description of Approach 

To give a general description of (first-order) deductive synthesis of logic programs, we 
follow a formalization along the lines of [ 8 1, 821. 

4.1.1. THE STARTING POINT. The starting point for deductive synthesis is a pair (M, Q) 
where 

1. M is a set of axioms (in some first-order language), containing the logic specification 
Spec(r). This specification is a predicate defined by means of a de$nition axiom, 

‘Fribourg calls such a goal an implicative goal. 

6He considers a notion of existential termination. 
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i.e., an $-formula (in the language of M) whose head is the defined predicate. 
Other auxiliary predicates can also be defined in this way. 

2. Q is an instance (or a set of instances)70f the specified relation r for which we want 
a program. Q thus represents a query. 

M provides a general mathematical framework in which we can specify a large class 
of programs (or problems). For example, M may contain a theory of lists (complete with 
induction schemas, for instance). 

The meaning of the pair (M, Q) is the set of atoms that are instances of Q (and hence of 
r) and that logically follow from M, according to the underlying specification semantics. 

4.1.2. THE END RESULT. To deduce a logic program only for the query specified by Q, a 
small subset of the initial axiomatization M suffices in general. The synthesis process tries 
to derive (step by step) such a subset in the form of a set of definite or normal clauses (i.e., 
a logic program P), in such a way that SLD or SLDNF (instead of full first-order logic) can 
be used on these clauses to compute the answers to Q in an efficient way. In other words, 
the synthesis process derives (using some methods) the program P in such a way that the set 
of atoms that are instances of Q and that logically follow from M (under the specification 
semantics) is equivalent to the set of atoms which logically follow from the completion of 
P, Camp(P) (under the program semantics). The synthesized program P is thus totally 
correct with respect to its logic specification Spec(r) for the query Q considered. 

4.1.3. THE SYNTHESIS PROCESS. Starting from the pair (M, Q), a typical deductive 
synthesis method performs a synthesis process that can be formalized as a sequence of the 
form 

(M U Do U Comp(Po), Q) =+ (M U Dt U Comp(Pl), Q) =k . . . 
3 (M U 4 U Comp(P,A Q) 

whereDoG... c Dn are sets of definition axioms for defining (new) predicates, DO = ( }; 
PO E . . . g P,, are logic programs, PO = { }, such that 

M U Dk U cOmp(Pk) b=, cOmp(Pk+l), for 0 5 k < n , (9) 

where bs denotes the underlying specification semantics. 
Condition (9) ensures that every program Pk of the sequence is partially correct with 

respect to Spec(r). 

Each step of the synthesis process thus consists of adding either a definition axiom or 

a program clause that has been derived. The logic programs PI, . . . , P, are thus derived 
incrementally, clause by clause, so that 

Any chosen method for deriving the clauses will guarantee partial correctness as long as it 
satisfies (9). 

Total correctness, however, is a much more complex issue. In the formalization in 
[81, 821, for example, an alternative to the standard completion of P is considered. This 

7Not necessarily ground instances. 
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yields a criterion for determining when the synthesized program is totally correct (and hence 
when to stop the synthesis process). 

Finally, it is worth pointing out that, in general, this description of deductive synthesis ac- 
cording to [8 1,821 does not apply to partial deduction (partially evaluating a logic program), 
although at first sight it may appear to do so. The distinction, formalized in [83], is that 
partial deduction derives (Corrrp( Pz), Q) from (Comp( Pt ), Q), where Pt and 9 are logic 
programs and Q is the chosen goal, whereas deductive synthesis derives (Camp(P), Q) 
from (M, Q) where Comp(P> (or the completion of any program in general) is only a 
small subsystem of M (or a speci~carionframework [83] in general). 

Similarly, deductive synthesis can be distinguished from program transformation (based 
on unfold or fold rules, for instance). 

4.2. Example 

Now, we show an example of a typical deductive synthesis process, where first-order logic 
and SLD provide the specification and program semantics, respectively. 

