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ABSTRACT

In this paper, we introduce the notion of a linked domain and prove that

a non-manipulable social choice function defined on such a domain must be

dictatorial. This result not only generalizes the Gibbard-Satterthwaite The-

orem but also demonstrates that the equivalence between dictatorship and

non-manipulability is far more robust than suggested by that theorem. We

provide an application of this result in a particular model of voting. We also

provide a necessary condition for a domain to be dictatorial and characterize

dictatorial domains in the cases where the number of alternatives is three and

four.



1 INTRODUCTION

In this paper, we pursue a line of inquiry which has as its starting point, the

celebrated Gibbard-Satterthwaite Theorem (GS Theorem) (Gibbard [5] and

Satterthwaite [12]). The GS theorem is an important result in the theory of

incentives. It states that a surjective social choice function defined over an

unrestricted domain of preferences is non-manipulable if and only if it is dic-

tatorial (provided that there are at least three alternatives). In other words,

it is impossible to design a non-trivial incentive scheme defined over an un-

restricted domain where individuals do not have the opportunity to profitably

misrepresent their preferences.

The negative conclusion of the GS Theorem depends critically on the do-

main of preferences which are considered to be admissible. If these preferences

are restricted, it is well-known that possibility results can emerge. For example,

if preferences are restricted to be single-peaked, then the majority voting rule

is non-manipulable. However, the precise “frontier” between possibility and

impossibility results in terms of the structure of the domain is not clearly un-

derstood and appears to be a formidable problem. In this paper we make an

attempt to address some of these issues. Specifically, we examine the struc-

ture of dictatorial domains, i.e. those domains which have the property that

all non-manipulable social functions defined over them (satisfying the weak

requirement of unanimity) are dictatorial. Our primary conclusion is that the

equivalence between non-manipulability and dictatorship is far more robust

than indicated by the GS Theorem.

We consider strict orderings of the elements of a finite set of alternatives.

The central concept in our paper is that of a linked domain of preferences; the
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main result states that all non-manipulable and unanimity satisfying social

choice functions defined over such domains are dictatorial (provided that there

are at least three alternatives). Linked domains are easy to describe. Two

alternatives a and b are said to be connected if there exists an admissible

preference ordering where a is ranked first and b second and another where b

is first and a second. A domain is linked if we can arrange all the alternatives

in a sequence which satisfies the following property: the second alternative is

connected to the first and every alternative after the second is connected to at

least two others before it in the sequence. It is immediately apparent that the

assumption that a domain is linked is significantly weaker than the assumption

that the domain is universal. Of course, the latter domain is a special case of

the former so that our result is a generalization of the GS Theorem. One way

to emphasize the relative generality of linked domains is to observe that they

only places restrictions on the way alternatives are ranked first and second in

the orderings which constitute the domain. Thus linked domains can be much

smaller in size than the universal domain. We demonstrate the existence of

one which has exactly 4M − 6 alternatives where M is the cardinality of the

set of alternatives. In contrast the universal domain is of size M ! which is a

polynomial of order M .

We apply our main result to a model of voting introduced first by Barberá,

Sonnenchein and Zhou [4]. There are N voters who have to elect some subset

of a set of L candidates. Voters preferences over these alternatives are assumed

to be separable; in other words, candidates do not impose externalities on other

candidates by either their presence or absence. We consider a variant of this

model where preferences remain separable but certain alternatives may not be

feasible. For example, it may be the case that at least one candidate has to be

elected or that no more than K can be elected and so on. We show by applying

2



our main result that typically under these circumstances (i.e depending on what

alternatives remain feasible) non-manipulability implies dictatorship. We note

that these results cannot be obtained from the GS result as corollaries because

there is a significant preference restriction.

Our result regarding linked domains is however not a characterization result

for dictatorial domains. The task of finding a necessary and sufficient condition

for a domain to be dictatorial appears to be a difficult one. We are nonethe-

less able to obtain a simple necessary condition which leads immediately to a

characterization when there are three alternatives. We also provide a complete

characterization in the case where there are four alternatives. The condition

is quite intricate and the arguments give a flavour of the complexities involved

in obtaining such a condition in the general case. Another conclusion that can

be drawn from this analysis is that it is not sufficient in general to restrict

attention to the first and second ranked alternatives in a preference ordering

as is done for linked domains.

The paper is organized as follows. Section 2 introduces the model while

Section 3 contains the main results. In Section 4 we consider the application

to the constrained voting model while Section 5 deals with the special cases of

three and four alternatives. Section 6 concludes while Appendix contains the

proof of Theorem 5.3.

2 THE MODEL

Let I = {1, ..., N} denote the set of individuals. Let A denote the set of

alternatives. We assume that A is finite with |A| = M . Let IP denote the set
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of strict orderings1 of the elements of A. An admissible domain is a set ID with

ID ⊂ IP . A typical preference ordering will be denoted by Pi where ajPiak

will signify that aj is preferred (strictly) to ak under Pi. A preference profile

is an element of the set IDN . Preference profiles will be denoted by P, P̄ , P ′

etc and their ith components as Pi, P̄i, P
′
i respectively with i = 1, ..., N. Let

(P̄i, P−i) denote the preference profile where the ith component of the profile

P is replaced by P̄i.

A Social Choice Function or (SCF) f is a mapping f : IDN → A.

A SCF f is manipulable if there exists an individual i, an admissible profile

P , and an admissible ordering P̄i such that f(P̄i, P−i)Pif(P ).

A SCF is non-manipulable or strategyproof if it is not manipulable.

In this framework, it is assumed that an individual’s preference ordering

is his private information. A strategyproof SCF has the property that all

individuals have a strong incentive to reveal this information truthfully. In

particular, they cannot profit by lying, irrespective of the beliefs that they

hold about the announcements of other individuals.

For all Pi ∈ IP and k = 1, ...,M , let rk(Pi) denote the kth ranked alternative

in Pi, i.e. rk(Pi) = a implies that |{b 6= a|bPia}| = k − 1.

A SCF is unanimous if f(P ) = aj whenever aj = r1(Pi) for all individuals

i ∈ I.

Throughout the paper, we will assume that SCFs under consideration sat-

isfy unanimity. This is an extremely weak assumption which merely requires

an outcome which is first-ranked by all individuals (if it exists) to be chosen

1A strict ordering is a complete, transitive and antisymmetric binary relation.
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by the SCF. It is well known that a SCF which is surjective and strategyproof

must satisfy unanimity. We could therefore have proved our result assuming

the weaker property of surjectivity, but since unanimity is a property which

natural and appealing, we assume it directly.

A special class of SCFs is described below.

A SCF f is dictatorial if there exists an individual i such that, for all profiles

P, f(P ) = r1(Pi).

A dictatorial SCF clearly represents an ethically unsatisfactory procedure

for making collective decisions. However, they are strategyproof. The dictator

clearly has no incentive to lie because that can only be disadvantageous. On the

other hand, individuals other than the dictator have no role to play in outcome

selection and therefore cannot benefit from lying. Unfortunately, there is a

large class of preference domains where strategyproofness implies dictatorship,

so that there is no escape from this unpleasant dilemma. These domains which

we define formally below, are the objects of our study.

DEFINITION 2.1 The domain ID ⊂ IP is dictatorial if for all SCFs

f : IDN → A satisfying unanimity, [f is strategyproof] ⇒ [f is dictatorial].

In the next section we proceed with our analysis of dictatorial domains.
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3 THE MAIN RESULT

We begin by introducing the notion of a linked domain which is central to our

paper. For what follows, we fix a domain ID.

DEFINITION 3.1 : A pair of alternatives aj, ak are connected, denoted

aj ∼ ak if there exists Pi, P̄i ∈ ID such that r1(Pi) = aj, r2(Pi) = ak, r1(P̄i) =

ak, and r2(P̄i) = aj

It is clear that the relation ∼ is symmetric i.e. aj ∼ ak implies that ak ∼ aj.

DEFINITION 3.2 : Let B ⊂ A and let aj /∈ B. Then aj is linked to B

if there exists ak, ar ∈ B such that aj ∼ ak and aj ∼ ar.

DEFINITION 3.3 : The Domain ID is linked if there exists a one to one

function σ : A→ A such that

(i) aσ(1) ∼ aσ(2)

(ii) aσ(j) is linked to {aσ(1), aσ(2), .., aσ(j−1)}, j = 3, ..,M .

REMARK 3.1 : Let ID denote a domain which is linked and let ĪD contain

ID. Then ĪD is also linked.

We illustrate the notion of a linked domain by means of several examples.

EXAMPLE 3.1 : Let ĪD denote a domain which has the following property

: for all aj, ak ∈ A, there exists Pi ∈ ID such that r1(Pi) = aj and r2(Pi) = ak.
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It is clear that the domain described above is linked. The function σ can

be an arbitrary one to one function.

EXAMPLE 3.2 : The domain IP is linked. This follows from the trivial

observation that the domain in Example 3.1 is linked and Remark 3.1.

EXAMPLE 3.3 : Let A = {a1, a2, ...., aM} and let ID be a domain which

induces the following connectivity structure: a1 ∼ a2; aj ∼ a1 and aj ∼ a2, for

all j = 3, ...,M . This domain satisfies conditions (i) and (ii) of Definition 3.3

and is therefore linked. Later, we shall use this domain to put an upper bound

on the size of dictatorial domains. Note that this domain involves 2M − 3

“connections”. Since each connection requires 2 orderings, we can construct

such a domain using exactly 4M − 6 orderings.

