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Abstract 
In this paper we develop a vintage capital model for a firm involved in a market for tradable emission 
permits. We analyze both the firm’s optimal investment plans and the market equilibrium. This allows us 
to scrutinize how firms use permits free endowment, and to highlight the implications of non-optimal uses 
both at the firm and at the market level. We provide a new rationale for the market of tradable permits not 
to be cost-efficient. The novel technical points in this context are the use a distributed (vintage) optimal 
control model of the firm, the use of optimality conditions for non-smooth problems, and the involvement 
of a nonlinear Fredholm integral equation of the first kind for the description of the equilibrium price of 
permits, and its practical meaning for market regularization. 
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1 Introduction

Markets for tradable emission permits have become a key policy instrument in many environmental
areas today. One may naturally have in mind the US acid rain program, that launched in 1995 a
market for SO2 permits covering the whole US power industry (see Ellerman et al., 2000). Even
broader, the Kyoto protocol enforced a world market under the United Nations Framework Conven-
tion on Climate Change (UNFCCC, 1997; see UNFCCC, 2005, for a survey). In 2005 the European
Emission Trading Scheme (EU-ETS) entered into force, covering about 14,000 industrial installa-
tions in the EU-27 (see Ellerman et al., 2007). In the US, the Regional Greenhouse Gas Initiative
also makes use of tradable emission permits.1 Many more local markets have been implemented
recently, see Ellerman (2005) or Tietenberg and Thoman (2006) for comprehensive presentations
of all these experiments.

The idea of tradable emission permits originates to Dales (1968). Montgomery (1972) formally
showed that trading is cost-efficient under perfect competition. Another key result of Montgomery
is that the way permits are distributed among firms does not alter the efficiency of the market for
tradable permits. This result offers a major advantage to tradable emission permits: the authority
responsible for issuing the permits needs not be aware of the incumbents’ abatement costs. In this
paper we will question the result that markets for tradable permits are cost-efficient.2

Another crucial issue about tradable emission permits is to know whether permits should be given
for free (i.e. grand-fathered) or auctioned. The economic literature is quite clear on that point:
giving permits for free is not socially optimal, while full auctioning is (see e.g. Cramton and Kerrn,
2002, Jouvet et al., 2005). Nevertheless, as argued by Stavins (1998), giving some permits for free
enhances political acceptability because it is less costly for the firms (see Goulder, 2002, for a
CGE numerical appraisal and Bréchet et al., 2010, for a critical discussion in dynamic general
equilibrium.). The policy maker has thus some good reasons to issue some permits for free, the
remainder being auctioned. In this paper we highlight some potential adverse effects of giving
permits for free both at the firm and at the market level.

To our knowledge, there is no paper in the literature that explicitly considers how permits are
managed inside the firm, and no paper that analyzes the related impacts on market equilibrium.
How do firms use emission permits? Do they consider differently free endowments and auctioned
permits? How does it change their investment plans? In this paper we answer these questions.
To this purpose we develop a vintage capital model of the firm. In all of the works that analyze

1The Regional Greenhouse Gas Initiative (RGGI) is the first mandatory, market-based effort in the United States
to reduce greenhouse gas emissions. Ten Northeastern and Mid-Atlantic states haved capped and will reduce CO2

emissions from the power sector 10% by 2018. See http://www.rggi.org.
2We will do it under perfect competition. Hahn (1984) elaborated on that point under imperfect competition by

showing that the firms’ permit endowments could be used to control for market power. A large literature is also
devoted to revelation mechanisms under information asymmetry. See e.g. Moledina et al. (2003). This is beyond the
purpose of our paper.
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tradable emission permits, it is assumed that capital is homogeneous.3 We will be able to analyze
how free endowments of tradable emission permits are used inside the firm by distinguishing capital
vintages with respect to their productivity and emission intensity. This heterogeneity enables the
firm’s managers to decide which machines to scrap and which machines to buy, when confronted
with emission restrictions. In particular, our model allows for investing in and scrapping technologies
of any vintage.

Formally, our firm-level model consists of a continual family of controlled ordinary differential
equations (thus has a distributed dynamics) describing the evolution of the firm vintage-wise.
From a technical point of view the vintage differentiation does not cause problems at all, since
the AK-framework that we employ, does not include vintage-externalities and evidently allows to
decompose the firm’s optimization problem to independent subproblems corresponding to different
vintages. The main trouble with the firm-level problem is caused by the possibility of endogenous
scrapping (which is necessary to include as a policy instrument when the firm faces emission costs
of any kind).4 The resulting firm’s optimization problem involves a non-differentiable term in the
objective functions, which makes the problem intractable by the standard dynamic optimization
techniques based on the Pontryagin maximum principle (Pontryagin et al., 1962). We apply an
optimality condition for non-smooth optimal control problems (Loewen, 1993) and perform the
relevant analysis.

Another technically interesting point is the equation for the equilibrium price of emissions that we
derive based on the obtained optimal behaviour of the firms facing costs of emission. The market
equation can be classified as a nonlinear Fredholm integral equation of the first kind, which reduces
to a classical linear one under additional assumptions. This already says a lot: the equilibrium price
of emission permits may be very sensitive, non-uniquely determined or even not having economic
meaning (being negative). Therefore we address the question of regularization of this equation in
a way that is practically implementable. The main idea is that the emission restriction should be
posed period-wise, with not too short commitment periods. This sort of regularization is consistent
with the discussion about so-called commitment period under the Kyoto protocol (2008-2012), or
the so-called “phases” under the EU-ETS market (2005-2008, then 2009-2013). We show that a
long enough commitment period is essential for firms to implement efficient investment plans.

Our main results can be summarized as follows. We start by considering the benchmark model of a
firm that uses machines of different vintages (in other words, different technologies). Each technol-
ogy has its own productivity and emission intensity. We naturally assume that older machines are
more polluting but less productive. At any time the firm can invest in machines of any vintage and
switch-off any machines. The firm faces an emission tax. It maximizes its discounted net revenue.
The optimal investment decision is described. This first model allows us to understand part of the

3The only paper dealing with CO2 emissions abatement with heterogenous capital stocks is Jaccard and Rivers
(2007). This paper explores the relationship between the natural turn-over for different society’s capital stocks (in-
frastructures, building and machines) and the pace of emission abatement, but it does not consider the role of policy
instruments.

4We refer to Boucekkine et al. (1998) for “creative destruction” of capital in a different context and with a different
technique applied.
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firm behavior with emission permits, because in both cases (emission tax or permits), the price of
emissions plays the same role. It represents the opportunity cost of pollution for the firm. Then,
we introduce tradable emission permits. For the sake of generality we assume that the regulator
issues some permits for free, and that some are auctioned. We consider that there exists a top
manager in the firm who distributes the free endowment of permits among the different technolo-
gies. By doing this, she decentralizes the investment and production decisions at the level of the
operating manager. The firm is supposed to be price taker in the market for tradable permits. We
show that there exists a set of optimal allocation rules of permits, that is, ones that maximize the
firm’s intertemporal revenue. In other words, there is not one single optimal allocation rule among
machines. This result is important as it shows that there exists room for flexibility within the firm
about how to manage the free endowment.