Suppose we have a theory of lists, Slisr, and we want to synthesize’s program for the 
query incZuded(lt , ZQ) from the logic specification Spect(included) in Example4 (Section 
2.1). Then, the starting point will be 

where &ember is the following definition axiom for member 

member(X, L) e L = [HIT] A X = H v member(X, T) (10) 

and Dinc[&ed is, of course, just Specl (included). 

The condition for partial correctness (9) here is 

Slier U Dmember U &&ied U Dk U comP(pk) b comp(pk+l), for 0 5 k < n , (11) 

where + denotes first-order consequence. 
To synthesize a clause for included, we deduce it directly from Spect (included) 

included(Ll, L2) _ VX. (member(X, L1) j member(X, L2)) 

as follows. Since we have 

included([HlT], L2) _ VX. (member(X, [HIT]) =S member-(X, L2)) 
_ VX. (7member(X, [H 1 T]) v member(X, Lz)) 

we can deduce 

included([HIT], L2) w VX. ((1X = H A -member(X, T)) v member(X, L2)) 

from Dmember (10). 
Applying tbe distributivity law to the right-hand-side, we get 

included([HIT], L2) +=+ VX. ((1X = H V member-(X, L2))A 
(1member(X, T) v member(X, L2))) 

w VX. ((X = H j member(X, L2))h 
(member(X, T) =S member(X, Lz))) 
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which gives 

included([HIT], L2) w member(H, L2) A included(T, L2) 

Thus, we have deduced (12) from the axioms in 

and so we can use its if-part, namely, the clause 

included([HIT], L2) t member(H, L2), included(T, L2) 

and put it in Pt. That is, we have performed the synthesis step 

(slist U &ember U Din&&d, included(Ll, L2)) 
* (slist U Dmentber U Dincluded U Comp(Pl), incZuded(Ll, L2)) 

in such a way that (9) is satisfied, that is, 

List U &ember U Dinchded k cOV(h) 

(12) 

(13) 

thus ensuring the partial correctness of 

P1 = {included([HIT], L2) t member(H, L2), included(T, L2)} . 

Similarly, we could also derive the clauses 

incZuded([], [I) +- 
incZuded([H], [HI) + 

included([], L2) t 

from 

(Slisr U &ember U Included U Comp(P1), included(L1, L2)) 

and add them to PI to get the 
ensured by condition (9). 

4.3. Overview of Methods 

final program. The partial correctness of this program is 

As mentioned earlier, most existing methods use (first-order) logic sentences for M, and 
deduce logic clauses by correct inference rules directly from these logic sentences. That is, 
first-order logic and SLD, respectively, provide the underlying specification and program 
semantics. 

Hansson and Tarnlund [61,52], and Clark [30,25,26] axiomatize the relations that they 
wish to compute, as well as the data structures involved, as definition axioms in the form 
of $-formulas in predicate logic. That is, their M is a set of zr-formulas, and their Q is 
a single atomic query defined (or definable) in terms of atoms already defined in M. They 
then deduce logic programs from the axiomatization either by logical deduction (natural 
deduction in the case of [61,52]) or by symbolic execution (or re-writing) of Q together 
with other rules for simplifying formulas such as equivalence substitutions (as in the case 
of [30, 25, 261). 
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These methods guarantee partial correctness, but they require proofs of total correctness. 
Hogger [57-591 also starts with a set of @-formulas for M and a single iff formula 

for @x(r). He then treats the if-part without the head as a goal which is to be solved 
by a resolution-like mechanism using a “logic procedure” consisting of the only-if part of 
Spec(r>, as well as other relevant “clauses” from M which are necessary for solving this 
goal. He calls this goal-directed derivation. Alternatively, he also carries out the derivation 
using nonresolution inference rules. Hogger’s method also guarantees partial correctness, 
but it requires proofs of total correctness. 

Similar methods to the above have been proposed that are based on standard techniques 
for logic program transformation, for example, by Kanamori and Horiuchi [68]. 

In contrast, the method of Lau and Prestwich [84, 851 is designed to be mechanizable. 
Here, Spec(r) is also an @-formula and M is a set of @-formulas. However, the deduction 
of the clause(s) for solving Q is automatically decomposed into subdeductions which, when 
completed, are automatically composed into their parent deductions. This automation is 
possible because the user has to specify the recursion pattern in the required procedure. This 
method also guarantees partial correctness. Lau and Ornaghi [83] have proposed a method 
for synthesizing totally correct programs using their formalization of deduction synthesis 
in terms of SLDNF in [8 1, 821. 