Example 3.3 also illustrates a general procedure which can be used to con-

struct numerous linked domains. We can start with a “connectivity” structure

satisfying conditions (i) and (ii) and then use it to construct a domain by

“filling in” alternatives ranked from 3 to M, arbitrarily.

We now give an instance of a domain which is it not linked. This is the clas-

sical single-peaked domain. It is well known that this domain is non-dictatorial

and it is instructive to recognize the reason why it is not linked.

EXAMPLE 3.4 : Let > be a strict ordering of the elements of A. The

domain ID is single peaked if, for all Pi ∈ ID and aj ∈ A such that aj = r1(Pi),

we have

(i) ar > ak > aj implies that akPiar
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(ii) aj > ak > ar implies that akPiar.

An immediate consequence of single peakedness is that two alternatives aj

and ak can be connected only if they are contiguous with respect to the ordering

>, i.e. if there does not exist an alternative ar such that either aj > ar > ak

or ak > ar > aj. Suppose that the single peaked domain is linked and assume

without loss of generality that the function σ in Definition 3.3 is the identity

function. Then we must have three alternatives a1, a2 and a3 such that a1 ∼ a2,

a2 ∼ a3 and a1 ∼ a3. Since every alternative has exactly two contiguous

alternatives (one on either “side”), if a1 is contiguous with a2 and a2 with a3,

then a1 cannot be contiguous with a3. Therefore the single peaked domain is

not linked. Informally speaking, a linked domain requires at least one triple of

alternatives which are connected (provided there are at least three alternatives)

but this does not exist in a single peaked domain.

Before we state our main result, we need another definition.

DEFINITION 3.5 : A domain ID is minimally rich if, for all a ∈ A, there

exists Pi ∈ ID such that r1(Pi) = a. Observe that a linked domain is minimally

rich.

Our main result is the following.

THEOREM 3.1 : Assume M ≥ 3. If ID is a linked domain, then it is

dictatorial.

Our first step in the proof, Proposition 1, reduces the dimension of the

problem from an arbitrary number of individuals to two individuals and is of
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independent interest. Results of this nature already exist in the literature.

Kalai and Muller [6] (see also Muller and Satterthwaite [10]) prove a related

“reduction result” but the voting procedures that they consider satisfy an ad-

ditional (and very restrictive) assumption called “independence of non-optimal

alternatives”. The problem of designing a non-manipulable SCF can then be

transformed into an equivalent Arrovian aggregation problem. Barberá and

Peleg [3] also use a similar induction result in their proof of the GS Theorem

but they assume unrestricted domain. Our result, on the other hand, remains

valid for domains which satisfy the weak requirement of minimal richness. It

is closely related to Theorem 4 in Kim and Roush [7]. Our proof is different

and we provide the entire argument for the sake of completeness.

PROPOSITION 3.1 : Let Ω ⊂ IP be a minimally rich domain. Then, the

following two statements are equivalent

(a) f : Ω2 → A is strategyproof and satisfies unanimity ⇒ f is dictatorial

(b) f : ΩN → A is strategyproof and satisfies unanimity⇒ f is dictatorial,

N ≥ 1.

PROOF : (b) ⇒ (a) is trivial. We now show that (a)⇒(b). Let f : ΩN → A

be a non-manipulable SCF satisfying unanimity. Pick i, j ∈ I and construct a

SCF g : Ω2 → A as follows: for all Pi, Pj ∈ Ω2, g(Pi, Pj) = f(Pi, Pj, ..., Pj).

Since f satisfies unanimity, it follows immediately that g satisfies this prop-

erty. We claim that g is non-manipulable. If i can manipulate g at (Pi, Pj), then

i can manipulate f at (Pi, Pj, ..., Pj) which contradicts the assumption that f is

non-manipulable. Suppose j can manipulate g, i.e. there exists Pi, Pj, P̄j ∈ Ω

such that b = g(Pi, P̄j)Pjg(Pi, Pj) = a where b 6= a. Now consider the sequence
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of outcomes obtained when individuals other than i progressively switch pref-

erences from Pj to P̄j. Let f(Pi, P̄j, Pj, ..., Pj) = a1. If a and a1 are distinct,

then aPja1 since f is non-manipulable. Let f(Pi, P̄j, P̄j, Pj, ..., Pj) = a2. Again,

since f is non-manipulable, a1Pja2 whenever a1 and a2 are distinct . Since Pj

is transitive, aPja2. Continuing in this manner to the end of the sequence, we

obtain aPjb which contradicts our initial assumption.

Since g is strategyproof and satisfies unanimity, statement (a) applies, so

that either i or j is a dictator. Let O−i(Pi) = {a ∈ A|a = f(Pi, P−i) for

some P−i ∈ ΩN−1}. We claim that O−i(Pi) is either a singleton or the set A.

Suppose i is the dictator in the SCF g. Let Pi ∈ Ω with r1(Pi) = a. Since g

satisfies unanimity, it follows that g(Pi, Pj) = a where r1(Pj) = a. Therefore

a ∈ O−i(Pi). Suppose there exists b 6= a such that b ∈ O−i(Pi), i.e. there exists

P−i ∈ ΩN−1 such that f(Pi, P−i) = b. Let P̄j ∈ Ω such that r1(P̄j) = b (we are

again using minimal richness). Observe that f(Pi, P̄j, ..., P̄j) = b (progressively

switch preferences of individuals j other than i from Pj to P̄j and note that the

outcome at each stage must remain b; otherwise an individual who can shift the

outcome from b will manipulate). Therefore, g(Pi, P̄j) = b. This contradicts the

assumption that i is the dictator. Therefore, O−i(Pi) is a singleton. Suppose

j is the dictator. Then A = {a ∈ A|g(Pi, Pj) = a for some Pj ∈ Ω} ⊆ O−i(Pi),

so that O−i(Pi) = A.

We now complete the proof by induction on N . It is trivially true when

N = 1. Suppose it is true for all societies of size less than or equal to N − 1.

Consider the case where there are N individuals. Pick i ∈ I. From the earlier

argument, either O−i(Pi) is a singleton or the set A. Suppose the latter case

holds. Fix Pi ∈ Ω and define a SCF g : ΩN−1 → A as follows : g(P−i) =

f(Pi, P−i) for all P−i ∈ ΩN−1. Since O−i(Pi) = A, g satisfies unanimity because
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it is strategyproof and its range is A. Applying the induction hypothesis, it

follows that there exists an individual j 6= i who is a dictator. We need to show

that the identity of this dictator does not depend on Pi. Suppose that there

exists Pi, P̄i ∈ Ω such that the associated dictators are j and k respectively.

Pick a, b ∈ A such that aPib (a 6= b). Since Ω is minimally rich, there exists

Pj, Pk ∈ Ω such that r1(Pj) = b and r1(Pk) = a. Let P−i be the N − 1 profile

where j has the ordering Pj and k has the ordering Pk. Then f(Pi, P−i) = b

and f(P̄i, P−i) = a and i manipulates at (Pi, P−i). Therefore f is dictatorial.

Suppose then that O−i(Pi) is a singleton. We claim that O−i(Pi) must be a

singleton for all Pi ∈ Ω. Suppose not, i.e. there exists P̄i ∈ Ω such that

O−i(P̄i) = A. From our earlier argument, there exists an individual j 6= i who

is a dictator. But this would imply that O−i(P̄i) is a singleton. Therefore, it

must be the case that O−i(Pi) is a singleton for all Pi ∈ Ω. But this implies

that individual i is a dictator.

PROOF OF THEOREM 3.1 : In view of Proposition 3.1, we only need

to show that if ID is linked, then f : ID2 → A is strategyproof and satisfies

unanimity ⇒ f is dictatorial. The proof extensively employs the option set

technique of Barberá and Peleg [3].

In what follows, we assume that I = {1, 2}. Let ID be a linked domain

and assume without loss of generality that the function σ in Definition 3.3 is

the identity function. Let IDj = {Pi ∈ ID|r1(Pi) = aj for some aj ∈ A}, j =

1, · · · ,M. For all P1, P2 ∈ ID, let O2(P1) = {a ∈ A|a = f(P1, P2) for some

P2 ∈ ID} and O1(P2) = {a ∈ A|a = f(P1, P2) for some P1 ∈ ID}. We note that
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for all P1, P2 ∈ ID, f(P1, P2) = max(P2, O2(P1)) = max(P1, O1(P2)).2 (For a

proof of this statement, see Barberá and Peleg [3]).

Our proof consists in establishing two steps.

STEP 1 : There exists j ∈ {1, 2} such that a1, a2, a3 ∈ Oj(Pi) for all Pi ∈
ID1 ∪ ID2 ∪ ID3.

STEP 2 : If a1, a2, ...al−1 ∈ Oj(Pi) where Pi ∈ ID1 ∪ ID2.... ∪ IDl−1, then

a1, a2, ..., al−1, al ∈ Oj(Pi) where Pi ∈ ID1 ∪ ID2.... ∪ IDl−1 ∪ IDl, l = 4, ...,M .

We proceed to establish Step 1 through a sequence of lemmas. First note

that since ID is linked and σ is the identity function, we have a1 ∼ a2, a2 ∼ a3

and a3 ∼ a1.

LEMMA 3.1 : Let P1, P̄1 ∈ IDj with j = 1, 2, 3. Then O2(P1)∩{a1, a2, a3} =

O2(P̄1) ∩ {a1, a2, a3}.

