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1

Introduction

A central notion in actuarial mathematics is the notion of risk. A risk can be viewed as an

event depending on the whims of fate that may or may not take place and that generally

brings about some financial loss. The actuary models such an insurance risk by a random

variable which represents the random amount of money the insurance company will have

to pay out to indemnify the policyholder and/or the third party for the consequences of the

occurrence of the insured risk. In most practical situations, the available information about

the probability laws of the risks in presence is only partial and it can be interesting to obtain

some approximations based on the known incomplete information. If only the first moments

of the risks in presence are known, let us for instance quote the approximations done with

help of the central-limit theorem, Edgeworth developments, Esscher approximations, normal

power formula, etc. Of course, it is always essential to be able to evaluate the quality of

these estimates. To that end, the obtention of bounds on the quantities of interest permits

to control the approximation error. So, in addition to trying to determine “exactly” the

risk quantities under interest, the actuary will obtain accurate lower and upper bounds for

it. Then, he will combine these two methods and decide a reasonable estimation of the risk.

In a probabilistic way, instead of working with a completely specified probability law,

knowing only partial information about the risks in presence amounts to work with a class

of laws compatible with the incomplete available information. Since the ’80s, numerous

works in the actuarial literature were devoted to this type of approach, determining bounds

on various quantities of interest (distribution functions, stop-loss premiums, adjustment

coefficients, ruin probabilities, etc.) when the probability law of interest lies on a certain
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class; see, e.g., Taylor (1977), De Vylder (1980,1982,1983), De Vylder & Goovaerts

(1982,1983), De Vylder, Goovaerts, Haezendonck & Garrido (1984), Goovaerts

& De Vylder (1980), Goovaerts, Haezendonck & De Vylder (1982), Goovaerts

& Kaas (1985), Kaas (1985), Kaas & Goovaerts (1985,1986a,b,c,1987), Brockett

& Cox (1985), Jansen, Haezendonck & Goovaerts (1986), Heijnen & Goovaerts

(1986,1989) and Heijnen (1990).

The scope of our study is the reduced moment spaces of order s = 1, 2, 3, . . ., i.e. classes

of probability laws sharing the same first s−1 moments (among others, mean, variance and

skewness for s = 4). Moment spaces have been studied for a long time (see for example

Karlin & Studden (1966)) and they benefit from a great number of interesting properties

that make them an appropriate background for the resolution of various problems in risk

theory, actuarial science and stochastic finance. As it is often simpler to speak of random

variables rather than of distribution functions, in this thesis, we will consider classes of

random variables to favor the intuitive contents of the results.

In most practical situations, the random variables that are elements of some moment

spaces may be assumed to be non-negative with a bounded support because the upper limit

of the financial loss for which the insurance company underwrites is generally fixed by the

contract or determined through reinsurance techniques. Sometimes, it is also interesting to

restrain to subspaces of these moment spaces. Two examples are the class of unimodal laws

(that are easy to study using Khinchine’s representation theorem), or the class of “DFR”

laws with decreasing failure rates among whose are the models describing claim costs. An-

other classical constraint relies on the support of the laws in presence. Because they are

used to modellize the numbers of claims, counting laws, whose support is composed of all

non-negative integers, constitue a very important particular case in actuarial science. More-

over, in practice, one often needs discrete claim distributions. In fact, the great majority of

iterative algorithms (as the famous Panjer algorithm for instance) require laws whose sup-

port elements have to be multiples of the same span. A more general situation is when the

random variables take on values in an arbitrary ordered finite grid of non-negative points.

Therefore, in this thesis, we will mainly be interested in discrete risks.

As the actuary feels the need to order the risks, one of the classical problems in ac-
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tuarial science consists is comparing risks using the so called stochastic order relations.

Stochastic orderings are probabilistic tools to compare random variables or random vectors.

