
Improving Tutors’ Practice by
Integrating Explicit Instructional

Programming Strategies in
Introductory Programming Courses

at University

Olivier Goletti

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Engineering Sciences and Technology

January 2025

ICTEAM

Louvain School of Engineering

Université catholique de Louvain

Louvain-la-Neuve

Belgium

Thesis Committee:
Prof. Kim Mens (Supervisor) UCLouvain/ICTEAM, Belgium
Prof. Felienne Hermans (Supervisor) VU Amsterdam, The Netherlands
Prof. Mariane Frenay UCLouvain/IPSY, Belgium
Prof. Virginie März UCLouvain/IACS, Belgium
Prof. Jan Vahrenhold Universität Münster, Germany
Prof. Charles Pecheur (Chair) UCLouvain/ICTEAM, Belgium
Prof. Efthymia Aivaloglou TU Delft, The Netherlands

Improving Tutors’ Practice by Integrating Explicit

Instructional Programming Strategies in Introductory

Programming Courses at University

by Olivier Goletti

© Olivier Goletti 2025
ICTEAM
UCLouvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

Abstract

Context. Often, university-level introductory programming courses (CS1)
make use of undergraduate teaching assistants (UTAs). Such UTAs gen-
erally are responsible for most of the students’ interactions with the CS1
course. UTAs usually have no pedagogical background. While some univer-
sities provide pedagogical training and research documents these trainings,
challenges and interactions, pedagogical content knowledge specific to the
teaching of programming has not been extensively researched.

Objective. In this dissertation, we explore how UTAs’ teaching practices
can be improved by training them with dedicated evidence-based explicit
instructional programming strategies. Moreover, we want to understand
and characterise how UTAs use and adapt these strategies, what hinders
and helps them.

Methods. Based on learning transfer processes and cognitive load the-
ory, we selected four strategies: explicit tracing, subgoal learning, Parsons
problems and explicit problem solving. We used a design research approach
to iterate on our interventions on the instructional design of the course’s
setup in three di!erent years. This iterative process allowed us to gradu-
ally tailor explicit tracing and subgoal learning to the studied CS1 course.
We progressively increased the number of UTAs participating in our study,
while refining our intervention up to a full integration of the subgoal learn-
ing strategy throughout the course. We collected data on tutors’ usage of
the instructional strategies by mixing methods: semi-directed interviews,
surveys and observations. The data was analysed using thematic analysis
with both inductive and deductive coding, and the concept of fidelity of
implementation.

Findings. This dissertation reports on the results of this iterative process.
We found that integrating subgoal learning throughout the course pushed
UTAs to apply explicit instructional programming strategies in their practice.
We also report on triggers for strategy uses by UTAs, adaptations made by
UTAs and UTAs’ fidelity of implementation of explicit tracing and subgoal
learning.

i

ii Abstract

Implications. Since UTAs are widely used in CS courses, this work pro-
vides research-informed actionable advice to practitioners willing to inte-
grate explicit instructional strategies in their own setup. We also discuss
the feasibility of applying these strategies to school teachers.

Acknowledgments

Prof. Kim Mens was one of my co-supervisors for this thesis. He embarked
with me on an unknown journey towards computing education research
which was not his main field of research. Nevertheless, depite this being
a bit out of his comfort zone, he was very eager to learn with me, bought
and read all books I threw at him, and never failed to ask me the right
itchy questions on my research. His vast research experience made him
an invaluable source of feedback through innumerable comments on my
countless drafts. His teaching experience and interest made him genuinely
interested in my work and he defended it and applied it when and where he
could. We share the love of beer, sports, friendship and a common taste
for bad jokes. Kim, thank you for letting me chose my way forward and for
all the help provided.

Prof. Felienne Hermans was my other co-supervisor for this thesis. Fe-
lienne and I first discussed explicit instruction in 2008 at Educode, Brussels
and this definitely made me fall for her research approach and her person-
ality. Felienne is a field expert and shared with me her research experience,
her honest feedback and provided the right references. She guided me to
always self-reflect on my research assumptions and decisions, but also on
how and where to publish. She has strong opinions and demanded a high
standard of writing quality but all her comments made my work better. She
never hesitated to accept me as a PhD, included me in her team and wel-
comed me in her house. We share the love of reading, playing boardgames
and arguing around good food and drinks. Felienne, I am really thankful
and proud for counting you as a friend now.

I would also like to thank my supervising committee members: Prof.
Mariane Frenay who, however busy she was, could find the time to meet me,
o!er me her opinions on constructivism, learning transfer and observation
methods when I was still a baby researcher; Prof. Virginie März who pushed
me to situate my research in the broader perspective of education literature,
teachers and UTA identity and motivation; Prof. Jan Vahrenhold who
advised me to not go too broad, focus more on what I wanted as a final
result and who would always give me (scary) honest feedback.

I thank the entire CS1 teaching sta! and especially Charles, Kim and
Siegfried who were always supportive of my ideas. They provided construc-
tive feedback on our design interventions. More broadly, I want to thank

iii

iv Acknowledgments

all TAs and UTAs of the course. Without them, the course could not run
so smoothly.

Prof. Efthymia Aivaloglou and Prof. Charles Pecheur, thank you for
accepting to read my thesis by joining the jury.

Thank you Chantal Poncin and Prof. Olivier Bonaventure, who recruited
me in 2016 by o!ering me a position at the intersection of CS and education.
This started my career in the INGI departement and in computing education
research. I also want to thank Julie Henry who motivated me to pursue a
PhD in this field.

Thank you to the whole INGI department, all my colleagues during the
five years of my thesis and three more before that. I was privileged to play
cards, sports or crossword puzzles with you all. I made good friends, watched
movies, role played, and practiced yoga. Citing names would be too long,
but thank you to the entire administrative sta!, the (ex-)PhD students, the
(past and actual) sysadmin team and all professors. Special thanks to those
who shared my o"ce and supported me! A dedicated thank you to Gorby
and his drawing skills showcased on the next page at the occasion of the
“My thesis in 3 minutes” competition. Special mention here to Fantasia,
the best place in town for a fresh pasta takeaway.

I also want to thank Felienne’s research team. Being alone on a com-
puting education research topic has been challenging at times, and being
able to share ideas, give an opinion, help others, read related work made by
colleagues and even contribute to others’ research has really been a treat
for me. Thank you all so much for making me feel welcome in your team!

Special thanks to my family who always were supportive. Merci maman,
merci papa! Thanks to you, I’ve had the privilege to be able to experience
this successful educational and professional journey. Thank you sis’, thank
you bro’ and your wonderful families!

My dearest thanks to my beloved partner Delphine. She is the best! She
always supported me even through the late nights of work or my grumpiness
when stressed before a deadline or a talk. Thank you Marion for keeping
me young in my head and teaching me the last cool slang. I love you both
so much! Special mention to Rufio, my good dog.

Illustration of a tutor using subgoal learning drawn by Gorby – AKA
jenkan – at the occasion of the “My thesis in 3 minutes” competition.

Table of Contents

Abstract i

Acknowledgments iii

Table of Contents vii

List of Figures xi

List of Tables xiii

1 Preamble 1
Motivation . 1
Positionality . 1
1.1 Research Goals . 2
1.2 Approach . 3
1.3 Supporting Publications . 6
1.4 Structure . 8

I Related Work 11

2 Computing Education Principles 13
2.1 Introductory Programming Education 13
2.2 Cognitive Load Theory . 14
2.3 Learning Transfer . 15
2.4 Problem-Based Learning . 15
2.5 Explicit Instructional Programming Strategies 16

2.5.1 Explicit Tracing . 17
2.5.2 Worked Examples 19
2.5.3 Subgoal Learning 19
2.5.4 Parsons Problems 21
2.5.5 Explicit Problem Solving 24

2.6 Undergraduate Teaching Assistants in Computer Science . . 25
2.7 Summary . 26

vii

viii Table of Contents

3 Methods and Tools 29
3.1 Pragmatism as a Research Paradigm 29

3.1.1 From CS to CEd . 30
3.1.2 On Pragmatism . 33

3.2 Design Research in Education 33
3.3 Adaptation and Fidelity of Implementation 34
3.4 Qualitative Research Tools 35

3.4.1 Data Collection . 35
3.4.2 Coding . 36

3.5 Summary . 38

4 Use Case: a CS1 Course 39
4.1 Introduction . 39
4.2 Course Setup . 40

4.2.1 Stakeholders . 41
4.2.2 Course Organisation 42
4.2.3 Resources . 43

II Design Research Iterations 45

5 Course Analysis 47
5.1 Introduction . 47
5.2 Study Design and Methodology 48

5.2.1 Conceptual Model 48
5.2.2 Analysis Criteria . 51

5.3 Analysis of the CS1 Course Material 53
5.3.1 Viability of Learning 53
5.3.2 Organisation of Learning 54
5.3.3 Accessibility to Knowledge and Skills in Long-Term

Memory (LTM) . 56
5.4 Results . 57

5.4.1 Explain how Knowledge is Organised 58
5.4.2 Emphasise Transfer Opportunities a Priori 58
5.4.3 Use Explicit Recall Strategies 58
5.4.4 Threats to Validity 59

5.5 Conclusion . 59

6 First iteration: Exploration 61
6.1 Selected Strategies . 61
6.2 Study Design and Methodology 63
6.3 Results . 64

6.3.1 Tutor’s Use of the Four Strategies 64

Table of Contents ix

6.3.2 RQ6.1: Use and adaptation of the strategies 68
6.3.3 RQ6.2: Preferred Strategies 69
6.3.4 RQ6.3: On Explicit Programming Strategies 69
6.3.5 Threats to Validity 70

6.4 Conclusion . 71

7 Subgoals Creation 73
7.1 Introduction . 73
7.2 Study Design and Methodology 74

7.2.1 Task analysis by problem solving (TAPS) 74
7.2.2 Adapted TAPS . 75

7.3 Results . 75
Threats to Validity . 79

7.4 Conclusion . 79

8 Second Iteration: Characterisation 81
8.1 Study Design and Methodology 82

8.1.1 Training Material 82
8.1.2 Participants . 85
8.1.3 Fidelity criteria . 85
8.1.4 Methodology . 87

8.2 Results . 88
8.2.1 Triggers for Strategy Usage 88
8.2.2 Fidelity of Tutors’ Strategy Implementation 90
8.2.3 Tutors’ Adaptation of Strategies 92
8.2.4 Threats to Validity 98

8.3 Conclusion . 98

9 Third Iteration: Integration 101
9.1 Study Design and Methodology 102

9.1.1 Subgoal Learning Integration 102
9.1.2 UTAs’ Training and Follow up 104
9.1.3 Fidelity of Implementation and Deductive Codes . . . 105
9.1.4 Observations . 106
9.1.5 Surveys . 107

