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ABSTRACT
Introduction: Lymph nodes are essential to diagnose lymphoid neoplasms, metastases, and infections. Some lymphomas, par-
ticularly aggressive non-Hodgkin lymphomas (NHL), need urgent diagnosis. Combining lymph node cytology (LNC) and flow 
cytometry (FC) with other rapidly available parameters through multivariable predictive models could offer valuable diagnostic 
information while waiting for anatomopathological results.
Materials and Methods: Results of 196 lymph node specimens were retrospectively analyzed for parameters like age, sex, LNC, 
FC, positron emission tomography scan, lymphocytosis, leukocytosis, lactate dehydrogenase (LDH) levels, and hemoglobin. We 
constructed five multivariable models predicting the aggressive nature of lymphoma as defined by the anatomopathological diag-
nostic. The first three were logistic regression models based on two (model 1), four (model 2), and up to 16 independent variables 
(model 3). The last two models were based on ensemble learning algorithms, bagging (model 4) and boosting (model 5), respec-
tively. The performance of these five models was compared after 10-fold cross-validation, evaluating metrics such as sensitivity, 
specificity, and the area under the receiver operating characteristic curve (AUC).
Results: Compared to individual variables associated with the aggressive nature of the lymphoma (AUCs from 0.69 to 0.87), 
the multivariable models achieved better AUCs, ranging from 0.88 to 0.94. The best model (model 5) achieved a sensitivity and a 
specificity of 77% and 94%, respectively.
Conclusion: LNC, FC, and other rapidly available parameters are associated with the aggressive nature of the lymphomas. It is 
possible to combine them in multivariable models to obtain a valuable diagnostic information and to initiate a prompt treatment.
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1   |   Introduction

Lymph nodes are peripheral lymphoid tissues that play a role 
in the adaptive immune system. They can also be the origin 
of lymphoid neoplasms, the location for metastases from non-
hematological tumors, as well as the site of infection [1]. The 
examination of lymph nodes is therefore of importance in clini-
cal practice. Among the various lymphomas that may originate 
from lymph nodes, some require urgent diagnosis and are clas-
sically known as aggressive non-Hodgkin's lymphomas (NHL), 
either from B or T-cell lineages (see Table S1 in the Supporting 
Information for a representative, but not a comprehensive 
list) [2–6].

NHL is the most common hematological malignancy world-
wide and accounts for 2.8% of cancer diagnoses and deaths [7]. 
Aggressive lymphomas account for a substantial proportion. 
In 2016, diffuse large B-cell lymphomas (DLBCL), Burkitt 
lymphoma (BL), and peripheral T-cell lymphoma (PTCL) 
were the most common aggressive NHLs, representing ap-
proximately 24% of all lymphoid malignancies diagnosed in 
the United States [8, 9]. Even more alarming, 25% were ag-
gressive lymphomas in the age group of 15–39 years, climbing 
to 37% when including precursor B- and T-cell lymphoblastic 
lymphomas [9]. In addition, DLBCL was also identified as the 
most frequent aggressive B-cell lymphoma, accounting for 
approximately 30% of NHL adult cases in Western countries 
[1]. In aggressive B-cell lymphomas, about half of the patients 
present with advanced disease at the time of diagnosis and 
various clinical presentations [3]. Urgent treatment is usu-
ally required in cases of high proliferation rate of the tumor 
with bulky disease, end-organ damage, respiratory distress, 
obstructive symptoms, bone marrow involvement, and/or 
lysis syndrome [10]. Once the diagnosis of an aggressive lym-
phoma is confirmed, it is crucial to start the treatment without 
any delay.

Clinicians often consider cyto- and histopathological analyses 
as the gold standard for the investigation of lymph node neo-
plasms [11]. However, these analyses require sufficient materi-
als to have thin slices and have a long turnaround time. Before 
obtaining anatomopathological results, clinical data along with 
various laboratory data are available, including lymph node cy-
tology (LNC), flow cytometry (FC), and lactate dehydrogenase 
(LDH) levels. These laboratory analyses have a turnaround 
time inferior to 4 h. Positron emission tomography scan (PET-
scan) data, especially the maximum standardized uptake value 
(SUVmax) which compensates for the variation in the amount of 
injected 2-deoxy-2-[18F]fluoro-D-glucose, is often also available 
before the lymph node sampling [12]. These preliminary results 
can provide valuable information for the diagnosis of lympho-
mas while waiting for the anatomopathological conclusion.

