Ann. Geophysicae 13, 675-688 (1995) © EGS - Springer-Verlag 1995 _

\NS

On the computation of the barotropic mode of a free-surface world

ocean model

Eric Deleersnijder, Jean-Michel Campin

Institut d’Astronomie et de Géophysique G. Lemaitre (Unité ASTR), Université Catholique de Louvain, 2 Chemin du Cyclotron,

B-1348 Louvain-la-Neuve, Belgium

Received: 14 March 1994/Revised: 24 October 1994/Accepted: 8 November 1994

Abstract. The free-surface formulation of the equations

~of our world ocean model is briefly described. The
barotropic mode equations are solved according to the
split-explicit method, using different time steps for the
external and internal modes. Because the numerical
algorithm is implemented on the B-grid, a spurious,
free-surface, two-grid interval mode may develop. This
mode must be filtered out. The properties of two filters
are theoretically investigated and their actual perfor--
mance is tested in a series of numerical experiments, It
is seen that one of these filters may severely perturb the
local mass conservation, rendering it impossible to
enforce the impermeability of the surface or the bottom

- of the ocean. The dynamics of the external mode is also
examined, by studying the depth-integrated mo-
mentum equations. The depth-integral of the pressure
force due to the slope of the ocean surface is approxi-
mately balanced by the depth-integral of the force
ensuing from the horizontal variations of the density,
The depth-integral of the Coriolis force is an order of
magnitude smaller, except in the Southern Ocean. Two
variational principles are resorted to for computing the
fictitious ocean surface elevation corresponding to the
approximate equilibrium between the dominant forces
of the barotropic momentum equations.

1 Introduction

The large-scale ocean model devised by Bryan (1969) and
Cox (1984) has now become a well-recognized standard.
Other authors, such as Semtner (1974, 1986) or Delecluse
et al. (1993) have built ocean models along similar guide-
lines. In the world ocean, these models were intended to
perform integrations of several thousands of years, thus
requiring that the time step be as large as possible. Since
the time stepping selected is chiefly explicit, it is necessary
to filter out the processes associated with the highest
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propagation speeds which could have placed too stringent
a limitation on the time increment. Therefore, the rigid-lid
approximation is made to exclude the external inertia-
gravity waves, the phase speed of which is of order
200 ms™*. Asa result, the transport, i.c. the depth-integral
of the horizontal velocity, is divergenceless and may be
derived from a stream function. The latter is computed
from a Poisson equation obtained by taking the curl of the
depth-integral of the horizontal momentum equation.
This approach, though widely used for about two decades,
is no longer considered optimal.

Firstly, the solution procedure of the Poisson equation
for the stream function may present several problems.
Killworth and Smith (1984) pointed to possible instabili-
ties in the iterative solution procedure of the stream func-
tion equation. In the latter equation, a factor proportional
to the inverse of the ocean depth was also shown to be
detrimental to the numerical method (Dukowicz et al.,
1993). Finally, the nature of the boundary condition ap-
plied at the coastline of islands implies the evaluation of
non-local integrals, leading to data transfers that can
seriously slow down modern distributed-memory com-
puters (Dukowicz et al., 1993). It is also worth mentioning
that Neuman pressure problems are standard in Navier-
Stokes solvers and are certainly much to be preferred to
the stream function formulation.

Secondly, the ocean surface elevation is not directly
accessible, which could imply difficulties for the assimila-
tion of altimeter data, a subject to which, in recent years,
an increasing research effort is being devoted (e.g. Holland
and Malanotte-Rizzoli, 1989; Mellor and Ezer, 1991; Ver-
ron,1992; Verron et al., 1992; Schréter et al., 1993).

To find a remedy to the drawbacks of the stream
function approach, two methods were suggested.

In the first one, the rigid-lid approximation was kept,
but the divergence, instead of the curl, of the depth-integ-
rated momentum equation was taken, leading to a Pois-
son equation for the surface pressure which is better
conditioned from a numerical and computational point of
view. Indeed, steep bottom slopes are more easily taken
into account and the boundary conditions for the pressure
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equation, which are of the Neuman type, lead to local
computations only (Gresho and Sani, 1987 Deleersnijder
and Campin, 1993; Dukowicz et al., 1993; Pinardi et al.,
1995).

The second alternative method no longer relied on the
rigid-lid approximation. In other words, the ocean surface
was considered free and, hence, became one of the prog-
nostic variables of the model. This could allow the inclu-
sion of tides and the study of the inverted barometer effect.
On the other hand, to overcome the severe limitation of
the time step due to the presence of fast-propagating
external Poincaré waves (Beckers and Deleersnijder,
1993), the split-explicit method (Gadd, 1978; Madala,
1981) may be called on, as was done in our free-surface
ocean model (Berger et al., 1993; Deleersnijder and Cam-
pin, 1993), as well as in other models (Blumberg and
Mellor, 1987; Beckers, 1991; Killworth et al., 1991). As was
argued by Killworth et al. (1991), performing several hun-
dred iterations for solving a Poisson equation to evaluate
the stream function or the surface pressure may take the
same amount of computer time as that needed to update
the barotropic mode variables with a time step much
smaller than that of the baroclinic mode.

