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ABSTRACT. Let (Xi, Yi) (i=1, . . ., n) be n replications of a random vector (X, Y ), where Y is
supposed to be subject to random right censoring. The data (Xi, Yi) are assumed to come
from a stationary �-mixing process. We consider the problem of estimating the function
m(x) =E(�(Y) |X=x), for some known transformation �. This problem is approached in the
following way: first, we introduce a transformed variable Y∗

i , that is not subject to censoring and
satisfies the relation E(�(Yi) |Xi =x)=E(Y∗

i |Xi =x), and then we estimate m(x) by applying
local linear regression techniques. As a by-product, we obtain a general result on the uniform
rate of convergence of kernel type estimators of functionals of an unknown distribution function,
under strong mixing assumptions.
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1. Introduction

A crucial point in a variety of statistical problems is the study of a relation between a variable
of interest Y and some covariate X. This can be done via estimating the function m(x) =
E(�(Y ) |X =x), where the (known) transformation � is introduced to include various func-
tions of interest. For example, taking �(y) =yr gives the rth conditional moment and if we
take �(y) = I (y≤ t) then m becomes the conditional distribution function (CDF) of Y given
X =x at t. Suppose that we have a set of n replications (Xi , Yi) of (X , Y ). Many kernel
smoothing techniques consist in estimating m(x) by calculating a weighted local average of
the �(Yi) values. This can be written as

n∑
i =1

w̃i(x)�(Yi), (1)

where w̃i(x) is a given weight function describing the degree of smoothing. Special cases of (1)
include the Nadaraya–Watson (NW) and local linear (LL) estimator. For a review about the
statistical properties of these two estimators and many other related topics for independent
data, we refer the reader to the book of Fan & Gijbels (1996).

For dependent observations, there is a large literature about the NW estimator under differ-
ent kinds of associations, like mixing processes and Markovian chains. For more details see
Györfi et al. (1989) and Bosq (1998) and the references therein. Masry & Fan (1997) consider
estimating the conditional mean for mixing sequences using the LL estimator. They demon-
strated the asymptotic normality for both strongly mixing and �-mixing processes. For more
references about non-parametric regression techniques with dependent data see, for example,
the bibliographical notes given in Fan & Yao (2003).

In this paper we consider the problem of non-parametrically estimating m(x), when the
data are spatially or temporally correlated, and when in addition the variable of interest is
subject to censoring. To the best of our knowledge, this problem has not been studied in the
literature before. However, in many practical applications this type of data is encountered.
Consider, for example, economic duration data, in which event times are often correlated,
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and the observation of the event may be prevented by the occurrence of an earlier
competing event (censoring). Observations on duration of unemployment, for example, may
be right censored and are typically correlated. Such dependent censored data occur, for
example, when study participants belong to clusters (e.g. month of unemployment, job type,
neighbourhood, school), with members of the same cluster having correlated risk of the event
of interest. In all these cases, instead of observing Y (the survival time), we only observe
the pair (Z, �) = (min(Y , C), I (Y ≤C)), where C is another variable, known as the censoring
variable. The available data are supposed to come from an �-mixing process.

Neither the NW nor the LL method can be directly applied with censored data and
an adaptation of these techniques is therefore needed. One simple way to do inference
in this context is first to transform the data in an unbiased manner, and then to apply
the standard techniques to the transformed data as if they were uncensored. A variety of
such transformations has been proposed and studied in the literature in the case of i.i.d.
data. See, for example, Buckley & James (1979), Koul et al. (1981), Doksum & Yandell
(1983), Zheng (1984, 1987), Leurgans (1987), Zhou (1992), Srinivasan & Zhou (1994) and
Lai et al. (1995). In all those papers, inference was done for a linear regression function
with uncorrelated data. Inspired by those works, Fan & Gijbels (1994) proposed a more
general transformation and used the LL method on the transformed data to estimate the
regression relationship without any assumption made on its form. By using the Leurgans
transformation, Singh & Lu (1999) also studied the non-parametric case but with the NW
instead of the LL smoother, and in a multivariate context. All the transformations cited
above need a prior estimation of Gx(t), i.e. the CDF of C given X =x, as the transformed
data involve this unknown quantity. Many authors cited above used the somewhat strong
assumption that the censoring and the explanatory variables are independent, so that G,
i.e. the unconditional DF, can be approximated using the well-known Kaplan–Meier
estimator. This condition is reasonable whenever the censoring is not associated with the
characteristic of the individuals under study. This is the case, for example, when censoring
is caused by the termination of the study. But in many other situations, this hypothesis
is not met. In this paper we will not make this assumption, so censoring is allowed to
depend on X.

To do so we need to control the error induced by estimating Gx(t) uniformly in t. In order
to bound this error, and motivated by the work of Härdle et al. (1988), we show a general
result that can be applied in a large number of applications related to inference with corre-
lated data. In fact, for completely observed data, we provide a uniform rate of convergence of
NW type estimators of functionals of an unknown CDF Lx, i.e.

∫
�t(y) dLx(y), under strong

mixing assumptions. This result is established in the Appendix and it can be read and used
independently of the rest of the paper. Using this result we prove then the asymptotic
normality and weak consistency of an LL estimator of m(x) based on transformed
pre-estimated data from �-mixing censored processes.

The paper is organized as follows. In the next section we describe the estimation
methodology. Uniform convergence results for Beran’s estimator under the �-mixing assump-
tion are shown in section 3. Some asymptotic results for the proposed approach are given in
section 4. In section 5, we analyse the finite sample performance of the proposed estimator
via a simulation study. In section 6, we discuss the problem of the choice of the smoothing
parameters and we suggest a data-driven procedure based on the cross-validation idea. We
also study this procedure via a simulation analysis. We conclude with some brief
remarks in section 7. Finally, the Appendix contains the assumptions needed for the asymptotic
theory and establishes a uniform consistency rate for a kernel type estimator of a conditional
functional.
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2. Transformation of the data

Let (Xi , Zi , �i), i =1, . . ., n, be a sample of dependent r.v. each having the same distribution as
(X , Z, �) considered in section 1. The process (Xt, Yt, Ct), t =0, ± 1, . . ., ±∞, has the same
distribution as (X , Y , C) and is assumed to be stationary �-mixing (or strong mixing). By
this we mean that if FL

J denotes the �-field generated by the family {(Xt, Yt, Ct), J ≤ t ≤L},
then the mixing coefficients

�(t) = sup
A∈F0−∞ ,B∈F∞

t

|P(A∩B)−P(A)P(B) |

satisfy limt→∞ �(t) =0. For the properties of this and other mixing conditions we refer to
Bradley (1986) and Doukhan (1994). Among all the strong mixing conditions available in
the literature, �-mixing is the weakest and many time series models are �-mixing under mild
conditions. See, for example, Pham & Tran (1985), Bougerol & Picard (1992) and Masry &
Tjøstheim (1995).

In this work, the mixing coefficient �(t) is assumed to be O(t−�) for some �> 3.5. The ran-
dom variables Y and C are non-negative random variables with continuous marginal DFs
and they are independent given X. We denote, respectively, by f0(x), Fx(t) and Gx(t) the
marginal density of X , the CDF of Y given X and the CDF of C given X. For a given
conditional (sub)distribution function Lx(t) we will use the notation L̄x(t) for the correspond-
ing survival function, i.e. L̄x(t) =1−Lx(t), and L̇x(t) for the partial derivative of Lx(t) with
respect to x. Define Hx(t) =P(Z ≤ t |x) =1 − F̄ x(t)Ḡx(t), the CDF of the observed survival
times, H0

x (t) =P(Z ≤ t, �=0 |x) =∫ t
0 F̄ x(s) dGx(s), the sub-CDF of censored observations, and

Tx = sup{t : Hx(t) < 1}, the right endpoint of the support of Hx for a given x. Also, denote
by J = [a, b] any finite subset (interval) of the support of X (if the support of X is finite, we
can take it equal to J ). For some small ε> 0 let J̃ = [a + ε, b− ε]. We say that a real function
f is ulL(J ) if f is uniformly locally Lipschitz on J , that is, supx,x′∈J , |x−x′ |≤ε | f (x) − f (x′) | ≤
M |x −x′ | , for some ε> 0 and M > 0.