Again, we consider classes of random variables rather than of distribution functions and the

reader has to keep in mind that we do not compare the particular versions of the random

variables but their respective distributions. Mathematically speaking, stochastic orderings

are thus partial order relations defined on sets of probability distributions. The interest

of the actuarial literature in the stochastic orderings originated in the seminal papers by

Borch (1961), Bühlmann, Gagliardi, Gerber & Straub (1977) and Goovaerts,

De Vylder & Haezendonck (1982). Since then, this theory has received in actuar-

ial sciences an increasing attention. A number of actuarial applications can be found in

the books by Goovaerts, Kaas, Van Heerwaarden & Bauwelinckx (1990), Kaas,

Van Heerwaarden & Goovaerts (1994) and Denuit, Dhaene, Goovaerts & Kaas

(2005). The reader is also referred to the books by Shaked & Shanthikumar (1994) and

Shaked & Shanthikumar (2006) for a general overview of the stochastic orderings in

various fields of applied probability and statistics.

Clearly, there exists many ways to perform such comparisons. In this thesis, we will be

interested in some classes of integral stochastic orderings. These orderings are defined (or

can be defined) by reference to a class US
∗ of measurable functions φ : S → R as follows:

having two random variables X and Y valued in S, X is smaller than Y in the �S
∗ -sense,

denoted as X �S
∗ Y , if E[φ(X)] ≤ E[φ(Y )] for all the functions φ in US

∗ for which the

expectation exists. Usually, S is taken to be the union of the supports of X and Y . Taking

for US
∗ the class of functions φ : R

+ → R with non-negative first derivative (φ1/ ≥ 0) yields

the well-known stochastic dominance �st. Taking for US
∗ the class of functions φ : R

+ → R

with non-negative second derivative (φ2/ ≥ 0) yields the convex order �cx. In the scope

of moment spaces, the most profitable approach is to appeal to the s-convex orders �R
+

s−cx

defined by Denuit, Lefèvre & Shaked (1998). These relations are generated taking for

US
∗ the class of functions φ : R

+ → R with non-negative sth derivative (φs/ ≥ 0). Moreover,

because an s-convex comparison of two risks is only possible if they have the same first s−1

moments, these orders were specially built to work within moment spaces.

A closely related question in actuarial sciences is the construction of extrema with respect
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to some order relation. Indeed, the actuary sometimes acts in a conservative way by basing

his decisions on the least attractive risk that is consistent with the incomplete available

information. This can be done by determining in given classes of risks, coherent with the

partial known information, the extrema with respect to some stochastic ordering which

translates the preferences of the actuary, i.e. the “worst” and the “best” risk consistent

with the partial available information. The existence of these extremal laws permits to

obtain bounds on the quantities of interest.

Sometimes, it is also interesting to come out the moment space and to appeal to other

orders than the s-convex ones. In fact, in many applications, extremal distributions with

respect to the stochastic order �st and to the convex order �cx (that is, respectively with

respect to the 1- and 2-convex orders) are needed. Only these stochastic order relations

respectively allow to get bounds on distribution functions and on ruin probabilities or stop-

loss premiums, for instance. However, it is well-known that two random variables with equal

means cannot be ordered with respect to the stochastic dominance relation. Equivalently,

two random variables with equal variances cannot be ordered with respect to the convex

order. Consequently, to obtain the extremal distributions in the �st- and �cx-sense, only a

small part of the available information is needed: no moments or only the mean. In order

to take into account all the available information about the risks in presence (and thus to

obtain sharper bounds on the aforementioned quantities), other extremal distributions will

have to be derived but that do not necessarily belong the considered moment space. It is

the scope of Part II.

This thesis is devoted to the derivation of lower and upper bounds on quantities of

interest in actuarial science and finance and of the form E[φ(X)], for some given φ, when

X belongs to a class of random variables satisfying certain moment conditions (i.e. based

on the knowledge of some partial information about X). Such quantities are for instance

distribution functions, stop-loss premiums, adjustment coefficient, ruin probabilities, prices

of contingent claims, etc. It is divided in three parts: the first one concerns the use of

discrete s-convex extremal distributions in the computation of the aforementioned bounds,

the second one deals with the computing of these bounds using the particular 1- and 2-

convex orderings and taking all the available information into account, and the third one
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relates to some applications of the discrete s-convex orderings in finance.

Part I: Bounds using s-convex stochastic extrema

In many situations, stochastic order relations are used to compare real random variables.