The present article addresses several aspects of the
computation of the barotropic mode in our free-surface
world ocean model. First, the equations of the barotropic
mode are recalled. Then, since the B-grid is used, it is
shown that a checkerboard mode in the surface elevation
may develop. This mode is a mere artefact which must be
filtered out. The properties of two filters are theoretically
investigated. Their impact on the amplitude of the spuri-
ous mode and on the vertical velocity is examined
in a series of numerical experiments. Finally, the domi-
nant terms of the barotropic momentum equation are
identified.

2 Barotropic mode

Our ocean general circulation model (Berger et al., 1993;
Deleersnijder and Campin, 1993) was recently set up and
will be described in detail in a forthcoming article. Here, it
suffices to say that the equations of the model are similar
to those of the most classical models (Bryan, 1969; Sem-
tner, 1974, 1986). Pacanowski and Philander (1981) for-
mulae are used to parameterize the vertical turbulent
diffusion. The only significant difference lies in the treat-
ment of the barotropic mode, in which the ocean surface is
considered free.

In the following discussion, the term barotropic mode
or external mode is used to denote the motion associated
with the depth-averaged horizontal velocity. The vari-
ables of this mode are depth-independent and comprise
the ocean surface elevation ¢ and the transport U. The
baroclinic or internal mode is concerned with the devi-
ation of the horizontal velocity relative to its depth-aver-
age, as well as the temperature and the salinity. This way
of separating the modes is not equivalent, though very
close, to the classical splitting performed in a linearized
model with flat bathymetry (Gill, 1982). This point has
been touched upon by Killworth et al. (1991), but we

believe that, because the difference between the two defini-
tions is generally very small, there is no cause for concern.

According to the hydrostatic equilibrium, the pressure p
is given by

4
p=p.+yg|pdz, (1)

where p,, ¢, p, and z denote the atmospheric pressure at
sea level, the gravitational acceleration, the water density,
and the vertical coordinate (pointing upwards), respective-
ly; ¢ is positive when the free surface is above the reference
ocean level, where z = 0. Since ¢ is much smaller than the
sea depth h, and since p is always very close to its reference
value po, Eq. (1) may be approximated by

4]
p=p.+gpol+glpdz. )

The atmospheric pressure may be expressed as
Pu = Pu + Pa» where p, and p, denote the average of p, over
Q, the ocean surface, and the deviation relative to this
mean, respectively. It is convenient to define the reference
ocean level so that the average of & over @ be zero. For
world ocean simulations phenomena having timescales no
larger than a few days may be filtered out. Thus, the
inverted barometer effect may be assumed valid (Ponte,
1993), implying that p, is balanced by the “inverted ba-
rometer part of &”, which we denote £. As a consequence,
¢ may be written as

E=EP 4y, (3)
with
Pt gpot® =0, (4)

implying that the average of  over 2, the ocean surface, is
Zero.
The horizontal pressure gradient force reads

1 g 0
——V,=—gVn——[Vpdz. (5)
Po 00 %
The gradient operator is defined as
0 0
V = secl exé; -+ ey"é‘“y, (6)

with (x, y) = a(4,0), where a, A and 0 represent the Earth
radius, longitude and latitude, respectively; unit vectors e,
and e, are tangent to the Earth surface and point east-
wards and northwards, respectively.

In the remainder of this article, we will only deal with
the “non-barometric part of &”,n, which, for simplicity,
will be termed ocean surface elevation.

Mass conservation requires
on

AR VA 7
o V.U, ()

where t is time. The divergence operator V- represents

0 0
- (o A — Ne. - . 8
V. = secl [ ax(“* -+ ay(cos()ey ()
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The depth-integral of the horizontal momentum equa-
tions reads

oU -
= =F+F, + F.+D(U) + 4. )

In the momentum budget above

F,=—ghVy (10)

is the force due to the slope of the ocean surface, while
0 g [V}

F,=—{ (——prdz)dz, (11)
“r\Po:

and

F,= —fe,xU (12)

denote the force produced by the horizontal inhomogenei-
ties of the density and the Coriolis force, respectively. The
operator D is of a diffusive nature and involves horizontal
derivatives only so that D may be a horizonal Laplacian
or bi-Laplacian. Finally, 4 encompasses the remaining
terms ensuing from the depth-integration of the horizon-
tal momentum equation, i.e. advection and bottom/sur-
face stress terms. Some details about the numerical
scheme are given in Appendix A.

3 Filtering the checkerboard mode

The B-grid allows the existence and the possible growth of
a spurious two-grid interval free-surface mode of the fol-
lowing type

ni = E()(=1)"", (13)

where E°(t) represents the amplitude of the spurious
“checkerboard” mode #°; i and j are integer indices tradi-
tionally associated with the horizontal discretization — in
the x and y-direction, respectively. It is straightforward to
show that the checkerboard mode is associated with zero
pressure gradient in the numerical algorithm, which is the
reason that it can develop and persist.

Clearly, a mode like #° corresponds to a mere numer-
ical artefact which must be filtered out.

As pointed out by Kilworth et al. (1991), the grid-
splitting problem has been addressed several times in the
atmospheric literature. Nonetheless, solutions that are
valid in the atmosphere are unlikely to be relevant to
ocean models, primarily because of the presence of irregu-
lar lateral boundaries, i.e. the coasts.