As we explained in the Introduction, the idea we follow here is to transform the triplet
(X , Z, �) to a new vector (X , Y ∗) in such a way that, for a given x, E(Y ∗ |X =x) =E(�(Y ) |X =x).
Once this transformation is found, we estimate m(x) =E(�(Y ) |X =x) by applying an LL
smoother to the transformed data (Xi , Y ∗

i ), that are not subject to censoring unlike the
original data. Put

Y ∗ =�	1
x(Z)+ (1−�)	2

x(Z). (2)

A general transformation is obtained by solving the differential equation

	1
x(t)Ḡx(t)+

∫ t

0
	2

x(s) dGx(s) =�(t). (3)

Let dx(t) =	2
x(t)−	1

x(t). A general class of possible solutions of (3) is⎧⎨
⎩	1

x(t) =�(0)+
∫ t

0

d�(s)

Ḡx(s)
−
∫ t

0

dx(s)

Ḡx(s)
dGx(s)

	2
x(t) =	1

x(t)+dx(t).

An interesting case is obtained by choosing dx(t) =
(t) − (1 −�)�(t)/Ḡx(t), where �∈ R and

(t) is a real-valued function. This leads to⎧⎪⎪⎨

⎪⎪⎩
	1

x(t) =�

(
�(0)+

∫ t

0

d�(s)

Ḡx(s)

)
+ (1−�)

�(t)

Ḡx(t)
−
∫ t

0


(s)

Ḡx(s)
dGx(s)

	2
x(t) =�

(
�(0)+

∫ t

0

d�(s)

Ḡx(s)

)
+
(t)−

∫ t

0


(s)

Ḡx(s)
dGx(s).
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So our theoretically transformed data (2) can be written as

Y ∗ = (1−�)�1 +��2 + �
, (4)

with

�1 = ��(Z)

Ḡx(Z)
, �2 =�(0)+

∫ Z

0

d�(s)

Ḡx(s)
and �
 = (1−�)
(Z)−

∫ Z

0


(s)

Ḡx(s)
dGx(s).

Remark 1. Another way to prove the validity of this transformation is by showing that
E(�1 |X =x) =E(�2 |X =x) =m(x) and E(�
 |X =x) =0. This means that the transformation
(4) is a linear combination of the two transformations �1 and �2 adjusted by the factor �
.
Both �1 and �2 are largely used in the censored data literature, the first one was originally
proposed by Koul et al. (1981) and the second one is due to Leurgans (1987). By allowing
the tuning parameter � to range from 0 to 1, we control the balance between these two
methods. 
 is another user chosen parameter (real function). Taking 
≡ 0, (4) becomes the
NC (New Class) transformation proposed by Fan & Gijbels (1994). By choosing a non-
vanishing function 
 we hope to improve the quality of our transformation. Ideally, � and 

have to be chosen to minimize the variation in the transformed data. However, it is hard to
obtain an analytic formula for such an optimal theoretical choice. From practical point of
view, a data-driven procedure is needed to make a reasonable choice of these two parameters.
This will be discussed in more detail in sections 5 and 6.

From now on we only consider classes of functions � that satisfy the following conditions:

Assumption (H)

(H1) � vanishes outside the interval [0, �x], for some 0 < �x <Tx.
(H2) � is a bounded non-decreasing function on [0, �x].

The function 
 is also assumed to satisfy these conditions.

Assumption (H1) is needed to address the identifiability issue due to censoring. It means
that instead of estimating, for example, the mean regression function, E(Y |X =x), we will
only estimate the truncated conditional mean E(YI (Y ≤�x) |X =x). Condition (H2) is a tech-
nical assumption needed in the proof of lemma 4.2 below. The ‘non-decreasing’ assumption
is not required whenever, in (4), we take �=0 and 
≡0.

3. Estimation of Gx(t)

The transformation Y ∗ given in (4) depends on the unknown distribution Gx, which needs
to be estimated, before we can apply this transformation in practice. In the independent data
case, the problem of estimating Gx has been widely studied in the literature. Beran (1981)
proposed to estimate 1−Gx(t) by

1− Ĝx(t) =
n∏

i =1

(
1− (1−�i)I (Zi ≤ t)w̃0i(x)∑n

j =1 I (Zj ≥Zi)w̃0j(x)

)
,

where

w̃0i(x) = K0((Xi −x)/h0)∑n
j =1 K0((Xj −x)/h0)

(5)

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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are NW weights, K0 is a kernel function and 0 < h0 ≡h0n →0 is a bandwidth sequence. Note
that this estimator reduces to the Kaplan–Meier estimator when all weights w̃0i(x) are equal
to n−1. Under the i.i.d. assumption, the asymptotic properties of this estimator have been
further studied by Dabrowska (1987), González-Manteiga & Cadarso-Suarez (1994),
Van Keilegom & Veraverbeke (1997), among others. We show below that in the present
setup of strongly mixing processes, the estimator Ĝx(t) remains uniformly consistent.

Theorem 1
Assume that the condition (A), with K =K0, given in the Appendix holds. Let 0 < �x < Tx.
Suppose that Ḣx(t) and Ḣ0

x (t) exist and are ulL(J) uniformly in t ≥0.

(I) If n−2�+7(log n)2�−3h−8(�−1)+12
0 →0 with < (2�−5)/4 (see assumption A4 in the

Appendix), then for any x in the interior of J

sup
t∈[0,�x ]

| Ĝx(t)−Gx(t) | =Op(�−1/2
n +h2

0).

(II) If n−2�+7(log n)2�−3h−4(2�+1)+12
0 →0 with < (2�−1)/4, then

sup
t∈[0,�x ],x∈J̃

| Ĝx(t)−Gx(t) | =Op(�−1/2
n +h2

0),

where �n =nh0/ log n.

Proof. Using similar arguments as in the proof of proposition 2.2 in Dabrowska (1987),
one can easily demonstrate that, uniformly in x ∈J and t ∈ [0, �x],

| Ĝx(t)−Gx(t) | =O(1)
[

sup
x∈J

sup
t≥0

| Ĥx(t)−Hx(t) | + sup
x∈J

sup
t≥0

| Ĥ
0
x(t)−H0

x (t) |
]
,

where Ĥx(t) =∑n
i =1 I (Zi ≤ t)w̃0i and Ĥ

0
x(t) =∑n

i =1(1 − �i)I (Zi ≤ t)w̃0i . A direct application
of theorem A.4 (see the Appendix) to Ĥx(t) allows us to bound supx,t | Ĥx(t) − Hx(t) | . To

get the desired result, we also have to bound supx,t | Ĥ
0
x(t)−H0

x (t) | . This can be proved in a
very similar way.

Note that, under similar assumptions, the same result holds for the Beran estimator of Fx

and also for the conditional hazard function estimator.

4. Estimation of m (x)

Let us start with the case where Gx is known and denote by mG(x) the conditional mean of
Y ∗ given X =x. The LL estimator of mG(x) is given by

m̂G(x) =
n∑

i =1

w̃1i(x)Y ∗
i , (6)

where

w̃1i(x) = K1((Xi −x)/h1)[Sn,2(x)− (Xi −x)Sn,1(x)]∑n
j =1 K1((x −Xj)/h1)[Sn,2(x)− (x −Xj)Sn,1(x)]

(7)

are LL weights, with Sn,l (x) =∑n
i =1 K1((Xi −x)/h1)(Xi −x)l , l =0, 1, 2 and where 0 < h1 ≡h1n →0

is a bandwidth and K1 is a kernel, assumed to be a bounded function with bounded support.
Unlike the local constant approach, which cannot adapt to unbalanced design situations and
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which has adverse boundary effects that require boundary correction, LL regression is known
to have many good statistical properties that are detailed in the book of Fan & Gijbels (1996).