According to the Groupe Francophone d'Hématologie Cellulaire 
(GFHC), LNC is the microscopic examination of fine-needle as-
piration or biopsy imprints, stained using the May-Grünwald 
Giemsa method [13, 14]. LNC is effective in identifying reac-
tive processes, invasion of extra-hematological cells and is cru-
cial for the characterization of lymphoid neoplasms due to the 
distinct morphological characteristics of lymphomatous cells 
[1, 15]. FC provides valuable information by evaluating the 

size of cells (forward scatter), their complexity (side scatter), 
the type of lymphoid B- and T-cell antigens, and the clonality 
of light chains [16]. The combination of LNC and FC enables 
the diagnosis of lymphoma with high sensitivity and specificity 
[16]. Certain morphological features help distinguish aggressive 
from non-aggressive lymphomas. Aggressive lymphomas have 
larger, irregular cells with prominent nucleoli, anisocytosis, 
and anisokaryosis, suggesting a fast-growing tumor requiring 
aggressive treatment [1, 15]. Non-aggressive lymphomas have 
smaller, uniform cells without nucleoli [15, 16]. In their review 
study, Cozzolino et  al. reported that combining LNC and FC 
can effectively distinguish between reactive and lymphomatous 
lymph node specimens, with sensitivity and specificity ranging 
from 75% to 100% [16]. However, these researchers did not ex-
tend to differentiating between aggressive and indolent forms 
of lymphoma, nor did they include the potential of other param-
eters. There is also a lack of evidence in how LNC and FC can 
be beneficial for clinicians and anatomopathologists [17]. The 
complexity arises from the diverse patterns of morphological 
and immunophenotypic characteristics. Another concern is the 
between-observer subjectivity of LNC interpretation leading 
to inconsistencies in diagnoses. LDH levels and SUVmax are 
also relevant parameters to integrate in the diagnosis work-up. 
Elevated LDH levels can suggest an aggressive behavior of the 
lymphoma, correlating with the rate of cellular turnover [18]. 
It is the same for high SUV, with higher values often indicating 
more aggressive or transformed lymphoma [19, 20].

Building a model that predicts the aggressive or non-aggressive 
nature of lymphomas using LNC, FC, and other rapidly avail-
able parameters would therefore seem to be an appropriate way 
of substantially speeding up the time to diagnosis, especially as 
the rapid development of machine learning tools makes it pos-
sible to use ever greater quantities of data to improve predictive 
models [21].

Machine learning methods model the relationship between the 
lymphoma's aggressiveness and predictors. Logistic regression, 
for example, uses an equation with interpretable terms and can 
involve predefined predictors or a variable selection algorithm 
like stepwise forward selection.

The model fits the data by finding predictor coefficients that 
maximize the model's likelihood.

On the other hand, some machine learning methods predict a 
result not from a single model but from a set of models, most 
often decision trees. Ensemble learning algorithms include bag-
ging [22] and boosting [23]. The random forest algorithm [24] 
is based on bagging, that is, the generation of a large number of 
bootstrap samples from the initial dataset, with each bootstrap 
sample including only some of the potential predictors. A deci-
sion tree is fitted to each of these samples. The random forest 
predictions are based on the most frequent prediction of this set 
of models. The second, eXtreme Gradient Boosting (XGBoost) 
model [25] is based on boosting, each of which corrects the er-
rors made by the previous model. The individual predictions of 
each model are then combined to form the final prediction.

The aim of this study was to determine to what extent it is 
possible to predict the aggressive or non-aggressive nature of 
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lymphoma as defined by anatomopathological examination by 
combining the information provided by LNC, FC, and other 
readily available parameters. To do this, we conducted a ret-
rospective single-center study in which we compared the pre-
dictive performance of five types of models, ranging from the 
simplest—a pre-specified logistic regression model based on 
LNC and FC—to the most complex—a set of models constructed 
by gradient boosting integrating the results of 16 laboratory 
variables.

