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Introduction

One basic problem in statistical science is to understand the relationships among multivari-

ate outcomes. In that respect, regression analysis is an important tool because it allows

researchers to focus on the effects of explanatory variables. In automobile insurance, for

instance, regression models (Poisson regression, and more generally, Generalized Linear

Models and nonlinear extensions) allow the actuaries to quantify the effect of observable

characteristics of policyholders on the insured peril (and thus to adjust the amount of pre-

mium accordingly). Although it remains an important tool and is widely applicable, the

regression analysis is limited by the basic setup that requires to identify one dimension

of the outcomes as the primary measure of interest (the ”dependent” variable) and other

dimensions as supporting this variable (the ”explanatory” variables).

There are situations where this relationship is not of primary interest. One might be in-

terested in understanding the distribution of several outcomes in a multivariate setting. For

instance, when a married couple has bought a joint life insurance or annuity policy, we are

concerned with the joint distribution of lifetimes, since the valuation of the policy depends,

among other factors, upon the probabilty of survivorship of the couple. Or, in automobile

insurance, one might be interested to study the kind of dependence between annual claim

numbers, which has an important impact on the premium paid by the policyholder. When

such analysis is of interest, appropriate tools are needed in order to evaluate, to compare

and to model the strength of dependence existing between different outcomes.

Since modelling random variables is based on probability theory, when comparing risks

one might resort to stochastic orderings, which give an idea on how a random variable is
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more dangerous than another. For example, given two random variables, we say that the

first one is ”smaller” (in a stochastic sense defined in the first part of the thesis), than the

second one if it has the smallest probability of exceeding a given threshold. Among numerous

stochastic orderings existing, we will use, in this thesis, two of them, namely the stochastic

dominance and the likelihood ratio order. The latter is actually a sufficient condition to get

the former. Besides comparing random variables, these stochastic orderings are also used

to define dependence concepts (such as Positive or Negative Quadrant Dependent), which

allow to evaluate the strength of dependence existing between different random variables.

An important amount of literature arose from the study of the stochastic orderings in

general, as well as their application is actuarial sciences. For more details on this topic we

refer e.g. to Lehmann (1955), Barlow & Proschan (1975), Mosler & Scarsini (1993), Shaked

& Shanthikumar (1994), Szekeli (1995), Müller & Stoyan (2002). We also refer e.g. to Joe

(1997), for more details about dependence concepts.

Now, if one is interested not in comparing random variables, but rather in modelling

the dependence existing between them, he might need another statistical tool. Such a tool,

is the copula. It allows the construction of multivariate distributions with given marginals.

Once one chooses the appropriate marginals and plugs them into a suitable copula, he gets

the multivariate distribution. For more details on copulas we refer e.g. to Joe (1997), Nelsen

(1999). Modelling dependence between continuous outcomes by means of a particular class

of copulas, the archimedean family, is the main topic of the second part of the thesis.

This thesis is devoted to modelling dependence with applications in actuarial sciences

and is divided in two parts: the first one concerns dependence in frequency credibility models

and the second one deals with dependence between continuous outcomes. As previously

mentioned, to this end we will resort to different tools, the stochastic orderings and copulas,

respectively.

Part I: Credibility models for claim frequencies

This part is devoted to the study of recently introduced models in frequency credibility

theory, which can be seen as models for time series of count data, adapted to actuarial

problems. More precisely, we are interested in the number of automobile accidents (also

referred to as claim numbers or claim frequencies in this thesis). There is an important
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amount of literature devoted to finding an appropriate model for such data, in actuarial

sciences. For a review of the existing literature, we refer e.g. to Lemaire (1995) and Denuit

(1997).

In this thesis, we will focus on the mixed Poisson model. Now, in this model, of main

interest will be the study of the dependence induced among annual claim numbers by

the introduction of random effects, representing some important factors which cannot be

measured (such that aggressiveness behind the wheel), but which obviously influence the

number of accidents. This will be done by means of stochastic orderings and positive

dependence structures, which allow the comparison and, respectively, the formalization of

the kind of dependence existing between random variables. Intuitively speaking the latter

ones capture the fact that large (small) values of one random variable tend to be associated

with large (small) values for the others.

Describing the dependence generated by actuarial credibility models by means of sto-

chastic orderings represents one of the important contributions of this thesis, since this

aspect, to our knowledge has never been investigated in the literature so far. Let us first

start with a brief description of the context which made us to be interested in such topic.

Credibility theory can be seen as the art to combine different collections of data to

obtain an accurate overall estimate. In many cases, a compromise estimator is derived from

a convex combination of a prior mean and the mean of the current observations. The weight

given to the observed mean is called the credibility factor (since it fixes the extent to which

the actuary may be confident in the data). An excellent introduction to credibility theory

can be found in Herzog (1994).

One of the main tasks of the actuary is to design a tariff structure that will fairly

distribute the burden of claims among policyholders. If the risks in the portfolio are not all

equal to each other (which means that the associated random financial losses have different

distribution functions), it is fair to partition all policies into homogeneous classes with

all policyholders belonging to the same class paying the same premium. In automobile

third party liability insurance, examples of classification variables encountered in practice

include the age, gender and occupation of the policyholders, the type and use of their car,

the place where they reside and sometimes even the number of cars in the household, marital

status, smoking behavior or the color of the vehicle. It is convenient to achieve a priori
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classification with the help of generalized linear models; see e.g. Renshaw (1994) and Mc

Cullagh & Nelder (1989) or Dobson (1990) for a general overview of the statistical theory.

However, many important factors cannot be taken into account at this stage; think for

instance of swiftness of reflexes or aggressiveness behind the wheel in automobile insurance.

Consequently, tariff cells are still quite heterogeneous. This residual heterogeneity can be

represented by a random effect in a statistical model. The amount of premium charged to

all policyholders in a risk class is thus itself an average, so that some policyholders pay too

much and subsidize the others. The claims histories can be used to restore fairness in the

risk classes, increasing the premium for policyholders reporting claims and decreasing those

of good drivers. The allowance for the history of the policyholder in a rating model thus

derives from interpretation of serial correlation for longitudinal data resulting from hidden

features in the risk distribution.

During the last decade of the 20th century, the world of insurance was confronted with

important developments of the a posteriori tarification, especially in the field of credibility.

This was due to the easing of insurance markets in the European Union, which gave rise to

an advanced segmentation. The first important contribution is due to Dionne & Vanasse

(1989, 1992), who pointed out the great influence of the a priori risk classification on

the size of the a posteriori corrections. More precisely, the discounts granted, when no

claims were reported, were higher for the bad drivers than for the good ones (bad and

good qualifications referring to the a priori tariff). Therefore these authors proposed a

credibility model which integrates a priori and a posteriori information on an individual

basis. They introduced a regression component in the Poisson counting model in order

to use all available information in the estimation of accident frequency. The unexplained

heterogeneity was then modeled by the introduction of a latent variable representing the

influence of hidden policy characteristics.