As m(x) =mG(x), (6) is also an LL estimator for m(x) based on the transformed data
(Xi , Y ∗

i ), i =1, . . ., n. Put uj =
∫

ujK (u) du and vj =
∫

vjK 2(v) dv, and suppose that u0 =1 and
u1 =0. Let G∗

x(t) and �2
∗(x) denote, respectively, the CDF and the conditional variance of

Y ∗ given X =x. The random sequence (Xt, Y ∗
t ) is strongly mixing with mixing coefficient

�∗(t) ≤ �(t), see e.g. Bradley (1986). So by applying theorem 5 in Masry & Fan (1997) we
have the following result.

Lemma 1
Assume (A1), (A2) with j∗ =1 (see the Appendix) and condition (H) for � and 
. Let h1 =C1n−�1 ,
for some C1 > 0 and 1/5≤ �1 < (�−1)/(�+1). If f0(·), G∗

. (t) and �2
∗(·) are continuous on J, then√

nh1
(
m̂G(x)−m(x)−u2h2

1m′′(x)/2
) d−→N

(
0, v0�

2
∗(x)/f0(x)

)
,

for each x in J, provided that m′′ exists and is continuous on J.

Remark 2. Note that the finite moment conditions in Masry & Fan (1997) are fulfilled in
our case as Y ∗ is bounded.

We next examine the limiting distribution of the regression estimator based on the
estimated transformation. More precisely, we propose to plug-in Beran’s estimator Ĝx in
the formula of Y ∗, see (4). We denote by Ŷ

∗
the resulting transformation and by m̂Ĝ the

corresponding LL estimator, i.e.

m̂Ĝ(x) =
n∑

i =1

w̃1i(x)Ŷ
∗
i . (8)

Note that if in (8) we take �=0 and 
 ≡ 0 and instead of the LL we use the NW esti-
mator for the regression function (with bandwidth h0 and kernel K0), the resulting
estimator

∑n
i =1 w̃0i(x)Ŷ

∗
i , can be written as∫

�(t) dF̂ x(t), (9)

where F̂ x is the Beran estimator of Fx. This is due to the fact that the jumps of F̂ x at the

uncensored points Zi are exactly w̃0i(x)/ ¯̂Gx(Zi). This means that our estimator (8) improves
the ‘naive’ estimator (9) from three points of view: (1) the LL weights are used instead of
the classical NW weights, (2) a more general transformation is allowed and (3) the second
bandwidth (kernel) used for the regression function does not need to be the same as the first
one used for estimating Gx. This last point is especially interesting because as we will see in
the simulation section, the best results are typically obtained for h1 << h0.

To state the asymptotic normality of m̂Ĝ(x), we first need to bound the error induced by
approximating the true DF Gx by its Beran estimator Ĝx.

Lemma 2
If the conditions of theorem 1(I) hold, the functions � and 
 satisfy condition (H),
nh0/ log n→∞ and nh1 →∞, then

m̂Ĝ(x)− m̂G(x) =Op

(
sup

t∈[0,�x ]
| Ĝx(t)−Gx(t) |

)
,

for any x ∈J.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.



234 A. El Ghouch and I. Van Keilegom Scand J Statist 35

Proof. First note that | m̂Ĝ(x)− m̂G(x) | ≤ supi | Ŷ
∗
i −Y ∗

i |∑n
i =1 | w̃1i(x) | . From the defini-

tion of w̃1i(x), see (7), using theorem 1 in Masry & Fan (1997),
n∑

i =1

| w̃1i(x) | ≤ 2Sn,2(x)Sn,0(x)
Sn,2(x)Sn,0(x)−S2

n,1(x)
= 2u2 +op(1)

u2 +op(1)
=Op(1).

On the other hand,

| Ŷ
∗
i −Y ∗

i | ≤ | �̂1
i − �1

i | + | �̂2
i − �2

i | + | �̂
i − �
i | . (10)

We will only show the derivation for the third term on the right-hand side of (10), as for the
two other terms the development is similar:

| �̂
i − �
i | ≤
∣∣∣∣∣
∫ Zi

0

(

(s)
¯̂Gx(s)

− 
(s)

Ḡx(s)

)
dĜx(s)

∣∣∣∣∣+
∣∣∣∣
∫ Zi

0


(s)

Ḡx(s)
d(Gx(s)− Ĝx(s))

∣∣∣∣
= I1 + I2 (say).

Clearly, I1 ≤ supt∈[0,�x ] |
(t) | supt∈[0,�x ] | Ĝx(t) − Gx(t) |
∫ �x

0

dĜx(t)
¯̂Gx(t)Ḡx(t)

. By theorem 1 we have

that supt∈[0,�x ] | Ĝx(t)−Gx(t) | =op(1) and as Ḡx(t)≥ Ḡx(�x) > 0, for all t∈ [0, �x], it follows that
I1 =Op(supt∈[0,�x ] | Ĝx(t) − Gx(t) | ). For I2, using integration by parts and after some easy

algebra, we obtain I2 ≤4
supt∈[0,�x ] |
(t) |

Ḡ
2
x(�x)

sup
t∈[0,�x ]

| Ĝx(t)−Gx(t) | , which completes the proof.

Remark 3 (uniform rate). Let 0 < �< inf{Tx :x∈ J̃}. If � and 
 satisfy condition (H) with �
instead of �x, then it follows from theorem 1(II) that supx∈J̃ ,t∈[0,�] | Ĝx(t) − Gx(t) | =
Op((nh0/ log n)−1/2 +h2

0). Now from corollary 1 in Masry (1996) we have that Sn,j(x)→ f0(x)uj

uniformly on J. Hence, it follows from the proof of lemma 2 that

sup
x∈J̃

| m̂Ĝ(x)− m̂G(x) | =Op((nh0/ log n)−1/2 +h2
0).

Moreover, by theorem 6 in Masry (1996), supx∈J | m̂G(x) − m(x) | =Op((nh1/ log n)−1/2 +h2
1).

We conclude that

sup
x∈J̃

| m̂Ĝ(x)−m(x) | =Op((nh/ log n)−1/2 + h̄
2
),

where h=min(h0, h1) and h̄=max(h0, h1), whenever the required assumptions are fulfilled.

The following theorem is a direct consequence of theorem 1, lemmas 1 and 2.

Theorem 2
Assume the conditions of theorem 1(I) and lemma 1 hold. If log n/(nh5

0) =O(1), then for any
x in the interior of J,√

nh1

(
m̂Ĝ(x)−m(x)−u2h2

1m′′(x)/2+Op(h2
0)
)

d−→N (0, v(x)), (11)

with v(x) = v0�2
∗(x)/f0(x).

As a consequence of this theorem, m̂Ĝ(x) is a consistent estimator for m(x) with the asymp-
totic bias and variance given, respectively, by h2

1m′′(x)u2/2+Op(h2
0) and v(x)/(nh1). The extra

error term Op(h2
0) comes from the bias of Ĝx. The asymptotic variance is also larger than in the

familiar case, as �2
∗(x)≥Var(�(Y ) |X =x)≡�2(x). Without censoring, Y ∗ becomes �(Y ) and

so the asymptotic variance reduces to v0�2(x)/f0(x), which is the asymptotic variance for
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uncensored data. Note also that our assumptions on h0 and h1 imply that nh5
0 → ∞ and

nh5
1 =O(1) which means that h1/h0 =o(1). Therefore, the asymptotic bias of m̂Ĝ(x) is

dominated by Op(h2
0). By ignoring the bias term, i.e. by assuming that nh1h4

0 = (h1/h0)nh5
0 →0,

(11) becomes√
nh1

(
m̂Ĝ(x)−m(x)

)
d−→N (0, v(x)).

