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1 Introduction

This paper studies situations in which agents do not initially know the effect
of their decisions, but learn from experience the payoffs induced by their
choices and their opponent’s. Such a broad description includes many real
life situations one may think of. We first motivate our study with a military
example and an economic example.

An attacking general contemplating a strategy or a weapon that was never
used before would need to try it on the field in order to know its effects. On
the other side, the defender also needs to experiment to find out his best reply
against the attacker’s new strategy. It has been established by historians that
the English victory at Crecy in 1346 was a consequence of the superiority
of English longbows over the French crossbows. Such an superiority was
probably not certain before the battle, has been proved at Crecy, and since
then longbows began to replace crossbows in European armies.

In a world with imperfect competition, there is no reason to believe that
the demand function of an opening market (seen as a function of all prices for
similar goods) is known by the managers of firms. One expects managers to
form beliefs on the true demand function and to try different price strategies
before setting their prices optimally.

These two examples share some features on which we rely to construct
our model. First, it can be assumed that the actions chosen by all agents are
publicly observed. These actions are the battle plans in the first case, and the
prices of goods on the market for the second example. Second, the outcomes
are also publicly observed. Each general can assess the losses on the two
sides, and the quantities sold can be considered as public information.

We study a model of repeated games with symmetric incomplete infor-
mation in which after each turn, both the action profile played and the cor-
responding payoff profile are publicly announced. The two examples above
can be viewed as instances of the zero-sum and of the non-zero sum cases.

The particular case of two players and zero-sum has been previously stud-
ied by Barnios [4] and Megiddo [13]. They prove that each player can guarantee
the value of the true underlying game. Therefore, no player can benefit from
the initial lack of information on the payoffs as long as these payoffs are
announced after each turn. We first extend their result to any number of
players. Again, we obtain that the min max level of a player is the min max
level in which all information on the payoffs is revealed. This preliminary
result also characterizes player’s individually rational levels for the non-zero



sum case.

In the general case, we prove that full exploration still constitutes an equi-
librium. Namely, we exhibit equilibria in which players explore the payoffs
induced by every action profile before they play an equilibrium of the cor-
responding infinitely repeated game with perfect information. Nevertheless,
this family of equilibria can be Pareto dominated by equilibria with partial
revelation of the payoff functions only. Hirshleifer [11] already pointed out
that public information can be socially damaging. We analyze the public
value of information in a strategic model where information disclosure is a
consequence of agent’s actions and characterize how collective learning takes
place.

We exhibit a family of equilibria in which an exploration phase is followed
by a payoff acquisition phase. At each stage of the exploration phase, players
choose a profile of actions which has not been played before. They can
also choose to stop exploring, in which case the payoff acquisition phase
starts. During this phase, which lasts forever, the only actions played are
the ones which were tested during the exploration phase. Therefore, the only
information players have on the payoffs is the information obtained during
the exploration phase.

Conversely, we prove that any equilibrium is payoff equivalent to a convex
combination of equilibria of the preceding form. To do this, we show that we
can reduce all histories on the equilibrium path in such a way that exploration
only takes place during the first stages.

It can be useful to place our work in light of the literatures of repeated
games with incomplete information and multi-armed bandits, since these
are also concerned with the question of learning through the repetition of a
situation.

The theory of two-player repeated games with incomplete information
(see [2], [8] for the general theory) usually assumes actions are observable
whereas payoffs are not. With lack of information on more than one side (no
player is more informed than the other) equilibria may not exist. The only
general existence theorems are obtained with discounting on the payoffs (a
fixed point argument applies) or with lack of information on one side only.
With lack of information on one side, Hart [10] provides a characterization
of equilibrium payoffs: basically, at each stage of the repetition the informed
player reveals a bit more of his information to the uninformed. A result due
to Aumann and Hart [1] shows that this revelation process can be endless;
not all equilibria are payoff-equivalent to equilibria in which revelation comes



down to a finite number of stages at the beginning of the game.

Particular attention has been paid to the case where each player is in-
formed of his own payoff function. With lack of information on both sides,
Koren [12] proves that any equilibrium is payoff-equivalent to an equilibrium
in which each agent is perfectly informed of the true profile of payoff func-
tions, and shows that a finite number of turns suffices for the whole process
of information transmission. Yet, equilibria can fail to exist.

Failure of existence of equilibria can be seen as a consequence of asym-
metry of information among players. Forges [7] for the zero-sum case and
Neyman and Sorin [15] for the general case prove that equilibria always exists
whenever information is symmetric across players. Their proofs rely on the
identification of public information to a state variable in a stochastic game.

With one agent, multi-armed bandits models (see [5] for a general pre-
sentation) study the optimal allocation of time between learning and payoff
optimization conditional to past information. The agent’s payoff at each turn
depends both on his action at that time, on some unknown state of nature,
and on some extra random factor. As time goes by, the agent learns which
distribution of payoffs is associated to each of his possible actions.

Building a generalization to any number of players, Bolton and Harris [6]
consider a group of individuals who simultaneously face the same multi-
armed bandit problem. Each agent observes other’s actions and payoffs, so
that one can learn from other’s experiments. Bolton and Harris show that
public information is a public good to which one contributes by exploring
payoffs and they study the corresponding free-rider problem.

As opposed to Bolton and Harris’s framework, in our model each agent’s
payoff depends on other’s choices as well as on his. On the other hand, we
assume that the same action profile yields the same payoff at each turn, and
we do not discount the payoffs. These assumptions allow us to study the
information acquisition separately from payoff acquisition. In a model with
discounting, each stage has a strictly positive weight on the total payoff and
the order in which cells are explored becomes important. Clearly, bandit
problems with no discounting would be trivial since full information on the
payoff distributions could be acquired at no cost. All the difficulty of bandit
problems comes from the trade off between information acquisition and payoff
maximization conditional to past information. Here, we show that even if
players can spend time to explore payoffs at no cost, it can be socially efficient
to stop this learning process before full information is obtained.

We first discuss an example to introduce the main features of our model
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in Section 2. Section 3 presents the model. The zero-sum case is studied in
Section 4. In Section 5, we introduce scenarii as a class of strategies with
respect to which we characterize equilibrium payoffs in the general non-zero-
sum case. Section 6 is devoted to the proof of the main theorem.

2 Discussion and example

We are concerned with equilibria of games where players collectively learn
their profile of payoff functions. Initially, players know that the game being
played is one of a finite family (G(k))rex, and they share a common prior p
on K. We denote by G (p) the infinitely repeated game in which & is drawn
according to p at stage 0 and in which after each subsequent stage, the action
profile played and the payoff profile yielded by k& and by the action profile
are publicly announced.

During the play of G (p), players learn more and more about their profile
of payoff functions. Eventually, they can fully learn the underlying game
G(k) and play in the infinite repetition G (k) of G(k). The Folk Theorem
characterizes all Nash equilibrium payoffs of G (k) for each k.

