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Abstract
DSL systems "Digitial Subscriber Line", take advantage of the long
time not used high frequency bands of twisted pairs in order to trans-
mit signals that may go up to 30 MHz. This band is much higher
than the traditional voice band of 4 kHz. Going up in frequency al-
lows DSL systems to transmit at a very high Bit-Rates (24 Mbps in
ADSL2+, 100 Mbps for VDSL), however it also poses various chal-
lenges. One of the challenges that may occur, is the increase of the
interference between different lines, called crosstalk, at higher frequen-
cies. Another drawback of using higher frequencies, is the fact that
the direct channels of the twisted pairs are attenuated severly for long
lines at higher frequencies. The attenuation of the direct channel gain
for longer lines, coupled with crosstalk caused by other shorter lines
in proximity would create a Near-Far problem in DSL systems when
short and long lines are mixed together. Dynamic Spectrum Manage-
ment or DSM was proposed to mitigate the effect of crosstalk on DSL
systems. DSM exploits the information about the direct line chan-
nels, the crosstalk channels, and the ambient noise to improve the
total system capacity. We may distinguish two DSM concepts: PSD
coordination and Signal coordination. Both concepts necessitate the
knowledge of crosstalk channels information, something that is not
available under the current DSL systems.

In this thesis we consider the application of DSM algorithms under
practical and realistic condition. In the first part we propose the
Balanced Capacity concept as a possible solution for the Near-Far
problem, then we proceed with the enhancement of several state of the
art algorithms regarding DSM implementation. In the second part,
we propose several practical estimation techniques for the crosstalk
channel estimation. We start by estimating the crosstalk channel gain,
which is sufficient for the application of PSD coordination algorithms,
and then we proceed by the estimation of the total crosstalk channel
which is required for the implementation of a full signal coordination.
All of these estimation techniques are based on a passive or on a
limited active observation of the DSL lines. Thus these estimators are
practical, and can be used with the current DSL systems with minor
modifications on the standards or on the users’ modems.





Notations and Acronyms

Mathematical notations

j imaginary unit: j =
√
−1

x a scalar
x∗ the complex conjugate of x
Re(x) the real part of x
Im(x) the imaginary part of x
|x| the absolute value or norm of x
AT the transpose of matrix A

AH the conjugate transpose of matrix A

A−1 the inverse of matrix A

E[x] the expected value (or mathematical expectation) of x
∼= is approximately equal to
[x]+ the positive part of x, i.e. [x]+ , max(0, x)
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Acronyms

ADSL Asymmetric Digital Subscriber Line
ANSI American National Standards Institute
ASB Autonomous Spectrum Balancing
ASP Additional Starting Point
AWG American Wire Gauge
AWGN Additive White Gaussian Noise
BC Balanced Capacity
BER Bit Error Rate
BP Band Preference
CIR Carrier to Interference Impulse Ratio
CLS Constrained Least Square
CO Central Office
CP Cyclic Prefix
DFT Discrete Fourier Transform
DMT Discrete Multi-Tone
DS DownStream
DSL Digital Subscriber line
DSM Dynamic Spectrum Management
FDD Frequency Division Duplexing
FDMA Frequency Division Multiple Access
FEXT Far End Crosstalk
FFT Fast Fourier Transform
FIR Finite Impulse Response
FTTB Fiber To The Building
FTTH Fiber To The Home
IDFT Inverse Discrete Fourier Transform
IEEE Institute of Electrical and Electronics Engineers
IFFT Inverse Fast Fourier Transform
i.i.d. independent and identically distributed
IPLS Iterative Penalized Least Square
ISB Iterative Spectrum Balancing
ISI Inter Symbol Interference
IWI Iterative Water Filling
LS Least Square
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MC Multi-Carrier
MIMO Multiple Input Multiple Output
ML Maximum Likelihood
MMSE Minimum Mean Square Error
MSE Mean Square Error
NEXT Near End Crosstalk
NR Newton Raphson
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
ONU Optical Network Unit
OSB Optimal Spectrum Balancing
PBO Power Back-Off
pdf probability density function
PLS Penalized Least Square
PSD Power Spectrum Density
SA Steepest Ascent
SMC Spectrum Management Center
SNR Signal to Noise Ratio
SO Successive Optimization
US UpStream
VDSL Very High Bitrate DSL
ZF Zero Forcing
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Chapter 1

Introduction

1.1 DSL Systems

Due to the high costs related to the fiber optics installation, it is still
not possible to implement fiber to home technology at once and in
many regions. DSL systems can be seen as the last mile solution to this
problem, as it establishes the connection between remote users and the
optical fibers present at a central office (CO) or at an optical network
unit (ONU), using the available twisted pair lines of the telephone
companies.

DSL systems allow a progressive implementation of the fiber to home
technology. At the beginning, the fiber optics were installed at the
central office, and the ADSL system was used to serve the remote
users. ADSL for asymmetric digital subscriber line, exploited the ex-
istent local loops between the user terminal and the CO to make the
connection possible. As fiber optics technology matured, the fibers
were brought further more near the location of the users, by installing
an optical network unit (ONU) near major urban areas, thus shorten-
ing the distance between the users and the fiber optics, which allowed
the use of a very high frequency bands in VDSL system. In the future,
fiber-to-the-building (FTTB) implementation is currently considered,
and eventually fiber-to-the-home (FTTH). As the DSL systems are
exploiting the local loops of an already existent telephony infrastruc-
ture, and since the fiber optics technology remains expensive for the
time being, DSL systems are seen to be economically viable for the



2 Introduction

upcoming years.

1.1.1 Direct Lines and Crosstalk channels

1.1.1.1 Direct Channels

The direct line channel of a local loop can be derived from the electro-
magnetic characteristic of the twisted pair. If we consider a twisted
pair line i, with no discontinuities nor mismatching, we can derive the
direct channel of the line i as explained in the transmission line theory
[1]:

Hi,i(f) = exp (−γi(f)Ltp,i) , (1.1)

where Hi,i(f) is the direct channel of the twisted pair line i at the
frequency f , Ltp,i is the length of line i, γi is the propagation constant.
γi is given in function of the RLCG parameters of line i:

γi =
√

(G′
i(f) + j2πfC ′

i(f))(R′
i(f) + j2πfL′

i(f)) (1.2)

where:

• R′
i is the resistance per unit length in Ohms/m

• L′
i is the inductance per unit length in Henry/m

• C ′
i is the capacitance per unit length in Farad/m

• G′
i is the Electrical Conductivity in Siemens/m

R′
i, L′

i, C ′
i, G′

i vary with frequency, they represent the RLCG parame-
ters that characterize a transmission line. In this thesis we have used
the RLCG parameters of the twisted pair model used in [2, 3] where:

R′
i(f) =

2di/ai√
(di/ai)2 − 1

<{Z0i(f)}

L′
i(f) = Tind

µ0

π
cosh−1(di/ai) +

di/ai

πf
√

(di/ai)2 − 1={Z0(f)}
C ′

i(f) =
πεrε0

cosh−1(di/ai)

G′
i(f) = 0
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where di is the center-spacing between the two wires of the twisted
pairs, ai is the diameter of the conductor, µ0 = 4π ∗ 10− 7H/m is the
permeability of air, Tind is the twisting index, ε0 = 8.854∗10−12F/m is
the permittivity of air, εr is the relative permittivity of the insulation,
and Z0i(f) is the internal impedance of the twisted pair and it is
defined as:

Z0i(f) =
1

d

√
2fµ0

jπσ

J0(d
√

(πµ0σ/2j)f)

J1(d
√

(πµ0σ/2j)f)
(1.3)

where σ la conductivity in Siemens/meter, and Jn(x) is the Bessel
function of order n. The values of ai, di, σ, and Tind are given for dif-
ferent types of twisted pairs in ANSI T1.601-1999 Standard [4]. For
example, for a 24 AWG (American Wire Gauge) twisted pair we have
the following characteristics at the room temperature (21 degree Cel-
cius):

a d σ Tind εr

0.67746 mm 0.85103 mm 5.3256 ∗ 107 siemens/m 1.5758 1.3004

The channel model given by (1.1) represents a simple attenuation
model. In this model, the direct channel gain decreases when either
the frequency or the line length increases. Fig.1.1 shows the chan-
nel gain attenuation model in function of frequency for several lines
having different lengths.

The channel gain attenuation model represents the direct channel gain
when there are no impairments on the line, however numerous impair-
ments can occur on the line. For example mismatching can happen at
the source or at the end of a local loop when the impedance of the line
is different then that of the source or of the load (look at Fig. 1.2).
Another impairment that can occur, is the existence of a bridged tap
on the line. Bridged tap represents a stub that is attached on the
twisted pair line, it represents a "T" branch on the telephone cable as
shown in Fig. 1.3. Mismatching and bridged taps cause reflections on
the telephone cable, thus a part of the transmitted signal is reflected
back, this would attenuate the signal severely on the line depending
on the frequency. The attenuation caused by the impairment on the
local loop are frequency selective.
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Figure 1.1: Attenuation Channel Model

One could include the effect of mismatching, or even the presence of
a bridged tap, on the channel model of the line. Using an approach
similar to [5, 6] we can derive the following models:

Mismatching model:

Hii(f) ==
Zin

Zs + Zin
(1 + rl)exp(−γ0iLi)(

1

1 − rlrsexp(−2γ0iLi)
) (1.4)

where L1 is the length of the line, γ01 is the propagation constant, Zin is
the imput impedance of the line, Z01 is the characteristic impedance,
Zs is the resistance at the source, Zl is the resistance at the load,
rs and rl are the reflection coefficient at the source and at the load
respectively where rv = (Z01 − Zv) / (Z01 + Zv), where rv = rs for
Zv = Zs and rv = rl for Zv = Zl.

Bridged tap model: We consider a line with 3 sections as shown
in Fig. 1.3, with each line section having different characteristics from
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Figure 1.2: Mismatching Effects

the other 2 sections. Section 1 of the line corresponds to the part
that start at the source and ends at the bridged tap, it has a length
L1 and a propagation constant γ01. Section two corresponds to the
part that goes from the bridged tap to the load, it has a length L2

and a propagation constant equal to γ02. Section 3 corresponds to the
bridged tap itself, with a length L3 and a propagation constant γ03.
The bridged tap model is given by:

Hii(f) = (1+rI)exp(−γ01L1)exp(−γ02L2)(1+(1+rt)
exp(−2γ03L3)

1 − rtexp(−2γ03Li3)
)

(1.5)
where rI is the reflection coefficient of the echo caused by the bridged
tap on section 1 of line, while rt is the reflection coefficient on the
bridged tap section (section 3 of the line).

We compare the attenuation model, the mismatching model, and the
bridged tap model in Fig.1.4. From this figure, we can conclude that
the direct channel gain of twisted pair is a frequency selective chan-
nel. Adding a bridged tap increases the frequency selectivity of the
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Figure 1.3: Bridged Tap

channel. The presence of Bridged taps and other impairments on the
line, attenuates the direct channel gain when it is compared to the
impairments-free model.

1.1.1.2 Crosstalk

Crosstalk is the interference created between different twisted pairs
that belong to the same binder. This interference is caused by elec-
tromagnetic coupling between the different lines that lie in proximity
of each others. Two types of crosstalk can be distinguished: Near end
crosstalk (NEXT), and Far end crosstalk (FEXT).
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Figure 1.5: Near and Far End Crosstalk

1.1.1.2.1 NEXT Crosstalk Near end crosstalk is the interference
that occurs between two twisted pairs when both the disturber line,
and the victim line, exist on the same end of the binder. NEXT
is caused by the transmitted signal on the transmitter side of the
disturber line. These signals are usually strong signals as they are
not attenuated by the channel. Thus NEXT effects can be extremely
severe on the victim lines, especially on the received signals that got
attenuated by the channel lines. Most of the DSL systems avoid NEXT
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by adopting an FDM strategy to separate the downstream signal (DS)
from the upstream signal (US) by allocating different frequency bands
to each of these two signals. NEXT channels may be expressed by the
following model [7]:

H2
il,NEXT = X49(U/49)0.6f 3/2 (1.6)

where X49 = 1/1.13× 1013, U is the number of interference lines, and
f is the frequency in Hz.

1.1.1.2.2 FEXT Crosstalk Far end crosstalk is the interference
that occurs between two twisted pairs when both the disturber line,
and the victim line, exist on two opposite ends of the binder. FEXT
is less severe than NEXT, as the FEXT signals get attenuated by the
direct line channel. FEXT channels can be modeled by the 1% worst
case formula [7]:

H2
il,FEXT = H2

ii(U/49)0.6dlif
28 × 10−20 (1.7)

where dli is the electromagnetic coupling distance between lines l and
lines i.

In this thesis we consider DSL systems that adopt a frequency divi-
sion duplexing (FDD) scheme to separate the upstream and the down-
stream bands, thus, in the rest of this work, we would only consider
the case of the FEXT crosstalk.

1.1.2 DMT Modulation

The channel models of the twisted pairs lines used in the local loops are
highly frequency selective. Due to the frequency selectivities of these
channels, DSL systems suffer from inter-symbol interference (ISI). To
combat the ISI, the majority of DSL systems have adopted the dis-
crete multi tone (DMT) modulation. DMT modulation can be seen
as decomposing the frequency selective direct channel into many flat
fading sub-channels called tones [8]. At each tone, the DSL system
may allocate different power, or even a different bitrate, depending
on the ambient conditions on the tone such as the channel gain and
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the background noise. This procedure is called bitloading. Bitload-
ing is implemented during the initialization period, however it can
vary throughout the connection period. In fact, DMT based DSL sys-
tems, can keep tracking of the channel conditions (channel gain, and
ambient noise) by implementing a bit swapping and a gain swapping
techniques. In these techniques, the system can lower the number
of bit allocation on one tone and increase it on another tone using
bit swapping when the channel conditions change, same thing can be
done by changing the allocated power on different tones using gain
swapping.

Fig.1.8 and Fig.1.9 represent the DMT modulation block diagram. It
is clear from these figures that the DMT modulation is very similar
to OFDM used in wireless systems. DMT and OFDM differ in two
main aspects: the first aspect is the variable bitloading adopted in
DMT that allows the allocation of different power and bit at different
tones, the second aspect is that the DMT modulation is a baseband
modulation, thus it must use of the Mirror block in order to produce a
real signal after the IFFT. The main DSL systems that have adopted
the DMT modulation are: ADSL [9], ADSL2+ [10], and VDSL2 [11].

1.1.3 Spectrum Management

1.1.3.1 Near Far Problem

The attenuation of the direct channels in DSL systems is given in
function of the length of the twisted pairs lines used in the local loops.
The attenuation of the channel gain in longer line is more severe than
that caused by shorter lines (Fig.1.1). The effects of cable lengths on
the attenuation, coupled with crosstalk caused by strong signals from
other lines may create a Near-Far problem in the DSL systems.

Signals that belong to long cables are subject to attenuation caused
by the direct channel. These signals will cause a negligible crosstalk
on their surroundings. Signals belonging to short lines suffer minimal
attenuation, and they will cause important crosstalk on their neigh-
boring lines. When long and short lines coexist on the same cable, the
weak signals on the long line would suffer from the strong crosstalk
caused by the strong signals transmitted on the short lines. Thus
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when a short line start transmitting, the long line would have to do a
reinitialization and transmit data at a very low bitrate. The short line
continue to transmit at nearly its maximal bitrate. Near-Far problem
may occur in two cases: in the upstream and in the downstream.

CO

Signal from  user 1 

 Signal from user 2 

user 2

user 1

Attenuated Signal from 

            user 2

Figure 1.6: Near-Far Problem in Upstream

Near Far: Upstream Case In the upstream (US), lines that are
served by the CO and share the same binder would suffer from a
Near-Far problem if they have different lengths. Fig.1.6 gives a typi-
cal scenario of a Near-Far problem in the US. Signal transmitted by
the modem of user 2 is attenuated by the time it reaches the same
location of user 1. Thus the crosstalk caused by user 2 on user 1 is
non significant. However, user 1 signal is not attenuated and it would
cause a strong crosstalk on user 2.
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      CO

Signal from 

     ONU

Attenuated Signal from 

             CO

user 2

user 3

user 1

Figure 1.7: Near-Far Problem in Downstream

Near Far: Downstream Case In the downstream (DS) Near-Far
problem can happen when lines served by the CO and by the ONU
coexist in the same binder. In Fig.1.7 we show a DSL system that
suffers from Near-Far in DS. In this system, the Near Far problem
occurs between user 2 and user 3. As user 2 is served from the CO
and user 3 is served from ONU. The same analysis used for the US
can be applied on this case.
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1.1.3.2 Spectrum Management

To limit the effect of crosstalk between different DSL systems and
lines, telecoms companies and standardization bodies have imposed
spectrum management techniques on the various DSL systems. These
techniques include imposing fixed power spectrum density (PSD) mask
and specific frequency and bandwidth allocation on the transmitted
signal. Constraints on the total transmitted power may be imposed as
well. Another way to insure the spectrum compatibility between the
different lines and systems, is to measure the effect caused by a DSL
line on other lines using the the 1% worst case formula.

Spectrum management insures the spectrum compatibility between
signals belonging to different systems, and it reduces the impact of
crosstalk between the different systems. However, it is far from being
optimal, moreover techniques such as fixed PSD mask do not solve
the Near-Far problem present in DSL systems. In the case of Near-
Far situation, the power back-off methods are proposed as a possible
solutions [12, 13, 14, 15, 16, 17, 18]. Power back-off methods (PBO)
consist of lowering the PSD mask of the shorter loops in order to
reduce their crosstalk on long loops.

Dynamic spectrum management (DSM) was proposed to further im-
prove the power and frequency allocation in DSL systems [19, 7, 20].
DSM advocates the establishment of a spectral management center
(SMC). The SMC uses the available information on each line such
as the direct and the crosstalk channels, the ambient noise, the PSD
levels in order to optimize the DSL lines performances in terms of
stability and bitrate. 3 levels of DSM can be distinguished [19]:

1. DSM level 1 represents simple tasks that are done to improve
the condition on a line based on the information provided by
that line without acquiring information about other lines in the
system. Adjusting the PSD of a line depending on its length
(PBO methods) may be considered as a DSM level 1 operation.

2. DSM level 2: It represents a spectral coordination between the
different DSL lines. DSM level 2 includes techniques for the
optimization of discrete bitloading under individual power con-
straints [21, 22, 23, 24, 25, 26, 27, 28]. Maximization of DSL
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system rate defined as the sum of aggregated continuous users
rates is also considered [29, 30]. DSM level 2 techniques can
reduce the effect of the crosstalk by optimizing the power allo-
cation and the spectrum coordination among the different DSL
lines that coexist in the same cable.

3. DSM level 3: Also called vectoring, it represents a coordination
on the signals level between the different lines, in this case the
DSL system is seen as a MIMO system. In this case and for each
tone, the direct channels of the different lines, and the crosstalk
channels are put together as a Matrix channel. Techniques such
as Zero Forcing, and MMSE are used to equalize (to precode)
the DSL system’s channel in the US (in the DS).

1.2 Outline and Contributions

In this thesis we are interested in the application of DSM under prac-
tical and realistic conditions of the current DSL systems. In the first
part of this dissertation we try to solve the Near-Far problem by in-
corporating the "Balanced Capacity" concept with the DSM level 2
techniques. Since it is only based on PSD coordination between the
DSL lines, DSM level 2 seems to be the first candidate for implemen-
tation in DSL systems in the near future. DSM level 2 algorithms are
complex and generally requires lot of computation times, thus our sec-
ond objective in this thesis is the enhancement of state of the art DSM
level 2 algorithms. This enhancement acts on two aspects: on one as-
pect we try to reduce the execution time required by the DSM level 2
optimization algorithms. This is done by adopting the successive op-
timization technique on one hand which insures a rapid convergence
of the optimization, and by replacing the exhaustive and line search
used in some state of the art algorithms, by less complex optimiza-
tion algorithms such as Newton-Raphson and gradient algorithms on
the other hand. The other aspect of enhancement is about the opti-
mization outcome itself, in order to improve the optimization, and to
reduce the chances of converging into a poor local optimum, we pro-
pose to use global optimization procedures such as multi start points,
the optimal steepest ascent will be used as well to prevent the poor
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local optimum propagation in the case of successive optimization.

Most of the DSM level 2 algorithms suppose and need the total knowl-
edge of the direct and of the crosstalk channel gain. While the direct
channels are currently known by the CO, there are no information re-
garding the crosstalk channel gain. In the second part of this thesis we
propose a technique for the estimation of the crosstalk channel gain
without altering the modems and the standards of the current DSL
systems. This estimation is based on the establishment of a monitoring
system that observes the ambient conditions of each lines, information
such as the SNR, the PSD of different signals, the time of connection
and disconnection of the different users, and the background noise.
These informations are supposed to be stored and analyzed. This
passive observation of the DSL system would allow an effective es-
timation of the crosstalk channel gain when the SNR changes on a
given line are correlated to the time of connection and disconnection
of users transmitting on other lines in the systems. The monitoring
system can be one and the same with the SMC.

For an effective implementation of DSM level 3 techniques, informa-
tion on both the real part and the imaginary part of the crosstalk
channels are required. In this case a passive observation of the DSL
systems is not enough for the estimation of the crosstalk channel. We
propose to make an active observation of the line by adding the effect
of a virtual crosstalk channel on it. The virtual crosstalk will transmit
the same signal as the interfering lines on the system. Thus the virtual
crosstalk channel would change the gain of the actual crosstalk channel
gain. This change can be detected by observing the rise or the drop of
the SNR after inducing the virtual crosstalk. Changing the crosstalk
channel gain twice is enough to estimate the real and imaginary part
of the crosstalk channel using a triangulation techniques.

A time domain model for the crosstalk channel is also introduced,
this model can improve the estimation of the crosstalk channel gain
and of the real and imaginary parts of the crosstalk channels. This
time domain model is usually limited in the number of taps, and it
provides a relationship between the crosstalk channels of the different
tones. This allows the estimation to be done over a limited number of
pilot tones.
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The rest of this thesis will be decomposed as follow:

Chapter 2

Chapter 2 is about the enhancement of the current state of the art
algorithms, in this chapter we propose the "Balanced Capacity" con-
cept as a possible solution to the Near-Far problem [31, 32]. We also
use the correlation between the channel gain of the adjacent tones to
propose the successive optimization concept, this concept allows the
use of gradient type algorithms, such as steepest ascent, and Newton-
Raphson [33, 34]. Multi start point technique is also suggested in
order to improve the over all outcome of the optimization [35].

Chapter 3

Chapter 3 deals with estimation of crosstalk channel gain for DSM
level 2 applications, it calls for the establishment of a monitoring sys-
tem that observes the conditions on all the lines of the system. The
estimation of the crosstalk channel gain is done by observing the SNR
changes at the time of connection/disconnection of a user, or when
a PBO is implemented. A time domain model can be used to im-
prove the estimation and to compress the information of the various
crosstalk channels.

Chapter 4

Chapter 4 considers the case of asynchronous crosstalk. In the first
part of this chapter we derive an analytical model for the asynchronous
crosstalk channel. In the second part we develop an estimation method
for this type of channels. This method is largely based on the esti-
mation technique used in chapter 3. A method for evaluating the non
synchronization delay time is also provided.

Chapter 5

This chapter studies the effect of estimation error on DSM level 2.
Taylor expansion was used to find a relationship between the opti-
mal power allocation obtained when the different channels are fully
known, and the optimal power allocation obtained under the presence
of estimation error. A probabilistic tool is developed to calculate the
expected loss in bitrate due to the estimation error.
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Chapter 6

Chapter 6 considers the implementation of DSM level 3. DSM level
3 requires the full knowledge of the crosstalk channels. Thus the es-
timation of the Imaginary and Real part of the channel is necessary.
The estimation is done by altering the actual crosstalk channel using
an induced virtual crosstalk that transmit the same signal as the dis-
turber line. Altering the real part first and then the imaginary part
allow the estimation of the total crosstalk channel [36, 37]. The work
presented in this chapter was patented by Alcatel-Lucent, and it even-
tually lead to many contributions in the standard and in the literature.

Chapter 7

In chapter 7 we optimize the crosstalk channel estimation by choosing
the proper virtual crosstalk channel gain. A time domain model is also
used. This model allows the estimation of several crosstalk channels
at the same time.

Chapter 8

Chapter 8 provides an alternative estimation of the crosstalk channels.
A least square time domain estimation is performed to estimate the
time domain model of the crosstalk channel. Due to the sparsity of the
time domain model, the estimation can be done over a limited number
of pilot tones. Chapter 8 discusses the limitation of this method as it
can result in an ill conditioned least square problem if the pilot tones
are not chosen properly. Solutions for the ill conditioned LS problem
are also provided [38].

Chapter 9

Chapter 9 presents our conclusions and provides few ideas for future
work.
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Figure 1.8: DMT Transmitter
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Chapter 2

Enhancement techniques for

DSM algorithms

2.1 Introduction

One of the major limitations in DSL systems is crosstalk. Crosstalk is
the electromagnetic coupling between twisted pairs that creates inter-
ference between the different lines in DSL systems. In VDSL systems
it is the dominating noise factor. A user transmitting with an exces-
sive power in a given binder can deteriorate all the lines of that binder.
Operators and standardization bodies imposed limitations on the total
power and on the PSD (power spectral density) mask of each system.
PSD masks help to limit the level of crosstalk. However these PSD
masks are based on the worst case scenario. Hence power allocations
following these masks are far from optimal in practical situations.

To improve the power allocation in DSL systems, dynamic spectrum
management (DSM) was introduced [7, 20, 39]. DSM tries to optimize
users’ bit rates by adapting their powers and spectral shapes to the
channel loss and the ambient crosstalk across frequencies. DSM al-
gorithms can be classified into two categories: distributed algorithms
and centralized algorithms.

One of the first distributed algorithms that was proposed is Iterative
Water Filling (IWF) [40]. In this algorithm each modem tries to opti-
mize its own bit rate with respect to the ambient noise, including the
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current crosstalk. The optimization is done using the classical water
filling algorithm. This procedure is repeated iteratively and indepen-
dently on all modems until a constant level of powers and crosstalk
is reached for all users. Autonomous Spectrum Balancing (ASB) [41]
is another distributed algorithm where each modem tries to optimize
the total sum of its own bit rate and the bit rate of a virtual line. The
virtual line is supposed to represent a typical weak line, thus limiting
the effect of each modem on its neighbors. Band preference algorithm
(BP) [42] is a modified version of the IWF, BP utilizes power-scaling
factors in the IWF algorithm to control the bit loading process, a large
scaling factor given to a particular tone would correspond to a smaller
number of bit being loaded to that particular tone, and vice versa (BP
could be used to protect weak users).