In order to study market equilibrium, the issue of regularization needs to be tackled. As mentioned
just above, we show that the market equilibrium may not be well-defined if the commitment periods
are too short. In economic terms this means that the length of the commitment period must fit
the firms’ planning horizon. The longer the firm’s planning horizon(like in the steel, cement, lime,
power industry), the longer the commitment period should be. We provide numerical analysis for
this question. If the commitment period is not long enough, then the firm cannot adapt optimally
to the regulation, which leads to market failures.

Another unanswered question in the literature is the following. Will a firm, facing a forthcoming
emission restrictions at some later time period, change its investment plan in advance? Put differ-
ently, may one expect some anticipation effect? We show that there exists an anticipation effect
and that, due to this effect, firm’s emissions decrease even before the mandatory time period. This
provides a rationale why the EU-ETS was actually non-binding during its first phase. By simulation
we show that the anticipation effect is associated with an overshoot in the market price, which is
followed by a sharp drop. There is a wide debate about the first phase of the EU-ETS, because the
emission price collapsed to almost zero after some time. This was interpreted by some authors as
an evidence for over-allocation of permits (see Ellerman et al., 2007). We claim that, even if it is
not the only cause, the price collapse partially happened because of the anticipation effect.

Maybe even more important are the implications of a non-optimal use of the free endowment of
permits inside the firm. We analyze the implications of the fact that a firm may not follow an optimal
allocation rule. First, it may lead to a higher emission level for that firm, for some time periods,
which is costly. Second, it may also have severe implications at the market level. In equilibrium the
marker price for tradable permits may increase w.r.t. the efficient price, which is detrimental to all
firms in the market. The firms that behave optimally will face a higher permit price, and thus will
abate more. The firms that behave non-optimally will suffer twice.

The paper is organized as follows. In Section 2 we solve the firm’s optimal investment under emission
tax. In Section 3 we present and investigate a reasonable scenario of non-optimal utilization of free
endowments by a firm facing exogenous price of emissions. Section 4 is devoted to the equation for
the equilibrium price of emission permits, reproducing in short the investigation of a companion
conference paper (Bréchet et al., 2009). The anticipation effect is presented in Section 5, and the
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paper is concluded by Section 6, where we analyze how the non-optimal use of free endowments by
some firms influences the equilibrium price of emission permit and impacts the other firms in the
market.

2 The firm’s problem with an emission tax

The model of the firm presented below is a version of the PDE-vintage models introduced by Barucci
and Gozzi (1998), Barucci and Gozzi (2001), and further investigated and applied in a large number
of contributions (see Feichtinger et al. (2006), Feichtinger et al. (2008) and the literature therein).
The formal difference of our model with the abovementioned ones is technical and not essential
from a methodological point of view.

First we describe the basic model of a firm that is composed of machines of different vintages
(technologies) τ : K(τ, s) will denote the capital stock of vintage τ and of age s. That is, K(τ, t− τ)
is the stock of vintage τ that exists at time t ≥ τ . The maximal life-time of machines of each
technology will be denoted by ω, and the depreciation rate of each technology – by δ. Both are
assumed independent of the vintage just for notational convenience. At any time t > 0 the firm may
invest with intensity I(τ, s) in machines of vintage τ that are of age s at time t (so that s = t− τ).

The planning horizon of the firm is [0,∞), therefore the stock of machines of vintage τ ∈ [−ω, 0]
which are present in the firm at time t = 0 is considered as exogenous and will be denoted by K0(τ).
These machines have age −τ at time t = 0 and may be in use until they reach age ω. Machines of
vintage τ > 0 may be in use for ages s ∈ [0, ω], and their stock at age zero equals zero. Therefore
K0(τ) will be defined as zero for τ > 0. The ages of possible use of any vintage can be written as
[s0(τ), ω], where s0(τ) = max{0,−τ}.

Summarizing, the dynamics of each vintage τ ∈ [−ω,∞) is given by the equation

K̇(τ, s) = −δK(τ, s) + I(τ, s), K(τ, s0(τ)) = K0(τ), s ∈ [s0(τ), ω], (1)

where “dot” means everywhere the derivative with respect to s (the argument representing the
age).

The productivity of machines of vintage τ is denoted by f(τ), while g(τ) denotes the emission per
machine of vintage τ . The firm faces costs due to emissions at an exogenous price v(t) per unit of
emission (this price will be endogenized later on). Due to this cost the firm may decide to (possibly
temporarily) switch off a part of the machines. Let us denote by W (τ, s) ∈ [0, 1] the fraction of the
machines of vintage τ that operate at age s.

The cost of investment I in s years old machines of any vintage will be denoted by C(s, I).
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The present value (at time t = 0) of the total production of machines of vintage τ , discounted with
a rate r, is

e−rτ

∫ ω

s0(τ)
e−rsf(τ)K(τ, s)W (τ, s) ds,

the cost of emission is

e−rτ

∫ ω

s0(τ)
e−rsv(τ + s)g(τ)K(τ, s)W (τ, s) ds,

and the investment costs are

e−rτ

∫ ω

s0(τ)
e−rsC(s, I(τ, s)) ds.

The firm maximizes the aggregated over time discounted net revenue, that is, solves the problem

max
I≥0, W∈[0,1]

∫ ∞

−ω

e−rτ

∫ ω

s0(τ)
e−rs [(f(τ) − v(τ + s)g(τ))K(τ, s)W (τ, s) − C(s, I(τ, s))] ds dτ (2)

subject to (1).

The emission of the firm at time t > 0 is given by the expression

E(t) =

∫ t

t−ω

g(τ)K(τ, t − τ)W (τ, t − τ) dτ. (3)

Remark 1 Due to the specific form of the problem there is an easy way to define optimality even
though the optimal value in (2) may be infinite. Namely (I∗,W ∗,K∗) is a solution of (2), (1) if for
any T > 0 the restriction of these functions to DT = {(τ, s) : τ ∈ [−ω, T ], s ∈ [s0(τ), ω]} is an
optimal solution of the problem in which the integration in (2) is carried out on DT .

