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MODELS OF INTUITIONISTIC TT AND NF 

DANIEL DZIERZGOWSKI 

Abstract. Let us define the intuitionistic part of a classical theory T as the intuitionistic theory whose 
proper axioms are identical with the proper axioms of T. For example, Heyting arithmetic HA is the 
intuitionistic part of classical Peano arithmetic PA. 

It's a well-known fact, proved by Heyting and Myhill, that ZF is identical with its intuitionistic part. 
In this paper, we mainly prove that TT, Russell's Simple Theory of Types, and NF, Quine's "New 

Foundations," are not equal to their intuitionistic part. So, an intuitionistic version of TT or NF seems 
more naturally definable than an intuitionistic version of ZF. 

In the first section, we present a simple technique to build Kripke models of the intuitionistic part of 
TT (with short examples showing bad properties of finite sets if they are defined in the usual classical way). 

In the remaining sections, we show how models of intuitionistic NF2 and NF can be obtained from 
well-chosen classical ones. In these models, the excluded middle will not be satisfied for some non-stratified 
sentences. 

?1. Models of intuitionistic TT. 
1.1. The axioms of TT. The language 2TT of TT is a many-sorted language 

including variables xi, y, . . for each i c N. The atomic formula of 2TT are of 
the form xi c yi+l or xi = yi, for each i c N. 

We define intuitionistic TT as the intuitionistic theory whose proper axio-ms are 
exactly the proper axioms of classical TT (see [1] for more details about classical 
TT): 

* extensionality axioms: for each i E N, 

(Vxi+l)(Vyi+l)((Vzi)(zi E xi+ Zi E Yi+l) ) xi+l = yi+l); 

* comprehension axioms: (Exi+l)(Vzi)(zi c xi+' p), for each formula (p 
in which xi+' does not occur free and each i E N. 

1.2. Models of intuitionistic TT. We shall now introduce a very simple technique 
to obtain Kripke models of intuitionistic TT, in which the reader might recognize 
ideas from [3] or [7]. 

Consider a model - = (M, ez) of classical ZF (a similar construction could be 
undertaken within models of other set theories, including classical TT, for example; 
see section 1.4 below). Within A', we are going to define a Kripke structure 

/ 
= K (."k)kcK, 

(K, (, O) ), where 

* (K, (, O) is a partial ordering such that (Vk E K)(O < k); 
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* for each k C K, 4'k = KN2, k, ... ; CZ", Ok=k) is a classical STT-structure, 
except that the equality relation =k does not need to be standard; 

* as usually in Kripke structures, Xk C XI whenever k ( 1 (Xk C .4r' means 
that the domain and relations of JXk are respectively included in the domain 
and relations of AX; it does not mean that Xk is a substructure of AI). 

We want X to be a model of intuitionistic TT. 
So let (K, A, 0) C M such that X I= ((K, A, 0) is a partial ordering). For each 

i C N, we are going to define, within 4', a class N' of functions whose domain is a 
subset of K. Then, we shall define Ni as {x C N' I k C dom(x)}. 

On the other hand, the elements of each N' will contain all the information 
needed to characterize the Crk 's and =-k's. For example, if x, y C No, we shall 
define x =-Ik y as X I= x(k) = y(k). On the other hand, if x C Ni and y E Njj', 
we would like to define x C-k y as 4 I= x C y (k). But if we want 4' to satisfy the 
extensionality axiom, the definition of CAk should be a little bit more sophisticated, 
as we shall see below. 

Here are the details. Let N0 be any non empty class of functions x C M such 
that the following properties are satisfied in X: 

* x :A 0 and dom(x) C K; 
* (Vk E dom(x))(Vk' E K)(k' _ k -* k' C dom(x)); 
* (Vx' C NO)(Vk C K)(x(k) = x'(k) -> (Vk' ) k)(x(k') = x'(k'))). 

For each k C K, we define Nk? = {x C NO j k C dom(x)}. 
Then the remaining N''s are inductively defined from No in the following way. 

Within X, we define NI+l as the class of all functions x such that 
* x 54 0 and dom(x) C K; 
* if k C dom(x), then x(k) CNk; 
* if k C dom(x), then (Vk' ? k)(k' C dom(x) A x(k) C x(k')). 