Taking this random effect Gamma distributed yields the Negative Binomial model for

the claim number. Of course, there is no particular reason to restrict ourselves to Gamma

distributed random effects (except perhaps for mathematical convenience). In the biostatis-

tical field, LogNormally distributed random effects are widely used (see also Pinquet (1997)

for an application in actuarial science). The use of the Inverse Gaussian distribution has

been advocated by Willmot (1987) in conjunction with Poisson mixtures; see also Tremblay
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(1992). Another possible choice is Hoffman’s distribution; see e.g. Kestemont and Paris

(1985). Moreover, semi-parametric approaches (retaining the Poisson assumption for the

claim numbers without specifying any distribution for the random effects) are conceivable

in the spirit of the Bühlmann-Straub model. See e.g. Walhin & Paris (1999) as well as

Denuit & Lambert (2001) for nonparametric maximum likelihood methods.

The vast majority of the papers that appeared in the actuarial literature considered time-

independent (or static) heterogeneous models. Noticeable exceptions include the pioneering

papers by Gerber & Jones (1975), Sundt (1988) and Pinquet, Guillén & Bolancé (2001,

2003). The allowance for an unknown underlying random parameter that evolves over time

is justified since unobservable factors influencing the driving abilities are not constant. One

might consider either shocks (induced by events like divorces or nervous breakdown, for

instance) or continuous modifications (e.g. due to learning effect). Another reason to allow

for random effects that vary with time relates to moral hazard. Indeed, individual efforts to

prevent accidents are unobserved and feature temporal dependence. The policyholders may

adjust their efforts for loss prevention according to their experience with past claims, the

amount of premium and awareness of future consequences of an accident (due to experience

rating schemes).

Let us consider that in a portfolio of an insurance company there are n policies during

the observation period, each of them being observed during νi periods (measured in years

for instance). Let N i = {Ni1, Ni2, . . . , Niνi
} be the sequence of claim numbers reported by

policyholder i, i = 1, 2, . . . , n. For the same policyholder, the influence of hidden features

(as annual mileage or aggressiveness behind the wheel for instance), i.e. unknown risk

characteristics of the policyholder having a significant impact on the occurrence of claims,

will be modelled by a vector, Θi, of positive random effects with unit mean. Thus the ith

policy of the portfolio, i = 1, 2, . . . , n, is represented by a sequence (Θi,N i). It is essential to

understand the philosophy of this classical actuarial construction. Here dependence between

annual claim numbers is a consequence of the heterogeneity of the portfolio; the dependence

is only apparent. If we had a complete knowledge of policy characteristics then Θi would

become deterministic and there would be no more dependence between the Nij ’s for fixed

i. The unexplained heterogeneity (which has been modeled through the introduction of the

vector of random effects Θi for policyholder i) is then revealed by the claims and premiums
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histories in a Bayesian way. These histories modify the distribution of Θi and hence modify

the premium.

Once estimated, the heterogenous model can be used to perform prediction on longi-

tudinal data and allows experience rating in casualty insurance. In an empirical Bayesian

setting, the prediction is derived from the expectation of a random effect with respect to

a posterior distribution taking into account the history of the individual. An excellent

introduction to these concepts can be found in Pinquet (2000).

As mentioned at the beginning, in this first part we will study the influence of the

random effects, Θi on the kind of dependence existing between annual claim numbers, the

Nij ’s. We split the study in two parts, depending on how these random effects are, static

(time-independent) or dynamic (time-dependent).

Static random effects

Since the random effects are constant over time, i.e. Θi = (Θi, . . . ,Θi), the Poisson static

credibility model will be based on the following assumptions:

A1 given Θi = θ, the random variables Nij, j = 1, 2, . . ., are independent and conform to

the Poisson distribution with mean λijθ, i.e.

P[Nij = k|Θi = θ] = exp(−λijθ)
(λijθ)k

k!
,

for k ∈ N, j = 1, 2, . . . ;

A2 at the portfolio level, the sequences (Θi,N i) are assumed to be independent.

The very aim of credibility theory is to predict future claims behaviour. In that respect

predictive distributions are of prime interest: these are the distributions of claim character-

istics for next year, given past observations. As the total claim numbers, Ni• =
∑νi

j=1
Nij ,

is an exhaustive summary of past claims, we show that when Ni• increases, the a posteriori

distribution of Θi ”increases” in some stochastic sense. This result holds for any Poisson

mixture model (i.e. for any chosen distribution for the random effects). We also prove

that, in this model, the dependence between annual claim numbers is very strong, namely

MPLRD (multivariate positive likelihood ratio dependence).
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We then, extend this study to the Generalized Linear Mixed Models (GLMM’s). GLMM’s

are widely used by actuaries, since they form the basis of credibility theory and bonus-malus

systems. Building on Lee & Nelder’s (1996) work, Nelder & Verrall (1997) showed how credi-

bility theory can be encompassed within the theory of GLMM’s. In this context, the variable

of interest represents some observation related to the policy, i.e. claim frequency, loss ratio

or claim severity (and thus following Poisson, Normal or Gamma law, respectively). The

random effects represent hidden features influencing the risk covered by the insurer.

We first prove that equivalent results to those in the Poisson case, still hold in the

GLMM framework. Since credibility theory deals with prediction, we were interested in

investigating some features of the Bühlmann credibility premium, which gives a prediction

of the claims in year νi+1, when only νi years are observed. For each of the three examples of

interest (claim frequency, loss ratio or claim severity) we show that the Bühlmann credibility

premium, πcred, is linear in the total past claims. We then prove that increasing the linear

credibility premium (i.e. deteriorating the claim record of the policyolder) makes larger the

probability to observe more important losses in the future. This result relies on the fact that

when the total past claims up to year νi are becoming larger, the claim characteristic for

the next year, νi + 1, is ”increasing” in a stochastic sense, property which was also proven.

Dynamic random effects

The main technical interest of letting the random effects evolve over time (i.e. Θi =

(Θi1,Θi2, . . .)) is to take into account the date of claims. This reflects the fact that the

predictive ability of a claim depends on its age: a recent claim is a worse sign to the insurer

than a very old one. Contrarily to the static case, the total number of claims reported in

the past is no more an exhaustive summary of policyholders’ history. Rather, the sequence

of annual claim numbers has now to be memorized to determine future premiums.
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The Poisson dynamic credibility model relies on the following assumptions:

A1 given Θi = θi, the rv’s Nit, t = 1, 2, . . . , νi, are independent and conform to the Poisson

distribution with mean λitθit, i.e.