PROOF : Suppose not. Assume without loss of generality that r1(P1) =

r1(P̄1) = a1. Since f satisfies unanimity, a1 both O2(P̄1) and O2(P1). Since

the Lemma is assumed to be false, we can further assume w.l.o.g that a2 ∈
O2(P1) − O2(P̄1). Since a1 ∼ a2, there exists P2 ∈ ID such that r1(P2) = a2

and r2(P2) = a1. Therefore, f(P1, P2) = a2 and f(P̄1, P2) = a1. But then

individual 1 manipulates at (P1, P2).

LEMMA 3.2 : Let P1 ∈ IDj with j = 1, 2, 3. Then O2(P1) ∩ {a1, a2, a3} is

2For all Pi ∈ ID and B ⊂ A, let max (Pi, B) denote the maximal element in B according

to Pi.
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either a singleton or the set {a1, a2, a3}.

PROOF : Suppose not. Assume r1(P1) = a1 . Assume w.l.o.g that a2 6∈O2(P1)

and a3 ∈ O2(P1). Lemma 3.1 and the hypothesis that a1 ∼ a2 imply that we

can assume r2(P1) = a2. Pick P2 ∈ ID such that r1(P2) = a2 and r2(P2) = a3

(feasible, since a2 ∼ a3). Then f(P1, P2) = a3. Let P̄1 ∈ ID be such that

r1(P̄1) = a2. It cannot be the case that f(P̄1, P2) = a2 because then individual

1 would manipulate at (P1, P2). But this contradicts the fact that f satisfies

unanimity.

LEMMA 3.3 : Either O2(P1) ∩ {a1, a2, a3} is a singleton for all P1 ∈ ID1 ∪
ID2 ∪ ID3 or O2(P1) ∩ {a1, a2, a3} = {a1, a2, a3} for all P1 ∈ ID1 ∪ ID2 ∪ ID3.

PROOF : Suppose not. In view of Lemma 3.2, we can assume w.l.o.g that

O2(P1) ∩ {a1, a2, a3} = {a1} and O2(P̄1) ∩ {a1, a2, a3} = {a1, a2, a3} for some

P1, P̄1 ∈ ID1 ∪ ID2 ∪ ID3. Clearly a1 = r1(P1). We can assume w.l.o.g

that a2 = r1(P̄1) (it follows from Lemma 3.1 that a1 6= r1(P̄1) ). We can

also assume (using Lemma 3.1) that a1 = r2(P̄1). Let P2 ∈ ID be such that

r1(P2) = a3. Then f(P̄1, P2) = a3 and f(P1, P2) = a1. Since a1P̄1a3, individual

1 manipulates at (P̄1, P2).

LEMMA 3.4 : If O2(P1)∩{a1, a2, a3} is a singleton for all P1 ∈ ID1∪ID2∪ID3,

then O1(P2) ∩ {a1, a2, a3} = {a1, a2, a3} for all P2 ∈ ID1 ∪ ID2 ∪ ID3. If on the

other hand, O2(P1)∩{a1, a2, a3} = {a1, a2, a3} for all P1 ∈ ID1∪ID2∪ID3, then

O1(P2) is a singleton for all P2 ∈ ID1 ∪ ID2 ∪ ID3.

PROOF : Replacing O2(P1) by O1(P2) in Lemmas 3.1-3.3, it follows that
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O1(P2) ∩ {a1, a2, a3} is either a singleton or the set {a1, a2, a3} for all P2 ∈
ID1 ∪ ID2 ∪ ID3.

Pick P̄1 such that r1(P̄1) = a1, r2(P̄1) = a2 and P̄2 such that r1(P̄2) =

a2, r2(P̄2) = a1.

Suppose first that these sets are both singletons for all P1, P2 ∈ ID1 ∪
ID2 ∪ ID3. Clearly, O1(P̄2) ∩ {a1, a2, a3} = {a2} and O2(P̄1) ∩ {a1, a2, a3} =

{a1}. Since f(P̄1, P̄2) = max(P̄1, O1(P̄2)), we have f(P̄1, P̄2) = a2. But, since

f(P̄1, P̄2) = max(P̄2, O2(P̄1)), we have f(P̄1, P̄2) = a1. We have a contradiction

to the assumption that f is singlevalued.

Suppose next thatO1(P2)∩{a1, a2, a3} = O2(P1)∩{a1, a2, a3} for all P1, P2 ∈
ID1 ∪ ID2 ∪ ID3. Pick P̄1, P̄2 as before. Since f(P̄1, P̄2) = max(P̄1, O1(P̄2)),

we have f(P̄1, P̄2) = a1. But, since f(P̄1, P̄2) = max(P̄2, O2(P̄1)), we have

f(P̄1, P̄2) = a2. We have a contradiction to the assumption that f is singleval-

ued.

Lemmas 3.1 - 3.4 establish Step 1. We assume without loss of generality

that individual j in the statement of Step 1 is individual 1. We now turn to

Step 2. In view of the assumption that j = 1 in Step 1, we will henceforth

write the option set O1(P2) as O(P2).

STATEMENT ∗ : Pick an integer l in the set {4, ..,M}. Since al is linked to

{a1, ..., al−1}, there exists ai, aj ∈ {a1, ..., al−1} such that al ∼ ai and al ∼ aj.

LEMMA 3.5 : Pick l in the set {4, ..,M} and let P2 ∈ IDi∪ IDj where ai and

aj are specified in (∗). Then, al ∈ O(P2).
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PROOF : We first claim that if al ∈ O(P̄2) for some P̄2 ∈ IDj, then al ∈ O(P2)

for all P2 ∈ IDj. Suppose not, i.e. suppose al ∈ O(P̄2) − O(P2) for some

P̄2, P2 ∈ IDj. Let P̄1 be such that r1(P̄1) = al, r2(P̄1) = aj (that such a P̄1

exists follows from (∗)). Since aj ∈ O(P2), it follows that f(P̄1, P2) = aj. But

f(P̄1, P̄2) = al. Since aj P̄2 al,individual 2 manipulates at (P̄1, P̄2).

We next claim that al ∈ O(P2) for all P2 ∈ IDj. Suppose al /∈ O(P̄2)

for some P̄2 ∈ IDj. In view of the claim in the previous paragraph, we can

assume w.l.o.g that r1(P̄2) = aj, r2(P̄2) = al. Let P̄1 be such that r1(P̄1) = al

and r2(P̄1) = ai where ai is as specified in Statement∗. Since al /∈ O(P̄2) but

ai ∈ O(P̄2) by hypothesis, we have f(P̄1, P̄2) = ai. But then 2 can manipulate

by announcing P2 ∈ IDl. By unanimity, f(P̄1, P2) = al and al P̄2 ai so that 2

manipulates at (P̄1, P̄2).

The previous arguments imply that ai ∈ O(P2), P2 ∈ IDj. By an identical

argument, ai ∈ O(P2), P2 ∈ IDi. This proves Lemma 3.5.

LEMMA 3.6 : al ∈ O(P2) for all P2 ∈ ID1 ∪ ID2 ∪ ... ∪ IDl.

PROOF : In view of Lemma 3.5, we need only consider the case where P2 ∈ IDr

where ar ∈ {a1, .., al−1} and ar 6= ai, aj. Suppose al /∈ O(P̄2) for some P̄2 ∈ IDr.

Let P
′
2 ∈ IDj and let P̄1 be such that r1(P̄1) = al, r2(P̄1) = aj. From Lemma

3.5, it follows that f(P̄1, P
′
2) = al. On the other hand, since al /∈ O(P̄2) by

assumption and aj ∈ O(P̄2) by hypothesis, f(P̄1, P̄2) = aj. Since aj P
′
2 al,

individual 2 manipulates at (P̄2, P
′
2). This completes the proof of Lemma 3.6.

LEMMA 3.7 : For all P2 ∈ IDl, it must be true that ai, aj ∈ O(P2).
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PROOF : Suppose aj /∈ O(P̄2) for some P̄2 ∈ IDl. Using (∗), we can pick

P1, P2 such that r1(P1) = aj, r2(P1) = al and r1(P2) = ai, r2(P2) = al. Since

aj ∈ O(P2) by hypothesis, f(P1, P2) = aj. Since al ∈ O(P̄2) and aj /∈ O(P̄2) by

assumption, it must be the case that f(P1, P̄2) = al. But al P2 aj. Therefore 2

manipulates at (P1, P2). By an identical argument, if follows that ai ∈ O(P2)

for all P2 ∈ IDi.

LEMMA 3.8 : For all ar, as ∈ {a1, ..., al−1}, if ar ∼ as and ar ∈ O(P2),

P2 ∈ Dl, then as ∈ O(P2).

PROOF : Suppose not, i.e. let ar, as ∈ {a1, ..., al−1}, ar ∼ as and let P̄2 ∈ IDl

such that ar ∈ O(P̄2) but as /∈ O(P̄2). Let P
′
2 ∈ IDr and let P1 be such that

r1(P1) = as, r2(P1) = ar (such a P1 exists since by assumption ar ∼ as).

Since ar, as ∈ {a1, ..., al−1}, as ∈ O(P
′
2), by hypothesis so that f(P1, P

′
2) = as.

Since ar ∈ O(P̄2) and as /∈ O(P̄2) by assumption, f(P1, P̄2) = ar. But arP
′
2as.

Therefore 2 manipulates at (P1, P2).

LEMMA 3.9 : for all ar ∈ {a1, ..., al−1} and P2 ∈ IDl, it must be true that

ar ∈ O(P2).