For each k C K, we define, as above, Nik -I {x C Ni j k C dom(x)}. 
Finally, 4' I-k x C y (i.e., x CIrk y) and 4' IFk x = y (i.e., x =1k y) are defined 

as follows, by induction on the type of x and y: 
* if x, y C Nk?, then X I k x = y if and only if X I= x(k) = y(k); 
* if x C Ni and y C Ni+ , then 4' I Fk x E y if and only if (Hz C Nk)(X I k 

x = z A 4' L z E y(k)); 
* if x,y C Ni+1, then X I-k x = y if and only if X lk Eq[x, y], where 

Eq(xi+lyi'+) _ (Vzi)(zi C xi+* Zi+' C yi+l), and I-k is the usual 
satisfiability relation (forcing) for Kripke structures (for example, X Ik 
((p -* y) is defined as (VI ?, k)((.IV U-a () -> (4' IF1 y))). 

It is easy to check that 4' is indeed a Kripke structure (.'k c XI, when k < 1), 
and that 4' satisfies the axioms of equality. 

It is worth noting that, for a given 4', X is totally characterized by No. 
It is also easy to prove the following Definability Lemma. 

LEMMA 1. Let p (xi, yJ, . . . ) be a formula of YTT. Then there exists a formula 

A, (P1, P2, p3, p4, x, y,...) in the language of ZF such that, for all k C K, a C N'k, 
b C Njk, ... 
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Now we can prove the main property of X. 

THEOREM 2. X is a model of intuitionistic TT. 

PROOF. Let k c K. 
By definition of X1 1-k x = y, it is clear that X1 1-k (p, if (p is an extensionality 

axiom. 
The comprehension is a little bit more difficult. We want to prove that, for any 

formula (p, and any values a, b,... of its parameters, A1 IF1k (3xii+)(Vzi)(zi C 
xi+I +- p)[a, b, . .. ]. 

X' satisfies the comprehension schema of ZF. Thus, by the Definability Lemma, 
there exists some x E NI+j such that, for all 1 ?, k, 

X~f t= x (l) = jz Ez N/ I 1I | j X 1F z, a, b, . . .]} 

For alll ? k) 

XIF-1 z E x -== (z' CENi)( IIFk z = z' A z' C x(l)) 
=*- (]z' C Nji) GIIFk z = z' A .Xr I F1 (p[z',a,b,.. .]) 
-==* (.X 1-1 p[z, a, b,... ]) (equality axioms). 

Then, it is clear that i/r IFk (]xi +)(Vzi)(zi c x -G sp(z?))[a, b,... ]-1 

1.3. Application: a short study of finiteness. In this section, we plan to demon- 
strate how the technique described above can be used to show that the usual defi- 
nition of finiteness in classical TT satisfies some "bad properties" in intuitionistic 
TT. 

Finite sets in intuitionistic TT. As in classical TT, we define Fin2 as nf{E2 E2 
is inductive}, i.e., the smallest inductive set of type 2, where a set E2 is inductive 

if and only if 0l E E2 and (Vxl E E2)(Vy0)(xI U {y0} E E2) (in an intuitionistic 
framework, it may be useful to state precisely that 01 = {xO -(xo = x0)}, and 
{y0} = {x0 | xI = y0}). As expected, the following induction principle can then 
be proved in intuitionistic TT: 

(1) [(0(1') A (Vx1 E Fin2) (p(xl) -* (Vy0)Gp(x' U Iy? 

,* (Vx1 c Fin2)o(x'). 

The first "bad" property of Fin is that 

(2) (Vxl E Fin2)(Vyl)(YI C xI * y1 E Fin2) 

cannot be proved in intuitionistic TT. Before constructing a Kripke model of TT 
where (2) is not satisfied, it is worth noting that (2) is rather strong, as shown by 
Proposition 3. 

From now on, we omit the type indices to improve readability of the formula. 
There should be no ambiguity; the type of Fin is always assumed to be 2. 
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PROPOSITION 3. Let a,, U2, (3 and (4 be the following sentences. 

aI . (Vx E Fin) (Vy C x)(y E Fin) 
072 (Vx)(Vy C {x})(y C Fin) 
(3. (VX)(VY C {x})[(EZ)(Z C Y) V -(EZ)(Z E Y)] 
(4. (IX)(VY C {X})[(TZ)(Z C Y) V --(EZ)(Z E Y)]. 