2   |   Materials and Methods

2.1   |   Design of the Study

The investigation was carried out in the hematology laboratory 
at CHU UCL Namur (Yvoir, Belgium) and was based on the 
retrospective analysis of lymph node specimens collected be-
tween 2020 and 2022. In total, 196 specimens were evaluated for 
various parameters, including sex, age, history, SUVmax, lym-
phocytosis, leukocytosis, LDH, C-reactive protein, hemoglobin, 
aggressive morphological characteristics by LNC (see examples 
in Supporting Information), forward scatter ratio (FSR) by FC, 
and conclusions from anatomopathological protocols. Out of the 
196 specimens, 34 specimens were considered unsuitable for 
inclusion in the study due to insufficient material for compre-
hensive analysis. The definitive categorization of each specimen 
was determined from the anatomopathological reports, splitting 
them into two principal classifications for evaluation: aggressive 
lymphomas versus the other category comprising indolent lym-
phomas, reactive lymphadenopathy, and extra-hematological 
malignancies. In the aggressive category, lymphomas were clas-
sified respectively into de novo DLBCL (n = 31), relapsed DLBCL 
(n = 4), transformation from indolent B-cell lymphomas (n = 3), 
high-grade B-cell lymphomas (n = 4), BL (n = 1), aggressive B 
lymphoma not otherwise specified (n = 1), mantle cell lym-
phoma (MCL), blastoid variant (n = 1) and T-lymphoblastic lym-
phoma (n = 1). Furthermore, we included in this category one 
case of lymph node infiltration by multiple myeloma and one 
by myeloid sarcoma with immature cells. In a second analysis, 
MCL other than blastoid variant and grade 3a follicular lympho-
mas (FL) (n = 15) were reclassified as aggressive lymphomas, as 
the clinical course and the treatment regimen are still controver-
sial in the literature [26, 27].

2.2   |   Parameters

The details about lymph node sampling, SUVmax, LDH level 
measurement, lymphocytosis, leukocytosis, hemoglobin mea-
surements, LNC, and sample preparation for FC are available in 
the Supporting Information.

The FSR was calculated by dividing the average forward scatter 
value of monoclonal cells by the average forward scatter value 
of polyclonal cells, which included T and B lymphocytes consti-
tuting the normal cells of a lymph node environment. The cal-
culation of this FSR implied that monoclonality was confirmed 
with fluorochrome-labeled antibodies, as evidenced by either 
light chain monoclonality in B-cell lymphomas or T-cell recep-
tor monoclonality in T-cell lymphomas.

2.3   |   Statistical Analysis

2.3.1   |   Description of Sample Characteristics

Continuous variables were summarized by their median and 
interquartile range, while categorical variables were summa-
rized by the number and percentage of each category. The 
area under the operating characteristic curve (AUC) with the 
95% confidence interval (95% CI) was provided to measure 
the predictive performance of each potential predictor. The 
descriptive analysis (Table  1) presents the raw data. Values 
significantly higher than 0.5 suggest an association, with the 
strength of this association increasing as the AUC tends to 1, 
which is a perfect test [28]. For predictive model construction, 
missing values were replaced by the mode for categorical vari-
ables and the median for continuous variables. Continuous 
variables, except for age and hemoglobin concentration, were 
log-transformed.

2.3.2   |   Characteristics of the Predictive Models

Five predictive models were developed to analyze the data and 
assess the effectiveness of various predictors.

Model 1: Logistic regression model based on two prespecified 
independent variables.

Yi represents the logarithm of the odds that a lymph node 
is classified as aggressive. To clarify, if the probability of a 
lymph node being aggressive is 50%, the odds are 1, and the 
log odds (Yi) are 0. β0 represents the log odds of a lymph node 
being aggressive when both the LNC and FSR are at baseline 
levels (i.e., LNC = 0 and FSR ≤ 1). β1 indicates how the log odds 
of aggressiveness change when the LNC increases from 0 to 1. 
Specifically, exp. (β1) represents the odds ratio, which quanti-
fies the change in the odds of aggressiveness for a lymph node 
with LNC = 1 compared with one with LNC = 0. β2 reflects 
how the log odds of aggressiveness change when the FSR in-
creases from a value of 1 to a value greater than 1. It captures 
the effect of the FSR on the likelihood of aggressiveness. The 
equation can be utilized to measure the association between 
each predictor (LNC and FSR) and the odds of lymph node ag-
gressiveness as well as to predict the probability of aggressive-
ness based on the predictors. This is done using the following 
transformation:

This equation converts the log odds into a probability that 
ranges from 0 to 1, providing a clear interpretation of the 
likelihood that a lymph node is aggressive based on its 
characteristics.

Model 2: Logistic regression model based on four prespecified 
independent variables.

(1)Yi = �0 + �1 ∗LNC + �2 ∗FSR

(2)Probability =
eYi

1 + eYi

(3)Yi = �0 + �1 ∗LNC + �2 ∗FSR + �3 ∗SUVmax + �4 ∗LDH
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Model 3: logistic regression model based on automatic variable 
selection based on the Akaike information criterion [29]. The 16 
potential predictors from Table 1 were included.

For the first three models, the FSR variable was dichotomized 
(FSR = 1 if FSR > 1, otherwise FSR = 0) because logistic regres-
sion assumes a linear relationship between the independent 
variable and the response, which was difficult to support given 
the significant asymmetry in the distribution of FSR values. 
LNC is 1 if morphological orients to aggressive lymphoma and 
0 otherwise.