This result may be used to construct an asymptotic confidence interval for m(x). To do so,
�2

∗(x) =Var(Y ∗ |X =x) needs to be estimated. A simple estimator of �2
∗(x) is given by∑n

i =1 w̃1′ i(x)(Ŷ
∗
i − m̂Ĝ(Xi))2, where w̃1′ i(x) is given by (7) but with another bandwidth h

′
1

instead of h1. Using similar arguments as in the proof of lemma 2, it can be easily shown
that this estimator is asymptotically equivalent to

∑n
i =1 w̃1′ i(x)(Y ∗

i − m̂G(Xi))2, which is the
classical LL estimator for the conditional variance for completely observed data. Finally, the
results stated above may also be extended to construct a simultaneous confidence band for
m(x). In fact, as we have done in lemma 1, using some known results from the
literature, see for example the proof of theorem 1 in Xia (1998), under some regularity con-
ditions, it can be shown that for dependent data,

√
nh1f0(x)(m̂G(x) − m(x) − u2h2

1m′′(x)/2) −
�∗(x)Yn(x, h1) =oP(1), uniformly in x∈ [0, �], where Yn(x, h1) =h−1/2

1

∫ 1
0 K1((z −x)h−1

1 ) dWn(z)
and Wn(z) is a sequence of standard Wiener processes. Given our remark 3, it is clear that
the same result is also available for m̂Ĝ(x).

5. Numerical study

In this section, we present the results of a simulation study, in which the finite sample perfor-
mance of the proposed method is investigated. Let Xt have a uniform distribution on [0, 3],
and let Yt = r(Xt)+�(Xt)εt, where r(x) =12.5+3x −4x2 +x3, �(x) = (x −1.5)2a0 +a1 and εt

is a standard normal random variable. Also, define Ct = r̃(Xt)+�(Xt)ε̃t, with r̃(x) = r(x)+
�(x)�(x), �(x) = (x − 1.5)2b0 +b1, and ε̃t is also standard normal. The variables Xt, εt and
ε̃t are mutually independent. The parameters b0 and b1 allow to control the percentage of
censoring (PC) which is given by PC(x) =P(Yt > Ct |Xt =x) =1 − P(εt ≤ �(x)+ ε̃t)=1 −
�(�(x)/

√
2), where � is the distribution function of a standard normal random variable.

Our objective is to estimate the truncated conditional mean function m(x) =∫ 12.39
0 t dFx(t).

This corresponds to �(t) = tI (t ≤T ), with T =12.39 which is the 0.98 upper quantile of the
DF Hx for x =1.5. Different values of x were investigated but we only show here the results
for x =1.5. Four cases are studied:

1. b1 =0.95, b0 =0: PC is constant and is equal to 25%.
2. b1 =0.95, b0 =−0.27: PC is convex with minimum, 25%, at x =1.5.
3. b1 =0, b0 =0: PC is constant and is equal to 50%.
4. b1 =0, b0 =−0.238: PC is convex with minimum, 50%, at x =1.5.

The parameters a0 and a1 allow to control the variation in the generated data. Three
values for a0 are investigated: a0 =0, a0 =−0.25 and a0 =0.25. The first one corresponds to
a homoscedastic regression model. In the second (third) case, �(x) is concave (convex) with
maximum (minimum) at x =1.5. Finally, we chose two values for a1: a1 =0.5 and a1 =1.

To generate a mixing process Xt with uniform distribution on [0,3], we first consider an ARMA
time series of the form Et =

∑
i �iEt−i +

∑
i �i�t−i + �t, where the �t are i.i.d. N (0, 1). By

an appropriate choice of �i and �i values, the resulting Et is a strongly mixing Gaussian process,
with �(n) → 0 at an exponential rate (see Pham & Tran, 1985; Bougerol & Picard, 1992). Then,
in order to get an explanatory variable that is �-mixing and has the required distribution, we use
the probability integral transform method (see Hoel et al., 1971). Three situations are considered:
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Model 1: Xt is generated from an AR(1), with �1 =0.5, εt and ε̃t are i.i.d.
Model 2: Xt is generated from an AR(1), with �1 =−0.5, εt and ε̃t are i.i.d.
Model 3: Xt, εt and ε̃t are generated from an AR(1), with �1 equal to 0.8, 0.5 and 0.5,

respectively.

The mutual independence of Xt, εt and ε̃t, implies that (Xt, εt, ε̃t) is a strongly mixing process,
and hence this is also the case for the sequences (Xt, Yt, Ct). The sample size is taken equal to
n=350. For all the data analysed, the Epanechnikov kernel, which is known to have certain
optimal properties, K (x) = (3/4)(1 − x2)I (−1 ≤ x ≤ 1), is used for both the Beran estimator
of Gx and for the LL smoother of m(x). To calculate the transformed data, we first need to
choose the tuning parameter � and the ‘adjustment’ function 
. In this study, five values of
the parameter � are investigated, �=0, 0.25, 0.5, 0.75, 1, and two functionals 
 are considered,
namely 
≡0 and 
=�. For all scenarios, the results using the second choice are considerably
better than those obtained with the zero adjustment function. Therefore, we restrict attention
here to showing the results for 
=�. To evaluate m̂Ĝ(x) we also need the two bandwidths h0

and h1. In this study the value of h0 and h1 ranges from 0.2 to 3 by steps of 0.04. To avoid
instability of the transformed data and following the idea of Fan & Gijbels (1994), we do
not transform the data points for which Zi > T . For each scenario, the bias, the empirical
variance and the mean squared error are calculated over 1500 replications. The results are
summarized in Tables 1–4. Each entry in the table represents the result for which the MSE
is minimal, obtained over all possible values of h0, h1 and �. The tables also show the values
of these parameters, for which the best result is obtained.

We first discuss the findings for the bandwidths h0 and h1. Almost in all situations the
optimal value of h0 is larger than the optimal value of h1. This is not surprising, as intu-
itively, to correctly calculate the LL estimator one may need only a ‘small’ portion of the
transformed data, which already contain some information from the neighbourhood. This
also confirms the theoretical fact that h1/h0 must converge to 0 (see section 4). Interestingly,
regarding the proportion of censoring in the simulated data, h0 and h1 behave differently.
In fact as the PC increases, h1 becomes larger but, globally, this is not the case for h0. The
behaviour of h1 can be attributed to the increase in the variation of the transformed data
due to censoring. For h0, remember that this bandwidth is only used to estimate the condi-
tional distribution function Gx of the censoring variables. Estimating Gx becomes easier in
the presence of highly censored data, so, in this case, h0 tends to be smaller. It seems that
the bandwidths are also influenced by the heteroscedasticity in the random samples.

The second finding is about the � parameter. Clearly for low censoring rate, the trans-
formation �1 corresponding to �=0 in (4), works better for all cases. But once censoring

Table 1. Optimal results for Model 1 and for a1 =0.5

a0 b1 b0 � h0 h1 MSE Bias Var

−0.25 0.95 0 0 2.76 0.72 0.0072 0.0155 0.0070
−0.27 0 2.96 0.80 0.0079 0.0226 0.0074

0 0 0.25 1.68 0.96 0.0189 0.0118 0.0188
−0.238 0.25 1.68 1.08 0.0192 0.0154 0.0190

0 0.95 0 0 2.92 0.72 0.0069 0.0120 0.0068
−0.27 0 2.68 0.80 0.0081 0.0120 0.0080

0 0 0.25 1.96 1.04 0.0182 0.0117 0.0181
−0.238 0.25 2.24 1.28 0.0186 0.0121 0.0185

0.25 0.95 0 0 2.96 0.76 0.0070 0.0172 0.0067
−0.27 0 3 0.84 0.0084 0.0145 0.0082

0 0 0.25 2.04 1.36 0.0165 0.0106 0.0164
−0.238 0.25 3 3 0.0289 −0.0900 0.0208
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Table 2. Optimal results for Model 2 and for a1 =0.5

a0 b1 b0 � h0 h1 MSE Bias Var

−0.25 0.95 0 0 2.76 0.72 0.0076 0.0170 0.0073
−0.27 0 2.84 0.80 0.0082 0.0232 0.0077