Quite recently, a remarkable class of discrete stochastic orderings have been investigated

by Denuit & Lefèvre (1997) to compare random variables that are discrete by nature as

counts for instance: the class of the discrete s-convex orderings among arithmetic random

variables valued in some set Nn = {0, 1, 2, . . . , n}, n ∈ N. Here s is any non-negative

integer smaller or equal to n. They have been defined as follows. Let ∆ be the first order

forward difference operator (with unitary increment) defined for each function φ : Nn → R

by ∆φ(i) = φ(i + 1) − φ(i) for all i ∈ Nn−1. Let ∆k, k ∈ Nn, be the k-th order forward

difference operator defined recursively by ∆kφ(i) = ∆k−1φ(i+1)−∆k−1φ(i) for all i ∈ Nn−k

(by convention, ∆1φ ≡ ∆φ and ∆0φ ≡ u). If X and Y are two random variables valued in

Nn, X is said to be smaller than Y with respect to the discrete s-convex order if

E[φ(X)] ≤ E[φ(Y )] for all φ ∈ UNn

s−cx = {φ : Nn → R : ∆sφ(i) ≥ 0, ∀ i ∈ Nn−s} .

In such a case, we write X �Nn

s−cx Y . It can be proved that if X �Nn

s−cx Y then the s − 1

first moments of X and Y necessarily match. Consequently, the ordering relation �Nn

s−cx

can only be used to compare the random variables with the same first s − 1 moments.

This motivates to introduce the moment space Ms (Nn;µ1, µ2, . . . , µs−1) which contains

all random variables valued on Nn such that the first s − 1 moments are fixed to µk (k =

1, . . . , s−1; s ≥ 1). One remarkable property of s-convex orderings is the following: Provided

that the moment space satisfies some reasonable conditions (in particular this space is not

void), the moment space contains a minimum random variable X
(s)
min and a maximum random

variable X
(s)
max with respect to �Nn

s−cx, i.e. such that

X
(s)
min �Nn

s−cx X �Nn

s−cx X(s)
max for all X in Ms (Nn;µ1, µ2, . . . , µs−1) .

Extrema with respect to the discrete version of the s-convex orders have been derived by

Denuit, Lefèvre & Utev (1999), Denuit & Lefèvre (1997) and Denuit, Lefèvre &

Mesfioui (1999) for s = 1, 2, 3 and partially for s = 4 (maximum). Surprisingly, no explicit

formula for X
(4)
min was available in the literature. The point is that the argument based on
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the non-negativity of particular moment matrices is no longer valid for that case. The same

phenomenon appears for the derivation of X
(s)
min or X

(s)
max with s ≥ 5. Consequently, no

general solution was available, contrarily to the continuous case where one disposes of a

general methodology based on the search of the zeros of some orthogonal polynomials. In

that sense the theory of discrete s-convex extremal distributions was limited to the case

s ≤ 3 and partially solved for s = 4.

This thesis aims to go beyond this limitation and proposes new arguments, based on

a majorant/minorant polynomial method and the so-called “cut-criterion”, that allow to

derive the explicit extremal distributions for all s. However these cases are far more compli-

cated to deal with because a subtle discussion about the points of support of the extremal

distribution is needed. To illustrate that point, it is interesting to notice the close connec-

tion between the discrete version of the 1-, 2-, 3-convex extrema and the 4-convex maximum

and their corresponding continuous extrema, for which a parallel theory is developed when

the support of the random variables is the interval [0, n]. A comparison between them leads

to the conclusion that the discrete extremal distributions can be easily obtained from the

corresponding continuous extremal distributions. Indeed, discrete versions of the s-convex

extrema are obtained by spreading the probability mass of all non-integer support points

of the continuous distribution on the two integers that round it.