Centralized algorithms propose the establishment of a system manage-
ment center (SMC). In the SMC the total knowledge of the channel
gains (both crosstalk channels and direct ones) is supposed to be given
which allows the optimization of the entire system. Due to interfer-
ence, the optimization of the DSL system total capacity is an NP hard
non convex problem. OSB (optimal spectrum balancing) [43, 29] was
proposed as the optimal centralized algorithm. OSB makes use of the
Lagrange function to include the power constraints in the objective
function. This enables the optimization to be decoupled over the dif-
ferent sub channels. In order to find the optimal solution at each sub
channel, OSB resorts to an exhaustive search over all the different
possible power allocations which makes it too complex for practical
implementation. In order to reduce the complexity of OSB, the it-
erative spectrum balancing (ISB) algorithm was proposed [30, 44].
ISB replaces the exhaustive search over all the possible power alloca-
tions by a simple line search algorithm over individual users’ powers,
however this procedure is not globally optimum. Papers [45, 46] pro-
pose to solve the power allocation problem using an iterative convex
approximation approach, in this approach the objective function is
approximated by a convex function which allows the use of convex
optimization.

In crosstalk limited DSL systems, a near far problem may occur when
long lines coexist with short lines in the same binder. In this case, if the
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optimization problem is not formulated properly, the DSM algorithm
may end up allocating small or no power to users with longer lines,
while users with shorter line will be using almost the totality of their
maximum allocated power. This means that some users would be
sending at a rate that is nearly equal to their maximum bitrate, while
other users would send at a very small rates. In this chapter, and in
order to solve the near far problem in DSL systems, we propose to
apply the concept of Balanced Capacity (BC) [47] to ensure fairness
among different active users.

Another objective of this chapter is to propose practical techniques
that can enhance the performance of existent state of the art DSM
algorithms. For instance, the successive optimization (SO) principle
is proposed, this principle may be used to speed up the convergence of
several known DSM algorithms (ISB, SCALE), and it also allows the
use of gradient type algorithms on DSL optimization which lowers the
complexity of the DSM procedure. The use of multi start point tech-
nique is proposed to increase the overall outcome of the optimization.

2.2 System Model

We consider DSL systems using DMT (discrete multiple tone). As-
suming a proper use of the cyclic prefix technique, the channel may
be decomposed in K parallel subchannels. Let the total number of
users on the system be U . For each particular tone the system can
be viewed as an interference channel. Viewing the interference from
other users due to crosstalk as Gaussian noise the bitrate of user i is
given by the formula:

Ri = B

N∑

n=1

log2(1 +
1

Γ
SNRi(n)), (2.1)

where Γ is the SNR gap, SNRi(k) is given by

SNRi(k) =
|Hii(k)|2 Pi(k)

σ2
i (k) +

∑
l 6=i |Hil(k)|2Pl(k)

. (2.2)

Where Hii(k) is the direct channel gain of user i at tone k. Hil(k)
is the crosstalk gain from line l to line i at tone k, and Pi(k) is the
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power transmitted by line i. The background noise variance of user i
at tone k is denoted by σ2

i (k). It is assumed that a PSD mask and a
total power limitation are imposed to each user, so the problem may
be stated as:

max P

K∑

i=1

ωiRi (2.3)

Subject to






K∑

k=1

Pi(k) ≤ Pt

Pi(k) ∈ [0, Pmax(k)]

where P is a K×U matrix where each row correspond to the the power
allocation at a tone k: P(k) = [P1(k), P2(k)...PU(k)]. The weighting
coefficients ωi are fixed parameters in the problem and supposed to be
defined by external considerations on user’s priorities.

2.3 Balanced Capacity

Due to the FEXT crosstalk, the near far problem may occur in several
situation in DSL systems. In DownStream (DS), the near-far problem
will occur only if in the same binder there is a mix between lines served
by the central office (CO) and lines served by an optical network unit
(ONU) located closer to the users. Typically, the signal transmitted
on the ONU line will be strong in the DS case, while the signal of the
CO lines will be attenuated due to the long distance from the CO. The
strong signal of the ONU line will cause an important crosstalk on the
CO lines thus limiting their bitrates, while the attenuated signals of
the CO lines would cause a marginal crosstalk on the ONU line that
continues to transmit at nearly its maximal bitrate. In the UpStream
(US), the near far problem is caused by the coexistence of long lines
and short lines in the same binder. Even if all the lines are served by
the CO, in the US case the short lines would have the same effects
that the ONU lines have in the DS.

To prevent the near far problem where some users transmit at nearly
their maximal rates, while others transmit at a zero or a very low
rates we propose to apply the "Balanced Capacity" concept on the
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DSL systems. Balanced Capacity (BC) is defined as a situation where
Ri/Ri,max is a constant for all users i, where Ri is the bitrate of user i
in the presence of crosstalk, and Ri,max is the single user bitrate, i.e. it
is the maximum achievable bitrate by user i, this happens when line i
is free from interference. The concept of BC corresponds to a specific
point of the capacity region boundary where the coexistence with the
other users has the same relative cost for every user. Any point on the
border of the capacity region can be achieved by maximizing

∑U
i ωiRi

with the appropriate set of ωi, for
∑K

i ωi = 1 and all ωi being positive.
In order to find the BC rates, one should find the appropriate values
of ωi that correspond to the BC point. The optimization problem now
can be formulated as :

max P

K∑

i=1

ωiRi (2.4)

Subject to






R1 = γiRi∑K
k=1 Pi(k) ≤ Pt

Pi(k) ∈ [0, Pmax(k)]

where for each user i we have γi = R1,max/Ri,max. User 1 has been ar-
bitrarily selected as reference user. We can see that the BC is included
in the optimization problem by the constraints R1 = γiRi.

Solving problem (2.4) can be implemented by means of two loops as
presented in Fig.2.1. The first loop has as target to search for the
weighting factors corresponding to the BC point. The second loop
aims at solving problem (2.3), using traditional or improved DSM
algorithms, for fixed ωi. The search for ωi that correspond to BC can
be done using the following procedure. Let dbc,i = R1 − γiRi. At
iteration t of the outer loop, the estimates of ωi, denoted by ω

(t)
i , are

updated according to

ω
(t+1)
i = ω

(t)
i + αbc dbc,i, (2.5)

where αbc is a small positive correction step. So if γiRi exceeds R1,
the weighting factor ωi associated with Ri will decrease, and the op-
timization at iteration t + 1 will result with a smaller Ri than that of
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BC Finding Algorithm

1. init γi = R1,max/Ri,max for i = 2 : U

2. init ω
(t=0)
i = 1

U

3. repeat until all |dbc,i| < ε

• (inner loop):

– Solve (2.3) for fixed ωi

• dbc,i = R1 − γiRi

• ω
(t+1)
i = [ω

(t)
i + αbc dbc,i]

+ for i 6= 1

• ω
(t+1)
1 = [1 −∑U

2 ω
(t+1)
i ]+

• ω
(t+1)
i = ω

(t+1)
i /

∑
i ω

(t+1)
i for all i

Figure 2.1: BC algorithm with two loops

iteration t. The opposite would happen R1 exceeds γiRi. As ωi must
be positive, negative ωi are forced to zero. In all cases ω1 is forced to
[1 −∑U

2 ωi]
+.

2.4 Optimization Algorithms Review

In this section we will review several optimization algorithms, some
of these algorithms were proposed for DSM (OSB, ISB), others are
general optimization algorithms (Newton-Raphson, gradient) that will
be adopted for DSM application.

2.4.1 Review of OSB and ISB

Due to the presence of crosstalk, the objective function in (2.3) can
be seen as a difference of two log functions which yields an NP hard
non convex problem. Paper [43, 44] try to solve this problem globally
by introducing the dual function to relax the power constraints. The
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Lagrange function of problem (2.3) is given by:

g(λ,P) =

U∑

i

ωiRi − λi(

K∑

k=1

Pi(k) − Pt) (2.6)

where λ = [λ1, ...λi, ...λU ] and each λi represents a Lagrangian multi-
plier. For fixed λ, the function f is defined as:

f(λ) = maxP g(P). (2.7)

The dual problem becomes:

minλ f(λ)

Subject to λi ≥ 0. (2.8)

To solve problem (2.8) both OSB and ISB propose a double loop
iterative procedure. An outer loop searches for the appropriate λ that
minimizes f(λ) to meet the power constraints. And for each set of
fixed λi, an inner loop maximizes g(P) with respect to P. A simple
sub-gradient algorithm was proposed in [30, 44] for finding λ in the
outer loop. The search for λ was improved for better convergence
in [48]. Examining g(P) shows that for fixed λ there is no coupling
between the tones k as

∑U
i λiPt becomes a constant which no longer

affects the optimization. Hence the optimizations can be carried out
per tone. This makes the complexity linear in function of K. For each
tone, ie for the inner loop optimization, the non-convexity property
holds. So, to solve the tone wise optimization, OSB has been proposed
where an exhaustive search over all the possible power allocations in a
tone k is implemented. This renders the complexity exponential with
U .

To reduce the complexity, ISB has been put forward. An exhaustive
"line search" is performed over the power of individual users instead of
a total exhaustive search. For each tone k, the power of (U − 1) users
is fixed and an exhaustive search is performed over the power Pi(k)
of the remaining users to maximize g(P). This procedure is repeated
iteratively over all users till a constant power allocation is reached.
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2.4.2 Successive Optimization

In DSL systems, there is a strong correlation between adjacent sub-
channels. This correlation holds for both crosstalk and direct chan-
nels where both empirical and practical channel models show that
adjacent tones have a very similar channel gain. Due to this fact we
can conclude that the optimization problem at a tone k + 1 is very
close to optimization at tone k. Thus the optimum value P(k) =
[P1(k), P2(k)...PU(k)] that represents the power allocation found at
tone k (with Pi(k) is the power allocated to user i) is very close to
P(k + 1) the optimal solution at k + 1.

In this chapter, we propose the use of successive optimization (SO) as
a method of enhancement of DSL algorithms. To use the SO: For each
tone k+1 we start the search over the power with with the result found
at the previous tone P(k). This simple procedure is able to speed up
the convergence of typical DSM algorithms as it reduces significantly
the number of iterations needed for the optimization. SO can also be
used to propose gradient algorithm types for DSM applications.

2.4.3 Gradient Algorithm

In gradient algorithms, and in order to maximize the objective func-
tion around the point P(k), one should take steps proportional and of
the same direction as the gradient ∇g[P(k)]:

P(t)(k) = P(t−1)(k) + α∇g[P(t−1)(k)] (2.9)

Where i is the iteration index, and α is a positive small step size. In
this case (α > 0), the gradient is called gradient ascent or steepest
ascent. The steepest ascent procedure guaranties the convergence to-
ward the nearest local optimum that lies in the proximity of the initial
point P0(k). In the case of convex optimization, the steepest ascent
(SA) algorithm will almost certainly find the global maximum, how-
ever if the optimization is a non convex one, SA may converge into a
poor local optimum. However, when coupled with SO, the gradient
algorithm can be used for the optimization of DSL systems, even if
the optimization is suffering from multiple local optima.
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As it was previously shown, the optimum power allocations at two
adjacent tones (P(k) and P(k+1)) are at vicinity of each others. The
vector P(k + 1) is considered to be at least a local maximizer of the
objective function g(P) at the tone k + 1. This means that g(P) will
be typically strictly concave in the neighborhood of P(k + 1). Since
P(k) lies in this neighborhood, initializing the optimization with P(k)
put us in good situation to use gradient type algorithms.

2.4.4 Newton Raphson

Newton Raphson method approximate the objective function around
P(k) by a quadratic function. So according to this method, the cor-
rection applied to vector P(k) at iteration t is given by

P(t)(k) = P(t−1)(k) −
(
∇2g[P(t−1)(k)]

)−1 ∇g[P(t−1)(k)] (2.10)

where ∇2g[P(t−1)(k)] is the Hessian of the Lagrange function g, evalu-
ated for P(t−1)(k) and ∇g[P(t−1)(k)] is the gradient at the same value.
NR method leads for a maximum when the Hessian matrix is negative
definite. This means that NR works only in a strictly convex region,
thus it is essential to couple NR method with SO. Even when SO is
implemented with NR method, it may happen that the initial guess
proposed is not close enough to the optimum value. This can be de-
tected when the Hessian is non-negative definite. In such a case the
NR method can no longer be used. Therefore we resort to a gradi-
ent method for a few iterations, until the Hessian becomes negative
definite.
NR Complexity The complexity of the Newton-Raphson method is
mainly given by the inversion of the Hessian matrix. The complexity
of a matrix inversion using Gaussian elimination is in the order of
O(U3) where U is the total number of users. The complexity of the
line search method is in the order of O(U2Gp), where for each user,
at each possible power allocation for this user, we have to calculate
the capacity for all the users (U times). Gp corresponds to the grid
search, it is equal to the total number of possible power allocations for
each user. In DSL systems the number of interfering users is usually
small (typically under 10), so for small step size in the grid search
(meaning good precision), the proposed method will exhibit a large
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gain in complexity. For example for K = 10, and for Gp = 102 the
NR complexity is O(103) while that of LS is O(104).
The Hessian inversion required for the NR method can be seen as draw
back for this procedure. Thats why we propose next a quasi optimal
steepest ascent algorithm that requires no matrix inversion.

2.5 Optimal Steepest Ascent Algorithm

In this section, we propose to implement an optimal steepest ascent al-
gorithm for DSM optimization. Unlike the normal gradient algorithm
that remains in the region of the nearest local optimal, as it simply
make small correction steps in the direction of the gradient. Optimal
SA actually finds the optimal value in the direction of gradient at each
iteration. This property gives the optimal SA the ability to leave the
region of a local optimal into the region of a better local or even global
optimal.
For optimal steepest ascent the correction step α corresponds to αm

which is given by:

αm = maxα g
(
P(k) + α∇g[P(k)]

)
(2.11)

Thus at each iteration, the optimal SA searches for the step size αm

that maximizes the objective function in the direction of the gradient.
As in (2.3), problem (2.11) is a non convex problem. One way to
find αm is to find all the critical points and then testing them for
optimality. To find all the critical points, one should find all the
points α that satisfy the equation:

∂

∂α
g
(
P(n) + α∇g[P(n)]

)
= 0 (2.12)

Defining the elements of ∇g[P(k)] by:

Gi(k) =
∂

∂Pi
g[P(k)]

Equation (2.12) can be rewritten as:

U∑

i

ω′
i(k)

(ηi(k) + α)(µi(k) + α)
+

U∑

i

λiGi(k) = 0 (2.13)
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with the terms:

ω′
i(k) = ωi(k)

bi(k)ci(k) − ai(k)di(k)

di(k)(ci(k) + di(k))
(2.14)

ηi(k) =
ai(k) + bi(k)

ci(k) + di(k)
(2.15)

µi(k) =
bi(k)

di(k)
(2.16)

ai(k) = |H|2ii(k)Pi(k) (2.17)

bi(k) =

U∑

l 6=i

|H|2il(k)Pl(k) + σi(k) (2.18)

ci(k) = |H|2ii(k)Gi(k) (2.19)

di(k) =
U∑

l 6=i

|H|2il(k)Gl(k) (2.20)

Fig.2.2 shows a typical plot of the LHS of equation (2.13) in func-
tion of α. The different asymptotes shown in Fig.2.2 corresponds to
α = −ηi(k) or α = −µi(k). Since α must be strictly positive, we are
only concerned about negative ηi and µi.

Let A1=min(-µi(k),-ηi(k)) for all negative µi(k) and ηi(k). Since the
channel gains are strictly positive, it can be easily shown that for
α ≥ A1 at least one element of the vector P(t)(k) = P(t−1)(k) +
α∇g[P(t−1)(k)] must be negative. In practice these negative power
components correspond to the lines being not active at the given tones.
Thus if the optimum value requires transmitting powers on all lines,
αm should be typically between 0 and A1. To find αm between 0 and A1

a hyperbola was used to approximate (2.13) between these two points.

The model y = al
x+A1

+ Cst is found to give good results. Parameters
al and Cst can be calculated using two values of equation(2.13) (In
the simulation equation (2.13) is evaluated arround 0 and A1/2). The
approximate value of αm will be given by α′

m = −al/Cst − A1. An-
other hyperbolic approximation near α′

m may be done to improve the
solution.
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g
(
P, α

)
in function of α

An optimum value may exist for αm larger than A1. In this case the
negative resultant power must be set to null which results in a new
optimization with a lesser number of active lines. To check for opti-
mality for each positive asymptotes replace the negative power with
zeros and get the optimal value for the remaining active lines.

2.6 Enhanced ISB

In this section we will present several techniques to enhance the per-
formance of ISB, some of these techniques may be applied to a variety
of DSM optimization algorithms.

2.6.1 Complexity Reduction

In this section we describe an algorithm that maximizes the objective
function g(λ,P) at tone k with respect to Pu(k). The power allocation
at the other U − 1 users is considered constant. This algorithm tries
to find directly the optimum by searching the critical points at which
the gradient equal to zero. This algorithm replaces the exhaustive line
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search proposed in ISB for the inner loop. It reduces the complexity
considerably.

2.6.1.1 Partial Derivative Approximation

A simple way to perform the optimization of g(λ,P) at tone k with
respect to Pu(k) is to find all the roots of the derivatives.

∂g(λ,P)

∂Pu(k)
= 0. (2.21)

The partial derivative of g(λ,P) with respect to Pu(k) is given by

∂g(λ,P)

∂Pu(k)
=

ωu/ ln(2)

Pu(k) + Cu

+
∑

l 6=u

ωl/ ln(2)
( 1

Pu(k) + Cl1

− 1

Pu(k) + Cl2

)

− λu (2.22)

where Cu, Cl1, Cl2 are defined as follows:

Cu =

∑
i6=u |Hui(k)|2Pi(k) + σ2

|Huu(k)|2

Cl1 =

∑
i6=u |Hli(k)|2Pi(k) + σ2

|Hlu(k)|2

Cl2 =

∑
i6=u,l |Hli(k)|2Pi(k) + σ2

|Hlu(k)|2 . (2.23)

We notice that ∂g(λ,P)
∂Pu(k)

is the sum of different hyperbolas of the form y =
a

Pu(k)+C
, where −Cu, −Cl1, −Cl2 represent the different asymptotes of

these hyperbolas. These asymptotes are all negative. Since the direct
channel gain |Huu(k)|2 is much bigger than the crosstalk channel gains
|Hlu(k)|2 we can conclude that Cu is much smaller than the other
asymptotes. So for 0 < Pu(k) < Pmax(k) and when Pmax is low,
the partial derivative ∂g(λ,P)

∂Pu(k)
is mainly influenced by the hyperbola

corresponding to Cu. Thus we may assume that it is monotonically



32 Enhancement techniques for DSM algorithms

decreasing over the search interval and ∂g(λ,P)
∂Pu(k)

may be approximated
by the hyperbolic model

∂g(λ,P)

∂Pu(k)
∼= a

Pu(k) + C
+ Ct. (2.24)

Fig. 2.3 illustrates the hyperbolic modeling of the partial derivative,
where the solid blue line represents the real values of a partial deriva-
tive, while the red doted line represents a hyperbolic model around
zero.
If we detect that the partial derivative is not monotonically decreasing
we may use the model

∂g(λ,P)

∂Pu(k)
∼= a

Pu(k) + C
− d

Pu(k) + D
+ Ct (2.25)

where a, C, d,D, Ct are constant parameters.

2.6.1.2 Root Finding Algorithm

This paragraph describes an algorithm that is able to find the root
of (2.21) using only 4 realizations of the partial derivative. Thus the
complexity of the ISB is reduced by a factor of G/4, where G is the
total number of grids used in the exhaustive line search algorithm over
the interval [0, Pmax(k)].

1. First compute ∂g(λ,P)
∂Pu(k)

at 4 equidistant points p1, p2, p3, p4 in the
interval [0, 0.5Pmax(k)] using the exact formula 2.22. The values
of ∂g(λ,P)

∂Pu(k)
at these points are denoted by A1, A2, A3, A4.

2. If the 4 realizations of the partial derivative prove to be mono-
tonic, approximate ∂g(λ,P)

∂Pu(k)
by model (2.24).

• If A1 and A3 are both positive use the points p1, p3, p4 to
find a, C, and Ct.

• If A1 and A3 are both negative or of different signs, use the
points p1, p2, p3 to find a, C,and Ct.

• Find points P c
u(k) for which the model is equal to zero.
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Figure 2.3: Gradient given by exhaustive search vs its approxi-
mation around zero

3. If the 4 realizations are not monotonic approximate ∂g(λ,P)
∂Pu(k)

by
model (2.25).

• Use the points p1, p2, p3, p4 to find a, C, d, and Ct.

• Find the roots P c
u(k) for which the model is equal to zero.

• For model (2.25) 2 roots are found. Choose the root that
maximizes the objective function.

4. If a is negative, the maximum is either 0 or Pmax(k).

5. If a is positive, the maximum is Pu(k) = P c
u(k)

6. If a is positive, to improve the solution we may revisit the mod-
eling around Pu(k) = P c

u(k).

• Compute ∂g(λ,P)
∂Pu(k)

= A5 at Pu(k) = P c
u(k).

• If P c
u(k) > p4, p1 = P c

u(k) and A1 = A5
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• If P c
u(k) < p4, p4 = P c

u(k) and A4 = A5

• Go to 2.

2.6.1.3 Complexity

The main advantage of this method with respect to existing ISB al-
gorithm is its low complexity. The complexity of the exhaustive line
search method used in conventional ISB is in the order of O(GpU

2).
The root finding algorithm described above requires for each user, the
computation of the gradient (U times operation), for at least 4 dif-
ferent power allocations, resulting in a complexity of order O(4U2).
Thus the gain in complexity is of the order Gp/4.

2.6.2 Optimization Improvement

In the previous section we presented an algorithm to reduce the overall
complexity of ISB. However, the described algorithm does not enhance
the outcome of the optimization itself. This section proposes two
techniques to improve the optimization: The additional starting point
(ASP) and the successive optimization.

2.6.2.1 ASP

The ISB algorithm is only guaranteed to reach a local optimum. The
objective function (2.6) is known to have many local optima. Due
to its iterative structure (iteration across the users), the result of the
algorithm depends on the initial point and there is a high chance
that the ISB might fall on a local optimal and not on a global one.
One technique to overcome this difficulty is to use a multi start point
technique. In this technique the optimization algorithm is run many
times. Every time, a different initial guess is used, thus increasing the
chance to find the global optimum or at least to reach a solution closer
to this global optimum.

As described in section 2.4.1, the ISB optimization is decoupled over
tones. So instead of repeating the entire algorithm several times with
different initial points, we propose to start with a different initial guess
at each tone. Thus we can apply a multi start points procedure within
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a single realization of the algorithm. The use of different initial points
at the different tones results in a perturbed power allocation over the
tones. However combined techniques of successive optimization and
multi start points can provide a smoothening effect and improve the
optimization furthermore.

2.6.2.2 Double Successive Optimization

The reason behind the time sharing property described in [44] is the
strong correlation between adjacent sub-channels. This correlation
holds for both crosstalk and direct channels where both empirical and
practical channel models show that adjacent tones have a very similar
channel gain. In this chapter, we already used this observation to
propose gradient type algorithms based on successive optimization:
for each tone k+1 we start an optimization based on Newton-Raphson
or on steepest ascent with the result found at the previous tone P(k).
This simple procedure was proposed to speed up the convergence of
existing algorithms as it reduces significantly the number of iterations
needed for the inner loop. The same operation may be used with line
search (ISB) instead of Newton-Raphson.

The drawback of successive optimization is that it may fall in the re-
gion of a local optimum for tone k. And due to the successive iteration
it may get stuck in this region for several tones before reaching a bet-
ter region. In this section we solve this problem by proposing a double
successive optimization:

Forward Successive Optimization With these considerations in
mind, successive optimization is used to smoothen the result of the
ASP technique. At each tone k + 1 the optimization is done twice.
The first optimization is started with an initial guess P(k) (successive
optimization). The second optimization is started with an initial guess
P(k) + E(k + 1) (which explains the ASP name). E(k) is a random
vector of the same dimension as P(k) and which varies with k. The
objective of vector E(k) is to modify the initial guess P(k) so that the
optimization start from another region. This avoids the optimization
from falling into the regions of a poor local optimum over large period
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of tones. At the end the outcome of the two optimizations is compared
and the best one is kept.

Reverse Successive Optimization The optimization proposed ear-
lier is a forward successive optimization, where we start at tone 1 and
we end at tone K. One way to improve the result further is to perform
a reverse or backward successive optimization. This one is performed
after the forward successive optimization is finished. The reverse one
starts at tone K − 1 and moves backward to tone 1. At each tone
k the optimization is performed with an initial guess P(k + 1). The
outcome is compared to the previous result (obtained by the com-
bined "ASP"/"Forward Successive Optimization" and the best power
allocation is kept.

Final Procedure Overall, the ISB algorithm is implemented 3 times
for each tone. One in the forward successive mode, initialized with
P(k − 1); one in the ASP technique initialized with P(k − 1) + E(k);
and one in the reverse successive mode, initialized with P(k +1). The
best solution is kept in the end.

2.7 Numerical Results

In this section we report the numerical results obtained for both BC
algorithm and for the enhancement of DSM algorithms. The direct
channel gain is considered to be the attenuation loss caused by the
twisted pairs, while the crosstalk channels are modelled by the 1%
worst case formula [7], the spacing between the tones is 4.3 kHz. We
start by testing the BC algorithm using ISB and NR for the DSM
optimization, then we compare the optimal gradient algorithm with
ISB, and NR, for the sum rate criterion, and finally we report the
results of the enhanced ISB algorithm.

2.7.1 Balanced Capacity

We use the BC algorithm in the case of FEXT crosstalk, with 3 users
having different distances from the CO or ONU:
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Users user 1 user 2 user 3
Distances 7 Km 500 m 3 Km

The simulation is done for 128 tones, with tone zero corresponding to
258.75 Khz.

When applying the BC algorithm with a line search in the inner loop
as suggested in [30], each search is performed on the interval [-50,-
10] dBm/Hz with 0.5 dBm/Hz step. The algorithm usually converges
after about 5 iterations to a 3% accuracy as shown by Fig.2.4
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Figure 2.4: BC algorithm using line search

Now we run the BC algorithm using the NR as the inner loop. The
step used for quantizing the possible power values is 10−4Pmax (which
correspond to −50 dBm/Hz, i.e. the minimal allocation in the LS
case). In this case, the quantization is done in linear scale, with a fixed
step. The accuracy is thus higher than with the logarithmic step taken
in the LS case. The evolution of the algorithm along the iterations
is given in Fig. 2.5. The algorithm converges after 5 iterations to 3%
accuracy.