0 0 0.25 2.88 0.72 0.0119 0.0119 0.0118
−0.238 0.25 2.76 0.88 0.0117 0.0112 0.0116

0 0.95 0 0 2.72 0.72 0.0074 0.0121 0.0073
−0.27 0 2.76 0.84 0.0084 0.0250 0.0078

0 0 0.25 2.76 0.92 0.0117 0.0101 0.0116
−0.238 0.25 2.80 1.20 0.0126 0.0046 0.0126

0.25 0.95 0 0 2.84 0.76 0.0075 0.0171 0.0072
−0.27 0 2.24 0.88 0.0089 0.0234 0.0084

0 0 0.25 3 1.24 0.0123 0.0101 0.0122
−0.238 0.25 3 3 0.0264 −0.0916 0.0180

Table 3. Optimal results for Model 3 and for a1 =0.5

a0 b1 b0 � h0 h1 MSE Bias Var

−0.25 0.95 0 0 2.88 0.76 0.0112 0.0249 0.0106
−0.27 0 2.84 0.84 0.0123 0.0308 0.0114

0 0 0.25 1.24 1.28 0.0338 0.0185 0.0335
−0.238 0.25 1.6 1.16 0.0350 0.0234 0.0345

0 0.95 0 0 2.64 0.76 0.0110 0.0180 0.0107
−0.27 0 2.84 0.84 0.0126 0.0195 0.0122

0 0 0.25 1.56 1.24 0.0331 0.0154 0.0329
−0.238 0.25 2 1.36 0.0367 0.0118 0.0366

0.25 0.95 0 0 2.84 0.80 0.0110 0.0221 0.0105
−0.27 0 2.56 0.92 0.0130 0.0284 0.0122

0 0 0.25 2 1.4 0.0322 0.0068 0.0322
−0.238 0.25 3 3 0.0548 −0.0983 0.0451

Table 4. Optimal results for Model 1 and for a1 =1

a0 b1 b0 � h0 h1 MSE Bias Var

−0.25 0.95 0 0 2.76 1.04 0.0137 0.0121 0.0136
−0.27 0 1.4 1.16 0.0201 0.0278 0.0193

0 0 0.5 1.28 1.84 0.0475 0.0757 0.0418
−0.238 0.5 1.24 0.24 0.0994 0.0488 0.0970

0 0.95 0 0 2.84 1.08 0.0130 0.0092 0.0129
−0.27 0 1.40 1.24 0.0177 0.0241 0.0171

0 0 0.5 1.24 1.12 0.0408 0.0413 0.0391
−0.238 0.5 1.52 1.04 0.0487 0.0511 0.0461

0.25 0.95 0 0 2.88 1.12 0.0122 0.0057 0.0122
−0.27 0 1.44 1.4 0.0163 0.0247 0.0157

0 0 0.5 1.24 1.56 0.0356 0.0441 0.0337
−0.238 0.5 1.76 1.48 0.0357 0.0439 0.0338

becomes higher, the value of � increases. One also needs a large value of �, at least 0.5, to obtain
reasonable results when a high censoring proportion is combined with a large variance (see
Table 4). Now, concerning the MSE, in general our method leads to satisfactory results even
with heteroscedastic-dependent residuals (see Table 3), but the finite sample performance gets
worse as the degree of dependency in the data increases. Another factor that clearly acts on
the quality of the resulting estimator is the variance of the residuals. Globally, better results
are obtained when the variance remains constant (a0 =0). Also, when increasing the value
of a1, we find that the performance of m̂Ĝ decreases (compare Tables 1 and 4). As it can
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be seen from Tables 1 and 2, the impact of the sign of the autocorrelation parameter �1

in the simulations is not clear. However, with high proportion of censoring, it seems that
our estimator shows better performance with �1 =−0.5. It is also obvious from the tables
that the MSE is mainly due to the variance component of the estimator. Finally, as we said
before, we found that the adjustment function 
=� (see (4)) has a good effect on the resulting
estimator. Actually, when we take 
≡ 0, the MSE increases for all simulations, typically in
the range of 2–5%. In this case, we also noted that the optimal value of � is not the same as
for the case 
=�. In fact, in contrast to the results shown in Tables 1–4, the optimal value
of � is often larger than 0.5 in that case.

6. Parameter selection

In practice, 
, �, h0 and h1 need to be chosen in some data-driven way, in order to obtain
satisfactory results. From our simulation study, it becomes clear that an appropriate value of
those parameters is very important as they influence the behaviour of the estimator.
Especially the choice of the bandwidths h0 and h1 requires more attention as those parameters
control the amount of smoothing inherent to the process. It is known that undersmoothing
leads to a large variance and oversmoothing increases the bias. For this reason several methods
(e.g. plug-in, cross-validation, bootstrap, etc.) for selecting smoothing parameters, based on
the observed data, have been proposed and studied by many researchers. Much effort in this
area has been made, assuming the data are independent and completely observed. For depen-
dent but uncensored observations, the results are sparser. See, for example, Härdle & Vieu
(1992), Quintela del Rı́o & Vilar Fernández (1992) and Hall et al. (1995). Because of the
technical difficulties encountered when working with censored data, the bandwidth selection
problem becomes really problematic in this case. To the best of our knowledge, no optimal
rule has been proposed in the literature for this type of data. In this section, we will discuss
this problem from a practical point of view and we propose some guidelines that might help
in selecting a reasonable value for the parameters needed to calculate m̂Ĝ .

For its simplicity and consistency the cross-validation (CV) is one of the most used
methods in the literature. It aims at minimizing the mean square of the prediction error
which is, in our case, given by n−1

∑
(m̂Ĝ(Xi) − Yi)2. Let us start by assuming that Gx is

known. In this case, one may use the following local ‘leave block out’ CV criterion:

CV(x, h1) =n−1
k

∑
j∈Jk

(
m̂G

r (Xj)−Y ∗
j

)2
, (12)

where, for some 0 < k ≤ 1, Jk is the set of the nk =�nk nearest neighbour points to x and
m̂G

r (Xj) is the LL estimator of m at Xj without the observations (Xi , Y ∗
i ), i =1, . . ., n, for which

| i − j | ≤ r, i.e.

m̂G
r (Xj) =m−1

j

∑
| i−j | > r

w̃1i(Xj)Y ∗
i , (13)

where mj =#{i =1, . . ., n : | i − j | > r} and r is a given integer satisfying 2r +1 < < n. By leaving
out more than one observation (r > 0), we attempt to drop from the sample all the data
points that are close in ‘time’ to (Xj , Y ∗

j ). In other words, we omit the observations that are
‘susceptible’ to be highly correlated with (Xj , Y ∗

j ). The local modification of the CV method
allows the adaptation to the concentration of the data, the variation of the noise level and
the local behaviour of the underlying regression function. Of course, the function (12) can
be used only if Gx is known, which is not the case in real data analysis. However, when the
censoring variable is independent of the covariate, Gx(t)=P(C ≤ t |X =x)=P(C ≤ t) can be
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Table 5. MSE under Model 1, obtained using CCV to
select h0 and h1

b1= 0.95 b1= 0

a1 a0 b0 =0 −0.27 b0 =0 −0.238

0.5 −0.25 0.0051 0.0047 0.0498 0.0512
0 0.0049 0.0047 0.0490 0.0504
0.25 0.0046 0.0053 0.0480 0.0499

1 −0.25 0.0863 0.0419 0.0475 0.0745
0 0.0472 0.0242 0.0491 0.0795
0.25 0.0265 0.0152 0.0573 0.0733

estimated by the Kaplan–Meier estimator, and so (12) can still be used by plugging-in this
estimator in (12). When C and X are correlated, an easy solution would be to select h0 and
h1 by simultaneously minimizing