Pr[N i = ki|Θi = θi] =

νi
∏

t=1

Pr[Nit = kit|Θit = θit]

=

νi
∏

t=1

exp(−λitθit)
(λitθit)

kit

kit!
, ki ∈ N

νi ;

A2 at the portfolio level, the sequences (Θi,N i), i = 1, 2, . . . , n, are assumed to be in-

dependent. Moreover, the Θit’s are non-negative rv’s with unit mean. Defining

νmax = maxi νi, Θi has the same distribution as the first νi components of some

random vector (Θ1, . . . ,Θνmax
).

In addition to the previous assumptions, we consider different structures for the ran-

dom effects, which match the constraints enumerated in A2. We focus on three models

based on the Log-Normal distribution and one model based on copulas (thus allowing to

specify another distribution than the Log-Normal). Each of these models is then analyzed

separately.

Since the random effects are evolving in time, the dependence existing between them

will influence the dependence between annual claim numbers. We first study under which

conditions the dependence between the random effects occurs. Then we show that the

same dependence structure existing between the random effects is transmitted to the claim

numbers. We also prove the influence of increasing claims N i on the unobservable charac-

teristics Θi as well as on the predictive distribution of Θi,νi+1 and the one of Ni,νi+1. This

influence will be seen to be an ”increasingness” in a stochastic sense.

Brouhns & Denuit (2003) complemented this work by considering Generalized Additive

Mixed Models (GAMM ’s), with dynamic random effects following the Multivariate Normal

distribution. As mentioned by these authors, some of their results remain valid for other

choices of distribution.

This first part of the thesis ends with a numerical illustration. We consider the Log-

Normal as mixing distribution in the Poisson mixture model. More precisely, we focus on
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three different structures for the random effects: static, autoregressive of order one (AR(1))

on the log-scale and exchangeable. We then fit these models to a large Spanish third part

liability automobile data set. We examine the pattern of a posteriori corrections generated

during a period of 10 years, from three points of vue: the age of claims, the a priori

characteristics and the model chosen. It will be seen that a recent claim has a great impact

on the revised premium than an older one. We will also remark that if one claim is reported

during the first year of the 10 years considered, the lower the claim frequency, the higher

the relative a posteriori correction is. In change, if no claim is reported over 10 years, the

higher the claim frequency, the higher the relative a posteriori discount is.

Part II: Copula modelling

Whereas the interest in the first part was the analysis of the dependence for longitudinal

count data (i.e. dependence between repetead measures for one individual) and its effect on

some quantities depending on the data (such as insurance premiums), in this second part

we focus on the dependence between different continuous outcomes.

A known dataset from non-life insurance, the loss-ALAE’s, is analysed in this second

part. It consists in couples of loss and allocated loss adjustment expenses, ALAE’s in short,

(like lawyers’ fees and claims investigation expenses) on a single claim. Now, expensive

claims generally need some time to be settled and induce considerable costs for the in-

surance company. Actuaries therefore expect that large values for losses will tend to be

associated with large values for ALAE’s. This positive association has some practical im-

plications in the pricing of reinsurance treaties. The reinsurer covers the largest losses (i.e.

those exceeding some high threshold and pays that part exceeding this threshold). He also

contributes to pay the associated settlement costs on a prorata basis. Since expected rein-

surer’s payment is a function of loss and ALAE’s, its computation depends upon the joint

distribution function of these variables. Thus in many cases, neglecting the dependence

exhibited by the data leads to serious underestimation of the expected reinsurer’s payment.

It is therefore crucial for the reinsurer to have an appropriate model for the random couple

loss-ALAE at its diposal.

We will thus be interested in studying the dependence existing in this random couple and

to this end we will resort to archimedean copulas. More precisely, our main contribution in
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this second part consists in a semiparametric modelling strategy, which takes into account

the particularity of the data, namely the consorship in the loss variable. We develop an

appropriate nonparametric estimator for the joint distribution of loss-ALAE, which will

be then used to identify the appropriate archimedean copula fitting the data. Let us first

present why we did resort to copulas in our study and briefly describe some previous works

on the loss-ALAE dataset.

The Normal distribution has long dominated the study of multivariate distributions.

Multivariate Normal distributions are appealing since the marginal distributions are also

Normal, and because the association between random outcomes can be fully described

knowing only the marginal distributions and one additional parameter, the correlation co-

efficient. In practice, however, there are many situations where the normality assumption

fails (think, for instance to random variables representing lifetimes or long-tailed claims).

Thus alternative models are needed for such data.

An extensive literature in statistics deals with non-normal multivariate distributions;

we refer, e.g., to Johnson & Kotz (1972), Johnson, Kotz & Balakrishnan (1997, 2000).

However, historically many multivariate distributions have been developed as immediate

extensions of univarite distributions, examples being the bivariate Pareto, Gamma and so

on. The drawbacks of these types of distributions are that (i) a different family is needed

for each marginal distribution, (ii) extensions to more than just the bivariate case are not

clear and (iii) measures of association often appears in the marginal distribution.

The construction of multivariate distributions based on copulas does not suffer from

these drawbacks. With copula construction offered by Sklar’s theorem (1959), we select

different marginals for each outcome. For instance, if we deal with bivariate outcome

associated with the loss and ALAE’s, we could use a Log-Normal distribution for expenses

and a longer tail distribution, such as Pareto, for the losses. Then, it suffices to plug these

marginals into a suitable copula to get the bivariate distribution. The copula construction

does not constrain the choice of the marginal distributions.

The copula modelling turns out to be very useful for the analysis of dependence in

actuarial science. Applications of copulas to insurance data modelling have been proposed

e.g. by Frees, Carrière & Valdez (1996), Frees & Valdez (1998), Klugman & Parsa (1999),

Carrière (2000), Valdez (2001) and Embrechts et al. (2002).
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A lot of recent research has focused on a subclass of copulas called the archimedean

copula class, which indexes the copula by a univariate function (called the generator) and

therefore yields more tractable analytical properties. Many well-known systems of bivariate

distributions belong to the archimedean class. Frailty models also fall under that general

prescription. As illustrated by Genest & Mc Kay (1986a,b), this class of copulas is wide and

analytically tractable and its elements have stochastic properties that make them attractive

for the statistical treatment of data.

Because copulas characterize the dependence structure of random vectors once the effect

of the marginals has been factored out, identifying and fitting a copula to data is not an easy

task. In practice, it is often preferable to restrict the search of an appropriate copula to some

reasonable family, like the archimedean one. Then, it is extremely useful to have simple

graphical procedures to select the best fitting model among some competing alternatives

for the data at hand.

Consider a bivariate outcome (X,Y ) with continuous marginals FX and FY , and joint

distribution function, F , which can be written using a copula representation, as

F (x, y) = C (FX(x), FY (y))

where C is the unique dependence structure (the copula) associated to F (Sklar (1959)).