38 Enhancement techniques for DSM algorithms

The convergence of the outer loop (BC point search) is highly de-
pendent on the choice of the correction step µ. If µ is small the
convergence is slow, and the algorithm takes a lot of iterations before
converging to an acceptable accuracy. Inversely when µ is large, the
convergence is fast but the accuracy is lower. The solution used here is
to use a variable correction step, starting with a high µ and reducing
it as the number of iteration get bigger.
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Figure 2.5: BC algorithm using Newton-Raphson

The comparison between the criterions of maximum sum capacity, BC,
and transmitting at maximum PSD is done with respect to Ri/Ri,max

in Table 2.1, and with respect to the rates Ri, and sum rates
∑

i Ri

in Table 2.2. The interference from user 2 on user 1 and 3 is obvi-
ously seen in the maximum PSD strategy where user 1 and 3 can only
transmit below 30 and 55 % of their maximum capacities respectively.
On the contrary, user 2 does not suffer from much interference from 1
and 3. With the maximum sum rate strategy, user 2 has the highest
percentage of its maximum capacity. This is due to its strong channel
gain. User 1 is still strongly affected by crosstalk and can only trans-
mit at about 50% of its maximum capacity. This issue is solved with
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the BC criterion which provides a balanced solution where all users
send at almost 70% of their maximum capacities.

Inner Loop Strategy User 1 User 2 User 3

LS
max sum rate 0.5364 0.7648 0.7027
BC concept 0.6840 0.6894 0.6795
max PSD 0.2896 0.9659 0.5590

NR
max sum rate 0.5366 0.7643 0.7030
BC concept 0.6835 0.6894 0.6798
max PSD 0.2896 0.9659 0.5590

Table 2.1: Comparison between R/Rmax for sum rate maximiza-
tion, BC, and maximum PSD results

Algo Strategy User 1 User 2 User 3
∑

i Ri

LS
max sum rate 4.777 12.393 10.0456 27.214
BC concept 6.091 11.171 9.713 26.976
max PSD 2.579 15.651 7.991 26.221

NR
max sum rate 4.779 12.385 10.050 27.214
BC concept 6.087 11.172 9.718 26.976
max PSD 2.579 15.651 7.991 26.221

Table 2.2: Comparison between capacities in Mbps for sum rate
maximization, BC, and maximum PSD results

Table 2.1 & 2.2, show that the proposed NR algorithm provides re-
sults similar to the line search method in all cases. However the NR
algorithm complexity is much smaller, as explained in the previous
section. Figures 2.6 and 2.7 show the power allocation obtained by
both the LS and the NR methods for the BC case. Once again, it is
clear that the results of both methods are very close. Moreover, the
figures confirm that the power allocation has minimal changes between
two adjacent tones, so that we are in an appropriate situation to apply
the Newton-Raphson and to speedup the convergence significantly.

In order to evaluate the complexity gain of the NR algorithm, several
simulations have been done with different numbers of users. The line
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Figure 2.6: Power allocation using Newton-Raphson step direc-
tion
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Figure 2.7: Power allocation using Line Search

lengths have been selected randomly in the interval [500 4500] m. In all
cases, the BC algorithm has been applied with both methods (LS and
NR). We only investigate the last inner loop corresponding to the BC
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Inner Loop Strategy 3 users 5 users 10 users 15 users

Line Search

∑
i ωiRi 1380.3 2294.1 2201.3 2155.3

Execution Time 6.92 39.257 536.822 1067.595
Iterations 495 1288 8645 4569

Newton Raphson

∑
i ωiRi 1380.3 2294.3 2202.6 2156.1

Execution Time 0.221 0.671 3.695 8.112
Iterations 194 829 1763 1461

Table 2.3: Evolution of execution time, and iterations with the
number of users for different inner loops

point. Table 2.3 shows the normalized weighted sum rate (
∑

i ωiRi) in
bps/Hz obtained by the algorithm, the execution time of the last inner
loop in seconds, and the corresponding number of iterations. Fig.2.8
shows the total complexity C for the different methods, given as the
number of iteration times the order of complexity (Pmax

δP
K2 for LS and

K3 for NR). The proposed NR method is significantly less complex.
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Figure 2.8: Complexity vs users number
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2.7.2 Optimal Steepest Ascent

In this part we compare the numerical results obtained for the optimal
SA, NR, and ISB algorithms. The comparison is made for the sum rate
criterion, the number of tones is increased to 1024 and the algorithms
are run for the following scenario: A system of 7 interfering users
is considered, where the users have the following distances from the
CO/ONU:

Users user 1 user 2 user 3 user 4 user 5 user 6 user 7
Distances 4.8 km 400 m 3 km 2.4 km 4.5 m 3.8 km 2.3 km

The simulation is done for 1024 tones, with tone zero corresponding
to 258.75 kHz. A PSD mask of -30dBm/Hz is imposed over all tones.
The total power allowed per user is 20 dBm.

Number of users 3 users 5 users 7 users
SA 21542 24007 26944
NR 20562 23885 26896
ISB 21516 24029 26833

Table 2.4: Sum capacity obtained for different algorithms in
bit/DMT symbol

The simulations are done in the presence of the first 3 users only, then
for the first 5 users, and finally for all 7 users. Table 2.4 gives the
sum capacities for the three simulations using different optimization
algorithms. Table 2.5 gives the average execution of internal loops
required for each one of these simulations.

Number of users 3 users 5 users 7 users
SA 1.4 3.7 7.6
NR 1.8 4.3 11
ISB 42 120 240

Table 2.5: Execution time for different algorithms in seconds

The ability to test for different values of α in the quazi-optimal steep-
est ascent guaranties that at each step the algorithm provides a near
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global optimal solution in the gradient direction even when it initial-
izes at a point far from optimal or when we have multiple optimums.
Thats why in the two scenarios explained above the SA algorithm pro-
vided near optimal results with relatively smaller complexity.

In the Newton-Raphson case the algorithm tends to follow the local
optimum that lies at vicinity of the initial guess. The argument that
"adjacent tones’ optimums are close to each others and lie in the same
region" works reasonably well, but over a large number of tones the
global optimum may slip away from the initial optimal region while
the NR algorithm is still stuck in it with local optimums.

2.7.3 Enhanced ISB Algorithm

Now we test the ISB algorithm for the same scenario set for the op-
timal SA. Table 2.6 compares the different versions of the ISB algo-
rithm. ISB-LS refers to the original ISB algorithm with line search
as the interior loop. ISB-LS with SO represents the original ISB al-
gorithm with successive optimization. From the table we can see that
the successive optimization speeds up the convergence at the expense
of bit-rate. As explained in section 2.6.2.2, successive optimization
increases the chance of staying in a local optimum region for a large
range of tones. The enhanced ISB algorithm reduces considerably the
execution time to less than a minute, and at the same time increases
the bit-rate.

Algorithm ISB-LS ISB-LS with SO Enhanced Fast ISB
Sum-rate 21877 21979 22340

Execution time 14.7 min 3.65 min 40 sec

Table 2.6: Comparison of the different ISB algorithms

Fig. 2.9 plots the sum capacity over the tones for the three stages
of the enhanced ISB algorithm. As expected the ASP algorithm has
several ups and downs for the different tones. The forward successive
optimization (FSO) algorithm manages to smoothen the capacity and
to improve the optimization. However we can see, in the example
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given, that the FSO get stuck in local optimums for the tones 136−284.
It only reaches a better optimum at the tone n = 284. The advantage
of using the reverse successive optimization is clear. When performing
the RSO the optimization at tones 136 − 284 can be improved from
the use of the solution at n = 284 as starting point.
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Figure 2.9: Total sum capacity for the different stages of the
enhanced ISB algorithm

2.8 Conclusion

In this chapter we have presented an algorithm that is able to find
the "Balanced Capacity" point in a DSL system environment. Fur-
thermore, for fixed weighting (inner loop) coefficients we have shown
how to take advantage of the similarity of the channel gains between
two adjacent tones by using a simple technique based on Successive
Optimization. This technique allows the implementation of fast gra-
dient type algorithms for the DSL spectrum optimization. It may
also be used to speed up the convergence of the existent state of the
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art algorithms such as ISB. We have also proposed several methods
for the enhancement of the ISB algorithm. For example a method
based on a gradient approximation was used to reduce the complexity
of the ISB algorithm. We have also shown how to improve the per-
formance of ISB using multi start points techniques. Finally, it was
shown that a further performance gain can be obtained by coupling
the multi start points with a double successive optimizations (both
forward and reverse). These techniques allow the ISB algorithm to
avoid local optimums on the different tones, which enhances the over-
all optimization.
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Chapter 3

Crosstalk Channel Gain

Estimation

3.1 Introduction

The main idea behind dynamic spectrum management (DSM) [7]-[39]
is to establish a coordination between different DSL systems and lines.
The objective of this coordination is to reduce the level of interference
between the different lines and to increase the overall bit rate. This
coordination between interfering lines, can be done on the signal level
(level 3), or on the spectrum level (level 2). While level 3 DSM is com-
plex and requires major changes to the current DSL systems, level 2
DSM is relatively easy to implement with the current modem designs,
and it requires minimal changes to the standards.

In literature, level 2 DSM can be applied by 2 types of algorithms:
distributed algorithms such as IWF [40] and ASB [41], and centralized
algorithms such as OSB [43], ISB [30, 44]. In distributed algorithms,
each modem tries to optimize it is own spectrum to achieve higher
bit rates, no exchange of information between the different modems is
assumed, and each modem relies on the knowledge of its direct channel
gain, and the ambient SNR per tone to achieve the optimization. In
centralized algorithms the coordination between the different lines is
necessary, the optimization is done for the entire DSL system, where
it takes into account the direct channel gains and the received and
caused crosstalks of each modem, the optimization find the optimal
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power spectrum density (PSD) shape that improves the entire system
capacity. Centralized DSM algorithms usually make 2 assumptions :

1. The existence of a spectrum management center where the al-
gorithm will run and allocate a PSD for each modem.

2. The total knowledge of both direct and crosstalk channels of the
DSL system.

From the two assumptions above, it is clear that in order to implement
a centralized level 2 DSM algorithm, one should first proceed with an
estimation of the crosstalk channel gains and then use any of the
existing centralized algorithms to achieve the optimization.

This chapter deals with the estimation of the crosstalk channel gains
for DSM level 2 applications. Crosstalk channels estimation techniques
exist in the literature. In [49] a non-modem based technique is pro-
posed, this technique correlates the noise PSD on a given line with a
basis set of known DSL systems’ PSD in order to determine the most
dominant disturbers. In [50] the establishment of a new third party
site was proposed, this site collects the transmitted and received sig-
nals on each DSL modem, a correlation process between these different
signals is performed in order to remove the time difference between in-
put and output signals, and then a least square estimator is applied to
find the crosstalk coupling function. Paper [51] takes advantage of the
initialization of new lines, where during initialization a pseudo random
training sequence is used for the direct channel identification. In this
method, the victim’s receiver detects the training sequence, and then
uses it to perform a least square estimation of the new crosstalk chan-
nels. In [52] a blind method for channel tracking is proposed, where
the statistics of the different constellations is used to apply an EM
algorithm, however the initial channel estimation is done using train-
ing sequences. In [53], a multi rate systems assumption is taken, thus
different crosstalkers may have different sampling rates, blocking tech-
niques are used to rend the crosstalk channels time invariant, then a
least square estimation based on known pilot sequences is used. Most
of these proposals requires modifications to the existent standards,
and a modem based estimation.
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In [54] the authors uses the SELT procedures (single-ended line test-
ing) to measure the crosstalk PSD at the different lines of the DSL
systems. From the measured PSD they deduce the crosstalk channel
gain at the different frequencies. This procedure respect the DSL stan-
dards, however it requires a SELT testing over all DSL lines, during
which only one line can transmit useful data.

In this chapter we assume the existence of a monitoring system that
observes the DSL lines over a long period of time. In this monitoring
system, the main events and the key indicators about the different
DSL lines are stored. Thus information about the SNR, the time of
connection/disconnection of each user, the noise level and the trans-
mitted signal power level are supposed to be available. Using these
information we propose a crosstalk gain estimator based on the SNR
changes at the time of a connection/disconnection of a user. This es-
timation can be improved furthermore using a time domain model for
the crosstalk channel between the different lines. This time domain
model estimation plays the role of a compressing technique as well.

The chapter organization is as follow: Section 3.2 describes the system
model. Section 3.3 describes the proposed channel gain estimator.
Section 3.4 gives the confidence interval of the estimates. Section 3.5
deals with the compression and enhancement of the estimator. The
simulation and numerical results are reported in section 3.6. Finally
in section 3.7 we conclude.

3.2 DSL System Model

We consider DSL systems using DMT. The channel may be decom-
posed in K parallel sub-channels, where K represents the total number
of tones. In a DSL system, and for lines served by the same DSLAM
( Digital Subscriber Line Access Multiplexer), the assumption that all
the lines are synchronous can be held. However this is not always true
where crosstalk caused by lines served by different DSLAMs may be
asynchronous. In this chapter we make the assumption that all the
lines of the system are synchronized, the received signal Yi of user i in



50 Crosstalk Channel Gain Estimation

sub-channel k is given by:

Yi(k) = Hii(k)Xi(k) +
∑

l 6=i

Hil(k)Xl(k) + ω(k) (3.1)

where Xi is the useful signal of user i, ω is the additive noise, Hii(k)
is the direct channel of user i for tone k, and Hil(k) is the crosstalk
channel from line l to line i for tone k. If the number of interfering
users is large, the crosstalk signal maybe approximated by a Gaussian
noise using the central limit theorem. From (3.1), one can deduce the
SNR at tone k:

SNRi(k) =
|Hii|2(k)Pi(k)∑

l 6=i |Hil|2(k)Pl(k) + σ2
ω(k)

, (3.2)

where Pi(k) and Pl(k) are the power transmitted by lines i and l
respectively. The variance associated with the background noise at
tone k is denoted by σ2

ω(k). The bitrate of user i can be evaluated by
the formula:

Ri =
∑

k

log2

(
1 +

1

Γ
SNRi(k)

)
, (3.3)

where Γ is the SNR gap.

3.3 Crosstalk Channel Gain Estimator

In the current DSL systems, the CPEs (customer-premises equip-
ments) periodically report the SNR per tone to the central office, this
SNR is averaged over a large number of DMT symbols. SNR measure-
ments can also be retrieved upon the request of CO (central office).
The crosstalk gain estimator proposed in this chapter mainly depends
on the reported SNR, it is thus essential to study the behavior of the
SNR estimation performed at the CPE.

3.3.1 SNR Estimator

For the synchronous case, where all the disturbing lines are synchro-
nized with the direct line, tone k is only affected by crosstalk caused



3.3 Crosstalk Channel Gain Estimator 51

by the same tone k of the other DSL lines, the analytical expression of
the SNR is given by (3.2). If we suppose an error free decoding of the
useful signals Xi(k) at the receiver of user i, assuming that the direct
channel Hii is known perfectly for the receiver (realistic assumption
under the current DSL standards [55]), the SNR estimator for line i
at tone k averaged over N DMT symbols can be written as:

SN̂Ri(k) =
|Hii|2(k)Pi(k)

1
N

∑N
n=1 |ωi,n|2(k)

, (3.4)

where ωi,n represents the crosstalk at line i plus the background noise
for DMT symbol n: ωi,n(k) =

∑
l 6=i Hil(k)Xi,n(k)+ωn(k), ωn(k) is the

background noise. The crosstalk power σ2
ωi

can be written as:

σ2
ωi

(k) =
∑

l 6=i

|Hil|2(k)Pl(k) + σ2
ω(k), (3.5)

where σ2
ω(k) is the power of the background noise at the tone k. As

|Hii|2(k)Pi(k) is supposed to be known, the study of the SNR leads to
the study of the noise variance estimator, which is a sample variance
as shown in (3.4).

3.3.2 The Noise Variance Estimator

From (3.4), we can rewrite the noise variance estimator σ̂2
ωi

as:

σ̂2
ωi

(k) =
1

N

N∑

n=1

|ωi,n|2(k)

=
|Hii|2(k)Pi(k)

SN̂Ri(k)
. (3.6)

When the number of interfering users is limited, the Gaussian approx-
imation of ωi can no longer be held, however the central limit theorem
can still be applied on σ̂2

ωi
where the estimation is being done over a

large number of DMT symbols N ( typically N > 100) in this case
we can assume that σ̂2

ωi
∼ N (σ2

ωi
, Var(σ̂2

ωi
)), where Var(σ̂2

ωi
)) can be

shown to be equal to:
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Var(σ̂2
ωi

(k)) =
1

N

(
∑

l 6=i

|Hil|4
(
E[|Xl|4(k)] − P 2

l (k)
)
)

+
1

N

∑

l 6=i

∑

p 6=i,l

|Hil|2(k)|Hip|2(k)Pl(k)Pp(k)

+
2

N

∑

l 6=i

|Hil|2(k)Pl(k)σ2
ω(k) +

2

N
σ4

ω(k) (3.7)

where E is the expectation operator. To use (3.7) we need to know a
priori the crosstalk channel gains, this is not available for all crosstalks
and for all the times. However, under the assumption that ωi follows a
Gaussian distribution (which is asymptotically true when the number
of interfering users is very large), the variance of σ̂2

ωi
can be computed

in function of σ2
ωi

:

Var
(
σ̂2

ωi

)
=

N∑

n=1

Var

( |ωi,n(k)|2
N

)

∼=
2σ4

ωi

N
. (3.8)

Where E [|ωi,n(k)|4] = 3σ4
ωi

is used (fourth moment of the central
Gaussian variable ωi,n(k)).

3.3.3 Crosstalk Lines Identification

The identification procedure described in this section assumes that
the monitoring system was in function for a long period of time. This
means that the system has acquired a database that includes events
such as connection/disconnection of a user or a power cutback on
a certain line, plus the corresponding SNR changes and the PSD of
the users/lines. The simplest way to identify the crosstalk lines is
to exploit the different events registered in the monitoring system to
estimate the crosstalk channel gains between the different lines.
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3.3.3.1 Connecting User

The straightforward approach to estimate the crosstalk channel gain
caused by a given line u, is to observe the SNR changes on the other
lines when user u is connecting/disconnecting: Let t1 be the time
at which user u is connecting to the network. The equivalent noise
present on a line i before and after t1 can be expressed as:

• When t < t1 the equivalent noise ω1 at tone k on line i is given
by:

ω1(k) =
∑

l 6=i

Hil(k)Xl(k) + ω(k) (3.9)

while the variance is:

σ2
ω1

(k) =
∑

l 6=i

|Hil|2(k)Pl(k) + σ2
ω(k).

• When t > t1, the additional interference caused by user u in-
creases the variance of the equivalent noise present on line i,
thus the SNR decreases. The new equivalent noise ω2 is given
by:

ω2(k) = ω1(k) + HiuXu(k) (3.10)

and the variance is:

σ2
ω2

(k) = σ2
ω1

(k) + |Hiu|2(k)Pu(k).

Now we may give an explicit expression of |Hiu|2 in function of
the noise variances:

|Hiu|2(k) =
σ2

ω2
(k) − σ2

ω1
(k)

Pu(k)
. (3.11)

To get an estimator of |Hiu|2, we use the method of moment [56],
which replaces the noise variance before and after t1 (σ2

ω1
and σ2

ω2
) by



54 Crosstalk Channel Gain Estimation

their respective samples variance:

|Ĥiu|2(k)=
1
N

∑N
n=1 |ω2n

(k)|2 − 1
N

∑N
n=1 |ω1n

(k)|2
Pu(k)

=
|Hii|2(k)Pi(k)

Pu(k)

(
1

SN̂R2(k)
− 1

SN̂R1(k)

)
. (3.12)

A similar procedure may be done if a user is disconnected or when the
power changes.
To be noticed that the knowledge of the direct channel gain |Hii|2
is not necessary, as we only need the ratio Hiu|2/|Hii|2 in order to
perform DSM level 2, however the knowledge of |Hiu|2 is needed for
later work in this chapter.

3.3.3.2 Estimator Performance

By approximating the estimation error of the noise variance by a Gaus-
sian noise, the estimator |Ĥiu|2 would be following a Gaussian distri-
bution. The variance of |Ĥiu|2 can approximated by:

Var
(
|Ĥiu|2(k)

)
=

2(σ4
ω2

(k) + σ4
ω1

)(k)

NP 2
u (k)

. (3.13)

From (3.13) we can conclude that the quality of the estimation de-
pends on the ambient noise including the crosstalk of the different
active lines. Different situations may occur, where for the same esti-
mation we may get a good results on one tone and a bad results on
another one depending on the background noise and the current active
lines.

3.3.3.3 Maximum Likelihood Combiner

The monitoring system proposed in this chapter is supposed to record
information for a long period of time. Different estimations can be
performed for the same crosstalk channel and for different conditions.
These estimations are considered to be independent and follow a Gaus-
sian distribution. In this case, the available estimates may be com-
bined using the following maximum likelihood combiner.
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|H̃iu|2(k) =

∑T
t=1 |Ĥ t

iu|2(k)/Var
(
|Ĥ t

iu|2(k)
)

∑T
t=1 1/Var

(
|Ĥ t

iu|2(k)
) . (3.14)

Where |Ĥ t
iu|2(k) represents the result given by estimation t and T is

the total number of estimations.

3.4 Confidence Interval for the Gain Esti-

mator

In this section we will define a confidence interval for the estimator
|Ĥiu|2 defined by (3.12). A confidence interval gives an estimated
range of values, with a given probability that this range of values
contains the real value of the estimated parameter. First we will start
by defining the relative error of the gain estimator (3.12) from which
we can deduce the confidence interval.

3.4.1 Relative Error of the Gain Estimator

The relative error of the noise estimator σ̂2
ωi

is defined as:

ρωi
=

σ̂2
ωi
− σ2

ωi

σ2
ωi

. (3.15)

While the relative error of the crosstalk gain estimator is given by:

ρHiu
=

|Ĥiu|2 − |Hiu|2
|Hiu|2

. (3.16)

The relative error ρHiu
can be rewritten as:

ρHiu
=

ρω2

σ2
ω1

− ρω1

σ2
ω2

1
σ2

ω1

− 1
σ2

ω2

. (3.17)
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If the relative error of the noise estimator are the same (ρω2
= ρω1

=
±|ρω1

|) we can find an upper bound on ρHiu
:

|ρHiu
| ≤

∣∣∣∣ρω1

1 + r

1 − r

∣∣∣∣ (3.18)

where r = σ2
ω1

/σ2
ω2

. From expression (3.18) it is clear that the up-
per bound on |ρHiu

| is limited by |ρω1
| as a lower level when r is

very large or very small, and infinity as an upper level when the ratio
r = 1. This means that when a crosstalk channel line is big enough to
cause an important rise or drop in the SNR as the interfering user con-
nect/disconnect, the relative error after the estimation of the crosstalk
channel caused by the interfering line would be small. On the con-
trary, when the crosstalk channel influence is small, it causes insignif-
icant changes to the SNR, and the relative error associated with the
crosstalk channel estimation would be very large.

3.4.2 Confidence Interval

From the assumption |Ĥiu|2 ∼ N
(
|Hiu|2, Var(|Ĥiu|2)

)
one can con-

clude that ρHiu
∼ N

(
0, Var(|Ĥiu|2)

|Hiu|4

)
. The probability that |ρHiu

| < a is

given by:

Prb(−a < ρHiu
< a) = erf



a
|Hiu|2√

2Var(|Ĥiu|2)



 (3.19)

where erf is the error function. From (3.19), and for a < 1, the
confidence interval can be defined as:

Prb

(
|Ĥiu|2
1 + a

< |Hiu|2 <
|Ĥiu|2
1 − a

)
= erf



a |Hiu|2√
2Var(|Ĥiu|2)



.

3.5 Compression and Error Smoothening

In the current DSL systems, the total number of tones can be very
large especially for VDSL systems, thus registering the values of all the
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crosstalk channels’ gain and for all tones would require huge amounts
of storage devices. In this section we propose a compression technique
that would limit the information to be stored for each crosstalk chan-
nels. The main idea behind this technique is that the different tones
of a crosstalk channels in the frequency domain represents a Fourier
transform of a finite impulse response (FIR) in the time domain. Usu-
ally the FIR can be represented by a small number of taps that are
limited to the length of the cyclic prefix (LCP ) of the DMT symbol.
Thus the estimates of a crosstalk channel gain at all the different tones
can be represented as the FFT of a time domain vector with limited
size.

The crosstalk channel gain as defined in this chapter is equivalent
to the power spectrum density of the crosstalk channels, thus the
time domain vector used for the compression procedure represent the
autocorrelation of the time domain crosstalk channel. This technique
has the double advantage of limiting the amount of information to be
stored on one hand, and of smoothening the estimation error on the
other hand as this technique incorporates estimates of different tones
together which has the effect of reducing the estimation variance.

Let Hiu = [Hiu(1)...Hiu(k)...Hiu(K)]T be the crosstalk channel be-
tween line i and line u in the frequency domain. We have Hiu =
WK×LCP hiu where W represents the FFT matrix and hiu is the time
domain representation of the crosstalk channel between the lines i
and u, the length of hiu is limited by the length of the cyclic prefix
(LCP ) with LCP << K. The gain of the crosstalk channel Hiu is
given by the vector: H2

iu
= [|Hiu|2(1)...|Hiu|2(k)...|Hiu|2(K)]T , let Riu

represents the autocorrelation of the vector hiu, we have that:

H2

iu
= WK×2LCP−1Riu. (3.20)

Since hiu represents a real time domain channel we can conclude that
Riu is real and symmetric around its center. The total length of Riu

is equal to 2LCP −1. The FFT matrix WK×2LCP−1 can be seen as the
combination of two matrices W1 and W2: WK×2LCP−1 = [W1 W2]
where W1 represents the first LCP columns of the FFT matrix while
W2 represents the last LCP − 1 columns.

The autocorrelation Riu can also be seen as the combination of two
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vectors Riu,1, and Riu,2: Riu =
[
Riu,1

TRiu,2
T
]T

where Riu,1 repre-
sents the first LCP elements of Riu, while Riu,2 represents the last
LCP −1 elements. Since the autocorrelation Riu is symmetrical on its
center we have that Riu,2 = [Riu,1(LCP −1)...Riu,1(1)]. We define the
matrix W2,m as the following; for each row corresponding to tone k
we have:

W2,m(k, :) = [W2(k, LCP − 1)...W2(k, 1) 0].

Now we can rewrite expression (3.20) as:

H2

iu
= WtRiu,1, (3.21)

where Wt = W1 + W2,m.