9.2 Results . 108
9.2.1 Observations . 108
9.2.2 UTAs’ Surveys . 114
9.2.3 Crossing the Data Sources 117
9.2.4 Students’ Awareness of the Strategy 117
9.2.5 Threats to validity 119

9.3 Conclusion . 119

x Table of Contents

III Discussion and Future Directions 121

10 Overall Results 123
10.1 Summary of the Results . 123
10.2 Main Answers . 124

10.2.1 (RQ1) Strategy Choice 125
10.2.2 (RQ2) Strategy Usage: Pros and Cons 125
10.2.3 (RQ3) Training and Support 126
10.2.4 (RQ4) Usage and Adaptions 127

10.3 Advice to Practitioners . 128
10.3.1 How to Choose Instructional Strategies? 128
10.3.2 How to Train UTAs? 129
10.3.3 How to Support Instructional Change? 130

10.4 Advice to UTAs . 131
10.5 Threats to Validity . 132
10.6 Lessons Learned on the Methodology 132

11 Conclusion and Future Directions 135
11.1 Another Audience: School Teachers 135

11.1.1 The Context in Belgium 136
11.1.2 Identity and Motivation 137
11.1.3 Discussion . 139

11.2 Future Directions . 140
11.3 Conclusion . 141

List of Figures

2.1 Two memory table examples with the method name at the
top, variable names in the Name column, and variable values
in the Value column (caption and figure extracted from Xie
et al. [XNK18]). 17

2.2 Examples of training material and usage of the explicit trac-
ing strategy. 18

2.3 Subgoals for evaluating (left) and writing (right) expression
(assignment) statements (caption and figure adapted from
Margulieux et al.[MMD19]). 19

2.4 Examples (in French) of training material and usage of the
subgoal learning strategy. 21

2.5 A simple 2D Parsons problem with two distractors, unsolved
on top and solved on the bottom. The task is available at
https://www.codepuzzle.io/PEQCLB. 22

2.6 Examples of Parsons problems used on paper during the first
iteration. 23

2.7 The problem-solving steps handout (in French) distributed
to students during the first iteration. 27

3.1 A schematic representation of a systematic thematic analysis
(extracted from Naeem et al. [Nae+23]). 37

4.1 Interaction of the introductory programming course with the
cross-curricular engineering project course after the reform
(extract from [Rau+04]). 40

4.2 The di!erent moments that structure a mission of the CS1
course. 41

5.1 Tardif’s model of learning transfer (adapted from [Tar99]). . 49
5.2 Graphical representation of variables containing references

to String objects. 55
5.3 A schematic instance diagram of a linked list data structure. 57

7.1 Subgoal labels for writing a program that reads a file in Python. 77

xi

https://www.codepuzzle.io/PEQCLB

xii LIST OF FIGURES

7.2 Worked example of a file reading exercise in Python labeled
with our created subgoals for that concept: (1) Open; (2)
Processing; (3) Close; (4) Exceptions. 78

8.1 External representation of a list (inspired by Dickson et al. [DD21])
as handed out to our tutors. Translation, ellipses, arrows and
highlighted parts have been provided for readability. 83

8.2 SLWE for file writing in Python. (The presentation on the
left is inspired by Margulieux et al. [MMD19].) Subgoals’
translation, ellipses, arrows and highlighted parts have been
provided for readability. 84

8.3 Some examples of both strategies used by tutors. (a) and (c)
are expected uses while (b) and (d) are observed adaptations.
Permissions to publish these pictures have been granted by
the tutors and students. 95

9.1 Timeline of the semester with observers’ training weeks in
green and actual observations in purple 103

9.2 Modified slide with the code annotated with (French) sub-
goals and the presenter notes for the teacher. The presenter
notes have been translated from French for readability. . . . 105

9.3 Normalised number of use of the SL strategy per session for
each UTA. The darker bottom part of each bar corresponds
to “stronger” uses. In red: the engineering program, in
green: the math program, in blue: the CS program. 109

9.4 Some strategy use examples from the recordings. 112
9.5 UTAs’ aggregated answers from the two surveys to Likert-

scaled questions on their familiarity, frequency and opinion
on their use of subgoal learning. 115

9.6 Correlation between UTAs’ reported familiarity and frequency
of use of the SL strategy. 116

9.7 Correlation between UTAs’ reported frequency of strategy
use and their observed “stronger” use ratio. 118

List of Tables

1.1 For each chapter, the research questions studied, the used
data sources, type of research and outputs are provided. *
indicates when material to answer the main RQ comes from
the analysis of the instructional intervention presented in the
chapter but not through a specific RQ. 3

1.2 Mapping between the main RQs of this dissertation and the
specific RQs of each chapter. * indicates when material to
answer the main RQ comes from the analysis of the instruc-
tional intervention presented in the chapter but not through
a specific RQ. 4

5.1 Analysis criteria of learning transfer sub-processes (inspired
from Brouillette et Presseau [BP04]). 51

6.1 Final coded categories representing tutors’ comments on the
strategies during their interviews. 64

7.1 Concepts for which SLWEs have been created for Python . . 76

8.1 Fidelity criteria derived from literature for the considered
explicit instructional strategies. 86

8.2 Sources of the trigger event for each strategy use. 89
8.3 Measures of fidelity of implementation for tutors’ usage of

the Explicit Tracing Strategy. 91
8.4 Scores of fidelity of implementation for tutors’ usage of the

subgoal learning strategy 92

9.1 Resources used in the course per moment and how they
were adapted to integrate subgoal learning. (T = Teachers;
TA = Teaching Assistants; UTA = Undergraduate Teaching
Assistants; S = Students-; SL = Subgoal Learning; SBS =
Step-By-Step SLWEs; SLFS = Subgoal Labeled Final Solu-
tion; RQ = SL integration done by tutors we are researching
in this chapter). 103

9.2 Number of occurrences of each observed combination of cri-
teria (with SL3 sub-criteria summed for readability). 110

xiii

xiv LIST OF TABLES

9.3 Number of occurrences of each observed combination of cri-
teria. 111

9.4 Number of observed triggers by source. 112
9.5 Number of times each fidelity of implementation criterion

was observed per mission, session or program. * means all
di!erent values are considered, which makes the last line
an aggregated total of all observed uses. The “SL3 (!)”
column adds up the four SL3 sub-criteria. The last column
gives a normalised strategy uses per session value. 113

Preamble 1
Motivation

As a teaching assistant of a CS1 course, my interest in the pedagogical
methodology used when teaching programming, and in particular in the
balance between explicit teaching strategies and the course’s project-based
approach led me to the research done in this thesis. The origin of this
reflection comes from reading various critiques of constructivist approaches
during my educational studies conducted after my engineering studies. No-
tably, work by Kirschner et al. [KSC06] stating that less guided approaches
to learning are less e!ective. Various responses have been proposed to
them [HDC07; Sch+07] insisting on the strong presence of sca!olding in
problem-based learning (PBL), as well as suggesting the possibility that lim-
itations of problem-based approaches might be due to a lack of research.
Their e!ectiveness also depends on the discipline, as suggested by Galand
et al. in their own analysis of the civil engineering setup e!ectiveness at
UCLouvain [GFR12]. This last answer seems to suggest that the approach
could still be e!ective in the context of engineering studies.

Positionality

Since part of the work presented in the dissertation is qualitative and hence
subject to some interpretation based on the researcher’s background, it is
relevant to provide some information about my background.

I identify as a white young researcher in computing education (CEd). I
graduated as MSc in Computer Science (CS) and have started my PhD after
having worked as a developer, as a science and math teacher, and as an
in-service teacher trainer for CS in primary and secondary schools. Both my
interest in education and computer science led to my return to university
as a research assistant. Before starting my research, I first followed two
master-level classes on pedagogical design analysis and qualitative research.

I also have been a teaching assistant myself for the CS1 course that
I studied during my research and even before. I followed that same CS1
course (still in Java at the time) as a student in 2006, was a tutor for the
course in 2010 and have been a teaching assistant for the course since 2016

1

2 Preamble

(it shifted to Python in 2018).
In my work, I tried to bring together as much as I could of both worlds

of qualitative and quantitative research and of both worlds of less and more
guided learning. A more elaborate and deeper reflective exercise on my
journey and positionality as a CEd researcher can be found in Section 3.1.

1.1 Research Goals

Introductory programming courses (CS1) have been described as challeng-
ing [McC+01; Lis+04]. Literature describes programming as a hard to
learn topic but it does not have to be that way. Luxton-Reilly suggests
it might be attributed to unrealistic expectations or unquestioned teach-
ing practices [Lux16]. Since a lot of CS departments use (under)graduate
teaching assistants - (U)TAs - as teaching sta! for their courses [For+17;
DDL17], we decided to assist and train them with more pedagogical content
knowledge (“subject matter knowledge for teaching” [Shu86]).

The goal of this thesis is to investigate how and if integrating explicit
instructional strategies in the training of course tutors could improve the
e!ectiveness of the course setup. In short, far from pedagogical disagree-
ment, in this thesis we aim at combining the best of both worlds [deJ+22]
by bringing research, here evidence-based explicit instructional programming
strategies, in the practice [Sen21] of tutors in a problem-based learning
setup.

Based on the learning transfer processes and cognitive load theory, this
thesis aims at identifying explicit instructional strategies that will e!ectively
help undergraduate teaching assistants when tutoring their students learning
how to program.

To understand how to e!ectively use these strategies in CS education,
here are the main questions we address:

RQ1 How and what instructional programming strategies to select to inte-
grate in a CS course, to enhance UTAs’ teaching practice?

RQ2 What makes explicit instructional programming strategies easily us-
able and applicable by UTAs? What are their obstacles to use these
strategies?

RQ3 How to train and support UTAs to integrate explicit instructional
programming strategies in their teaching practice?

RQ4 How do tutors use and adapt explicit instructional programming strate-
gies in their teaching practice?

1.2. Approach 3

This dissertation studies how interventions in the instructional de-
sign of an introductory programming course can encourage under-
graduate teaching assistants to make use of evidence-based strategies
in their practice. More details on our findings can be found in Chapter 10.
Since our goal is to bring research to practice, we propose a series of action-
able advice to practitioners based on our research results in Section 10.3.

Research Statement. Interventions on the instructional design of
an introductory programming course can push tutors to make use of
evidence-based explicit instructional programming strategies in their
practice, in particular subgoal learning. The interventions must in-
clude tutors’ training and follow-up as well as strategy integration in
the course material. This will enhance tutors’ teaching practice since
they often lack didactic knowledge specific to programming teaching.

1.2 Approach

Table 1.1: For each chapter, the research questions studied, the used data
sources, type of research and outputs are provided. * indicates when ma-
terial to answer the main RQ comes from the analysis of the instructional
intervention presented in the chapter but not through a specific RQ.