Suppose that of interest is the estimation of C. As described by Genest & Rivest (1993,

2001), the tool of the estimation procedure is a distribution function that can be constructed

for any copula and independently of the marginals. This function is the distribution of the

bivariate probability integral transformation (BIPIT) of (X,Y ), Z = F (X,Y ). Let us

denote by K this distribution function, i.e

K(z) = Pr[F (X,Y ) ≤ z] = E[I{F (X,Y ) ≤ z}].

In contrast to the univariate case, it is not generally true that the distribution function K

is uniform on [0, 1], even when F is continuous. Since the distribution function K contains

information about the dependence structure, as described by the associated copula C, the

estimation of C is based on the estimation of the distribution function, K.

Starting from the assumption that the archimedean dependence structure is appropri-

ate (an assumption that we will retain throughout our work), Genest & Rivest (1993)
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constructed an empirical estimate of K, when both X and Y are completely observable (i.e

no censoring, nor truncation) and proposed a graphical procedure for selecting the best ar-

chimedean copula which fits a given set of data. Broadly speaking their procedure chooses

as the best fitting archimedean model the one whose probability integral transformation

distribution, K, is the closest to its empirical estimate.

Remaining in the archimedean framework, Wang & Wells (2000b) extended the idea

of Genest & Rivest (1993) to right-censored bivariate failure-time data. This kind of cen-

sorship is not the one encountered in actuarial problems but, as pointed out by Wang &

Wells (2000b), because the censoring issue is handled in the stage of estimating the bi-

variate distribution function, F , the approach they propose is flexible enough to deal with

other censoring mechanisms. The authors then suggested a selection procedure for the best

archimedean model based on a goodness-of-fit statistic depending on the nonparametric

estimator of the distribution K. The latter one is obtained from the last given expression,

by plugging in an appropriate nonparametric estimate for the bivariate distribution, F .

As mentioned in the beginning, in this part we focus on a particular dataset, the loss-

ALAE. This data has been examined in parametric settings by Frees & Valdez (1998)

(Pareto marginals and Gumbel copula) and Klugman & Parsa (1999) (inverse paralogistic

for loss, inverse Burr for ALAE and Frank copula). In Frees & Valdez (1998), techniques

developed by Genest & Rivest (1993) for complete data have been applied to loss-ALAE

data in order to select the appropriate generator. As pointed out by Frees & Valdez (1998)

in their Section 4.2.1, censoring in the loss variable is ignored in the identification process.

The procedure we propose is based on an appropriate nonparametric estimator of the

joint distribution of loss-ALAE taking into account the particular censorship present in

the data, thus correcting the procedure suggested by Frees & Valdez (1998). We follow

the general approach described in Wang & Wells (2000b), but instead of using Dabrowska

(1988) estimator for the bivariate distribution, we use the estimator proposed in Akritas

(1994), since only the loss variable is subject to censoring. This estimator is an average,

over the uncensored variable, of estimates of the conditional distribution function of the

censored variable given the uncensored variable. The estimates of the conditional distrib-

ution function used are nearest neighbor estimators. Properties of the proposed estimator

for the bivariate distribution, such as asymptotic optimality and weak convergence, were
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proven in Akritas (1994)

It is of interest to point out that we prove the applicability of Akritas’s estimator de-

veloped for random right censoring, to loss-ALAE data which is subject to a generalised

type I-censoring (i.e. the censoring variable is constant and differs from each individual to

another).

As Wang & Wells (2000b), we then estimate the distribution function K and use it in

the selection procedure of the best parametric archimedean copula fitting the data.

Plan of the thesis

All the previously mentioned results are gathered in different joint papers, divided in two

categories, those devoted to frequency credibility models and to those to copula modellings,

as follows:

Part I: Credibility models for claim frequencies

Static random effects

• Purcaru, O., & Denuit, M. (2002), On the Dependence induced by Frequency

Credibility Models, Belgian Actuarial Bulletin, 2, 1, 73-79.

• Purcaru, O., & Denuit, M. (2002), On the Stochastic Increasingness of Future

Claims in the Bühlmann Linear Credibility Premium, German Actuarial Bul-

letin, 25, 4, 781-793.

Dynamic random effects

• Purcaru, O., & Denuit, M. (2003), Dependence in Dynamic Claim Frequency

Credibility Models, ASTIN Bulletin, 33, 1, 23-40.

• Purcaru, O., Guillén, M. & Denuit, M. (2004), Linear Credibility Models Based

on Time Series for Claim Counts, Belgian Actuarial Bulletin, 4, 1, 62-74.

Part II: Copula modelling

• Denuit, M., Purcaru, O. & Van Keilegom, I.(2004), Bivariate archimedean copula

modelling for loss-ALAE data in non-life insurance, IS Discussion Papers 0423, In-

stitute de statistique, Université catholique de Louvain.





Part I

Credibility models for claim

frequencies





1 On the dependence induced by

frequency credibility models

Part of the joint research with M. Denuit, published in Belgian Actuarial Bulletin, 2, 1,

73-79, (2002).

1. Introduction and Motivation

One of the main tasks of the actuary is to design a tariff structure that will fairly dis-

tribute the burden of claims among policyholders. If the risks in the portfolio are not all

equal to each other (which means that the associated random financial losses have different

distribution functions), it is fair to partition all policies into homogeneous classes with all

policyholders belonging to the same class paying the same premium. In third party liability

insurance, the classification variables introduced to partition risks commonly include the

age, gender and occupation of the policyholders, the type and use of their car, the place

where they reside and sometimes even the number of cars in the household, marital status,

smoking behavior or the color of the vehicle. It is convenient to achieve a priori classifica-

tion with the help of generalized linear models; see e.g. Renshaw (1994) for applications

in actuarial sciences, and McCullagh and Nelder (1989) or Dobson (1990) for a general

overview of the statistical theory.

However, many important factors cannot be taken into account at this stage; think for

instance of swiftness of reflexes or aggressiveness behind the wheel. Consequently, tariff

cells are still quite heterogeneous despite of the use of many a priori variables. These

hidden features are usually impossible to measure and to incorporate in a price list. But
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it is reasonable to believe that these characteristics are revealed by the number of claims

reported by the policyholders over the successive insurance periods. Hence the adjustment of

the premium based on the individual claims experience in order to restore fairness among

policyholders. The allowance for the history of the policyholder in a rating model thus

derives from interpretation of serial correlation for longitudinal data resulting from hidden

features in the risk distribution.

In seminal papers, Dionne and Vanasse (1989, 1992) proposed a credibility model which

integrates a priori and a posteriori information on an individual basis. These authors in-

troduced a regression component in the Poisson counting model in order to use all available

information in the estimation of accident frequency. The unexplained heterogeneity was

then modeled by the introduction of a latent variable representing the influence of hidden

policy characteristics. Taking this random effect Gamma distributed yields the Negative

Binomial model for the claim number. Of course, there is no particular reason to restrict

ourselves to Gamma distributed random effects (except perhaps mathematical convenience).