We shall prove the existence of equilibria in which the true profile of
payoff functions is revealed, more precisely:

Proposition 1 Given an equilibrium payoff (k) for each game G (k), there
exists an equilibrium payoff of Goo(p) in which players receive x(k) when the
state of nature is k.

Proposition 1 characterizes a subset of equilibrium payoffs of G, (p) in
which players get equilibrium payoffs of the real underlying infinitely re-
peated game. In such equilibria, all players completely learn their payoff
functions. The following example shows that it may be better for all players
not to discover the value of k, therefore leaving some uncertainty on the true
underlying game.

Example 1: Consider a situation of duopoly in which each firm can be
peaceful (P) or initiate a war (W). When a war is initiated by any of the two
firms, a winner is declared that will also win all subsequent wars. For instance
we may imagine that one of the two firms possesses a stronger technology but



the identity of the stronger is unknown until a war occurs. The true game
played can be G(1) or G(2), where G(i) happens when 7 is the strongest firm:

w P w P

W 2-272-2 W [-227-22

Pl22]11 P 2211
G1 GQ

Players assess initial probability p = (3, ) on the game being G(1) or G(2).

First, note that it is an equilibrium of G(p) to play (W, W) forever, thus
revealing the true payoff function and playing a Nash equilibrium of the
associated infinitely repeated game. In fact, the only equilibrium payoffs of
G(1) and G (2) are (2, —2) and (—2,2) respectively.

There also exist equilibria in which war is never declared. After W is
played once, the payoff function is revealed and one of the two players has W
as a dominant strategy. Thus after a war the winner gets 2 forever and the
loser gets —2 forever. If at some stage no war has ever been declared, each
player anticipates to being strongest or the weakest with equal probabilities.
The expected payoff if a war is declared is 0, which is less than the payoff
of 1 if peace lasts forever. Therefore it is an equilibrium that players remain
peaceful forever. In this equilibrium no war is ever declared because each
player fears being the loser.

3 Model

3.1 The game

The set of players is a finite set I. Each player 7 has a finite set of actions A®.
The finite set K of states of nature is initially endowed with probability p €
A(K) with full support (for any finite set S, A(S) is the set of probabilities
over S). For each k € K is given a game in strategic form Gy, = ((A)icr, gr
A — R") (as usual A = [[; A’, A~ =[], A7 and we use similar notations
whenever convenient).
The game G (p) unfolds as follows.

step 0: a state k € K is drawn according to some distribution p.

step n, n > 1: The players are told the past sequence of actions (a,),
and the corresponding sequence of payoffs. They then choose independently



actions a’,, i € I.

The above description, including p, is common knowledge. Notice that
all the players have the same information about k, and receive the same
additional information. Hence, no asymmetry of information can possibly
arise during the play.

We make the innocuous assumption that a state of nature contains no
more than the information relative to the payoffs: for any two distinct states
k1, ko, the payoff functions gx, and g, differ.

3.2 Strategies

We denote by Ho, = K x AN the set of plays. For n > 1, we define a o-
algebra H,, on H., which represents the information available at stage n. Let
h,h' € Hy, with b = (h, (ap)p>1), ' = (K, (a,)p>1). We say that h and A’
are n-equivalent if a, = a;,, and gy(a,) = gw(ay), for each p < n. It captures
the intuitive idea that, prior to playing in stage n, the players are unable
to distinguish the two plays A and hA'. This equivalence relation partitions
H, into finitely many equivalence classes. We denote by H,, the o-algebra
over H, induced by this partition. Note that (H,), is a filtration over H,
i.e. H, C Hpy1 for each n. We define Hoo = (U, H,y,); it is the coarsest
o-algebra over H,, which contains each H,.

A (behavior) strategy of player i is a sequence o' = (f!),>1, where f! is
a measurable map f! : (Hw, H,) — A(A") which describes the behavior of
player i in stage n. The space of strategies of player i is denoted by .

Given p, any profile o € X induces a probability distribution P, , over the
set of plays (He, Hso). We write P, for the distribution on H, conditional
on k € K. Note that P, = Fs,, where ¢, is the Dirac mass on K and
P,o = >y p(k)P;,. For any H.,-measurable bounded random variable X
we write F,,X and Ej,X for the expectations of X under P,, and P,
respectively.

The action a!, played by i and the action profile a, = (a’)s at stage
n are random variables over (Hy,Hs). Then, g, = gx(a,) is the payoff
vector in stage n if the true state of nature is k, and for 0 € X, ~,(0) =
E,o{x Sr_1 gm} is the expected average payoff up to stage n. Also~, (k,0) =
Epo{z S _1 gm} is the average payoff in state k.

We denote by G,,(p) the n-stage version of G, (p), it has strategy sets %,
and payoff function ~,,.



3.3 Equilibrium notions
We recall from [14] the notion of uniform equilibrium.

Definition 1 A profile o € X is an uniform equilibrium profile if the follow-
g two conditions are satisfied:

1. for every k € K, y(k,0) = lim,—, 7, (k, o) ezists;

2. for each € > 0, there exists N € IN such that, provided n > N, o is an
e-equilibrium in G (p).

We then say that (o) = (v(k,0))kex is an uniform equilibrium payoff.

These are about the most stringent requirements for equilibrium: the
same profile is an e-equilibrium in every finitely repeated game provided
the number of repetitions is large enough. Furthermore this implies that this
profile is also an e-equilibrium in every discounted game, provided the payoffs
are sufficiently little discounted.

The uniform equilibrium notion does not allow to associate unambigu-
ously a payoff vector to any strategy profile. For this purpose we may use
a Banach limit £ on IR’. We denote G,(p) the game with strategy sets ¥
and payoff function v,.(c) = L((7,,(¢))n). A Banach equilibrium payoff of
G(p) is defined as an equilibrium payoff of G.(p) for some Banach limit £
(see [10]). Note that all uniform equilibria are also Banach equilibria since
they are equilibria of G(p) for any Banach limit L.

We shall denote by E(p) the set of equilibrium payoffs of G(p), either with
the uniform equilibrium notion or with the Banach equilibrium notion. Our
results will stand for both equilibrium notions and the two (similar) proofs
will be provided.

3.4 Individually rational levels

As usual for repeated games, it is essential to characterize the level at which
players other than ¢ can punish player ¢. The corresponding concept is that
of min max.

Given a Banach limit £, the minmax for player i in G(p) is defined as:

v'(p) = min max~; (o7, o)
oTreEY Tt gtext

For uniform equilibria, we say that v*(p) is the uniform min max for player

¢ if the following two conditions are satisfied:
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1. Players —i can guarantee v'(p): there exists o* € ¥ such that
lim sup,, max,: v, (0%, ') < v'(p);

2. Player i can defend v'(p): for every % € X, there exists o* such
that liminf,, v (07, %) > v'(p).

Although they are distinct notions, we keep the same notation for the
uniform min max and the Banach min max.