For specifications expressed by restricted classes of first-order logic formulas, it is possi- 
ble to synthesize totally correct programs automatically. Such methods have been proposed 
by Dayantis [31], Sato and Tamaki [ Ill] who have implemented a compiler for translating 
a class of first-order formulas directly into logic programs, and Kawamura [63,64]. 

Finally, there are some methods which may not at first sight seem to fall into this cate- 
gory. Starting from the work of Bundy and Wiggins (see previous section), Kraan [65,661 
developed a method for program synthesis that is based on proof planning. In planning 
the proof that a (not yet synthesized) program meets its given specification, the program’s 
body is represented by a meta-variable. The proof plan is completed by instantiating this 
meta-variable to logical formulas deduced from the specification. 

In the LOPS synthesis system [9], the specification is really an “input-output” synthesis 
conjecture (as in constructive synthesis), and the specified program is derived by (various 
strategies for) re-writing formulas as well as using domain knowledge to generate relevant 
theorems. However, we may regard the domain knowledge as M, and Neugebauer [96,97] 
has shown that LOPS can be re-cast as a deductive synthesis method for logic programs (as 
well as programs in other target languages, even C!). 

At this point, it is worth noting that Kreitz [70, 711 has studied program synthesis 
at a meta-level, and has shown that the constructive and deductive approaches are fully 

equivalent. 

5. INDUCTIVE SYNTHESIS 

Inductive synthesis refers to the process of formulating general rules from incomplete 
information, such as examples. Inductive synthesis of programs is performed by means of 
inductive inference, and is part of machine learning, a branch of AI. Inductive inference 
is related to the concept of generalization (deductive synthesis is related to specialization) 
and has received much attention in functional programming during the 1970s. It has been 
an active area of research in logic programming since the early 1980s. 

We shall first give a more precise description of inductive synthesis and show that in- 
ductive synthesis of recursive logic programs has a specific niche within Inductive Logic 
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Programming (ILP). As an example of inductive synthesis, we shall then briefly present the 
Model Inference System [ 105, 1061, before overviewing other existing approaches. 

This section will not cover the entire Inductive Logic Programming area. Focus will 
be put on methods aiming at solving “programming problems” (rather than at concept 
learning), that is, problems where some recursion has to be synthesized. See [90,92] for a 
complete survey and references on ILI? 

5. I. Description of Approach 

In the specific framework of (recursive) program synthesis from examples, it will also be 
assumed here that the specifier/programmer “knows” (even if only informally) the intended 
relation X(r). He is thus able to decide whether a given example belongs to the intended 

relation or not. 
In an inductive synthesis of logic programs, the logic specification Spec(r) is usually a 

set of positive examples (denoted by Spa+(r)), and possibly a set of negative examples 
(denoted by Spec-(r)). Examples are ground atoms. In some methods, the specification 
can be constructed incrementally during the synthesis process. 

The assumption that the specifier “knows” the intended relation is formalized by assum- 
ing the consistency of the logic specification with respect to the intended relation. More 
precisely: 

.Spec+(r) 2 Z(r) 

Spec-(r) _C Z(r) 

where Z(r) denotes the complement of I(r). It is clear that a specification by examples is 
usually intrinsically incomplete (i.e., Spec+(r) # Z(r)). 

The objective of inductive synthesis is to infer a logic program Prog(r) that covers 
at least all the examples: hog(r) must be consistent with respect to .Spec+(r) (i.e., 
P(r) 2 Spec+(r)) and with respect to Spec-(r) (i.e., P(r) C_ Spec-(r)). Given the 
incompleteness of the specification, the synthesized program must also cover other unspec- 
ified examples. Partial correctness with respect to the logic specification is thus irrelevant 
here. The objective is to get a program that is totally correct with respect to the intended 
relation, although such an objective cannot always be achieved in a fully automatic way. 
Inductive synthesis thus aims at inferring some “natural” extension of the given examples. 