In biostatistical circles, LogNormally distributed random effects are widely used (see also

Pinquet (1997) for an application in actuarial science). The use of inverse gaussian distrib-

ution has been advocated by Willmot (1987) in conjunction with Poisson mixtures; see also

Tremblay (1992). Another possible choice is Hoffman’s distribution; see e.g. Kestemont

and Paris (1985). Moreover, semi-parametric approaches (retaining the Poisson assump-

tion for the claim numbers without specifying any distribution for the random effects) are

conceivable in the spirit of the Bühlmann-Straub model. See e.g. Walhin & Paris (1999) as

well as Denuit & Lambert (2001) for nonparametric maximum likelihood methods.

Once estimated, the heterogenous model can be used to perform prediction on longi-

tudinal data and allows experience rating in casualty insurance. In an empirical Bayesian

setting, the prediction is derived from the expectation of a random effect with respect to

a posterior distribution taking into account the history of the individual. An excellent

introduction to these concepts can be found in Pinquet (2000).

In this context, the present paper aims to examine the kind of dependence induced

among annual claim numbers by the introduction of random effects taking unexplained

heterogeneity into account. We will see that this dependence is one of the strongest possible,

because of the total positivity of the Poisson kernel. We will also make precise the effect
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of reporting claims on the a posteriori distribution of the random effect. This will be done

by establishing some stochastic monotonicity property of the a posteriori distribution with

respect to the claims history.

The main interest of this paper is to formalize intuitive ideas with the help of stochastic

orderings. Every actuary intuitively feels that the a posteriori claim frequency distribution

must become more dangerous as claims are reported. We make here precise the meaning

of “more dangerous” and we prove that the a posteriori premium must increase with the

total claim number in the mixed Poisson model.

2. Poisson credibility models incorporating a priori classifi-

cation

During the observation period, n policies were in portfolio, each one observed during νi

periods. Let Nij be the number of claims reported by policyholder i during the jth period

of insurance, i = 1, 2, . . . , n, j = 1, 2, . . . , νi. Let dij be the length of this period. Usually,

dij = 1, but there are a variety of situations where this is not the case. Indeed, a new period

of observation starts as soon as some policy characteristics are modified (think for instance

to a moving of the policyholder for a company using postcode as rating factor, policyholder’s

wedding for a company using marital status, or simply the policyholder buying a new car).

We thus typically face a nested structure: each policyholder generates a sequence N i =

{Ni1, Ni2, . . . , Niνi
} of claim numbers. It is reasonable to assume independence between the

series N 1,N 2, . . . ,Nn (at least in third party liability automobile insurance, for instance),

but this assumption is very questionable inside the N i’s (in fact, if the components of the

N i’s were independent, a posteriori ratemaking would be senseless from the purely actuarial

point of view, even if these systems remain commercially important because they counteract

moral hazard).

Let

Ni• =

νi
∑

j=1

Nij

be the total claim number reported by policyholder i during the νi observation periods;

the statistic Ni• is a convenient summary of past claims history. So, the company has
∑n

i=1

∑νi

j=1
dij policyholders/year to build its a priori ratemaking scheme. It is customize
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to assume that Nij is Poisson distributed. Indeed, Poisson distribution is the “law of small

numbers” and is well suited for rare events like automobile accidents.

The idea now is to incorporate in the Nij’s exogenous information summarized in the

vectors xij . Specifically, xij contains all the information included in the price list about

policyolder i in period j (like age, sex, power of the car, and so on). A linear model

for the logarithm of the claim rates is often used in actuarial science. This provides a

regression model for count data analogous to the usual normal regression for continuous data

(when the counts are small, which is typically the case in automobile insurance, the normal

approximation is poor and fails to account for the discreteness of the data). According

to standard methodology of generalized linear models, the logarithmic function is also the

natural link for the Poisson distribution. Specifically, the retained specification is

Nij =d Poisson(λij) where λij = dij exp(βtxij).

Of course, inside each risk class, the policies are not identical stricto sensu. In order to

achieve a posteriori ratemaking we recognize the residual heterogeneity of the portfolio by

saying that the premium for each risk class is itself an average. Every policy is thus affected

by a risk parameter which can be interpreted as an error term in the regression model. For

policyholder i, the risk parameter Θi represents the influence of hidden features (as annual

mileage or aggressiveness behind the wheel for instance), i.e. unknown risk characteristics

of the policyholder having a significant impact on the occurrence of claims.

The ith policy of the portfolio, i = 1, 2, . . . , n, is represented by a sequence (Θi,N i)

where Θi is a positive random variable with unit mean representing the unexplained het-

erogeneity. Specifically, the credibility model is based on the following assumptions:

A1 given Θi = θ, the random variables Nij, j = 1, 2, . . ., are independent and conform to

the Poisson distribution with mean λijθ, i.e.

P[Nij = k|Θi = θ] = exp(−λijθ)
(λijθ)k

k!
,

for k ∈ N, j = 1, 2, . . . ;

A2 at the portfolio level, the sequences (Θi,N i) are assumed to be independent.
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It is essential to understand the philosophy of this classical actuarial construction. Here

dependence between annual claim numbers is a consequence of the heterogeneity of the

portfolio; the dependence is only apparent. If we had a complete knowledge of policy

characteristics then Θi would become deterministic and there would be no more dependence

between the Nij ’s for fixed i. The unexplained heterogeneity (which has been modeled

through the introduction of the risk parameter Θi for policyholder i) is then revealed by

the claims and premiums histories in a Bayesian way. These histories modify the distribution

of Θi and hence modify the premium.

When Θi conforms to a Gamma prior distribution (with mean 1 and variance 1/a) it is

well-known that

[Θi|Ni1, Ni2, . . . , Niνi
] =d Gamma

(

a + Ni•, a + λi•

)

so that, given the past premiums λi1, λi2, . . . , λiνi
, the a posteriori distribution of Θi in-

creases in the past claims in the likelihood ratio sense (see the next section for the precise

definition of this stochastic order relation). This is clearly a very nice property since it ex-

presses the increasing dangerousness inherent to policyholders reporting claims. We would

like to investigate whether this important property still holds when other distributions are

taken for Θi. Our main finding in that direction is that it remains valid in any Poisson

mixture model.

Another nice feature of the Poisson-Gamma model is that the theoretical bonus-malus

coefficient is given by

E[Θi|Ni1, Ni2, . . . , Niνi
] =

a + Ni•

a + λi•

which clearly increases in the past claims Ni•. Again, we show that this holds true whatever

the mixture distribution selected by the actuary.