Problem (2), (1) fits to the general framework of heterogeneous optimal control systems developed
in Veliov (2008). However, the present problem can be treated also by the classical Pontryagin
optimality conditions for ODEs since it decomposes along vintages: every technology vintage τ ∈
[−ω,∞) is managed separately by solving the problem

max
i≥0, w∈[0,1]

∫ ω

s0(τ)
e−rs [(f(τ) − v(τ + s)g(τ))k(s)w(s) − C(s, i(s))] ds (4)

subject to
k̇(s) = −δk(s) + i(s), k(s0(τ)) = K0(τ), s ∈ [s0(τ), ω]. (5)

If for any fixed τ ∈ [−ω,∞) the triple (i(·), w(·), k(·)) = (I(τ, ·),W (τ, ·),K(τ, ·)) is a solution of
this problem, then (I,W,K) is a solution of (2), (1) and vice versa.5

5 This is not a self-evident fact, but can easily be proven in natural space settings for the two problems and on
the assumptions made below.
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The following is assumed throughout the paper.

(A1) The exogenous data K0, f , g are non-negative and continuous, f and g are continuously
differentiable, g > 0, f ′ > 0, g′ ≤ 0, r ≥ 0, δ ≥ 0;
(A2) The cost function C(s, i) is two times differentiable in i, the derivatives C ′

i and C ′′
ii are

continuous in (s, i), C(s, 0) = 0, C ′
i(s, 0) ≥ 0, C ′′

ii ≥ εC > 0;
(A3) The price of emission, v(·), is a measurable bounded function6.

Under these conditions problem (2), (1) has an unique solution (I∗[v],W ∗[v],K∗[v]). The corre-
sponding emission given by (3) will be denoted by E∗[v].

Since W enters only in the objective function, clearly we have

W ∗[v](τ, s) =

{

0 if f(τ) − v(τ + s)g(τ) ≤ 0,
1 if f(τ) − v(τ + s)g(τ) > 0.

(6)

The optimal control i∗ of problem (4), (5) for a fixed τ and v(·) is easy to obtain by applying the
Pontryagin maximum principle (Pontryagin et al., 1962). Namely,

i∗(s) =

{

0 if ξ∗(s) < C ′
i(s, 0),

(C ′
i)
−1(s, ξ∗(s)) if ξ∗(s) ≥ C ′

i(s, 0),
(7)

where ξ −→ (C ′
i)
−1(s, ξ) is the inverse of the function i −→ C ′

i(s, i) and ξ∗(s) is the unique solution
of the adjoint equation

ξ̇(s) = (r + δ)ξ(s) − (f(τ) − v(τ + s)g(τ))w∗(s), ξ(ω) = 0. (8)

According to (6) the solution ξ is nonnegative, hence (C ′
i)
−1(s, ξ∗(s)) is well defined due to (A2).

3 The firm’s problem with tradable emission permits

In this section we introduce a model of a firm that participates to a market of tradable emission
permits, a so-called cap-and-trade system. Each permit allows the firm to emit one unit of pollution,
and the firm is legally bound to cover all its polluting emissions by the corresponding number of
permits. We assume a competitive market. Each firm is thus price-taker and the permit price is
exogenous to it. The emission permits can be issued by the regulator in two ways: some amount of
permits is given for free to the firms, another amount is auctioned. The confrontation between the
permits supply (decided by the regulator) and demand (coming from the firms which need permits
for their polluting activity) constitutes the primary permits market. The total amount of permits
issued corresponds to the global emission cap in the economy. In such a market, the regulator
controls the total amount of pollution, but not the price of permits, which will be determined by
market equilibrium.

6 For reasons that will become clear later we formally allow for negative values of v(t).
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Because some firms also receive free endowments of emission permits, the question about how it
will use this endowment is asked. This is the question addressed in this section. Before entering
this analysis, the functioning of the secondary market has to be explained. The secondary market
is the one in which firms trade emission permits between themselves, the total amount of permits
being given. If, at a given price, a firm has too many permits because of the free endowment it
received, it can sell them on the secondary market. If the firm has is lacking permits, then it will
be a buyer. When buying permits on the secondary market, the firm behaves exactly like during
the auction in the primary market or when facing an emission tax.

Let us now turn back to the free endowment of emission permits received by the firm. We shall
consider that this endowment is distributed among the different technologies used by the firm. This
distribution is the responsibility of the top manager. Associated to each technology, there exists
an operating manager whose job is to operate the machine efficiently. The operating manager is
now allowed to sell the permits, this is the responsibility of the top manager. This situation reflects
the dichotomy observed in reality between the operating staff in charge of the production services
of the firm, and the financial staff (here represented by our top manager) in charge of buying or
selling of the emission permits. By distributing the free endowment at the machine level, the top
manager simply delegates the operating of the technology, as it is done with an emission tax, for
example. The issue of how emission permits are used inside the firm, at the technology level, has
never been addressed in the literature because it requires a non-homogeneous capital stock.

We will see that the way the free endowment of permits is distributed among the different technolo-
gies may have severe implications for the firm. Technically, in our model the possibly “non-optimal”
use (to be defined here below) of the free endowment comes from an internal mechanism of dis-
tribution of the permits among the different production units, represented by the vintage of the
corresponding technologies.

We proceed with the formal description of the above two-level decision scheme practiced by many
large firms. The central management distributes the received free endowment D(t) among the
different technologies (i.e. production units) in order to decentralize the investment and production
decisions at the level of the operating manager. Let d(τ, s) be the endowment that technology τ
obtains at time τ + s (when this technology is s years old), so that

∫ t

t−ω

d(τ, t − τ) dτ = D(t). (9)

The above expression for the free endowment comes from the fact that, at time t, only machines
of vintages τ ∈ [t − ω, t] exist, and the machines of vintage τ are of age s = t − τ .

The operating managers may require from the top manager additional permits (should this be
profitable, given the market price) that the firm will buy in the secondary market at price v(t).

The problem (4), (5) of technology vintage τ transforms in the case of a free endowment d(τ, s) to

max
i≥0, w∈[0,1]

∫ ω

s0(τ)
e−rs [f(τ)k(s)w(s) − v(τ + s)max{0, g(τ)k(s)w(s) − d(τ, s)} − C(s, i(s))] ds,

(10)
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subject to (5). This objective function takes into account that the firm buys additional permits for
the technology τ at age s only if its emission exceeds the free endowment d(τ, s).

As before, (I∗,W ∗,K∗) will be the solution of the firm-level problem (2), (1), or equivalently,
(i∗(·), w∗(·), k∗(·)) = (I∗(τ, ·),W ∗(τ, ·),K∗(τ, ·)) will be the solution of (4), (5) for any fixed τ . Note
that the dependence of the solution (also of the resulting emission E∗) on the price v is suppressed
in the notations used in this section since v is considered as given.

Below in this section we assume the following.

(A4) The exogenous price v is non-negative and continuous from the right.7

The next proposition claims that the top management of the firm can always choose the part of
the free endowment necessary to meet the firm’s needs and the distribution of this endowment
among the technologies in such a way that the decentralized optimal decisions of the different
technology managers coincide with the optimal solution at the firm level, (I∗,W ∗,K∗). We call
such a distribution d of the free endowment an optimal distribution. Sufficient conditions for a
distribution to be optimal are given in the next proposition, that later will turn out to be also
necessary if a mild additional assumption is fulfilled.