A least square (LS) estimator can be used to compress the estimated
crosstalk channel gain Ĥ2

iu
= [|Ĥiu|2(1)...|Ĥiu|2(k)...|Ĥiu|2(K)] into a

vector Riu,e of length LCP :

Riu,e =
(
Wt

HWt

)−1
Wt

HĤ2

iu
. (3.22)

To obtain the crosstalk channel gain from the compressed data we
apply equation (3.21):

Ĥ2

iu,c = WtRiu,e. (3.23)

The estimation error variance of Ĥ2

iu,c is usually smaller than that

of Ĥ2

iu
since in (3.22) we combined the estimations of K tones to

obtain the time domain model. We can further reduce the estimation
error variance after compression by incorporating the crosstalk gain
estimator variance at each tone in the expression (3.22), this can be
done by using a weighted least square instead of a normal LS:

Riu,w =
(
Wt

HDiuWt

)−1
Wt

HDiuĤ
2

iu
(3.24)

where Diu is a diagonal matrix that represents the weight of the esti-
mation at each tone. This weight is represented by the inverse of the

estimation variance at k where: Diu(k, k) = 1/Var
(
|Ĥiu|2

)
(k).
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3.6 Simulation

In this section, we consider a DSL system with 4 users: user 1 cor-
responds to the line over which the estimation is being done, all the
observed SNR variation are being recorded at the end line of user 1,
user 2 represents a new user during its connection on the DSL sys-
tem thus the objective is to estimate the crosstalk channel from user
2 to user 1 by observing the SNR change on line 1 induced by the
connection of user 2. User 3 and user 4 correspond to the remaining
lines in this system, the crosstalk of these 2 users contributes to the
background noise.

We suppose that the estimation is being done two times, one time
under the presence of user 3 while user 4 being disconnected, and an-
other time where user 3 is disconnected and user 4 is connected. This
means that the estimation is being done under two different back-
ground noise represented by Fig.3.1. The 2 background noise represent
the AWGN + crosstalk coming from the other connected user. The
crosstalk channel gains used in this estimation are measured crosstalk
channel between 400 m France Telecom (FT) cables. The DMT sym-
bol is decomposed over 1024 tones where the spacing between tones
is 4.3 kHz, and the first tone correspond to 258.75 kHz. The AWGN
noise is supposed to have a PSD of -140 dBm/Hz over all tones and
for all users.

From Fig.3.1 one can predict that under background noise 1 we will
have a good estimation for the tones corresponding to lower frequencies
and bad estimation for the tones corresponding to higher frequencies.
This tendency would be inversed for the estimation done under back-
ground noise 2. Fig.3.2 shows typical estimations done under the two
background noise. The graphics of these estimations confirm the per-
formance tendencies explained earlier. Some of the estimated crosstalk
channels’ gain have negative values, this is due to the high estimation
errors. The negative estimates are kept intact in order to maintain a
non biased estimation.
Fig.3.3 and Fig.3.4 shows the variance of the crosstalk gain estimators
done over background noise 1 and background noise 2 respectively.
In both figures the red curve represents the crosstalk gain estimator
variance computed using a Gaussian approximation of the crosstalk +
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Figure 3.1: Background Noise

noise estimation variance (equation (3.8)), while the blue curve repre-
sents the crosstalk gain estimator variance computed using the theo-
retical formula of the crosstalk + noise estimation variance (equation
(3.7)), the dashed green curve represents the estimated variance of the
crosstalk gain estimator computed over 100 different estimations. We
can see that there is a difference between the Gaussian approximation
and the theoretical approach, this is due mainly to the fact that only 2
crosstalk are present in the current simulation which is not enough to
apply the central limit theorem, however the Gaussian estimation can
still be used for the ML combiner and for the weighted LS compressor
as it gives a fair idea of the weight of each estimates.
To improve the overall estimation, we combine the two estimations
using the ML combiner (equation (3.14)), where the Gaussian approx-
imation was used for computing the estimator variances. The result of
the ML combiner is then compressed into a 32 tap filter using the LS
compressor (equation(3.22) & equation(3.23)), Fig.3.5 shows the re-
sults of the ML combiner and of the LS compressor. It is clear that the
used compression technique has the double advantage of compressing
the channel state information from 1024 to just 32 on one hand and
of smoothening and reducing the estimation errors on the other hand.

Table 3.1 represents the mean square error (MSE) averaged over all
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Figure 3.2: Estimation done using SNR variation method

tones for the different estimation techniques discussed earlier and for
the two background noise. From this table we can conclude that the
estimation can be improved just by using the compression technique:
when the LS compressor is applied on the SNR variation estimator;
the MSE is reduced by a ratio of 40 and 53 for background noise 1
and 2 respectively. The ML combiner reduced the MSE by a ratio
of 4 for the estimation done over noise 1 and by a ratio of 2 for the
estimation done over noise 2. Combining the ML combiner and the LS
compressor gives the best results, where it reduced the MSE by a ratio
of 143 for the estimation done over background noise 1, and by a ratio
of 73 for the estimation done over background noise 2. The estimation
procedure proposed in this chapter was tested with different crosstalk
channels, and the results were consistent with the presented results in
this section.

Estimation Technique SNR Estimator LS WLS ML ML + LS
MSE (Noise 1)×1016 8.186 0.202 0.192 1.998 0.057
MSE (Noise 2)×1016 4.211 0.079 0.0705 1.998 0.057

Table 3.1: Mean Square Error of Different Estimation Techniques
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3.7 conclusion

In this chapter we showed that the estimation of the crosstalk channel
gain is possible using a simple SNR observation, that relies on the
informations available at the CO only without further techniques. In
the case where we have a small background noise, that means users
having the lowest crosstalk connecting first then those with stronger
one connecting last, the estimator showed a good performance, in the
inverse case we risk to not estimate the weak crosstalk channels as
they will be submerged by the estimation noise caused by the strong
crosstalk. A proposed remedy of this situation is to observe the lines
for a long period of time, which increases the probability of having a
good order of connections, then to combine the different estimations
using a maximum likelihood combiner. Another option that can be
studied is to lower the power of the user having a strong crosstalk, and
to increase the power of the line having a weak crosstalk, but in this
case the observation is being forced, and it is no longer a simple use of
the data at the CO. We have also presented a compression technique
that limits the crosstalk channel state information to be stored. The
compression technique has been also shown to be beneficial in the
smoothening and reducing of the estimation errors.
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Chapter 4

Asynchronous Crosstalk

Estimation

4.1 Introduction

In literature, the assumption of a perfect synchronization between the
different DSL users, is usually made, this synchronization is supposed
to be done in both frequency and time. While synchronization is essen-
tial for applying crosstalk cancellation techniques, it is not considered
a prerequisite for DSM level 1 applications, in fact distributed algo-
rithms such as IWF and ASB do not make any particular assumption
on the synchronization of the interfering users. In [59] the authors have
proposed a centralized DSM algorithm for the asynchronous crosstalk
case, however this algorithm is an heuristic algorithm and it does not
guaranty the convergence toward a global optimum. DSM centralized
algorithms that make the assumption of a perfect synchronization be-
tween the different DSL users are asymptotically optimal in the case
of OSB, and they have a lower complexity of calculation, as the opti-
mization in the case of a synchronous DSL system is linear in function
of the total number of available tones, compared to an exponential
complexity in the asynchronous case. Thus the synchronization of the
different lines of a DSL system would have an important advantage
for centralized DSM level 2 applications.

In this chapter, we will formulate an analytical model to the crosstalk
caused by non synchronized users. We will show that when the syn-
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chronization is lost, the orthogonality between the different tones is
lost as well, ie all tones that correspond to an interfering line, con-
tribute to the crosstalk on each individual tone of a victim line. In
fact, the crosstalk caused by an interfering line in the asynchronous
case on a given victim’s tone, can be seen as linear combination of the
synchronous crosstalk caused by the same line on all the victim’s tones.
Thus, even in a non-synchronous case it is important to estimate the
synchronous crosstalk channels of individual tones in order to imple-
ment centralized DSM algorithm, we will show that the crosstalk gain
estimation procedure proposed in chapter 3 for the synchronous case,
can be used in the case of non-synchronized crosstalk interference as
well. Finally we will use the asynchronous crosstalk model in order to
propose blind synchronization methods that can be applied on current
non synchronized DSL systems without any major modification to the
standards. This chapter is organized as the following, section 4.2 for-
mulates an analytical model for the asynchronous crosstalk, section
4.3 proves that the crosstalk gain estimator proposed in chapter 3 can
be used in the asynchronous case as well, section 4.4 presents a blind
synchronization techniques, section 4.5 reports the simulation results,
section 4.6 concludes this chapter.

4.2 Asynchronous Crosstalk

CP

CP CP

� M -�
LCP

-

� m -

6

Sampling Point
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In the non synchronous case, the crosstalk signals are not synchronized
to the main useful signal. In the case where the non synchronization
delay between the desired signal and the crosstalk signal mi is greater
than the cyclic prefix length LCP, the crosstalk signal will be formed
of 2 consecutives DMT symbols and one cyclic prefix as illustrated in
figure(4.2). The received time domain signal after sampling y(ns) at
sample ns for user i is given by:

y(ns) = yi(ns) + yc(ns) + ν(ns), (4.1)

where yi is the desired signal, yc is the noise due to the crosstalk
signals, yc =

∑
l 6=i yc,l, where yc,l is the interference caused by user l

on line i. As explained earlier, yc,l may be seen as the sum of two
successive DMT symboles, plus the cyclic prefix. Let xl and xnext

l be
the two successive time domain DMT symbols at the transmitter side,
and let hil be the crosstalk channel impulse response between lines l
and i

yc,l(ns) =
( LCP∑

v=0

hil(v)xl(ns + ml − v)
)
γl(ns + ml)

+
( LCP∑

v=0

hil(v)xnext
l (ns − v − (M − ml + LCP))

)

× γnext
l (ns − (M − ml + LCP)) + sl(ns). (4.2)

Where:

• γl and γnext
l are two time windows that limit the two DMT

crosstalk symbols to the duration of the received signal yi.

• M is the length of the DMT symbol

• LCP is supposed to be equal to the crosstalk channel length

• ml is the time delay between the user l under investigation and
the reference user i

• −ml et (M −ml +LCP) represent the respective delays of xl and
xnext

l with respect to the sampling point
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• sl(ns) is the cyclic prefix

γl and γnext
l have the following shapes:

• γl(ns) =






0 for 0 ≤ ns ≤ ml

1 for ml + 1 ≤ ns ≤ M

• γnext
l (ns) =






1 for 0 ≤ ns ≤ mi − LCP

0 for mi − LCP + 1 ≤ ns ≤ M

If we replace n1 = ns + ml and n2 = ns − (M − ml + LCP) in 4.2, we
may write an expression of the total noise in the asynchronous case:

νasync(ns) =
∑

l 6=i

((
LCP∑

v=0

hil(v)xl(n1 − v)

)
γl(n1)

+

(
LCP∑

v=0

hil(v)xnext
l (n2 − v)

)

γnext
l (n2) + sl(ns)

)

+ ν(ns) (4.3)

We also have [xl(−LCP) ... xl(−1)] = [xl(M − LCP) ... xl(M − 1)], so
we may consider that

∑LCP

v=0 hil(v)xl(n1 − v) is a circular convolution,
then the fast fourier transform (FFT) of νasync is given by ωasync:

ωasync(k) =
∑

l 6=i

(
M∑

v=0

Γl(v)Hil(k − v)Xl(k − v) exp(j2πkml/M)

+

M∑

v=0

Γnext
l (v)Hil(k − v)Xnext

l (k − v)

× exp(−j2πk(M − ml + LCP)/M) + Sl(k)

)

+ ω(k) (4.4)

where Hil represents the crosstalk channel in the frequency domain,
Γl, Γnext

l are the FFT of γl, γnext
l respectively, Sl is FFT of the sl, and
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ω is the FFT of ν.

The expression
∑M

v=0 Γl(v)Hil(k−v)Xl(k−v) is a circular convolution
where:
[Hil(−M)Xi(−M) ... Hil(−1)Xi(−1)] = [Hil(0)Xi(0) ... Hil(M −
1)Xi(M − 1)].
Since ωasync has a zero mean, we may write the crosstalk expression
in the asynchronous case as:

σ2
ω,async(k) = E

[
|ωasync|2 (k)

]
, (4.5)

where E[] is the expectation operator. In order to find the asyn-
chronous crosstalk we need to find the expression |ωasync|2

|ωasync|2(k) =

[
∑

l 6=i

(
M∑

v=0

Γl(v)Hil(k − v)Xl(k − v) exp(j2πkml/M)

+
M∑

v=0

Γnext
l (v)Hil(k − v)Xnext

l (k − v)

× exp
(−j2πk(M − ml + LCP)

M

)
+ Sl(k)

)
+ ω(k)

]

×
[
∑

l 6=i

(
M∑

v=0

Γ∗
l (v)H∗

il(k − v)X∗
l (k − v) exp(−j2πkml/M)

+
M∑

v=0

Γ∗next
l (v)H∗

il(k − n)X∗next
l (k − v)

× exp
(j2πk(M − ml + LCP)

M

)
+ S∗

l (k)

)
+ ω∗(k)

]
. (4.6)

Applying the expectation operator on (4.6) we get:

E
[
|ωasync|2(k)

]
=

∑

l 6=i

M∑

v=0

(
|Γl|2(v) + |Γnext

l |2(v)
)
|Hil|2(k − v)Pl(k − v)

+ σ2
ω(k) + Cs(k), (4.7)
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where Pl is the power transmitted on line l (Pl = E[|Xl|2]), and Cs

represents the reminder of equation (4.7), which is due to the cyclic
prefixes effect Sl.
Writting Γl(k) and Γnext

l (k) in function of ml

Γl(k) =
M∑

v=0

γl exp(−j2πvk/M)

=

M∑

v=ml+1

γl exp(−j2πvk/M)

=

M−ml−1∑

v=0

exp(−j2π(v + ml + 1)k/M)

= exp
(
− j

2πk

M
(
ml + M

2
+ 1)

)sin
(

πk(M−ml−1)
M

)

sin
(
πk/M

) (4.8)

Using the same procedure we get

Γnext
l (k) =

M∑

v=0

γnext
l exp(−j2πvk/M)

=

m−LCP∑

v=0

γnext
l exp(−j2πvk/M)

= exp
(
− j

πk

M
(ml − LCP − 1)

)sin
(

πk(ml−LCP)
M

)

sin
(
πk/M

) (4.9)

4.3 Asynchronous Crosstalk Channel Gain

Estimator

4.3.1 Correlated Power Allocation

To identify the crosstalk channel gain in the asynchronous case, we
can imagine a similar scenario to the one proposed in chapter 3 where
we can isolate the crosstalk caused by a particular user l during con-
nection/disconnection of user l. The crosstalk caused by user l can be
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estimated by observing the SNR changes (equivalently the crosstalk
changes), before and after user l get connected/disconnected as pro-
posed in section 3.3.3.1. The estimate of the crosstalk caused by user
l is given by:

σ̂2
ωl,async(k) =

M∑

v=0

Am,l(v)|Hil|2(k− v)Pl(k− v)+Cs(k)+ e(k), (4.10)

where |Hil|2(k)Pl(k) represents the crosstalk on tone k in the syn-
chronous case, Am,l(v) = |Γl|2(v) + |Γnext

l |2(v), Am,l(v) represents the
inter-tone interference/leakage gain from the tone (k − v) on the tone
k due to non synchronization, e(k) represents the estimation error at
tone k. Fig.4.1 show A(v) for a delay of non synchronization ml equal
to the half the length of a DMT symbol. Filter A will act as a low
pass filter on the synchronous crosstalk, thus removing any sparks or

rapid changes in the synchronous crosstalk vector:
[
|Hil|2(0)Pl(0) ...

|Hil|2(k)Pl(k)... |Hil|2(K)Pl(K − 1)
]
.

In fact from Fig.4.1 we can deduce that more than 92% of the asyn-
chronous crosstalk at a tone k would be formed by a linear combina-
tion of the 5 adjacent synchronous crosstalk from tone (k− 2) to tone
(k + 2).
Neglecting the effect of the cyclic prefix:

σ̂2
ωl,async(k) =

M∑

v=0

A(v)|Hil|2(k − v)Pl(k − v)

︸ ︷︷ ︸
circular convolution

+e(k), (4.11)

where e(k) is the estimation error on k. The crosstalk on tone k
will be mainly caused by |Hil|2(k)Pl(k), and by |Hil|2(ka)Pl(ka) of the
adjacent tones ka. If we maintain the supposition that adjacent tones
have a correlated crosstalk channel gain |Hil|2(k), and if we assume an
equal or a highly correlated power allocation over the different tones,
we would have:

σ̂2
ωl,async(k) ∼= |Hil|2(k)Pl(k) (4.12)

The expression (4.12) is the same expression of the crosstalk caused
by user l in the synchronized case, thus under these assumption we
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Figure 4.1: Delay of 50% of the DMT symbole, logarithmic scale

may use the same estimator proposed in chapter 3.

4.3.2 Uncorrelated Power Allocation

The assumption that the power allocation is constant or strongly cor-
related over all tones is not realistic, especially if DSM techniques are
to be implemented. While allocated power can be strongly correlated
among several numbers of tones, due to the correlation of the channel
gains of these tones, the power allocation can suddenly change from
one tone to another. This would happen when the global optimums
of two adjacent tones belong to different regions. In this case, using
the synchronized crosstalk method to estimate the crosstalk channels
would increase the estimation error significantly.
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Let Am,l represents the inter-tone interference gain filter for user l, Am,l

is given as a function of the time delay ml between user l and the user
of interest (user i), let MAl

be a circular matrix having Am,l as a first
column, and let DP,l be a diagonal matrix having the power allocation
vector Pl = [Pl(0) ... Pl(k) ... Pl(K)] as a diagonal. Equation (4.11)
can be rewritten as:

σ̂2
ωl,async = MAl

DP,l|Hil|2 + e, (4.13)

where σ̂2
ωl,async, e, and |Hil|2 represent vectors containing all the spec-

tral elements of the crosstalk, the estimation error, and the crosstalk
channel gain respectively, for example |Hil|2 is the crosstalk channel
gain vector: |Hil|2 = [|Hil|2(1) ... |Hil|2k) ... |Hil|2(K)].
The least square estimation of |Hil|2 can be deduced from (4.13):

|Ĥil,ml
|2 =

(
DP,l

TMAl

TMAl
DP,l

)−1
DP,l

TMAl

T σ̂2
ωl,async. (4.14)

Both DPl
and MAl

are square matrices, equation (4.14) can be rewrit-
ten as:

|Ĥil,ml
|2 = DPl

−1MAl

−1σ̂2
ωl,async. (4.15)

Since MAl
is a circular matrix, |Ĥil,ml

|2 can be calculated in a fast
way:

|Ĥil,ml
|2 = DPl

−1WHdiag (WAm,l)
−1

Wσ̂2
ωl,async. (4.16)

where W and WH represent the FFT and IFFT matrices respectively,
diag (WAm,l)

−1 is a diagonal matrix having WAm,l as its diagonal.
For ml = 0 (for the synchronous case) the estimator given by equation
(4.16) can be simplified to:

|Ĥil,ml
|2 = DPl

−1σ̂2
ωl,async, (4.17)

which has the same concept as the estimator proposed in chapter 3.
From expression (4.15) we conclude that the mean square error be-
tween the asynchronous crosstalk model and the observed values σ̂2

ωl,async
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is always zero and for all the possible values of ml, as for all ml we
have:

(
MAl

DPl
|Ĥil,ml

|2 − σ̂2
ωl,async

)T

×
(
MAl

DPl
|Ĥil,ml

|2 − σ̂2
ωl,async

)
= 0 (4.18)

From (4.18) follows that the LS crosstalk channel gain estimator (4.16)
can be based on any possible delay value m̃l even if m̃l is far from the
actual value ml, as the mean square error will always be zero. We
propose to estimate the crosstalk channel gain for the value m̃l = 0,
which means using the same estimator used for the synchronous case,
for two reasons :

1. As it was shown in section 4.3.1, the synchronous crosstalk chan-
nel gain estimator works well over the tones were the power al-
location is correlated, which is the case for most of the tones in
DSL systems.

2. The synchronous crosstalk model is an exact model, thus we
would not face an additional estimation error related to the
modeling. This is not the case with the asynchronous crosstalk
model, where the effect of the cyclic prefix were neglected.

Another crosstalk channel gain estimator can be proposed, if we con-
sider that ml is a random variable that can vary uniformly over [0, M ],
the estimation of |Hil|2 can be given simply by averaging over all pos-
sible values of ml:

|Ĥil|2| = E
[
Ĥil,ml

|2
]

(4.19)

Both estimators proposed in this section can be jointly put together,
where the synchronous crosstalk channel gain estimator (4.17) would
be given a large weight for tones that have a correlated power alloca-
tions on one hand, on the other hand and for tones having uncorre-
lated power allocation, the averaged asynchronous crosstalk channel
gain estimator (4.19) would be privileged.

Since we know that the channel gain on the different tones are strongly
correlated, especially among adjacent tones, we can reduce the esti-
mation error further more using error smoothening techniques like the
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ones proposed in [60, 61] or simply by using the compression technique
proposed in section 3.5.

4.4 Blind Synchronization

In this section we propose 2 methods to determine the value of the
delay ml between a user l and the line of interest i using blind tech-
niques that do not require major changes on the current DSL systems
and standards. These techniques exploit the fact that for an uncor-
related power allocation on adjacent tones, the non synchronization
would actually smoothen the crosstalk observed over these different
tones using the filter Am,l. Thus the key points for a blind estima-
tion of ml is to observe the crosstalk variation among adjacent tones
that have an uncorrelated power allocation. If the power allocation is
correlated over all adjacent tones, we propose to chose a specific tone
as pilot tone, and to vary the power allocation on this tone so that
it would be noticeably different from its surrounding. This would put
the pilot tone and its surrounding in an uncorrelated power allocation
situation. Two m̂l estimator may be proposed: A delay estimator that
is based on a previous estimation of the crosstalk channel gain, and a
joint delay and crosstalk channel gain estimator.

4.4.1 Delay Estimator based on the knowledge of

Crosstalk Channel Gain

This method is a straight forward technique, let |H̃il|2 be the crosstalk
channel gain estimator after smoothening and estimation error reduc-
tion, ml is given as the value that would minimize the following least
square expression:

m̂l = argminml

(
MAl

DPl
|H̃il|2 − σ̂2

ωl,async

)T

×
(
MAl

DPl
|H̃il|2 − σ̂2

ωl,async

)
. (4.20)

Where ml affects the value of MAl
in equation (4.20). Testing different

values of ml over a discrete set [0, M ] will change MAl
. In principle the
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LS will be given for a value m̂l which is close to the actual delay time
ml. In this case the LS is not zero, in contrast with (4.18), because
we used an error reduction technique to smoothen the value of |Ĥil|2,
thus equation (4.18) is not valid for the smoothened estimator |H̃il|2.

4.4.2 Joint Delay and Crosstalk Channel Gain Es-

timator

We can also imagine a joint estimation of the delay and of the crosstalk
channel gain. In this case, and for all the possible values the non syn-
chronization delay m̃l, compute the crosstalk channel gain estimates
using the estimator (4.16). For a value m̃l that is far from the actual
delay value ml, the estimation error around the pilot tone would be
large, especially if the power on the pilot tone is much larger than its
surroundings. Since the crosstalk channel gain are highly correlated
among adjacent tones, the variance of the crosstalk channel gain es-
timates around the pilot tone would be extremely low in the absence
of estimation error. A simple way to reject the non correct values
m̃l, is to observe the variance of the estimated crosstalk channel gains
around the pilot tone. When m̃l = ml this variance would be very low
as the estimation error is small around the pilot tone in this case, and
the adjacent pilot tones are almost equal, while the variance increases
for m̃l getting further away from ml. The estimator of ml is now given
by:

m̂l = argminml
Var

([
|Ĥil,ml

|2(kp − 2) ... |Ĥil,ml
|2(kp + 2)

])
,

(4.21)
where Var represents the variance, kp is the pilot tone, the variance of
5 tones was enough in practice.

4.5 Simulation Results

In this section, we observe the crosstalk variation on a DSL line i after
the connection of a new user l. The PSD of the signal transmitted at
line l is equal to -80 dBm/Hz over all tones with the exception of the
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pilot tone where a PSD of -72 dBm/Hz is transmitted. User l and line
i are non synchronized, and the time delay between the useful signal
and line i and the crosstalk caused by l is about 34% of the DMT
symbol. The changes of the crosstalk before and after the connection
of user l are shown in Fig.4.2. We can isolate the crosstalk part caused
by the connecting user l by simply substracting the observed crosstalk
before the connection of user l, and the observed crosstalk after the
connection of l.
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Figure 4.2: Crosstalk before and after the connection of a new
user

Fig.4.3 shows the estimated crosstalk channel using the synchronized
estimation and the non synchronized estimation for a known asyn-
chronous delay time. We can see that the synchronized estimation
works well for tones where the power allocation is correlated, however
the synchronized estimation method did not give a good result for
estimating the pilot tone’s gain where the used power on this tone is
uncorrelated to its surrounding. This is not the case for the non syn-



78 Asynchronous Crosstalk Estimation

chronized estimation, where the estimation is good around the pilot
tone, and get worst for tones with correlated power allocation.
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Figure 4.3: Estimation of Asynchronous Crosstalk Channel Using
Synchronized and Non Synchronized Models

It is difficult to know in advance the delay time between the different
DSL lines. In Fig.4.4 we show the estimation result obtained by aver-
aging over all possible non synchronized models. Again, this method
gives better results for the pilot tone and its neighbors when com-
pared to the synchronized estimation method, while the synchronized
method gives better results for tones having correlated power alloca-
tion.
To estimate the delay time, in the following we used the synchronized
estimation method to obtain a first estimate of the crosstalk channel,
then we used the smoothing method proposed in chapter 3 to reduce
the estimation error around the pilot tone. The mean square error
(MSE) between the crosstalk caused by the estimated channel and
the observed crosstalk is checked for different delay time values. As
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Figure 4.4: Estimation of Asynchronous Crosstalk Channel by
Averaging over all Non Synchronized Models

shown in Fig.4.5, the minimum MSE corresponds to two values, the
real delay time ml which is m̂l1 = 0.34M of the DMT symbol time,
and the second value that corresponds to m̂l2 = (1 − m̂l1)M + LCP .
Fig.4.6 shows the variance of the estimated crosstalk channel of the
pilot tone and its adjacent subchannels. The crosstalk channels are
estimated using LS (4.16) for models corresponding to different delay
times. Again we can see that the variance is minimal for the actual
delay time 0.34M and for its symmetric opposite 0.66M + LCP .
Table 4.1 compare the absolute relative error |ρml

| obtained for the
estimation of ml using the minimal variance method and the minimal
MSE method, from this table we can see that for this particular sit-
uation the minimal variance method outperformed the MSE method,
furthermore the minimal variance method seemed to work better for
small delay time, as |ρml

| = 0.004 for ml = 0.1M using the minimal
variance method, and it goes up to |ρml

| = 0.018 for ml = 0.4M . In
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this simulation, |ρml
| was averaged over 10 estimations.