It is then tempting to conjecture that all discrete extrema can be obtained from their

continuous counterparts and this would be a right strategy to solve our problem since an

explicit formula for continuous extremal distributions can be written for all s. Surprisingly,

this conjecture is wrong and the support of the discrete distribution does not appear as

the neighbourhood in Nn of the support of the continuous distribution. It is thus challeng-

ing to find the form of the support of the discrete extremal disctribution. This question

is addressed in the first chapter of Part I of this thesis where, given a nondegenerated

moment space with s fixed moments, explicit formulas for the discrete s-convex extremal

distributions are derived for general non-negative integer s. These results are then applied

to compute lower and upper bounds for the probability of extinction in a Galton-Watson

branching process and for the Lundberg’s coefficient in the classical insurance risk model

with discrete claim amounts.
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Let us also mention that all the previous results can easily be extended to moment spaces

of discrete random variables valued in a finite set Dn of (n + 1) evenly-spaced points, with

minimum e0 and separation parameter h > 0 say, i.e. Dn = {e0 + ih : i = 0, . . . , n}. Let ∆h

be the forward difference operator with increment h defined for each function φ : Dn → R

by ∆hφ(e0 + ih) = φ(e0 + (i + 1)h) − φ(e0 + ih) for all i = 0, . . . , n − 1. Let ∆k
h, k ≥ 1, be

the k-th forward difference operator defined recursively by ∆k
hφ(e0 + ih) = ∆k−1

h φ(e0 + (i +

1)h)−∆k−1
h φ(e0 + ih) for all i = 0, . . . , n− k (by convention, ∆0

hφ ≡ φ). Taking for US
∗ the

class of the functions φ : Dn → R such that ∆s
hφ(e0 + ih) ≥ 0 for all i = 0, . . . , n − s yields

the �Dn

s−cx order.

Now, a more general situation is when the random variables take on values in an ar-

bitrary (rather than equidistant) ordered finite grid of non-negative points, denoted by

En = {e0, . . . , en} say. Stochastic orderings specific for comparing such random variables

have been proposed by Denuit, Lefèvre & Utev (1999). They are defined by refer-

ence to the concept of divided differences that are built as follows. Let φ : S → R and

x0 < x1 < . . . < xs ∈ S. Starting from

[xi]φ = φ(xi), i = 0, . . . , s,

the sth divided differences are defined recursively by

[x0, . . . , xs]φ =
[x1, . . . , xs]φ − [x0, . . . , xs−1]φ

xs − x0
=

s∑

i=0

φ(xi)∏s
j=0;j 6=i(xi − xj)

.

The order �S
s−cx can then be defined by taking for US

∗ the class of all the s-convex func-

tions φ : S → R, i.e. the functions φ : S → R such that [x0, . . . , xs]φ ≥ 0 for any

x0 < x1 < . . . < xs ∈ S. This general approach works whatever the form of the support S

of the random variables to be compared. As for the �Nn

s−cx-orders, the relation �S
s−cx can

only be used to compare random variables with the same first s − 1 moments and is there-

fore restricted to moment spaces. The s-convex orders on an arbitrary grid are of direct

interest in various fields of applications, especially for problems of risky decision making,

portfolio selection, insurance premium evaluation and of option pricing. For example, in

option pricing, the random process representing the stock price are often assumed to follow

binomial/trinomial trees. At each time, the random variable that corresponds to the stock
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price is thus valued in an arbitrary ordered finite grid of non-negative points. In a binomial

model for instance, the stock price is monitored over successive periods of time, at which

only two price movements are possible. Usually, it is assumed that the stock price Si at

time i can either move up to a new level uSi or down to a new level dSi, with d < 1 < u. If

S0 denotes the initial stock price, the random variable Si is thus valued in the discrete set

{S0u
i, S0u

i−1d, S0u
i−2d2, . . . , S0u

2di−2, S0udi−1, S0d
i}.

At this stage, we could wonder whether there is anything to gain by considering the

specific form of the support of the random variables to be compared (instead of viewing all

of them valued in R+). For s = 1, 2 we have �S
1−cx⇔�R

+

1−cx⇔�st and �S
2−cx⇔�R

+

2−cx⇔�cx

for any S ⊆ R
+ and the form of the support of the random variables to be compared is thus

not relevant in the sense that they can all be seen as valued in R
+. For s ≥ 3, however,

the discrete and real cases are no longer equivalent: Having two random variables valued

in Dn, the implication

X �Dn

s−cx Y ⇒ X �S
s−cx Y ⇒ X �R

+

s−cx Y

always holds true for all Dn ⊆ S ⊂ R
+, but the reciprocal is false in general. We thus

get finer stochastic inequalities taking into account the particular form of the support. For

example, in the context of decision analysis, if the decision-maker’s preferences agree with

some s-convex ordering, when comparing two alternatives, it is safer to consider them valued

in a smaller set of outcomes rather than in a larger one (because any such comparison can

be extended to a larger set but not reciprocally).