Proposition 1 Let (A1), (A2) and (A4) hold. Then
(i) If d(τ, s) ≥ 0 is a measurable function that satisfies the inequality

d(τ, s) ≤ g(τ)K∗(τ, s)W ∗(τ, s) ∀ τ ∈ [−ω,∞), ∀s ∈ [s0(τ), ω], (11)

then (I∗(τ, ·),W ∗(τ, ·),K∗(τ, ·)) is the unique optimal solution of problem (10), (5) for technology
of vintage τ .
(ii) For every measurable function D(t) that satisfies the inequality D(t) ≤ E∗(t) there exists a
measurable d(τ, s) such that both (9) and (11) are fulfilled.

The inequality D(t) ≤ E∗(t) means that if the firm has more free endowments than what is required
at the optimal emission level (the one with no free endowment) at the given price v(·), then the
permits in excess should be sold on the secondary market. Inequality (11) means that the central
manager of the firm should not give to any technology and at any time more free endowment than
the optimal emission level of this technology for the given v(·). We mention also that a function
d for which claim (ii) holds is explicitly given in the proof, but in general the choice of d is not
unique.

Proof. First we prove the second claim. A function d that is claimed to exist can be defined (in
a non-unique way, in general) as

d(τ, s) =
D(τ + s)

E∗(τ + s)
g(τ)K∗(τ, s)W ∗(τ, s)

7 The latter assumption is made for technical convenience. It means that v̂ may have discontinuities, but
lims→t, s>t v̂(s) = v̂(t).
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(in the degenerate case E∗(τ + s) = 0 one can merely take d(τ, s) = 0). Due to (3) and D(τ + s) ≤
E∗(τ + s) it is straightforward that (9) and (11) hold true. The measurability of d follows from the
measurability of W ∗, which in its turn follows from (6).8

To prove the first claim we take any d satisfying (11) and notice that (i∗(·), w∗(·), k∗(·)) =
(I∗(τ, ·),W ∗(τ, ·),K∗(τ, ·)) is the solution also of the problem

max
i≥0, w∈[0,1]

∫ ω

s0(τ)
e−rs [(f(τ) − v(τ + s)g(τ))k(s)w(s) + v(τ + s)d(τ, s) − C(s, i(s))] ds (12)

subject to (5), since v(τ+s)d(τ, s) is just an additive exogenous term. The optimal objective value of
(10), (5) cannot be higher than that in the last problem above, since the integrand in the objective
function (10) is majorized by that in (12).

On the other hand (i∗, w∗, k∗) is an admissible solution of (10), (5), and due to (11) the maximum
in the integral in (10) is achieved at the second argument of the “max”, g(τ)k∗(s)w∗(s) − d(τ, s).
Then the corresponding objective value is the same as in (12), which implies that (i∗, w∗, k∗) is
an optimal solution to (10), (5). The uniqueness can be proven from the strict concavity of the
objective function as a function of the control i. Q.E.D.

What would happen if the free endowment is not used optimally? We can now turn to the investi-
gation of the consequences of a distribution d of the free endowment D(t) for which condition (11)
is not satisfied. These consequences are summarized in the following proposition.9

Proposition 2 Let (A1), (A2) and (A4) hold. Then for every τ ≥ 0 it holds that:
(i) Whatever is the measurable function d(τ, s) ≥ 0, the solution (kd, id, wd) of (10), (5) (for the
fixed τ) satisfies

kd(s) ≥ k∗(s), id(s) ≥ i∗(s), wd(s) ≥ w∗(s). (13)

(ii) Assume that for all τ ≥ 0 the function d(τ, ·) is non-negative, piece-wise continuous and one-
sided continuous10 and that i∗(s) > 0 at least for all sufficiently small s. If the inequality (11) is
violated for some s̄ ∈ (s0(τ), ω] for which w∗(s̄) = 1 and v(τ + s) > 0 for s in a neighbourhood of s̄,
then the first two of the above inequalities are strict for the fixed τ and all s from a non-degenerate
subinterval of [s0(τ), ω].

We mention that the assumption that i∗(s) > 0 for some s eliminates the unusual possibility that
the technology τ is not efficient even as brand new. The assumption w∗(s̄) = 1 means that (11) is
violated for some machines that would be in use if there were no free endowments.

8 The second fact follows from the measurability of the set {(τ, s) : f(τ )− v(τ + s)g(τ ) > 0}, which is implied by
the assumptions.

9Though the obtained result is not spectacular (since it is rather intuitive), the formal analysis that we perform
allows to strictly define the assumptions that are necessary for its validity.

10This means that at its points of discontinuity the function d(τ, ·) is continuous either from the left or from the
right.
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Proof. The optimal control i∗ is characterized by equations (7) and (8). Due to (6) the adjoint
equation takes the form

ξ̇(s) = (r + δ)ξ(s) − χ(f(τ) − v(τ + s)g(τ)), ξ(ω) = 0, (14)

with χ(x) = x for x > 0 and χ(x) = 0 for x ≤ 0.

The integrand in (10) is non-differentiable with respect to the state variable k, which does not
allow to apply the classical Pontryagin maximum principle to this problem. Therefore, we apply
a non-smooth version of the maximum principle involving the subdifferential of the integrand (see
e.g. Theorem 6E.1 in Loewen, 1993).

Denote

L(s, k, w) = f(τ)kw − v(τ + s)max{0, g(τ)kw − d(τ, s)}, L̂(s, k) = max
w∈[0,1]

L(s, k, w).

Then problem (10) can be equivalently reformulated as

max
i≥0

∫ ω

s0(τ)
e−rs

(

L̂(s, k(s)) − C(s, i(s))
)

ds,

subject to (5). As a consequence of Theorem 6E.1 in Loewen, 1993 (the assumptions of this theorem
are easy to check in our case), there exists an absolutely continuous function ξd : [s0(τ), ω] → R
such that

ξ̇d(s) ∈ (r + δ)ξd(s) − ∂kL̂(s, k(s)), ξd(ω) = 0, (15)

and the optimal control i∗(s) in the problem (10), (5) is given by (7) with ξd substituted for ξ∗. The
subdifferential ∂kL̂ of L̂ with respect to k can be understood in the sense of the convex analysis,
since L̂ is a concave function. In order to calculate ∂kL we denote σ(s) = f(τ) − v(τ + s)g(τ) and
calculate the maximizer ŵ(s, k) in the definition of L̂:

ŵ(s, k) =







1 if k ∈ [0, d(τ, s)/g(τ)]
1 if k > d(τ, s)/g(τ) and σ(s) ≥ 0,

d(τ, s)/kg(τ) if k > d(τ, s)/g(τ) and σ(s) < 0.