Chap. RQs Data source(s) Type of research
(output/themes)

5 1 Course material document analysis
(three proposals for instruc-
tional intervention)

6 1*,2,4 semi-structured interviews;
recordings of focus groups

coding
(UTAs’ perception)

7 3 experts’ live solutions Task analysis
(subgoals for selected
Python concepts)

8 3*,4 recordings of tutors’ lab
sessions

thematic analysis;
fidelity of implementation
(triggers, adaptations,
fidelity of implementation)

9 2,3*,4 recordings of tutors’ lab
sessions; surveys

thematic analysis,
fidelity of implementation
(UTAs’ perception,
fidelity of implementation)

4 Preamble

To answer the research questions, the research carried out in this dis-
sertation used mixed methods. Table 1.1 shows an overview of the di!erent
studies and research methods used. For readability, the main research ques-
tions of this dissertations use the notation RQX while research questions of
a specific chapter use the notation RQY.Z where Y is the number of the
chapter and Z the number of the question. Table 1.2 presents the map-
ping between the main RQs and more specific RQs of the di!erent chapters
which will be introduced in more detail later. For example, RQ1 is mainly
answered through RQ5.1 as wells as an analysis of the various instructional
strategies explored in Chapter 6. This section details the research approach
we followed and gives a label (in bold) to each study for clarity of the main
thread of the dissertation.

Table 1.2: Mapping between the main RQs of this dissertation and the
specific RQs of each chapter. * indicates when material to answer the main
RQ comes from the analysis of the instructional intervention presented in
the chapter but not through a specific RQ.

Chapter RQ1 RQ2 RQ3 RQ4
5: Analysis RQ5.1
6: Exploration * RQ6.2,3 RQ6.1
7: Creation RQ7.1,2
8: Characterisation * RQ8.1-3
9: Integration RQ9.3 * RQ9.1-3

We started this work with an analysis of a CS1 course based on two
processes of learning transfer. The first is the encoding of new knowledge
or the initial learning phase of a specific bit of knowledge. The second is
the access to this knowledge in a situation of transfer, ie. when the initially
learned bit of knowledge has to be retrieved and reused based on a new task
to solve, maybe leading to new knowledge being learned. This analysis was
done to better understand the structure of the course to assess if and how
well the course material supported the chosen educational theory of learning
transfer and to identify potential area of improvements. The conceptual
model and analysis are presented in Chapter 5. Based on this analysis, we
made three proposals to improve the course to foster learning transfer by
using explicit recall strategies and equipping tutors with recall strategies for
students.

Next, we started a process of design research to study how best to inte-
grate a selection of explicit strategies into tutors’ practice. We conducted a
first exploratory iteration presented in Chapter 6. During this first itera-
tion, we trained four undergraduate teaching assistants with four strategies
and interviewed them at the end of the course. The coding and analysis of

1.2. Approach 5

the interview transcripts led us to introduce four criteria to select instruc-
tional strategies: the strategy should be easy to understand, straightforward
to apply, useful on the long term and supported by literature.

In a second iteration of the design of the course, those criteria and our
analysis of the first iteration led us to select only two strategies in order
not to overload our UTAs: explicit tracing and subgoal learning (SL). We
decided to introduce both strategies earlier in the semester and created
dedicated training material to help UTAs integrate the di!erent aspects
of the strategies. While in the first iteration, we used subgoals from the
literature, in the second iteration, we developed our own subgoals for the
concepts and language of our own CS1 course. The process of creating
these subgoals is presented in Chapter 7. For this second iteration, we
focused on the characterisation of the adoption of the strategies by the
tutors. By characterisation, we mean describing and categorising based on
observation the triggers, adaptation and fidelity of implementation of the
strategies by the tutors. We measured the fidelity of implementation of the
two strategies by the UTAs by observing, recording and coding recordings
of their teaching. We identified three categories of triggers to strategy use:
students’ triggers (like a question or a mistake), tutors’ triggers (like an
important concept being presented before a di"cult exercise) and exercises
themselves as triggers when then contained already existing explicit prompts
to trace code. We also listed adaptations made by UTAs when using both
strategies. The second iteration is presented in Chapter 8.

The most mentioned issue by UTAs in the focus groups and follow up
discussions during the second iteration was the time it took them to prop-
erly present a specific worked example and to introduce the corresponding
subgoals. UTAs argued that they would benefit from an introduction of the
labels done in the course material. Moreover, we observed that for the other
strategy used in the second iteration, namely explicit tracing, an important
trigger for strategy use was to have prompts in students’ exercises state-
ments. Based on this, for our third iteration focusing only on the strategy
of subgoal learning (SL), the main design focus was the integration of the
strategy globally throughout the course. Our design for the integration of
SL throughout the course for the third iteration takes this into account by
providing a mandatory training for all UTAs and presenting the labels during
lectures. The third iteration is presented in Chapter 9. This study was an
observational study where we analysed UTAs’ strategy use by observations
and surveys. The main results of this third iteration are that SL integration
through exercises is a major trigger of strategy use. We also found that
training and follow-up of the UTAs has impact, since we reported frequency
of use correlates positively with reported familiarity by UTAs. More fre-
quent stronger uses of the strategy were observed by UTAs self-reporting

6 Preamble

more frequent uses. Finally, UTAs express that subgoals are best suited in
order to introduce concepts and especially the more structured ones.

1.3 Supporting Publications

Following the main thread (in bold) presented in the previous approach
section, here is a list of the publications this PhD dissertation builds upon.
All these chapters but the analysis have been accepted and soon to be
published in peer-reviewed conferences. I deliberately chose to publish to
a large variety of venues in order to get feedback from a broader part of
the computing education research community. A label (in bold) represents
its place in the main thread of this work and the corresponding chapter
presenting it.

Analysis: the analysis of the CS1 course which bootstrapped this thesis is
available as an unpublished report and serves as basis for Chapter 5.
This work was done in French in the scope of my educational training
before my PhD and its title can be translated as “How does the
problem-based learning approach implemented in the engineering CS1
course support the processes of learning transfer: knowledge encoding
and knowledge accessibility?”.

[Gol19] O. Goletti. En quoi le dispositif mis en œuvre dans le
cours d’introduction à l’informatique en BAC1 ingénieur civil basé
sur l’apprentissage par problèmes soutient les processus du transfert
des apprentissages : l’encodage et l’accessibilité aux connaissances ?
Tech. rep. http://hdl.handle.net/2078.1/245579. UCLouvain,
2019

Exploration: The first iteration of our intervention in the design of the CS1
course was the topic of a published ITiCSE paper and serves as basis
for Chapter 6.

[GMH21] O. Goletti, K. Mens, and F. Hermans. “Tutors’ Experi-
ences in Using Explicit Strategies in a Problem-Based Learning Intro-
ductory Programming Course”. In: ITiCSE ’21. Virtual Event, Ger-
many: ACM Press, June 2021. doi: 10.1145/3430665.3456348

Creation: The creation of subgoals and subgoal labeled worked examples
adapted to our own CS1 course is published and presented in Chap-
ter 7. This paper was published in the French-speaking venue Di-
dapro and can be translated as “Creation of subgoal labeled worked
examples for teaching programming with Python”.

http://hdl.handle.net/2078.1/245579
https://doi.org/10.1145/3430665.3456348

1.3. Supporting Publications 7

[GDM22] O. Goletti, F. De Pierpont, and K. Mens. “Création
d’exemples résolus avec objectifs étiquetés pour l’apprentissage de
la programmation avec Python”. In: Didapro 9–DidaSTIC. 2022
This publication was realised with the help of Florian De Pierpont
whose master thesis I co-supervised with Kim Mens:
F. De Pierpont. “Intégration des stratégies Subgoal Labeled Worked
Exemples (SLWEs) et Explicit Tracing aux travaux pratiques du cours
d’introduction à la programmation”. MA thesis. UCL - Ecole poly-
technique de Louvain, 2022. url: http://hdl.handle.net/2078.
1/thesis:35668

Characterisation: Our second iteration on the integration of explicit trac-
ing and subgoal learning was published at Koli Calling and presented
in Chapter 8.
[GMH22] O. Goletti, K. Mens, and F. Hermans. “An Analysis of
Tutors’ Adoption of Explicit Instructional Strategies in an Introduc-
tory Programming Course”. In: Proceedings of the 22nd Koli Calling
International Conference on Computing Education Research. 2022,
pp. 1–12. doi: 10.1145/3564721.3565951

Integration: Finally, our last iteration was the integration of subgoal learn-
ing throughout the whole course. This led to a SPLASH-E publication
and serves as basis for Chapter 9.
[GMH24] O. Goletti, K. Mens, and F. Hermans. “An Observational
Study of Undergraduate Teaching Assistants’ Use of Subgoal Learning
Integrated in an Introductory Programming Course”. In: Proceedings
of the 2024 ACM SIGPLAN International Symposium on SPLASH-E
(SPLASH-E ’24). Pasadena, CA, USA: ACM Press, Oct. 2024. doi:
10.1145/3689493.3689986

This publication was realised with the help of Antoine Demblon whose
master thesis I co-supervised with Kim Mens:
A. Demblon. “Intégration de l’apprentissage par étapes dans les
ressources d’un cours d’introduction à la programmation”. MA the-
sis. UCL - Ecole polytechnique de Louvain, 2024. url: http :
//hdl.handle.net/2078.1/thesis:48837

During this thesis, I participated in an ICER doctoral consortium and
a Didapro doctoral consortium. Being selected and attending these two
venues allowed me to reflect on my overall research plan and led to published
extended abstracts:

http://hdl.handle.net/2078.1/thesis:35668
http://hdl.handle.net/2078.1/thesis:35668
https://doi.org/10.1145/3564721.3565951
https://doi.org/10.1145/3689493.3689986
http://hdl.handle.net/2078.1/thesis:48837
http://hdl.handle.net/2078.1/thesis:48837

8 Preamble

[Gol21] O. Goletti. “Promoting Learning Transfer in Computer Science
Education by Training Teachers to Use Explicit Programming Strate-
gies”. In: ICER ’17. Virtual Event USA: Acm, Aug. 2021, pp. 411–
412. doi: 10.1145/3446871.3469776

[Gol24] O. Goletti. “Subgoal Learning Integration in a CS1 Course”. In:
Colloque Didapro 10 Sur La Didactique de l’informatique et Des STIC.
2024, pp. 131–135

Other interesting but less related works were published by the author. The
first one is published at ICER as a collaboration on teachers’ learning transfer
strategies when they switch between programming languages and the two
following publications were done in the scope of an Erasmus+ project —
“Communauté d’apprentissage de l’informatique” — on the development of
a community of practice for CS school teachers1:

[Tsh+21] E. Tshukudu, Q. Cutts, O. Goletti, A. Swidan, and F. Her-
mans. “Teachers’ Views and Experiences on Teaching Second and
Subsequent Programming Languages”. In: Proceedings of the 17th
ACM Conference on International Computing Education Research.
ICER 2021. New York, NY, USA: Association for Computing Ma-
chinery, Aug. 2021, pp. 294–305. isbn: 978-1-4503-8326-4. doi:
10.1145/3446871.3469752

[Cor+20] P. Corieri, M. Romero, T. Massart, O. Goletti, K. Mens, M.
Rafalska, T. Viéville, L. Meziane, J. Christophe, S. Hoarau, et al.
“Enjeux dans la création d’une communauté d’enseignants engagés
dans l’apprentissage de l’informatique”. In: Didapro 8-DidaSTIC-
Colloques francophones de didactique de l’informatique. Poster. 2020

[Kom+22] V. Komis, S. Bachy, O. Goletti, G. Parriaux, M. Rafalska,
and K. Lavidas. “Connaissances du contenu et connaissances tech-
nologiques des enseignants en Informatique en milieu francophone”.
In: Review of Science, Mathematics and ICT Education 16.2 (2022),
pp. 105–133. doi: 10.26220/rev.4080

1.4 Structure

This dissertation is organised in three parts. Part I covers the related work,
context and background knowledge of my research. Chapter 2 introduces
the theories and conceptual frameworks which form the bases of my choice
of intervening in an introductory programming course. This background

1
https://cai.community/accueil/qui-sommes-nous/partenaires/

https://doi.org/10.1145/3446871.3469776
https://doi.org/10.1145/3446871.3469752
https://doi.org/10.26220/rev.4080
https://cai.community/accueil/qui-sommes-nous/partenaires/

1.4. Structure 9

also served as the basis for the selection of the instructional strategies. The
chapter also presents what literature says on undergraduate teaching as-
sistants, our target audience. Chapter 3 presents the pragmatic research
paradigm, methodologies and tools used in the studies presented in this dis-
sertation. It also presents the iterative design research method that guided
the succession and impact of the di!erent studies presented and the quali-
tative tools used in these studies. Chapter 4 presents in detail the setup of
the introductory programming course in which the interventions took place.

Part II presents the di!erent studies as detailed in Sections 1.2 and 1.3.
Chapter 5 presents the analysis of the course based on learning transfer pro-
cesses. Chapter 6 presents our first published exploratory study. Chapter 7
details the methodology used for the creation of our own subgoals. Chap-
ter 8 presents the second iteration on the characterisation of tutors’ use
of two instructional strategies: explicit tracing and subgoal learning. Chap-
ter 9 presents the last study on the full integration of subgoal learning in
the CS1 course.

Part III concludes the dissertation. Chapter 10 summarises the over-
all results of the three iterations, answers our main research questions and
provides actionable advice to practitioners willing to integrate explicit in-
structional strategies in their own course setup. Chapter 11 discusses future
directions this work could take in the form of another possible target au-
dience (i.e. school teachers) to train with such strategies and the possible
challenges and di!erences we envision. This last chapter also concludes the
dissertation.

Part I

Related Work

11

Computing Education
Principles 2
This chapter starts with a broad presentation of computing education re-
search on introductory programming (2.1). We then present the educa-
tion principles that served as a theoretical justification for the selection of
evidence-based strategies we trained our tutors with. The theoretical foun-
dations of this work are the cognitive processes that lead to learning and
to reusing learned knowledge in new situations. First, we present cognitive
load theory (2.2) which informs us on the limitations of the working memory
and proposes instructional design adaptations to avoid overloading students
when learning. Then, we present learning transfer (2.3) that describes how
learning is acquired and can be reused in similar tasks once available in our
memory. We present the problem-based methodology (2.4) of the studied
course. Next, we present the instructional strategies (2.5) selected based on
the theory to lower cognitive load and foster learning transfer. Finally, we
present background and related work on the use of undergraduate teaching
assistants (2.6) in computer science courses.

2.1 Introductory Programming Education

Many disciplines have a long tradition of researching and understanding the
challenges and possible improvements to teaching and learning their own
subject. While introducing the whole field of computing education research
seems overly ambitious and out of the scope of this work, we present in this
section a brief overview of the field of introductory programming education
research.

The field explored di!erent areas of programming education such as: as-
sessment [Kal17], introductory programming in schools [HMF16; Sza+19],
teacher education [Men15], novices’ di"culties [QL17] or automated feed-
back [KJH18]. More details can be found in literature reviews of the
field [Pea+07; Lux+18] that identify and comment on research on cur-
ricula, teaching and pedagogy, language choice, assessment and tools for
teaching in introductory programming.

Among interesting findings in programming education literature, we can
name the concept of notional machine introduced by du Boulay [duB86]

13

14 Chapter 2. Computing Education Principles

and defined as a: “pedagogic device to assist the understanding of some
aspect of programs or programming” [Fin+20] by a recent ITiCSE working
group on the topic. When teaching, it is important to match that notional
machine with the actual mental model of the student.

Regarding teaching approaches, since early research in computing and
programming education, the field reported a lot on teaching with active
student-centered practice. Papert contributed the constructionism [Pap80]
learning theory, Guzdial advocated for student-centered teaching [Guz16]
and contributed the contextualised computing pedagogy known as media
computation [Guz03]. A review on di!erent teaching approaches for intro-
ductory programming courses shows that the 60 studied interventions im-
prove on average students’ pass rates by a third from the pre-intervention
setup [VAW14]. The most reported-on interventions in this review are: con-
textualisation, collaboration, preliminary courses, content change and peer
support.

CEd literature also documented a long list of di"culties and miscon-
ceptions [QL17; Chi+21] among which Pea’s infamous “superbug” that
novices think a computer is somehow intelligent and will for example infer
the programmer’s intention [Pea86].

2.2 Cognitive Load Theory

Cognitive load theory (CLT) [Swe88] is a cognitive framework investigating
links between human cognitive architecture and learning. CLT informs a lot
of instructional design based on the fact that our working memory is limited
and can be overloaded by too many information elements when learning.
Part of the cognitive load is intrinsic to the complexity of the learning con-
cept, but more load can be attributed to instructional design or teaching
strategies. Too much context or unnecessary information when teaching in-
creases the cognitive load on the learner and becomes an obstacle to learn-
ing. Many e!ects have been documented based on CLT [MS05; SvP19]
such as: the worked example e!ect (cf. Section 2.5.2) which states that
conventional problems can be replaced by the careful studying of worked-out
examples; the completion problem e!ect (cf. Section 2.5.4) which states
that conventional problems can be replaced with providing a partial solution
the learner has to complete; the guidance-fading e!ect which states that
sca!olding and guidance should be faded out to avoid being redundant and
add more cognitive load. To reduce the load on novices, instructional de-
sign recommendations coming from documented cognitive e!ects have been
highlighted [PRS03; MS05; SvP19] related to minimising cognitive load and
helping to apply generic skills [SAK11]. This can be achieved through the
use of instructional strategies such as worked examples [vPS10], automating

2.3. Learning Transfer 15

rules, faded guidance [SvP19] or using external representations [Kir02].
As detailed in the subsections of Section 2.5, most of the selected in-

structional strategies find some justifications in the scope of CLT. CLT is
often mentioned to justify interventions in computing education1 [DZS22].

2.3 Learning Transfer

Learning transfer is the process of reusing previously learned knowledge in a
new situation. Transfer is a process studied in psychology and educational
science since the work of Thorndike and Woodworth [TW01]. Transfer is a
complex cognitive process [Tar99] deemed hard to achieve and dependent
on a lot of parameters like: the context of the initial task or the domain-
specific knowledge needed to learn it, the similarity between both the initial
and the new tasks, the capacity of the learner to retrieve useful knowl-
edge to work on the new situation or their capacity to even recognise that
this new situation may benefit of previously acquired knowledge, etc. But
it is also an active process that can be trained and acted upon by giving
tools to the learners such as recall strategies or meta-cognitive strategies
like analogical reasoning [Nat00]. Specifically in programming, transfer is
also studied [IM21; Tsh+21] and considered hard to achieve. However,
CS1 courses o!er many opportunities to reuse conceptual and procedural
knowledge from one exercise to another or from a concept like list traver-
sal to parsing files or strings. Researchers argue that intervention on the
design of instruction [GSM11] and the use of specific teaching strategies
like worked-out examples or subgoal learning can help with learning trans-
fer [MGC12]. A more elaborate description of learning transfer models is
provided in Section 5.2.1 when describing the conceptual model used in our
research.

2.4 Problem-Based Learning

Problem-based learning (PBL) is a student-centered instructional method-
ology where students work in small groups on real-life problems introducing
new learning material [Bar96]. The learning process is mostly self-directed:
by solving problems and answering questions, they discover the theory by
reading and studying by themselves. PBL has sometimes been criticised as
an active teaching approach, because the minimal guidance it provides is
in contradiction with CLT principles [KSC06]. Other works nuance this cri-

1
We are aware and deliberately decided not to discuss germane cognitive load men-

tioned in this review [DZS22] and by Nelson and Ko [NK18] since it does not apply to

this work

16 Chapter 2. Computing Education Principles

tique by asserting that PBL does include sca!olding and guidance provided
among others by tutors [Sch+07; HDC07].

2.5 Explicit Instructional Programming Strategies

We introduce here the term of “explicit instructional programming strat-
egy”, inspired by LaToza et al. [LaT+20] who define an explicit program-
ming strategy as: a “human-executable procedure for accomplishing a pro-
gramming task.” Since here we are focusing on instructional strategies
that will be used by tutors and not just explicit strategies to be used by
programmers, we use “explicit instructional programming strategy”.

Cognitive load theory informs instructional design and states that in-
structional strategies that explicitly teach problem solving steps are bene-
ficial to novice learners [KSC06; SvP19]. In computing education in par-
ticular, explicit instructional strategies are often mentioned in recent liter-
ature: e.g., by explicitly teaching recurring patterns [RTW07], goals and
plans [HWC13] or using explicit strategies for tracing [XNK18], debug-
ging [LaT+20], code reuse [Ko+19] or problem solving [Lok+16]. The
use of worked examples and subgoal-labeled material as techniques aiming
to reduce cognitive load when learning has also been explored in numer-
ous recent studies [MCG13; MMG15; MMD19]. Xie et al. state that:
“The implications for teaching are simple: help students practice an explicit
strategy” [XNK18]. Those strategies can be either specific list of steps to
reproduce, or metacognitive hints to help recall some specific technique.

The selected strategies for this thesis are aligned with CLT and promote
learning transfer. In particular the subset of learning transfer processes of
knowledge acquisition and organisation in long term memory and how to
remember that knowledge properly when needed, i.e. being able to recognise
target situations where previously acquired knowledge can be mobilised,
used, adapted, modified and lead to new learning.