In the second chapter of Part I of this thesis, we first prove that the sufficient condition of

crossing type established for �R
+

s−cx is also sufficient for �En

s−cx. Then this result is exploited

to get the extrema with respect to �En

s−cx. Finally, bounds for the eventual ruin probability

in the compound risk process model are derived when the first moments of the discrete

claim amounts recorded by an insurance company are known. The extrema with respect to

�En

s−cx will also be used in the financial applications of Part III of this thesis.

Part II: Bounds using 1- and 2-convex orderings

As previously mentioned, the s-convex extrema are not always the best tool to determine

bounds on distribution functions, on ruin probabilities and on stop-loss premiums. To that
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end, one has to come out the moment space and to appeal to the stochastic dominance �st

and to the convex �cx relations. This is the aim of Part II of this thesis. In the first chapter,

stochastic extrema among DFR distributions are derived. More explicitly, we derive upper

and lower bounds for convex survival functions with known first moments. In particular,

all the DFR distributions have concave distribution functions and that makes the class of

risks with convex survival functions significant for actuarial applications. In the second

chapter, it is showed how to make the best possible use of the information contained in the

first few moments of an integer-valued random variable when one is interested in stop-loss

premiums.

The problem of deriving bounds on distribution functions has been studied for a long

time in the literature. The first one seems to be Markov’s fundamental inequality, and

since then a number of improvements have been obtained under additional assumptions on

the underlying distribution function. For example, about two centuries ago, Gauss derived

improved bounds when the distribution function is known to be concave. Considering more

recent developments, Sengupta & Nanda (1999) derived a lower bound on a concave

distribution function with known mean (they pointed out that no upper bound sharper

than unity can be found) and Royden (1953) with known mean and variance. However,

no results in the literature seem to be based on the knowledge of more than two moments.

The main idea behind the results of this thesis is to transform a constrained problem

(finding bounds on a convex survival function) into an unconstrained one (the same without

the convexity condition) using different probability transforms. Once the convexity condi-

tion is suppressed, we can use all the existing bounds on survival functions that exist in the

literature.

The first approach is quite classical and relies on the Khinchine’s representation the-

orem. Since all the concave distribution functions are unimodal about 0 (they possess

decreasing densities), they can be represented as a mixture of uniform distributions. Then,

it remains to find bounds on the mixing distribution, the moments of which are easily ob-

tained from the initial ones. Chebyshev-type moment bounds can then be derived for the

mixing distribution, leading to bounds for the survival probability under interest.

Another possibility is to take advantage of the remarkable properties of the stationary-
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excess operator in the class of continuous concave distribution functions. Applying this

operator to the continuous convex survival function under interest yields an unconstrained

stop-loss premium, that we can bound using one of the many existing results in the litera-

ture. Remark that, in finance, stop-loss premiums represent option prices. Several papers

have been devoted to the derivation of bounds on such quantities, and these results directly

apply here. We see that this approach yields better bounds than those derived with the

help of the Khinchine’s representation theorem or with some of the competitors that can be

found in the literature. Moreover, these methods have the advantage of being systematic

and apply to any number of moments. This approach yields bounds in the stochastic dom-

inance sense on a concave distribution function with known first moments. Of course, as

two distributions with identical first moments cannot be ordered with respect to stochastic

dominance, the extremal distributions will not share the sequence of moments of the original

one.

Extrema with respect to the discrete version of the s-convex orders are useful for deriving

bounds on E[φ(X)] when φ is s-convex and X is valued in Nn = {0, 1, . . . , n} or, more

generally, in an arbitrary grid of points. However, only the convex stochastic order relation

allows to get bounds on ruin probabilities or stop-loss premiums. Therefore, we derive in

the second chapter of this part the explicit form of the stochastic bounds with respect to

the convex order, i.e. the infimum and the supremum with respect to �cx when the first

moments are known. In that respect, the study extends the results obtained by Jansen,

Haezendonck & Goovaerts (1986) to discrete random variables. Of course, as two

distributions with identical second moments cannot be ordered with respect to the convex

stochastic ordering, the extremal distributions will not share the sequence of moments of

the original one.