CV(x, h0, h1) =n−1
k

∑
j∈Jk

(
m̂Ĝ

r (Xj)− Ŷ
∗
j

)2
, (14)

where m̂Ĝ
r (Xj) is like (13) but with Ŷ

∗
i instead of Y ∗

i . We have checked this method via a simu-
lation study, and the obtained results were globally unsatisfactory. For this reason we propose
a modification of this approach. The idea behind our proposal is the following. We know that
E(�1 |X =x) − E(�2 |X =x) =E(�
 |X =x) =0, so for a good choice of h0 and h1, we should get

a small value for both |n−1
∑n

i =1 w̃1i(x)(�̂
1
i − �̂

2
i ) | =�1n(x, h0, h1) and |n−1

∑n
i =1 w̃1i(x)�̂
i | =

�2n(x, h0, h1). This suggests to adjust (14) by including �1n(x, h0, h1) and �2n(x, h0, h1) in the
calculation procedure. A simple way to do this is via the following calibrated CV criterion:

CCV(x, h0, h1) =√CV(x, h0, h1)+�(1−s)
1n (x, h0, h1)�s

2n(x, h0, h1), (15)

with typically s =0, s =1 or s =1/2. This is just one of many possible corrections that we
have tested, the other ones like

√
CV+�1n +�2n, do not seem to work as good as (15).

One can also plan to include � and 
 in this selection procedure, but doing so will make
the computation somewhat complicated and may also increase the instability of the
proposed CV function. Given our conclusions in the previous section we decide to run this
procedure with �=0 for small proportions of censoring, say less than 50%, and with �=0.5
for large proportions of censoring. For the function 
, we restrict our analysis to the case

=�. Because of the amount of calculations required by this CV procedure, we only run
500 Monte Carlo simulations with data of size n=350 generated according to Model 1 with
both a1 =0.5 and a1 =1. For each simulated data set, using k =0.25 and r =2, we select the
pair (h0, h1)∈{0.2, 0.24, . . ., 3}×{0.2, 0.24, . . ., 3} that minimizes (15). Table 5 shows the mean
of the squared error obtained over the 500 replications using s =0 and s =1 for low and high
censoring, respectively.

Comparing these results with those of Tables 1 and 4, we observe that globally this
approach leads to reasonable results. In some cases, especially with small PC and small
variance, the MSE that we obtain using our automatic bandwidth selection criterion is better
than the corresponding MSE evaluated with the optimal fixed bandwidths. However, as
censoring and/or variance increase, the results become worse.

7. Discussion

In this paper, an estimator for the mean regression function has been proposed, when the
data are subject to censoring. The main idea behind our approach is to first transform the
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data in an unbiased way and then to use the classical smoothing techniques available only
for uncensored data. We have focused our attention on the univariate case. However, the
multivariate case arises in many practical problems. From a theoretical point of view,
generalization of the univariate case to the multivariate case should be possible. Nevertheless,
as it is well known, this implies the difficult problem of the curse of dimensionality.
Moreover, in the non-parametric regression techniques investigated here, there are two band-
width parameters associated with the covariate X. To avoid this difficulty, instead of a ‘direct’
generalization of the proposed approach it is better to use a semiparametric model, like an
additive or partial linear model. This latter was studied in the context of censored i.i.d. data
by Qin & Jing (2000) using the synthetic transformation method of Zheng (1984) and may
be adapted to the dependent case.
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Appendix

In this section, we establish a uniform consistency rate for a kernel type estimator of a
conditional functional. The results that are shown here are of general interest and can be
used for many other estimation problems associated with strong mixing conditions.

Let (Xi , Yi) be a strictly stationary �-mixing process, having the same distribution as the
random vector (X , Y ), with mixing coefficient �(i)≤�i−� (i →∞) for some �> 3.5 and �> 0,
joint density f (x, y), marginal DF F0 and marginal density f0 for X. Denote by J = [a, b]
any finite subset (interval) of the support of X. For some small ε> 0 let J̃ = [a + ε, b− ε]. Let
I ⊂R and denote by {�t, t ∈ I} a family of real-valued measurable functions and let rt(x) be
the conditional expectation of �t(Y ) given that X =x. We denote by rtn the NW estimator
of rt(x), that is

rtn(x) = n−1
∑n

i =1 �t(Yi)Kh(Xi −x)
n−1
∑n

i =1 Kh(Xi −x)
≡ dtn(x)

fn(x)
, (16)

where Kh(·) = (1/h)K (·/h) and 0 < h≡hn →0.
We require the following assumptions:

Assumption (A)

(A1) 0 < m1 ≤ f0(x)≤M1 < ∞, for all x ∈J .
(A2) f0j(u, v)≤M∗ < ∞ for each j ≥ j∗ and u, v∈J : |u − v | ≤ � for some �> 0 and j∗ ≥1,

where f0j denotes the joint density function of (X1, Xj +1).
(A3) f ′

0 (x) exists and is uniformly locally Lipschitz (ulL) on J ; i.e. for some �> 0 and
M < ∞, supx,x′∈J , |x−x′ |≤� | f ′

0 (x)− f ′
0 (x′) | ≤M |x −x′ | .

(A4) K is a symmetric density that has a bounded support, say [−1, 1], with a first deri-
vative K ′ satisfying |K ′(x) | ≤� |x |  for some ≥0 and �> 0.
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We will show, in theorem 5 below, that if assumption (A) holds, and if {�t, t ∈ I} and hn

satisfy certain regularity conditions, then

sup
t∈I ,x∈J̃

|rtn(x)− rt(x)|=Op

(√
log n
nh

+h2

)
.

This is the main result of this section. It is a generalization of the result of Härdle et al.
(1988) to the dependent case. Our proofs follow the same methodology. We therefore omit
certain derivations and refer to their paper for more details.

In a first step we develop a general result for a class of functions {�t, t ∈ I}, that satisfies
the following assumptions. Later on we will take �t equal to a linear combination of these
�t-functions. Put Dt(x) =∫ �t(y)f (x, y) dy.

Assumption (B)

(B1) supt∈I ,x∈J

∫
�2

t (y)f (x, y) dy =M∗
0 < ∞.

(B2) 0≤ �t(y)≤ �t′ (y), t < t′ ∈ I , y ∈R.
(B3) D′

t(x) : = ∂Dt
∂x (x) exists and is ulL on J uniformly in t ∈ I ; i.e. for some �> 0 and

M < ∞, supt∈I supu,v∈J , |u−v |≤� |D′
t(u)−D′

t(v) | ≤M |u − v | .
(B4) E�t(Y ) is a continuous function of t in I.
(B5) The limit functions �t∗ = limt→t∗ �t and �t∗ = limt→t∗ �t exist and are finite a.s. (w.r.t.

the DF of Y), where t∗ = inf I and t∗ = sup I .
(B6) ‖�t∗ (y)‖� =M� < ∞, for some 2(�−1)/(�−2) < �≤∞, where ‖ · ‖� is the L�-norm.
(B7) ∃�> 0 and j∗ ≥1 such that for each j ≥ j∗,

sup
u,v∈J , |u−v |≤�

∫
�t∗ (u′)�t∗ (v′)fj(u, v, u′, v′) du′dv′ ≤M∗ < ∞,

where fj denotes the joint density function of (X1, Xj +1, Y1, Yj +1).

Assumptions (B1), (B2), (B4)–(B6) correspond, respectively, to assumptions (B2), (A3), (A5),
(A6) and (A7), with �> 2, in Härdle et al. (1988). In the case �=∞, i.e. �t is bounded,
assumption (B7) reduces to the assumption (A2) given above. In the case that �t ≡ 1, i.e.
Dt(x) = f0(x), assumption (B3) reduces to the assumption (A3) given above. Assumptions
(A1) and (B1) imply that

sup
t∈I ,x∈J

∫
�2

t (y)f (y |x) dy ≤M∗
0 /m1 ≡M0, (17)

where f (y |x) is the conditional density of Y given X.
Note that if one is only interested in getting a uniform rate over I for a fixed point x =x0,

then, in all the assumptions given above, J can be replaced by some neighbourhood of x0.
In order to prove the asymptotic uniform rate we first need to state some lemmas. Let Dtn(x) =
(2cn)−1[Gtn(x + cn) − Gtn(x − cn)], cn is a positive sequence tending to 0, and Gtn(x) =
n−1
∑n

i =1 �t(Yi)I (Xi ≤x).