PROOF : Pick P2 ∈ IDl. From Lemma 3.7, we know that ai, aj ∈ O(P2). Pick

ar ∈ {a1, ..., al−1}. Since ID is Linked, there must exist a sequence b0, b1, ..., bt ∈
A such that b0 = aj, bt = ar and b0 ∼ b1, b1 ∼ b2,..., bt−1 ∼ bt. (This follows

since for all ar ∈ {a1, ..., al−1}, there exists as ∈ {a1, ..., al−1} such that ar ∼ as).

Applying Lemma 3.8 repeatedly, it follows that ar ∈ O(P2).

Lemmas 3.5 - 3.9 establish Step 2. Combining the two steps it follows that
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for all aj ∈ A and P2 ∈ ID, we have aj ∈ O(P2). This immediately implies that

individual 1 is a dictator and completes the proof of the Theorem.

We now state some consequences of Theorem 3.1.

COROLLARY 3.1 : (Barberá-Peleg [3]) : Assume M ≥ 3 and let ID be as

described in Example 3.1. The SCF f : IDN → A is strategyproof ⇔ f is

dictatorial.

Barberá -Peleg [3] did not formally claim to have proved the result above.

However, their proof of the GS Theorem (at least in the case where N=2)

remains valid when it is assumed that the domain is the one described in

Example 3.1.

Another corollary is the Gibbard-Satterthwaite Theorem.

COROLLARY 3.2 (Gibbard [2], Satterthwaite [6]) : Assume |A| ≥ 3. The

SCF f : IPN → A is strategyproof ⇔ f is dictatorial.

Both these corollaries follow immediately from an application of Theorem

3.1 and our earlier observation that the domains described in Examples 3.1

and 3.2 are linked.

Our final result in this section is an upper bound on the smallest (in terms

of cardinality) dictatorial domain.

PROPOSITION 3.2 : There exists a dictatorial domain ID such that |ID| =
4M − 6.
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This result is an immediate consequence of our remark that the domain

constructed in Example 3.3 is linked. Dictatorial domains can therefore be

very “small”. Observe that the size of the universal domain assumed in the

Gibbard-Satterthwaite Theorem, is a polynomial of order M . The domain

where the top pair can be chosen arbitrarily (the domain in Example 3.1) is of

cardinality at least M2−M . As Proposition demonstrates, there are dictatorial

domains which are even smaller in the sense that they are linear in M . An

interesting question is whether the bound obtained in Proposition 3.2 is tight.

We are unable to answer this question generally because Theorem 3.1 provides

only a sufficient condition for a domain to be dictatorial. We note however,

that since SCFs must satisfy unanimity, the minimal size of domains under

consideration is M .

4 AN APPLICATION : VOTING UNDER

CONSTRAINTS

In this section we apply the main result of the previous section to a model of

voting under constraints. The basic model is due to Barberá, Sonnenschein

and Zhou (BSZ)[4] and is intended to represent a situation where members are

being elected to a club (for instance). There are L candidates in an election and

there are N voters. Any subset (including the null set) of the set of candidates

can be elected. Voters have preferences over all such subsets i.e. over 2L

alternatives. These preferences are assumed to be separable (defined formally

below) which implies that each voter has an unambiguous opinion of whether

a given candidate should be elected or not. BSZ demonstrate that the non-

manipulability assumption characterizes a class of SCFs which they refer to as
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voting by committee. Each candidate is considered in isolation and her election

decided on the basis of a voting rule such as majority voting. These results

have been extended and generalized further in Barberá, Gul and Stachetti [1]

and Le-Breton and Sen [8],[9] and Serizawa [13].

A critical feature of the model described above is that the set of alternatives

is a product set. In this section we consider a variant of this model where we

allow for the possibility that certain alternatives are infeasible so that the

product structure of the set of alternatives is destroyed. For instance, it may

be the case that at least K candidates have to be elected or between K1 and

K2 candidates have to be elected, at least 1 candidate has to be elected and

so on. An immediate consequence of such an assumption is that SCFs where

decisions on candidates are made individually, are no longer admissible. But

are there “other” strategyproof SCFs in these circumstances? We are able

to show that, in certain interesting cases, the answer to this question is “no”.

Under different assumptions on the feasible set of alternatives (now no longer a

product set), we show that non-manipulability implies dictatorship. Moreover,

we derive these results by suitable applications of Theorem 3.1. An important

observation in this context is that the Gibbard-Satterthwaite result cannot

be applied because preferences are restricted by the assumption that they are

separable.

Barberá, Masso and Neme [3], investigate a general problem of constrained

voting. They consider product domains and assume that preferences are Multi-

dimensional single-peaked. Their main result states that if the maximal ele-

ments of preferences lie in the feasible set, then non-manipulable SCFs are

“ generalized median voting schemes” which satisfy a complicated condition

called the intersection property. Our formulation does not require maximal
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elements of preferences to be feasible. We are able to show that in the specific

model of BSZ, constraints on the feasible set typically leads to dictatorship.

We now proceed to details.

The set of individuals, or the set of voters is once again, the set I =

{1, 2, .., N}. The set of candidates is the set is {1, 2, .., L}. The set of alternat-

ives A, is the set of all subsets of the set of candidates. Thus A = {0, 1}L and

a typical element a of the set A is an L-tuple whose jth component denoted

by aj is either 0 or 1. Then a represents the set where candidate j belongs if

aj is 1 and does not belong if aj is 0 with j = 1, 2, ., L

DEFINITION 4.1 : An ordering Pi of the elements of A is separable if, for

all aj, bj ∈ {0, 1}, x−j, y−j ∈ {0, 1}L−1 and j = 1, 2, .., L, if (aj, x−j)Pi(bj, x−j),

then (aj, y−j)Pi(bj, y−j).

An ordering is separable if a candidate does not exert “externality effects”

on other candidates. For example, preferences of the following kind are ruled

out: “ I prefer candidate 1 to be included rather than excluded if candidate 2 is

included but excluded when 2 is also excluded ”. Clearly separable preferences

induce unambiguous preference over the inclusion/exclusion of every candidate.

Let ĪD denote the set of separable orderings over the set A.

Let B be a subset of A. A SCF is a mapping f : ĪD
N → B. We assume

without loss of generality that this mapping is onto.

We describe below a particular class of subsets of A which are of special

interest to us.
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Let K1 and K2 be integers lying between 0 and L with K1 ≤ K2. We shall

let the set B(K1, K2) = {a ∈ A|∑ aj = r,K1 ≤ r ≤ K2}. We shall refer to

sets of the kind B(K1, K2) as interval subsets of the set A. Thus B(K1, K2)

denotes the set of alternatives where between K1 and K2 candidates are elected.

A strict interval subset of A is an interval subset which is a strict subset of A.

Observe that this implies that it is not the case that K1 = 0 and K2 = L.

Preferences over an arbitrary subset B can be induced in a natural manner

from the preferences over A as specified by the domain ĪD. The domain of the

induced preferences over B is denoted ĪD
B

. Lemma 4.1 below shows that the

value of a strategyproof SCF f defined on ĪD can depend only the preferences

that it induces on B. We show that whenever B is an interval subset, or is

of the form B = A − {a}, where a ∈ A, it is the case that ĪD
B

satisfies the

requirements of a linked domain. Hence any strategyproof f defined on ĪD but

whose range is B must be dictatorial.

We now state our results formally.

THEOREM 4.1 : Let B be a strict interval subset of A with L ≥ 3. Then

the SCF f : ĪD
N → B is strategyproof only if it is dictatorial.

THEOREM 4.2 : Let L ≥ 2. Pick a ∈ A and let B = A − {a}. Then the

SCF f : ĪD
N → B is strategyproof only if it is dictatorial.

The second result is perhaps more striking than the first. It states that even

if a single alternative is removed from the feasible set, then all the possibility

results disappear and we are left with dictatorship.

Before we can apply 3.1 in the previous context, we need some prelim-
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inary results. The first one is quite standard and states that the value of a

strategyproof SCF at any profile can depend only on preferences over the set

of alternatives which are in the range of the SCF.

We say that two preference profiles P and P̄ agree on a subset X of A if,

for all i and all a, b ∈ X, aP ib if and only if aP̄ ib.

LEMMA 4.1 : Let f be a strategyproof SCF whose range is the set B.

Let P and P̄ be two admissible preference profiles which agree on B. Then

f(P ) = f(P̄ ).

PROOF : It clearly suffices to show that f(P ) = f(P̄1, P−1). Suppose without

loss of generality that this is not true and f(P ) = a 6= b = f(P̄1, P−1). Clearly,

a, b ∈ X. If bP1a, then 1 manipulates at P . If on the other hand, aP1b, then

aP̄1b and 1 manipulates at (P̄1, P−1).

The next lemma describes a useful procedure to generate separable order-

ings.

Let a ∈ A and let r be an integer lying between 0 and L. We say that

outcome b is an r-variant of a if there exists S ⊂ {1, 2, .., L} with |S| = r such

that (i) aj 6= bj for all j ∈ S and (ii) aj = bj for all j /∈ S.

Thus an r-variant of an alternative a is an alternative where exactly r

components in a have been flipped. The next lemma states that separable

preference orderings can be generated as follows: pick a maximal alternative a

and then simply ensure that an alternative b which is a “lower” r-variant from a

than another alternative c is ranked above c. We can imagine creating separable

orderings by arranging various “blocks”. We begin with an arbitrary alternative
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a. Below it we place the block of the L alternatives which are 1-variants of a.