Killworth et al. (1991) suggested adding to the right-
hand side of the discretized counterpart of Eq. (7) a term of
the form

Ajy ~
Kl.j = S,—“(Ai,j - bBi,j), (14)
iJ
where A}, is an appropriate diffusivity; S; ; denotes the
area of the (i,j) grid box; 0 is equal to 1 in Killworth et al.
(1991) but, by setting d =0, a classical Laplacian-type
filter is obtained; A; ; and B; ; are defined in Eqs. (A3) and

(A4) in Killworth et al. (1991), ie.,

A j=Mi-1,;+ Miv1,— 2Mij) -+ (’1i,j—1 + N1 — 20i5),
(15)

B ;= %[(771'—1,1'«1 + Mk 1,j+1 — 205, 5)
+ M-ty 41+ Mivr,j—1 — 2055)]. (16)

The additional terms represent a smoother reaching its
maximum efficiency for a mode of the form #{ ;. This is
easily seen.

If §; ; is constant, 4; ; and B; ; may be interpreted as
two alternative discretizations of the Laplacian of 5,4, ;
using derivatives along the coordinate axes and B ; re-
sorting to diagonal expressions. Subtracting B;; from
A;,; thus amounts to evaluate the difference between two
discretized Laplacians.

To understand the properties of the filter suggested by
Killworth et al. (1991), it is convenient to examine the
behaviour of the following discrete equation

n+1

i, j A’; Mij _ a(Al;— 6B, n=0,1,2,. .., (17}

where index “n” refers to the instant ndt, At being the time
step. We consider Fourier components of the variable 7,
ie.,

= Re {E"exp [I(ik + 1)1}, 18

with I = (—1)"2and 0 < k,] < 7,k and | denoting dimen-
sionless wave numbers. In the “i” direction for example,
the two-grid interval mode is associated with k = =, while
the mode with an infinite length scale corresponds to
k = 0. The chekerboard mode is that for which k =7 = L.
Substituting Eq. (18) into Egs. (15)—(17), we obtain the
expression of the gain G of the filter for the mode identi-
fied by (k, 1)

En+1
G= = 1 —204t[2 — cosk — cos |
~ (1 — coskcosl)]. (19)

To prevent time oscillations from arising G must re-
main positive. It is readily seen that this condition is
satisfied if and only if 8adt < 1.

As stated above, if we put § =0 we have a classical
Laplacian-type filter, the maximum damping of which is
obtained for k = n = [, i.e., for the checkerboard mode.
This filter leaves the infinitely long numerical waves unaf-
fected. The § = 1 filter shares these properties with the
Laplacian filter. However, the § = 1 smoother is clearly
preferable since it induces less damping on all the modes,
except the checkerboard mode and the k =0 =] mode.
Since

2 —cosk —cos{>1—coskcosl for (k) (n,n)

and (0,0), (20)
we indeed have

G(o=1)> G =0) for (k) +# (n,x)and (0,0). (21)

The properties of the § = 1 and § = 0 filters are illustrated
in Fig. 1.
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Fig. 1. Perspective view of the gain G of the § = 0 filter a and b of
the § = 1 filter. ¢ The difference G(6 = 1) — G(d = 0) clearly illus-
trates that the § = 1 smoother involves less damping

So far the filters have been examined in a two-dimen-
sional unbounded domain. To deal with the irregular
boundaries limiting oceanic computational domains
modifications are to be introduced. They must ensure
overall mass conservation, i.e. the modified filter must not
include sinks or sources of 7 in the vicinity of the coast-
lines. Killworth et al. (1991) have suggested modifications
that, at first sight, might seem to be somewhat intricate.
Here we propose a strategy that is perhaps more straight-
forward, relying on a conservative formulation.

It is assumed that two land masks are implemented in
order to obtain a vectorisable computer programme. One,
m", 1s associated with the elevation points, while the other,
m*", is defined at the same location as the horizontal
components of the velocity (Fig. 2a). The mask m" is
defined as follows

(22a)
(22b)

Hence, according to the specifications of the B-grid
(Fig. 2a),

mi ;=1 if wet grid box,

mi ;=0 if dry grid box.

anlls U — n mh
M1z, =172 = MY M= M=y o My (23)

It must be stressed that m" and m* " are likely to be used
in most B-grid ocean models. Those masks are thus not
specifically designed for the purpose of filtering a spurious
free-surface mode.

n
mh Ml . M, i1
ni—l,j+l ni,j+1 ni+1,j+1

u,v u,v
My, jr12 Min,
n 1 1
mL, m;; . My, j
L] e
M1 U Nis1, j
u,v u,y
ULy, WY My, jm1p
7
mﬁl.i—l mi?j—l . My, j-1
L] L]
a ni_l,j_1 T?,-,H T’iﬂ,j—l
o N jint o M ju1 ¢ Mg, g
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B
i
o vy b ¢ ni,j o * N
$in
\
WY X
$in Gn Binmn
b °* M, 1 o i1 o M, 11

Fig. 2. a Location on the B-grid of land masks m" and m" * and b of
the fluxes ¢*, ¢, ¢™? and ¢**

Upon defining appropriate fluxes,

Gi-1y2,5=—miymi—y j(0i;—Ni-1,), (24)
Gl j1p=—miyml s (M= Mij—1)s (25)
G2 -12 = = M2 -2 Mg — Mi-1,5-1), (26)
(/)%”eruz,j—x/z = - m'i"+"1/2,j— 12— Miv1,j-1 )s (27)

one may cast A; ; and B; ; into a conservative form

A j=—lvip g+ -z — e + -1z, (28)

B, ;= =212 + 012,102
— Q¥ 12 + OV, -112)- (29)

Away from any lateral solid boundary, Eqs. (24)—-(29) are
equivalent to the operators suggested in Killworth et al.
(1991).