If T'(p) happens to be a game of complete information (|K| =1, or p is
a unit mass on some k € K), the min max for player ¢ exists and coincides
with the min max of the corresponding one-shot game, defined as:

i - i i
v, = min max E,ig.(a "’ a’)
k ) o ) s71.8' Yk
sTie[ ], A(AT) s'eA(A) ’

When players j # i can correlate their strategies, ¥~ and [];.; A(A7) in
the above definitions must be replaced by A(X") and A(A™*) respectively.
This defines the correlated min max for player i in G(p) and G(k) that we
denote w'(p) and wy,.

In general, w'(p) < v'(p) and wj < v}, except with two players where
equality holds. In Section 4 we characterize v*(p) and w'(p).

3.5 Correlated and communication equilibria

In many situations, it is natural to assume that players have the opportunity
to communicate during the play of the game. In the most general frame-
work, players can communicate between any two stages through the use of
any communication mechanism that sends them back private, stochastically
drawn signals (Forges [8]).

When we assume players can communicate between any two stages using
any communication mechanism, the (uniform or Banach) equilibrium payoffs
induced on the infinitely repeated game are called the extensive form com-
munication equilibria. Their set is denoted Ecom (p). We also consider some
common limitations on the mechanisms used to communicate. First, if play-
ers can only communicate before the game starts, we speak of normal form
communication equilibria, and the corresponding set of equilibrium payofts is
E¢om(p)- Second, if we assume that players’ signals do not depend on their
messages (of equivalently if the mechanism receives no inputs), the commu-
nication mechanism is called a correlation device (Aumann [3]). This defines



the two corresponding sets of extensive form correlated equilibrium payoffs
FEcor(p) and normal form correlated equilibrium payoffs E&qy(p). Further-
more, when the correlation devices are restricted to be public (every player
gets the same signal), the equilibria are called public correlated equilibria
(in extensive form or not) and the sets of equilibrium payoffs are denoted

pub(P) and Epyp (p)-

4 The zero-sum case

We will rely extensively on the following characterization of min max levels
which is a consequence of results due to Banos [4] and Megiddo [13] for the
particular case of two players and that we extend to the N players case.

Theorem 2 The minmax for player i in G (p) exists and:
v'(p) = Epv), =) pvj,
k
Similarly, we characterize the correlated min max:

Corollary 3 The correlated min max for player i in G (p) exists and:
wi( pwk Zpkwk

The preceding results are powerful tools that show that the two min max
for i in G(p) are the same as in the game in which the state of nature is
publicly revealed.

In other words, as long as payoffs are publicly revealed, ¢ cannot be worse
off neither can he take advantage of the fact that the game has initially
incomplete information on the payoffs. Of course, this holds only for zer-sum
games.

These properties are deeply related to the observability of payoffs, and
hardly to the assumption of symmetric information. In order to emphasize
this point, we shall prove more than the statement of Theorem 2, and consider
situations of asymmetric information. We shall prove that:

1. if player i is fully informed of k, while players —i are not even informed
of p, they can guarantee v in every state k;



2. if each player of the coalition —i¢ is fully informed of %k, while player i
is told only p, he can still defend v!, in every state k.

Proof of Theorem 2: We provide here only the intuition of the proof. For
a detailed proof, the reader is referred to Annex A. We shall prove the claim
for player ¢ and will, for notational convenience, suppress any reference to ¢
in the payoffs.

To guarantee vy
We construct o~ € ¥ such that,

Ve, AN,, Vo', Vn > N, Vk E,[7,] < v + €. (1)

First, we argue that it is enough to construct, for each ¢, a profile o, *
for which (1) is satisfied. Indeed, for any sequence (€,) decreasing to 0, the
profile 0" defined as: play o' for N, stages, then forget the past and play
o, for N, stages, etc. would then satisfy (1) for each e.

Therefore, let € > 0. Denote by A*(n) the set of those actions a* € A’
which consequences are known at stage n, i.e. those a’ such that all action
combinations (a‘,a™*), a=* € A~ have been played at least once prior to
stage n.

We define 07" as: play (1 — €)o"(k, A'(n)) + ee™" in stage n, where
o %(k, A*(n)) is an optimal strategy of players —i in the (complete informa-
tion) one-shot game where player i is restricted to A%(n), and e * is some
distribution with full support. (at stage n, player ¢ knows the restriction
of g, to A*(n); therefore, this restricted game may be viewed as a one-shot
game with complete information).

At every stage, every action combination of players —i is played with a
positive probability, bounded away from 0. Therefore, there can not be many
stages, on average, in which player ¢ chooses an action which consequences
are not yet fully known. On the other hand, whenever player ¢ chooses an
action in A*(n), his expected payoff against o~*(k, A*(n)) does not exceed vy,.

To defend v,
We prove that for every 0% € ¥, there exists o € X' such that Ve > 0:

AN, Vn > Ne,k € K, Ej i 4i[G,) > vp — € (2)

Moreover, N, may be chosen independently of o *.
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As in the first part of the proof, we let ¢ > 0, and o . We define a
strategy o! and prove that it satisfies (2).

We denote by @,° the distribution of players —i’s actions in stage n,
conditional on the information held by player ¢, and by p,, the conditional
distribution over K.

Define o as: play (1 — €)o*(py,7,") + €€’ in stage n, where o'(p,,7,") is
a best reply of player i to the correlated distribution 7,° in the game with
payoff function 3", p,.(k)gs.-

To establish (2), two main arguments are used. First, it is shown as in the
previous part of the proof that there are not too many stages in which there
is a non-small probability that players —i will pick an action combination
which consequences have not been fully experienced in the past. Second, we
rely on a classic result in the literature on reputation effects or merging due
to Fudenberg and Levine [9] which states roughly that most of the time, the
distribution of players —:’s actions anticipated by player ¢ is quite close to
the true distribution.

Bringing these two parts together yields the result. Consider any stage
in which both the anticipation of player i is good and there is only a small
probability that players —i selects an action combination which is not com-
pletely known. In that stage, the expected payoff to player i is at least vy
minus some small quantity.

Proof of Corollary 3: Consider the two players game G(p) where player [
has strategy set A=, player 1] has strategy set A‘, and the payoff function
to I is g*. Observe that the correlated min max for i in G(p) is equal to the
minmax for /7 in G(p). Hence the result from Theorem 2.

5 The general case

We analyze equilibria of G (p) with respect to simple strategies in which all
exploration takes place during the first stages of repetition.

5.1 Scenarii

We first define how players explore their payoffs. An exploration rule is a
pair e = (f,t) where:
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e f = (fn)n is a profile of pure strategies such that for every play h =
(k,a1,...,ap,...) and n < |A|, f.(h) is not in the set {a,...,an_1}.

e tis a stopping time! ¢ : (Huo, Hoo) — {2,..., |A| + 1}

f describes the order in which cells are explored, whereas t — 1 < |A| is
the last stage at which exploration takes place. The condition on ¢ ensures
that the decision whether to stop or not at stage n depends only on their
information at stage n. Note that the definition of f matters only up to stage
|Al since t < |A| + 1.