Finally, we could wonder what kind of dependence is induced by the common mixture

model A1. In that respect, we show that the dependence existing between the annual claim

numbers is very strong (namely, multivariate positive likelihood ratio dependence). This

sheds a new light on many properties for the sequence of annual claim frequencies.

In the model A1-A2, we intuitively feel that the following statements are true:

S1 Θi “increases” in the past claims Ni•

S2 Ni,νi+1 “increases” in the past claims Ni•
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S3 Ni,νi+1 and Ni• are “positively dependent”.

The next section aims to precise the meaning of “increases” in S1 and S2, as well as the

nature of the “positive dependence” involved in S3.

3. Statements S1-S3 in the model A1-A2

3.1 Stochastic order relations

In order to formalize the increasingness involved in S1-S2, our study will extensively resort

to stochastic orderings. Therefore, we recall in this section the definition of the orderings

useful for the analysis of Poisson mixtures.

This section only gives the definitions of the stochastic orderings we will use, as well

as some intuitive intepretations. For more details about stochastic orderings, we refer the

reader e.g. to Kaas, Van Heerwaarden and Goovaerts (1994) or to Shaked and Shanthikumar

(1994).

Let us first recall the definition of the stochastic dominance.

Definition 3.1. Given two random variables X and Y , X is said to be smaller than Y in

the stochastic dominance, written as X �st Y , if

Pr[X > t] ≤ Pr[Y > t], for all t ∈ R.

From Definition 3.1, we see that a ranking in the �st sense translates in probability

models the intuitive meaning of “being smaller than”: indeed, we compare the probability

that both random variables exceed some given threshold t and the smallest one in the

�st-sense has the smallest probability of exceeding the treshold. Since any non-decreasing

function can be obtained as the uniform limit of convex combinations of non-decreasing

step functions, X �st Y ⇒ E[u(X)] ≤ E[u(Y )] for all the non-decreasing functions u. In

the framework of von Neumann-Morgenstern expected utility theory, �st thus expresses the

common preferences of all the profit-seeking decision-makers.

If X and Y are two continuous random variables with respective probability density

functions fX and fY , then

X �st Y ⇔

∫

+∞

t

fX(x)dx ≤

∫

+∞

t

fY (y)dy, ∀t ∈ R.
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If M and N are two counting random variables then

M �st N ⇔
+∞
∑

j=k

Pr[M = j] ≤
+∞
∑

j=k

Pr[N = j], ∀k ∈ N.

In parametric models, likelihood ratio order is also very useful (in particular within the

exponential family of distributions).

Definition 3.2. Given two random variables X and Y , X is said to be smaller than Y in

the likelihood ratio order, written as X �lr Y , if

Pr[X ∈ A] Pr[Y ∈ B] ≥ Pr[X ∈ B] Pr[Y ∈ A],

for all A ≤ B ⊆ R, where A ≤ B means that for any u ∈ A and v ∈ B, u ≤ v holds.

Given two subsets A and B of the real line such that A entirely lies on the left of B,

X �lr Y means that considering the random vector (X,Y ) with independent components,

it is more likely that it assumes a value in A×B than in B ×A. In words, this means that

Y is more likely to assume the largest values and hence is “larger” than X.

If X and Y are continuous with respective probability density functions fX and fY then

X �lr Y ⇔
fX(t)

fY (t)
decreases over supp(X) ∪ supp(Y )

where a/0 is taken to be equal to +∞ whenever a > 0

⇔ fX(u)fY (v) ≥ fX(v)fY (u) ∀u ≤ v ∈ R (3.1)

If M and N are counting random variables, then

M �lr N ⇔
Pr[M = j]

Pr[N = j]
decreases over supp(M) ∪ supp(N)

⇔ Pr[M = j] Pr[N = k] ≥ Pr[M = k] Pr[N = j]

∀j ≤ k ∈ N. (3.2)
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The likelihood ratio order is stronger than the stochastic dominance, that is X �lr Y ⇒

X �st Y . To check the latter assertion, let us consider two rv’s X and Y such that X �lr Y .

Inserting B = (t,+∞) and A = (−∞, t] in Definition 3.2 yields

Pr[X ≤ t] Pr[Y > t] ≥ Pr[X > t] Pr[Y ≤ t]

⇔
(

1 − Pr[X > t]
)

Pr[Y > t] ≥ Pr[X > t]
(

1 − Pr[Y > t]
)

⇔ Pr[Y > t] ≥ Pr[X > t].

Since the reasoning is valid for any t ∈ R, we conclude that X �st Y holds.

Now, the following property will be extremely useful in the remainder of our work.

Property 3.3. Let Nθ obey to the Poisson distribution with mean θ. Then,

θ ≤ θ′ ⇒ Nθ �lr Nθ′ .

Proof. It suffices to write

Pr[Nθ = j]

Pr[Nθ′ = j]
= exp(θ′ − θ)

(

θ

θ′

)j

which clearly decreases over N. The result then follows from (3.2).

Let S and T be two subsets of the real line R. A function f : S × T → R is said to be

totally positive of order 2 (TP2, in short) if the inequality

f(s1, t1)f(s2, t2) ≥ f(s1, t2)f(s1, t2) (3.3)

holds true for any s1 ≤ s2 ∈ S and t1 ≤ t2 ∈ T .

At this stage, it is worth mentioning that Property 3.3 means that the function f :

N × R
+ → [0, 1]; (k, θ) 7→ Pr[Nθ = k] is TP2. This simple fact will be extremely useful in

the remainder of the work, in conjunction with the result recalled hereafter.

A fundamental property of TP2 known as the basic composition formula from Karlin

(1968) is as follows. Let S, T and U be three subsets of the real line. Given some functions

f : S × T → R and g : T × U → R, let us define the function h as

h(s, u) =

∫

t∈T

f(s, t)g(t, u)dσ(t)
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where the integral is assumed to converge absolutely and σ(·) denotes a sigma-finite measure

on T . It can then be shown that if f is TP2 on S ×T and g is TP2 on T ×U then h is TP2

on S × U .

3.2 Statements S1-S2

Let fΘ be the probability density function of Θ. We then have the following result, inspired

from Whitt (1979, Theorem 4) which formalizes statements S1 and S2: the increasingness

mentioned there is with respect to �lr.

Proposition 3.4. (i) [Θi|Ni• = n] �lr [Θi|Ni• = n′] for n ≤ n′;

(ii) [Ni,νi+1|Ni• = n] �lr [Ni,νi+1|Ni• = n′] for n ≤ n′.