As shown in Fig. 2b, the fluxes are defined on the
boundaries of the grid boxes. Moreover, with the help of
the masks, every flux that is defined at a dry point is set to
zero, whatever the fictitious value of n on the land. It is
then readily understood that the expressions detailed
above guarantee overall mass conservation in the external
mode.

It is difficult to determine whether our operator still has
smoothing properties in the vicinity of a lateral boundary.
The only analysis that can be easily carried out pertains to
the pure checkerboard mode #; ;. This mode does not
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contribute to the diagonal fluxes ¢™” and ¢”*. Hence,
B(n°) is zero. We then have

A"
K@) =—2=2m

T ol
g Moy T+ iy
i,J

o mm s (30)
which proves that the operator K always tends to filter
out the checkerboard mode, irrespective of the presence of
a lateral boundary.

Theoretical analysis of the filters is clearly not suffi-
cient. Numerical experiments must be carried out so as to
evaluate the amplitude of the checkerboard mode, the
impact of the smoothers and their possible secondary
effects.

4 Numerical experiments

The smoothers described herein have been used in our
world ocean model, running on a spherical 5° x 5° grid
with realistic topography (Deleersnijder and Campin,
1993) (Fig. 3). In the version of the model discussed herein,
the Arctic Ocean was not included, but a truly global and
finer grid (Deleersnijder et al.,, 1993) is presently opera-
tional. There were nine levels in z-coordinate in the verti-
cal direction. The model was forced with the annual mean
of the wind stress taken from the data set of Hellerman
and Rosenstein (1983). The integrations of the model were
conducted in a robust-diagnostic mode. In other words,
the temperature and salinity fields were forced to remain
close to the annual means of the Levitus (1982) climatol-
ogy. To do so, restoring terms with a timescale of 2 years
were introduced in the equations governing the evolution
of potential temperature and salinity. No surface fluxes of
temperature and salinity were explicitly imposed, but the
restoring timescale was set to 15 days in the grid box

Latitude
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120 E 180 E 120 W
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adjacent to the ocean surface.

Numerical experiments were performed for various
values of A%, with § = 0 and é = 1. All results analyzed
below correspond to steady-state solutions of the govern-
ing equations.

To assess the impact of the filters, it is necessary to
evaluate the local amplitude of the checkerboard mode.
Accordingly, the sea surface elevation is expressed as

Nij= ”i?}'l + i g (31)

where 71;"} is the local checkerboard contribution, which is

obtained from
i'=1 =1 -1 i+
Yool et Wi gty = M) (=177 il e

|
nij= =T =
s = j'=1

LI
pt=—1 j,=_1m;+;,1+1

with

=1 Yj'= 0
- zi,=_1zj,=_1?7;+i',j+j' Mt j+j
ij = =1 =1

p'= ] L=

One may think of many ways to locally evaluate the
amplitude of the checkerboard mode. Formulation (32)
seems, however, quite natural, since it is based on the
projection of the actual sea surface elevation field onto
a local, pure checkerboard field (—1)"*/. Furthermore,
definition (32) involves the nine points that are concerned
by the ¢ = 1 filter and is able to cope with the presence of
solid boundaries.

In the present study, a global measure of a variable “a”
is obtained by taking its root mean square over its com-
putational domain, which we denote |a|zas.

Table 1 shows that the global measure of ' decreases
as Ay increases, as expected. With § = 1, the amplitude of
the checkerboard mode is slightly higher than with § = 0.
This is apparently not in agreement with the gain of the
filter being independent of § for the checkerboard mode.

(33)

7
Mivi,j+j

Fig. 3. Steady state ocean surface elevation
computed with 4}, =2x 10° m?s™! and
0=1(in 0.1 m)
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Table 1. Global evaluation of the amplitude of the checkerboard
mode and the spurious vertical velocity at the ocean bottom

Ay & InMrus 17 ks [Welras |Ws|rars
(10°m?2s™1) (1072m) [nlgys  (107°ms™1)  [Wlgys
0.0 2.74 0.0427 0.0359 0.00295
0.5 0 219 0.0341 0.0215 0.0178
0.5 1 224 0.0347 0.0156 0.0129
1.0 0 205 0.0319 0.410 0.0341
1.0 1 213 0.0329 0.290 0.0239
2.0 0 185 0.0289 0.767 0.0647
2.0 1 1.97 0.0305 0.531 0.0440
4.0 0 161 0.0253 141 - 0.121
4.0 1 1.7 0.0275 0.943 0.0785
10.0 0 129 0.0205 3.12 0.275
10.0 1 1.48 0.0230 1.93 0.161

Several causes may explain this minor discrepancy be-
tween theory and numerical experiments. First, the above
definition of the local amplitude of the checkerboard
mode has some questionable aspects. Second, the Fourier
analysis that led to Eq. (19) of the gain of the filter pertains
to the simplified Eq. (17) considered in an unbounded
domain.This is an idealized approach, which may not be
straightforwardly applied to a realistic case. The correct
way of reasoning is probably as follows: since the § =1
filter involves in general less damping, it is not surprising
that the small-scale components of 1 have a somewhat
higher magnitude in the experiments where § = 1 than in
those with § = 0.