An exploration rule e together with a state of nature k induce a history
(k,a1,as,...,a;_1) during the exploration phase, which can be completed to
a play e(k) = (k,a1,a9,...,a¢ 1,0t 1,...,04 1,...) € Hs. This defines a
map € : K — (Hy,Ho). Welet w4 = e (Hyo) be the coarsest o-algebra
on K for which this map is measurable. Two states of K are in the same
atom of 7, if and only if the histories they induce during the exploration
with e are undistinguishable. Therefore, 7, represents players’ partition of
information on K at time ¢ if f has been followed. It will also be useful to
consider the set Ag(e) = {a,as,...,a; 1} of cells explored in state k with e.

A scenario (e,§) is defined by an exploration rule e and by a mea-
surable mapping 6 : (K,ms;) — A(A) such that if k£ induces the history
(k,a1,aq,...,a;—1) during the exploration phase, supp(6(k)) C {a1,...,ar—1}.

In state k, 6(k) is to be thought of as the distribution of player’s action
profiles after exploration stops, and < 6,9 > (k) = Esu)gx(a) as the average
payoff profile in the long run. We view < 6,9 > as a random variable on
(Hoo, Hoo)- The conditions on é ensures that (1) 6(k) is known to the players
at the end of the exploration phase and (2) after stage ¢, players keep playing
cells already discovered.

The o-algebra of events before t is denoted by H;. It is formally given by
the set of B € H, such that for all n, BN {t < n} € H,.

A scenario naturally defines strategies in G (p) in which players follow
f up to stage ¢ — 1, then play pure actions with frequencies given by (k).
For these strategies to form equilibria, one needs to impose some individual
rationality condition. Hence we define:

4Recall that ¢ being a stopping time requires the measurability condition {t < n} € H,,
for every n.
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Definition 2 A scenario (f,t,6) is called admissible if
< 6,9 >> E,(v|msy) p almost surely

In an admissible scenario each player receives at least the expectation of
his min max conditional to his information after the exploration phase.

In terms of payoffs, A(p) represents the subset of IR'* induced by ad-
missible scenarii:

A(p) = {(< 6,9 > (k) € R"™ for some admissible scenario (f,t,8)}

When the min max level v? is replaced by the correlated min max level w?
in the definition of an admissible scenario, the corresponding set of induced
payoffs will be denoted B(p) instead of A(p).

5.2 Statement of the results

Our main result is the following characterization of equilibrium payoffs of
Goo(p) in terms of A(p):

Theorem 4

[1Bx € Alp) € E(p) € co(A(p)) = Epyyp(p) = Eppyyp(p)

E¢or(p) = Ecom(p) = co(B(p))

Remark: The notation “co” stands for the convex hull.

Remark: Proposition 1 can be rewritten [], Ex C E(p), and is therefore a
consequence of Theorem 4.

Remark: We shall prove these results both for Banach equilibria and for
uniform equilibria.

Remark: In the last section we provide examples showing that each of the
inclusions can be strict.

Remark: Going from normal form to extensive form and from correlation
devices to communication mechanisms, one increases the set of communica-
tion possibilities which are open to the players and the corresponding set of
equilibrium payoffs. Therefore, Theorem 4 implies:

B (p) = B2y (P) = Eeor(p) = Ecom(p) = co(B(p))

Remark: the extension of our proofs to countable sets K is straightforward;
dealing with arbitrary sets K would create measurability issues that we wish
to avoid here.
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6 Proofs

First, notice that after any stage, player’s beliefs on k£ depend on the observed
history and not on the strategies followed. More precisely, the probability of

the true state of nature being k conditional to h,, = (k,aq,...,a,) € H, is:
p(k) ; .
(kM) () = 4 P =g 1L VP < 1 9k{ap) = gi(ay)
0 otherwise

We denote p,, this conditional probability, and view it as a random vari-
able on (Hyo, Hoo)-

This implies the following lemma that we shall use extensively (the proof
is straightforward and omited):

Lemma 5 For any mapping f from K to IR, any profile of strategies o and
n > 1, o ylf[Ha] = Sk pa()f (k). Pyo-a.s

We can now prove the first inclusion of the main theorem:
Proposition 6 One has [, Ex C A(p).

PrROOF: let v = (7v4)x € Ilx Ex. Choose an enumeration of the possible
action combinations, i.e. a bijective map from A to {1,...,|A|}, and define
a profile f € ¥ as: play in stage n the action profile labeled n, whatever be
the information available.

Set t = |A| + 1, and e = (f,t). For k € K, choose 6(k) € A(A), such
that < 6,9 > (k) = 4. Under f, all the action combinations have been
tested by stage |A|. Hence 7 is the discrete o-algebra over K. Therefore, ¢
is m-measurable. On the other hand, v, € Ej implies 7, > vg. Thus, (e, 0)
is an admissible scenario. u

Proposition 7 One has A(p) C E(p).

PrROOF: We give here the main ideas underlying the proof. A detailed proof
can be found in Annex B. Let v € A(p), and (f,¢,6) an admissible scenario
such that v =< 6,9 >. An equilibrium profile with payoff v is described as
follows.

On the equilibrium path, the play is divided into a learning phase and
a payoff accumulation phase. In the learning phase, the players follow f,
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therefore discover the payoffs induced by some action combinations. This
phase is ended at time ¢. From then on, the players play a specific sequence
of elements of A, among those which have been discovered (i.e., played) prior
to t. It is chosen so that the asymptotic frequency along this sequence of
each a € A converges to §(a). Of course, it has to depend on the realized
state of nature. However, since ¢ is m.-measurable, the sequences followed
in the different states can be chosen in a m.-measurable way: playing the
correct sequence can be done using only the information available at ¢.

Any deviation from this equilibrium path is punished forever: if player i
deviates, the coalition —i switches to an optimal strategy in the correspond-
ing zero-sum game (with symmetric incomplete information).

The fact that this constitutes indeed an equilibrium profile with payoff
is derived from the following arguments.

In order to evaluate the impact of deviating after a given history h,, € H,,,
player ¢ has to compare his continuation payoff, i.e. the payoff he would
get by not deviating, E,[< 8,9 >" |hy], to the level at which he would be
punished, would he deviate at that stage. This punishment level is equal to
v"(pnt1), where ppyq is the posterior distribution over K, after the deviation
has taken place. At h,,, the value of v*(p, 1) may be unknown, since it might
be the case that a new action combination is tried at that stage (and it may
depend upon the specific deviation from the equilibrium path). A crucial
step is to show that the expected level of punishment E, ,—i i [0"(Dpi1)|hy]
coincides in any case with E,[v*|h,]. This is easily deduced from a martingale
argument and from the fact that v(p) = >4 prvk, Vp (¢f. the study of the
ZEro-SuIm Case).

Finally, the fact that E,[< §,g >' |h,] > E,[v'|h,] follows from the
admissibility of the scenario (f,¢,6). Therefore, the continuation payoff of
player ¢ always exceeds the payoff he would get in case of a deviation. -

Proposition 8 E(p) C coA(p).