Proof. (i) Denote as fΘ(·|n) the pdf of [Θi|Ni• = n], n ∈ N. In virtue of (3.1), we have to

show that for any θ ≤ θ′ and n ≤ n′, the inequality

fΘ(θ|n′)

fΘ(θ|n)
≤

fΘ(θ′|n′)

fΘ(θ′|n)
⇔

fΘ(θ′|n)

fΘ(θ|n)
≤

fΘ(θ′|n′)

fΘ(θ|n′)

holds true. This result follows from

fΘ(θ′|n)

fΘ(θ|n)
=

Pr[Ni• = n|Θi = θ′]

Pr[Ni• = n|Θi = θ]
×

fΘ(θ′)

fΘ(θ)

≤
Pr[Ni• = n′|Θi = θ′]

Pr[Ni• = n′|Θi = θ]
×

fΘ(θ′)

fΘ(θ)

=
fΘ(θ′|n′)

fΘ(θ|n′)

where the inequality above follows from Property 3.3.

(ii) In virtue of (3.2), we have to show that for any k ≤ k′

Pr[Ni,νi+1 = k|Ni• = n] Pr[Ni,νi+1 = k′|Ni• = n′]

≥ Pr[Ni,νi+1 = k|Ni• = n′] Pr[Ni,νi+1 = k′|Ni• = n]

which is equivalent to

Pr[Ni,νi+1 = k,Ni• = n] Pr[Ni,νi+1 = k′, Ni• = n′]



26 On the dependence induced by frequency credibility models

≥ Pr[Ni,νi+1 = k,Ni• = n′] Pr[Ni,νi+1 = k′, Ni• = n].

From assumption A1, we have that

Pr[Ni,νi+1 = k,Ni• = n]

=
∫

θ∈R+ Pr[Ni,νi+1 = k,Ni• = n|Θi = θ]fΘ(θ)dθ

=
∫

θ∈R+ Pr[Ni,νi+1 = k|Θi = θ] Pr[Ni• = n|Θi = θ]fΘ(θ)dθ.

Now, [Ni• = n|Θi = θ] and [Ni,νi+1 = k|Θi = θ] both conform to the Poisson distribution,

with respective means λi•θ and λi,νi+1θ. Therefore, Property 3.3 applies and ensures that

the functions (n, θ) 7→ Pr[Ni• = n|Θi = θ] and (k, θ) 7→ Pr[Ni,νi+1 = k|Θi = θ] are both

TP2. Hence, invoking Karlin’s basic composition formula, (k, n) 7→ Pr[Ni,νi+1 = k,Ni• = n]

is also TP2, from which follows the conclusion.

3.3 Positive dependence notions for random couples

In order to formalize the positive dependence involved in statement S3, we will present

several concepts of dependence. The study of concepts of positive dependence for random

variables, started in the late 1960’s, has yielded numerous useful results in both statistical

theory and applications. Applications of these concepts in actuarial science recently received

increased interest.

In this section, we recall the definitions of several useful dependence concepts for random

couples. In each case, the aim is to formalize the positive dependence existing between the

two components of the random couple (i.e. the fact that large values of one component

tend to be associated with large values for the other).

Definition 3.5. Let X = (X1,X2) be a bivariate random vector.

(i) X is Positive Quadrant Dependent (PQD in short) if

Pr[X > x] ≥ Pr[X1 > x1] Pr[X2 > x2] ∀x1, x2 ∈ R

⇔ Pr[X ≤ x] ≥ Pr[X1 ≤ x1] Pr[X2 ≤ x2] ∀x1, x2 ∈ R;
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(ii) X is associated (A, in short) if

E[g(X)h(X)] ≥ E[g(X)]E[h(X)]

for all g, h : R
2 → R simultaneously non-decreasing (or non-increasing) functions;

(iii) X is positive regression dependent (PRD, in short) if [X2|X1 = x1] �st [X2|X1 = x′
1]

for all x1 ≤ x′
1 and [X1|X2 = x2] �st [X1|X2 = x′

2] for all x2 ≤ x′
2;

(iv) X is said to be positively likelihood ratio dependent (PLRD, in short) if [X2|X1 =

x1] �lr [X2|X1 = x′
1] for all x1 ≤ x′

1 and [X1|X2 = x2] �lr [X1|X2 = x′
2] for all

x2 ≤ x′
2

(v) X is said to be comonotonic (C, in short) if there exists a random variable Z and

non-decreasing functions ϕ1 and ϕ2 such that X =d (ϕ1(Z), ϕ2(Z)).

PQD has been introduced by Lehmann (1966). Its intuitive meaning is clear: X is PQD

when the probability for the components X1 and X2 of X to be simultaneously large (or

small) is at least equal as it would be if they were independent. PQD so expresses a higher

clustering of data points in the upper right quadrant and lower left quadrant compared to

the theoretical situation where X1 and X2 are mutually independent.

Association has been introduced by Esary, Proschan and Walkup (1967) and further

studied by Esary and Proschan (1972). It is an analytical condition, which is sometimes

easy to establish and provides a sufficient condition for PQD. To the knowledge of the

authors, there is no intuitive meaning to the inequality used in (ii) to define A, except that

it resorts to covariances, a classical tool used to measure the strength of (linear) dependence.

PRD and PLRD impose stochastic increasingness of one component of the random

couple in the value assumed by the other component either in the �st- or in the �lr-sense.

These dependence notions are thus rather intuitive since the value assumed by one of the

components increases in the value taken by the other, in a stochastic sense.

Note that the couple X of continuous random variables is PLRD if, and only if, for any

x1 ≤ x′
1 and x2 ≤ x′

2, its bivariate density fX satisfies

fX(x1, x2)fX(x′
1, x

′
2) ≥ fX(x1, x

′
2)fX(x′

1, x2)
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that is, according to (3.3), if fX is TP2. Again, the latter inequality enjoys an intuitive

interpretation in terms of likelihood. Assume the values taken by the random couples X

and its independent copy X ′ are x1, x2, x
′
1 and x′

2, then it is more likely that one of the

two random couples assume the two largest values, and the other one assumes the two

smallest values. This expresses the fact that it is more likely that both components of X

are simultaneously large or small.

Two counting random variables M1 and M2 are PLRD if, and only if,

Pr[M1 = k1,M2 = k2] Pr[M1 = k′
1,M2 = k′

2] ≥

≥ Pr[M1 = k1,M2 = k′
2] Pr[M1 = k′

1,M2 = k2]

for any k1 ≤ k′
1 and k2 ≤ k′

2. Coming back to (3.3), M1 and M2 are PLRD if their discrete

bivariate probability density function is TP2.

Finally, X1 and X2 are comonotonic if they can be represented as non-decreasing func-

tion of some underlying random variable Z. The Xi’s are thus “common-monotonic” since

they both “move together” (increasing Z makes both X1 and X2 larger). Comonotonicity is

the strongest possible dependence between two random outcomes: it is sometimes referred

to as perfect positive dependence since comonotonic random variables X1 and X2 are in

fact functionally related. This notion allows for many nice applications in actuarial science,

as it can be seen from Kaas, Dhaene & Goovaerts (2000) and the references contained in

that paper.