In Table 1, it may be seen that, even when no filter is
used (A} = 0), the amplitude of the checkerboard mode is
very small compared with the total sea surface elevation.
Indeed, the ratio |1°!|gus/ |11 |raes does not exceed =~ 4.3%.
For the simulations presented here, the filter is probably
not necessary. However, numerical experiments recently
carried out with the new version of our model, covering
the Arctic and having a finer resolution, i.e. 3°x 3°, are
much more prone to the development of high-amplitude
checkerboard mode. The filter will thus not be removed
from our model. Instead, it will be considered an optional
tool to be activated when needed.

In the numerical experiments
A}y ranged from 0 to 10®m?s™!
viscosity and diffusivity were equal to 200 x 10°* m
and 10° m%s™, respectively.

The vertical velocity w is obtained by integrating over
z the local mass conservation equation

U . ow
V'<m+u>+‘5;—0, (34)

discussed here,

, while the horizontal
2.1
S

where # is the deviation of the horizontal velocity relative
to its depth-average. The vertical velocity derived from
Eq. (34) is such that the three-dimensional velocity
v = U/(h + n) + &t + we, is divergenceless. If, in addition,
n and U satisfy the integrated continuity equation, Eq. (7),
then it is readily seen that v is able to meet the impermea-
bility conditions of the bottom and the surface of the
ocean. However, when a filter is active, the barotropic
continuity equation, Eq. (7), is perturbed. Thus, if Eq. (34)

is integrated downwards from the ocean surface, the bot-
tom impermeability condition will no longer be verified.
Conversely, if w is computed by integrating the local mass
conservation equation from the ocean bottom, it is the
surface impermeability condition that will not be met.

The ocean bottom was not assumed to be flat in our
simulations. However, because of the particular location
of the variables on the B-grid, the bottom vertical velocity
on a vertical where scalar quantities are computed must
be zero. Note also that, unlike Cox (1984) or Semtner
(1986), we did not separately evaluate the vertical velocity
to be used in the momentum budget. Instead, we com-
puted this vertical velocity by a simple four-point average,
ensuring that the vertical velocity field of the scalar verti-
cals agrees with that of the momentum verticals.

In our model, the vertical velocity is obtained from
a downward space marching beginning with zero vertical
velocity at z = 0. Because this starting point is slightly
erroneous, but extremely easy to implement in our numer-
ical algorithm in which the displacements of the free
surface are actually taken into account only in Eq. (7), the
vertical velocity at the bottom, wy, cannot be zero, as it
should be (Table 1). When the filter is disabled (A4} = 0),
w, is truly negligible. When a filter is active the higher
A}y is, the larger the order of magnitude of w, is (Table 1).
In other words, the stronger the filter the larger the per-
turbation to the bottom impermeability condition. For
a given value of A}, the 6 =0 filter induces “leaks”
through the bottom that are significantly higher than with
the § = 1 filter. This may be explained as follows. Since we
are examining steady-state solutions obtained with a filter
acting on the ocean surface elevation, we have

(V' U)i,j = Ki,j- (35)

At the grid point where w, is evaluated, the bathymetry
gradient is locally considered to be zero. Hence, integrat-
ing Eq. (34) downwards from the surface reference level,
neglecting the gradient of #, using Eq. (35), we obtain

Wp)i,; = Ki 5. (36)

Considering a Fourier component of 1 as in Eq. (18),
(wp);,; may be written as

—2W,

(Wp)s,; = Re {E"exp[I(ik + jI)]}, (37)

i,J

with

n
Wy =-—2=[2 — cosk — cosl — 8(1 — cosk cosl)]. (38)

i,Jj

This strongly suggests that |wy|rys could approximately
be a linear function of A}, i.e.

| W |ras = 1(6) Al (39)

By virtue of inequality Eq. (20), W,(0 = 1) < W (3 = 0),
implying that the slope r should be higher when § = 0

r(=1) < r(d =0). (40)

A simple inspection of Table 1 shows that relations (39)
and (40) are rather well corroborated by the model results.



E. Deleersnijder, J-M. Campin: On the computation of the barotropic mode of a free-surface world ocean model 681

0281
0.24 §=0
0.20
0161 Tk
0.12 o e

0.08 1 . ‘"

0.04 1 oo

lwbIR_MS / IWIRMS
\

0 1 2 3 4 5 6 7 8 9 10
Al (10° m*s7h)

Fig. 4. Plot of the ratio |wy|p,s/|W|gas as @ function of A} for the
6 =1 filter (x) and the § = 0 filter (O). The lines are obtained from
least square analysis of the model results, which leads to
Wolpars/ | Wlgps = 00171073 4%  and

' Ws | rags/ | Wlraes =
0.028 x 107> 4, for = 0, respectively

The order of magnitude of w, does not really matter as
such. It is more important to determine whether or not the
spurious vertical velocity at the bottom is comparable to
the vertical velocity in the interior of the ocean. Hence,
| Wplras/IWlrms 18 more relevant than |wy|gys (Table 1),
Away from the bottom, the vertical velocity is more in-
fluenced by the divergence of the deviation of the horizon-
tal velocity than by its depth-average. Thus, we may
expect |w|gus to be fairly constant throughout the series of
numerical experiments we performed. This is indeed the
case. Therefore, the ratio |wy|rms/|W|rms must have the
same properties as |wy|rus, as is clearly confirmed by Fig. 4.