From here we immediately see that ŵ(s, k) ≥ w∗(s) for every s and k, therefore the last inequality
in (13) holds true.

Using the above expression in L̂(s, k) = L(s, k, ŵ(s, k)) we represent

L̂(s, k) =







f(τ)k if k ∈ [0, d(τ, s)/g(τ)]
f(τ)d(τ, s)/g(τ) if k > d(τ, s)/g(τ) and σ(s) < 0,

σ(s)k + v(τ + s)d(τ, s) if k > d(τ, s)/g(τ) and σ(s) ≥ 0.

Then we obtain the following formula for the subdifferential depending on the sign of σ(s):

if σ(s) < 0 then ∂kL(s, k) =







f(τ) for k ∈ [0, d(τ, s)/g(τ)),
[0, f(τ)] for k = d(τ, s)/g(τ),

0 for k > d(τ, s)/g(τ),
(16)
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if σ(s) ≥ 0 then ∂kL(s, k) =







f(τ) for k ∈ [0, d(τ, s)/g(τ)),
[σ(s), f(τ)] for k = d(τ, s)/g(τ),

σ(s) for k > d(τ, s)/g(τ),
(17)

Now we can compare the two adjoint equations (14) and (15). We shall check that for any value of
k and any element l ∈ ∂kL̂(s, k) it holds that

l ≥ χ(σ(s)). (18)

Indeed, if χ(σ(s)) = 0, then we have l ≥ 0 according to the first formula for ∂kL̂(s, k). Notice that
the inequality is strict if k ∈ [0, d(τ, s)/g(τ)).

If χ(σ(s)) > 0 then from the formula for ∂kL(s, k) in this case we verify again (18). Again, the
inequality is strict if k ∈ [0, d(τ, s)/g(τ)) and v(τ + s) > 0.

The relation (18) implies that at points s at which ξ∗(s) = ξd(s) and the two derivatives exist, the
inequality ξ̇∗(s) ≥ ξ̇d(s) holds true. Due to the end point conditions, ξ∗(ω) = ξd(ω). Then a standard
argument implies that ξd(s) ≥ ξ∗(s) for all s. Due to (7) this inequality implies id(s) ≥ i∗(s) and
the respective inequalities for the capital stock and the emissions.

To prove claim (ii) by contradiction we assume that kd(s) ≤ k∗(s) (hence kd(s) = k∗(s)) for every
s, and let s̄ be the number assumed to exist in the formulation of the proposition. Then

g(τ)kd(s̄) < d(τ, s̄),

and this holds in a (possibly one-sided) neighbourhood of s̄. Then according to (16) and (17) we
have ∂kL̂(s, kd(s)) = {f(τ)} independently of the sign of σ(s). Due to the assumed property of v,
this implies ξ̇d(s) < ξ̇∗(s) at any point from a neighbourhood of s̄ at which ξd(s) = ξ∗(s). This
implies in a standard way that ξd(s′) > ξ∗(s′) for some s′ < s̄ and sufficiently close to s̄. From (18) it
follows that the same inequality holds for all s ∈ [s0(τ), s′]. Since i∗(s) > 0 close to s0(τ) we obtain
from (7) and the assumptions for C that id(s) > i∗(s) for all sufficiently small s ≥ s0(τ). Hence, the
same inequality applies for kd(s) and k∗(s). We obtain a contradiction with the assumption that
kd(s) ≤ k∗(s) for all s. This implies that kd(s) > k∗(s) for some s, and necessarily id(s) > i∗(s) for
some s. Q.E.D.

The overall solution at the firm level resulting from a distribution d of the free endowment is

Id(τ, s) = id(s), W d(τ, s) = wd(s), Kd(τ, s) = kd(s), (19)

where (id, wd, kd) is the solution of (10), (5) for the respective τ . Then the emission of the firm at
time t is given by

Ed(t) =

∫ t

t−ω

g(τ)Kd(τ, t − τ)W d(τ, t − τ) dτ,

while the emission for the optimal solution (I∗,W ∗,K∗) is given in a similar way by (3).
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Corollary 1 Assume that the firm has distributed the free endowments in such a way that claim
(ii) of Proposition 2 holds. Then for the emission at the optimal solution, Ed(t), it holds that

Ed(t) ≥ E∗(t) ∀t > 0,

and the inequality is strict in a non-degenerate time interval.

The proof follows from the established relations between the solutions and the inequality g(τ) > 0.

The corollary states that, if the firm does not use its free endowment optimally (in the sense defined
just before proposition 1), then its emission level will be higher, for some t, than under a tax regime
(where permit price and tax coincide) or without free endowment. This result is important because it
shows that giving some permits for free to the firm raises challenging problems about the way these
free permits are used. It challenges the common knowledge that the way permits are distributed
does not matter for efficiency.

Further, a non-optimal distribution d may affect not only the firm’s emission level, but also the
average age of machines. However, it is easy to argue that a non-optimal distribution d may lead
to either modernization (lower average age) or to older capital stock, depending on the particular
choice of d. If (11) is violated dominantly for old ages s, then the non-optimal distribution would
lead to higher average age of machines. If (11) is violated dominantly for young ages s the average
age would be lower than in the case of an optimal distribution. It is interesting to see that giving
permits for free is not necessarily an efficient way of modernizing the capital structure. Actually,
the effect can go in the two directions. It just depends on how the endowment is split among the
machines.

4 The equilibrium price of tradable permits

In this section we consider an economy with a cap on global emissions and a market for tradable
emission permits (cap-and-trade system). Market equilibrium will set the permit price. By doing
this we now endogenize the price v. The economy consists of n firms, each of which is described by
the model considered in Section 2, but with firm-specific data δ, f , g, C, K0, indexed further by
the subscript i for i = 1, . . . , n. Let Ê(t) be a cap on global emissions in the economy for t ≥ t̂. As
before, we assume that the cap enters into force at time t̂ > 0, which is known by the firms at time
t = 0 for all the future. For technical convenience we further assume that t̂ ≥ ω, although this is
not essential for the obtained results.

The global amount of emission permits Ê(t) is issued at time t̂ for all the future. Like in the previous
section, some permits are auctioned, some others are given for free to the firms. So there will be
some trading between the firms on the secondary market, which however takes place at the same
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time t = t̂ due to the perfect foresight. According to Proposition 1(i) the optimal solutions of the
firms are independent of the endowment, therefore the emission of each of them for any given price
function v(t) is also independent of the endowment and equals

E∗
i [v](t) =

∫ t

t−ω

gi(τ)K∗
i [v](τ, t − τ)W ∗

i [v](τ, t − τ) dτ, (20)

where (I∗i [v],W ∗
i [v],K∗

i [v]) is the optimal solution for the i-th firm (without free endowment) for a
given v (the case of non-optimal utilization of the endowments will be investigated in Section 6).
Then the equation for the market price, v(t), of emissions at the combined primary and secondary
market is

E∗
1 [v](t) + . . . + E∗

n[v](t) = Ê(t), t ≥ t̂. (21)

The solution of this equation is sought in the space V of all measurable and locally bounded
functions v : [0,∞) 7→ R that equal zero on [0, t̂).