Specifically, we consider random variables with discrete support Nn = {0, 1, . . . , n}, and

the class Ms (Nn;µ1, µ2, . . . , µs−1) of all random variables with support in Nn and first

s − 1 moments µ1, µ2, . . . , µs−1 is supposed to be non void. Then, using the knowledge of

(µ1, µ2, . . . , µs−1, n), the aim is to find upper and lower bounds on E[(X − d)+] valid for

any X ∈ Ms (Nn;µ1, µ2, . . . , µs−1), i.e. to fix Xmin,s and Xmax,s such that the stochastic

inequalities Xmin,s �cx X �cx Xmax,s hold true for any X ∈ Ms (Nn;µ1, µ2, . . . , µs−1).
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Results are given explicitely up to s = 4 and the method extends easily to any s ≥ 5.

Securitization of longevity risk, which is undoubtedly one of the major actuarial risk

for the next decades, is a good example of application of the previous results. To that end,

we consider the random number of survivors in a given cohort when the forces of mortality

obey to the Lee-Carter model. This model accounts for the mortality improvements that

pose a challenge for the planning of public retirement systems as well as for the private

life annuities business. Natural candidates for defining the benefits of longevity bonds

or reinsurance treaties covering portfolios of life annuities involve the excess of the actual

number of survivors to that expected from a public mortality index. If the expected number

of survivors at time t0 + d is nd then the payoff could be related to (N − nd)+ where N

is the number of survivors at time t0 + d from an initial group of n policyholders aged x0

at time t0. Bounds on E[(N − nd)+] are then obtained from the theory developed in this

thesis. Bounds for the eventual probability of ruin in the compound Binomial risk process

can also easily be computed.

Part III: Financial applications

The last part of this thesis is devoted to the use in finance of the discrete s-convex orders

and their extrema.

The first application concerns with the extension to a dynamic setting of the notion of

extremal distributions. Specifically, convex bounds on multiplicative processes are derived

and extremal elements in the class of risk-neutral probability measures are investigated,

leading to bound the prices of contingent claims for incomplete markets.

More precisely, we consider multiplicative discrete-time processes {Xn, n = 1, 2, . . .}

obtained as follows. Starting from a sequence {Yn, n = 1, 2, . . .} of positive independent

random variables, we define recursively the Xn’s as Xn+1 = XnYn+1 (n = 1, 2, . . .) with

X1 = Y1. Such a process can be seen as a multiplicative random walk with relative increase

Yn at time n and we considered it because it is widely used in finance to model the price

of financial instruments. The problem studied in this part of the thesis is the derivation of

processes extremal in the sense that any positive linear combination of the Xn’s is bounded

in the convex order by the corresponding linear combinations of the components of the

extremal processes.
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The results are then applied to discrete-time contingent claims pricing models. The

underlying assets are assumed to follow a discrete-time process and trading only takes

place at some prespecified dates. If there are no arbitrage opportunities then the financial

pricing amounts to compute the expectation of the discounted payoff under a risk-neutral

probability measure. As we consider an incomplete market framework, the risk-neutral

probability measure is not unique and we are in presence of an all class of risk-neutral

measures. The class of risk-neutral probability measures can thus be considered as a class of

distributions with fixed support and first moment. Extremal elements can then be identified

within the set of risk-neutral distributions, leading to bounds on the prices of contingent

claims. Examples within a trinomial model (i.e. the simplest discrete and incomplete

market model) are discussed and it is seen that, despite their relative simplicity, the extremal

processes lead to accurate bounds on option prices. To end with, let us mention that some of

the results derived in this thesis are closely related to the work by Rüschendorf (2002).

Calling upon lower and upper hedging strategies, it appears that the extremal elements

identified here provide bounds on the price of a large class of financial assets.