Within this block, any ordering of alternatives is permissible. Then consider the

block of L(L−1)
2

alternatives which are 2-variants of a. Once again alternatives

within this block can be ordered in an arbitrary way. Proceeding in this way,

we arrange blocks of increasing r-variants of a until we reach the last ranked

alternative which must be the unique element which is the L variant of a.

LEMMA 4.2 : Let a ∈ A and Pi be an ordering over A such that (i) r1(Pi) = a

and (ii) for all b, c ∈ A, if b is an r-variant of a and c is an s-variant of a and

r < s, then bPic. Then Pi is a separable ordering.

PROOF : Pick j ∈ {1, .., L} and x−j ∈ {0, 1}L−1. Suppose that (aj, x−j) is an

r variant of a. Then (bj, x−j) (where aj 6= bj) must be an r + 1 variant of a.

Therefore (aj, x−j)P
i(bj, x−j) by hypothesis. Since x−j was chosen arbitrarily,

the proof is complete.

PROOF OF THEOREM 4.1 : Let B be the interval subset B(K1, K2). In

view of Lemma 4.1, we can restrict attention only to preferences over feasible

alternatives. Thus, for any ordering Pi, rk(Pi) = a implies that a ∈ B and

|{bPia, b ∈ B}| = k − 1.

Let s be an integer between 0 and L. Let (s) denote the set

{a ∈ A|∑ aj = s}.

CLAIM 1 : Let s and t be consecutive integers no less than K1 and no greater

than K2. Let a ∈ (s). Then there exists b, c ∈ (t) such that a ∼ b and a ∼ c.

In order to prove the claim, assume w.l.o.g that s < t. Assume also w.l.o.g
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that a is the alternative where the first s components are 1 and the remaining

L − s are 0. Let b be the alternative where the first t components are 1 and

the remaining components are 0. Let c be the alternative where the first t− 1

components and the t + 1th component is 1 and the other components are 0.

Observe that both b and c are 1-variants of a. It follows from Lemma 4.2 that

there exist separable orderings where a is first and b and c are either second or

third. We can also find separable orderings where either b or c is first and a is

second. This establishes the claim.

CLAIM 2 : For all a, b ∈ (K1), we have a ∼ b, provided K1 6= 0. Similarly,

for all a, b ∈ (K2), we have a ∼ b provided K2 6= L.

In order to verify the claim pick a, b ∈ (K1). There exists c ∈ (K1−1) such

that a and b are 1-variants of c. It follows from Lemma 4.2 that we can find

separable orderings such that c is first and a and b are ranked either second

or third. Since B is an interval subset, c is not feasible. Therefore a ∼ b. An

identical argument holds in the case where a, b ∈ (K2) except that we pick c

in the set (K2 + 1). Thus the claim is established.

We now complete the proof of Theorem 4.1 by showing that preferences over

B constitute a linked domain. Since B is a strict interval subset, either K1 6= 0

or K2 6= L. Assume w.l.o.g that the former holds. Arrange the elements of B

in the following way. First arrange alternatives in (K1) in an arbitrary way,

followed by alternatives in (K1 + 1) and so on until (K2). The order in which

these alternatives are picked defines the permutation function σ in Definition

3.3. It is easy to check that Claims 1 and 2 imply that conditions (i) and (ii)

of Definition 3.3 are satisfied by this choice of σ. Since L > 3 by assumption,

the domain is linked and the result follows by applying Theorem 3.1.
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PROOF OF THEOREM 4.2 : Assume w.l.o.g that the alternative dis-

carded from A is (0, 0, 0, ...0), i.e. B = A− (0, 0, ...0).

We first claim that all alternatives in the set (1) are connected. To see this

observe that all a, b ∈ (1) are 1-variants of (0, 0...0). Therefore, using Lemma

4.2, we can construct an ordering where (0, 0...0) is maximal followed by a and

b. Since a and b were chosen arbitrarily, we have a ∼ b.

Our next claim is that for all alternatives a ∈ (s), s = 1, 2, .., L − 1, there

exists an integer t where s and t are consecutive and a is connected to at least

two alternatives in (t). To establish this, it suffices to observe that since L ≥ 2,

each alternative in (s) has at least two 1-variants in the set (t) where s, t are

consecutive integers. (Of course, a minor qualification has to be made in the

case where s = L−1, when t must be chosen to be L−2 rather than L because

(L) has only one alternative.) Now, using Lemma 4.2, we can pick a separable

ordering where a is first ranked and b is second where b ∈ (t) and is a 1-variant

of a. Since b is a 1-variant of a, we can also find an ordering where b is first

and a second.

We can now complete the proof of Theorem 4.2. Order the alternatives in B

in the following manner. First choose all alternatives in (1) (in some arbitrary

order), then (2), (3),...,(L). Define a permutation function σ on the set B from

this order. In view of the claims established in the last two paragraphs, it is

easy to check that σ satisfies conditions (i) and (ii) of Definition 3.3. Therefore

the domain is linked and the result follows from Theorem 4.1.

We provide a diagrammatic illustration of the proof of Theorem 4.2 in the

case where L = 3. Figure 1 shows the connections between various alternatives

in the set A. An alternative is a vertex in the graph and two vertices are
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connected only if they are connected. Observe that the domain of preferences

over A is not linked because there does not exist a triple of alternatives which

are mutually linked - a necessary condition for the existence of a linked domain.

Of course, we know from BSZ that there are numerous strategyproof SCFs

(including ones which are anonymous and neutral) over this domain.

Figure 2 illustrates the connections between alternatives once (0, 0, 0) has

been excluded from the set of feasible outcomes. Now the set of 1-variants from

(0, 0, 0) are mutually connected. Thus (1, 0, 0) ∼ (0, 1, 0) ∼ (0, 0, 1). The other

connections excluding the ones which involve (0, 0, 0) remain. Consider the

sequence of alternatives : (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 0, 1),

(1, 1, 1). It is easy to verify from the diagram that this sequence satisfies

conditions (i) and (ii) in Definition 3.3. Therefore the domain is linked.

5 A NECESSARY CONDITION AND SOME

SPECIAL CASES

The linked domain condition introduced in Section 3 is only a sufficient condi-

tion for a domain to be dictatorial. Unfortunately, it appears that a necessary

and sufficient condition for a domain to be dictatorial is likely to be extremely

complicated. In this section we provide an elementary necessary condition and

show that it is necessary and sufficient for the case where M = 3. We also

obtain a necessary and sufficient condition for the case M = 4.

Our first result, Theorem 5.1 below describes a “minimal variation” needed

in a domain for it to be dictatorial.
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DEFINITION 5.1 : A domain ID has the unique seconds property if there

exists a pair of alternatives aj, ak ∈ A such that for any preference ordering

Pi ∈ D where aj = r1(Pi), it is the case that ak = r2(Pi).

Thus the unique seconds property is satisfied if there exists a pair of out-

comes aj, ak such that whenever aj is first ranked, ak is second. We show that

a domain satisfying this property is non-dictatorial.

THEOREM 5.1. : If a domain satisfies the unique seconds property, then it

is non-dictatorial.

PROOF : Let ID be a domain satisfying the unique seconds property. Suppose

in particular that whenever, aj is ranked first, ak is ranked second. Define a

two -person SCF f on this domain as follows. Fix individuals 1 and 2 and let

f(P ) = r1(P1) whenever r1(P1) 6= aj. If r1(P1) = aj, let f(P ) be the outcome

that 2 prefers in the set {aj, ak}. It is readily verified that f is non-dictatorial

and satisfies unanimity. We claim that it is also non-manipulable. To see this

observe that individual 2 is always maximizing over the options offered to him

by 1. Individual 1 always gets his maximal outcome except perhaps when his

maximal outcome is aj. Since the domain has the unique seconds property,

then the outcome is his second ranked outcome ak provided that ak is prefered

to aj by 2. Observe that under these circumstances there is no announcement

by 1 which will change the outcome to aj.

Theorem 5.1 is sufficient to completely characterize dictatorial domains

when M = 3.
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THEOREM 5.2 : Let M = 3. Then ID is a dictatorial domain if and only if

ID = IP .

PROOF : The sufficiency follows from the Gibbard-Satterthwaite Theorem

(Corollary 3.2). Consider a domain ID ⊂ IP . Observe then that the unique

seconds property must be satisfied for some alternative. But then ID cannot

be dictatorial in view of Theorem 5.1.

We next investigate the structure of dictatorial domains when M = 4. This

case is considerably more complicated. In what follows we assume that the set

of alternatives is now A = {a, b, c, d}.

DEFINITION 5.2 : The domain ID satisfies Condition α if one of the two

conditions below is satisfied.

(i) Each alternative is connected to least two alternatives and one alternative

is connected to three.

(ii) Each alternative is connected to exactly two others. Furthermore, for all

pairs x,w ∈ A such that x and w are not connected either (a) there exists

Pi, such that x = r1(Pi), and w 6= r4(Pi) or (b) there exists Pi, such that

x = r2(Pi) and w 6= r3(Pi) holds.

Condition (i) is self-explanatory. Condition (ii) is more subtle. It applies to

the case shown in Figure 3. As in the earlier figures, each vertex in the graph

is an alternative and an edge represents a connection between two alternatives.

Now consider two vertices such as b and c which are not connected. Then it

must be the case that either there is an ordering where b is ranked first, and c
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is not ranked last or there is an ordering where b is second and c is not third.