The following cases may appear, in general:

(i) equation (21) does not have a solution v(·) ∈ V;
(ii) a solution exists but is not unique;
(iii) a unique solution exists but is not positive for all t;
(iv) an unique strictly positive solution exists.

Only in the case (iv) equation (21) determines a market price; all other cases indicate a market
failure.

In general, all of the above cases may appear. To avoid (i) one needs assumptions for the data, and
these assumptions are difficult to specify due to the complexity of equation (21).

The second case obviously takes place if, for example, Ê(t) ≡ 0, since if v is a solution of (21),
then every ṽ with ṽ(t) > v(t) would also be a solution. Even if the above two possibilities could be
classified as “academic”, the third case could be rather realistic.

A study of the market equation (21) is presented in a companion paper in the conference proceeding
(see Bréchet, Tsachev and Veliov, 2009). Below we summarize some of the results obtained there,
in particular those that will be used in the rest of the present paper. Lemma 2 below is not included
in Bréchet, Tsachev and Veliov (2009); therefore we supply it with a proof.

We start with two properties of the emission map

v(·) −→ E∗[v](t) :=

∫ t

t−ω

g(τ)K∗[v](τ, t − τ)W ∗[v](τ, t − τ) dτ,

where (I∗[v],W ∗[v],K∗[v]) is the optimal solution of the firm’s (without endowment) corresponding
to price function v.
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Lemma 1 ([Lemma 1], Bréchet, Tsachev and Veliov, 2009) For every v ∈ V and t ≥ t̂ the value
E∗[v](t) depends only on the restriction of v to [t − ω, t + ω].

Lemma 2 Let v1, v2 ∈ V and v1(t) ≤ v2(t) for (almost) every t ≥ t̄. Then E∗[v1](t) ≥ E∗[v2](t)
for every t ≥ 0.

Proof. Expression (6) implies W ∗[v1](τ, s) ≥ W ∗[v2](τ, s) for almost all (τ, s) ∈ [−ω, T ]× [s0(τ), ω]
and (8) implies for the solutions corresponding to v1 and v2 that ξ[v1](s) ≥ ξ[v2](s) for all (τ, s) ∈
[−ω, T ]× [s0(τ), ω]. The last inequality together with (7) and the monotonicity of (C ′

i)
−1 imply that

I∗[v1](τ, s) ≥ I∗[v2](τ, s) for all (τ, s) as above. Using (1), we obtain K∗[v1](τ, s) ≥ K∗[v2](τ, s).
The inequalities for W ∗[vi], and K∗[vi], i = 1, 2, together with (3) imply E[v1](t) ≥ E[v2](t) for all
t ≥ 0. Q.E.D.

To shed some more light on the market equation (21) let us consider the special case where

Ci(s, I) =
1

2
ci(s)I

2,

assuming, in addition, that for the solution v of (21) it holds for each firms i that fi(τ)−v(t)gi(τ) ≥ 0
for τ ≥ 0 and t ∈ (τ, τ + ω). The last means that the price v(t) does not invoke switch-off of
existing machines, hence the environmental goals can be achieved optimally only by appropriate
investment policies (without premature scrapping). The last assumption is quite realistic in view
of the possibility to buy old machines at low price instead of buying new machines and scrap them
when the emission cap becomes stringent.

In this case the following lemma holds.

Lemma 3 [4, Lemma 3] Then for every t ≥ t̂

E∗
i [v](t) = E∗

i [0](t) −

∫ t+ω

t̂∨(t−ω)
ϕi(t, α)v(α) dα, (22)

where

ϕi(t, α) =

{

∫ α

t−ω
g2
i (τ)κi(t, τ, α − τ) dτ if α ∈ [t − ω, t],

e−(r+δi)(α−t)
∫ t

α−ω
g2
i (τ)κi(t, τ, t − τ) dτ if α ∈ [t, t + ω],

κi(t, τ, β) =

∫ β

0

1

ci(s)
e−δi(t−τ−s)−(r+δi)(β−s) ds,

and a ∨ b = max{a, b}, a ∧ b = min{a, b}.
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Notice that E∗
i [0](t) is the optimal emission of the i-th firm if there is no cost of emission at all (no

emission restriction).

Using this lemma we may rewrite the market equation (21) in the form

∫ t+ω

t̂∨(t−ω)
Φ(t, α) v(α) dα = E∗[0](t) − Ê(t), t ≥ t̂, (23)

where E∗[0](t) =
∑n

i=1 E∗
i [0](t) and Φ(t, α) =

∑n
i=1 ϕi(t, α). The right-hand side represents the

targeted reduction of emissions, which is the difference between the total emission of the industry at
its optimal operation without any environmental constraints and the emission cap. The expression
in the left-hand side represents the emission reduction resulting from optimal operation of the firms
facing emission price v. The market price v should balance the two quantities.

The above simplified form of the market equation is still rather complicated and deserves some
additional comments. Equation (23) is a Fredholm integral equation of the first kind on the infinite
interval [t̂,+∞). Such equations are inherently ill-posed. To see that it is enough to add to a
solution v a highly fluctuating term, such as sin(nt). Then v(t) + sin(nt) would be a solution of
the same equation with the right-hand side modified by the quantity

∫ t+ω

t̂∨(t−ω) Φ(t, α) sin(nα) dα,
which is arbitrarily small when n is large enough. Thus an arbitrarily small disturbance in the
right-hand side can lead to a finite (even arbitrarily large) change of the solution. This difficulty
is caused by the smoothing effect on v of the integration with Φ: high-frequency components of
v are “smoothed out”. Therefore one can expect that computing v would tend to amplify any
high-frequency component or irregularity of the right-hand side. In effect, the right-hand side of
(23) has to be somewhat “smoother” than the solution v in order to obtain satisfactory numerical
approximation (see Hansen, 1992).

A good numerical method to solve a Fredholm integral equation of the first kind should be able to
somehow filter out the high-frequency components in the singular value expansion of the solution
(if such exists). Different methods of regularization aimed at finding reasonable numerical approxi-
mation to the solution are known, e.g. Tikhonov and Arsenin (1977), Delves and Mohamed (1985)
and Kress (1989). However, we stress that our aim is not just to solve the price equation (21). Our
ultimate goal is to imitate the behavior of the auction market, therefore the regularization we apply
for solving (21) should be implementable also in the real auction market. We argue below that a
relevant regularization tool is to formulate the emission constraint (21) period-wise, rather than
at any time instant. This amounts to applying regularization by time-aggregation, related to the
Nyström’s method [8, Chapter 12]. In contrast to the celebrated singular expansion/decomposition
this method is directly applicable also in the general (nonlinear) case of (21) and has a clear policy
implementation.