It is important to note that explicit instruction is not incompatible with
PBL. It has been shown that explicit instruction can be used first, followed
by PBL [AKS20] and other researchers advocate for using both [Sor12;
deJ+22].

In the following subsections, we present the four strategies we have de-
cided to work with in this thesis. We discuss the motivation and literature
for each of them. We then provide descriptions of the actual implemen-
tations of these strategies as observed in the classroom and, when useful,
provide information on the “baseline” – the way tutors usually teach prior
to our interventions on tutors’ teaching practices.

2.5. Explicit Instructional Programming Strategies 17

Figure 2.1: Two memory table examples with the method name at the
top, variable names in the Name column, and variable values in the Value
column (caption and figure extracted from Xie et al. [XNK18]).

2.5.1 Explicit Tracing

Tracing code is the process of executing a program in one’s head or by
hand, it is the equivalent of reading for code. Research shows that stu-
dents who trace code better can explain and write code better [Lis+04;
LFT09]. However, novice students learning to program often struggle with
tracing [Lis+04]. This struggle can be attributed to cognitive overload.
Indeed, their limited working memory cannot handle tracking the value up-
dates of the di!erent variables of a program simultaneously, which leads to
tracing errors [VS07]. It has been proposed to teach explicitly to students
a proper tracing strategy using an external representation of the memory to
help reduce their cognitive load [VS07; Cun+17; XNK18].

In particular, Xie et al. [XNK18] proposed a strategy they introduced
to students before tracing six problems. The strategy helped students trace
programs while updating a memory table. This strategy proposes step-
by-step instructions to systematically trace the program. Each variable
encountered in the code has a line in the memory table and their values are
updated when executing line by line the instructions of a given program.
Figure 2.1 presents an example of such a memory table.

Research shows that combining the explicit teaching of a tracing strategy
combining both the use of an external memory representation and a system-
atic line-by-line tracing procedure may improve tracing performance [HJ13;
XNK18].

18 Chapter 2. Computing Education Principles

Actual Implementation

While in the first iteration of our design research approach (cf. Chapter 6),
we mainly proposed to tutors to use the tracing strategy as described by Xie
et al., in the second iteration (cf. Chapter 8), to support a more systematic
representation of the external memory, the explicit tracing strategy was
supplemented with a standardised memory representation for more complex
structures from Dragon and Dickson [DD16; DD21]. Figure 2.2 presents
examples of our own training material and usage of the explicit strategy.

It is important to note for this strategy that some e!orts were already
being made in the course material to ask students to make some drawings
and sketches of data structures such as lists, objects or linked lists (cf
Chapter 4). This means that in the “baseline” i.e. the course’s design
before we introduced the explicit tracing strategy, we could already expect
students to use some sort of memory representation. However, it was not
explicitly asked from the tutors that they reuse such memory representation
outside of the prompted exercises. It was also not the case that tutors used
a systematic line-by-line approach. Neither was it the case that they used
a standardised memory representation. The introduction of this strategy
was even beneficial to teachers to harmonise their own sketches in their
slide-decks and throughout the course material.

Figure 2.2: Examples of training material and usage of the explicit tracing
strategy.

(a) Object representation inspired by
Dragon and Dickson [DD16; DD21]
from tutors’ training documents.

(b) A student using explicit tracing dur-
ing a practical lab session.

2.5. Explicit Instructional Programming Strategies 19

2.5.2 Worked Examples

Worked examples is a type of exercise aligned with the worked example
e!ect [SvP19] and encouraged by CLT informed instruction design [vPS10].
Among the e!ects predicted by cognitive load theory, the worked example
e!ect shows that exposing students to detailed solutions to problems im-
proves their learning [WS90]. Worked examples have been successfully use
in problem-based learning setups, research suggesting they provide novices
more quickly with information need to generalise knowledge [Sal+10]. We
introduce worked examples here as they support two of our selected strate-
gies: subgoal learning and Parsons problems. For more information about
the use of worked examples in CEd, see the review by Skudder and Luxton-
Reilly [SL14]. An known issue with worked examples is that students have to
engage actively with them in order to benefit from the learning, but learn-
ers do not spontaneously engage in self-explanation [Ren+98]. However,
self-explanation can be elicited through instruction or Parsons’ problems.

2.5.3 Subgoal Learning

Subgoal learning was introduced by Catrambone [Cat98] with the idea to
foster learning transfer [CH89] by highlighting the generic potential in solu-
tions. It combines the worked-example e!ect and the annotation of steps or
subgoals with labels, in order to highlight the generic structure of a problem
solving procedure. Worked examples have been studied and shown to help
students learn programming [MMG15; EMR17]. Highlighting and explicitly
teaching the steps of recurring patterns in the resolution of similar problems
is not new in programming education [Sol86; JS87; RTW07].

Margulieux in her thesis under the supervision of Catrambone com-
bined the idea of worked examples with labeling the steps behind common
code structures, proposing subgoal learning (SL) with the help of subgoal
labeled worked examples (SLWEs) in computing education [MMD19]. Fig-
ure 2.3 presents examples subgoals in Java from the work of Margulieux et
al. [MMD19].

Figure 2.3: Subgoals for evaluating (left) and writing (right) expression
(assignment) statements (caption and figure adapted from Margulieux et
al.[MMD19]).

20 Chapter 2. Computing Education Principles

Margulieux et al. showed that subgoal learning helps “students learn
more e!ectively without increasing the amount of time students take to
learn” [MCG13]. They argued that subgoal learning benefits come from
the combined e!ect of worked examples and reduced load on the learners
and that it aids the development of mental models which supports learning
transfer. They also showed that students learning subgoals had lower vari-
ance in their exam results and had lower drop rates [MMD20]. Atkinson et
al. also found that “sequentially-presented examples with clearly isolated
subgoals produce better conceptual performance” [AD13]. Subgoal learning
has also already been used to teach algorithmic [Cho+22] using high-quality
subgoals collected from learners.

Actual Implementation

In our first iteration (cf. Chapter 6), we mainly proposed to tutors to use the
SL strategy by presenting and using the subgoals as described by Margulieux
et al. [MMD19]. We later decided to adapt the strategy to the concepts and
programming language of the course (cf. Chapter 7), and to provide a more
complete training document (cf. Chapter 8). Adapting the strategy to the
course allowed us to later further integrate it in the course (cf. Chapter 9).
In the second iteration, we asked tutors to present the full SLWE to students.
This part was dropped in the third iteration since subgoals and labels had
been integrated in the course material. In the third integration we introduce
the distinction between Step-By-Step Subgoal labeled worked examples –
SBS – and Subgoal Labeled Final Solutions – SLFS (cf. section 9.1.1.
An SBS is a worked-out example where the solution is detailed by going
through each subgoal step-by-step, developing and enriching the solution
by applying each of the subgoal. This was typically used when teachers
introduced concepts with SBS integrated in their slides or when a tutor
would systematically go through all the subgoals of a concept to solve an
exercise. An SLFS is an annotated final solution to a problem and is typically
used either as a reminder of the labels for a specific concept or is the result
of a tutor annotating with labels a student’s solution on the blackboard.
For both iterations, we asked tutors to mention the labels when needed to
help struggling students or to remind them of the proper solving strategy
when using a concept. We also asked them to label code segments on
the blackboard to highlight subgoals in student’s code. Figure 2.4 presents
examples of the training material and usage of the subgoal learning strategy.

In the “baseline”, before the introduction of subgoal learning, it was of
course common for tutors to sometimes give theoretical reminders on im-
portant new concepts. However, when doing so, they did not use any kind
of systematic labeled solving steps for explaining the concepts. Particular

2.5. Explicit Instructional Programming Strategies 21

Figure 2.4: Examples (in French) of training material and usage of the
subgoal learning strategy.

(a) A list of subgoals to write a conditional statement on the left and a subgoal
labeled worked example on the right, from tutors’ training document.

(b) A tutor using the subgoal learning
strategy during a lab session.

attention went into the observations of this strategy for the proper vocab-
ulary of the subgoals and labels to distinguish when possible a more classic
explanation than an actual use of this strategy. This is reflected in the way
our observation criteria were developed in the second (cf. Chapter 8) and
third (cf. Chapter 9) iterations.

2.5.4 Parsons Problems

A Parsons problem2 [PH06] is a type of programming puzzle where lines
of a solution code are cut into multiple blocks and provided out of order.
The student has to solve the initial exercise by reordering all the pieces of

2
Multiple notations appear in literature. Even Parsons himself referred to their prob-

lems as “Parson’s problems” [PH06]. For the rest of the dissertation, we will use “Parsons

problems”

22 Chapter 2. Computing Education Principles

Figure 2.5: A simple 2D Parsons problem with two distractors, un-
solved on top and solved on the bottom. The task is available at
https://www.codepuzzle.io/PEQCLB.

the puzzle to recreate a correct solution. Figure 2.5 shows an example of a
Parsons problem. The blocks could represent code fragments but also algo-
rithm steps, math proofs, execution traces, or any related components. The
idea of reordering lines of a code example instead of writing them is heavily
inspired by CLT and diminishes cognitive load. This type of problem could
be situated on a spectrum between worked examples and a writing problem
and is called a completion problem [VKK03]. It is also a way to practice
the recognition of patterns shown in worked examples (cf. Section 2.5.2).
Ericson et al.’s review [Eri+22] establishes that Parsons problems draw on
CLT, worked examples, self-e"cacy and metacognition and self-regulation.
An earlier review on Parsons problems [DLD20] mentions as motivations
to use them: identifying student di"culties, providing immediate feedback,
improving student engagement and reducing cognitive load.

Parsons problems have been used on computers as well as in paper
form [DLS08]. Parsons problems are engaging for students [EMR17]. The
di"culty can be adjusted by adding distractors, unnecessary lines that have
to be left out. Distractors often reflect common mistakes that novices can
make. A distractor can be paired or not with its corresponding correct
line as visual cue, for example using the same label or by visually linking

https://www.codepuzzle.io/PEQCLB

2.5. Explicit Instructional Programming Strategies 23

them. Another variant are two-dimensional [IK11] Parsons problems where
the indentation of the code is also to be taken into account by the student.
Research showed that using two-dimensional Parsons problems with paired
distractors lead to the same amount of learning as fixing or writing the same
code while taking less time [EMR17]. Parsons problems’ di"culty can also
be reduced by being adaptive [EFR18] and grouping puzzle blocks together
if the student is stuck after multiple unsuccessful trials.

Figure 2.6: Examples of Parsons problems used on paper during the first
iteration.

(a) Students solving a paper Parsons
problem.

(b) Details of a paper Parsons problem with distractors.

24 Chapter 2. Computing Education Principles

Actual Implementation

Parsons problems were used in our first iteration (cf. Chapter 6). They
were mainly used on paper, with strips of paper representing labeled lines
of code. Tutors used exercises from the course and provided students with
typical distractors. Figure 2.6 presents examples of paper Parsons problems.