Model 4: Random forest based on the 16 predictors, using the 
randomForest function from the randomForest package with 
default parameters. The relative importance of the predictors is 
measured using the Gini index given by the importance function 
of the randomForest package.

Model 5: A set of models built from the XGBoost algorithm, 
using the XGBoost function from the XGBoost package with the 
following parameters: the maximum depth of a tree is fixed to 
2, the objective is logistic regression for binary classification. 
The relative importance of the predictors in these models is 

measured using the gain calculated using the xgb.importance 
function in the XGBoost package.

2.3.3   |   Comparison of the Predictive Performance 
of the Models

Evaluation of the predictive performance of these models was 
based on 6 indices: accuracy, AUC, positive predictive value 
(PPV), negative predictive value (NPV), sensibility, and spec-
ificity. For comparison, the indices corresponding to the FSR 
and LNC variables taken in isolation were also presented. To 
mitigate the risk of model overfitting, particularly for the po-
tentially more complex models 3, 4, and 5, all model perfor-
mance metrics were subjected to 10-fold cross-validation. The 
model, based on the full dataset of 162 lymph nodes (Figure 2), 
was evaluated by dividing the data into 10 parts. In each iter-
ation, 9 parts were used for training and 1 for testing, with 
performance metrics averaged over 10 iterations. The final 
statistics, detailed in Table 3, represent these averaged results. 
All analyses were performed using R 4.2.2 (The R Foundation 
for Statistical Computing, Austria, Vienna, 2022) and the fol-
lowing packages: caret [30], randomForest [24], XGBoost [25].

TABLE 1    |    Baseline characteristics according to the anatomopathological final category.

Anatomopathological category

Characteristic Overall (N = 162) Other categories (N = 113)
Aggressive 

lymphomas (N = 49) AUC [95% CI]

Sex: female 67 (41%) 48 (42%) 19 (39%) 0.52 [0.44–0.60]

Age 63 (46, 72) 58 (42, 69) 70 (59, 77) 0.69 [0.61–0.78]

Adenopathy 126/139 (91%) 88/106 (93%) 38/43 (86%) 0.53 [0.47–0.59]

Splenomegaly 20/85 (24%) 14/58 (24%) 6/27 (22%) 0.51 [0.41–0.61]

Hepatomegaly 2/76 (2.6%) 2/51 (3.9%) 0/25 (0%) 0.52 [0.49–0.55]

B symptoms 17/79 (22%) 12/53 (23%) 5/26 (19%) 0.52 [0.42–0.61]

SUVmax 11 (7, 14) 11 (6, 11) 15 (11, 23) 0.74 [0.65–0.82]

Leucocytosis 7.3 (5.6, 9.9) 7.3 (6.0, 10.2) 6.3 (4.8, 9.7) 0.60 [0.50–0.70]

Lymphocytosis 1.4 (1.0, 1.9) 1.4 (1.2, 2.3) 1.3 (0.8, 1.5) 0.64 [0.55–0.73]

LDH 216 (182, 275) 204 (177, 236) 254 (222, 406) 0.74 [0.66–0.83]

CRP 9 (2, 33) 8 (1, 26) 18 (3, 46) 0.59 [0.49–0.70]

Hemoglobin 13.0 (10.9, 14.1) 13.0 (10.9, 14.4) 12.8 (10.9, 14.1) 0.53 [0.43–0.64]

Positive AEHM 8 (4.9%) 6 (5.3%) 2 (4.1%) 0.51 [0.47–0.54]

Positive AHM 65 (40%) 36 (32%) 29 (59%) 0.64 [0.55–0.72]

LNC aggressive 
morphology

45 (28%) 10 (8.8%) 35 (71%) 0.81 [0.74–0.88]

FSR 1.00 (1.00, 1.24) 1.00 (1.00, 1.01) 1.35 (1.19, 1.49) 0.87 [0.80–0.94]

Note: The results are indicated either as a percentage, which reflects the frequency of occurrence relative to the number of samples with available data (%), or as a 
median value accompanied by the interquartile range, indicating the 25th and 75th percentile values. Bold values are statistically significant (confidence intervals not 
crossing 0.5).
Abbreviations: AEHM, antecedents of an extra-hematological malignancy; AHM, antecedent of hematological malignancy; AUC, area under the receiver operating 
characteristic curve; CI, confidence interval; CRP, C-reactive protein; FSR, forward scatter ratio; LDH, lactate dehydrogenase; LNC, lymph node cytology; SUVmax, 
standard uptake value maximum.
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3   |   Results