Obviously, the magnitude of w, must remain very small
in order to avoid damaging the evolution of scalar quanti-
ties. Determining the highest acceptable value of w), is
a priori difficult. One would suggest that the ratio
| Wl rms/|W|rms Should not exceed a few percent, implying
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that, for the present series of numerical experiments,
A} should not be larger than approximately 200 m?s™ 1.
For the latter value of A% and with the ¢ = 1 filter, the
elevation field predicted by the model is displayed in Fig. 3.
For this set of parameters, the horizontal barotropic cir-
culation (Fig. 5) and the meridional overturning motion
(Fig. 6) are similar to those obtained by other coarse grid
models in robust-diagnostic mode.

The filter suggested by Killworth et al. (1991) is su-
perior to a classical Laplacian-type filter, not because of
its impact on the checkerboard mode, but because it is less
detrimental to other variables, in particular the vertical
velocity. The primary reason is that the 6 = 1 filter in-
volves less damping, except for the checkerboard mode, as
was shown above.

Opverall the volume of the world ocean is conserved
because the filter is implemented in a conservative way
and because the corresponding fluxes are zero at the
coastline. There are, however, local losses or gains of
water through the bottom. This is the reason that we
insisted that the vertical velocity at the bottom, w;, should
be as small as possible. We have also implemented a nu-
merical trick for correcting temperature/salinity drifts that
may be induced by spurious flow convergence or diver-
gence in the bottom grid box. This corrective method is
working well, as long as w, is sufficiently small. All this is
a truly minor problem!

Finally, it must be pointed out that the ocean surface
topography predicted by the model is in agreement, at
least from a qualitative point of view, with that recently
measured by the Topex/Poseidon altimeters (Fig. 7).

5 Dominant force in the momentum budget

To understand the mechanisms governing the motion of
the ocean surface, it is instructive to examine the role of

Fig. 5. Steady-state barotropic circulation
computed with A% =2x 10°m?s™! and
d =1 (in Sverdrups)

80 W 0
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Fig. 6a-c. Steady-state meridional overturning
circulation computed with 4 = 2x 10* m*s !
and § =1 (in Sverdrups). a The global mean
together with b the Atlantic and ¢ the Indo-Pacific
circulations are displayed
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Fig. 8. Zonal average of |F,| (solid curve), |F, + F,| (dashed curve)
and |F, + F, -+ F,| (dotted curve)

the forces driving the transport U. We investigate the
dynamics of the external mode, in particular, our atten-
tion will be focused on the identification of the forces
dominating the momentum equation, Eq. (9).

Forces F,, F, and F, are examined. According to their
definitions, i.e. Egs. (10)~(12), they represent depth-integ-
rated forces which are due to the slope of the ocean
surface, the horizontal variations of density and the Co-
riolis effect, respectively.

Figure 8 clearly shows that

|F, + F, + F.| <|F, + F,| <|F,. @1)

The forces F, and F, approximately balance each other,
except in the region of the Antarctic Circumpolar Current
where the Coriolis force is also significant. In other words,
the barotropic mode is not dominated by the geostrophic
equilibrium, but by the balance of two pressure forces. The

Fig. 7. Average of 1 year of Topex/Poseideon
data, i.e. from Cycle 2 (October 1992) until
Cycle 38 (October 1993). The original data
have been somewhat smoothed and interpo-
lated onto our numerical grid. The ocean
surface elevation is given in 0.1 m

60 W 0

imbalance of these forces is, in turn, approximately in
geostrophic equilibrium.

From the view point of the external mode, F, appears
as a forcing term, ie. a force which does not directly
depend on 5 or U. This force may be split as

h(F,/h) = h(F, /)" + h(F,/h)", (42)

where the superscript d refers to the divergent part of F,, /h
and r identifies its rotational part. That F, and F, roughly
balance each other actually means that

gVn = (F,/h)%, (43)
and that
[(Fo/h)'] > |(F,/hY]. (44)

Since (F,/h)" has zero curl it is dynamically equivalent to
the forcing term due to the atmospheric pressure. Conse-
quently, h(F,/h)* may be written in terms of an equivalent
atmospheric pressure force, i.e.

hF, ) = — e, (45)
Po

Combining Egs. (43) and (45) yields
pa* + gpon ~ 0. (46)

The latter expression is formally equivalent to that defin-
ing the inverted barometer effect, i.e. Eq. (4). Therefore, the
external mode dynamics is dominated by phenomena that
are similar to those associated with the inverted baro-
meter effect. The primary role of the external iner-
tia-gravity waves is, therefore, to restore the equivalent
inverted barometer equilibrium (Eq. (46)). In addition, this
adjustment must be as quick as that prevailing in the
proper inverted barometer effect, i.e. its timescale is of the
order of a few days (Ponte, 1993).
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One may want to evaluate the fictitious elevation fields
expressing that F,~ —F, and, more accurately, that
F,~ — F, — F,. As will be seen, this will produce another
illustration of how well these forces balance each other.

It is worth recalling that the present analysis is based
on model results only. Therefore, no claim is made that
the “truth” has been found out. This is all the more
important that the seasonal cycle is not taken into ac-
count, which might well reinforce the importance of the
static forces.

It is suggested seeking the elevation field #,, which is
such that a global measure of [F, + F,| is minimum,
where F, is then evaluated with 7. Many global measures
of |F,+F, may be considered, but we select
|F, + F,| rus because it allows elementary mathematical
manipulations, as will be seen.