2.5.5 Explicit Problem Solving

Literature says that transfer possibilities between introductory programming
instruction and problem solving skills are low, but still concludes that “de-
signing the treatment to facilitate problem-solving strategies and allowing
students adequate time to build the knowledge base in the programming lan-
guage and to use that knowledge in strategically di!erent ways are crucial
if any type of problem-solving transfer is to occur” [Pal90].

Explicit problem solving strategies are about metacognition in problem
solving. By explicitly giving students a list of steps to follow and prompting
them with associated reflection questions, we aim to help them self-regulate
the process of solving a problem. It is inspired by a study by Loksa et al.
[Lok+16] in which the authors identified the following six steps to follow
when problem-solving:

1. Reinterpret problem statement

2. Search for analogous problems

3. Search for solutions

4. Evaluate a potential solution

5. Implement a solution

6. Evaluate implemented solution

Those steps are similar to those proposed in learning transfer models
(see Section 5) since both draw on problem solving strategies. Explicit
problem solving consists of explaining the six steps to the students, giving
them a handout as a reminder and asking them in which phase they are
when they ask for help in a lab session. This strategy has as main goal
to automate the self-regulation that will help a learner take advantage of
metacognition. It is a way to diminish the di"culty of using higher-level
cognitive strategies in an unfamiliar context as suggested by CLT.

2.6. Undergraduate Teaching Assistants in Computer Science 25

Actual Implementation

Explicit problem solving was used during our first iteration (cf. Chapter 6).
We asked tutors to present and hand out the problem-solving steps men-
tioned above to students and to encourage them to go through these steps
before asking questions when solving exercises. Figure 2.7 presents the
problem-solving handout distributed to students.

2.6 Undergraduate Teaching Assistants in Computer Science

This thesis aims to bring research to practice by bringing evidence-based
instructional strategies to Undergraduate Teaching Assistants (UTAs)’ tu-
toring practice. UTAs are heavily used in computer science courses [Mir+19]
because they allow to break down large students cohorts into more e"cient
classrooms settings, allowing highly demanded courses to scale up [For+17].
It is important to note that di!erent course setups use UTAs in di!erent
ways, some use them in pairs [Pat13], some use them for teaching and
grading [RLR95]. While we provide detailed information on our own course
setup and UTA duties in Chapter 4 it is important that the reader assesses
and understands the di!erences between our specific context and their own.
However, tutors are also used for recitation sessions and labs in CS1 courses
in similar setups at other universities [DDL17; Dan+17]. The practice of
using senior students as UTAs is typical of, but not limited to, the problem-
based learning inspired methodology [Fre+07] used in the studied course.

In their literature review, Mirza et al. mention that using TAs benefits
to UTAs and to students [Mir+19]. Research on benefits for UTAs mention
long-term impacts like improved self-confidence, self-regulation and a sense
of community [MGG12; FHE22]. However, being an UTA does not come
without challenges: Riese et al. [Rie+21] mention student-focused chal-
lenges like teaching students with di!erent profiles, but also what best prac-
tices to use to teach CS content properly and threats like time constraints.
Research shows that UTAs need classroom management skills [LBG00], are
a!ected by their environment [Pat12], and are more e!ective when trained
and motivated [Moo+13; Rod+14].

Some universities o!er dedicated training to provide UTAs with a.o.
pedagogical knowledge on learning theories, assessment and classroom man-
agement [Dan+17; RK22; MS23]. Sometimes these trainings require (U)TAs
to give mini-lessons [ET17]. While the UTAs we studied also follow such
a (non CS-specific) course [SDW17], the aim of this research is to pro-
vide them with pedagogical content knowledge [Shu86] specific to a CS1
course [Hub18] to foster learning transfer for students. Few studies actually
focus on training UTA with pedagogical content knowledge and instruc-

26 Chapter 2. Computing Education Principles

tional practices in CEd and we hope our contributions will be beneficial to
the field.

2.7 Summary

In this chapter, we first gave an overview of the computing education re-
search around introductory programming education. We presented the two
theories of cognitive load and of learning transfer. These two theories are
the lens through which we analyse a course in Chapter 5 and select the in-
structional strategies used in our research. We presented the problem-based
learning methodology used in the course we present in Chapter 4. We pre-
sented the four explicit instructional programming strategies we selected in
Section 2.5. All four have been used in Chapter 6, then narrowed down to
explicit tracing and subgoal labeling only in Chapter 8 and finally we focus
on subgoal labeling integration in Chapter 9. We presented the usage of
UTAs in computing education and will develop their precise involvement in
the studied course in Chapter 4.

2.7. Summary 27

Figure 2.7: The problem-solving steps handout (in French) distributed to
students during the first iteration.

Methods and Tools 3
Having presented the computing education principles that support the work
of this thesis, this chapter presents the research paradigm, tools and meth-
ods used for the di!erent studies of this thesis. First, we provide more
personal insights on the research journey to reflect on the author’s evolu-
tion and personality as a computing education researcher coming from a
computer science background. This analysis may be relevant for other re-
searchers in the computing education research field since many share this
kind of mixed background. We hence develop on the epistemological foun-
dation of our research approach i.e. pragmatism (3.1) which led our re-
search to be based on both quantitative and qualitative research methods
– or mixed-methods. We then introduce the design research method (3.2)
adopted to guide our iterations on the instructional design interventions
of the course. We then present the concepts of adaptation and fidelity of
implementation (3.3) which we will use to analyse more deductively our ob-
servations in Chapters 8 and 9. Finally, we present the qualitative research
methods (3.4) we used in our research to collect data and analyse it more
inductively.

3.1 Pragmatism as a Research Paradigm

Before presenting in more detail the research methods and tools we will use,
this section will try to bring some nuance between two di!erent mainstream
philosophical paradigms and their respective approaches to reality, truth and
research methods. These two paradigms are very briefly introduced based
on Hennink et al. [HHB20] and Alharahsheh and Pius [AP20].

The positivist paradigm considers reality is made of facts and can be ob-
jectively observed and measured without researchers’ subjectivity influenc-
ing data. For positivist researchers, data has to be quantified and analysed
using statistical methods.

The interpretivist paradigm considers reality is subjective and di!erent
depending on the context and the individuals. Interpretivism considers re-
searchers do influence reality and thus have to reflect on this influence and
on their positionality. For interpretivist researchers, data are words col-
lected through interviews or observations, and analysed through qualitative

29

30 Chapter 3. Methods and Tools

methods to develop a contextualised understanding of a phenomenon.
Since this section is more a personal reflection introducing my reality

perception and the methodological choices that it implies, I will switch to the
first person. Whereas these two paradigms are often presented in opposition,
I will instead try to argue in this section for blending them together. First
I will introduce my own journey between those two approaches and in a
second time I will elaborate more on pragmatism as its own paradigm and
its impact on the chosen research methods.

3.1.1 From CS to CEd

As briefly introduced in my positionality statement (cf. Preamble, Page 1),
I was lucky to have been a CS student, a math and natural sciences teacher
and am now a researcher in computing education which is peculiar for a
PhD student in an engineering faculty. Since this multi-faceted identity has
had some impact on the choices made in this research, it is important to
discuss its impact on my research journey. This section reflects upon this
positionality as a CEd researcher.

It is often di"cult to self-reflect without a specific method, so here is
my modest tentative to reflect on the evolution of my own positionality
throughout my PhD journey. Following a suggestion by Inge Hutter1 at a
summer school in computing education research in which I recently partic-
ipated, I tried to approach this reflective exercise by loosely following the
principles of autoethnography as outlined by Adams et al. [AEJ17]. In their
chapter on autoethnography, Adams et al. give as a purpose: “As such, the
third purpose of autoethnography is to show how researchers are implicated
by their observations and conclusions . . . ”.

My background as an MSc in Computer Science in an engineering fac-
ulty made me heavily biased towards a positivist stance on the world and
knowledge in general. Early in my life though, I learned that representations
and views on societal topics were personal by essence, when confronted to
friends’ or colleagues’ political opinions, or to di!erent perspectives on his-
torical events. These representations of reality were influenced by so many
elements such as family, cultural background, socio-economic situation, be-
liefs, etc. While studying to become a teacher and while teaching in lower
secondary education for a year, it became only more obvious to me that
each student held di!erent opinions on the natural sciences and mathemat-
ics topics I was teaching them. Training in-service teachers for three years

1
Inge Hutter is an anthropologist and demographer, and a professor in qual-

itative research methods. Her own qualitative research method is inspired by

her positivist demographer background. For more information, see her webpage:

https://www.eur.nl/en/people/inge-hutter

https://www.eur.nl/en/people/inge-hutter

3.1. Pragmatism as a Research Paradigm 31

then opened my eyes on what words such as “computing”, “informatics”
or “digital” even meant or the reactions they provoked on sheer mention.
Taking my first qualitative research class in preparation for my PhD journey
allowed me to put words on these di!erent perspectives and to formalise
what ontology and epistemology meant.

Since the beginning of my work, my main aim was to better understand
both sides of the learning theories spectrum — with more or less guid-
ance — and blend both sides together in order to achieve the best results.
Working towards the integration of explicit strategies in a course using a
problem-based learning methodology is in itself a proof of the trade-o! I was
looking for. Far from radical views of some of the researchers (cognitivists
and constructivists) that sometimes inspired me. This is what inspired my
mixed-methodology approach. I did a lot of literature-informed decisions,
research-based choices, deductive analysis as well as using open-ended anal-
ysis tools, qualitative methods and inductive research.

Being a lone CEd researcher in a more CS department has sometimes
been challenging. Not a lot of social sciences perspective is available in a
CS department (despite my skills as a former CS master student myself).
It definitely felt sometimes like my work was disregarded by some senior
professors. Thankfully, having co-supervisors as well as members from my
supervising committee in both worlds of CS and (C)Ed helped a lot to raise
the proper questions and issues with my research approach. Specifically, be-
ing able to share with my co-supervisor Felienne’s researchers and network.