Delay Time 0.1M 0.2M 0.3M 0.4M
Minimum Variance (|ρml

|) 0.004 0.0101 0.011 0.018
Minimum MSE (|ρml

|) 0.0169 0.0128 0.0191 0.019

Table 4.1: Comparison between Minimum Variance and Mini-
mum MSE for Delay Time estimation

4.6 Conclusion

In this chapter we adopted a more realistic approach for the current
DSL systems by considering a non synchronized system. A crosstalk
model for asynchronous lines was developed. This model was given



4.6 Conclusion 81

0 0.2 0.4 0.6 0.8 1
−160

−155

−150

−145

−140

−135

−130

−125

−120

−115

−110

Delay Time as a Percentage of the DMT symbol

V
a
ri
a
n
c
e
 o

f 
 E

s
ti
m

a
te

d
  
P

ilo
t 
T

o
n
e
s
  
in

 d
B

Asynchronous Crosstalk: Delay 34% of DMT symbol time

Figure 4.6: Variance of the Estimated Channel around the Pilot
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in function of the delay time, and it was used to propose estimation
procedures for the crosstalk channel under the assumption of non syn-
chronization. Estimation techniques for the delay time were proposed
as well. The effectiveness of the developed asynchronous crosstalk
model and of the proposed estimation techniques is proved by simu-
lations.
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Chapter 5

Effect of Estimation Error on

DSM

5.1 Introduction

There are few works in the literature dealing with the performance of
DSM algorithms under the assumption of non perfect crosstalk channel
estimation. Papers [62, 63] test the effect of imperfect knowledge of the
crosstalk channels on the bitloading algorithms using simulation and
actual implementation. In [64] the authors study the effect of crosstalk
estimation on the total bitrate by deriving the probability density
function of the bitrate in function of the estimation error, however in
their analysis, they made the assumption that the power allocation is
independent of the estimation error. In this chapter we will prove that
the power allocation is actually dependent on the estimation error,
where the error can affect the outcome of the optimization procedures.
In fact, we will show that the main degradation in bitrate results
when the estimation error leads the DSM algorithms to give a power
allocation corresponding to a local optimum instead of the optimal
power allocation that corresponds to the global optimum.
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5.2 System Model

We consider a synchronized DSL system with imperfect knowledge
of the crosstalk channel gains. The systems uses DMT modulation,
where the different channels may be decomposed over K tones. Let
|Hil|(2)(k) be the crosstalk channel between line l and line i for tone
k, we define G(k) as a vector of variables representing all the elements
of the different crosstalk channel gains at tone k, we consider two par-
ticular points of G(k) :

• Gt(k) = [|H12|2(k)|H13|2(k)...|Hil|2(k)...|HU(U−1)|2(k)] which rep-
resents the true values of the different crosstalk channels, U is
the total number of users on the system.

• Ge(k) = [|Ĥ12|2(k)|Ĥ13|2(k)...|Ĥil|2(k)...|ĤU(U−1)|2(k)] which con-
tains all the estimates of the different crosstalk channel gains at
tone k.

We have: Gt(k) = Ge(k)+∆G, where ∆G represents the estimation
errors.

Let P(k) be a vector of variables that represents the power allocated
for the different users at tone k where: P(k) = [P1(k) ... Pi(k) ... PU(k)],
Pi(k) is the power allocated for user i at tone k. We consider in par-
ticular the two optimal power allocations Pt(k) and Pe(k) associated
with Gt(k) and Ge(k) respectively. Pt(k) and Pe(k) are related by
Pt(k)=Pe(k) + ∆Pt.

We define the system’s bitrate as the sum rate over all lines. The
system’s bitrate can be defined as a function of G(k) and P(k):

R (G(k),P(k)) =
∑

i

Ri (G(k),P(k)) (5.1)

where :

∑

i

Ri (G(k),P(k)) = log2

(
1 +

|Hii|2(k)Pi(k)∑
l 6=i |Hil|2(k)Pl(k) + σ2

ω(k)

)

(5.2)
where σω(k) is the AWGN variance.
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5.3 Effect of the Estimation Error on DSM

This section studies the effect of the estimation error on DSM cen-
tralized algorithms used for the DSL systems. We suppose that the
optimization algorithm used for DSM is able to find the global opti-
mum, this is particularly true for the OSB algorithm. In centralized
DSM algorithms, the power constraints are incorporated within the
objective function using Lagrange. This makes the optimization of
the system’s bitrate decoupled over tones for the inner loop, thus the
optimization can be done over individual tones. Depending on the
optimization problem, on each tone we may face one of the following
cases: Dominant global optimum case, border points case, and on the
presence of local optimums case.

5.3.1 Global Optimum

In the case of a dominant global optimum, due to the channel estima-
tion error, the DSM algorithm would find a different power allocation
then that found for error free estimations. However, since in this
case there exists only one global optimum, the power allocated in the
presence of estimation error Pe(k) stays in the same region of the er-
ror free power allocation Pt(k). We can find a relationship between
Pt(k) and Pe(k) using Taylor expansion. If we expand the value of
R (Gt(k),P(k), k) around Ge(k) and Pe(k) we get:

R (Gt(k),P(k), k) =

R (Ge(k),Pe(k), k) + ∇TRGe,Pe

[
∆GT∆PT

]T
+

1

2

[
∆GT∆PT

]
∇2RGe,Pe

[
∆GT∆PT

]T
(5.3)

where P(k)=Pe(k)+∆P, ∇RGe,P represents the gradient with respect
to G(k) and P(k) calculated at Ge(k) and Pe(k):

∇RGe,Pe
= [∇T

G
RGe,Pe

∇T

P
RGe,Pe

]T . where ∇GRGe,Pe
and ∇PRGe,Pe

are the gradient with respect to G(k) and P(k) respectively.
The expression ∇T represents the transpose of the gradient: ∇T =
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(∇)T .

∇2RGe,Pe
is the Hessian matrix calculated with respect to G(k) and

P(k) at Ge(k) and Pe(k):

∇2RGe,Pe
=

[ ∇2

G,GRGe,Pe
∇2

G,PRGe,Pe

∇2

P,GRGe,Pe
∇2

P,PRGe,Pe

]
.

Deriving both sides of (5.3) with respect to P(k) we get:

∇PRGt,P = ∇PRGe,Pe

+
[
∇2

P,GRGe,Pe
∇2

P,PRGe,Pe

]
×
[
∆GT∆PT

]T
. (5.4)

Since Pt represents the optimal power allocation for an error free
estimation, we have ∇PRGt,Pt

= 0. Thus from (5.4) we get:

∆Pt = −(∇2

P,PRGe,Pe
)−1
(
∇PRGe,Pe

+ ∇2

P,GRGe,Pe
∆G

)
(5.5)

where Pt(k)=Pe(k) +∆Pt. If we replace P with the optimum power
allocation found under the perfect knowledge of the crosstalk channel
Pt, equation (5.3) can be rewritten as:

R (Gt(k),Pt(k)) = R (Ge(k),Pe(k), k)

+∇T

G
RGe,Pe

∆G +
1

2
∆GT∇2

G,GRGe,Pe
∆G

+
1

2
∇T

P
RGe,Pe

∆Pt +
1

2
∆PT

t
∇2

P,GRGe,Pe
∆G. (5.6)

The first 3 terms on the RHS of equation (5.6) represent a Taylor ex-
pansion of R (Gt(k),Pt(k)) around Ge, thus they can be replaced by
R (Gt(k),Pe(k)).
Let ∆R(k) = R (Gt(k),Pt(k)) − R (Gt(k),Pe(k), k) be the degrada-
tion in bitrate due to the estimation error at tone k. The expected
degradation around the optimal allocation Pt(k) can be shown to be
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equal to:

E [∆R(k)] =

−1

2
(∇T

P
RGe,Pe

)(∇2

P,PRGe,Pe
)−1 (∇PRGe,Pe

)

−1

2
Tr
(
(∇2

P,GRGe,Pe
)T (∇2

P,PRGe,Pe
)−1(∇2

P,GRGe,Pe
)

×E
[
Diag (∆G)2] ) (5.7)

where Diag (∆G) is a diagonal matrix having ∆G as its diagonal.
E
[
Diag (∆G)2] = Diag (Var), where Var is given by:

Var(k) =

[Var(|Ĥ12|2)(k)...Var(|Ĥil|2)(k)...Var(|ĤU(U−1)|2)(k)]T

5.3.2 Border Points

The above Taylor based approximation is valid only when the different
elements of Pt(k) and Pe(k) lie within the linear region [0 Pmax(k)],
where Pmax(k) represent the power spectrum density (PSD) mask at
tone k. When an element Pi,t(k) of Pt(k) is equal to 0 or to Pmax(k), it
generally means that Pi,t(k) lies outside the linear region, thus the es-
timation error have no influence on the optimization procedure around
Pi,t(k), which implies that Pi,e(k) = Pi,t(k). In this case, and in or-
der to study the expected bitrate degradation using (5.7), we consider
that all the elements that are equal to 0 or to Pmax(k) as constant,
and we do the Taylor expansion around the elements that lies within
the linear region. If Pt(k) and Pe(k) represent border points, ie all
the elements are either equal to 0 or to Pmax(k), the expected bitrate
degradation is null.

5.3.3 Local Optimums

The bitrate optimization of the DSL system is a non-convex optimiza-
tion that present many local optimums. Expression (5.7) is a good
indicator of the bitrate degradation in the presence of a dominant
global optimum, where the modified optimum due to the estimation
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error is likely to be near the real global optimum. However, when the
global optimum is not dominant, there is a chance that the estimation
error would transform a local optimum into a global one, as it will be
shown in this section.
Let P1,t(k) and P2,t(k) be the power allocations for a global and a local
optimal, respectively. Let P1,e(k) and P2,e(k) be the modified power
allocations due to the estimation error, where P1,e(k) and P2,e(k)
are associated with P1,t(k) and P2,t(k), respectively because they lie
within the same region. Now we can calculate the real optimums in
function of the modified ones using expression (5.7):

R (Gt(k),P1,t(k))≈R (Ge(k),P1,e(k)) + ∇T

G
RGe,P1,e

∆G (5.8)

R (Gt(k),P2,t(k))≈R (Ge(k),P2,e(k)) + ∇T

G
RGe,P2,e

∆G (5.9)

where we limited expression (5.7) to the first two terms. This linear ap-
proximation is valid because the first order of Taylor expansion is ob-
viously much greater than the second order expansion since it contains
quadratic forms of the estimation error, and because +1

2
∇T

P
RGe,P∆P =

0 for P = P1,e and P = P2,e, since P1,e, P2,e represent at least a lo-
cal optimal power allocations for the system bitrate RGe,P. Due to the
estimation errors, sometimes the optimization algorithm would give
P2,e as an optimal power allocation instead of P1,e, this would hap-
pen when : R (Ge(k),P2,e(k)) > R (Ge(k),P1,e(k)), thus the local
optimum region of the original optimization problem would be mod-
ified into a global optimum region due to the error if the following
inequation is maintained:

(
∇T

G
RGe,P1,e

−∇T

G
RGe,P2,e

)
∆G ≥ d(k) (5.10)

where d(k) = R (G(k),P1,t(k)) − R (G(k),P2,t(k)). The error(
∇T

G
RGe,P1,e

−∇T

G
RGe,P2,e

)
∆G follows a gaussian distribution N (0, S),

where S is given by

S = Tr
(
Diag

(
∇T

G
RGe,P1,e

−∇T

G
RGe,P2,e

)2
Diag (Var)

)

The probability Prb(k) that P2(k) is going to be chosen as the global
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optimum can be calculated now:

Prb(k) = Prb

(
(
∇T

G
RGe,P1,e

−∇T

G
RGe,P2,e

)
∆G ≥ d(k)

)

= 0.5
(
1 − erf

(
d(k)/

√
2S
))

(5.11)

The expected bitrate degradation in the presence of a local optimun
can be written as:

E [∆Rlo(k)] = Prb(k) (d(k) + E [∆R2(k)])

+ (1 − Prb(k))(E [∆R1(k)]) (5.12)

where E [∆R1(k)], E [∆R2(k)] represent the expected degradation in
bitrate at the power allocations P1,e and P2,e, respectively. They can
be calculated using equation (5.7) if P1,e and P2,e lie in the linear
region. For practical reasons we use:

d(k) = |R (Ge(k),P1,e(k)) − R (Ge(k),P2,e(k))|

.

5.4 Numerical Results

In this part we study the effect of the estimation error on DSM al-
gorithms, since our analysis is based on the assumption that the op-
timization algorithm is able to find the global optimum, we use OSB
algorithm for the bitrate maximization. The objective function to be
maximized is the DSL system bitrate defined as the sum of rates of
all users. In the following we consider a DSL system based on two
users. We use the theoretical twisted pair formula to model the di-
rect channel gain of each line, and the worst case empirical formula
to model the crosstalk channel gain. The lines considered in this DSL
system have the lengths of 2.3 and 2.7 Km. The AWGN noise is sup-
posed to have a PSD of -140 dBm/Hz over all tones and for all users.
The total number of tones is 1024 tones. We consider a Gaussian
estimation error that has a relative error of 10% (ρHiu

≤ ±0.1) for
all tones with a probability Prb(ρHiu

≤ ±0.1) = 85%. Fig.5.1 shows
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the actual bitrate degradation and the Bitrate degradation computed
using Taylor expansion (equations (5.5),(5.6)) for a given estimation
error. We can see that both curves are close enough. In this graph,
the estimation error degradation lies in the vicinity of the global op-
timum, this is normal since we show only the first 100 tones of the
DMT symbol, these tones correspond to a low frequency band in the
used DMT symbol. For theoretical models used in this section for the
direct and crosstalk channel gain, the SNR is high at low frequencies,
thus we can apply the high SNR approximation at the first 100 tones
and we can conclude the existance of a dominant global optimum [65].
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Figure 5.1: Taylor Expansion vs Real Bitrate Degradation

Fig.5.2 shows the expected bitrate degradation computed using equa-
tion (5.12), and the actual bitrate degradation averaged over 200 op-
timizations done using 200 different estimations with (Prb(ρHiu

≤
±0.1) = 85%) for all tones. As explained previously, the expected
bitrate degradation for the first 100 tones lies within the region of the
dominant global optimal. For the frequency band that lies between
tone 110 and tone 140, the optimization per tone is characterized by
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the presence of near-global optimal, so there is a possibility for the
estimation error to modify the optimization problem so that the near-
global optimal becomes a global one as explained in section 5.3.3. For
tones that are higher than 140, the crosstalk channels become so strong
that FDMA becomes the optimal strategy [66] thus power allocations
for tones greater than 140 represent border points and the bitrate
degradation is null (see section 5.3.2). Fig.5.3 shows the bitrate degra-
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Figure 5.2: Expected Bitrate Degradation vs Average Bitrate
Degradation

dation in function of relative error of crosstalk channel gain estimator
(ρHiu

), as in the previous results, ρHiu
has the same probability for all

tones. From this figure we can conclude that the difference between
the averaged bitrate degradation and the expected bitrate degrada-
tion over all tones is small for ρHiu

< 0.1, this difference increases as
ρHiu

increases, which is normal because Taylor approximation is not
valid for large error. The overall bitrate degradation is small in this
case (about 2 bits/DMT symbol for Prb(ρHiu

≤ ±0.2) = 85%) this
is due to the fact that the frequency band over which there exists a
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near-global optimum is limited by 30 tones (tones 110-140) out of 1024
available tones.
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Figure 5.3: Bitrate Degradation in Function of Relative Error of
Crosstalk Estimator

5.5 conclusion

In this chapter we studied the performance of DSM algorithms in the
presence of estimation error, we have concluded that the estimation
error mainly effect the optimization problems that have near-global
optimums. The estimation error may change the optimization prob-
lem in a way that transforms a local optimum region into a global
optimum one. This is particularly true when local optimum is near-
global. We derived a probabilistic tool based on Taylor approximation,
that can expect the degradation in bitrate due to the estimation er-
ror. The numerical results showed that this tool gives good results for
estimations that have relative error that is less than 20%.



Chapter 6

Crosstalk Channel Estimation

6.1 Introduction

In order to satisfy the growing demand on higher bit-rates, the latest
DSL systems like VDSL2 and VDSL2+ use higher bandwidths (up to
30 MHz) and shorter loops. The drawback of transmitting at high
frequencies and using shorter loops is an increased crosstalk between
the different DSL lines. Due to this increase in crosstalk, FEXT (far
end crosstalk) is considered as the main degradation in these DSL sys-
tems. To maintain the promised high bit-rates, and to gain further
in capacity, crosstalk cancellation or suppression is a must. For this
reason, a number of precancellation techniques have been designed to
decrease the effect of FEXT [67], [68], [69] in downstream, using the
coordination at the CO (central office) and assuming no coordination
at the receiver side, the CPE (customer premise equipment, i.e. the
user’s equipment).

All these precancellation schemes rely on a good estimation of the
crosstalk channels between the various pairs of users (or equivalently
pairs of lines). So the issue of crosstalk channel estimation has to be
solved to be able to use those schemes. Downstream channel estima-
tion appears to be a much more complicated task than the upstream
channel estimation, and it has received some attention in the literature
recently. In order to try to limit the quantity of overhead needed for
feeding back the estimation, some methods have been proposed that
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only require to feedback the sign of the error samples (slicer errors)
at the receiver [70]. The entire estimation processing is transferred
at the central office. These sign-based methods exhibit slightly lower
performance and slightly lower estimation speeds but allow a signifi-
cant reduction of the overhead. In [71], it is proposed to simplify the
precoder to its off-diagonal elements only, and an LMS tracking algo-
rithm is proposed that converges to the optimal off-diagonal solution.
This is essentially a pilot-based solution, that can also be used in a
decision-directed mode, with the associated risk of error propagation.

Recently, it has been proposed in [72] to introduce a small pertur-
bation on the transmitted signal, and to observe the effect on the
apparent direct channels, seen from the receiver side. This method
has the advantage of requiring a low overhead (only the direct chan-
nels need to be fed back), and requires minimal changes on the CPE.
On another hand, the perturbation has an impact on the transmission
of normal data, and has to be kept small enough to allow continuous
transmission. Consequently, the changes on the direct channels may
be very small and difficult to observe in some situations.

In this chapter we propose to induce a perturbation on the DSL line
under investigation in order to change the crosstalk channel. Altering
the real part of the crosstalk channel modifies its amplitude which is
detectable by monitoring the SNR variations on the line. Applying
the triangulation technique allows the estimation of the real crosstalk
channel part normalized by the direct channel. The same procedure
can be applied to extract the imaginary crosstalk channel part infor-
mation. The estimated crosstalk channel will be normalized by the
direct channel, however these informations are sufficient for a DSM
level 3 signal precompensation.

6.2 System Model & available Information

Since no training sequences are to be used, and to stay in conformity
with the different DSL standards, this article takes advantage of the
available information under the current DSL systems to perform the
crosstalk channels estimation. In this section we suppose the existence
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of a monitoring system. This system records information about the
time of connection/disconnection of different users, the PSD level of
the users’ signals, the direct channels’ gains, the SNR and the ambient
noise for all the possible lines and at different tones. First we start with
a brief model of the DSL system in section 6.2.1, then we formulate
the estimator of the crosstalk channels in section 6.3. We analyse the
performance of the estimator in section 6.4, and then in section 6.5
we provide a suitable precoding technique. Section 6.6 provides the
simulation results of a typical 2 line DSL system, and in section 6.7
we conclude.

6.2.1 System Model

We consider DSL systems using DMT (discrete multiple tone). The
channel maybe decomposed in K parallel sub-channels, where K rep-
resents the total number of tones. U is the total number of users.
Under the assumption that all users are synchronized, the received
signal Y of user i in sub-channel k is given by:

Yi(k) = Hii(k)Xi(k) +
∑

l 6=i

Hil(k)Xl(k) + ω(k). (6.1)

Where Xi is the useful signal of user i, ω is the additive noise, Hii(k) is
the direct channel gain of user i for tone k, and Hil(k) is the crosstalk
gain from line l to line i for tone k. If the number of interfering users
is high, the additive crosstalk signal maybe considered as a Gaussian
noise using the central limit theorem. We define the equivalent noise
ωe as:

ωe(k) =
∑

l 6=i

Hil(k)Xl(k) + ω(k). (6.2)

The bitrate can be evaluated now by: Ri(k) = B log(1 + SNRi(k)),
the SNR is given by

SNRi(k) =
|Hii|2(k)Pi(k)

σ2
ωe

(k)
(6.3)

where σ2
ωe

(k) =
∑

l 6=i |Hil|2(k)Pl(k) + σ2
ω(k), Pi(k) is the power trans-

mitted by line i. The AWGN variance at tone k is denoted by σ2
ω(k),

and the expression
∑

l 6=i |Hil|2(k)Pl(k) represents the crosstalk caused
by all the interfering lines at the tone k.
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6.2.2 The SNR Estimator

The main information that we have access to are the SNR, the PSD of
the transmitted signal on each line, and the direct channels, since the
crosstalk channel estimator depends mainly on these parameters, its
interesting to study the behavior of the SNR estimator as performed
at the receiver.
The direct channel is estimated during the training period, while the
power is communicated between the modems prior to transmission.
The SNR estimator SN̂R(k) can be written as:

SN̂Ri(k) =
|Hii|2(k)Pi(k)

1
N

∑N
n=1 |ωen

(k)|2
(6.4)

where N is the total number of DMT symbol samples over which the
SNR is estimated. As |Hii|2(k)Pi(k) is supposed to be known, the
study of the SNR leads to the study of the noise variance estimator,
which is a sample variance as shown in (6.4).
The noise variance estimator can be derived from (6.4):

σ̂2
ωe

(k) =
1

N

N∑

n=1

|ωen
(k)|2

=
|Hii|2(k)Pi(k)

SN̂R(k)
. (6.5)

Under the assumption that ωe follows a Gaussian distribution (which
is asymptotically true when the number of interfering users is very
large), the variance of σ̂2

ωe
can be computed in function of σ2

ωe
:

Var
(
σ̂2

ωe

)
=

N∑

n=1

Var

( |ωen
(k)|2
N

)

=
2σ4

ωe

N
. (6.6)

Where we assume E [|ωen
(k)|4] = 3σ4

ωe
(fourth moment of the central

Gaussian variable ωen
(k)).



6.3 Tone-Wise Crosstalk Channel Estimation Based on

SNR Perturbation 97

CO

CPE

CPE-Hii
Xi

+εXl

-
Hll

���������*

Hil

Xl

*

εHii

Figure 6.1: DSL System during the Estimation of a Crosstalk
Channel

6.3 Tone-Wise Crosstalk Channel Estima-

tion Based on SNR Perturbation

In this section we will propose a crosstalk channel estimation method
based on an active observation of the DSL system. This method re-
spects the current DSL standard, it imposes minimal changes on the
CO side, and no changes at all on the CPE side. Unlike the passive
observation method proposed in chapter 3, this new method is based
on observing the SNR variation on a given line caused by inducing a
perturbation on the crosstalk channel to be estimated.

The estimation procedure proposed in this section works on a tone by
tone basis, it is able to extract both the real and the imaginary part
of the crosstalk channel, not only the amplitude as in chapter 3.
Figure 6.1 represents the DSL system at a given tone k, during the
estimation period. Line i is being the line under investigation, the
system is concerned with estimating the crosstalk channel Hil.
Let the signal transmitted on line i be Xi, and the signal transmitted
on line l be Xl. Thus the received signal at the CPE of line i at tone
k would be:

Yi(k) = Hii(k)Xi(k) + Hil(k)Xl(k) + ωe(k).

To estimate the crosstalk channel, we propose to perturb the crosstalk
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channel Hil significantly enough to affect the resulting SNR. The per-
turbation may be done by adding an additional signal εXl at the line
i. This additional signal can be seen either as a sort of precoding, or
as adding a virtual crosstalk channel εHii between line l and line i.

The new received signal at the CPE of line i is:

Yi,e(k) = Hii(k)Xi(k) + Hii(k)ε(k)Xl(k) + Hil(k)Xl(k) + ωe(k),

resulting in a modified crosstalk channel between l and i which equal
to:

He,il(k) = Hil(k) + Hii(k)ε(k). (6.7)

Where ε(k) = A(k) exp(jφ).

The tone wise crosstalk channel estimation can be described as pro-
cedure with 3 phases:

1. Phase 1:

• ε = 0

• Use (6.5) to estimate σ2
ωt

the total crosstalk power on line
i, where:

σ2
ωt

(k) = |Hil|2(k)Pl(k) + σ2
ωe

(k)

where Pl and σ2
ωe

are the power associated with Xl and ωe

respectively.
Let SN̂Rt be the measured SNR associated with this stage
we have:

σ̂2
ωt

(k) =
|Hii|2(k)Pi(k)

SN̂Rt(k)
.

2. Phase 2:

• Set φ = 0 thus ε(k) = A(k)

• Using (6.5), estimate the resultant noise variance σ2
ωc

re-
lated to the modified crosstalk channel Hc,il(k) = Hil(k) +
Hii(k)A(k) where:

σ2
ωc

(k) = |Hc,il|2(k)Pl(k) + σ2
ωe

(k).
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So if SN̂Rc is the measured SNR during phase 2, we have:

σ̂2
ωc

(k) =
|Hii|2(k)Pi(k)

SN̂Rc(k)
.

• Estimate the expression:

δHc,il
(k) =

(
|Hc,il|2(k) − |Hil|2(k)

)
/|Hii|2(k)

where:

δHc,il
(k) =

σ2
ωc

(k) − σ2
ωt

(k)

|Hii|2(k)Pl(k)

To the estimate δ̂Hc,il
, we replace σ2

ωc
and σ2

ωt
by their re-

spective estimates:

δ̂Hc,il
(k) =

Pi(k)

Pl(k)

×
(

1

SN̂Rc(k)
− 1

SN̂Rt(k)

)
.

(6.8)

• Use the triangle formula to estimate < (Hil(k)/Hii(k)) (look
at Fig.6.2):

<
(
Ĥil(k)/Hii(k)

)
=

δ̂Hc,il
(k)

2A(k)
− A(k)/2. (6.9)

3. Phase 3:

• Set φ = 3π
2

thus ε = −jA

• Using (6.5), estimate the resultant noise variance σ2
ωs

re-
lated to the modified crosstalk channel Hs,il(k) = Hil(k) −
jHii(k)A(k) where:

σ2
ωs

(k) = |Hs,il|2(k)Pl(k) + σ2
ωe

(k).
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• Use equation (3.12) to estimate

δHs,il
(k) =

(
|Hxsil

|2(k) − |Hxil
|2(k)

)
/|Hii|2(k)

where:

δHs,il
(k) =

σ2
ωs

(k) − σ2
ω(k)

|Hii|2(k)Pl(k)
.