3.1   |   Lymph Node Characteristics

The analysis of the clinical and laboratory characteristics 
among 162 lymph node specimens, categorized into two 
groups: “Aggressive lymphomas” (n = 49) and “Other catego-
ries” (n = 113), is presented in Table  1. Gender was slightly 
imbalanced, with females accounting for 41% of the overall 
population, but was not a valuable predictor (AUC = 0.52, 
CI 95: 0.44–0.60). The difference was more pronounced for 
age, with the median age significantly higher in the aggres-
sive lymphoma group (70 years) compared with the other 
categories (58 years), with an AUC of 0.69 (CI 95: 0.61–0.78). 
Higher SUVmax and LDH levels were observed in aggres-
sive cases, each marked by an AUC of 0.74 (CI 95: 0.65–0.82 
and 0.66–0.83 respectively). Lymphocytosis and leukocyto-
sis demonstrated moderate predictive power, with AUCs of 
0.64 (CI 95: 0.55–0.73) and 0.60 (CI 95: 0.50–0.70). C-reactive 
protein and hemoglobin levels had insignificant predictive 
power, with their 95% CI crossing 0.50. A history of hema-
tological cancer was somewhat predictive (AUC: 0.64, CI 95: 
0.55–0.72), unlike a history of other cancers (AUC: 0.51, CI 95: 
0.47–0.54). Most notably, aggressive morphological character-
istics obtained with LNC analysis and elevated FSR showed 
significant differences, being considerably higher in aggres-
sive lymphomas (71% for morphology, and a median FSR of 
1.35 in aggressive lymphomas versus 1.00 in other catego-
ries). These findings were corroborated by their high AUC 
values (0.81, CI 95: 0.74–0.88 for morphology and 0.87, CI 95: 
0.80–0.94 for FSR), indicating their strong predictive value. 
This analysis underlines the importance of a multiparametric 
diagnostic approach in lymphoma classification, with certain 

characteristics like age, SUVmax, LDH, antecedents of hema-
tological malignancy, LNC, and FSR demonstrating predictive 
capabilities.

3.2   |   Description of Model Characteristics

In this section, the characteristics of the five predictive models 
have been compared. The first three are logistic regression mod-
els, while the next two use ensemble learning algorithms.

3.2.1   |   Logistic Regression–Based Models

Model 1 was a pre-specified model including only FSR and 
LNC. In this model, an FSR > 1 and a positive LNC increased 
the odds of the lymph node being classified as aggressive at 
anatomopathological examination by factors of 11.5 (CI 95: 
4.3–35.4) and 17.5 (CI 95: 6.6–51.4), respectively (Table  2). 
According to this model, a patient with a positive LNC and an 
FSR > 1 would have an 89% chance of having an aggressive 
lymphoma (Figure 1A).

Model 2 was a pre-specified model that includes FSR, LNC, 
SUVmax, and LDH. In this model, an FSR > 1, a positive LNC, 
an increase of one log of SUVmax, or LDH increased the odds of 
the lymph node being classified as aggressive at anatomopatho-
logical examination by factors of 8.6 (CI 95: 3.0–27.4), 13.4 (CI 
95: 4.7–42.3), 3.1 (CI 95: 1.1–9.9), and 3.5 (CI 95: 1.2–12.2), re-
spectively (Table 2). According to this model, a patient with a 
positive LNC and a FSR > 1 would have a 37%–99% chance of 
having an aggressive lymphoma based on SUVmax and LDH 
levels (Figure 1B).

FIGURE 1    |    Relative importance of the predictors. (A) Relative importance of the predictors included in the model 4, assessed by the Gini index. 
(B) Relative importance of the predictors included in the model 5, assessed by the gain associated with each variable. Abbreviations: FSR, forward 
scatter ratio; LNC, lymph node cytology; LDH, lactate dehydrogenase; SUVmax, standard uptake value maximum; CRP, C-reactive protein; Hb, he-
moglobin; AHM, antecedent of hematological malignancy; AEHM, antecedents of an extra-hematological malignancy.
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Model 3 automatically selected predictors from a list of 16 poten-
tial predictors presented in Table 1. This model included the fol-
lowing eight variables: LNC, FSR, CRP, B symptoms, SUVmax, 
age, and adenopathy. The model coefficients are presented in 
Table 2. With eight variables, a graphical representation of the 
model prediction would be difficult to read.