Then a,, U2, (3 and 14 are provably equivalent in intuitionistic TT. Furthermore, 
-i > ((p V -y) can be proved in intuitionistic TT, for each i c { 1, 2, 3, 4} and each 

formula 'p. 

PROOF. 

-I (12: Trivial because {x} x Fin. 
-2 (13: It is easy to prove that (Vx c Fin)[(Ez)(z c x) V - (Ez)(z c x)], by 

induction on x c Fin, using (1). 
(3 -* ,: Prove a, by induction on x c Fin, using (3 and (Vx, y E Fin) (x U y E 

Fin), which can be proved by induction on x. 
(4 -? ((p V -np): This is a part of folklore (see for example [9]). Suppose that 

x and z do not occur free in p, and define E = {z I z = x A (p}. E C {x}. But 
(Ez)(z c E) implies (p, while --(1z)(z c E) implies -s'. So (4 -> ((p V -"p). 

(3 <-+ (4: One direction is trivial, and the other one is a consequence of the 
previous point. A 

First example (constant domains, standard equalityfor type 0 objects). We are now 
going to build a Kripke model At of TT which does not satisfy (4. By Proposition 3, 
X will also fail to satisfy (2). 

Consider any model A' of ZF. Take any elements 0, a cz M and define K = 

{O, a}, with 0 ? a. Finally, define NO = {x}, where x is any function whose 
domain is equal to K. K and NO are easily seen to exist in A', as a consequence of 
the comprehension schema of ZF. From NO, define /r as in section 1.2. 

Now consider the following two elements s and s' of NI: s is a function such 
that X l= (s(0) = s(a) = {x}), while X 1= (s'(0) = 0 A s'(a) = {x}). Clearly, 
.IV I[o (s = {x}) and IV Fo (s' C s). But IV Wo (3z)(z c s). Furthermore, 
X I0 -I-(s' = s) and so .f Wo -'(Ez)(z c s'). Thus .A satisfies neither (4, nor (2). 

An axiom of infinity. In classical TT, the axiom of infinity is defined to be V1 ' 

Fin2, where VI is the set {x? j x? = x?}, i.e., the universe of type 1. But in 
intuitionistic TT, V f Fin does not seem appropriate as an axiom of infinity. For 
example, V ? Fin does not imply the existence of finite sets as large as you want. 
More precisely, in intuitionistic TT, V ' Fin does not imply 

(3) (Vx cz Fin) (3y) (y f x). 

This can be seen by means of the following example. 
Second example (variable domains, standard equality for type 0 objects). Take any 

model X of ZF, and any K = {0, a&} c M, with 0 - a. In A', define 

No = {a} U {ai I i C co4, 
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where a is the function {(0, 0), (a, 0)}, and each ai is the function {(a, i)}. From 
NO, define Xr in Xf as described in section 1.2. So NO - {a} and N2 = NO; in NOO 
and N2, the equality is standard. 

As a is the only element in N,>, X1 kWo (3y)(y ' {a}). So X1 kWo (Vx c 
Fin) (3y) (y f x). 

On the other hand, .A, may be considered as a classical structure, and, for any 
formula p, A1 K, (p if and only if AV, 1= p. It is easy to check that A,, l= V ' Fin, 
and then to see that this implies XI U-0 V X Fin. 

So (3) is not a consequence of V , Fin in intuitionistic TT. 
Third example (constant domains, non standard equality for type 0 objects). The 

model we have shown in the preceding section satisfies 

(4) (Vx E Fin) -(3y)(y ' x). 

Nevertheless, intuitionistic TT does not prove that V , Fin implies (4). 
A model of V ' Fin where (4) is not satisfied is a little bit more difficult to obtain. 

To that aim, take Id to be any model of ZF. Suppose X l= (K = co). In X', let 
< be the usual order on co, and 0 = 0. Then, in X', define NO to be {a, I n E Ac, 
where, for each n c co, 

a(k) f{n} if k < ni, a"(k) = {0,... , n,... , k} if k >- n. 

So, for every k E K, Nk- = NO. Now define / from NO, as described in section 1.2. 
If k > n, then IV Ik an = ak. Thus, for all an, ak E NO?, IV Io ----,(an = ak). 