ProOOF: let v € E(p), and o be an uniform equilibrium profile associated
to 7. The decomposition of v as a convex combination of elements of A(p)
is obtained by interpreting o as a muxed strategy, i.e. as a probability distri-
bution over pure strategies, rather than as behavioral strategies.
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Any profile of pure strategies induces a family of plays, one for each state
of nature. On each of these plays, experimentation may occur at various
stages, but must eventually end. For each play, delete all the stages prior to
the last experimentation stage in which no experimentation takes place. One
thereby obtains a new family of plays in which all the learning is done right
at the beginning of the play. Therefore, we have associated an exploration
rule to any profile of pure strategies. o may thus be viewed as a probability
distribution over the finite set of exploration rules.

We now construct payoffs. Let e be an exploration rule in the support
of o. For n > 1, it makes sense to compute the average payoff x,(e) up to
stage n, conditional on the fact that the observed history is compatible with
e (i.e., is consistent with the hypothesis that the profile of pure strategies
selected by o induces e).

There is no reason why the various sequences (z¥(e))re s ecoppo Should
converge. However, since the number of states and exploration rules is finite,
we may choose a subsequence ¢(n) such that zf,(e) converges, to z*(e), for
each k € K,e € Supp o.

If two states k and k' are not distinguished by e (that is, belong to the
same atom of 7.), then no history consistent with e will distinguish between
them. Thus, z*(e) = ¥ (¢). On the other hand, if the true state happens to
be k, then, on any history consistent with e, all the action combinations which
are played belong to Ag(e). Therefore, one can construct a m.-measurable
function 6. : K — A(A), such that Supp 6(k) C Ai(e), and < 8, g >= z(e).

It is straightforward to check that v = >, o(e)z(e). To conclude the
proof, it remains to be proved that, for each e in the support of o, the
scenario (e, é,) is admissible. This property is derived from the following two
observations.

On the one hand, let h,, be an history of length n (atom of H,,) with
positive probability under o. Then, for ¢ > 0, the expected average payoff
B, 5[g,/hn] conditional on h,, is at least E,[v|h,] — ¢, provided q is large
enough. Indeed, if this were not true, say for player ¢, player ¢ would find it
profitable to deviate from stage n, if h,, occurred. This is ruled out since o
is an equilibrium profile.

On the other hand, provided n is large enough, the probability that the
play will at some stage fail to be consistent with e, given that it is consistent
up to stage n, is close to 0 (otherwise, e would not be in the support of 7).
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Therefore, denoting by H,(e) the set of histories consistent with e up to n,
the expected payoff Ej ,[g,|Hx(e)] is close to 2" (e), for each k.
The two observations yield an estimate of the kind

Epolz(e)|Hn(e)] = Eplv[Hp(e)] — 2¢.

The result follows by taking the limit n to infinity, using the fact that ¢ was
arbitrary. "

Proposition 9 coB(p) = Ecor(p) = Ecom(p)-

PRrROOF: we first prove that coB(p) C E.p(p). Let v € co B(p). Write v as
a convex combination of payoffs in B(p):

Q Q
Y= agy, where oy > 0,7, € A(p) for each ¢, and > oy = 1.

q=1 q=1

Extend Goo(p) by the following public correlation mechanism which takes
place in stage 0: ¢ € {1,...,Q} is chosen according to the distribution
a=(ag,...,0q), and publicly announced.

If ¢ happens to be chosen, players follow a profile defined as in the proof
of Proposition 7, with the following modification. At each stage, a correlation
device is available, which is used if some player, say player ¢ deviated from
the equilibrium path: it enables players —i to correlate their actions, in order
to achieve the correlated min max level.

We will not provide a detailed proof of the inclusion E..,(p) C coB(p).
We shall only briefly sketch how the proof of E(p) C coA(p) can be adapted.

Let v € Eeom(p): v is an equilibrium of G (p), extended by some com-
munication mechanism, which we denote by G¢_ (p). Add one fictitious player
which controls the communication mechanisms (whose strategy is to choose
the outputs as a function of the inputs he gets). Let o be a corresponding
equilibrium profile (of course, the strategy of the fictitious player coincides
with the description of the communication mechanisms). As in the proof of
Proposition 8, ¢ is viewed as a probability distribution over profiles of pure
strategies in G¢ (p). The crucial point is the following: any profile of pure
strategies s in G¢ (p) can be identified to a profile of pure strategies § in
G (p): intuitively, every round of communication is useless since its result is
known in advance (actually, is common knowledge). Slightly more formally,
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given any history h,, of length n in Gu(p), each player is able to compute
the vector of inputs which have been sent, according to s, in the previous
stages, therefore also the outputs since the fictitious player is also using a
pure strategy. Thus, there is exactly one history h,, of length n in G¢ (p)
which is consistent with h,, and s. Hence, it is meaningful to define s as:
play after h, what s would play after h,. The rest of the proof is similar to
the proof of Proposition 8.
|
The proof of the equality coB(p) = E¥,.(p) = E,.(p) is obtained along
the same lines as the previous proposition, by setting all the correlation or
communication devices used along the play before the beginning of the play.
The proofs of coA(p) = E,,(p) = Epu(p) are similar. The use of corre-
lated devices with public signals makes it impossible to a coalition of players
to correlate themselves in a private way. Therefore, B(p) is here to be re-
placed by A(p). (if we did replace public correlation devices by public com-
munication devices, private correlation would again be possible; we do not
wish to elaborate on this point).

7 Comments

7.1 All inclusions of Theorem 4 may be strict

Example 2: [E(p) # co(A(p))]

Consider the example of duopoly previously studied, and let (o, 5?) be
a Nash equilibrium of G (%, %) Let p'(t) denote the probability that player i
plays P at stage t if (P, P) has always been played before. If

poo:TlLHolo I[ Pt)=0 fori=1ori=2,
1<t<T

then war occurs with probability 1. The induced equilibrium payoff is (2, —2)
if k=1and (—2,2) if k =2.

Now assume p’_ > 0 for 7 = 1,2. Player 1’s incentives are to minimize
the probability with which a war is declared, since after war is declared his
expected payoff is 0 whereas if war is never declared his expected payoff
is 1. Therefore it is a best reply for player 1 to play P until W has been
played by 2, and his best reply in G(k) after. This way, 1’s expected payoff is
p2 x 14 (1—p2) x 0. Therefore 1 never declares war before 2 does. Similarly
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2 does not play W until 1 does. Thus, both players always play P, and the
induced equilibrium payoff is (1, 1) in both states.
Hence we have shown that

E(p) = {((2,-2),(=2,2))} U{(1, 1), (1, 1)}

which is not a convex set.

Example 3: [[] £ # A(p)]

In the previous duopoly game, one has [[E, = ((2,—2), (—2,2)) since
when k is known, there is only one equilibrium payoff. We define an explo-
ration rule e by: examine cell (P, P) then stop. This exploration process is
completed to a scenario with the distribution on cells which is a Dirac mass
at (P, P). This scenario is admissible since it yields to each player a payoff
of 1 which is greater than the expected min max of 0. Yet it yields a payoft
which is not element of [] E}.