Namely, we introduce the discrete version of the emission mapping E∗ as follows. Assume that an
emission restriction is given period-wise: Êk = 1

tk−tk−1

∫ tk
tk−1

Ê(t) dt is the cap on emissions over

the time-period [tk−1, tk]. For simplicity we assume that all time periods have the same length
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h > 0, thus tk = kh, and also that ω = mh, t̂ = k̂h for appropriate natural numbers m and k̂.11

Correspondingly, the price of emission will be constant, vk, on each interval [tk−1, tk) and zero for
k ≤ k̂. Thus instead of the space V of price functions we consider

Vh = {(v1, v2, . . .) : vk ∈ (−∞,+∞), vk = 0 for k ≤ k̂},

which can be viewed as a subset of V by piece-wise constant embedding of Vh in V. The emission
of the i-th firm resulting from v ∈ Vh becomes a vector E∗h

i [v] = (E∗h
i,1[v], E∗h

i,2 [v], . . .), where

E∗h
i,k[v] =

1

h

∫ tk

tk−1

∫ t

t−ω

gi(τ)K∗
i [v](τ, t − τ)W ∗

i [v](τ, t − τ) dτ dt. (24)

Then instead of the price equation (21) we consider the equation

n
∑

i=1

E∗h
i,k[v] = Êh

k , k ≥ k̂. (25)

for v ∈ Vh.

The last equation is studied in more details in Bréchet, Tsachev and Veliov (2009),Section 4.
In particular an existence result is proved and the regularizing role of the commitment period
to the market equation is numerically demonstrated. The essence is, that for a sufficiently large
commitment period the discrete market equation (25) may have a unique positive solution (that is,
it determines a marked price of emissions) although the “continuous” market equation (21) does
not have a positive solution (that is, the “continuous” market fails to determine a price). Moreover,
a larger commitment period better attenuates the high oscillations of the market price that appear
for small h.

For illustration we reproduce two figures from Bréchet, Tsachev and Veliov (2009) which correspond
to an industry consisting of equal firms. The detailed specification are given in Bréchet, Tsachev
and Veliov (2009), Section 5.

In the figures below the plotted time horizon is 80 years. In Fig. 1 and Fig. 2 the emission cap
imposed at time t = 30 is first constant, starting from the emission level before the beginning of the
emission restriction, then it decreases quadratically. The dash-dotted line in the left plot of Fig. 1
represents the unrestricted emissions, E∗[0], whereas the solid line represents the emission of the
firms obeying the cap.

The right plot in Fig. 1 represents the permit price. It is obtained by using short commitment
periods of h = 1 year. The market fails in two time periods. First, this happens immediately after
the introduction of the emission cap at time t̂ = 30. Then it appends again when the shape of

11 Following the terminology used under the Kyoto protocol of the UN Framework Convention on Climate Change,
we shall call h a commitment period. The current commitment period is five-year long, covering 2008 to 2012.
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the cap is modified at time t = 50: the solution of the market equation (21) takes negative values.
In addition, the solution is highly oscillating around these time periods. The regularization of the
market by adopting longer commitment periods is displayed on Fig. 2. The left plot corresponds
to commitment periods of h = 5 years. The market still fails immediately after the introduction
of the cap, but not around the change of the shape of the cap. The right plot in Fig. 2 represents
the permit price with commitment periods of 10 years. Clearly the market is now fully efficient
and looks quite regular. These numerical examples shows how the market for tradable permits is
sensitive to the length of the commitment periods.12 It also provides a rational to the result of
Hintermann (2010), that the allowance price in the EU-ETS was not driven by marginal abatement
cost determinants (with the possible exception of gas prices) before the first round of emissions
accounting in April 2006, thus violating a necessary condition for a permit market to be an efficient
policy instrument.
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Figure 1: Emissions (left) and a solution to the price equation (21) (right) resulting from an emission
restriction posed at time t = 30 .

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
"market price" 

"market price" for the case of emission cap      
imposed from year 31 on over 5−year−periods,     
being flat till year 50, decreasing quadratically
to the annual level of 300 in year 90 and        
being equal to 300 annually afterwards.          

time 0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

market price for the case of emission cap     
imposed from year 31 on over 10−year−periods, 
being flat till year 50, decreasing           
quadratically to the annual level of          
300 in year 90 and being equal to             
300 annually afterwards.                      

market price 

time 

Figure 2: Auction price of emission permits for commitment periods h = 5 years (left) and h = 10
years (right).

12Let us recall that the Kyoto protocol established 5-year commitment periods.
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5 The anticipation effect

In this section we address the following question: will the firms in the economy facing emission re-
strictions effective from time t̂ change their investment decisions even before time t̂? Two competing
arguments are at stake. On one hand, early emission abatement is costly for the firm. But, on the
other hand, because of adjustment costs, a sharp emission reduction (when the cap is enforced) can
also be very costly. So what is the optimal mix between these two arguments? The answer to this
question is that there exists an anticipation effect. We prove this effect and illustrate it numerically
provided that the market does not fail to determine the permit price shortly after the enforcement
period t̂.

The next proposition claims that the emission cap introduced at time t̂ decreases the investments
of the firms even before time t̂ if the firms are informed about the introduction of the cap before t̂.
This is proved under the assumption that the market equation (21) (or its period-wise version (25))
determines a positive market price v̂(t) for t ≥ t̂. For simplicity we assume that firms are symmetric
(the subscript i in (21) is skipped). So we want to compare the solution (I∗[v̂],W ∗[v̂],K∗[v̂]) for
the case of emission cap Ê with that for absence of a cap, (I∗[0],W ∗[0],K∗[0]) (clearly zero price
of emission, v = 0 means that the emission is unrestricted).

Proposition 3 Assume that the market price v̂(t) > 0 exists for t > t̂ and that for some vintages
τ < t̂ of positive measure there is s1(τ) > s0(τ) such that I∗[0](τ, s) > 0 for s ∈ [s0(τ), s1(τ)].
Then there exists a set D ⊂ {[0, t̂) × [0, ω]} of positive measure such that I∗[v̂](τ, s) < I∗[0](τ, s)
for (τ, s) ∈ D, while I∗[v̂](τ, s) ≤ I∗[0](τ, s) for all (τ, s).