This implies 

X/ Ho (Vx) ((3z)(z E x) -* (Vy)- (y E x) 

and then AV PK0 (Vx E Fin)--, (Ey)(y , x). 
On the other hand, it is harder to check that V IHo V f Fin. Here are the main 

steps of the proof. In AX, there exists a set Y such that 

AdF (1VE)(E cz-(EGN') A (VkGK)(IE(k) Ic<)). 

Define F c N2 to be the function such that, for all k c K, F(k) = i. 
First prove that IV I -o (F is inductive). So IV I -o (Fin C F). Then prove that 

.IV I-0 ( V ' F), by using, mainly, the fact that X' N (kNO/(-k)l = co). Thus 
X Vho (V f Fin). 

From the above examples, it is clear that the excluded middle is not a consequence 
of the axioms of intuitionistic TT. We leave open the question about the right way to 
define the set of finite sets in intuitionistic TT and to state the axiom of infinity Our 
intention was simply to give the reader some examples of models of intuitionistic 
TT. 

1.4. Remarks about the construction of models. (1) In the inductive definition of 
the N "s, we defined Ni+l as "the class of all functions x such that . . . ". N'+ could 
be smaller: it must simply be large enough to include the x required in the proof of 
Theorem 2. Remark also that K, A, and all the N''s (including NO) can be proper 
classes; nevertheless, they must be definable, so that the Definability Lemma can be 
proved. 
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(2) We defined our models XI within models AX of ZF. We could have chosen 
another set theory than ZF. The main requirement is that AX must satisfy a com- 
prehension schema strong enough to prove Theorem 2. In particular, Id could be a 
model of classical TT. Nevertheless, for the construction to work in that case, one 
has to be careful with types. For example, if x c No, then x is a function whose 
domain is a subset of K. So, in AX, the type of x and the type of NO are higher 
than the type of K. But if x E N1, then x should be a function whose domain is a 
subset of K, and whose range is a subset of NO. This is a problem in TT because, 
with the usual definition of a function as a set of Kuratowski pairs, the domain of 
a function should have the same type as its range. This problem can be avoided by 
using another definition for pairs, or by replacing, in the definition of each Nk, K 
with USCk(K), for some suitable k c N (recall that USC(K) = {{x} I x c K}). 
Those type raising technicalities make the definitions more complex, of course. 

?2. Elementary extensions of Kripke structures. Before we exhibit some Kripke 
models of intuitionistic NF2 and NF, we need to present some definitions and 
results about elementary extensions of Kripke structures. 

From now on, we suppose that, if (Idk)kEK, (K, , O)) is a Kripke structure, 

then (K, A, O) is an co-tree, i.e., 

* (is a partial order relation on K; 
* for each k c K, O < k; 
* for each k c K, {l c K I 1< k} is finite and totally ordered by A. 

In other words, K is a tree, with root 0, whose height is less or equal to co. A 
completeness theorem for predicate calculus can still be proved if this restriction on 
K is added. 

Let I be a set of S-formulk, for some language Y. We define E to be closed 
under subformulce if and only if any subformula of a formula (p E E also belongs to 

Now consider Xf = ((dk)kEK, (K,(,0)) and AX = (GA'k)kK', (K',(',O')). 
Then we say that a function i: K -* K' induces a Y-elementary embedding of A(' 
into Xr if and only if: 

* for every k, I E K, k < I implies i(k) A' i(l); 
* for every k E K, 1dk C -'i(k) (in a more general definition, we could replace 

C with an embedding); 
* foreachk E K, each E E, andeacha,. .,an e Mk, 

Id ok (p[al,... , an] X==> -/1fi(k) (p[aj,... , an]. 

Then we shall say that X is a E-elementary extension of Id (noted X .<x- X') if 
and only if there exists a function inducing a E-elementary embedding of A' into 

Replacing truncations with elementary extensions. Let X' = ((Kdk)kEK, (K, AO )) 
be a Kripke structure. If k E K, the truncation of Id at k, w)k, is the subtree of 
X' which is above k: 

Xd )= ( c ( )kEK Kk (K k_,[k <- KOk, k)) 
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#13) 

13 ( 2) 132 * 12 

0 0 

FIGURE 1. A picture of X4 ((X'(l)) I EL) - 

where Kk= {l K I 1? k}. 
We shall use the following result: if some A?>k's are replaced with I-elementary 

extensions of those ' _>k 's, then the resulting structure is also a E-elementary ex- 
tension of the initial structure A'. 