Due to the interpretive nature of qualitative work, I thrived for method-
ological rigor in my work. I cannot say the epistemology of my work is
positivist even tough my background is in natural sciences. When interpret-
ing observations, coding recordings and interview transcripts, there is room
for interpretation and bias. Qualitative researchers need to self-reflect on
their own bias and be as transparent as possible on the lens they used for
interpretation. This balance between personal interpretation, bias mitiga-
tion when possible and being honest throughout the analysis is what makes
qualitative research results in CEd interesting in my opinion. It is undeni-
able that intervening in a course design is by essence interfering with the
measured. I also have trained and interviewed UTAs for the course myself.
Recording UTAs must have had an impact on UTAs’ practice too. I have
to acknowledge the “co-constructive nature of data collection with human
beings” [HHB20]. I like to believe that my qualitative methods were influ-
enced by a positivist stance when looking for literature-informed strategies,
when establishing fidelity of implementation criteria that served as deduc-
tive codes in my analysis and more generally when producing quantitative
results, like correlations. I also like to believe that what I called “strong”
strategy use, or the criteria for the strategies I extracted from interviews, or

32 Chapter 3. Methods and Tools

even the choices on which strategies to use, have been guided by both ra-
tional criteria and a good amount of interpretation in my analysis as well as
some subjectivity on my side. I do think there is a sweet spot between these
epistemologies, and that by using a wide range of methods a researcher can
pick the right tool depending on the information he tries to get and thus
shed appropriate light on the phenomenon they study.

A notable moment in my research journey was a video call I had with
Lauren Margulieux (who was kind enough to discuss with me on my use
of subgoals in my research). I was sharing with her that I was a bit un-
comfortable with results of my research being published and especially with
the subgoals created through the task analysis. I asked her something like:
“How can I be sure that I discovered the truth?” and she answered2: “At
least it’s ‘a’ truth.”. This was a key moment that led to me accepting that
truth can be local and di!erent, depending on perspective and context.

In a sense both paradigms strengthen each other. On one side, qualita-
tive research allows to better understand the why and the how of a specific
phenomenon, in my case, the adoption of a specific strategy by the tutors.
On the other side, a quantitative approach allows to draw on existing the-
ories, use deductive elements in the analysis work and to extract statistical
significance from data. Prior readings and review of the literature allow the
researcher to be informed on the existing assumptions and theories in the
context of their research subject. They will use this knowledge to analyse a
situation or a course. By using such a conceptual model from literature on a
real-life teaching setup, some discrepancies necessarily emerge. In my PhD,
the analysis of the CS1 course under the lens of learning transfer models
led me to the idea of introducing explicit strategies to the UTAs. A first
intervention was prepared, informed again by strategies from the literature.
Then interviews were made and this led to some inductive analysis and data
that formed a rough model and gave a better understanding of the factors
at hand, etc.

All of this makes me some kind of a pragmatic, not shy on mixing meth-
ods depending on the research question. My take-away message for other
CEd researchers reflecting on the di!erent learning theories and research
methods is: pick those methods that will allow you to answer your ques-
tion, do not be shy of mixing them, even if it does not fit what others have
usually done before. As Sorva stated in Part II of his excellent dissertation
while discussing di!erent conflicting stances on learning [Sor12]: “Can we
all just get along? . . . Multiple theories give complementary perspectives”.

2
I am quoting from memory here.

3.2. Design Research in Education 33

3.1.2 On Pragmatism

Breaking away from the injunction that each specific paradigm is to be used
with a predefined set of research methods, pragmatism as a paradigm ad-
vocates for appropriate approaches through mixed-methods research. Prag-
matism tries to put more emphasis on the how to aspects of research on top
of the why to [Mor14]. In his article on pragmatism [Mor14], Morgan ar-
gues for an intermediate point of view considering both post-positivism and
interpretivism’s claims as equally important. Morgan is inspired by Dewey’
standpoint on philosophy and his model of experience and inquiry which
states that human’s actions are influenced by interpreting their beliefs and
that in turn beliefs are constructed by interpreting their actions. For Dewey,
all our beliefs and actions are social in nature. Morgan states that a re-
searcher has to not only choose their research topic but also their research
method and consider what di!erence it would make to explore that research
topic one way or the other.

According to Morgan, this paradigm replaces arguments on the nature
of truth and reality by recognising the importance and value of di!erent
approaches to research and their respective research communities. Pragma-
tism puts the emphasis on experience questioning both the kind of knowl-
edge produced but also the way knowledge is produced. This is done in an
active process of inquiry that leads to continual interaction between action
and beliefs.

In the rest of this dissertation, this approach led the choices of my re-
search methods. I pondered for each research topic what kind of knowledge
was needed to better understand it and contribute to the field, and which
method would be most appropriate to research it, mixing when appropriate
methods traditionally attributed to both post-positivism and interpretivism.

3.2 Design Research in Education

The goal of design research is to produce actionable knowledge to achieve
an educational goal through the design of instruction [Bak18]. It is used
to guide, test and refine educational practices, to fill a research gap in the
practical design of instruction in a real-life classroom setting. This process
often goes through multiple iterations and is guided by design principles.
Typically, the output of a design research will be a list of design principles
on characteristics and methodological aspects to include in the instruction
supported by both theoretical and empirical arguments [Bak18].

Design research has already been used to conduct interventions in com-
puting education research, for example for the design of teacher ebooks
integrating worked examples [Eri+16], for introducing programming in pri-

34 Chapter 3. Methods and Tools

mary schools [GSH19] or for integrating computing activities in pre-service
teacher programs [Mar+22]. To use this approach, we were also inspired
by Margulieux et al.: “A key idea in this paper is that instructional design
matters. The two groups did not di!er in the content of the instruction
but in the design of that material (e.g., whether subgoals were made ex-
plicit).” [MGC12]. Another key element for choosing this approach was
research showing successful interventions in CS1 courses already existed,
showing that the integration of evidence-based instructional strategies in a
CS1 course had a positive e!ect on students retention [PS13].

3.3 Adaptation and Fidelity of Implementation

When trying to change instructional practice through professional develop-
ment, a teacher will ideally use the strategy and integrate it in their own
practice. Research looks at their appropriation through two constructs:
the adaptation that teachers will inevitably make and the fidelity of imple-
mentation of that strategy defined as the degree to which procedures are
implemented as planned [ODo08]. “Adaptation and fidelity of implementa-
tion are di!erent constructs and should be separately measured and related
to outcomes” [ODo08]. Fidelity of implementation is measured based on
fidelity criteria. Mobray et al. [Mow+03] propose to develop fidelity cri-
teria by identifying “critical components . . . based on an expert consensus
process or the existence of a proven model which has been explicitly de-
scribed” [Mow+03]. They suggest to use a model with proven e"cacy,
e!ectiveness or acceptance, and expert’s opinions (surveys of experts or
literature reviews).

Research on teachers’ adaptations and implementation of instructional
strategies distinguishes e"cacy studies from e!ectiveness studies [ODo08].
E"cacy studies are lab studies focusing on the development stage and aim-
ing to show that an innovation performed by experts in perfect conditions
is indeed linked with better outcomes. E!ectiveness studies look at natural
classroom setups where adaptation is inevitable and where we try to un-
derstand when and how a practitioner adapts the innovation. We will use
the fidelity of implementation in e!ectiveness studies since we will consider
the e"cacy of the strategies as demonstrated. We will observe how close
were the tutors’ practice to the prescribed strategies and what adaptations
they made to the strategies. While some studies measure fidelity through
participant responsiveness, we will measure directly the tutor’s quality of
delivery.

It is recommended to compare adaptations and fidelity to the desired
outcomes, to be able to discriminate whether a failure to achieve these
outcomes is due to an ine!ective instructional strategy or too much diver-

3.4. Qualitative Research Tools 35

gence from a prescribed strategy. However, our main goal is to describe
and understand how and when tutors use and adapt the strategies. There
is a dire need in literature to more accurately document instructional strate-
gies adaptation and fidelity of implementation, as confirmed by Borego et
al. [Bor+13] who state that “it is important to have complete and accu-
rate descriptions and measures of how and when an instructional strategy
is being implemented”. This is an important goal of this dissertation.

3.4 Qualitative Research Tools

Doing qualitative research is by essence a “creative, reflexive and subjective”
process [BC19]. It is a way for us researchers to uncover a truth found in
the data. It has already been stated that the field of computing education
research can benefit from more qualitative research [Haz+06]. The kind of
questions qualitative research answers are about understanding phenomena.
This is not especially about big cohorts of studied individuals but more about
understanding the “Why?” of a certain practice. When and why did we
observe this behavior?

Tools coming from qualitative research have been used throughout the
research done in the scope of this thesis, notably, for data collection: sur-
veys, interviews and observations. The resulting data has been systemat-
ically analysed qualitatively using thematic analysis, coding and statistics
when pertinent.

3.4.1 Data Collection

Interviews In the two first iteration studies presented in Chapter 6 and 8,
we used semi-structured interviews. This means that an interview guide was
prepared with main themes to discuss, a list of questions on these themes
in order not to forget any important point and some follow-up questions to
dig in deeper when the discussion asked for it. This method is inspired by
the methodology described by Kaufmann [Kau16]. The goal of interviews
was really to gain in-depth information on phenomena and identify personal
experiences and perspective, in our case, on their usage of the strategies.
During the interview, consent for recording and data usage is collected from
the interviewee, a recording of the interview is made, the broad context
of the research is provided even though the main research questions are
never directly asked “as is”. Interviews are then transcribed and coded (cf.
Section 3.4.2).

Observations Recorded observations of tutors’ practice have been made
in the real-life setup of the tutors’ classrooms. Observation allows for the

36 Chapter 3. Methods and Tools

gathering of firsthand information on a phenomenon. It allows to observe
what people actually do in contrast to what they say they do as with pre-
vious data collection methods. When doing observations, we choose the
role of nonparticipant observer [Cre12b] and our goal as researchers and
observers is to be as transparent to the classroom as possible. In order to
allow this, we each time let the students know in advance that observations
of their UTAs might happen. We made it clear to the students and the
tutors themselves the observations were in no way a grading or a judgment
of their practice but were only done for research purposes. We also foresaw
“practice” observations were we would come into the classroom to let the
tutors adapt to our presence but without taking those recordings into ac-
count for our research. Observations of the tutored sessions for the second
(cf. Chapter 8) and third (cf. Chapter 9) iterations have been recorded.
During the observations presented in Chapter 8, we combined the filming
of the tutor with observer fieldnotes taken during the tutored session not
only for redundancy (i.e., in order to have backup data in case of data loss)
but also for early impressions, context, feelings and possible early coding
when applicable. The process was more inductive in the second iteration.
The recordings were then watched again in order to write down notes on
the contexts, timestamps, quotes and to code the segments. For the third
iteration, since we wanted to scale up observations due to our intervention
being a full strategy integration into the course, we hired external observes
to whom we provided deductive codes to analyse the recordings with. More
details are given in Section 9.1.4.

Open Questions in Surveys While surveys are mostly used in quantita-
tive research [Cre12c], we used them also for feedback collection through
open questions. Some quantitative data was collected through likert-scaled
items on tutor’s familiarity and frequency of the subgoal learning strategy
use in Chapter 9 and on students’ perception. Tutors participated in a
survey twice at di!erent moments so that we could obtain a longitudinal
view of the evolution of their usage while we only conducted one survey on
students.

For more understanding on tutors’ practice and in order to collect their
feedback and suggestions, open questions were used. Tutors’ answers to
open questions were analysed in the same way as interview transcripts.