3.2.2   |   Ensemble Learning–Based Models

Model 4 was a random forest based on the 16 variables presented 
in Table 1. This forest was made up of 500 decision trees, each 

built on a sample constructed by bootstrapping from the original 
sample and randomly drawing 4 independent variables from the 
16 potential ones. One way of comparing the relative weights of 
the independent variables was to measure the Gini index [31]. The 
four most important variables in this model were FSR, LNC, LDH, 
and SUVmax. These were followed by CRP, leukocytosis, lym-
phocytosis, age, and, to a lesser extent, hemoglobin (Figure 2A).

Model 5 was an ensemble of 25 decision trees with no more than 
two splits constructed using the XGBoost algorithm, within 
which each new model attempts to correct the errors made by 
the previous model. The relative importance of each of the 16 

TABLE 2    |    Logistic regression model coefficients. The odds ratio of a predictor and its 95% confidence interval are obtained by exponentiating 
the table values.

Characteristic

Model 1 Model 2 Model 3

Est. 95% CI Est. 95% CI Est. 95% CI

(Intercept) −3.26 −4.35, −2.39 −12.6 −20.0, −6.42 −9.31 −14.0, −5.42

FSR > 1 2.44 1.45, 3.57 2.15 1.10, 3.31 2.84 1.63, 4.25

LNC aggressive 2.86 1.89, 3.94 2.60 1.54, 3.74 3.33 2.09, 4.83

SUVmax 1.14 0.114, 2.29 1.50 0.390, 2.73

LDH 1.24 0.155, 2.50

CRP 0.695 0.306, 1.16

B symptoms −1.94 −3.96, −0.084

Age 0.034 −0.001, 0.073

Adenopathy −1.56 −3.51, 0.358

Abbreviations: 95% CI, 95% confidence interval; CRP, C-reactive protein; Est., estimate of the beta coefficients of the model; FSR, forward scatter ratio; LDH, lactate 
dehydrogenase; LNC, lymph node cytology; NA, not applicable; SUVmax, standard uptake value maximum.

FIGURE 2    |    Probability of a lymph node being considered aggressive compared with anatomopathological examination according to models 1 
(A) and 2 (B). For example, according to model 1, a lymph node with no aggressive patterns in LNC examination and an FSR > 1 would have a 31% 
chance of being considered aggressive on anatomopathological examination. According to model 2, a lymph node with no aggressive patterns in LNC 
examination, an FSR > 1, a SUVmax of 8, and LDH levels of 400 IU/L would have a 35% chance of being considered aggressive on anatomopathologi-
cal examination. Abbreviations: SUVmax, standard uptake value maximum; LDH, lactate dehydrogenase; LNC, lymph node cytology; FSR, forward 
scatter ratio.
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independent variables potentially included in each tree was 
measured by the gain associated with each variable. The most 
important variables in model 5 were FSR, LNC, LDH, and 
SUVmax, followed by age, CRP, and, to a lesser extent, leukocy-
tosis and lymphocytosis (Figure 2B).

3.2.3   |   Comparison of Model Predictive Performance

In terms of AUC, all the multi-variable models appeared to be 
more discriminating than LNC or FSR alone, with the exception 
of model 3 (logistic regression with automatic variable selection) 
whose performance (AUC = 0.88) was only slightly better than 
FSR alone when it was not dichotomized (Table  3). Model 4, 
based on the random forest algorithm, showed the highest AUC 
(0.94), followed closely by model 5 (XGBoost model) with an 
AUC of 0.93.

In terms of accuracy, only two models exceeded the perfor-
mance of diagnosis based on LNC alone, namely model 2 (logis-
tic regression model based on FSR, LNC, SUVmax, and LDH) 
and model 5 (XGBoost model) with, respectively, an accuracy 
of 88% and 89%. This translated into slightly higher sensitivi-
ties and specificities than LNC alone (71% and 91%), namely 72% 
and 94% for model 2 and 77% and 94% for model 5, respectively 
(Table 3).

4   |   Discussion

The aim of this study was to determine to what extent models 
based on LNC, FSR, and incorporating other rapidly available 
parameters can predict the outcome of the anatomopatho-
logical examination, in this case, the aggressive nature of the 
lymphomas.

We found that, of the 16 predictive variables studied, 8 appeared 
to be more or less associated with the aggressive nature of the 
lymphoma, namely FSR (AUC = 0.87, CI 95: 0.80–0.94), LNC 
(AUC = 0.81, CI 95: 0.74–0.88), SUVmax (AUC = 0.74, CI 95: 
0.65–0.82), LDH (AUC = 0.74, CI 95: 0.66–0.83), age (AUC = 0.69, 
CI 95: 0.61–0.78), AHM (AUC = 0.64, CI 95: 0.55–0.72), 

lymphocytosis (AUC = 0.64, CI 95: 0.55–0.73) and, to a lesser ex-
tent, leukocytosis (AUC = 0.60, CI 95: 0.50–0.70) (Table 1). This 
corroborates our initial hypothesis that FSR, LNC, SUVmax, 
and LDH play a dominant role in these predictive models. This 
observation also emerges from the indirect measures of the rela-
tive importance of the variables in the random forest and in the 
XGBoost model (Figure 2).