Within the methods for inductive program synthesis, one can distinguish between the 
trace-based approach and the model-based approach. In the trace-based approach, example 
traces are first generated. A trace is a sequence of instructions executed by an unknown 
program on some given input data. Then the traces are generalized into a program. This 
program may be obtained by folding, matching, and generalizing the traces. Generalization 
is required since traces are related to some specific inputs; folding is required in order to 
form loops and recursion. In the model-based approach, synthesis aims at constructing a 
finite axiomatization of a model of the examples. It thus makes an intensional representation 
of a relation (i.e., a program) from the given (incomplete) extensional representation (i.e., 
the examples). 

The model-based approach to inductive synthesis of logic program is better known as 
Inductive Logic Programming (ILP). ILP is at the intersection of empirical (inductive) 
learning and logic programming [91]. By empirical learning, we mean the elaboration 
of a concept description from incomplete definitions. However, we concentrate here on 
a specific class of logic programs, namely, the recursive ones. In this specific case, we 
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assume that a human specifier knows the intended relation. This underlines the algorithmic 
focus of inductive synthesis compared to the more general scope of ILP (which also covers 
concept learning). 

5.2. Model Inference System 

One of the first systems for synthesizing logic programs from examples is Shapiro’s Model 
Inference System (MIS) [105,106]. It can also be seen as a special case of program debug- 
ging [ 1061, where the initial program is empty. MIS is model-based. It is also incremental 
in the sense that examples are introduced one by one. For each new example, the program 
induced from the previous examples is updated to correctly handle this new example. A 
key feature of MIS is the clause generator, which has the capacity of “enumerating” pos- 
sible program clauses according to some subsumption relation computed by a refinement 
operator. Such an enumeration is actually performed by searching the refinement graph 
induced by the chosen refinement operator. 

The general strategy behind a synthesis with MIS is the following. The initial program 
is empty. For each new example, if it is a positive example that is not covered by the 
program, a new clause covering this example is added to the program. If the new example 
is a negative example that is covered by the program, then the covering clause is removed. If 
the resulting program is inconsistent with respect to the previous examples, the program is 
modified, using the above strategy. The resulting new program is then proposed to the user. 
The generated programs are always consistent with respect to all the introduced examples. 

Example 14. Let us sketch a possible dialogue between the specifier and MIS to synthesize 
the included relation. 

(Type) incZuded(Zist, list) 

(Mode) incZuded(+, +), determinate 

(Possibly used predicates) member(_, _), incZuded(_, _) 

(El) incZuded([], [l, 21) 
(Pl) incZuded(ll, 152) + 

(E2) +ncEuded([ I], [2]) 
(P2) incZuded([], 152) + 

(E3) incZuded([l], [2, 11) 
(P3) included([], L2) +-- 

incZuded([HjTl], L2) t member(H, L2) 

(E4) -incZuded([l, 21, [l, 31) 
(P4) incZuded([], Lz) +- 

incZuded([HITl], L.2) t member(H, I%), 
incZuded(T1, L2) 

The specifier must first declare the predicate to be synthesized, its type, mode, as well as 
the possible predicates used by the program. The declaration of the possibly used predicates 
is necessary for the system to limit the size of the refinement graph. This will only contain 
clauses involving the included or member predicates. After the presentation of example 
(El), the synthesized program is (Pl), the most general clause for included. Example (E2) 
forces the system to review this choice, and to take something less general. With example 
(E3), the program must be generalized to cover the new example. A new clause is chosen by 
the clause generator. It is as general as possible, while yielding a program consistent with 
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the previous examples. The presentation of example (E4) forces the system to reconsider 
the second program clause, and the clause generator produces a less general one. 