Again, if SN̂Rs is the measured SNR, the estimate of δHs,il

can be given as:

δ̂Hsil
(k) =

Pi(k)

Pl(k)

×
(

1

SN̂Rs(k)
− 1

SN̂Rt(k)

)

.

(6.10)

• Use the triangle formula to estimate = (Hil/Hii) (see Fig.6.2)

=
(
Ĥil(k)/Hii(k)

)
= A(k)/2 − δ̂Hs,il

(k)

2A(k)
. (6.11)

In the above procedure, ε is chosen to be either real or complex, thus it
is changing one of Hil components at a time, which allows to estimate
it, overall for each tone two perturbations are required to make the
estimation. The value of A is chosen to be equal |Hil|/2, this value
limits the SNR loss during the estimation.

6.4 Estimator Performance

Assuming that the estimation error of 1/SN̂Rt follows a Gaussian
distribution, we can use the equations (6.5) and (6.6) to estimate the

variance Var
(
1/SN̂Rt

)
:

Var
(
1/SN̂Rt(k)

)
=

2σ4
ωt

(k)

N |Hii|4(k)P 2
i (k)

. (6.12)
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Figure 6.2: Triangulation Technique to Compute the Imaginary
and Real Part of the Crosstalk Channel

Equation (6.12) can be used to estimate Var
(
1/SN̂Rc

)
and Var

(
1/SN̂Rs

)
.

The difference of two Gaussian variables has a variance equal to the
sum of variances of these two random variables, thus we have:

Var
(
1/SN̂Rc − 1/SN̂Rt

)
= Var

(
1/SN̂Rc

)
+ Var

(
1/SN̂Rt

)

(6.13)
and

Var
(
1/SN̂Rs − 1/SN̂Rt

)
= Var

(
1/SN̂Rs

)
+ Var

(
1/SN̂Rt

)

(6.14)
We can use equations (6.12),(6.13) and (6.14) to approximate the vari-
ances of δ̂Hc,il

and δ̂Hs,il
from which we can deduce the variances of the

crosstalk channel’s real and imaginary part estimators:

Var
(
<(Ĥil(k))/Hii(k)

)
=

σ4
ωc

(k) + σ4
ωt

(k)

2NP 2
l (k)A2(k)|Hii|4(k)

. (6.15)

Var
(
=(Ĥil(k)/Hii(k))

)
=

σ4
ωs

(k) + σ4
ωt

(k)

2NP 2
l (k)A2(k)|Hii|4(k)

. (6.16)

The estimation quality depends on the power of the interfering line l,
on the number of DMT samples used in the estimation N , and on the
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amplitude A of the virtual crosstalk channel ε. If A is to be chosen
too small, the quality of the estimation will be poor, however if A is
too high, the line under investigation will suffer from high crosstalk.

6.5 Precoding

In DSM level 3, At each tone k the DSL system is considered as a
MIMO system, thus the received signal may be given as:

Yk = HkXk, (6.17)

where:

• Yk is the received signals vector: Yk = [Y1(k) ... Yi(k) ... YU(k)]

• Xk is the transmitted signals vector: Xk = [X1(k) ... Xi(k) ... XU(k)]

• Hk is the channel matrix:

Hk =





H11(k) H12(k) ... H1U(k)
H21(k) H22(k) ... H2U(k)

. . ... .

. . ... .

. . ... .
HU1(k) HU2(k) ... HUU(k)





We propose to use the following precoder at the transmitter:

X′
k =

(
DH

−1
k Hk

)−1
Xk. (6.18)

Where DH
−1
k is a diagonal matrix such that: DH

−1
k (i, i) = Hii(k).

Thus in order to make the precompensation of the crosstalk, we only
need the off diagonal elements of Hk (crosstalk channels) normalized
by the diagonal elements (direct channels), which is provided using
our proposed estimation procedure.
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6.6 Simulation

We test the estimation procedure proposed in this chapter on a 2 × 2
DSL system, the direct and crosstalk channels of this system are taken
from measurement done on 400 m France Telecom (FT) cables. In this
section we will present the estimation and precoding results obtained
for one of these two lines. Fig.6.3 represents the estimation of the
normalized crosstalk channels of the line under consideration. The
estimation of the SNR was done over 100 DMT symbols, and for a
Background noise level of -80 dBw/Hz. During the estimation a 16
QAM constellation was used over all tones.

Fig.6.4 represents the carrier to interference (CIR) ratio before and
after precoding on the line. The average precoding gain is about 10
dB/tone in term of the CIR. Fig.6.5 compares the interference free
bitloading, the bitloading under interference with no precompensa-
tion, and the bitloading under interference when the precompensation
method was applied using our estimation results. Most of the tones
had at least a bitloading gain of 1 bit, only few tones did not present
a bitloading gain.
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Figure 6.3: Real and Imaginary Crosstalk Channel Estimation

Table 6.1 compare the bitrates of the line when the precoding is done
using different estimation results. We vary number of DMT symbols
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N required for the SNR estimation. From this table we can see that
we have a precoding gain starting from N = 10.

Number of DMT symbols N 5 10 50 100 150 200
Bitloading (with Interference) 16743 16743 16743 16743 16743 16743
Bitloading (Interference Free) 25886 25886 25886 25886 25886 25886

Bitloading (Compensated) 16441 17978 21115 22095 22452 22695

Table 6.1: Bitloading in Function of number of DMT Symbols
used for Estimation

6.7 conclusion

In this chapter we presented several optimized crosstalk channel es-
timation methods that do not require the use of a pilot sequence.
These methods are based on precoding the transmitted signal and
observing the SNR variation on different tones. The proposed esti-
mation method requires minor changes in the current DSL systems,
it is completely in conform with the current DSL user modems as the
estimation procedure is implemented on the CO side only. A precod-
ing method that only uses the off diagonal components normalized by
the diagonal components was also presented. This precoding scheme
is perfectly adapted to the proposed estimation method, as the esti-
mated crosstalk channels are normalized by the direct channel of the
victim line. The simulations showed the effectiveness of the proposed
estimation and precoding methods.
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Chapter 7

Optimized Crosstalk Channel

Estimation

7.1 Introduction

The choice of the induced perturbation used for the crosstalk esti-
mation remains an intriguing task, in chapter 6 the perturbation was
chosen in a way to limit the SNR degradation during the estimation
time by limiting the amplitude of the virtual crosstalk to the half of
the crosstalk channel gain, in [73] an adaptive perturbation is pro-
posed in order to limit the remaining interference level after crosstalk
cancellation to a certain bound, however the same limitation on the
perturbation amplitude is maintained.

In this chapter we start by deriving constraints on the perturbation
power to limit the SNR degradation to 3 dB. This limitation is mainly
concerned by limiting the degradation of the capacity, for the line
under investigation, during the estimation time. However, practical
implementation of the above method has shown [74] that the estima-
tion time can be small compared to the time duration between esti-
mations, especially as channels change very slowly in DSL lines. So
another metric can be more appropriate for the choice of the pertur-
bation power. Thus we proceed by relaxing the 3 dB SNR constraints,
and we propose to choose the perturbation that optimizes an aggre-
gated sum of the degraded bit-rates obtained during the estimation
time and the improved bit-rates obtained after performing crosstalk
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cancellation (time duration estimations).

Another contribution of this chapter is to incorporate a time domain
model for the crosstalk channel in the estimation procedure. In fact
the above estimation techniques suppose that the sub-channels at dif-
ferent tones are independents, thus the estimation must be imple-
mented two times over each tone, one time to estimate the real part
of the crosstalk channel, and another time to estimate the imaginary
part. However in DSL systems, tones (especially adjacent ones) are
highly correlated. This correlation comes from the fact that the chan-
nel can be represented in the time domain by a finite impulse response
with a limited number of taps. Estimating the time domain taps may
reduce the estimation procedure by half, and limit the total number of
tones to be estimated. It will be shown later on in this chapter that the
time domain estimation necessitates only one amplitude perturbation,
unlike the triangulation that requires two amplitude perturbations one
on the real part and another on the imaginary part. The time domain
model can be estimated by a limited number of tones (determined by
the total number of taps).

This chapter will be divided as follow: Section 7.2 reviews the per-
formance of the crosstalk estimation proposed in chapter 6 and then
provides constraints to limit the SNR degradation to 3 dB. Section
7.3 compares the proposed crosstalk channel estimation method with
other known estimation techniques. Section 7.4 will improve the crosstalk
channel estimation based on the SNR changes by optimizing an aggre-
gated sum of bitrates obtained during the estimation and after channel
pre-compensation. Section 7.5 integrates the time domain model into
the estimation technique, section 7.6 extends the estimation proce-
dure for a multi line scheme, section 7.7 puts the theoretical approach
under testing via simulations, and finally we conclude in section 7.8.

7.2 Constrained Perturbation

In this section we will limit the perturbation used in the active esti-
mation of the crosstalk channels so that the predicted SNR changes
would be limited to 3 dB loss. First we will review the estimator per-
formance as derived in chapter 6, then we will propose a constraint on
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the choice of the perturbation A.

In chapter 6 we used a Gaussian approximation in order to estimate
the variances of the crosstalk channel’s real and imaginary part esti-
mators:

Var
(
<(Ĥil(k)/Hii(k))

)
=

σ4
ωc

(k) + σ4
ωt

(k)

2NP 2
l (k)A2(k)|Hii|4(k)

. (7.1)

Var
(
=(Ĥil(k)/Hii(k))

)
=

σ4
ωs

(k) + σ4
ωt

(k)

2NP 2
l (k)A2(k)|Hii|4(k)

. (7.2)

It is clear from these equation that A should be high in order to get
good estimations, however if A is chosen too high, the line under in-
vestigation will suffer from high crosstalk, and the bitrate will drop
severely during the estimation. One way of choosing A is to limit the
SNR loss during estimation to less than 3 dB.

Let θil(k) be the phase related with the crosstalk channel Hil where
we have Hil = |Hil| exp(jθil(k)). If we consider the phase θil as a
random variable that varies uniformly on [0, 2π]. The crosstalk +
noise variance with respect to θil will be:

E θ,X,ω

[
((Hil(k) + ε(k)Hii(k))Xl(k) + ωe(k))

× ((Hil(k) + ε(k)Hii(k))Xl(k) + ωe(k))∗
]

= E θ

[
σ2

ωc
(k)
]

= E θ

[
σ2

ωs
(k)
]

= σ2
ωt

(k) + A2(k)|Hii|2(k)Pl(k),

(7.3)

where σ2
ωt

(k) = |Hil|2(k)Pl(k) + σ2
ωe

(k) is the crosstalk before we start
the estimation procedure, and ε(k) = A(k) for the real part estimation
and ε(k) = −jA(k) for the imaginary part.

The received SNR on the line under investigation during the estima-
tion period may be predicted now as:

SNRe =
|Hii|2(k)Pi(k)

σ2
ωt

(k) + A2(k)|Hii|2(k)Pl(k)
. (7.4)
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To limit the SNR degradation to 3 dB, A should fulfill the following
constraint:

A(k) ≤
√

σ2
ωt

(k)

|Hii|2(k)Pl(k)
. (7.5)

Equation (7.3) can be used to predict the behavior of the crosstalk
channel estimator prior to the estimation. Where we can simply re-
place the values of σωc

and σωs
in equations (7.1) and (7.2) by their

expected value σ2
ωt

(k)+ A2(k)|Hii|2(k)Pl(k), then we can evaluate the
performance of the estimation in advance by predicting the crosstalk
channel estimator variance using the following expression:

Var
(
Ĥil(k)/Hii(k)

)
=

(
2σ4

ωt
(k) + A4(k)|Hii|4(k)P 2

l (k) + 2A2(k)|Hii|2(k)P 2
l (k)σ2

ωt

)

NP 2
l (k)A2(k)|Hii|4(k)

.

(7.6)

7.3 Comparison to other Methods

In this section we will compare the performance of the crosstalk chan-
nel estimation based on the SNR method, with the classical method
based on Pilot Symbols, and with the "channel abuse" method pro-
posed in [72].

7.3.1 Pilot Symbols Method

Hii

Hll

Hil

Xp

Yi

Yl

0     0...

Figure 7.1: DSL System in the Case of Pilot Symbols Estimation
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The "Pilot Symbols" method is resumed in Fig. 7.1. In order to
estimate the crosstalk channel Hil, line i is put on quiet mode (no
symbols are being transmitted there), while line l transmits known
pilot symbols Xp to the receiver i. In this case the communication on
both lines is halted. The received signal on line i, is given by:

Yip,n(k) = Hil(k)Xp,n(k) + ωe(k)

where Xp,n, and Yip,n, are the transmitted and the received signals for
the DMT symbol n respectively. The estimation of crosstalk channel
Hil can be given by:

Ĥil,p(k) =
1

Np

∑

n

Yip,n(k)

Xp,n(k)
(7.7)

where Np is the total number of the DMT pilot symbols.

The variance of estimator Ĥil,p is given as:

Var(Ĥil,p)(k) =
σ2

ωe
(k)

NpPl(k)
(7.8)

where Xp,n(k) are assumed to have the same power Pl(k) for all DMT
symbols.
In this case the bitrate loss during the estimation period is equal to
the unused bitrate of lines i and l:

RL,p = Np(log2(1 +
1

Γ
SNRi) + log2(1 +

1

Γ
SNRl)) (7.9)

7.3.2 Channel Abuse Method

Fig. 7.2 explains the principle of the crosstalk estimation using the
"Channel Abuse" concept. In this case, the estimation of the channel
Hil is done by inducing a small perturbation on the line l. The induced
perturbation on line l is equal to εXi. The perturbation is done in a
similar way as proposed in this thesis, however instead of perturbing
the crosstalk channel Hil, the term εXi will affect the direct channel
Hii. An adaptive filter is assumed to track the modification on the
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Figure 7.2: DSL Systems in the Case of the Channel Abuse Es-
timation

direct channel.

First, the direct channel Hii estimator Ĥii,p is obtained using a pilot
symbol method similar to the estimation done in (7.7). The variance
of the estimation is given by:

Var(Ĥii,p)(k) =
σ2

ωt
(k)

NaPi(k)
(7.10)

where Na in the number of the DMT pilot used for the channel estima-
tion, σ2

ωt
is crosstalk + background noise power, and Pi is the power

on line i.

Second, perturb the signal X2 in order to modify the direct channel
Hii as shown in Fig. 7.2, where the received signal is equal to:

Yia,n(k) = Hii,m(k)Xi,n + ωt(k)

where Xi,n and Yia,n are the transmitted and the received signal of the
DMT symbol n respectively, and the modified direct channel is given
by: Hii,m(k) = Hii(k) + ε(k)Hil(k).
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Third, use the hard decision X̂i,n on Y ia, n, in order to estimate Hii,m

in a similar way to the pilot symbols method. For an estimation
based on Na DMT symbols, we have a probability of (1−10−7)Na that
X̂i,n = Xi,n for all DMT symbols n (in DSL systems the probability of
error is equal to 10−7). In this case the variance of the modified direct
channel is given by:

Var(Ĥii,m)(k) =
σ2

ωt
(k)

NaPi(k)
(7.11)

The estimated crosstalk channel using the abuse method is equal to:

Ĥil,a(k) =
Ĥii,m(k) − Ĥii,p(k)

ε(k)
(7.12)

The variance of Ĥil,a is given by:

Var(Ĥil,a)(k) =
2σ2

ωt
(k)

NaA2(k)Pi(k)
(7.13)

as before we have A(k) = |ε|(k).

In the case of the "channel abuse" method, the line l will suffer from
an increased crosstalk due to the perturbation the same way as in
the SNR method (same formulation), thus the epsilon should be small
enough. Because ε is chosen to be small, and because Hil << Hii, we
can conclude that the SNR loss on line i is negligible.

The bitrate loss in this case is mainly due to the bitrate loss on line l
caused by the SNR modification:

RL,a = Na(log2(1 +
1

Γ
SNRl) − log2(1 +

1

Γ
SNRl,m)) (7.14)

where SNRl,m is the modified SNR on line l.

7.3.3 SNR Method

As explained earlier, in order to estimate Hil the SNR method in-
duces perturbation on line i as shown in Fig. 7.3. This perturbation
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Figure 7.3: DSL Systems in the Case of the SNR method Esti-
mation

causes the crosstalk channel to be modified. Unlike the channel abuse
method, where the direct channel is modified.
When the modified SNR loss is limited to 3 dB, equations (7.1), (7.2)
and (7.5) can be used to calculate the variance of the SNR method
estimates:

Var(Ĥil,SNR)(k) =
5σ2

ωt
(k)

NPl(k)
(7.15)

where σ2
ωs

(k) = σ2
ωc

(k) = A2(k)Pl(k)|Hii|2(k) + σ2
ωt

(k) = 2σ2
ωt

(k).
The bitrate loss during SNR method is mainly due to the bitrate loss
on line i caused by the SNR modification:

RL,SNR = N(log2(1 +
1

Γ
SNRi) − log2(1 +

1

Γ
SNRi,m)) (7.16)

where SNRi,m is the modified SNR on line i. To be noticed that
we only count the bitrate loss during the real part estimation. The
bitrate loss during the imaginary part estimation can be compensated
by using the estimated real part for a partial precoding of the crosstalk
channel.
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7.3.4 Comparision between the 3 methods

The pilot method and the SNR method would have the same per-
formance if both estimators have the same variance. In this case we
have:

N

Np

=
5σ2

ωt
(k)

σ2
ωe

(k)

= 5 + SNRi,p(k) (7.17)

where SNRi,p(k) = |Hil|2(k)Pl(k)/σ2
ωe

(k) represent the SNR at line i
using the "Pilot Method" estimation for Hil. In order for the SNR
method and the "Pilot Method" to have the same performance, N
should equal (5 + SNRi,p(k))Np.
Fig. 7.4 shows the bitrate loss using the SNR method and the Pilot
Symbols method, for different values of SNRi,p and SNRi. The val-
ues of N and Np are chosen to have the same estimation performance
using both methods. We can see that the SNR method can become
advantageous in the case of low SNRi,p and high SNRi.

For the abuse method, if we assume that the modified SNR on line
l is equal to 3 dB as well, we use the same procedure applied in the
SNR method to get:

A2(k)Pi(k)|Hll|2(k) = σ2
ωh

(k)

where σ2
ωh

(k) represents the background noise and crosstalk power on
line l.
The channel abuse estimation method and the SNR method would
have the same performance when the following condition is achieved:

N

Na

=
5σ2

ωh
(k)

|Hll|2(k)Pl(k)

=
2.5

SNRl
. (7.18)

We conclude from (7.18) that N < Na, and that the bitrate loss in
the SNR method is smaller than the bitrate loss in the abuse method,
for SNRl > 2.5.
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Figure 7.4: Bitrate Loss Using SNR Method and Pilot Symbols
Method
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7.4 Optimization of the Tone-Wise Crosstalk

Channel Estimation

7.4.1 Optimizing the Estimation Technique

The value of A provided by equation (7.5) ensures the protection of
the line under investigation during the estimation period, where it
limits the SNR degradation to 3 dB maximum. However, this value
may not be the optimum solution. Taking into the consideration that
the estimation period is small, one may suggest that allowing the
SNR degradation to be over 3 dB during the estimation period may
increase the quality of the estimation. Thus the crosstalk cancellation
after the estimation is done, may compensate for the SNR loss caused
by a strong A. However a readaptation of the line for the time during
estimation is suggested by adapting the line’s bitrate to the predicted
SNR loss, this readaptation of the bitrate prevent a line drop.
In the rest of this section we will present a crosstalk cancellation
method that benefits from the estimation technique presented earlier,
and then we will propose to choose A that optimizes an aggregated
sum of user’rates during and after the estimation.

7.4.1.1 Successive Crosstalk Cancellation

For each line, the estimation must be repeated for all crosstalk chan-
nels caused by other interfering lines in the DSL system. Since each
interfering line must be identified alone, one may propose a successive
crosstalk cancellation procedure:

1. Choose a user i for crosstalk cancellation.

2. For the line under investigation i and for each tone of interest k:

• Identify the line l that contribute the most on the crosstalk.

• Apply the triangulation technique to estimate Hil.

3. Eliminate the identified crosstalk by precoding on line i.

4. Repeat steps (2,3) for all the remaining interfering lines.
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5. Change i and go to step 2.

We can evaluate in advance the rate increase of user i after crosstalk
cancellation. Let Ĥil(k) be the estimate of Hil(k) at tone k, and let
e(k) be the estimation error eil(k) = Hil(k)−Ĥil(k), the variance of eil

is the same as Ĥil(k) and it is given by equation (7.6). After precoding,
the received signal at user i will be given as: Yi,pc = Hii(k)Xi(k) +
ωil,r(k). Where ωil,r represents the remaining noise + crosstalk on
the line after precoding: ωil,r(k) = Hil(k)Xl(k) − Ĥil(k)Xl(k)︸ ︷︷ ︸

eil(k)Xl(k)

+ωe(k).

The actual achievable bitrate after precoding is given in function of
eil: Ri,pc =

∑
k Ri,pc(k), where at each tone k the actual bitrate after

precoding is equal to:

Ri,pc(k) =
∑

k

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|eil|2(k)Pl(k) + σ2
ωe

(k))

)
. (7.19)

The variance of eil is known, thus we can predict the remaining noise
+ crosstalk power by replacing |eil|2(k) by its expectancy :

σ2
ωil,r

= Var
(
Ĥil(k)

)
Pl(k) + σ2

ωe
. (7.20)

We can use equation (7.20) in order to predict user i’s rate after pre-
coding, Ri,pc by: R̂i,pc =

∑
k R̂i,pc(k), where R̂i,pc(k) is the predicted

rate at the tone k:

R̂i,pc(k) = log2



1 +
1

Γ

|Hii|2(k)Pi(k)

(Var
(
Ĥil(k)

)
Pl(k) + σ2

ωe
)



 (7.21)

where Γ represents the SNR gap.

7.4.1.2 Joint Optimization of Users’ Rates

As mentioned earlier the choice of A(k) in equation (7.5) is based on
limiting the SNR loss to 3 dB, in the following we propose to choose
A(k) that maximizes the user’rates during and after the estimation.
After the crosstalk channel estimation, the crosstalk channel cancel-
lation can be done, and the user rate after the estimation can be pre-
dicted by equation (7.21). We can apply the same approach to predict
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the line’s rate during the estimation time. Let Ri,e be the bitrate of
the line during the estimation time, Ri,e is given by Ri,e =

∑
k Ri,e(k)

where:

Ri,e(k) = log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|He,il|2(k)Pl(k) + σ2
ωe

)

)
(7.22)

here He,il is the modified crosstalk channel where He,il = Hc,il or
He,il = Hs,il.

The expectancy of noise and crosstalk variance during the estimation
period |He,il|2(k)Pl(k) + σ2

ωe
, is given by equation (7.3), thus we can

predict the user rate Ri,e(k) at tone k during the estimation as:

R̂i,e(k) =

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(A2(k)|Hii|2(k)Pl(k) + |Hil|2(k)Pl(k) + σ2
ωe

)

)
,

(7.23)
The total predicted bitrate during the estimation is given by R̂i,e =∑

k R̂i,e(k).

Let A be a vector given by: A = [A(1)...A(k)...A(K)]. Now we can
formulate the choice of A as an optimization problem of the following
form:

maxA α1R̂i,e + α2R̂i,pc. (7.24)

It is clear that optimization (7.24) is decoupled over tones, thus the
optimization can be rewritten as:

A(k) = maxA(k) α1R̂i,e(k) + α2R̂i,pc(k). (7.25)

The weighting factor α1 represents the estimation time period, while
α2 is related to the period time between estimations. Normally the
choice is α1 << α2 < 1 with α2 = 1 − α1. The optimization can be
solved using a simple procedure such as searching for the optimum
A(k) over a given set of values ([0, 2|Hil|] for example), this procedure
is of low complexity since we are only searching over one parameter.
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7.5 Time-model Crosstalk Channel Estima-

tion Based on SNR Perturbation

In this section, we exploit the fact that in DSL systems a crosstalk
channel may be represented by a time model with a limited number
of taps. This fact will help reducing the number of the pilot tones
and the time period over which the tone-wise estimation should be
applied, further more it helps improving the quality of the estimation.
In this section, first we will show how the time domain model may be
incorporated with the tone-wise estimation, then we will optimize this
estimation with respect to users’ rate.

7.5.1 Time Domain Estimator

The estimation of the time domain model is based on the tone-wise
estimation introduced earlier. Since the time domain model repre-
senting the crosstalk channel is usually formed by a limited number of
taps L, that are usually less than the total number of tones (L < K),
one can deduce a linear relationship between the different frequency
estimates at different tones. This implies that the time domain model
of the crosstalk channel may be estimated by using only one phase of
the tone wise estimation over a limited number of pilot tones.
A small change is introduced to the tone wise estimation in this sec-
tion, where φ(k) the phase of virtual crosstalk ε(k) at the tone k, will
be allowed to have any values between 0 and 2π (φ(k) ∈ [0, 2π]). In
this case the modified crosstalk channel gain is given as:

|He,il|2(k) = |Hil(k) + ε(k)Hii(k)|2

= (<(Hil)(k) + A(k)|Hii|(k) cos(φ(k) + θii(k)))2

+ (=(Hil)(k) + A(k)|Hii|(k) sin(φ(k) + θii(k)))2 ,

(7.26)

where θii(k) is the phase related to Hii(k). From equation (7.26) we
can find a relation between the real and imaginary part of Hil(k):

cos (φm(k))<(Hil)(k) + sin (φm(k))=(Hil)(k)

=
|He,il|2(k) − |Hil|2(k) − A2(k)|Hii|2(k)

2A(k)|Hii|(k)
(7.27)
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where φm(k) = φ(k) + θii(k). Let hil be a vector of length L that
represents the time domain model of the crosstalk channel from line
l to line i. We can relate the frequency domain model to the time
domain model using the following relationship:

Hil = Whil

where W is the FFT matrix.
The matrix W can be written as : W = Wr + jWi, where: Wr =
<(W) and Wi = =(W).
Now we can rewrite the real and imaginary part of Hil(k) as:

<(Hil) = Wrhil. (7.28)

=(Hil) = Wihil. (7.29)

Replacing expressions (7.28), (7.29) in equation (7.27) and extending
for all tones gives the following system:

DA(cos(Dφ)Wr + sin(Dφ)Wi)hil = Z. (7.30)

Where Dφ is a diagonal matrix having φm as a diagonal, DA is a
diagonal matrix having A as its diagonal, and Z is the observation
vector:

Z(k) =
|He,il|2(k) − |Hil|2(k) − A2(k)|Hii|2(k)

2|Hii|(k)
.