Example 4: [A(p) # E(p)]
Consider the following version G’(p) of G(p) in which strategy P has been
1
12

duplicated. The initial probability is p = (% ) on payoff matrices.
W P1 PQ W Pl P2
W [2-2]2-2]2-2 W [22]22]-22
P[22 1111 P[22 11] 1.1
P22 1111 P22 11111
G'(1) G'(2)

The same arguments as before show that A(p) = {((2,—2),(—2,2))} U
{((0,0),(0,0))}. Now, we define strategies in G'(p) in which both players:

e Stage 1: Play (31, 31%)

e Stage n > 2: Play P, if (P, P) or (P, P,) was played in stage 1.
Otherwise play W.

e [f some player played W instead of P, at any stage n > 2, play W from
stage n + 1 on.

No player has incentives to deviate from (W, W) since it is a Nash equi-
librium. As before, (P, P;) is an equilibrium path if a deviation to W leads
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to an infinite repetition of (W, W). Stage 1 is a jointly controlled lottery
used to randomize between the two basic equilibria: Peace or War. Hence
these strategies form a Nash equilibrium; it yields an equilibrium payoff of

((2,1),(5,2)) which is not an element of A(p).

7.2 The discounted case
Example 5: Consider the following two games with probability p = (3, 3):

T |10 T |10
Bl 171 Bl 0,0
B2 070 BQ 1,1

G”(l) G”(z)

The action T always gives a payoff of 1 to player 1, so that player 1 can
guarantee 1 in any (discounted or not) repetition of the game. Note also that
(1,1) is an equilibrium payoff of both G” (1) and G" (2).

If payoffs are not discounted, player 1 can explore during the first stage,
and play the action that leads to (1,1) at each consecutive stage. The payoff
vector associated to this equilibrium is ((1, 1), (1,1)), which is consistent with
the fact that [, Ex C E(p).

If payofts are discounted, the only way for player 1 to get a payoff of 1 is to
play T at each stage. Therefore, payoffs are not explored at an equilibrium.
This shows that the inclusion [], Fx C FE(p) does not hold if payoffs are
discounted.

Last example, which is a maximization problem for a single agent, shows
that the set of equilibrium payoffs F)(p) where payoffs are discounted with
discount factor A\ may not converge to E(p). This is in fact a classical phe-
nomenon in the literature of repeated games with incomplete information.

7.3 Perfect equilibria

Player’s (Bayesian) beliefs on the state of nature are well defined after any
history of the game. Note however that G(p) has no subgames except G(k)
which occurs when all information on the payoffs is revealed. The next
example shows that subgame perfect equilibrium payoffs can form a strict
subset of Nash equilibrium payoffs.
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Example 6: Consider the following two games with probability p = (%, %)

W P W P
W [22722 W [20]1,.1
P22 11 P[20]11

G///(l) G/// (2)

The strategies:
e Play (P, P) if W has never been played before;
e Play (W, W) otherwise.

constitute a Nash equilibrium of G (p) inducing payoff ((1,1),(1,1)). Ac-
tually, the expected minmax of G" (p) is (0,—1) which is less than (1,1)
for each player. Nevertheless, the threat of playing (W, W) in G (1) is not
credible since P is a dominant strategy for player 2 in this game. The only
Nash payoff of G"'(1) is (1,1) and the only Nash payoff of G(2) is (2, —2).
This implies that the only subgame perfect equilibrium payoff of G (p) is

((L 1)7 (27 _2))'
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A Zero-sum games

In this annex, we give a detailed proof of proposition 2.

To guarantee vy
Let € > 0. We define below a profile o, ¢ and prove that it satisfies

AN,Vo',n > N,k € K, A [ S (3)
For j # i, denote by e/ = (‘A—lﬂ, e ﬁ) € A(A7) the uniformly mixed

strategy of player j.

For each subset A’ of A%, and k € K, choose an optimal profile o—(k, A?)
of players —i in the (one-shot, complete information) game with payoff func-
tion gj, where player i is restricted to A*. We may obviously assume that the
two profiles o~(k, A?) and o~%(k’, A?) coincide if the restrictions of g; and
ge to A' x A~ coincide.

For n € IN, denote by A*(n) the set of actions a' € A’ for which the
function g(.,a’) is known at the beginning of stage n. Notice that this is a
set-valued process adapted to (H,,).

For j # i, define 07 as: play according to e/ if A*(n) = ), and (1 —
e)o’(k, A’'(n)) + ne’ otherwise, where 1 = 7. Set 0" = (o) 4.

Let o' be a pure strategy of player i and set o = (¢, 0.") for notational
convenience. For a € A, n € IN denote by

H,(a) ={h € Hy, Vp <n,a, # a}

the set of plays on which a has not been played prior to stage n. Notice that
H,(a) € H,. For a' € A", set H,(a") = Ug—ica— Hy(a',a" ") € H,: it consists
of those histories of length n — 1, after which the payoff function g(a’,.) is
not yet fully known.

We denote by (t,) the successive stages in which player i chooses an action
which consequences are not fully known:

o= 1
tpii(h) = inf{n >t,(h), h € Hu(o'(h)}, p> 1

Notice that (¢,) is a non-decreasing sequence of stopping times (possibly
infinite) for the filtration (H,,).
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In each of the stages t,, the probability that a new cell is discovered is at

least ; Al,iml ~1. This implies that the sequence (P ,{t, < +o0}), decreases

exponentially fast to 0. This is the content of the next lemma.

Lemma 10 Vg, Py o{tgs4) < +00|ty < +00} < 1—a, where o = (k')A

Proo¥F: for n € IN, we denote by N, (h) = |[{a € A,h € H,(a)}| the number
of action combinations which are unknown prior to stage n (i.e., which have
not been previously played). Notice that 0 < N,, < |A|,Vn, and N,41 < N,,.
Also, N,, may only decrease in the stages ¢, and N;, > 0 on {t, < +o0}.
Moreover,

Pyo{Ni,o1 = N, — 1|t, < 400} > ﬁnf—l.

The result follows. n

Clearly, one then has
Pk,a{tq\fﬂ < —l—OO} < (1 — Oz)q_l,

for every ¢ € IN. Denote by S = max{p,t, < 400} the number of stages in
which player ¢ plays an unknown action. We now prove that S is bounded
in expectation.

Lemma 11 E;,[S] < |A|(1+ ).

PROOF:
ErolS] = Y BuolS>q} =D Peofty < +oo}
q=1 g=1

<A@+ Peo{tga < +00})

g=1

1
< —).
< A1+ —)

We are now in a position to prove that o_* almost guarantees vy, in state
k, for long games. Property (3) will follow from the next result.

Lemma 12 One has Ei,[gy| < v + In + +Ei,[S], for every N € IN.
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PROOF: let n € IN. With probability at least (1 —n)!"! > 1 — In, players
—i follow in stage n the profile 0~“(A*(n)). In that case, if player i selects
an action a' within A’(n), the expected payoff to player i in stage n is at
most vg.