We thus require that #; be such that the functional

Jy = [ |—ghVn, +F,|*dQ (47)
Q

be minimum. The Euler-Lagrange equations of this varia-
tional principle are

V-(gh*Vn,) =V -(hF,), in Q (48)
n-Vny=0,on I, (49)

where I' is the boundary of Q and n denotes the unit
vector normal to I. The boundary condition, Eq. (49),
derives from F, being considered zero on I'. Equations
(48)—(49) form an elliptic partial differential problem, the
solution of which is close to the elevation field predicted
by the model, with A% = 200 x 10* m?s~* and 6 = 1. We
indeed have

1711 “”iRMSzo‘ls. (50)
|1 ras
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If the transport is known, the minimum of another
functional may be sought, i.e.

Jo = [|—ghVn, + F, + F|*dQ. (1)
Q

The Euler-Lagrange equations of this problem are similar
to Eqs. (48)-(49), provided F, be replaced by F,, + F,. As
expected, 7, the elevation field achieving the minimum of
functional (51), is closer to # than n;. Comparison of 7,
and n YIGIdS |?’]2 - ’7|RMS/|7/|RMS = 0019, so that

12 = e _ 45, (52)

|11 — 1lrus

Strictly speaking, n; and #,, as computed from the
appropriate Euler-Lagrange equations, are defined up to
an additive constant, for the partial differential problems
only involve derivatives of #; and #,. There is thus no
absolute reference for these elevation fields. Therefore, 1,
(m = 1,2) may be written as 7,, = Uu(x,y) + ¢, Where ¢y,
is a constant. It seems reasonable to require that #,, be as
close as possible to . It follows that c¢,, must be such that
n and 7, have the same average over Q, i.e.

Cn =071 (n— pw)dQ, m=12. (53)
)

Figures 9 and 10 displays global maps of #; —# and
4 — 1, respectively.

It must be pointed out that n; and n, were actually not
computed from the discretized counterparts of the Euler-
Lagrange equations set out above. Instead, we minimized
the discrete equivalents to the functionals J, and J,. The
latter strategy allows us to consider discrete expressions of
the forces that are similar to those used in the circulation
model, thus leading to more appropriate fields of ; and
17, For example, |17y — 7|rus is about twice larger when 1,
is derived from the discretized version of Eqs. (48)—(49).

Fig. 9. Map of n; —# (in 0.1 m)




E. Deleersnijder, J.-M. Campin: On the computation of the barotropic mode of a free-surface world ocean model 685

Latitude

60 E

120 E 180 E 120 W

Longitude

It is instructive to compare our variational technique
with the classical method for evaluating the dynamic
height from hydrographic data. The latter rests on the
hypothesis that there exists a level of no geostrophic
motion. Accordingly, it is assumed that, at a given dis-
tance d to the ocean surface, the horizontal pressure gradi-
ent is zero. This leads to a third approximation to the
ocean surface elevation, which we denote #3. A simple
manipulation of Eq. (5) leads to

S p
Ny = — I —dZ+C3, (54)
~aPo

where constant ¢, is determined so that #; be as close as
possible to #, implying that #3 and # must have the same
average. Obviously, in the regions where d is larger than
the ocean depth, the classical method cannot provide any
estimation of the surface elevation. Furthermore, there is
no irrefutable way of prescribing d. Accordingly, we tested
the sensitivity of 55 to various values of d, which was
successively taken to be the depth of the grid points where

Table 2. Relative difference between #5 and 7 obtained with various
values of the level of zero horizontal pressure gradient, 4. The
fraction of the ocean surface where d < 1 is denoted s

d (m) § 13 = Nlrps
|7lRats

22.1 1.00 0.96
68.4 1.00 0.87
159.0 0.98 0.75
339.0 0.97 0.60
704.0 0.96 0.43
1400.0 0.94 0.24
2470.0 0.91 0.10
3760.0 0.83 0.11
5170.0 0.40 0.27

Fig. 10. Map of #, — # (in 0.1 m)

the vertical velocity is computed (Table 2). It appeared
that n, was never closer to # than #,. The best approxima-
tion was obtained for d = 2470 m (Fig. 11). In this case, 5
was somewhat better than 74, but #; could not be evalu-
ated over 9% of the ocean surface, where d was deeper
than the ocean bottom.

6. Discussion and conclusion

No thorough analysis of the time variability of the ocean
surface elevation has been achieved in the present study.
For example, no time spectrum of # was produced and
examined. This is obviously coherent with steady-state
results being sought. One may, however, believe that the
ocean surface elevation should vary according to at least
two timescales, which should be several orders of magni-
tude apart from each other. The shorter timescale, i.e. no
more than a few days, should concern external inertia-
gravity waves involved in the adjustment towards the
equivalent inverted barometer equilibrium. The longer
timescale should be that of the variations of the equivalent
atmospheric pressure, i.e. the timescale of the density
variations.

Assuming that the governing equations of the baro-
tropic mode are sufficiently linear, the barotropic motions
may be split into two categories, those associated with the
atmospheric pressure forcing and those induced by the
other forcings, of which the dominant is due to the hori-
zontal density gradient. Enforcing the inverted barometer
equilibrium amounts to abandoning representing the fast
varying part of £, This implies that, in our model, the
short timescale variations of # are irrelevant, ie. they
cannot be compared with in situ measurements. Conse-
quently, it is only the slow part of y that is, hopefully,
physically meaningful. On a longer timescale the rigid
lid approximation is likely to hold true. Thus, one may
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wonder whether it is really desirable to consider the ocean
surface as free. In other words, one might think that the
best modelling choice would be to compute the surface
pressure in the framework of the rigid-lid approximation.
A complete answer is yet to be provided.