Proof. The adjoint equations for a τ ∈ [t̂ − ω, t̂] for the problem with a price v̂ of the emission
and for zero price are correspondingly

˙̂
ξ = (r + δ)ξ̂ − (f(τ) − v̂(τ + s)g(τ))ŵ∗(s), ξ̂(ω) = 0,

ξ̇ = (r + δ)ξ − f(τ), ξ(ω) = 0,

where ŵ∗(s) = W ∗[v̂](τ, s). Comparing the right-hand sides we obtain that ξ(s) ≥ ξ̂(s) for all s,
which implies the last claim of the proposition according to (7) and the monotonicity of (C ′)−1

ensured by (A2). The first claim is implied by the same argument, using the additional informa-
tion that the right-hand side of the equation for ξ̂ is strictly larger than that for ξ for ages s of
positive measure (and for vintages τ < t̂ of positive measure). The latter follows from the fact
that W ∗[v̂](τ, s) = 1 for (τ, s) ∈ [0, t̂) × [0,min{t̂ − τ, ω}), the assumption for I∗[0], the fact that
I∗[0](·, s) is nondecreasing in τ (because of the equation for ξ, the monotonicity of f(·) in τ and
(7) together with the strict monotonicity of (C ′)−1) and, again, because of (7) together with the
strict monotonicity of (C ′)−1. Q.E.D.
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The same claim (with the same proof) applies to the period-wise market price obtained from (25).

We illustrate the anticipation effect by the following example (the details specifications are given
in [4, Section 5]). Let us take Ê(t) constant, with value Ê = 300, which is strictly smaller than the
quantity that the firms would have emitted without regulation, E∗[0](t̂).

On Figure 3 (left plot) we observe that the emission starts to decline downwards from the unre-
stricted emission much earlier than t̂ = 30 (about time t = 15). This is a consequence of lower
investment levels even before time t̂ (the anticipation effect).
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Figure 3: Emission resulting from an emission restriction posed at time t = 30 (left) and the
corresponding market price of permits (right).

6 Equilibrium effects of the non-optimal use of the free endow-

ments

This last section presents one of the most interesting findings in this paper. Namely, a non-optimal
use of the free endowment by some firms brings disadvantages not only for this firm (in terms of
cost and emissions) but also for all the other firms involved in the market for emission permits.
This contamination effect goes through the permit price in equilibrium.

Again, for simplicity we consider an economy consisting of two initially identical firms. These two
firms are endowed with two different permits endowments, D1(t) and D2(t), given to the first and to
the second firm, respectively. It is assumed that firm 2 uses its free endowment in an optimal way.
According to Proposition 1, the optimal solution (I∗2 [v],W ∗

2 [v],K∗
2 [v]) for this firm is independent

of its free endowment D2(t), for any market price v(t). The corresponding emission level equals
E∗

2 [v](t) given by (see (3))

E∗
2 [v](t) =

∫ t

t−ω

g2(τ)K∗
2 [v](τ, t − τ)W ∗

2 [v](τ, t − τ) dτ.
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On the other hand, let us assume that firm 1 distributes its free endowment among its different
technologies following a non-optimal rule, as it was defined in Section 3. Then, for any price v, the
solution (Id

1 [v],W d
1 [v],Kd

1 [v]) (see (19)) results in an emission level

Ed
1 [v](t) =

∫ t

t−ω

g1(τ)Kd
1 [v](τ, t − τ)W d

1 [v](τ, t − τ) dτ.

Then the market price equation becomes

Ed
1 [v](t) + E∗

2 [v](t) = Ê(t), t ≥ t̂.

(Obviously this equation coincides with (21) if firm 1 uses its free endowment optimally, since in
this case Ed

1 [v] = E∗
1 [v].) Assume that the above equation has a positive solution vd ∈ V. We rewrite

it as
E∗

1 [v](t) + E∗
2 [v](t) = Ê(t) − (Ed

1 [v](t) − E∗
1 [v](t)) =: Ẽ(t).

As a consequence of Proposition 2 (i)

Ed
1 [vd](t) − E∗

1 [vd](t) ≥ 0.

Assume the first firm does not use its free endowment D1(t) optimally, so that claim (ii) of Propo-
sition 2 holds for vd. According to Corollary 1, the last inequality is strict on some time intervals.
Thus v∗ and vd satisfy for t ≥ t̂ the equations

E∗
1 [v∗](t) + E∗

2 [v∗](t) = Ê(t), (26)

E∗
1 [vd](t) + E∗

2 [vd](t) = Ẽ(t) (27)

and
Ê(t) ≥ Ẽ(t), (28)

where the inequality is strict for some t of positive measure. That is, if one firm does not use its free
endowment optimally it would create in the market for permits the same effect as if the emission
cap were be lower (Ẽ(t) instead of Ê(t)). In other words, the non-optimal use of free endowments
by some firms affects negatively the supply side of the market of permits. The basic intuition would
suggest that a lower emission cap would imply a higher market price for emissions. However, in our
dynamic vintage framework this is not necessarily the case. Figure 4 provides a comparison of the
two market prices (right plot) resulting from an emission caps at t = 30 (left plot). Although one
of the caps is above the other for all t > t̂ = 30, the expected inequality for the respective market
prices is violated for some values of t. In other words, a more stringent emission cap can lead to
a lower equilibrium price at some time periods. This effect should not be considered as typical. In
the example presented by Figure 4 the “abnormal” price behavior occurs shortly after the “kink”
of the emission cap and is caused by the latter circumstance rather than by the relation between
the size of the caps. The next proposition shows that the intuitive argument stated above has its
formal ground.
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Figure 4: Two emission caps (left) and the corresponding equilibrium prices (right).

Proposition 4 Assume that the solutions v∗ and vd of equations (26) and (27) exist on t ∈ (t̂,+∞)
(not necessarily positive). If (28) is fulfilled as strict inequality on a set of positive measure around
a point t̃ > t̂, then vd(t) > v∗(t) on a subset of positive measure around [t̃ − ω, t̃ + ω].13

Proof. If for every ε > 0 we assume that vd(t) ≤ v∗(t) a.e. on (t̃ − ω − ε, t̃ + ω + ε) ∩ [t̂,∞), then
E∗

i [v∗](t) ≤ E∗
i [vd] on (t̃ − ε, t̃ + ε) ∩ [t̂,∞) according to Lemma 1 and Lemma 2. Then (26), (27)

imply Ê(t) ≤ Ẽ(t) on (t̃ − ε, t̃ + ε) ∩ [t̂,∞). This contradicts the assumption in the proposition.
Q.E.D.

Proposition 4 shows that if one of the two firms does not use its free endowment optimally, then the
other firm will suffer from a higher market price, regardless of the fact that it has allocated its free
endowment in an optimal way. This latter firm will be pushed to abate more than what is optimal,
just because the other firm does not use optimally its free endowments. The market for tradable
emission permits thus generates a pecuniary externality among the firms. Furthermore, the firm
that does not behave optimally will suffer twice. First, it pollutes more than what is optimal, which
is costly. Second, because of market equilibrium, it also faces a higher equilibrium price for tradable
permits that it needs, at least for some time periods.
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