Denote by €2, = U2 {t, = n} € H, the set of those plays on which
player 4 chooses an action outside A’(n) in stage n.

By the previous paragraph, one has

Erolgnla:] < (1 = In)vk + In) Pr o {5}

Therefore,
Ek,(r[gn] <+ [77 + Pk,J{Qn}-

By summation over n, one obtains

1 N
Ekﬁ[gN] S Uk+[77+NZPk,J{Qn}

n=1

1
< v+ In+ NEk,U[S]

where the second inequality uses Fubini’s theorem. "

To defend vy,
Let 07" € X7 and ¢ > 0. We construct 0! € X' and prove (see
Lemma 15) that
Vk, By o= 5G] > v — €,

provided n is large enough.

Denote by (p,) the process of posterior beliefs held by player i, knowing
that players —i use o .

Notice that the distribution of players —i’s actions in stage n, conditional
on the information available to player i, is a correlated distribution, denoted
by 7"

The strategy o' is defined as: play according to (1 — €)ot(py,,7,°) + €€’
in stage n, where o'(p,,7,") is a best reply of player i to the correlated
distribution 7 in the game with payoff function 3= p,.(k)gx-

We shall prove that, whatever be the true state of nature k, playing o'
against o ensures that player i’s average payoffs will eventually exceed

Vp — €.
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As above H,(a) = {h,Vp < m,a, # a} is the set of histories up to
stage n for which the content of cell a has not been discovered. We set
Hy(a™") = Ugicai Hy(a™,a"). Set n = £, and define

Q,={h,Ja"" € A7, h € Hy(a™") and o,,"(h)[a”"] > n}.

h € Q, is at stage n, there is a non-negligible probability that an unknown
action will be played by players —i. Notice that €2, € H,. Thus, on €2,,
there is a probability at least § = |—1’74€7‘ that a new cell is discovered at stage
n.

We now state the analog of Lemma 11. We redefine S = >°, 1, and

we set 0 = (07, 0%).

Lemma 13 Set C = |A|(1 + —2=7). Then Ei,[S] < C.

1Al

PrOOF: it is straightforward to adapt the proofs of Lemmas 10 and 11. =

Let n € IN. We say that the anticipation of player 7 in stage n is good
if ||o,,%(h) —7,,"(h)|| < n (the real distribution on players —i’s move in stage
n is quite close to the anticipated distribution). We otherwise say that the
anticipation is bad. We denote by 0,, = {h, |0, (h) —7,,"(h)|| > n} € H,
the corresponding set of histories. We denote by B(h) = {n,h € ©,,} the set
of bad anticipations.

We shall rely on the following classical result from the literature on rep-
utation effects. The reader is referred to [9] or [16] for a proof.

Lemma 14 (Fudenberg and Levine, 1992) There exists Ny € IN, such
that P, .{|B| > No} <.

We now compute an estimate on the average payoff in any stage n > 1.
Let h, be an history up to stage n included in (2, U ©,)°. After h,, the
anticipated distribution of players —i-s actions is good, which implies that
ol (h,) is an 2n-best reply to the actual distribution o, (h,). Moreover, the
probability of an unknown action combination by players —i is at most 7.
Therefore, any best reply of player ¢ to a,jn(hn) yields an expected payoff of
at least vy — .

In conclusion, one has
Ek,a[gnl(QnUGn)C] 2 (Uk — 47])Pk,a{(Qn U @n)c}
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Therefore,
Ek,a[gn] > vg —4n — (Pk,a(Qn) + Pk,o(@n))- (4)

Lemma 15 One has

N, C
ErolGn] > ve — (4 + == + 1+ —).

N N
PrOOF: set By = BN {l,...,N}. By summation over n, one gets from (4)
1 1
Erolgn] = v — (4 —E | B —Ei,15]).
kolOn] 2 vk — (40 + T Eio[By] + - Erq[S])
Now, By < N, and Py ,{By > No} <. The result follows. n

B non zero-sum games

PROOF OF PROPOSITION T7:
For k € K, choose a sequence a* = (af), in Ag(e) such that the em-
pirical frequency %ZZZI Lok—s of each a € A in the sequence converges to

§(k)[a). Moreover, we choose the sequences a* so that the map k — a is

me-measurable. This is feasible, since ¢ is m.-measurable.

We define a profile o of pure strategies as follows. It coincides with f
until ¢ (learning phase). In other words, o, = f! on {t > n}. From ¢ on,
in state k, o implements (a”),, (payoff phase): o, = (a*) on {k = k,t < n}
(where k is the random state of nature).

Denote by d = inf{n,a,, # o,(k,a1,...,a, 1)} the first stage in which a
player deviates from the main path. Notice that d + 1 is a stopping time for
(H,). If i is the deviating player, players —i switch to punishment path i:
they compute the posterior distribution ps.; over K, given the information
available at stage d + 1, and play optimal strategies in the corresponding
game of incomplete information, where player ¢ faces players —i.

Under o, the main path is followed up to the end of the game. Given k,
the players explore until ¢, and then follow the sequence a*. Therefore,
Ek+[G,) — Vi, for each k € K.

We now prove that no deviation of player ¢ can improve upon o*. Let 7°
be a pure strategy of player 1.

Our first statement compares conditional continuation payoffs to expected

levels of individual rationality under o.

27



Lemma 16 Vn, E,[< 6,9 >' |H,] > E,[v'|H,], Pps-a.s.

PRroo¥F: notice that, P, ,-a.s., the players learn nothing on £ after t. Hence,
for any f: K — IR, and n € IN,

EP[.ﬂHn] = Ep[f|Hmin{n,t}]u Pp,a — a.S. (5)
By assumption, E,[< 6,9 >' |Hi > Ep[v'|Hy], Ppo-a.s. Conditioning
with respect to0 Humin{n,¢} yields
Ep[< 679 >i ‘Hmin{n,t}] 2 Ep[/l)i‘Hmin{n,t}]-
The claim follows then from (5), used both for < §,¢g >" and v". n

Lemma 17 One has
Vn > 1, B, g [V (Dri1) [Ha) = Ep[v'|Ha).

PROOF: from the study of zero-sum games, one has v*(pp+1) = Ep[v'|Hp1],

everywhere.
On the other hand, notice that (E,[v'|H,]), is a (Heo, (Hn)ns Ppoiri)-
martingale. Therefore,

Ep o ri [Ui(anrl)‘Hn] = Epo-iri [Ep[”i’HnJrIHHn] = Ep[”i’Hn]'

u

It is easy now to derive the claim for Banach equilibria. Let £ be a

Banach limit. Consider the paths induced by the two profiles o and (o7, 7%)

when the state of nature is k. If these two paths coincide, the payoffs induced

by o and (07% 7") are both equal to 7,. If not, they differ in stage d and,
from stage d + 1 on, player i is punished. Therefore,

'Viﬁ(o'iiv Ti) = Ep,a*i,ri [721d=+oo + 7)i(pd+1)1d<+00]-
Now,

Ep,(r*i,T'i [Ui (pd—i—l) ]-d<+oo] = Ep,a*iﬂ'i [Ui (pd) ]-d<+oo]
== Ep,o [’UZ (pd) 1d<+oo]

The first equality follows from Lemma 17; the second from the fact that
the paths induced by (0%, 7%) and o coincide until d: P,, = P, ,-i i on
(Hoo, Himin{d,n}), for each n. From Lemma 16, one has

Ui(pmin{d,N}) S Ep['yaHmin{d,n}]u Pp,a — a.s.
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for each n. By taking expectations, and letting n — oo, one obtains
Ep o [0 (Pas1)lactoo] < Epol7ilactoo],
hence v(07", ') < Epo[yi] = 2 (0).