Let matrix MW = cos(Dφ)Wr + sin(Dφ)Wi, using least square one
may write an estimate for hil as:

ĥil = (MW
HD2

AMW)−1MW
HDAẐ, (7.31)

where Ẑ is the estimator of Z. Finally the frequency domain channel
estimate Ĥil may be given as:

Ĥil = Wĥil. (7.32)
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7.5.1.0.1 Performance Evaluation Let σ2
ωt

and σ2
ωm

be the power
of the noise + crosstalk before and after the crosstalk channel mod-
ification respectively. Let σ̂2

ωt
and σ̂2

ωm
be their respective estimates

using (3.6), now Ẑ components can be written as:

Ẑ(k) =
1

2

σ̂2
ωm

(k) − σ̂2
ωt

(k)

Pl(k)|Hii|(k)
− A2(k)|Hii|(k)

2
. (7.33)

We consider that the direct channel is perfectly known thus the vari-

ance of Ẑ(k) is the same as the expression
σ̂2

ωm
(k)−σ̂2

ωt
(k)

Pl(k)|Hii|(k)
which may be

given as:

σ2
Ẑ
(k) =

σ4
ωt

(k) + σ4
ωm

(k)

2NP 2
l (k)|Hii|2(k)

. (7.34)

Again if we consider the phase θil as a random variable that varies
uniformly on [0, 2π]. The variance with respect to θil can be evaluated
the same way as in equation (7.3):

σ2
Ẑ,θ

(k) =
2σ4

ωt
(k) + A4(k)|Hii|4(k)P 2

l (k) + 2A2(k)|Hii|2(k)P 2
l (k)σ2

ωt
(k)

2NP 2
l (k)|Hii|2(k)

.

(7.35)
Let CẐ be the covariance matrix of vector Ẑ, since each component is
being estimated independently CẐ is a diagonal matrix having σ2

Ẑ
as

its diagonal. Now we may write the covariance matrix of Ĥil:

CĤil
= W(MW

HD2
AMW)−1MW

HD2
ACẐ

× MW(MW
HD2

AMW)−1WH.
(7.36)

We can evaluate the time domain estimation Ĥil in advance now using
equation (7.36), as the variance of the time domain estimator is given
by the diagonal of CĤil

.

7.5.2 Optimal Time Domain Estimation

This section searches for the optimal vector A that maximizes the
aggregated sum of bit rates during the time domain estimation and
after precoding. In the time-model case the tone-wise estimation can
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be done over a limited number of pilot tones that belongs to a finite
set S. The tones that are not used in the estimation belong to S̄.
The actual rate during estimation is given in function of He,il:

Ri,et
=
∑

k∈S

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|He,il|2(k)Pl(k) + σ2
ωe

)

)

+
∑

k∈S̄

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|Hil|2(k)Pl(k) + σ2
ωe

)

)
.

(7.37)

The expression of the bit rate during estimation is very close to bit rate
given in equation (7.23). The resemblance between the two expressions
is normal since the two methods start by a tone-wise estimation.
We predict the bitrate during the estimation time by replacing |He,il|2(k)
by its expectancy with respect to θil:

R̂i,et
=
∑

k∈S

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|Hii|2(k)A2(k)Pl(k) + |Hil|2(k)Pl(k) + σ2
ωe

)

)

+
∑

k∈S̄

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|Hil|2(k)Pl(k) + σ2
ωe

)

)
.

(7.38)
After the estimation, assuming a crosstalk cancellation is applied like
in section 7.4.1.1, the actual precoded bitrate has the same form as
expression (7.19) and it can be written in function of et = Ĥil − Hil:

Ri,pct
=
∑

k

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(|et|2(k)Pl(k) + σ2
ωe

)

)
. (7.39)

one may predict the precoded bitrate as:

R̂i,pct
=
∑

k

log2

(
1 +

1

Γ

|Hii|2(k)Pi(k)

(CĤil
(k, k)Pl(k) + σ2

ωe
)

)
. (7.40)

Again A is chosen to optimize the following problem:

maxA αt1R̂i,et
+ αt2R̂i,pct

(7.41)
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The weighting factor αt1 and αt2 represents respectively the estima-
tion time period, and the time period between estimations. They are
chosen such that αt1 << αt2 < 1 with αt2 = 1 − αt1 .

The optimization problem (7.41) is a non-convex optimization prob-
lem, and the different values of A(k) are coupled between the different
tones, so a simple line search per component is not a guaranteed so-
lution as in problem (7.24).

To solve problem (7.41) a simple heuristic algorithm is proposed. For
initial small values of A = A0 a small increase of any A components
will lead to increase R̂i,pct

, this follows from the fact that at small A
the expression CẐ can be seen as independent from A (A << σωt

),
thus CĤil

is dominated by the matrix (MW
HD2

AMW)−1. The compo-
nents of this matrix get smaller as A gets bigger.
On the other hand, increasing A will lead to the decrease of R̂i,et

as
A represents the amplitude of the added virtual crosstalk. Due to
the coupling between all the different tones in the R̂i,pct

case, increas-
ing any of A components will have almost the same increasing effect,
however in the R̂i,et

case the tones are decoupled, so the increase of
the components of A will have different decreasing effect that varies
among individual tones.

Based on the above observation, we propose an algorithm that takes
into consideration only the decreasing effects on R̂i,et

, this algorithm
increases A in a way that minimizes the decrease of R̂i,et

: Since in the
case of R̂i,et

the tones are decoupled, one may work on minimizing the
decrease of R̂i,et

by working on individual tones. If the gradient at
the tone k ∂R̂i,et

/∂A(k) is large, adding a large positive step on A(k)

will cause an important decrease of R̂i,et
while if ∂R̂i,et

/∂A(k) is small,
adding a large positive step on A(k) will cause a limited decrease of
R̂i,et

. A simple way to do the optimization is to add a positive step to
A that is inversely proportional to the gradient of R̂i,et

. At the end of
the iterations we may use a gradient algorithm for few steps to ensure
that the calculated optimum is at least a local one. The optimization
algorithm can be written as:
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1. Initialize A(k) by a small value A0(k)

2. Compute V 0 = αt1R
0
ict

+ αt2R
0
ict

3. Go to the next iteration t = t + 1

4. Compute the gradient:

∇Rt
iet

= [∂Rt
iet

/∂At(1)...∂Rt
iet

/∂At(k)...∂Rt
iet

/∂At(K)]T

5. Update A using the formula

At+1(k) = At(k) + s
1∣∣∣∂Rt

iet
/∂At(k)

∣∣∣

with s is a positive and small step

6. Compute V t+1 = αt1R
t+1
ict

+ αt2R
t+1
ict

7. if V t+1 > V t Go to 3, else decrease s and go to 5

8. Repeat while s is bigger than a threshold τ

9. for s < τ do some additional correction in the gradient direction

7.6 Multi-Line Identification

The single line crosstalk channel identification explained earlier may be
extended to a multi-line identification, we may distinguish two cases:
The case of one to many which corresponds to detecting crosstalk
channels from one line to the other lines in the system, and the case of
many to one where crosstalk channels from other lines in the system
to one line are estimated.

7.6.1 One to Many

In this case we simultaneously precode all the lines of the system in
order to estimate crosstalk channels coming from one line. The tone
wise estimation or the time model technique may be used individually
on each line of the DSL system and at the same time in order to
estimate the crosstalk caused by a single line (Look at Fig.7.5).
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Figure 7.5: Estimation of crosstalk channels caused by a single
line on other DSL lines: The case of One-to-Many

7.6.2 Many to One

In this case we estimate on a single line crosstalk channels coming
from several lines in the DSL system (Fig.7.6). To be able to do
the estimation of several crosstalk channels on a single lines and at
the same time the time model estimation technique must be used: As
already seen in section 7.5, when a time model is given for the crosstalk
channel, the tone wise estimation may be done on a limited number
of pilot tones, this can be seen as sampling in the frequency domain.
Using this observation one can propose to estimate several crosstalk
channels on different tones, and this by adding different precoders
corresponding to different lines on different tones, the different tone
wise estimation can be recombined using the time model technique.
Fig.7.7 represents a precoded signal used for the tone wise estimation
in the many to one case.

7.7 Simulation

In this section, the various algorithms introduced in this chapter are
tested in the case of a single line identification. Fig.7.8 presents the
direct channel of the line over which the estimation is taking place, the
crosstalk channel to be estimated, and the remaining noise normalized
by a constant PSD level of -80 dBw/Hz. This PSD is supposed to be
the same for all users. The direct and crosstalk channels presented in
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Figure 7.6: Estimation of crosstalk channels caused by several
DSL lines on a single line : The case of Many-to-One
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Figure 7.7: Estimation in the case of Many-to-One: Different
tones correspond to the estimation of different lines.

Fig.7.8 are measured channels between 400 m France Telecom (FT)
cables.

7.7.0.0.2 Time-domain method The evolution of the Time do-
main optimization with respect to iterations is presented in Fig.7.9.
This plot is a numerical evaluation of the optimization algorithm pre-
sented in 7.5.2. Fig.7.9 represents the optimization procedure carried
on prior to the estimation in order to choose the optimal value of A.
This procedure is based on the predicted values of the bit-rates (R̂i,et

and R̂i,pct
) and not on actual simulation. From the graph presented in

Fig.7.9, one can see that the optimization started very slowly, this is
due to choice of the initial values, where A0 was chosen very small to
insure that the algorithm could work (look at 7.5.2). After about 60
iterations, the algorithm finds a good startup A and the optimization
accelerates with iterations. At the end, the loss of R̂i,et

is so great that
it is no longer compensated by the gain in R̂i,pct

, thus the optimiza-
tions slows down and stop.
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To test the concept of downsampling in which the estimations are tak-
ing place on a limited number of tones, Fig.7.10 shows the mean square
error between the actual crosstalk channel and the estimated one for
several downsampling ratios, the estimation is done over equidistant
tones, with the distance between the pilot tones (used for estimation)
is constant and is equal to the downsampling ratio. Fig.7.10 shows
that we can go up to a downsampling ratio of 14 with a limited degra-
dation in the estimation. The downsampling ratio is directly linked
to the crosstalk channel to be estimated. If the crosstalk channel gain
is smooth it can be represented by a time domain model with a lim-
ited number of taps thus the downsampling ratio can be high, if the
crosstalk channel gain is highly uncorrelated, the time domain channel
response is typically tall and the downsampling ratio is small.
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Figure 7.10: Mean Square Error of the Estimated Channel in
function of the Downsampling Ratio

7.7.0.0.3 Comparison with the Tone-wise method This para-
graph reports the comparison between the optimal time domain esti-
mation, the optimal tone wise estimation, and the tone wise estimation
with -3 dB maximum loss in SNR. The comparison is done using both
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the numerical results and the simulation results. Again, the numerical
results represent a numerical evaluation of the optimization algorithms
which are based on a predicted expression of the bit-rates. So after the
optimization is done, the resultant optimal values A are fed back to
the expressions ( 7.21), (7.23), (7.38), and (7.40) to get the numerical
values the bit-rates. For the simulation results, the actual values of
the crosstalk channel at the different tones are used to calculate the
actual values of the bit-rates during estimation (7.22), and (7.37). For
the bit-rates after the estimation, the optimal values A are used to
simulate the estimation procedure, and then the estimated crosstalk
channels are used to calculate the actual bitrates of the line after the
crosstalk cancellation (7.19), and (7.39).

The time model estimation is used with an oversampling in frequency
domain of (1/10) (only one tone out of 10 is used for the estimation,
and the tones are chosen with an equal space). For the simulation a
16 QAM constellation is used on all tones, and an equal PSD of -80
dBw/Hz is given for all tones and for all users.

Fig.7.11 shows Bit-rate in function of the weighting factor αe for the
different estimation methods during the estimation period. The sim-
ulation results are shown to be better than the numerical ones, this is
due to the pessimist approach used for the predicting of the different
Bit-rates (the Gaussian distribution assumption).
Graphs shown in Fig.7.11 prove that limiting the loss of SNR to 3
dB maximum provides the ultimate protection for the line under in-
vestigation during the estimation period, as the line’s bitrate during
estimation time is the highest when 3 dB constraints are used. This
is particularly true for small αe (which is usually the case).

The numerical results predict that the time model estimation performs
better than the tone-wise estimation in protecting the line capacity
during estimation, which is intuitive because of the high downsam-
pling ratio used in this particular test (1 out 10 tones is used). The
simulation results did not prove this tendency, however both tech-
niques, time model estimation and tone wise optimization, were very
close from each others, and not far from the 3 dB SNR limitation.
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Figure 7.11: Comparision between different methods for the esti-
mation period

Fig.7.12 shows Bit-rate in function of the weighting factor αc for
the different estimation methods during the estimation period. Once
again, the numerical results predictions are too pessimists when com-
pared to the simulation results. However this time both results give
the same tendencies, where in both cases the tone wise optimization
and the time model techniques outperformed the 3 dB limitation on
the SNR. The simulation results show that the achievable bit-rate us-
ing crosstalk cancellation with the time model method did not change
much with respect to αc. The time model achieved bit-rate is around
25.9 kb/DMT symbol which means an 8.8 % increase over the 3 dB
SNR limitation (achieved bitrate is 23.8 kb/DMT symbol). On the
other hand, the tone wise optimization achieved bitrates between 24.2
and 24.5 kb/DMT symbol which is equivalent to an increase of 1.7 to
3 % over the 3 dB SNR limitation depending on the weighting factor.
Based on the different results obtained so far, the time model tech-
nique has the edge over the tone wise techniques. The following list
compares the advantages and inconvenient of the two techniques:

1. The time domain method outperformed the tone wise optimiza-
tion, and the 3 dB SNR limitation, in crosstalk cancellation and
achieved better rates (in both numerical and simulation results).
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2. The time domain method achieved a comparable bitrate during
the estimation period when compared to the 3 dB SNR limita-
tion.

3. The time domain estimation needs only half the time required by
the tone wise estimation: only one precoding is needed to achieve
the time domain estimation unlike the tone wise estimation that
requires two precoding (one for the imaginary part and one for
the real part).

4. The time domain estimation can be done on a limited number
of tones.

5. The time domain estimation allows the identification of several
crosstalk channels at the same time.

6. The time domain estimation requires the full knowledge of the
direct channel, this is not the case for the tone wise estimation.

7. The time domain optimization is complex when compared to the
simple line search optimization used in the tone wise estimation.
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Figure 7.12: Comparision between different methods after
crosstalk cancellation
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7.8 conclusion

In this chapter we presented several optimized crosstalk channel esti-
mation methods that do not require the use of a pilot sequence. The
optimization was done to maximize the user rates during and after the
estimation. A time domain model was also proposed. The time do-
main model estimation only requires few pilot tones. This allows the
estimation of several crosstalk channels at the same time by allocating
different pilot tones to different disturbers. The time domain model
requires the full knowledge of the direct channel, while the current
DSL system provides information on the direct channels of the lines,
these information can have limited accuracy sometimes. The effect
of direct channel inaccuracy on the time domain crosstalk estimation
should be studied in future work.
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Chapter 8

Channel Estimation Using few

Pilot Tones

8.1 Introduction

The straight forward procedure to estimate the crosstalk channels DSL
systems would be to use a set of training sequences, sent periodically,
to perform the tracking of the downstream channels at the CPE (or
upstream channels at the CO). Many solutions exist in the general
framework of training sequences. An example of solution applicable
to the VDSL system is analyzed in [75]. However, it requires to use
part of the useful bit rate as pilot symbols. This causes important
losses on the bit rate and some times it halts the communication on
different lines.
In this chapter, we are interested in crosstalk channel estimation using
training sequences. In order to limit the total bit rate loss caused by
the pilot symbols, we propose to use a training signal that is formed
in the frequency domain from a limited number of pilot tones. In this
case, most of the tones are used for data transmission, and the commu-
nication between the end user and the CO is maintained, even during
the estimation process. Unlike the procedure proposed in chapter 6,
the pilot signal is sent on the line causing the disturbance and not on
the victim lines, thus the SNR of the DSL system will be maintained
the same during the estimation procedure (compared to the 3dB loss
in chapter 6), and the only line that will be affected by the estimation



136 Channel Estimation Using few Pilot Tones

is the line causing interference on the system. This can be advanta-
geous when measuring the crosstalk channels from a newly connected
line to an already established DSL system.

Using a limited number of adjacent pilot tones for estimation will re-
sult in an ill-conditioned problem, rendering the use of the classical
LS algorithm non effective. To solve the conditioning problem, we add
a regularization factor on the LS pseudo inverse matrix. In the case
where the channel gain information are available, the regularization
factor can be seen as the constraints on the channel gain values. When
the channel gain information are not known, the regularization factor
is a scaled identity matrix. The effect of the regularization can be
reduced iteratively thus improving the overall estimation as the simu-
lation results show.

This chapter will be organized as follow: Section 8.2 describes the DSL
system. Section 8.3 explains the origin of the ill-conditioning problem
in the time domain. Section 8.4 describes the algorithms used for the
time domain estimation. Section 8.5 puts the theoretical approach
under testing via simulations, and finally we conclude in section 8.6.

8.2 System Model

In this section, first we give the frequency domain model of a DSL line
subject to crosstalk interference. Then we describe a time domain
model of a pilot DMT signal with adjacent and limited tones. The
resulting signal matrix is an ill-conditioned matrix that can not be
used in least square estimation.

8.2.1 DSL System Model

We consider DSL systems using DMT. The channel may be decom-
posed in K parallel sub-channels, where K represents the total number
of tones. Two main users are identified: the victim who communicates
on the direct line d, and the disturber that causes the crosstalk u. Un-
der the assumption that the two lines are synchronized, the received
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signal Yd of user d in sub-channel k is given by:

Yd(k) = Hdd(k)Xd(k) + Hdu(k)Xu(k) + ω(k) (8.1)

where Xd is the useful signal of user d, Xu is the useful signal of user
u, ω is the additive noise + the remaining crosstalks, Hdd(k) is the
direct channel gain of user d for tone k, and Hdu(k) is the crosstalk
gain from line u to line d for tone k. If the number of interfering users
is large, the additive crosstalk signal maybe considered as a gaussian
noise using the central limit theorem. We define the equivalent noise
ωe as: ωe(k) = Hdu(k)Xu(k) + ω(k). The capacity can be expressed
now by the Shannon formula:

Rd =
∑

k

log2

(
1 +

|Hdd|2(k)Pd(k)

σ2
ωe

(k)

)
(8.2)

where σ2
ωe

(k) = |Hdu|2(k)Pu(k)+σ2
ω(k), Pd(k) and, Pu(k) are the power

transmitted by line d and u respectively. The variance associated with
the background noise and the remaining crosstalks at tone k is denoted
by σ2

ω(k).

8.2.2 Time Domain Model of the Training Sequence

During the estimation period of the crosstalk channel from a line u
into a direct line d, the signal Xu transmitted on line u will be split
in two: the training signal and the data signal.

Let N be the total number of DMT blocks in the training and the
data signals. For each block n, the vector uIn

represents the train-
ing symbols to be sent over the different tones of the training signal.
Tones that correspond to the data signals will be replaced by zeros.

To obtain the time domain signal, an IFFT is applied over each DMT
symbol, then a cyclic prefix is added to each DMT block. Finally the
time domain signal can be written as:

vu = [uT
P1

uT
D1

, uT
P2

uT
D2

, ...uT
Pn

uT
Dn

...uT
PN

uT
DN

]T (8.3)
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where uDn
is the vector obtained by applying an IFFT over uIn

uDn
= WHuIn

(8.4)

and W represents the FFT matrix. Vector uPn
represents the cyclic

prefix obtained from uDn
. The cyclic prefix length is given by L

while the length of uDn
is given by K. The total length of u is

Nt = N(K + L). We note by uDn
(i) the ith element of the nth DMT

symbol. The cyclic prefix is given by uPn
(i) = uDn

(K − L + i) for
i = 0, . . . , L − 1. Using a similar approach, the data signal vd can
be defined the same way as vu. However in this case, the tones cor-
responding to the training signal bandwidth will carry zero informa-
tion.The received time domain signal is represented by the vector yd

and it can be expressed as:

yd = Mdhdd + (Mv + Mu)hdu + ν0 (8.5)

where hdd and hdu are two vectors of length L1 that represent the
direct and the crosstalk channels impulse responses. Vector ν0 rep-
resents the noise samples. Matrix Mu represents the matrix formed
by the transmitted training signal on line u. The matrix Mu is the
Toeplitz Matrix having vu as the first column and having L1 columns.
Matrices Mv, and Md represent the matrices corresponding to the
data signals on line u and on line d respectively, and they can be de-
fined in a similar way as Mu.

In DSL systems, the direct channel hdd is supposed to be known per-
fectly. Thus if the transmitted signal on the direct line d is decoded
with no errors one can remove the term Mdhdd from equation (8.5),
and the remaining signal is given by:

rd = Muhdu + ν. (8.6)

The term Mvhdu is now included in the noise ν = Mvhdu + ν0.

The least square estimation of the channel hdu is given by:

ĥls =
(
Mu

TMu

)−1
Mu

T rd. (8.7)
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However matrix M = Mu
TMu is ill conditioned due to the presence of

too many zeros in the spectral representation of u. These zeros come
from the fact that no energy has been transmitted over the tone used
for data.

8.3 Condition Number

For a matrix A, the condition number κ(A) indicates if a matrix is
well conditioned or not. One way to measure the condition number is
to use the formula κ(A) = |λmax(A)|

|λmin(A)|
, where |λmax(A)| and |λmin(A)|

represent respectively the maximum and the minimum eigenvalues of
A. If κ(A) ≈ 1 the matrix is well conditioned, and if κ(A) >> 1
the matrix is ill conditioned [76]. In the following we will describe the
behavior of κ(M) using a typical DSL training sequence vu.

DSL systems use different types of training sequences for the direct
channel estimation:

• Reverb1 where the same DMT symbol is repeated over different
DMT blocks and without adding a cyclic prefix: [uT

D, uT
D, ...uT

D]T .

• Reverb2 where the same DMT symbol is repeated over different
DMT blocks but with adding a cyclic prefix: [uT

PuT
D, uT

PuT
D, ...uT

PuT
D]T .

• xMedley where different DMT symbols are sent over different
blocks and the cyclic prefix is used: [uT

P1
uT

D1
, ..., uT

Pn
uT

Dn
, ...uT

PN
uT

DN
]T .

It is important to study the condition number of the signal Matrix
corresponding to this type of signals when the number of pilot tones
to be used is limited. In the case of Reverb1, we assume the length of
the channel impulse response L1 to be equal to the length of an DMT
block. Disregarding the first and the last DMT blocks transforms
matrix M into a circular matrix. When disregarding the first and
the last DMT block, matrix Mu can be seen as the concatenation of
N − 2 times a repetitive circular matrix Mc. This circular matrix is
formed by the repetitive DMT block used in Reverb1. We conclude
that M = (N − 2)MT

c
Mc. Since Mc is a circular matrix we have

Mc = WHΛW where Λ is a diagonal matrix whose diagonal elements
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represent the eigenvalues of Mc. We define vector mc to be the first
column of matrix Mc. The diagonal of matrix Λ is given as the FFT
of mc: diag(Λ) = Wmc. We can conclude:

M = (N − 2)WHΛHΛW. (8.8)

Equation (8.8) indicates that matrix M is a circulant matrix having as
eigenvalues the diagonal of matrix (N−2)ΛHΛ, where the eigenvalues
of matrix ΛHΛ correspond to the amplitudes square of the eigenvalues
of matrix Mc.

In the Reverb1 case, and for L1 equal to the length of the DMT block
K, the matrix Mc is formed by a circularly shifted version of uT

D.
Thus when the FFT is applied on the first column of Mc, the zeros
corresponding to the Data signal band will appear, which makes the
matrix M singular (since it has zero eigenvalues) with a rank equal
to the number of pilot tones. In this case, time domain estimation
can not be performed for a channel length L1 bigger than the total
number of pilot tones.
In the case of Reverb2, and if we start observing the received signal
at the middle of a DMT block (inducing non synchronization), the
first column of the matrix Mc would be formed by the parts of two
consecutive DMT symbols separated by the cyclic prefix. The parts
of the DMT symbols can be seen as truncated DMT symbol uTn

:
uTn

= TnuDsn
where Tn represents a truncation matrix (diagonal

matrix that has all the diagonal elements equal to one except for the
truncated parts equal to zero), and uDsn

is a circularly shifted version
of uDn

.The cyclic prefix can also be seen as a truncated version of
DMT symbol. Defining uIsn

= uIn
exp(jθ) where θ corresponds to

the circular shift between uDsn
and uDn

, results in the relationship
uDsn

= WHuIsn
. Applying FFT on uTn

gives:

UTn
= WTnW

HuIsn
= Msincn

uIsn
(8.9)

The matrix Msincn
is a circular matrix having as first column the FFT

of a rectangle that corresponds to the diagonal of Tn. According to
(8.9), the FFT of a truncated DMT symbol is given as a circular con-
volution between the FFT of the DMT symbol and a truncated sinc
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that depends on the truncation matrix (which is by itself dependent
on the non-synchronization). In this case spectral elements of mc are
non zero, however tones located far in the non used frequency band
would have small energy compared to tones located on the used band
and matrix Mc is ill conditioned.

The length of DMT block in Reverb2 case the is equal to (K + L)
(length of the DMT symbol + that of the cyclic prefix). Thus to ob-
tain the eigenvalues of matrix Mc, an FFT of length (K +L) must be
applied on its first column mc. However the FFT of length (K +L) is
seen as an interpolation or zero padded version of the length K FFT.
The spectral elements corresponding to the non used frequency band
would always be small compared to the tones that correspond to the
used band. Thus the condition number κ(Mc) = |λmax(Mc)|

|λmin(Mc)|
is large,

and matrix Mc remains ill-conditioned unless we limit the number of
taps to be estimated.
In the case of xMedley signal, the matrix Mu is formed of N − 2 dif-
ferent Toeplitz matrices Mtn , where each Mtn corresponds to a DMT
block n. The Toeplitz matrix Mtn can be seen as the combination
of a circular matrix Mcn

, and a corrective matrix Dn, so we have:
Mtn = Mcn

+ Dn. The signal matrix can now be expressed as:

M =

N−1∑

n=2

(Mcn
+ Dn)T(Mcn

+ Dn). (8.10)

The sum of circular matrices is a circular matrix, and since all Mcn

have the same distribution of eigenvalues, which is the same as the
distribution of the pilot tones, we can conclude that the circular ma-
trix MCx

=
∑N−1

n=2 MT

cn
Mcn

has the same eigenvalue distribution of
any of its constituents Mcn

TMcn
, thus the same condition number.