5.3. Overview of Methods 

Fundamental notions for inductive synthesis are subsumption and generalization, as devel- 
oped by [99, 100, 1031. Plotkin’s idea of least general generalization has been the basis of 
most model-based approaches to the induction of logic programs. Generalization can be 
used in two different ways, bottom-up or top-down. In a bottom-up approach, the example 
included([], [ 1,2]) would yield the bottom element (least general) among the generaliza- 
tions of the examples, that is, the program clause incZuded([], [l, 21) +. In a top-down 
approach, such as in MIS, the clauses are enumerated from the most general to the most 
specific. The example included([], [l, 21) would yield the top elements (most general) 
among the generalization of the example, that is, the program clause included(ll, L2) t. 

Top-down approaches as well as extensions and improvements of MIS have received 
much attention in the ILP framework. A complete account of this work can be found in 

[901. 
Among the possible improvements of the MIS method, we mention the definition of more 

sophisticated refinement operators for the clause generator, the introduction of background 
knowledge, and predicate invention for the used predicates. 

The combination of MIS and program schemata allows a further organization of the 
search space [112, 751. This approach is especially adaptable to our specific case where 
recursive programs have to be synthesized since recursive programs can often be classified 
according to their design strategy (see Section 6.2). 

The trace-based approach to program synthesis has received much attention in the context 
of functional programming (see the survey [ 1071). In the logic programming context, the 
trace-based approach has been reformulated in [51] by means of higher-order unification 
in a type theory with recursion. There, logic program synthesis from examples is actually 
also based on the constructive paradigm. A constructive proof for a concrete example of the 
theory is first generated, then the proof is generalized into an inductive proof from which 
a program can be extracted. In the context of program transformation, Compiling Control 
techniques (e.g., [ 15]), is also related to the trace-based approach. 

Specifications by examples can also be extended by allowing examples and properties 
(i.e., logic formulas). In [38,40,39,41], logic program synthesis is performed by instantiat- 
ing a divide-and-conquer program schema. The specification is composed of examples and 
properties. The whole synthesis process combines inductive, deductive, and constructive 
synthesis. Different synthesis methods are used for instantiating the different place-holders 
of the program schema. One of the proposed methods, called Most Specific Generalization, 
aims at inductively inferring a logic program from examples, but within a restrictive set- 
ting. This method can successfully be applied to synthesize parts of a divide-and-conquer 
schema. 

6. SYNTHESIS BY INFORMAL METHODS 

Some of the methods that have been studied in the literature are informal in the sense that 
they start from an informal description of the intended relation. The primary objective of 
such methods is not necessarily the full automation of the synthesis process, but rather the 
elaboration of practical methods for the construction of logic programs. Usually, parts of 
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such construction processes are, or can be, automated, hence providing a computer-aided 
environment for the development of logic programs (see also the survey on Programming 
Environments). 

Broadly speaking, there are two main informal approaches. The first one constructs a 
logic program by structural induction, starting from the intended relation. It is informal in 
the sense that the resulting logic program cannot be formally proven correct with respect to 
the intended relation. We will not consider here the direct construction of Prolog programs 
where the construction process is based on the operational semantics of Prolog. The second 
approach starts with a program schema and “instantiates” it to obtain a logic program. In 
logic programming, methods based on program schemata basically fall into the category of 
informal methods because logic specifications are usually absent. 

6.1. Program Construction by Structural Induction 

Structural induction [18, 191 is a major technique for the construction and the proof of 
correctness of programs. Basically, structural induction is a proof-by-induction method, 
where the induction is on the structural form of some terms. The construction of a program 
by structural induction is aconstruction where the reasoning is based on the structure of some 
input parameter. Such a construction implicitly contains a correctness proof by structural 
induction. Although initially introduced in the context of functional programming, it is 
also well-adapted for logic program construction. Structural induction is also used in 

constructive synthesis. 
The construction of a logic program by structural induction can be seen as a framework 

allowing a precise presentation of the “natural” (manual) construction of a logic program, 
but based purely on declarative semantics. 

To simplify notation, let us assume that we are dealing with a binary relation r(X, Y). 

Given an intended relation I(r), the constructed logic program will have the following 
form: 

r(X, Y) +- Cl A F1 

r(X, Y) t C,, A Fn 

where, typically, each Ci A Fi will deal with one of the various cases of the induction param- 
eter, with Ci determining a particular case of the induction parameter and the corresponding 
Fi verifying that the intended relation holds in this case. In practice, each Ci will often be 
a literal and each Fi a conjunction of literals (otherwise, a straightforward transformation 
can lead directly to the form of a logic program). 