The FSR alone provided important information, with an ac-
curacy of 0.78 and an AUC of 0.87. The LNC alone achieved 
accuracy, sensitivity, and specificity of 0.85, 0.71, and 0.91, re-
spectively. With regard to the multivariate models, three of the 
five models did not achieve better accuracy than LNC alone: 
the logistic regression model based on LNC and FSR (model 1), 
the logistic regression model with automatic variable selection 
(model 3), and the model based on the random forest (model 4). 
The performance of model 1 (accuracy = 0.85, AUC = 0.92) sug-
gested that simply combining LNC and FSR in a logistic regres-
sion model was not sufficient to produce a model that performs 
satisfactorily on a sample that has not been used to train it. 
While there was an improvement in the AUC, this did not trans-
late into improved accuracy. The same applied to model 3 (ac-
curacy = 0.85, AUC = 0.88). In this case, the logistic regression 
with automatic variable selection might have been overfitted 
to the specificities of the training set, resulting in lower perfor-
mance on the test set. In the case of the random forest (model 4), 
the low accuracy (0.85) can perhaps be explained by the fact that 
the trees constructed from variables that had little to do with 
the aggressive nature of the lymphoma diluted the overall pre-
dictive performance. Paradoxically, this model had the highest 
AUC (0.94), indicating that it has a 94% chance of correctly iden-
tifying an aggressive lymphoma.

On the other hand, our data highlighted an interest in the 
prespecified logistic regression model based on LNC, FSR, 
SUVmax, and LDH (model 2) as well as the XGBoost model 
(model 5). The logistic regression model's effectiveness can 
be attributed to the selection of 4 predefined variables, which 
were strongly associated with the aggressive nature of the 
lymphoma. In the case of the XGBoost model, it was based 
on a relatively small number of successive trees (25) and 
on trees of low complexity (maximum two levels) enabling 

TABLE 3    |    Comparison of model prediction performance. Shaded lines correspond to performance indexes measured on isolated variables (FSR 
and LNC).

Variables Accuracy AUC NPV PPV Sensitivity Specificity

FSR > 1 1 0.78 0.80* 0.92 0.59 0.86 0.74

LNC aggressive morphology 1 0.85 0.81 0.88 0.78 0.71 0.91

Model 1 2 0.85 0.92 0.85 0.89 0.61 0.95

Model 2 4 0.88 0.92 0.88 0.89 0.72 0.94

Model 3 16 0.85 0.88 0.88 0.76 0.74 0.89

Model 4 16 0.85 0.94 0.89 0.74 0.69 0.91

Model 5 16 0.89 0.93 0.90 0.91 0.77 0.94

Abbreviations: AUC, area under the receiver operating characteristic curve; FSR, forward scatter ratio; LNC, lymph node cytology; NPV, negative predictive value; 
PPV, positive predictive value.
*The AUC for the FSR not dichotomized is 0.87.
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interpretability despite boosting model black boxes. These 
two models may have benefited from a good ratio between the 
richness of the variables included and the relatively limited 
complexity of the model. It is possible that on larger datasets, 
more complex algorithms relying on black boxes (e.g., boost-
ing and neural network models) could outperform these two 
models. Machine learning has recently emerged in laboratory 
medicine as a beneficial tool in vast datasets with a broad 
range of applications such as detection of pre-analytical er-
rors, disease and outcome prediction, or image classification 
[21]. In the current clinical workflow, treatment for aggressive 
lymphomas is typically initiated only after anatomopatholog-
ical confirmation, which can delay urgent therapy in cases 
of high-grade disease for 24–48 h. Our algorithm (model 5) 
could enhance earlier identification of aggressive cases based 
on readily available parameters. Specifically, the sensitivity of 
0.77 indicates that 77% of aggressive cases could potentially 
be flagged and treated earlier, reducing the time to interven-
tion. Meanwhile, the high specificity of 0.94 ensures that the 
algorithm minimizes the risk of overtreatment by correctly 
excluding the majority of non-aggressive cases. While the al-
gorithm does not replace anatomopathological confirmation, 
its use as a preliminary diagnostic aid could significantly 
enhance clinical decision-making, particularly in high-risk 
cases where early treatment is critical.