Let us state this result in a more precise way. Given Id, we define L to be the set 
of leaves of K: 

L = {l E K I -,(3k E K)(k > 1)}. 

Now consider a family of Kripke structures (A'(l))IEL, where XI'(1) = (#I)k)kEKI, 

(K1, ?1, 1)), for each 1 E L (remark that //(1)1 is the "root" structure of X(1)). We 
say that this family is compatible with AX if and only if 

* for every l E L,X C_ -(m)l; 
* ifll' c L,thenl $1 IPimplies Ki nK1 = 0. 

A' ((X'(Z) )1eL) is the structure obtained by attaching the X(Z) 's "on the top" of Id 
(see Figure 1): 

Y(((A'(l))IEL) = K(k)kEK, (K, :,O)), 

where 

* K=KU UKI; 
IEL 

IEL 

* if k E K \ L, then'k = A k, andifk E Kl, thendk =A'(1)k. 

So, if ('(Z) )IeL and ('(/1) )1eL are two families of Kripke structures, compatible with 

A', then '(('(1Z))lEL) can be considered as A'((A'(l))IEL) where some subtrees (the 
A'(1)'s) have been replaced with other Kripke structures (the A('() s). Now we can 
state the result we need. 

THEOREM 4. Let A' = ((A'k)kEK, (K, A, 0)) be a Kripke structure where (K, A, 0) 
is an co-tree, and let L be the set of leaves of K. Let (ld(l))IEL and ('(/Z))1EL 

be two families of Kripke structures, compatible with A. Let also I be a set of 
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formuke which is closed under subformule. If #f1) --y A'(% for every 1 E L, then 

PROOF. First, let us introduce some notations. For each 1 E L, let 

1)= K (l(l)k )kEK1, (Kl, ?1, I)) and = K (Al(1)k)keKI, (Kl, , 1)). 

Also, let 

X (XIf= ((k)keK,- (K, ,O)) and 

))IEL (K', , 0)). 

As J6(1) -<y A'('), there exists a function i1: K -> K/ inducing a I-elementary 
embedding of J((1) into #('). Then the following function i induces a E-elementary 
embedding of t(('(l)1)EeL) into) 

i : )k~l 
k ifkEK\L 

K K' k | > {lk(k) if k E KI, for some l E L. 

We should now prove that, if k E K, a,... ., an E Mk and p E I, then 

/(Q/(l))'eL) lk p[al,... , an] `=> J ((Q'/(l))lEL) FiK(k) p[aj,... , an]. 

This can be proved by induction on the length of p. The proof is easy but tedious. 
So we shall simply give one of the (sub)cases, which should be convincing enough. 

Suppose p is -s, and k E K \ L (other cases for k are trivial). Then 

-f((#1(I))1EL) 1~k -V[al,.. ., an] 

(Vk' >= k) (./( (G/(l)) IE L) W~k1 V [a 1,* . an] 

(Vk( E K \ L)(k' > k -4 /(Q ))leL)Thk' Vf[al,... I an]) 

A (Vl E L)(Vk' )> l)(A'((A'(j))IEL) Thk' V[a,... , an]) 

(definition of K and -) 

(Vk ( Ek' K\L)(k' = k - (((l))lEL)Thk' V'[a1,... Ian]) 

A (Vl C L)(dll(l) IFki -V[al,... an]) 

(Vk' E K \ L)(k' = i(k) -- "///((A'(l))lEL) Thk' IV[ai, , a.j) 

A (Vl E L)(f(/f) IF-1 -V[al,... ,an]) 

(i (k) = k, induction hypothesis and e(j) -< A'(')) 

If" ((,0(1))1EL) 1hi(k) -VI[al,... ,an] 

(as above). 

Notice that, to be able to use the induction hypothesis, V must belong to X; that is 
why I is required to be closed under subformula. -i 
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?3. A model of intuitionistic NF2. Intuitionistic NF is the intuitionistic theory 
whose language is the language of ZF, and whose proper axioms are the usual 
proper axioms of classical NF: 

* extensionality axiom: (Vx)(Vy)((Vz)(z E x +-+ z E y) -> x = y); 
* comprehension axioms: (ax)(Vz)(z E x +-+ >), for each stratified formula 

p in which x does not occur free; a formula p is stratified if its variables can 
be given type indices so as to obtain a well-formed formula in the language 
of TT. (Note for readers familiar with details of NF: in this paper, it 
does not matter whether "stratified" means "strongly stratified" or "weakly 
stratified".) 