One might consider the free-surface formulation as
a mere numerical technique for computing the surface
pressure which actually does not add any extra physical
information to the model. The split-explicit approach
indeed bears strong similarity with the artificial compres-
sibility method for solving the Poisson equation for the
surface pressure (e.g. Peyret and Taylor, 1983). However,
such a method is unlikely to be optimal as regards the
CPU time needed, since there exist numerous Poisson
solvers that are much more efficient. From this stand-
point, what is necessary is a thorough comparison of the
computational performance of various numerical ap-
proaches. In the simulations discussed herein, about 10%
of the CPU time was devoted to the computation of the
external mode.

On the other hand, it must be kept in mind that
a free-surface model has more potential than a rigid lid
one. Indeed, it could allow the study of short time-
scale phenomena such as tides and inverted barometer
adjustment. In addition, a free-surface model could
straightforwardly be coupled with models of the shelf seas
surrounding the deep oceans. Those shallow water areas
represent less than 1% of the volume of sea water but are
now believed to play a very significant role in the global
biogeochemical processes. Hence, in the near future, it
could be found desirable to set up a modelling system
covering both the deep and shallow seas, in which case
implementing free-surface models would most probably
be found desirable.

To conclude, it may be thought that a free-surface
model is more appropriate if short timescale phenomena
are to be represented. Otherwise, assessing modelling

Fig. 11. Map of 3 — 5 for d = 2470 m (in
0.1 m)

choices regarding the external mode is mainly a matter of
determining what numerical method is fastest for the
space resolution considered.

As regards the filter of the checkerboard mode, the
expression suggested by Killworth et al. (1991) is more
appropriate than a classical Laplacian smoother, because
it entails less perturbations of the impermeability condi-
tions of the surface or the bottom of the ocean.

[t was shown that the ocean surface elevation is mainly
determined by a static equilibrium between two pressure
forces. The forces resulting from the water motion, such as
the Coriolis force, are much smaller, except in the South-
ern Ocean.

Finally, the first variational method, if interpreted as
a way of evaluating the surface elevation from hydro-
graphic data, was shown to be somewhat less accurate
than the classical method. It has, however, some signifi-
cant advantages. Indeed, it does not require any a priori
knowledge of the depth of a hypothetical level of no
geostrophic motion and it is capable of providing an
estimate of the elevation over the entire ocean surface. It is
thus far from clear that the classical approach should be
preferred. The second variational method should be fur-
ther investigated to see whether it could be used to evalu-
ate the transport. If so, it might well outdo the two other
approaches considered herein.
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Appendix A

The time-stepping of our model is based on the split-explicit method.
The latter consists in integrating the external and internal modes
with different time steps, 4ty and 4t;, each time increment being
selected according to the fastest propagating phenomenon encoun-
tered in the mode considered. While the baroclinic mode is advanced
by one time step, N( = 4t;/4tz) external time steps are performed.
Typically, 105N <102 In the simulations discussed here we had
N = 30. While performing the time-stepping of the external mode,
the quantities related to the internal mode and those supposed to
play a minor role are held fixed. In other words, within a given
internal mode time increment, F,and A are considered constant for
the external time-marching. In principle, D(U) should also be fixed
while integrating the external mode for the N external time steps
lying within onhe internal increment. Like Killworth et al. (1991), we
found that allowing D(U) to be evaluated at each external time step
rendered the solution smoother and more stable. As a consequence,
it is recommended to freeze F, and 4 only, and to update D(U) at
cach external time increment.

The external mode equations Eqs. (7) and (9) are ordinary shal-
low water equations, with a minor difference in the nature of the
foreing terms. Consequently, the numerical space-time discretization
developed for those models may be utilized for solving Egs. (7) and
(9).

The equations of the internal and external modes are discretized
on the B-grid according to the finite volume technique. The advection
terms of scalar quantities are discretized so as to allow the [uture
implementation of sophisticated schemes, with variable upwinding
rate and flux limiters. The time-stepping involves only two time levels,
and is thus not of leapfrog type. The external and internal gravity
waves are discretized according to the forward-backward method
(Mesinger and Arakawa, 1976; Beckers and Deleersnijder, 1993). The
vertical fluxes may be evaluated implicitly, which allows using fine
vertical resolution if needed (Delecluse et al., 1993).

When an efficient convergence accelerator was tried as suggested
by Bryan (1984), it was found necessary to apply a time filter to the
barotropic variables before introducing them in the baroclinic mode
equations. This filter consists of a time-averaging procedure that is
somewhat similar to that advocated in Deelersnijder (1993), al-
though the latter was suggested for different reasons. We believe that
the need for a time filter reflects an aliasing problem, arising because
the external mode variables contain frequencies that cannot be
resolved by the coarser time sampling of the internal mode, The filter
enabled us to use a much larger internal time increment, whether or
not in the framework of convergence acceleration. This topic will be
addressed in detail in another article.

On the B-grid the solution is prone to numerical noise (Batteen
and Han, 1981). Specifically, lor the external mode, the B-grid may
lead, under certain circumstances, to the splitting of the elevation
“into two checkerboard subgrids with separate time development”
(Killworth et al., 1991).
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