Lemma 3
If (B3) holds, then

sup
t∈I ,x∈J̃

|EDtn(x)−Dt(x) | ≤2Mc2
n. (18)

This can be proved by using assumption (B3), Taylor’s theorem and the fact that EGtn(x) =∫ x
−∞ Dt(z) dz :=Gt(x) and G ′

t(x) =Dt(x).
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Put an =�−1/2
n cn, Qn =M�a−1/(�−1)

n , wn =�2Qncn/an +1. For a given t ∈ I , v∈ [0, 1], r =−wn,
−wn +1, . . ., wn and j =1, . . ., n, define

Ztrj(v) = �t(Yj)I (�t(Yj)≤Qn)
[
I (F0(Xj)≤
rv)− I (F0(Xj)≤ v)

]
,

with 
rv = v+ rM1cn/wn. Let Z̃trj(v) =Ztrj(v)−EZtrj(v) and �trn(v) = |n−1
∑n

j =1 Z̃trj(v) | . When

no confusion is possible, we will write Zj , Z̃j and �n instead of Ztrj(v), Z̃trj(v) and �trn(v),
respectively.

Lemma 4
Assume (A1), (B2) and (B4)–(B6). Let Atn(x) =Dtn(x)−EDtn(x). There exists a partition In

for I and a partition Jn for [0,1], satisfying | In | =O(a−1
n ) and |Jn | =O(c−1

n ), such that, a.s.

sup
t∈I ,x∈J

|Atn(x) | ≤6c−1
n [max

t∈In
max
v∈Jn

max
| r |≤wn

�trn(v)+an(2/3+M1 +�−1rn)],

where rn is a non-negative random variable satisfying rn →0, a.s.

The proof of this result is omitted as a detailed justification is given on pages 1444–1447 in
Härdle et al. (1988).

Remark 4. If one is only interested in a fixed point x, then it can be shown that

sup
t∈I

|Atn(x) | ≤2c−1
n [max

t∈In
max
| r |≤wn

�trn(F0(x))+an(2+M1 +�−1rn)].

Lemma 5
Assume (A1), (B1), (B7). Let cn satisfy (i) 0 < cn → 0 and (ii) cn(n/ log n)1−2/� → ∞ (this
condition implies that (iii) �n :=nhn/ log n→∞). There exist some constants B > 0 and CB > 0
such that, for n sufficiently large,

P
(
�trn(v)≥Ban

)≤CBna
− �

2(�−1)
n q�+1

n , (19)

with qn =�−1/2
n a

− 1
�−1

n .

Proof. First note that | Z̃j | ≤2Qn and EZ̃j =0. Using (17),

VarZ̃j ≤EZ2
j ≤M0M1cn. (20a)

Put Cj =Cov(Z̃1, Z̃j +1). From (20a) and using the Cauchy–Schwartz inequality, we obtain
for 1≤ j ≤n,

|Cj | ≤M0M1cn. (20b)

Also, note that |Cj | ≤E |Z1Zj +1 | + (E |Z1 | )2. For a positive r, we have by (B7),

E |Z1Zj +1 | ≤M∗

[∫
I
(
v < F0(x) < 
rv

)
dx
]2

≤M∗(M1/m1)2c2
n for j ≥ j∗,

where, in the last inequality, we have used (A1) and applied the mean-value theorem. On
the other hand, by (17), E |Z1 | ≤ ∫ E(�t(Y ) |X =x)I (v < F0(x) < 
rv)f0(x) dx ≤ M1/2

0 M1cn. So
we have shown that

|Cj | ≤M2
1 (M∗m−2

1 +M0)c2
n for j ≥ j∗, and r =0, . . ., wn. (20c)
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The same inequality remains true for r =−wn, . . ., 0. Now, by Billingsley’s inequality, see e.g.
corollary 1.1 in Bosq (1998),

|Cj | ≤4�Q2
n j−� (j →∞). (20d)

Let 0 < kn →∞. From (20a–d) it follows that, for each m > 1 and for n sufficiently large,

�2
m :=Var

⎛
⎝ m∑

j =1

Z̃j

⎞
⎠ =mVarZ̃1 +2m

m∑
j =1

(1− j/m)Cj

≤mM0M1cn +2m

⎛
⎝ j∗∑

j =1

|Cj | +
kn∑

j = j∗ +1

|Cj | +
∑

j≥kn +1

|Cj |
⎞
⎠

≤mM0M1cn +2m
(

j∗M0M1cn +M2
1 (M∗m−2

1 +M0)knc2
n + 4�

�−1
Q2

nk1−�
n

)
,

where, in the last inequality, we have used the fact that
∑∞

j =kn +1 j−� ≤ k1−�
n /(� − 1). Taking

kn =�c−1
n , using condition (ii) and the fact that �> 2 and �> 2(� − 1)/(� − 2), yields, for n

sufficiently large,

�2
m ≤C�mcn for m > 1, (21)

with C� =M0M1 +2j∗M0M1 +2M2
1 (M∗m−2

1 +M0)+ (8�/(�−1))M2
� .

By applying theorem 1.3 in Bosq (1998), we have that for each ε> 0 and 0 < q ≤1,

P(�trn(v)≥ ε)≤4 exp

(
− ε2n

32q�2
�q−1 +16Qnq−1ε

)
+11

(
1+ 8Qn

ε

)1/2

nq�
(�q−1). (22)

Let C denote a generic positive constant. Take ε= εn :=Ban and q =qn. Note that by con-
ditions (i), (ii) and (iii) on cn, 0 < qn = (cn(n/ log n)(�−2)/�)−�/(2(�−1)) → 0 and an =�−1/2

n cn → 0.
The latter implies that Qn/an →∞. We then find that, �2

�q−1 =O(q−1
n cn), �(�q−1) =O(q�

n) and

1+8Qn/εn =O(Qna−1
n ). So, we deduce that for any B > 0,

P(�trn(v)≥Ban)≤4 exp
(

− ε2
nn

32Ccn +16Qnq−1
n εn

)
+CB−1/2na

− �
2(�−1)

n q�+1
n

=4n
− B2

32C +16M�B +CB−1/2na
− �

2(�−1)
n q�+1

n .

Again using our assumptions on cn we can see that, for n sufficiently large, na
− �

2(�−1)
n q�+1

n ≥
n−(�+1)/2. Let B∗ be such that B2

∗ /(32C +16M�B∗)= (�+1)/2. Clearly, for each B≥B∗ we have

that, as n→∞, P(�trn(v)≥Ban)≤ (4+CB−1/2)na
− �

2(�−1)
n q�+1

n .

Theorem 3
Assume (A1) and (B). Assume that cn satisfies (i) 0 < cn →0 and (ii) cn(n/ log n)1−2/� →∞.

(I) If (ii′) n(4�−2)�−1−(2�−7)c2�−1−(2�+7)
n (log n)−2(2�+1)�−1 + (2�−3) →0, then,

sup
t∈I ,x∈J̃

|Dtn(x)−Dt(x) | =Op(�−1/2
n + c2

n),

with �n =ncn/ log n.
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(II) If �=∞, then there exist some constants B > 0 and CB > 0 such that, for n sufficiently
large,

P

(
sup

t∈I ,x∈J̃

|Dtn(x)−Dt(x) | ≥B�−1/2
n +2Mc2

n

)
≤CB

[
n−2�+7c−2�−7

n (log n)2�−3
]1/4

.