In other words, the axioms of NF are exactly the axioms of TT where the type 
indices have been "erased." 

NF2 is a fragment of NF. Its comprehension schema is restricted to the 2- 
stratified comprehension axioms of NF. A formula is said to be 2-stratfied if it can 
be obtained by "erasing" type indices in a formula of the language of TT where at 
most two different types occur. So NF2 is the "typeless version" of TT2, i.e., of the 
fragment of TT restricted to types 0 and 1. 

For more information about NF, NF2 and TT2, we refer the reader to [1] and [5]. 
If the underlying logic is classical logic, the celebrated technique of Specker allows 

us to obtain a model of NF2 from a suitable model of TT2. Roughly, this can be 
stated as follows. 

Let X = (M, M1, Cl, =) be a classical model of TT2 (so E EC MO x M1 and 
- C (MO x MO) U (M1 x M1)). X is said to be a shifting model if and only if there 
exists a one-one function f mapping MO onto M1. 

If A is shifting, then A can be transformed into a model A (f ) of NF2 by 
"collapsing types": 

(f) = (M; Ef=) 

where x Ef y if and only if 0 I= x E f (y). 
A'(f ) is a model of NF2 because A is a model of TT2: in some sense, A and 

A'(f ) satisfy the "same" 2-stratified formula. More precisely, this remark can be 
formalized as follows (an analogous lemma can be proved in the intuitionistic case). 

LEMMA 5. Let (p(x?, y?, ... , t 1, u 1, .. . ) be a formula in the language of TT2. Let 
p (x, y, ... , t, u, . . . ) be the formula in the language of NF obtained by "erasing" 
the type indices in 'p. Assume that x, y,... , t, u,... are distinct variables. If 
a,b,... ,c,d,... E M, then 

0(f ) F= (p?[a, b, . .. I c, d, . >XI p[a, b, ... ., f (c), f (d ),. .. ] 

PROOF. The proof is nothing but an easy induction on the length of p. - 

So to find a model of NF2, it is enough to find a shifting model of TT2. And it 
has been proved (see [2]) that such shifting models can be exactly identified with 
the atomic Boolean algebras which have the same cardinality as their set of atoms. 
For example, consider B = {I c co I I is finite or I is cofinite}. The set of atoms 
of B is A = {{n} I n E co}. As both A and B are countable, # = {A, B; C, =} is 
a classical shifting model of TT2. 
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We want to build a Kripke model of intuitionistic NF2. Of course, we do not 
want a degenerated Kripke model which would appear to be equivalent to a classical 
model! The model we are going to exhibit satisfies the excluded middle for 2- 
stratified formula. But we shall also explicitly give a sentence a, which is not 
2-stratified and such that a V -a is not satisfied in the model. 

The idea is simple. Take two classical models A0 and AX1, for the language of 
NF. If A0 C X'1, this pair of models can be used to define a Kripke model: 

0 A G = K(k)kc{0,1},({, 1}, ,0)) 

(where O? 1). 
Now take a classical model A0 of NF2. AX0 can be considered as the Kripke 

model 

(A'k)kE{0}, ({O}' ' ?-,0)) 

(where ? is the trivial order relation on {O}). For any formula p in the language of 
NF, 

(5) Ao H~o p[a = o A ([a1, 

for any a' e M. So this Kripke model satisfies the excluded middle for all formulae. 
Furthermore, it is easy to see that X0 satisfies exactly the same formula as 

Ao / Ao: 

(6) (.//o / Ao) lko A i o = [l 

for every formula p and every a E Mo. 
But here comes the trick: consider a classical structure X1i such that A0 <2 A1, 

where 12 is the set of 2-stratified formulae. When A0 and X1 are considered as 
Kripke structures, X0 -<X2 A1 remains true. Thus, by Theorem 4, 

(A0 / 0A) -12 (Ao / 1). 