The construction process consists of the following: 

1. Choice of an induction parameter (X or Y). 
2. Choice of a well-founded relation’over the type of the induction parameter. 
3. Construction of the structural forms Ci of the induction parameter. 
4. Construction of the structural cases. 

In the construction process, the predicate r as well as the other predicates involved are 

8A relation -C is well-founded over a set E iff there is no infinite decreasing sequence x1 z x2 . . > 

Xi > . . . of elements of E. 
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interpreted according to their intended relations. The construction process is thus performed 
within some intended Herbrand interpretation ‘H. 

The structural forms of the induction parameter must cover all the possible cases. More 
formally, the formula’ 

VX,Y. 3(ClV...VC,) 

must be true in the intended interpretation 3-1. The formula Fi should satisfy the condition 
that 

vx, Y 3(Ci) =+ (r-(X, Y) -3 3(Ci A Fi) ) 

is true in the intended interpretation 3-1. 
Such an F; formula can be obtained by reduction to simpler subproblems (because of 

the particular form of the induction parameter) and/or by a recursive use of T(S, t). It is, 
however, crucial to show that s (or t) is smaller than the induction parameter according to 
the chosen well-founded relation. The construction of the Fi is certainly one of the creative 

tasks. 
One can show that under the hypothesis that the construction process has been correctly 

applied, the (completion of the) resulting logic program is totally correct with respect to 
the intended relation [33]. We also have that the intended interpretation 7f is a model of 
Camp(P), and that the interpretation of r is the same (i.e., the intended relation I(r)) in all 
the Herbrand models of Camp(P). The choice of an induction parameter, a well-founded 
relation, and the structural forms are important since different choices can lead to different, 
although correct, logic programs. 

The role of a well-founded relation is crucial to the correctness of the resulting program. 
Without a well-founded relation, (incorrect) programs of the form r (X, Y) + r (X, Y) could 
be constructed. From a procedural point of view, the well-founded relation also ensures the 
termination properties of the program when the induction parameter is ground in the query 
and in the recursive calls. 

Example 15. Let us consider the intended relation Z(included) specified in Example 2. 
In the intended interpretation l-t, included is interpreted as Z(included), member(H, L) 
is true iff H is a member of the list L, and X = Y is true iff Y and Y are syntactically 
identical. The construction proceeds as follows: 

1. Choice of an induction parameter. 
We choose Lt (arbitrarily). 

2. Choice of a well-founded relation (over lists): 
Given two lists 11~12, we define It < 12 iff It is the tail of 12. 

3. Construction of the structural forms of L 1: 
The possible structural forms of L t are L 1 empty and L 1 nonempty. Hence, the two 
cases: 

l Ll =[I 
. L1 = [HIT] 

These two forms covers all the possible forms because the following formula is true 

‘The subformula 3(F) in the formula VX, Y .3(F). denotes the existential closure of F, except for 
the variables X and Y. 
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in the intended interpretation 7-t: 

VL1 . 3H, T. ( L1 = [] v L1 = [HIT] ) 

4. Construction of the structural cases: 
For each structural form, we have to find a necessary and sufficient condition to 
have included(Ll, L2) true in the intended relation. 

l For L 1 = [I, the intended relation holds whatever the list L2 is. The structural 
form is thus simply true. One can easily verify that the following formula is 
true in the intended interpretation 3-1: 

VLl, L2 . LI = [J =+ (incZuded(L1, Lz) + true) 

l For L 1 = [H 1 T], a necessary and sufficient condition to have all the elements 
of L1 belonging to L2 is to have H belonging to L2 and, all the elements of T 
belonging to L2. That is, 

member(H, L2) A included(T, L2) 

Notice that T is smaller than L 1 according to the well-founded relation. 
One could also easily verify that the following formula is true in the intended 
interpretation 3c: 

VL1, L2. ( 3H, T. L2 = [HIT] ) =+ 
(included(Ll, L-J + L2 = [H]T]A member(H, L2) 

A incEuded(T, L2) ) 

The resulting program is then 

incZuded(L1, L2) t L1 = [] 
incZuded(L1, L2) t L1 = [HIT], member(H, Lz), 

included(T, L2) 

This program can be easily transformed into Progl (included) given in Example 6. The 
alternative choice for the induction parameter, that is L2, would lead to Progz(incZuded) 
in Example 6. 