Although our study showed promising results, there are cer-
tain limitations. Primarily, the dataset utilized is small in scale, 
which may limit the generalizability of our models. This sug-
gests that the models may be subject to some overfitting, mean-
ing they have adapted too closely to the specific characteristics 
of the training data at the cost of their ability to generalize to 
new datasets [21, 32]. To address the overfitting issue, the data-
set should be increased to lower the sampling noise and to 
introduce cross-validation with supplementary/external data-
sets [21, 32]. Second, the diversity of malignancies included in 
our dataset reflects the variety of cases encountered in clinical 
practice. However, this heterogeneity introduces variability in 
clinical presentations, natural histories, and responses to treat-
ment, which could impact the generalizability of the findings. In 
addition, future studies could refine the model to allow discrim-
ination among all categories (reactive, non-aggressive, aggres-
sive, and extra-hematological). It also depends on the knowledge 
of experts in laboratory medicine and anatomopathology to cor-
rectly identify aggressive lymphoma cells and confirm monoclo-
nality using FC. This usually necessitates that at least one senior 
specialist in laboratory medicine, and preferably two distinct 
experts, read the imprint smears [33]. In the 2019 GFHC survey, 
3 specialists in laboratory medicine out of 39 expressed reserva-
tions, viewing LNC as less valuable than histological reporting 
and arguing that young biologists lack training nowadays [33]. 
Another limitation of this study is that the anatomopathological 
diagnoses were not independently reviewed by the research team. 
However, all cases were double-checked by specialists when-
ever doubts arose. Furthermore, there are different sampling 
methods for LNC, such as fine-needle lymph node aspiration, 
biopsy, and cytospins, which can lead to different conclusions 
[33]. Additionally, the preparation method, such as imprint or 
smear techniques, can also result in variations, and LNC is only 
performed on a fraction of the lymph node specimen, not the 
entirety. Consequently, the findings depend on the lymph node 

tissue homogeneity, raising the possibility of a missed diagnosis 
if an unrepresentative section is analyzed, despite multiplying 
the imprints. In cases of sclerosis, the representativeness of the 
tumoral tissue on smears may be compromised, with potentially 
the target cells undetected [13]. The global architecture and rep-
resentativity of the ganglion cannot be appreciated, contrary to 
anatomopathological examination. Surgeons frequently cut the 
specimens into multiple sections, sending the largest piece to the 
anatomopathology department while the rest is given to differ-
ent laboratories for LNC, FC, and genetic analyses. This division 
introduces uncertainty regarding whether the same tissue is 
assessed in each analysis. FC has limitations in the identifica-
tion of high-grade B-NHLs lacking surface light chain expres-
sion or anaplastic non-Hodgkin lymphomas (N = 2 in our study) 
[34, 35]. Previous studies have shown that necrosis and cell fra-
gility can lead to poor detection by FC, potentially producing 
false negatives [36, 37]. Although light chain analysis and spe-
cific immunophenotyping generally provide high sensitivity in 
determining clonality, a small but distinct percentage of cases 
remain inconclusive across all reported studies [34, 35, 38, 39]. 
For instance, 13.8% (4/29) and 17.4% (4/23) were inconclusive for 
anaplastic large cell lymphoma [34, 39]. Similarly, 9.7% (29/299) 
were inconclusive [35] and 11.0% (50/456) of B-NHL cases ana-
lyzed by FC at Tokai University Hospital lacked surface immu-
noglobulin light chain expression [38].

It is also still unclear whether certain lymphomas should be con-
sidered aggressive or not. Regarding the FL, there is a distinction 
between FL3A and FL3B, with FL3B generally following a more 
aggressive course similar to DLBCL [6, 26]. The same issues are 
discussed about the MCL. Aggressive variants, on the other hand, 
progress rapidly with widespread lymph node involvement and 
extranodal tissues, blastoid or pleomorphic morphology, high Ki-
67 proliferation, and high expression of tumor protein p53 [40]. 
In multiple logistic regression analysis, these two less-aggressive 
NHL closely approached the threshold for aggressive lympho-
mas. An integrated analysis that grouped FL3A and MCL with 
aggressive lymphomas gave a stable AUC of 0.94.

5   |   Conclusion

FSR, LNC, and other parameters such as SUVmax and LDH are 
associated with the aggressive nature of lymphoma. A logistic 
regression model combining these four parameters predicts the 
outcome of the anatomopathological examination with a sen-
sitivity of 72% and a specificity of 94%, which could have sig-
nificant clinical implications. An XGBoost model based on 16 
features reached 77% sensitivity and 94% specificity. Integrating 
more parameters on larger quantities of data using ensemble 
learning algorithms should make it possible to substantially im-
prove these predictions.
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