So A0 / X1 remains a Kripke model of NF2. Furthermore, we are going to prove 
that A0 and AX1 can be chosen in such a way that (A' /A Ao) 4 (A'o / Ad1). 
More precisely, we shall find a sentence a V -10a which is (of course) satisfied in the 
"classical" structure A0 / A0, but not in A0 / #1. This sentence is necessarily 
not 2-stratified. 

X0 and X1l will be obtained from shifting models of TT2. 

LEMMA 6. There exist two classical models Ao and X'1 of NF2 such that So <2 '1, 

and .I0 t a and X'1 c a, where a _ (3x)(x = {x}). 

PROOF. Consider a countable shifting model XI of TT2. Let f be the 1-1 function 
mapping Mo onto M1. First, we are going to transform f into f ', so that, for all 
x C M0, A I= f'(x) #& {x}. To that aim, let 

S = {{x, x'} c Mo I ,I =f (x) = {x} and X l=f (x') = V \{x}}. 

Now define f ': MO --> MI as follows: 
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f '(x) = f (x) if there is no x' E MI such that {x, x'} E S 
f'(x) = f(x') if {x,x'} E S. 

Then it is easy to check that f' is a 1-1 function mapping MO onto M1. And for 
allx E MO, =f'(x) = {x}. 

Consider Je'(f '). If x E M(f '), we have: 

(f') x = {x} 0 '(f ') = (Vy)(y E x -y = x) 
E f (VyO)(yO E f '(x) +- yO = x) 

Xy f A ='(x) = {x}. 

So e'(f ') Y (3x)(x = {x}), and we can set the X0 we want equal to A'(f'). 
We want now to build a structure A' such that the X1 we want can be defined as 

A'(f "), for some suitable f ". 
Let us come back to X'. Let A be the elementary diagram of X'. Take ao, al, . . . 

to be a countable list of new type 0 constant symbols. Define T = A U {as $& 
aj I i & j }. T is easily seen to be consistent, by the compactness theorem. So 
T has a countable model Ye'. As Ai' l= A, X -< A'. Furthermore, M'0 \ MO 
is countable, because it contains the interpretations of the ai's. And M'1 \ M1 is 
also countable, because it contains countably many y's such that A"' } y = {ai } 
for some i E co. So there exists a 1-1 function f ": M' -> M'1 such that f " is 
onto and extends f : such an f " is simply f' U g, where g is any 1-1 function 
mapping M'0 \ MO onto M'1 \ M1. We may suppose that A"' = f "(x) = {x}, for 
some x E M'0 (the argument is a simpler variant of the argument used above to 
transform f into f '). 

Let A1 = A"(f "). Then A1 1= (3x)(x = {x}). 
Furthermore, as f" extends f ', Lemma 5 can be used to deduce #0 012 1 

from the fact that X -< A'. 

With Xf0 and X1i as defined in the above lemma, it is easy to build a "non-classical" 
Kripke model of intuitionistic NF2: simply put X'1 above '0 ! 

PROPOSITION 7. There is a Kripke model of intuitionistic NF2 which satisfies the 
excluded middle for all 2-stratified sentences, but does not satisfy a V -,a, where 
a = (3x)(x = {x}). 

PROOF. By Lemma 6, we can find two classical models A0 and XI, of NF2 such 
that A0 -<X2 A1, A1 Y a andAo0 k= a. 

We claim that (A0 / A'1) To a. Otherwise, there would exist some a E NO 
such that (A'0 / A) I -o a = {a}. But y = {x} is a 2-stratified formula and 
(A'0 / #o) -<12 (A0 / 1). So (Xo / Ao) IHo a = {a}. And thus, by (6), 
Ao - a = {a}, contradicting the hypothesis. 

On the other hand, X1 av. In other words, (Ao / AX1) 1f1 a. So (#o / 
'1) T C--c. 

All this implies that (A0 0 A1) T a V v. 
Furthermore, as (A0 / Ao) -<Z2 (A0 / A1), then by (6), (Ao / A1) 1F NF2, 

and (A'0 / 1) 1F T V -vr, for all 2-stratified sentences r. -i 
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?4. A model of intuitionistic NE. Suppose that (classical) NF is consistent. We 
would like to adapt the techniques of the previous section to build a non trivial 
Kripke model of intuitionistic NF. To state it more precisely, we would like to find 
two models A0 and A'1 of NF such that A'o <xo A'1 but AZo $ A'1, where I' is 
the set of all stratified formula. 