Proof. First observe that condition (ii′) on cn implies condition (ii). By condition (i) and
(ii) on cn, Qncn/an →∞. So, wn ≤2Qncn/an +1=O(Qncna−1

n ). From the results given above, we
can see that, one can find some constants B > 0 and CB > 0 such that

P(max
t∈In

max
v∈Jn

max
| r |≤wn

�trn(v)≥Ban)≤
∑
t∈In

∑
v∈Jn

∑
| r |≤wn

P(�trn(v)≥Ban)

≤M−1
� CBnQna−2

n a−�/(2(�−1))
n q�−1

n

=CB[n�(2�−7)−4�+2c�(2�+7)−2
n (log n)4�+2−�(2�−3)]

−1
4(�−1) .

Clearly, this together with lemmas 3 and 4 leads to the results given in theorem 3.

Theorem 3 has many applications. Here we will restrict ourselves to the case where �t may
be written as

�t(y) =
i0∑

i =1

qi�ti(y), y ∈R, t ∈ I , (23)

with fixed and finite i0,q1, . . ., qi0 and with {�ti , t ∈ I , 1 ≤ i ≤ i0} satisfying assumptions
(B1)–(B7), with common �=∞ in (B6).

Theorem 4
Let dt(x) =∫ �t(y)f (x, y) dy with {�t, t∈ I} having representation (23). Let dtn(x) be defined by
(16). Assume (A1), (A2) and (A4). Put �n =nhn/ log n. If n−2�+7(log n)2�−3h−4(2�+1)+12

n →0
with < (2�−1)/4, then

sup
t∈I ,x∈J̃

|dtn(x)−dt(x) | =Op(�−1/2
n +h2

n).

Proof. Let Kn(u) =∑jn
j =1 ajI (−bj < u ≤bj), where aj =K (j�n)−K ((j +1)�n), bj = j�n, �n →0

and jn =��−1
n +1. Put d̃ tn(x) = (nh)−1

∑n
k =1 �t(Yk)Kn((Xk − x)/h). We can easily verify that

d̃ tn(x) =∑i0
i =1 qi

∑jn
j =1 2ajbjDtij(x), where Dtij(x) = (2hbj)−1[Gti(x +hbj) − Gti(x − hbj)], with

Gti(x) =n−1
∑n

k =1 �ti(Yk)I (Xk ≤x). Note also that dt(x) =∑i0
i =1 qiDti(x), with Dti(x) =∫ �ti(y)

f (x, y) dy. Clearly,

sup
t,x

| d̃ tn(x)−dt(x) | ≤ |
jn∑

j =1

2ajbj −1 | sup
t,x

|dt(x) |

+
i0∑

i =1

|qi |
jn∑

j =1

2 |aj |bj sup
t,x

|Dtij(x)−Dti(x) |. (24)

From the definition of Kn and under our assumptions on K ,
∑jn

j =1 |2ajbj −1 | = | ∫ (Kn(u)−
K (u)) du | ≤2 sup |u |≤1 |Kn(u)−K (u) | ≤2 sup |u−u′ |≤�n

|K (u)−K (u′) | , so

jn∑
j =1

|2ajbj −1 | =O(�n). (25)

Put cj =2hbj and �j =ncj / log n. By theorem 3
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P

⎛
⎝ jn∑

j =1

2 |aj |bj sup
t,x

|Dtij(x)−Dti(x) | ≥
jn∑

j =1

2 |aj |bj

(
B�−1/2

j +2Mc2
j

)⎞⎠
≤

jn∑
j =1

2 |aj |bjP
(

sup
t,x

|Dtij(x)−Dti(x) | ≥ (B�−1/2
j +2Mc2

j )
)

≤2−(2�+7)/4CB(n−2�+7h−2�−7
n (log n)2�−3)1/4

jn∑
j =1

|aj |b−(2�+3)/4
j .

Using the restrictions on K , we can easily check that |aj | =O(�n(j�n)). This implies that∑jn
j =1 |aj |b−(2�+3)/4

j ≤C�−(2�−4−1)/4
n

∑jn
j =1 j−(2�+3)/4 =O(�−(2�−4−1)/4

n ). So,

P

⎛
⎝ jn∑

j =1

2 |aj |bj sup
t,x

|Dtij(x)−Dti(x) | ≥
jn∑

j =1

2 |aj |bj(B�−1/2
j +2Mc2

j )

⎞
⎠

=P

⎛
⎝ jn∑

j =1

2 |aj |bj sup
t,x

|Dtij(x)−Dti(x) | ≥21/2B
(

jn∑
j =1

|aj |b1/2
j

)
�−1/2

n +16M

(
jn∑

j =1

|aj |b3
j

)
h2

n

⎞
⎠

≤CCB(n−2�+7h−2�−7
n �−2�+4+1

n (log n)2�−3)1/4. (26)

From the definition of jn and using assumption (A4), it can be easily verified that∑jn
j =1 |aj |b�

j =O(1), for any �≥0. This together with (24), (25) and (26) implies that

sup
t∈I ,x∈J̃

| d̃ tn(x)−dt(x) | =Op(�n)+Op(�−1/2
n +h2

n). (27)

On the other hand, using the fact that supt∈I |�t(·) | is bounded,

sup
t∈I ,x∈J

| d̃ tn(x)−dtn(x) | ≤h−1 sup
|u |≤1

|Kn(u)−K (u) |n−1
n∑

k =1

sup
t

|�t(Yk) |

=Op(�n/hn). (28)

From (27) and (28) we conclude that, whenever n−2�+7h−2�−7
n �−2�+4+1

n (log n)2�−3 →0,

sup
t∈I ,x∈J̃

|dtn(x)−dt(x) | =Op(�n/hn)+Op(�−1/2
n +h2

n). (29)

Clearly, the result in theorem 4 follows from (29) by choosing �n =h3
n.

As a consequence of theorem 4 we obtain our main theorem given below.

Theorem 5
Let rt(x) =E(�t(Y ) |X =x) with {�t, t ∈ I} having representation (23). Let rtn(x) be defined by
(16). Assume (A). If n−2�+7(log n)2�−3h−4(2�+1)+12

n →0 with < (2�−1)/4, then

sup
t∈I ,x∈J̃

| rtn(x)− rt(x) | =Op(�−1/2
n +h2

n). (30)

Proof. Note that, in the case where �t ≡1, dt and dtn become f0 and fn, respectively. Theorem 5
follows as a direct application of theorem 4 and the fact that

rtn(x)− rt(x) = 1
fn(x)

(dtn(x)−dt(x))+ dt(x)
fn(x)f0(x)

(f0(x)− fn(x)).
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Remark 5. In view of remark 4, following the same procedure used to prove (30), it can
also be shown that for any x in the interior of J , supt∈I |dtn(x) − dt(x) | =Op(�−1/2

n +h2
n), if

n−2�+7(log n)2�−3h−8(�−1)+12
n →0, with < (2�−5)/4.

As an application, let us take �t(y) = I (y ≤ t). In this case rt(x) becomes the CDF of Y
given X =x, i.e. F (t |x) and rtn(x) becomes the NW estimator of F (t |x) that we shall denote
by Fn(t |x).

Theorem 6
Suppose that the marginal distribution function of Y is continuous. Assume that (A) holds,
∂F (t |x)/∂x := Ḟ (t |x) exists and Ḟ (t | ·) is ulL on J uniformly in t ∈ I .

(I) If n−2�+7(log n)2�−3h−8(�−1)+12
n →0 with < (2�−5)/4, then for any x in the interior of J,

sup
t∈I

|Fn(t |x)−F (t |x) | =Op(�−1/2
n +h2

n).

(II) If n−2�+7(log n)2�−3h−4(2�+1)+12
n →0 with < (2�−1)/4, then

sup
t∈I ,x∈J̃

|Fn(t |x)−F (t |x) | =Op(�−1/2
n +h2

n).
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