6.2. Schema-Guided Program Construction 

Programs can be classified according to their design strategies (divide-and-conquer, generate- 
and, test, and so on). Informally, a program schema is a program template representing a 
whole family of particular programs, all based on the same design strategy. These programs 
can be obtained by instantiating the place-holders in the template to particular parameters 
or predicates. It is therefore interesting to guide the construction of a program by a schema 
capturing the essence of the chosen strategy. 

Example 16 presents a (simplified) version of the divide-and-conquer schema, where the 
“divide” (i.e., induction) is performed on the second parameter. 
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Example 16. 
r(X, Y) t Minimal(Y), SoZve(X, Y) 

r(X, Y) t NonMinimal( Decompose(Y, FirstY, RestY), 

r(RestX, RestY), 

Process(FirstY, FirstX), 

Compose(FirstX, RestX, X) 

Various methods can be used (knowledge-based, schema composition, deductivelcons- 
tructiveiinductive synthesis, uses of algebraic properties of the specification, etc.), and they 
can be combined for instantiating the different parts of the schema. For example, a possible 
instantiation for the included problem could be the following: 

incZuded(Ll, L2) +- L2 = [I, Ll =[I 
incZuded(Ll, L2) + L2 = [HzlT2], remove_aZZ(H2, L2. NL2), 

incZuded(NL1, NL2), 

H2 = Hl, 

insert(Hl, NLl, LI) 

where remove-aZZ(H, L, NL) holds iff NL is the list L without all the occurrences of H, 

and insert(H, NL, L) holds iff L is the list NL where k occurrences (for some k > 0) of 
H have been added. 

Given that N L 1 has no occurrence of HI, the atoms insert can be replaced by remove-all, 

yielding Progz(incZuded) in Example 6. 

6.3. Overview of Methods 

Structural induction in logic program construction has already been seen in [30]. The 
construction of an axiomatic definition of a relation is performed by case analysis on the 
structural form of a parameter. 

In Prolog textbooks, the usual guidelines for program construction are mainly based on 
a very procedural approach, and mostly disconnected with structural induction [27,13,47]. 
It should be noted that in [ 1 lo], there is a clear distinction between the concept of a logic 
program and a Prolog program. 

The above presentation of program construction by structural induction is based on [33] 
where methods are proposed for the systematic development of logic programs. These 
methods cover the whole process, starting from the intended relation, constructing a logic 
program, and deriving an executable Prolog program. 

In functional programming, program schemata are used in deductive synthesis, such as 
in the KJDS system [108, 1091, or in program transformation [55]. A formalization of a 
strategy deriving global search algorithms from specifications is described in [7 11. Details 
can also be found in [72]. In the context of logic programming, schemata were mostly used 
for assisting the manual construction of logic programs. 

In [45, 461, a hierarchy of logic program schemata is proposed. These are set in a 
second-order logic framework, and reflect a divide-and-conquer design strategy. Divide- 
and-conquer schemata are also proposed in [32,33] which incorporate generalization tech- 
niques. The schemata are integrated in an environment for logic program development [54]. 
Various divide-and-conquer logic program schemata are carefully detailed in [41]. These 
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are used to guide inductive logic program synthesis. 
Logic program schemata proposed in [98], cover different classes of problems and dif- 

ferent design strategies. 
Stepwise enhancement is proposed in [86,87,77,76,74] as a structured and procedural 

approach to Prolog program development. Program schemata, called “skeletons,” isolate 
the basic control flow structures. Skeletons can be extended by means of “techniques” 
which can be applied to include extra computations in the skeletons. Different extensions 
can also be combined. [12] discusses a similar system based on what the authors call 
Cliches. 