A similar condition applies to the other pair a and d which are not connected.

THEOREM 5.3 : Let M = 4. Then ID is dictatorial if and only if it satisfies

Condition α.

PROOF : If (i) of Condition α holds, then the domain is linked and Theorem

3.1 applies. If on the other hand, there exists an alternative which is not

connected to at least two others, then Theorem 5.1 holds and the domain is

not dictatorial. Therefore the only remaining case of interest relates to (ii).

We need to show that if (ii) holds then ID is dictatorial. If on the other hand,

it does not hold, then we have to construct a strategyproof, non-dictatorial

unanimity satisfying SCF on the domain. The proof of the first part is in the

Appendix. Here we only show that (ii) is necessary for ID to be dictatorial.

Assume that ID is such that connectivity structure of alternatives is given

by that in Figure 3. Assume further that (ii) is violated with respect to b and

c; i.e. for all orderings where b is ranked first, c is last and that for all orderings

where b is second, c is third. We construct a two person SCF f on this domain

in terms of the option set O2(P1) that individual 1 offers 2. Recall that for all

P1, P2, f(P1, P2) = max(P2, O2(P1)).

O2(P1) = {a, c} for P1 such that r1(P1) = a

O2(P1) = {c} for P1 such that r1(P1) = c

O2(P1) = {a, b, c, d} for P1 such that r1(P1) = b

O2(P1) = {d, c} for P1 such that r1(P1) = d
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We claim that f is strategyproof. We consider 4 cases separately.

Case A : Individual 1 has preferences P1 with r1(P1) = a. If P2 has b as the top

ranked alternative, then by hypothesis, c must be last, so that f(P1, P2) = a

and 1 would have no reason to manipulate. If P2 has c as the top ranked

alternative then the outcome is c for any manipulation by 1 since every option

Set contains c. So here 1 cannot manipulate. Finally, if P2 has d on top, then

f(P1, P2) = c since by hypothesis c must be preferred to a. Here, agent 1 may

want to manipulate to get b or a. The only way for 1 to do so is to announce

P
′
1 which has b is first and thereby offer the option Set {a, b, c, d}. But now

f(P
′
1, P2) = d which is worse than c for agent 1. So here too, 1 would not

manipulate.

Case B : Individual 1 has preferences P1 with r1(P1) = b. Suppose r1(P2) = a.

Then f(P1, P2) = a. If a is second in P1, then 1 cannot manipulate because

there is no way for him to offer b without also offering a. Since c must be last

in P1 by hypothesis, the only case to consider is where d is second and a is

third in P1. Here 1 may want to manipulate in order to get d. But d cannot

be second in P2. If either b or c is second, then cP2d and manipulation by 1

cannot lead to d. If r1(P2) = b, then f(P1, P2) = b and 1 will not want to

manipulate. If r1(P2) = c then 1 cannot manipulate because he cannot change

the outcome from c. If r1(P2) = d, the argument is exactly as in the case where

a is first in P1, with the roles of a and d reversed.

Case C : Individual 1 has preferences P1 with r1(P1) = c. This case is easy

because f(P1, P2) = c for all P2 so that 1 has no incentive to manipulate.

Case D : Individual 1 has preferences P1 with r1(P1) = d. It is easy to verify

that the arguments of Case A apply with the roles of a and d interchanged.
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These arguments establish that f is strategyproof. Since f is clearly non-

dictatorial, we have established that if (ii) of Condition α is violated, then the

domain is non-dictatorial.

We end this section with the remark that Condition α demonstrates that

a necessary and sufficient condition for a domain to be dictatorial will involve

restrictions on the way that alternatives are ranked in positions three, four

and above. Thus the linked domain approach which places restrictions only on

the way alternatives are ranked first and second is inadequate in providing a

complete characterization.

6 CONCLUSION

In this paper, we introduce the notion of a linked domain and prove that a

strategyproof social choice function defined on such a domain must be dictat-

orial. This result not only generalises the Gibbard-Satterthwaite Theorem but

demonstrates also that the dictatorship result remains valid for domains much

smaller than the universal domain. We use this result to derive some new res-

ults in a model of voting. We also provide a necessary condition for a domain

to be dictatorial and completely characterize dictatorial domains in the case

where there are three and four alternatives.
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3. BARBERÁ,S, and B. PELEG (1990) : “Strategy-proof Voting Schemes

with Continuous Preferences”, Social Choice and Welfare, 7, 31-38.
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7 APPENDIX

In this appendix we complete the proof of Theorem 5.3. We show that if a

domain ID satisfies part (ii) of Condition α then ID is dictatorial.

The following facts about two person strategyproof SCF’s will be used.

We will consider the option set O2(P1) that individual one offers the second

individual. To simplify notation, we omit the subscript and write O(P1).

FACT 1 : Let P1 be a preference ordering such that x ∈ O(P1). Let z ∼ x

and z P1 x. Then whenever any option set contains z, it must contain x.

PROOF : Suppose not. Then ∃P ′1 such that z ∈ O(P
′
1) and x /∈ O(P

′
1). Since

z ∼ x, there exists P2 such that r1(P2) = x and r2(P2) = z. Now f(P1, P2) = x

while f(P
′
1, P2) = z. Consequently, 1 manipulates from P1 to P

′
1 and gets the

outcome z that is preferred to x, a contradiction.

FACT 2 : Let P1 be any preference ordering. Then r1(P1) ∈ O(P1). Suppose

that x ∈ O(P1). Let z ∼ x and z P1 x. Then z ∈ O(P1).

PROOF : By unanimity it must be the case that r1(P1) ∈ O(P1). Suppose z 6∈
O(P1). Since z ∼ x, there exists P2 such that r1(P2) = z and r2(P2) = x. Now

f(P1, P2) = x while by unanimity, F (P
′
1, P2) = z where P

′
1 is any preference

ordering where r1(P
′
1) = z, a contradiction.
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The set of alternatives is A = {a, b, c, d} and we work with the connectivity

structure specified by Figure 3 in the text. We will adopt the following notation.

We will let P x denote a preference ordering with r1(P x) = x while y and z will

denote the elements that are ranked second for some preference ordering with

x as the top ranked alternative. The alternative w will denote the element that

is never ranked second to x. For example, if x = a, then y and z can be either

b or c while d is w.

Lemma 1 below shows that every strategyproof SCF defined on ID must

have the convenient ‘Tops Only’ property, i.e. the option sets and hence the

values the SCF takes are determined by the top ranked alternative of the

individuals preference orderings.

LEMMA 1 : Let P x and P
′x be two preference orderings such that x is the

top ranked alternative for both. Then O(P x) = O(P
′x).

PROOF : We first show that O(P x) ⊂ O(P
′x). Suppose y ∈ O(P x). x belongs

to both O(P x) and O(P
′x). Since x ∼ y, by Fact 1 y must belong to O(P

′x).

Identical arguments apply if z ∈ O(P x). Now suppose w ∈ O(P x). Then

r2(P x) is either y or z. Assume without loss of generality that r2(P x) = y.

Since y ∼ w, by Fact 2, y ∈ O(P x). As proved above, y ∈ O(P
′x) as well. By

applying Fact 1 again, one concludes w ∈ O(P
′x).

Identical arguments imply that O(P
′x) ⊂ O(P

′x).

Lemma 2 below specifies conditions under which O(P x) must be the set A.

LEMMA 2 : (a) If w ∈ O(P x), then O(P x) = A. (b) If y ∈ O(P x) and ∃ P ′x
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such that y = r4(P
′x), then O(P x) = A.

PROOF : We first show (a). Suppose w ∈ O(P x). Let y = r2(P x). Since

y ∼ w, by Fact 2 it follows that y ∈ O(P x). Let P
′x be the preference ordering

where z = r2(P
′x). By an identical argument, z ∈ O(P

′x). The conclusion now

follows from Lemma 1.

We now show (b). Suppose y ∈ O(P x). Then by Lemma 1 y ∈ O(P
′x). By

Fact 2, w ∈ O(P
′x). So by (a), O(P

′x) = A and the conclusion follows again

from Lemma 1. .

Lemma 2 will be used repeatedly in the arguments below.

PROOF OF THEOREM 5.3 : The proof is divided into two parts. In Part

1, we show that if (ii)(a) of (α) holds for every pair x,w, ID must be dictatorial.

In Part 2 we consider the case where for some pair x,w, (ii)(a) of (α) does not

hold, but for any such pair, (ii)(b) of (α) holds, and show then that ID must

again be dictatorial.

PART 1.

Given any pair x,w there exists by hypothesis P x such that w 6= r4(P x). By

Lemma 1, the option set O(P x) coincides with every other option set O(P
′x)

where P
′x is an arbitrary preference ordering with x as the top ranked altern-

ative. We first establish the following statement.

STEP 1 : If ∃x ∈ A such that O(P x) 6= {x}, then O(P x) = A.
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To verify Step 1, assume it is not true. So O(P x) is neither {x} nor A. By

hypothesis w 6= r4(P x). Assume without loss of generality that y = r4(P x). If

y ∈ O(P x), then by Lemma 2(b), O(P x) = A, a contradiction. If w ∈ O(P x),

then by Lemma 2(a), O(P x) = A, a contradiction. So for the claim in Step

1 to be untrue, it must be the case that O(P x) = {x, z} and z 6= r4(P
′x) for

any P
′x (including P x) that has x as the top ranked alternative. (Or else by

Lemma 2(b) one gets that O(P x) = A, a contradiction).