Let us now detail the implications between these concepts of dependence (for a proof,

see e.g. Lehmann (1955, 1966) and Esary and Proschan (1972)). All the implications are

strict:

X C ⇒ X PLRD ⇒ X PRD ⇒ X A ⇒ X PQD.

3.4 Statement S3

Let us now prove that the total claim number Ni• reported in the past periods and the

claim frequency Ni,νi+1 for the next coverage period are PLRD. This formalizes statement

S3 and is inspired from Fahmy et al. (1982).

Proposition 3.6. Ni• and Ni,νi+1 are PLRD.
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Proof. We have to establish that the function (n, k) 7→ Pr[Ni• = n,Ni,νi+1 = k] is TP2.

This is a simple consequence of the basic composition formula applied to

Pr[Ni• = n,Ni,νi+1 = k]

=
∫

θ∈R+ Pr[Ni• = n|Θi = θ] Pr[Ni,νi+1 = k|Θi = θ]dFΘ(θ).

From Section 3.3, we see that Proposition 3.6 provides a host of useful inequalities since

PLRD is one of the strongest dependence concepts. In particular, whatever the distribution

of Θi, the theoretical bonus-malus coefficient E[Θi|Ni• = n] is increasing in n.

4. Dependence between annual claim numbers

In this section, we examine the dependence existing between the components of N i, i.e.

between the Nit’s, t = 1, 2, . . . , νi. To this end, we need multivariate extensions of the

bivariate dependence notions introduced in Definition (3.5).

4.1 Positive dependence notions for random vectors

Let us now extend the notions introduced in Section 3 to the multivariate case. Henceforth,

we restrict ourselves to random vectors valued in the positive orthant or in N
n.

Definition 4.1. Let X = (X1, . . . ,Xn) be a n-dimensional random vector.

(i) X is Positive Orthant Dependent (POD in short) if

Pr[X > x] ≥
n

∏

i=1

Pr[Xi > xi] for all x1, x2, . . . , xn ∈ R,

and

Pr[X ≤ x] ≥

n
∏

i=1

Pr[Xi ≤ xi] for all x1, x2, . . . , xn ∈ R

simultaneously hold;
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(ii) X is associated (A, in short) if

E[g(X)h(X)] ≥ E[g(X)]E[h(X)]

for all the non-decreasing functions g, h : R
n → R;

(iii) X is conditionally increasing (CI, in short) if

[Xi|Xj = xj, j ∈ J ] �st [Xi|Xj = x′
j , j ∈ J ]

whenever xj ≤ x′
j , j ∈ J , J ⊂ {1, 2, . . . , n} and i 6∈ J .

(iv) X is conditionally increasing in sequence (CIS, in short) if Xi is stochastically in-

creasing in X1, . . . ,Xi−1, for i ∈ {2, . . . , n} i.e.

[Xi|X1 = x1, . . . ,Xi−1 = xi−1] �st

[Xi|X1 = x′
1, . . . ,Xi−1 = x′

i−1],

whenever xj ≤ x′
j , j ∈ {1, . . . , i − 1};

(v) X is said to be Multivariate Positive Likelihood Ratio Dependent (MPLRD, in short)

if its multivariate probability density function fX is MTP2, that is if

fX(x ∨ y)fX(x ∧ y) ≥ fX(x)fX(y)

holds true for all x,y ∈ R
n, where the lattice operators ∨ and ∧ are defined as

x ∨ y =
(

max{x1, y1}, . . . ,max{xn, yn}
)

and

x ∧ y =
(

min{x1, y1}, . . . ,min{xn, yn}
)

;

(vi) X is said to be comonotonic (C, in short) if there exists a random variable Z and

non-decreasing functions ϕ1, ϕ2, . . . , ϕn such that X =d (ϕ1(Z), ϕ2(Z), . . . , ϕn(Z)).
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POD is a straightforward generalization of PQD to higher dimensions, obtained by

substituting orthants to quadrants. Note however that we have to impose conditions on

both Pr[X > x] and Pr[X ≤ x] whereas it was an equivalence in the bivariate case. The

definition of association naturally carries over higher dimensions. The definition of CI is

taken from Müller and Scarsini (2001). It is stronger than the classical CIS notion in the

sense that it does not depend on the order of the components of X . Nevertheless, in our

context, CIS is rather natural since time induces a natural order between the components

of N i.

Karlin and Rinott (1980) proved that MPLRD expresses strong positive dependence;

sometimes X MPLRD is referred to X MTP2 since the condition on fX imposed for being

MPLRD ensures that fX is MTP2. Kemperman (1977) proved that TP2 in pairs and MTP2

are equivalent, a result which relies on the fact that all the random vectors considered in

this work are valued in a sub-lattice of R
n.

We have the following relations between the different concepts of positive dependence

described above:

X C ⇒ X MPLRD ⇒ X CI ⇒ X CIS ⇒ X A ⇒ X POD.

For a proof of this chain of implications, see e.g. Barlow & Proschan (1975), Joe (1997)

together with Müller and Scarsini (2001).

4.2 Serial dependence for claim frequencies

Let us now prove the following result.

Proposition 4.2. N i is MPLRD.

Proof. We know from Kemperman (1977) it suffices to show that k 7→ Pr[N i = k] is TP2

in each pair of arguments when the others are held fixed. We can write :

Pr[Ni1 = k1, Ni2 = k2, . . . , Niνi
= kνi

]

=
∫

θ∈R+ Pr[Ni1 = k1, . . . , Niνi
= kνi

|Θi = θ]dFΘ(θ)

=
∫

θ∈R+

∏νi

j=1 Pr[Nij = kj |Θi = θ]dFΘ(θ).
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Let us fix k3, k4, . . . , kνi
. From Property 3.3 we know that the functions (k1, θ) 7→ Pr[Ni1 =

k1|Θi = θ] and (k2, θ) 7→ Pr[Ni2 = k2|Θi = θ] are both TP2. The basic composition formula

then ensures that (k1, k2) 7→ Pr[N i = k] is TP2 in k1 and k2.

5. Conclusion

The present paper aimed to investigate the kind of dependence generated by actuarial

credibility models. To the best of the authors’ knowledge, this aspect of actuarial modelling

has never been investigated in the literature so far. It turns out that the kind of dependence

induced by these models is very strong, namely MPLRD. It is thus not surprising that the

a posteriori corrections computed on the basis of these models are so severe that they are

difficultly implemented in commercial practice.

It is worth mentioning that most of the reasonings only use the fact that the Poisson

distribution is monotone in its mean in the �lr-sense (as shown in Property 3.3). So the re-

sults are readily extended to any other claim frequency distribution possessing this property.

See also Shaked and Spizzichino (1998) for similar results involving absolutely continuous

conditional distributions.
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