Things are slightly more involved for uniform equilibrium. Fix some
n € IN, large compared to the time needed for a punishment to be effective,
and to the time needed for average payoffs under o to be close to v. We only
give the general idea of the computation. Details are standard and left to
the reader.

Given k, either (07, 7") induces the same path up to n as o, in which case
the average payoff up to n, given k, are the same for the profiles. Or the two
paths differ in stage d. The average payoff up to n is a convex combination
of the average payoffs up to d and from d+ 1 up to n. The former coincides,
(with the exception of stage d), with the average payoff up to d induced by
o. The latter corresponds to payoffs in the i-punishment phase.

If d is small compared to n, the weight of the first part is negligible, and
the average payoff up to n is at most the expectation of v* (up to some ¢),
given the information available at stage d. If d is close to n, the weight
of the second part is negligible, and the average payoff up to n is close to
v,. Otherwise, the average payoff to player ¢ up to n is close to a convex
combination of 7% and of something which is at most the expected value of
v, given the information at stage d. .

PrOOF OF PROPOSITION 8: let s be a profile of pure strategies. Given
k, s induces a single path (k, (a,(k)),. We denote by {@,...,ay,}(k) the
different action combinations which appear in this path, listed according to
the order of appearance. Formally,

tl(k) = 1,61(1{3) = aj
tpr1(k) = inf{n >ty an, ¢ {@1(k),..., (k) }}, Gpra(k) = ag, k), forp>1

Choose a profile f; = (fs.n)n>1 of pure strategies such that

fs,l(k) = El(k)7 and fs,nJrl(k?El(k)? s ’an(k)) = anJrl(k)? (6)

for n < t(k). This condition is compatible with the informational require-
ments: since s € X, @,41(k) depends on k only through the payoffs of the
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action combinations played before, i.e. @;(k),...,a,(k). Notice also that
there are many exploration processes compatible with (6).

We say that e; = (fs, Ns) is the exploration rule induced by s. Since o
may be viewed as a probability distribution over the profiles of pure strate-
gies, it may also be viewed as a probability distribution over the set of ex-
ploration rules. We then denote by S its support.

For e € S, we denote by C(e) = {s,es = e} the set of profiles of
pure strategies which induce e. For n > 1, and s € C(e), the set {h =
(k, (ap)p>1, sp(h) = ap,Vp < n} € H, is the event: at stage n, the past play
18 consistent with the hypothesis that players are using s. Therefore,

Hy(e) = Uscce){h, sp(h) = ap,Vp < n}

is the set of plays h compatible with e up to n. Notice that H,(e) € H,,.
For k € K, define zF(e) = Ei,[q,|/Hn(e)]: it is the average payoff up to
n in state k, conditional upon the information being coherent with e. Set
Lp = (mﬁ(e))kEK,EES'

Since K and § are finite, we may choose a convergent subsequence of
(x,). For notational convenience, we still denote by (x,,) this subsequence,
and we set x = lim,,_,o Tp,.

In the next three lemmas, e € § is fixed.

Lemma 18 The map k +— x%(e) is w.-measurable.

PRrROOF: for any two states k, k', the behaviors of the players in these states
are identical until one of them is ruled out by the observations. Therefore,
if k, k' belong to the same atom of 7., no history in H,(e) will distinguish
between them: the two distributions Py ,{. |H,(e)} and Py ,{. |H,(e)} coin-

i )

cide. Therefore z¥(e) = z¥'(e), for every n. Taking the limit gives 2% = z¥'.

Lemma 19 z¥(e) € co{gi(a),a € Ax(e)}.

PROOF: in state k, on H,(e), the only action combinations which can pos-
sibly appear are the elements of Ag(e). Thus, Ey ,[g,|Hy(e)] € co{gi(a),a €
Ay (e)}, for each p < n. This implies x% (e) € co{gi(a),a € Ax(e)}. .

If k and &’ belong to the same atom of 7., 2(e) = ¥ (e), Ap(e) = Aw(e),
and gx(a) = gw(a), for every a € Ag(e). Therefore, one can construct a
Te-measurable map 6. : K — A(A), such that

< be, g >= z(e)
Supp 6.(k) C Ax(e),Vk
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Lemma 20 (e,é.) is an admissible scenario.

PrOOF: by construction, it is a scenario. We prove that it is admissible.
Notice that (H,(e)), is a decreasing sequence of subsets of Hy,. Since e € S,
Py o{Nn,Hy(e)} >0, Vk. In particular, for every e > 0, there exists N € IN,
such that, if ¢ > n > N, one has

Vk, Py o{Hy(e) \ Hy(e)} <e. (7)

It is straightforward to derive from (7) that, if X is an H.-measurable ran-
dom variable with values in [—1, 1],

|Ep o [ X[Hn(e)] = Ep o[ X[Hy(e)]] < 2¢. (8)

On the other hand, since ¢ is an uniform equilibrium profile, one has, for ¢
large enough (depending on ¢),
1 q

22— lzgz|Hn(€)] > Ep o[v|Hn(e)] —e. (9)

=n

From (8) and (9), one deduces that, for ¢ large enough,
Ep o9y Hy(e)] = Epolv|Hy(e)] = 3e,

i.e. Ty(e) > E,o[v|Hy(e)] —2e. The result follows by taking the limit ¢ — oo,
using the fact that e is arbitrary. .

Therefore, z(e) € A(p), for every e € S. Thus, Proposition 8 follows from
the next lemma.

Lemma 21 v =Y so(e)z(e).

PRrROOF: one has v,,(k,0) = Ey ,[g,]. However, one can not write v,,(k, o) =
> ees Ero[Gnla,e)]: the sets (H,(e))ees may overlap, hence do not consti-
tute a partition of H.; a given atom of H,, may be consistent with several
exploration rules in S.

Yet, set H(e) = N,Hy(e), for e € S. (H(e))ces is a (finite) partition of
H. Moreover, o(e) = Py ,(H(e)), for each k € K. Therefore,

’7n(k7 U) = Z Ek,a[gan(e)] = Z U(e)Ek,a[§n|H(€)]'

ecS ecsS
Since zF(e) = Eio[G,|Hn(€)] —n—oo z¥(€), one has Ei,[g,|H(e)] — z*(e).
This yields the result. .
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