Expression (8.10) can be rewritten as: M = MCx
+ Dx, where

Dx =

N−1∑

n=2

DT

n
Mcn

+ MT

cn
Dn + DT

n
Dn.

Matrix MCx
is the dominant part of the signal matrix M and its

inverse can be given by:

M−1 = M−1

Cx

[
I + DxM

−1

Cx
+
(
DxM

−1

Cx

)2
+ ...

]
. (8.11)
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As in the case of Reverb signals, equation (8.11) shows that the con-
ditioning of the LS estimation is affected by the condition number of
MCx

which is related to the distribution of the pilot tones.

8.4 Time Domain Estimation

Section 8.3 shows that in DMT systems, when using a training se-
quence with limited number of pilot tones, the LS estimation of the
channel impulse response is an ill conditioned LS problem. In this
section we will improve the LS estimation by simply adding a regu-
larization factor to matrix M. In the first part we suppose that the
channel gain information are available, and the regularization factor
would be simply seen as the constraints imposed to achieve the known
gain values. In the second part we suppose no prior knowledge of the
channel gain, in this case we will add a scaled identity matrix as the
regularization factor, then we will propose a method to improve the
estimation by iteratively minimizing the estimation error.

8.4.1 Constrained LS Estimation

In DSL systems, channels change slowly over long period of time, one
may assume the existence of a monitoring system that is able to pas-
sively estimate the crosstalk channel gain ([54],[77]). In the following
we suppose that we posses the crosstalk channel gain estimates. These
estimates are incorporated as constraints in the time domain estima-
tion to improve its conditioning. The least square problem becomes:

minhdu
(rd − Muhdu)

T (rd − Muhdu) (8.12)

S.t
∣∣∣Hdu

∣∣∣ =
∣∣∣Ĥdum

∣∣∣

where
∣∣∣Ĥdum

∣∣∣ are channel gain estimates given by the monitoring sys-

tem. Problem (8.12) is a constrained optimization that can be solved
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iteratively using Lagrange formulation as the following:

F = (rd −Muhdu)
T (rd −Muhdu) (8.13)

+
∑

i

µi

(∣∣∣Hdu(i)
∣∣∣−
∣∣∣Ĥdum

(i)
∣∣∣
)

where µi is the Lagrange multipliers for tone i, and F is the Lagrange
function. Consider Σ to be a diagonal matrix with µi as diagonal
elements, F can be written as:

F = (rd −Muhdu)
T (rd −Muhdu) + hT

duW
HΣWhdu

−
∑

i

µi

∣∣∣Ĥdum
(i)
∣∣∣ . (8.14)

To ensure that the expression hT
duW

HΣWhdu is always real, the La-
grange multipliers corresponding to the positive and negative frequen-
cies should be the same. The minimization problem can be solved
iteratively: At iteration t, and for fixed µt

i we can find ĥt
cls that mini-

mizes F in (8.14) and then using ĥt
cls we can proceed to update µt+1

i .
At fixed µt

i, minimum F with respect to hdu is given by:

∂F

∂hdu

= 0

(8.15)

Which is given by:

ĥt
cls =

(
MT M + WHΣtW

)−1

Mu
T rd (8.16)

The search of the Lagrange multipliers is done in the gradient direction
where at each iteration t, µi is updated according to:

µt
i = µt−1

i − α
(∣∣∣Ĥ t

cls(i)
∣∣∣−
∣∣∣Ĥdum

(i)
∣∣∣
)

(8.17)

With α is a small step size, and Ĥ t
cls is the FFT of ĥt

cls. The values µt
i

are then used to update the matrix Σt.
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8.4.2 Penalized LS

One of the solutions used for ill-conditioned LS problems is to add a
regularization factor to matrix M in order to make it invertible. Let
the matrix mu be the regularization factor; the channel estimator can
now be expressed as:

ĥpls =
(
M + mu

)−1

Mu
T rd. (8.18)

In fact, the constrained LS algorithm described in the previous section
can be seen as a regularized LS solution, where the channel constraint
matrix WHΣW is the regularization factor. In the lack of additional
channel gain information, the simplest choice of the regularization fac-
tor is to use Tikhonov regularization [78], [79]. In this case, the matrix
mu is equal to aI, where a is a positive scaling factor and I is the iden-
tity matrix.

In the case of Tikhonov regularization, ĥpls can be seen as the result
of the following minimization:

minhdu
(rd −Muhdu)

T (rd −Muhdu) + ahT
duhdu. (8.19)

In (8.19) the LS criterion is modified to include a scaled square Eu-
clidean norm of the channel impulse response. Hence an estimate
with a large impulse response is penalized by the regularization term
a, from where comes the name: "Penalized Least Square" or simply
PLS.

8.4.3 Iterative Improvement of PLS

In this paragraph we try to improve the performance of the PLS algo-
rithm by iteratively removing a part of the penalization factor. This
procedure can be seen as improving the regularization factor used in
the PLMS algorithm. Using the identity (I + AB)−1 = I − A(I + BA)−1B,
expression (8.18) can be rewritten as:

hdu = ĥpls + (M + mu)−1muhdu + ε (8.20)

where ε = −
(
M + mu

)−1

MT ν. Expression (8.20) can be used to

further improve the estimation of hdu. Let Me = (M + mu)−1mu.
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Minimizing the mean square of ε results in minimizing the following
metric:

‖ε‖2
2 =

(
hdu − (ĥpls + Mehdu)

)T

×
(
hdu − (ĥpls + Mehdu)

)
. (8.21)

The gradient of (8.21) is given by:

∂ ‖ε‖2
2 /∂hdu = 2

[
hdu +

(
Me

T Me − (Me
T + Me)

)
hdu

+
(
Me

T − I
)
ĥpls

]
. (8.22)

The minimization of ‖ε‖2
2 is a least square minimization. Hence to find

h̃ipls that minimizes (8.21), it is sufficient to set the gradient (8.22) to
zero using the following iterative algorithm

h̃t+1
ipls =

(
I − Me

T
)
ĥpls

−
(
Me

TMe − (Me
T + Me)

)
h̃t

ipls (8.23)

where t represent the iterations. At the first iteration (t = 1), the
initial estimation of the channel impulse response is given by: h̃1

ipls =

ĥpls. The iterative algorithm (8.23) will be called iterative penalized
least square (IPLS), and it can be justified using the identity: (I +
A)−1 = I +

∑∞
n=1(−1)nAn, where if h̃1

ipls = 0 when t goes to infinity

h̃ipls is given by:

h̃ipls =
(
I + Me

TMe − (Me
T + Me)

)−1

×
(
I −Me

T
)
ĥpls. (8.24)

In the case of Tikhonov regularization, the matrix
(
Me

TMe−(Me
T +

Me)
)

is reduced to Me(Me − 2I), where Me = (M + aI)−1aI. Con-

sidering that L1 is equal to the DMT block length, and taking the
Reverb1 case, using (8.8) gives:

Me = aW H
(
(N − 2)ΛHΛ + aI

)−1
W. (8.25)
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Hence Me is a circular and symmetric matrix, with eigenvalues equal
to a((N − 2) |λ(i)| + a)−1 ≤ 1, which makes Me(Me − 2I) negative
definite. Most of the eigenvalues of matrix Me(Me − 2I) are equal to
−1, the few eigenvalues that corresponds to the pilot tones are strictly
bigger than −1. It can be shown that the additional error by iteration
would have the same sign as the previous error thus they will add up.
One way to mitigate this problem is to choose the number of iteration
as a function of the noise power: if the noise is high limit the number
of iterations, if the noise is small increase the number of iterations.

8.4.4 Performance Analysis

Since the proposed estimators in this chapter are biased, we propose
to study the mean quadratic error as an indicator of performance. Let

ĥ be a biased estimator of h, and mĥ = E
[
ĥ
]
. The mean quadratic

error ηĥ will be defined as the diagonal of the following matrix CE:

CE = E
[
(ĥ − h)(ĥ − h)T

]
.

It can be shown that: CE = C
ĥ

+ (h − mĥ)(h − mĥ)
T , where C

ĥ
is

the covariance matrix of estimator ĥ. Thus we have:

ηĥ(i) = C
ĥ
(i, i) + (h(i) − mĥ(i))

2 (8.26)

ie the mean quadratic error is equal to the sum of the variance of the
estimator and the square of the bias. In the frequency domain the
mean square error is equal to the diagonal of WCEWH.

8.4.4.0.4 Noise Covariance As it was previously seen, the noise
of the received signal is given by ν = Mvhdu + ν0. Let vd designs the
vector corresponding to the data signal represented by matrix Mv and
let Hdu be a (Nt×Nt) Toeplitz matrix where the first L elements of the
first column are equal to hT

du while the rest are zeros. The noise can
be rewritten as ν = Hduvd + ν0, where vd is a vector that represents
the data signal on line d.
Supposing that the signal vd has equal power σ2

vd
over all tones, and

that the cyclic prefix and the pilot signal are small compared to the
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data signal, we can write the noise covariance in the time domain as:

Cν =
1

K
(σ2

vd
HduH

T
du + σ2

ωI) (8.27)

8.4.4.0.5 CLS Performance The covariance of CLS estimator is
given by:

C
ĥcls

=
(
MT M + WHΣW

)−1

Mu
TCν (8.28)

× Mu

(
MTM + WHΣW

)−1

.

And the bias is simply given by:

Bcls =
((

MTM + WHΣW
)−1

Mu
T − I

)
hdu (8.29)

And the quadratic mean error is equal to:

ηcls = diag(C
ĥcls

+ BclsB
T
cls) (8.30)

8.4.4.0.6 PLS & IPLS Performance The covariance of PLS
estimator is equal to:

C
ĥpls

=
(
MTM + mu

)−1

Mu
TCνMu

(
MTM + mu

)−1

(8.31)

while the bias is given by:

Bpls =
((

MTM + mu

)−1

Mu
T − I

)
hdu.

To find the covariance of an IPLS estimator at iteration t first define
the matrix:

St =

t∑

c=1

(
(Me

T + Me) −Me
TMe

)c−1(
I −Me

T
)
.

Now the covariance per iteration can be given by:

Ct

ĥipls
= StCĥpls

ST
t (8.32)
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and the bias is defined by:

B
t
ipls =

(
St

(
MTM + mu

)−1

Mu
T − I

)
hdu. (8.33)

The quadratic mean error in the case of PLS and IPLS estimators (ηpls,
ηipls) are defined the same way as equation (8.30). The quadratic mean
error of these different estimators depends directly on the channel
impulse response to be estimated, thus it will be impossible to evaluate
the estimators’ performance prior to the estimation. However the
estimated values can be used to evaluate the performance after the
estimation, or to propose a stop criterion to the IPLS estimation,
where the iterations can be stopped when ηipls starts increasing.

8.5 Simulation

In the following the different estimation algorithms presented in this
chapter are tested using a 2 users DSL scenario. The victim’s direct
channel and the crosstalk channels are measured channels from a real
case situation. The length of the DMT symbol is equal to 512 tones
(K = 512). The training sequence used is an xMedley signal. Two
types of pilot tones distribution are used: Regrouped pilot tones, and
distributed pilot tones.

As shown in Fig.8.1, regrouped pilot tones refers to the case where
pilot tones are adjacent to each others and occupy 2 separated fre-
quency bands, while distributed pilot tones are uniformly distributed
over the entire frequency band. In the regrouped distribution, the
two frequency bands occupied by pilot tones are separated by a large
frequency band. In this case, the side lobes caused by the non synchro-
nization will fade away in the middle of this large band gap resulting
in an ill conditioned problem. Regrouped tones can represent the US
frequency bands in VDSL systems separated by the DS bands. If the
DSL system suffer from non synchronization between different lines,
it is important to estimate the side lobes caused by the US signal on
the DS signals, and vice-versa.
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In the uniform distribution, 2 pilot tones are separated by a small fre-
quency band that can be easily overcome by side lobes if the number
of pilot tones is high enough. In this case the estimation problem is
well conditioned. This distribution should be used when estimating
crosstalk channel between the same frequency bands (DS or US).
The length of the impulse response to be estimated is set to 45 taps.
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Figure 8.1: Pilot tones distribution within the training signal

The metric for testing the different algorithms is the victim’s direct
channel capacity before and after the crosstalk cancellation based on
the estimated values. The channel capacity before the crosstalk can-
cellation Rd is given by expression (8.2) while the capacity after the
cancellation is given by:

Re =
∑

k

log2

(
1 +

|Hdd|2(k)Pd(k)

|Hdu − Ĥdu|2(k)Pu(k) + σ2
ω(k)

)
. (8.34)

Ĥdu is the FFT of the hdu estimates obtained by means of one of the
different estimation algorithms. Let Rls, Rpls, Ripls, and Rcls be the
obtained post crosstalk cancellation capacities using LS, PLS, IPLS,
and CLS respectively. The noise affecting the estimation process is
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mainly composed by the data signal transmitted on the other tones.
In order to improve the estimation one may apply a power back off on
the data symbol tones. We define F as the ratio between the power
transmitted at the Data symbol tones during and before the estima-
tion. When F = 1 it means that the power at the data symbol tones
did not change during the estimation, thus the error is large. For
F = 0.5 it means the power has been lowered by 3 dB over all the
symbol tones.

8.5.1 Regrouped Distribution

The first simulation is done using a regrouped pilot tones training
signal. A total of 64 pilot tones is used, with 32 adjacent tones oc-
cupying the lower part of the frequency band and another 32 tones
occupying its higher part. The estimation is done over 160 DMT sym-
bols, and using F = 0.5 for the data signal. Table 8.1, 8.2 and 8.3
report the capacity in bit/DMT symbols obtained using different es-
timators, and for different scaling factors a. For each scaling factor a,
the estimators are tested over 3 different crosstalk channel impulses
hdu,hdu,1 and hdu,2. These channels are taken from measurements per-
formed between 400 m France telecoms cables. The results show that
the constrained LS estimator outperform the other estimators which
is normal since it has access to the crosstalk channel gain informa-
tion. The penalized LS estimator performance is highly dependent
on the scaling factor, as if a is chosen too small or too large, it may
deteriorates the results of PLS. However, if a is chosen too large the
iterative PLS is able to remove the added bias, and improve the overall
estimation as shown in Table 8.2 and 8.3.

Crosstalk channels Rd Rls Rpls Ripls Rcls

hdu 5217.9 6568.2 7028.6 7217.7 7626.4
hdu,1 6488.5 7684 8179 8260.6 8636.1
hdu,2 6902 8221.1 8570.6 8723.7 9170.5

Table 8.1: Results obtained for scaling factor a = 0.0926
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Crosstalk Rd Rls Rpls Ripls Rcls

hdu 5217.9 6572.3 6702.5 7104.4 7562.3
hdu,1 6488.5 7658.1 7900.4 8200.5 8723.8
hdu,2 6902 8250.8 8189.2 8656.7 9125.5

Table 8.2: Results obtained for scaling factor a = 0.1852

Crosstalk Rd Rls Rpls Ripls Rcls

hdu 5217.9 6568.2 6474.5 7010.3 7525
hdu,1 6488.5 7658.1 7644.3 8155 8818.6
hdu,2 6902 8071.8 7942.4 8478.6 8998.9

Table 8.3: Results obtained for scaling factor a = 0.3704
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Figure 8.2: The reached capacity using different estimation algo-
rithms

Fig.8.2 shows the capacity given by (8.34) when the crosstalk channel
hdu is compensated using the different proposed estimators in function
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of 100F . For the PLS algorithm the regularization factor is fixed to
0.0926, and for the IPLS we use the minimum ηipls as stop criterion.
This result shows that the CLS has outperformed the LS algorithm,
where the capacity obtained using the CLS estimates for crosstalk can-
cellation is between 13% and 15.6% higher than the capacity obtained
using the LS estimates. IPLS algorithm outperform LS as well, where
it has a capacity gain over LS that varies between 6.56% and 10.46%.
The capacity gain achieved by PLS algorithm over LS varies between
2.6% and 8%. It is clear that the LS algorithm is mainly deteriorated
when the noise becomes large (F=1), this is due to the fact that the ill
conditioning of the LS estimation amplifies the effect of noise. Fig.8.3
shows the evolution of the IPLS estimates error with respect to the it-
erations. The theoretical mean quadratic error (8.30) computed using
the true crosstalk channel value hdu, and the estimated value ĥdu are
also shown on the figure. The quadratic mean error calculated using
ĥdu is about 3 to 4 dB higher than the actual estimation error between
the estimated channel impulse response and the real one, however both
curves have the same shape, and in this case they have the minimum
values located at iteration 8. In general, using different simulations,
the minimums of real and theoretical curves are found to be located
at vicinity of each others (typically less than 2 to 3 iterations).

Finally, Fig.8.4 shows the residual crosstalk after cancellation of Hdu

using IPLS and LS algorithms. For the IPLS case, we can see that the
crosstalk was reduced more than 50% for 300 tones. These tones are
located at the higher and lower frequency bands were the pilot tones
are used. In the middle band where the side lobes are not effective, the
crosstalk reduction is limited however the resultant crosstalk does not
exceed the original one, thus the capacity is either improved or stays
the same over all tones. For the LS case, the crosstalk was reduced
more than 50% for 150 tones. However, the resultant crosstalk in the
middle band exceeds the original crosstalk by 50 % for some cases.
Even though the capacity did not improve for the middle frequency
band using the IPLS precoding, however the system SNR did not
deteriorate. Thus the IPLS results can be used as an initialization of
the method presented in chapter 6, where an accurate estimation can
be done without the system 3 dB SNR loss suggested there.
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8.5.2 Uniform Distribution

Pilot Tones Condition Number Rls Rpls Ripls Rcs

64 1.5990 9481.8 9108.6 9481.8 10204
32 2.8812 8380.7 8223.3 8397.6 10382
16 441.8778 6434.1 7353.4 7372.4 8686.3
8 2375.1 4857.6 5966.4 6101.1 6230.1

Table 8.4: Results obtained using a uniformly distributed pilot
tones signal

The following simulation is done using only 16 DMT symbols, a 3 dB
power back off is applied (F=0.5), and scaling factor a = 0.3704. Table
8.4 reports the capacity in bit/DMT symbol obtained after crosstalk
cancellation for Hdu. Using the same number of pilot tones as the re-
grouped distribution case (64 pilot tones) results in a well conditioned
estimation problem where the condition number is equal to 1.6, in
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Figure 8.4: Residual Crosstalk after Cancellation

this case the LS estimator outperformed the PLS. However the IPLS
finally converged to the same result obtained by the LS. As the num-
ber of pilot tones went down, the condition number increased, and the
problem becomes ill conditioned. When the number of pilot tones is
limited to 8, the LS estimator performance deteriorates, it even re-
sults in a capacity lower than the pre crosstalk cancellation capacity
(Rd = 5217.9). The other estimators always conserve a capacity gain
> 1 when compared to Rd. As seen in the regrouped pilot tones signal,
the constrained estimator outperformed the other estimators.
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8.6 Conclusion

In this chapter we have presented techniques to estimate crosstalk
channels in DSL systems using a limited number of pilot tones. Using
a limited number of pilot tones reduces the overhead caused by the
crosstalk estimation, and insures a continues data communication on
the DSL systems, however the crosstalk estimation may become an
ill-conditioned problem. Due to the ill-conditioning theclassical LS
algorithm becomes non-reliable. Several algorithms for solving an ill-
conditioned estimation problem were introduced, Such as constrainted
LS, penalized LS algorithms. An iterative reduction of the penaliza-
tion factor was also proposed. These techniques improved the LS
estimation of the crosstalk channels considerably. Even in the case
of a well conditioned estimation problem, the iterative removal of the
regularization facto in penalized LS algorithm was able to converge to
the same results achieved by LS.
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Chapter 9

Conclusions

In this thesis we addressed the problems of implementing DSM algo-
rithms under practical and realistic conditions and constraints on the
DSL systems. In the literature, proposed algorithms for DSM level
2 and DSM level 3 always assume the perfect knowledge of of both
crosstalk channels and direct channels. While the direct channels is
estimated and provided in the current DSL systems, the crosstalk
channel is not known. Few estimation methods were proposed for
the crosstalk channels’ estimations. However, most of these methods
includes coarse procedures that requires the halt of communication
on the line under investigation, such as the use of pilot sequences or
other DSL test methods (SELT, DELT). Furthermore, DSM level 2
centralized algorithms includes complex optimization techniques that
may need long execution time. The main achievement of this thesis
are focused on the enhancement of the state of the art DSM level 2 al-
gorithms mainly ISB and OSB, and on proposing practical estimation
techniques for the crosstalk channels that requires minimal changes
on the current DSL standards and modems.

9.1 Achievements

In the first part of this thesis we proposed to solve the Near-Far prob-
lem in the DSL systems by adopting the "Balanced Capacity" concept
in the DSM level 2 algorithms. By using the "Balanced capacity" con-
cept we were able to ensure fairness between the different users in a
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DSL system, where all users were able to transmit at the same per-
centage of their maximum achievable bitrate.

We then proceeded with the enhancement of some known state of the
art DSM level 2 algorithms (mainly ISB and OSB) by incorporating
the successive optimization (SO) concept within the optimization pro-
cedure. Successive optimization takes advantage of the correlation of
the channels gain between adjacent tones to propose a proper initial-
ization of the optimization at each tone based on the result found on
the previous tone. The successive optimization techniques resulted in
DSM algorithms with better convergence, where the execution time is
decreased considerably.

Another advantage of the successive optimization is that it allows
the use of low complex algorithms like Newton-Raphson and gradient
algorithm (Steepest Ascent). We were able to adapt Newton-Raphson
and steepest ascent to the DSL systems and the numerical results
showed that the execution time was decreased further more when these
two algorithms replaced the typical line search and exhaustive research
used in ISB and OSB.

To improve the optimization results, and to prevent the successive op-
timization from falling in a poor local optimum region, we proposed
to use a multi start points technique. At each tone, and after the
implementation of the optimization starting by the results found on
the previous tone, we run the optimization procedure a second time
using an additional random starting point (ASP). The results of the
SO and ASP are compared and the best value is kept. A reverse suc-
cessive optimization was also implemented in order to take advantage
the ASP results for the previous tones. These simple procedures pre-
vented the optimization from being trapped in local optimum regions
and provided better results than the traditional ISB algorithm. The
enhancement techniques proposed in the first part of this thesis can
be generalized and used to improve other DSM level 2 algorithms.

In the second part of this work we proposed practical algorithms for
the estimation of the crosstalk channel. We started by suggesting the
establishment of a monitoring center for the DSL systems. In this
monitoring system, observations related to the SNR changes, the time
of connection/disconnection of the users, the PSD, the noise level can
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be stored. These observations were used to estimate the channel gain
of the crosstalk channels of a synchronized DSL system by correlating
the SNR changes on a line to the connection/disconnection of other
users. Techniques that involved a time domain model of the crosstalk
channels were used to compress the crosstalk channel gain information,
and to improve the overall estimation.

We extended the use of the passive estimation techniques for non
synchronized DSL systems, where we developed a model for the asyn-
chronous crosstalk channels’ gain. Based on this model we proposed
an estimation technique for the crosstalk channel gains based on the
observation of the SNR changes. A blind estimation technique for
the time delay between two different lines was also suggested. The
proposed time delay estimation only required a non correlated power
allocation at least between two adjacent tones.

We have also analyzed the effect of the estimation error on DSM level
2 algorithms. While in the literature some work is done to study the
effect of the estimation error on DSM using simulation, or by studying
the estimation error effect on the allocated bitrate. However, and to
the best of our knowledge, there is no work that analyzes the effect
of the estimation error on the power allocation itself (the result of the
optimization). In this work, we used Taylor approximation in order
to find a relationship between the estimation error and the allocated
power and its effect on the system bitrate. We found that the esti-
mation error could lead the optimization algorithm to a local optimal
power allocation instead of the global one. This is more probable to
happen when the estimation error is high, or when the local and global
optimum are close to each others.

We have also proposed a total crosstalk channel estimation for DSM
level 3 applications. This estimation procedure is based on an ac-
tive observation of the SNR changes on a synchronous DSL lines. In
this procedure, for each DSL line, and for each tone, we modified the
crosstalk channels to be estimated by inducing perturbation on the
line. By changing the crosstalk channel two times, one time by chang-
ing its real part, and another time by changing its imaginary part, we
were able to estimate the crosstalk channel normalized by the direct
channel. This estimation procedure was further improved by using
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a time domain model that relates the crosstalk channels over differ-
ent tones. The use of a time domain model allowed the tone wise
estimation to be done over a limited number of pilot tones.

Finally we proposed another time domain estimation technique for the
crosstalk channels, this technique uses the LS to estimate the crosstalk
channel time domain model based on a known training sequence. How-
ever, since the time domain model is usually formed of limited number
of taps, and since adjacent tones have correlated crosstalk channels,
we proposed to use a limited number of pilot tones in the training se-
quence. This allows a continuous communication in the DSL system
even when using training sequences for the crosstalk channels’ estima-
tion. We found that this technique can give good results if the pilot
tones are uniformly distributed over the DSL band. If not, the estima-
tion problem becomes an ill-conditioned LS problem. However, even
for ill-conditioned case we proposed several remedies that improve the
estimation of the crosstalk channel.

9.2 Perspectives

The implementation of DSM level 2 and level 3 represents the next
step for the DSL systems. This thesis presented several solutions that
can help implementing DSM using the current DSL standards and
modems. However more studies are needed before the full application
of DSM. The present work can be expanded in several ways:

• Virtual binder identification: In this work we consider that the
DSL lines that are at proximity of each others, thus influence
each others, are known. This facilitates the estimation proce-
dure. However, these informations are not always available, and
a procedure to regroup the related DSL lines within one virtual
binder must be proposed.

• Distributed estimation and optimization algorithms: While dis-
tributed DSM level 2 algorithm are already proposed in the lit-
erature, there is no work that combines a distributed bitrate
optimization with a distributed crosstalk channels estimation.
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• Proposal of DSM level 2 algorithm that takes into consideration
the effect of the estimation errors.

• Estimation of the number of taps in the crosstalk channel time
domain model based on the estimated crosstalk channel gain.

• Proposal of DSM level 3 iterative precoder that incorporate the
crosstalk channel estimation based on the SNR method.

• Comparison between the time-domain crosstalk channels’ esti-
mation using SNR method and the time-domain estimation us-
ing limited number of pilot tones.

• The use of compressed sensing techniques to better estimated the
crosstalk channels using training sequences with limited number
of pilot tones.

• Proposal of an alternative training sequence with limited number
of pilot tones: If the training sequence would apply a frequency
hoping or a tone hoping on the pilot tones between the different
DMT symbols, this may improve the the condition number of
the channel matrix used for the LS time domain estimation.
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