A financial institution such as an insurance company faces different types of risks, the

major one being interest rate fluctuation. If interest rates changes, in either the level of

interest rates or the shape of the yield curve, the insurance company is confronted to a risk

of losses. Immunization is a technique used by actuaries in asset-liability management to

protect the portfolio value against the interest rate risk. An excellent review of immunization

theory can be found in Panjer (1998). The second application of this part of the thesis is

about the interest risk management of insurance companies or banks. Specifically, classes of

s-convex relations for arbitrary discrete random variables are used to find extremal strategy

of immunization against the interest rate risk in the context of deterministic immunization

theory.

The first author to find strategies to protect the portfolio of assets and liabilities against

instantaneous variations of the term structure of interest rates seems to be Redington

(1952). He found that the strategy to immunize the portfolio value against interest rate

fluctuations was to equate the duration of assets to that of the liabilities while requiring

the cash flows from the assets to be more spread out than those from liabilities. Nowadays,
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this theory is still widely used in actuarial practice. However, problems with Redington’s

theory of immunization are that the yield curves are assumed to be flat and that it allows

for arbitrage opportunities. Other models include the one of Shiu (1988) that provides

necessary and sufficient conditions so that the change in the portfolio value is non-negative

for any convex shift function of the term structure of interest rates: Under the assumption

of convex interest shifts a portfolio is immunized if, and only if, a decomposition of asset

inflows exists such that each component separately immunizes each liability outflow.

Quite recently, Hürlimann (2002) noticed that there is a quite elementary connection

between convex ordering and immunization which leads to an improvement of the technical

understanding of this theory and for instance to the derivation of Shiu’s necessary and suffi-

cient condition for immunization under arbitrary convex shift factors of the term structure

of interest rates. However, in the literature, we did not find any mention of the relationship

between financial immunization theory and any other integral stochastic orderings than

the convex one. In this thesis, we extend the necessary and sufficient condition for immu-

nization under arbitrary convex shift factors to a necessary and sufficient condition under

arbitrary s-convex shift factors. To that end, use is made of the s-convex integral stochastic

orderings on an arbitrary grid. We also demonstrate that in the Nelson-Siegel framework,

many shift functions are indeed s-convex for realistic values of their parameters. This makes

the theoretical results attractive for practical implementation. Moreover, for the class of

s-convex shifts, we give interesting results that extend some immunization results of the

actuarial literature. Precisely, we define an immunization risk measure Rs(X,Y ) depending

on the sth moments of the asset and liability risks and that extends the well-known Shiu

measure (using the M-square index). Then, we see that the s-convex extremal distributions

constitute the appropriate tool to provide immunization strategies that are maximal with

respect to Rs(X,Y ).

Plan of the thesis

All the previously mentioned results are gathered in different joint papers, divided in three

categories. The first categorie contains papers devoted to the derivation of bounds using

the s-convex extrema, while the second one contains those devoted to the derivation of
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bounds using the particular 1- and 2-convex orderings and taking all the available partial

information into account. The third categorie is dedicated to financial applications. The

papers are assembled as follows:

Part I: Bounds using s-convex stochastic extrema

• Courtois, C., Denuit, M., & Van Bellegem, S. (2006). Discrete s-convex ex-

tremal distributions: theory and applications. Applied Mathematics Letters 19, 1367–

1377.

• Courtois, C., & Denuit, M. (2006). S-convex extremal distributions with arbi-

trary discrete support. Working Paper WP06-10, Institute of Actuarial Sciences,

UCL.

Part II: Bounds using 1- and 2-convex orderings

• Courtois, C., & Denuit, M. (2007). Bounds on convex reliability functions with

known first moments. European Journal of Operational Research 177, 365–377.

• Courtois, C., & Denuit, M. (2006). Moment bounds on expected shortfalls with

applications. Working Paper WP06-17, Institute of Actuarial Sciences, UCL.

Part III: Financial applications

• Courtois, C., & Denuit, M. (2007). Convex bounds on multiplicative martingales,

with applications to pricing in incomplete markets. Insurance: Mathematics and

Economics, in press.

• Courtois, C., & Denuit, M. (2006). On immunization and s-convex extremal

distributions. Working Paper WP06-21, Institute of Actuarial Sciences, UCL.