7. EVALUATION AND PERSPECTIVES 

As we pointed out earlier, in this survey, we only intend to give a short introduction to the 
various synthesis methods. It would be folly to pretend that these methods on their own 
can tackle all the remaining problems or unsolved theoretical difficulties in logic program 
synthesis, let alone program synthesis in general! The synthesis of a program from a 
specification cannot be reduced to the choice of a method and the application of well- 
defined rules to synthesize a correct program. With this caveat, we now conclude with a 
brief summary, assessment, and discussion of existing work and potential future trends. 

It is generally recognized that to achieve the goals of program synthesis, the best for- 
malisms to use are declarative ones, such as functional and logic programming. The func- 
tional programming community has been very actively pursuing this objective, mainly doing 
constructive synthesis based on constructive type theory, and inductive synthesis from ex- 
amples. In contrast, logic programmers have mainly concentrated on deductive synthesis. 
Each of these approaches has its own strengths and weaknesses. 

In constructive synthesis, although program extraction can be mechanized, producing 
the proofs remains a nontrivial task and needs human interaction. In deductive synthesis, 
program extraction is unnecessary (in logic programming at any rate), and each deduction 
step can be automated, but the overall deduction strategy also needs human guidance. 

Constructive and deductive synthesis are usually applied starting with a complete logic 
specification to begin with. A problem with these approaches [Ill is that writing a logic 
specification for a program is sometimes very much like writing the program itself. A 
precise syntax has to be devised to completely codify the desired behavior, and one might 
prefer to write the program directly in this syntax rather than using automated synthesis 
systems. On the other hand, inductive synthesis from examples works very well. However, 
it can create programs automatically only if they are small (two or three or four lines of 
code), and the cost in execution time is exponential! 

Synthesis by informal methods stresses what are the crucial creative steps within the 
design of a program. It also enables us to abstract programming concepts such as pro- 
gram schemas. As the starting specification is informal, these methods cannot be totally 
automated, but can yield tools supporting interactive program synthesis. 

Logic programming provides a nice uniform framework for program synthesis. On the 
one hand, the specification, the synthesis, and the resulting program can all be expressed in 
logic. On the other hand, logic specifications can describe complete specifications as well 
as incomplete ones such as examples or properties of the relation to compute. The logic 
programming paradigm thus offers a chance to present both kinds of information within the 
same language, and treat them uniformly in a synthesis process. 

Although presented separately in this paper, the different methods can be combined in 
various ways. Constructive and deductive synthesis do not have to start with complete 
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specifications. It is reasonable to believe that the key to a general synthesis method lies 

in a combination of the strengths of the different synthesis approaches. By studying these 
different approaches in the framework of logic programming, we hope we have taken a first 
step in the right direction. 

Finally, in order to suggest or predict the future trends or directions of program synthesis, 
it is useful to return to the general context of program synthesis. If we view computer 
programming as a process of constructing executable code from (fragmentary) information, 
then program synthesis shares with automatic programming the same objective of using a 
machine to do computer programming. However, to paraphrase [104], it would be in 
vain to hope that, thanks to automatic synthesis, there will be no more programming. It 
is impossible to have user-oriented, general-purpose, and fully automatic programming 
systems. At least one of these three desirable qualities has to be sacrificed. The required 
input of such automatic systems needs to be carefully crafted, debugged, and maintained. 
Thus, some “programming” tasks will still have to be done. To quote [ 1041, 

“Automatic programming systems of the future will be more like vacuum 
cleaners than like self-cleaning ovens.” 

Realistically, then, program synthesis aims at abstracting the programming process, 
letting the programmer concentrate on the really creative tasks involved. In this perspective, 
the synthesis system thus becomes a partner rather than an independent agent, and we have 
IA (Intelligence Amplification) rather than AI (Artificial Intelligence) [ 11 J. Automatic 
programming will begin to have an impact on realistic programming by offering users tools 
for interactive synthesis, and not by delivering some ultimate solution. 

We would like to thank the referees for their valuable, detailed comments, and for their constructive criticisms 

and suggestions, which have greatly improved this paper. We also thank Pierre Flener and Geraint Wiggins 
for reading the draft and for their helpful remarks. 
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