Assume without loss of generality that x = a and z = c. Let P a1 denote

the preference ordering such that a = r1(P a1), b = r2(P a1), c = r3(P a1). (We

know such a preference ordering must exist, since a ∼ b and from the earlier

discussion we are considering the case where a = r1(P a)⇒ c 6= r4(P a) ∀ P a.)

We are considering the case O(P a1) = {a, c}.

We next claim that O(P b) = A. Suppose instead that O(P b) = {a, b}.
Then f(P b, P c) ∈ {a, b} while f(P a1, P c) = c and 1 would manipulate from

P a1 to P b, a contradiction. Identical arguments apply if O(P b) = {b}. If c ∈
O(P b), then by Lemma 2(a), O(P b) = A. Suppose now that O(P b) = {a, b, d}.
Consider the pair b, c. By hypothesis, it cannot be the case that c = r4(P b) for

all preference orderings P b. So ∃ P ′b such that r4(P
′b) is either a or d. In either

case, by Lemma 2(b) O2(P b) = A. The only remaining case is O(P b) = {b, d}.
Let P b1 be the preference order where r2(P b1) = a. Given that O(P b) = {b, d},
it must be the case that d = r3(P b1) or else by Lemma 2(b) O(P b) = A. Now

let P a2 be the preference ordering where r2(P a2) = c and r3(P a2) = d. (Such

a preference ordering must exist or else we obtain that both P a1 and P a2 have

d ranked last, which is ruled out by hypothesis). Now f(P b1, P a2) = d and

consequently 1 manipulates from P b1 to P a2 and ensures the outcome a by

unanimity where a is preferred to d under P b1, a contradiction. We have thus
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proved that O(P b) = A.

We next claim that a = r2(P b) ⇒ d = r3(P b). Suppose not. Then c =

r3(P b). Since c ∈ O(P b) = A and c ∈ O(P a) = {a, c}, by Fact 1, it must be the

case that d ∈ O(P a), a contradiction. Therefore, ∃ P b2 such that d = r2(P b2)

and c = r3(P b2). (If not, c is last for all P b with d = r2(P b). But c is also last

for all P b with a = r2(P b), which implies c is last for all P b, which is ruled out

by hypothesis).

We claim that O(P d) = A. To verify this claim, observe that it must be

the case that a ∈ O(P d). (If not, f(P b2, P a) = a while f(P d, P a) ∈ {b, c, d}
and so 1 manipulates from P b2 to P d and ensures an outcome that is preferred

to a, its lowest ranked alternative). But then, by Lemma 2(a) it follows that

O(P d) = A.

Let P d2 be such that c = r2(P d2). Then it must be the case that b = r3(P d2).

(If not, then a P d2 b, b ∈ O(P d2) would imply by Fact 1 that b ∈ O(P a), a

contradiction.)

We claim that O(P c) = A. To verify this claim, observe first that since

a ∈ O(P b) = A and a = r4(P b2), a must belong to O(P c).(Suppose not. Then

f(P c, P a) ∈ {b, c, d} while f(P b2, P a) = a. So 1 manipulates from P b2 to P c

and ensures an outcome that is preferred to a, its lowest ranked alternative). If

b ∈ O(P c), then by Lemma 2(a), O(P c) = A. Suppose, instead that O(P c) =

{a, c, d}. By hypothesis ∃ P c1 s.t b 6= r4(P c1). So r4(P c1) ∈ {a, d} in which case

again by Lemma 2(b), O(P c) = A. The last possibility is that O(P c) = {a, c}.
Recall that P b2 satisfies d = r2(P b2) and c = r3(P b2). Now f(P d2, P b2) = b

while f(P c, P b2) = c. But c P d2 b. So 1 manipulates from P d2 to P c, a

contradiction. So it must be the case that O(P c) = A.
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Since d ∈ O(P c) = A, c ∼ d and c ∈ O(P a), by Fact 1 it must be the case

that d ∈ O(P a), a contradiction to the supposition that O(P a) = {a, c}. This

completes the proof of Step 1.

STEP 2 : If there exists x ∈ A such that O(P x) = A, then O(P v) = A, ∀
v ∈ A.

To verify Step 2, assume here too without loss of generality that x = a.

We will show first that O(P b) = A. Consider P a1 (which has the property

that b = r2(P a1)). Since b ∼ d, d ∈ O(P b) for all P b. If ∃ P b such that

d = r4(P b), then by Lemma 2(b) O(P b) = A, and we are done. So we consider

the case a = r2(P b) ⇒ d = r3(P b). This is the configuration of P b1 defined

earlier. Thus P b with a = r2(P b) must coincide with P b1. If a ∈ O(P b) then

too O(P b) = A. To see why, observe that by hypothesis, there must exist P b2

such that a = r4(P b2). (If not, c is always last ranked for all P b, which is ruled

out by hypothesis). Now by Lemma 2(b), O(P b) = A. If c ∈ O(P b), then

again by Lemma 2(a), O(P b) = A. So it remains to consider the case where

O(P b) = {b, d}.

Likewise, if ∃ P a with c = r4(P a), it must be the case that c ∈ O(P b). (If

not, 1 manipulates from P a to P b whenever 2 has a preference ordering with

c as the top ranked alternative.) Then by Lemma 2(a), O(P b) = A. So we

consider the case where any P a with b = r2(P a) coincides with P a1 which has

d = r4(P a1). By hypothesis, there must exist P a2 such that c = r2(P a2) and

b = r4(P a2). Now it must be the case that b ∈ O(P c). (If not, 1 manipulates

from P a to P c whenever 2 has a preference ordering with b as the top ranked

alternative.) Then again by Lemma 2(a), O(P c) = A. If ∃ P c such that

d = r2(P c) and b = r3(P c), then by Fact 1, a ∈ O(P b) and we are done.
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So it remains to consider the case where for any P c such that d = r2(P c),

it is the case that a = r3(P c) and so b = r4(P c). By hypothesis, since b cannot

be last for all P c, there must exist P c1 such that a = r2(P c1) and d = r4(P c1).

Now f(P a1, P c1) = c. Since we have assumed that O(P b) = {b, d}, it is the

case that f(P b1, P c1) = b. Since b P a1 c, 1 manipulates, a contradiction. So

we have proved that O(P b) = A.

We show O(P c) = A. Consider P a with the property that c = r2(P a). Since

c ∼ d, by Fact 1 it follows that d ∈ O(P c) for all P c. Suppose O(P c) 6= A.

As in the case of O(P b) above, the only other possibility is O(P c) = {c, d}.
Consider P c1 with a = r2(P c1). Now consider any P a with the property that

c = r2(P a). If for such a P a, b = r4(P a), then b must belong to O(P c) (or else

1 manipulates from P a to P c whenever 2 has a preference ordering P b) and

so by Lemma 2(a) it follows that O(P c) = A and we are done. So consider

the case where for any such P a, d = r4(P a). Here too there must exist P a3

such that b = r2(P a3) and c = r4(P a3) (If not, it is the case that for all P a,

d is ranked last, which is ruled out.) Now f(P c1, P a3) = d since the Option

Set O(P c) is assumed to contain only c and d and d P a3 c. By manipulating

to P a3 from P c1, 1 can ensure the outcome a by unanimity and a P c1 d. So 1

manipulates, a contradiction. Thus it must be the case that O(P c) = A.

Finally, we show O(P d) = A. Consider P c with d = r2(P c). Since b ∈
O(P c) = A and b ∼ d, by Fact 1 b ∈ O(P d). Likewise consider P b with

d = r2(P b). Since c ∈ O(P b) = A and c ∼ d, by Fact 1 c ∈ O(P d). By

hypothesis, there must exist P d such that r4(P d) 6= a. So by Lemma 2(b),

O(P d) = A.

STEP 3 : Either 1 or 2 is a dictator.
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Suppose 1 is not a Dictator. Then there exists O(P x) 6= {x}. By Step 1,

O(P x) = A. By Step 2, O(P v) = A ∀ v ∈ A and consequently 2 is a Dictator.

This completes Part 1 of the proof.

PART 2

We now consider the case where (ii)(a) of (α) does not hold for some pair,

but for any such pair (ii)(b) of (α) holds. Assume without loss of generality

that the pair b, c violates (ii)(a) of (α) and the preference ordering P a1 satisfies

the requirement of (ii)(b) of (α), i.e. b = r2(P a2) but c = r4(P a2).

Steps 1,2 and 3 below will refer to the configuration (*) below

P a1 P a2 P b1 P b2 P c1 P c2 P d1 P d2

a a b b c c d d

b c a d a d b c

d . d a . . . .

c . c c . . . .

STEP 1 : O(P b) is either {b} or A.

To verify this step, assume O(P b) is neither {b} nor A. Suppose c ∈ O(P b).

Then by Lemma 2(a) O(P b) = A, a contradiction. Assume d ∈ O(P b). Then

O(P a1) must contain d or c (if not, 1 manipulates from P b1 to P a), which

implies that O(P a) = A. Since d ∼ c, by Fact 1 d ∈ O(P b) =⇒ c ∈ O(P b) and

so by Lemma 2(a) it follows that O(P b) is A, a contradiction.
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We consider now the only remaining case O(P b) = {a, b}.