This is not so easy. Nevertheless, remark that the method of permutation models 
(see [12] and [5, ? 3.1]) allows us to find, in a quite simple way, two models A' and 
A' of classical NF which are not elementary equivalent, although they satisfy the 
same stratified sentences, i.e._, A' =- A' and .' 0 A'. But when is replaced 
with -<, the problem is much more difficult. 

In terms of types, this problem amounts to finding two shifting models X and 
A' of classical TT, such that X -< A' and also such that the shift function of A' 
extends the shift function of X. Thomas Forster, with the help of Andre Petry, first 
published a partial solution to this problem in [4]. But recently, Friederike Karner 
gave a full solution. 

Using cofinal indiscernibles, she proved the following theorem (see [6]): 

If (classical) NF is consistent, then there exist two classical models of NF, 
A'o and A'1, such that 'o <zo A'1, and Ao 1= -a and A'1 = a, where 
a = (]n E Nn)(Vm ) n)(m < Tm). 

(Nn is the set of natural numbers and T the "type-raising" operation roughly defined 
by: Tn = m if and only if for some x whose cardinality is n, m is the cardinality of 
USC(x); see [5, Chap. 2] for details.) 

Now it is quite easy to build a non-trivial Kripke model of intuitionistic NF. 

PROPOSITION 8. If classical NF is consistent, then there exists a Kripke model of 
intuitionistic NF, which satisfies the excluded middle for all stratified sentences, but 
does not satisfy a V -v, where a- (n E Nn) (Vm ? n)(m < Tm). 

PROOF. The proof is similar to the proof of Proposition 7, but a little bit more 
elaborate. 

Consider the models A0 and A'1 of Kbrner's theorem. A0 < fo A1 implies 

(A'o / '1) <s (A0o / A1). But, as we remarked above, Ao l= Ad[a] if and only 
if (A'o / A0) Ho [aad, for every formula (p (stratified or not), and every a' e Mo. 
So, for every stratified formula ip and every a E Mo, 

(7) A'0 I= (p[al -?= (Ao / XA) 'i o io[a- 

We claim that (A'O / A'1) 10o a. Indeed, if (A'o /7 '1) IHo a, then, by definition 
of the IF relation, this would imply 

(3n E Mo) [(Ao / A'l) Ho n E Nn 

A (Vm E Mo)((A'o /z l) Ho m - n (A'o /AIW) 1Ho m < Tm)] 

The formulke x E Nn, x > y and x < Ty are stratified formula, so by (7), 

(3n E Mo) (Ato = n E Nn A (Vm E Mo)(Ao l= m n -- o A = m < Tm)). 

In other words, Ao '0 a, which is absurd. So (Ao / A'1) Th`o a. 
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On the other hand, if (A'0o /7 X1) 1Fo -v, then, in particular, (A0 / X'1) W" . 

But, as in (5), this is equivalent to X1i X' a, which is absurd. So (A0 / A'1) ]Zo v 
From all this we conclude that (A0 / f1 ) ko a V v. H 

We have just proved that if classical NF is consistent, then intuitionistic NF 
does not prove the excluded middle (at least for non-stratified formulae). It is not 
known whether the consistency of intuitionistic NF implies the consistency of clas- 
sical NF: for example, it seems that to find some double negation interpretation 
of classical NF into intuitionistic NF is much more difficult than for theories as 
PA/HA, ZF or TT: as the universe of NF is not well-founded, the constructions 
by induction used for ZF (see [11]) or TT (see [8] and [10]) cannot be repro- 
duced. 

Nevertheless, Thomas Forster pointed out to me the following easy remark. 

COROLLARY 9. If intuitionistic NFis consistent, then it does not prove the excluded 
middle (for non-stratifiedformulk). 

PROOF. Suppose that intuitionistic NF is consistent, and suppose it proves the 
excluded middle (for all formula, including formula where some variables occur 
free). Then (intuitionistic NF + excluded middle) is consistent. In other words, 
this means that classical NF is consistent. So, by Proposition 8, intuitionistic NF 
does not prove the excluded middle. This is absurd and proves that intuitionistic 
NF does not proves the excluded middle, under the hypothesis that it is consis- 
tent. H 
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