Suppose there exists P d s.t b = r2(P d) and a = r3(P d). We claim that

O(P d) = A. (To verify this claim, observe that if O(P d) = {d}, then P b2

manipulates to P d when 2 has a preference P a. If a ∈ O(P d), then the conclu-

sion follows from Lemma 2(a). If c ∈ O(P d), then the conclusion follows from

Lemma 2(b)). Since a ∼ c, c ∈ O(P d) = A, a ∈ O(P b) =⇒ c ∈ O(P b) and so

by Lemma 2(a) it follows that O(P b) = A, which contradicts the supposition

that O(P b) = {a, b}.

For the remainder of this verification we consider the remaining case where

b = r2(P d) =⇒ c = r3(P d). This preference ordering is denoted P d1. This case

has two sub cases.

(i) Assume ∃P d2 such that r2(P d2) = c and r3(P d2) = a. We claim that

O(P d) must be A. (If O(P d) = {d}, then P b2 manipulates to P d when 2 has

a preference P a. If a ∈ O(P d), then the conclusion follows from Lemma 2(a).

If b ∈ O(P d), then the conclusion follows from Lemma 2(b) since b = r4(P d2).

The only remaining case is O(P d) = {c, d}. Then f(P b2, P a1) = a while

f(P d, P a1) = d. So 1 manipulates at P b2, a contradiction. So O(P d) must be

A). This implies that O(P c) must be A. (Since c is higher than a in P d2, by

Fact 1 a ∈ O(P c). Since a is higher than b in P d2, again by Fact 1 b ∈ O2(P c),

which by Lemma 2(a) gives the conclusion O(P c) = A). This in turn implies

that O(P a) = A .(O(P a) cannot be {a} for then 1 would manipulate at P c1

whenever 2 has a preference P b. If c ∈ O(P a), then by Lemma 2(b), the

conclusion follows. If ∃P a s.t b = r4(P a), then again the conclusion follows

from Lemma 2(b). So suppose b = r3(P a2). Now O(P a) might be {a, b}.
But f(P c1, P d2) = d while f(P a, P d2) = a and so, 1 manipulates from P c1
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to P a, a contradiction). Finally, since b ∼ d, by Fact 1, d ∈ O(P b) and so

c ∈ O(P b) which implies that O2(P b) = A which contradicts the supposition

that O(P b) = {a, b}.

(ii) Assume (i) does not hold and so c = r2(P d) =⇒ b = r3(P d). Notice now

that the pair d, a violates (ii)(a) of (α). So it must be the case that (ii)(b) of

(α) holds. This implies that there must exist P c2 such that d = r2(P c2) and

b = r3(P c2)

One now has the configuration

P a1 P a2 P b1 P b2 P c1 P c2 P d1 P d2

a a b b c c d d

b c a d a d b c

d . d a . b c b

c . c c . a a a

We claim O(P d) = A. (It cannot be either of {d} {b, d}, {d, c}, {b, d, c}
for in all cases f(P b2, P a1) = a and by manipulating to P d, 1 can ensure b or d,

both of which are ranked higher than a in P b2). We now claim that O(P c) = A.

(Since c ∼ a and c is higher than a in P d1, Fact 1 implies a ∈ O(P c) and since

a = r4(P c2), by Lemma 2(b), O(P c) = A). We next claim that O(P a) = A.

(To verify this claim, observe that if ∃P c such that r2(P c) = a and r3(P c) = b

then by Fact 1 b ∈ O(P a) and again by Fact 1 d ∈ O(P a) and so by Lemma

2(a) it follows that O(P a) = A. So suppose there does not exist P c such

that r2(P c) = a and r3(P c) = b. Then it must be the case that P c1 satisfies

r2(P c1) = a and r3(P c1) = d. Now O(P a) cannot be {a} for then 1 at P c1

would manipulate to P a whenever 2 has the preference P b. If c ∈ O(P a),
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then by Lemma 2(b), O(P a) = A. So assume the only remaining possibility

O(P a) = {a, b}. If ∃P a s.t b = r4(P a), then O(P a) = A by Lemma 2(b), a

contradiction. If there does not exist P a s.t b = r4(P a), it must be the case

that P a2 satisfies r2(P a2) = c and r3(P a2) = b. Now f(P d1, P c2) = c while

f(P a, P c2) = b. So 1 manipulates from P d1 to P a, a contradiction. So in all

cases, O(P a) = A.) Now by Fact 1 d ∈ O(P b) and by Fact 1 again c ∈ O(P b),

and so O(P b) = A which contradicts the supposition that O(P b) = {a, b}. This

completes the verification of Step 1.

STEP 2 : Assume O2(P b) = {b}. Then 1 is a dictator.

To verify this step, we assume it is not true. If 1 is not a Dictator, ∃ a

strategyproof f such that O(P b) = {b} but ∃ x s.t O(P x) contains at least

two elements.

We claim that it cannot be the case that O(P a) = {a} and O(P d) = {d}.

To verify this claim assume on the contrary that O(P a) = {a} and O(P d) =

{d}. Then O(P c) must contain at least two elements since by hypothesis 1 is

not a dictator. By Lemma 1, it must contain an element which is ranked third

for some P c. Let P̄ c be the preference ordering s.t its third ranked element

is contained in O(P̄ c). Then either a or d is r2(P̄ c). (i) Suppose first that

a = r2(P̄ c). Then O(P a) cannot be {a} for then 1 manipulates at P̄ c to P a

when 2 has a preference ordering whose top ranked alternative is r3(P̄ c). (ii)

Suppose d = r2(P̄ c). Identical arguments to (i) above imply then that O(P d)

cannot be {d}.

Now suppose O(P a) 6= {a}. It cannot contain c. (Indeed then f(P a1, P c) =
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c, f(P b, P c) = b since O(P b) = {b} and 1 manipulates from P a1 to P c, a

contradiction ) . It cannot contain d, for then O(P a) = A by Lemma 2(a)

which in turn implies by Fact 1 that O(P b) 6= {b}, a contradiction. So it must

be the case that O(P a) = {a, b}. Analogously, if O(P d) 6= {d}, it must be

O(P d) = {b, d}.

To summarize, one of the following must hold :

[O(P a) = {a, b}] [O(P d) = {b, d}].

We consider without loss of generality that O(P a) = {a, b} for the remainder

of the verification. Analogous arguments apply if we were to assume instead

that O(P d) = {b, d}.

We continue to refer to the configuration (*).

If O(P a) = {a, b} then, c = r2(P a) =⇒ b = r3(P a), i.e. P a2 must have

b = r3(P a2).

Since c = r2(P a2), O(P c) cannot be {c} or {a, c}, for then 1 would manipu-

late from P a2 to P c whenever 2 has a preference ordering P b. If O(P c) contains

b then O(P c) = A. So O(P c) must contain d. If d = r4(P c1) where a = r2(P c1)

, O2(P b) must contain d, (or else 1 manipulates at P c1 to P b whenever 2 has a

preference ordering P d), which contradicts the supposition that O(P b) = {b}.

So it remains to consider the case that d = r3(P c1). It must then be the

case that a ∈ O(P c). (If not, O(P c) = {d, c}. Now f(P c1, P a1) = d while

f(P a, P a1) = a and 1 manipulates from P c1 to P a). If a = r4(P c2), then

a ∈ O(P b) (or else 1 manipulates at P c2 to P b whenever 2 has a preference P a)

which contradicts the supposition that O(P b) = {b}. We now assume the case

that remains, namely a = r3(P c2). Notice that in this case that b = r4(P c) for
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all P c. Hence (ii)(a) of (α) is violated by the pair c, b. For (ii)(b) of (α) to hold

it must be the case that there exist P d2 such that r3(P d2) = a (since we have

already assumed P a2 where c = r2(P a2) has r3(P a2) = b). We finally claim

that O(P c) = A. If not, then O(P c) = {c, d}. (As observed earlier it cannot be

{a, c} or {c}. If it contains b then by Lemma 2(a) it is A.) Now f(P c1, P d2) = d

while f(P a1, P d2) = a and so 1 manipulates from P c1 to P a1, a contradiction.

Thus O(P c) = A as claimed. Now b ∈ O(P d). (If not, then 1 manipulates at

P c to P d whenever 2 has a preference ordering P b). Since b = r4(P d2) in the

case under consideration, by Lemma 2(b), O(P d) = A which implies by Fact 1

that a ∈ O(P b), a contradiction to the supposition that O(P b) = {b}. We have

shown that if 1 is not a Dictator, in all cases we contradict the supposition

that O(P b) = {b}. So 1 is a Dictator. This completes the verification of Step

2.

STEP 3 : Assume O2(P b) is A. Then 2 is a Dictator.

We first claim that O(P a) is A. Suppose not. Then O(P a) cannot be {a}
or {a, b}. (In either case f(P b1, P d) = d and f(P a, P d) ∈ {a, b} and so 1 would

manipulate from P b1 to P a). So O(P a) must contain either d or c. In either

case by Lemma 2, O(P a) is A.

We next claim that O(P d) is A. O(P d) cannot be either of {d, b}, {b, d, c},
{d}. (In either case f(P b2, P a1) = a and by deviating to P d, individual 1 can

ensure f(P d, P a1) ∈ {b, d}. So 1 would manipulate.) Therefore, it must be that

O2(P d) is A.

We finally claim that O(P c) is A. From the previous claim we know that

a ∈ O(P d) and so by Fact 1 a ∈ O(P c). We also know that b ∈ O(P a) which

implies by Fact 1 that b ∈ O(P c). Thus by Lemma 2(a), O(P c) is A.
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This completes the verification of Step 3 and Part 11 of the proof of the

Theorem. .
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