3.4.2 Coding

Coding data is the process of tagging segments of the data (quotes, part
of a recording, etc.) with specific labels in order to organise and group
them into categories and larger themes [Cre12a]. The process is iterative in

3.4. Qualitative Research Tools 37

the sense that the researcher will typically apply coding to multiple docu-
ments (multiple interview transcripts, recordings, etc.). For each document,
codes are listed and compiled in a code-book. If new codes emerge from
subsequent document, a new pass has to be made on previously coded
documents. Codes can be merged or split when needed, codes will also
be grouped into categories and themes. Typically, where possible, multiple
di!erent knowledgeable coders apply this same technique on part of the
data to increase the reliability of the coding. This process is repeated until
saturation is reached which means no new codes appear when coding more
documents or when all data has been consumed but then with the limitation
that some more data could have yielded more codes. The code-book is then
completed and the description of what had been observed in the data can
be rendered in the results. Typically, this description will be illustrated with
good representative example segments to give a sense to the reader on the
thought process of the research team.

Figure 3.1: A schematic representation of a systematic thematic analysis
(extracted from Naeem et al. [Nae+23]).

38 Chapter 3. Methods and Tools

In practice, when we coded material (answers to open questions, inter-
view transcripts and recording segments) during our research, what we mean
is that we used a working document for highlighting and annotating text
segments and then (or directly) a code-book spreadsheet to associate data
segments with a specific label or tag – a code – depending on the meaning,
the category or the theme of said segments. We used both inductive and
deductive coding depending on the research question and the availability of
pre-existing codes (like a conceptual model, known themes for the studied
phenomenon or fidelity criteria). Inductive coding is more often used when
doing exploratory work, when the researcher wants to be guided by the data
itself. For this, we mainly used thematic analysis [BC19; Nae+23] to iden-
tify themes from the coded segments. The process of thematic analysis can
be represented as in Figure 3.1.

A good example of the results of such a thematic analyses are the
adaptations we will report on in Section 8.2.3. We also used deductive
coding with codes coming from literature, pre-established criteria, chosen
themes for di!erent parts of interviews or guided by our own research. We
used deductive analysis mainly when looking for fidelity criteria in recording
segments for fidelity of implementation coding like in Section 8.2.2 and 9.2.1
We did this with multiple iterative passes through the data from a more open
first read to “get a sense of the whole” to the emergence of codes and then
grouping of those codes in categories when needed following the method
proposed by Creswell [Cre12a].

3.5 Summary

In this chapter, we presented our pragmatic approach to research. We
introduced the overall design research method that we used to iterate on
our design interventions that will be presented in Part II. We introduced the
concept of fidelity of implementation used in Chapters 8 and 9, as well as
the di!erent research methods that have been used in our di!erent research.
Table 1.1 provides a summary of which methods are used in which chapter.

Use Case: a CS1
Course 4
This chapter presents the organisational details and setup of the introduc-
tory programming course that served as use case for the di!erent interven-
tions and studies carried out in this dissertation.

4.1 Introduction

The di!erent studies carried out in this dissertation were conducted on the
use case of an introductory programming course taught at UCLouvain, a
full Belgian research-level university, in the French-speaking region of the
country. At the turn of the millennium, EPLouvain (Louvain school of
engineering), then still known as FSA (Faculty of Applied Sciences), decided
to review the pedagogical approach to the first two years of its engineering
curriculum. Under the reform known as ‘candis 2000’, the faculty moved
towards a newer, more active learning method centered on problem-based
and project-based learning [Fre+07].

Apart from breaking down barriers between disciplines through inte-
grated, cross-curricular projects, the reform impacted the way each disci-
pline is taught. In particular, it is on these principles that the first-year
bachelor introductory programming course has also been adapted to adopt
a problem-based learning approach. Elie Milgrom, co-author of some of the
articles referenced in this chapter [Rau04; Fre+07], was at the helm at the
time of the reform for the computer science part of the training of future
engineers.

The CS1 course follows a methodology inspired by Problem-Based Learn-
ing (cf. Section 2.4). This methodology was introduced in the bache-
lor prgoram after the reform. The methodological principles guiding this
reform can be summarised as follow (free translation from Raucent et
al. [Rau+04]):

“The choices made in developing the program are based on the articu-
lation of three key principles:”

1. “contextualisation of learning: students learn from problem situations
arising from professional contexts;

39

40 Chapter 4. Use Case: a CS1 Course

2. cooperative learning: students approach most of the activities they
encounter in stable groups;

3. tutoring: the active approach to learning and the use of small groups
lead to a modification of the roles of the various players. Student
supervision has been revised accordingly.”

Figure 4.1: Interaction of the introductory programming course with
the cross-curricular engineering project course after the reform (extract
from [Rau+04]).

The reform applied to the organisation of the entire bachelor curriculum
in engineering. Figure 4.1 shows how it a!ected the computer science
course [Rau04]. In particular, as part of the reform, the first bachelor
engineering project required java programming skills. These skills had to be
covered in the introductory programming course and used again later in the
context of the project.

4.2 Course Setup

The introductory programming (CS1) course lasts thirteen weeks. As il-
lustrated in Figure 4.2, the CS1 course is organised around small weekly
projects called missions. The course comprises 11 missions spread over 13
weeks (there are no mission on the first and last weeks). Each mission intro-
duces some new programming concepts and covers a theme. For example,
the “strings and lists” theme is about DNA sequences and students have
to develop helper methods for calculating a Hamming distance between se-
quences. The course currently uses Python, covers imperative programming
and introduces programming with objects. All course material is provided
online to the students.

4.2. Course Setup 41

Figure 4.2: The di!erent moments that structure a mission of the CS1
course.

Tutor

briefing i
Lecture

week i

Preparation

phase

Tutored

start-up

session

Realisation

phase

Realisation

evaluation

Tutored

sum-up

session

Lecture

week

i + 1

Mission (→ 11)

Unsupervised

work

Teacher

lecture

Tutor

preparation

Tutored

session

4.2.1 Stakeholders

Teachers. Three professors are in charge of the di!erent modules of the
course. They are in charge of the course content in the theory syllabus
and give lectures in auditoriums to the students. They are also present
during the tutor briefings.

Undergraduate Teaching Assistants. More than twenty five senior stu-
dents are recruited as undergraduate teaching assistants (UTAs) also
called tutors throughout this dissertation. They are in charge of the
lab sessions twice a week in classrooms of about 24 students. These
tutored sessions are detailed in Section 4.2.2 below and do not in-
clude programming exercises on computer. UTAs tutoring the course
for the first time are juniors, while from their second time on they are
seniors. Junior UTAs also need to follow a pedagogical training (3
ECTS) organised by the university [SDW17].

Teaching Assistants. Half-a-dozen teaching assistants (doctoral students)
complete the teaching sta!. They help with the organisation of the
course, handle technical issues and edit online exercises when needed.
They answer student questions online, manage UTAs, organise an
open optional one-hour session once a week and help with the organ-
isation of the test and exams.

Students. The course is mandatory for first year undergraduate (bachelor)
computer science and engineering students with no assumed prior
programming experience. This course currently targets over 600 stu-
dents. They attend the lectures in auditoriums and the labs session
by classrooms of around 24.

42 Chapter 4. Use Case: a CS1 Course

4.2.2 Course Organisation

Each mission i is organised around di!erent moments as presented in Fig-
ure 4.2. This pattern is repeated 11 times for each mission and is detailed
below:

Tutor Briefing. A meeting with all teaching sta! takes place at the be-
ginning of a new mission. The unfolding of the previous mission
is discussed. Pedagogical approaches, common di"culties and class-
room management issues are shared by tutors and solutions discussed.
Then, concepts foreseen for the starting mission are reminded to the
UTAs. The subtleties and pitfalls as well as typical students miscon-
ceptions on these concepts are presented. Exercises for both upcoming
tutored sessions are reviewed. Typically this meeting takes place on
a Friday at noon, before the start of the next week.

Lecture i. A one-hour lecture is given in an auditorium by the professor to
the students. It is the opportunity to structure the concepts of the
previous week during the first half of the lecture and to introduce new
ones. For week i, this last half hour is considered the introductory
lecture.

Preparation Phase. A preparation phase during the week-end is meant for
individual student work. Students have to read the theory syllabus and
answer multiple-choice and open questions provided in the exercise
syllabus before the first tutored session. Part of the open questions
are implemented in an auto-grader. Each week a new fictional context
is introduced and the work of that week will be situated in this context.

Start-up Session. During tutored sessions, students work in their usual
group of six students and each tutor is assigned to a room of four
groups. During this first one-hour tutored session, the prepared an-
swers to the exercises are shared and discussed. The tutor helps
organising the discussions, sending students to the blackboard. UTAs
are not there to just give answers but to clarify theory concepts when
needed and to ensure a correct solution is found by the groups.

Realisation Phase. Each group of students is split in pairs who then have
two days to submit their solution to a small weekly project. The
project statement is in the exercise syllabus and will typically be situ-
ated in the weekly context. Some code is provided and students need
to develop a program using the concepts seen up to this moment in
the course.

4.2. Course Setup 43

Realisation Evaluation. Tutors have to evaluate their classroom’s submis-
sions. A correction guide is provided with indications on the evalua-
tion rubrics to pay attention to. Tutors have to prepare some global
feedback and print it out for the sum-up session.

Sum-up Session. The sum-up session is the second and last tutored ses-
sion of the week. During this one-hour session, the tutor provides
feedback on the submissions of the weekly realisation project, dis-
cussing common mistakes and pitfalls the students have ran into. A
summary exercise covering the concepts of the week is then solved by
the students.

Lecture i + 1. The mission ends during the first half of the lecture at the
end of the week. The cycle starts all over again with a new mission
focusing on new concepts and a new context. For week i, the first
half hour of this lecture is considered the restructuring lecture.

4.2.3 Resources

This section presents the main resources for the course.

Pedagogical Approach The pedagogical approach has already been de-
tailed in Section 4.1.

Tutoring This resource is an integral part of the course methodology. The
tutor, between friend and teacher, can intervene where the teacher cannot
in front of an audience, in a personalised way by supervising a more limited
number of students. Often a former student of the course, and in any case a
more advanced student, he or she can support the students they supervise,
both in terms of subject matter and course methodology. In our case, tutors
are responsible for a single classroom two hours a week. While they will
need to evaluate and give feedback on the realisation phase, they are not
involved in grading.

Documentary resources Lecture slides, theory syllabus1, exercises syl-
labus2, auto-grader3, the resources of the course have been designed to
follow the structure of a week, providing information as and when it is
needed. A digital workspace is provided on the Moodle platform of the
university. In particular, it enables the sta! to discuss with students and

1
https://syllabus-interactif.info.ucl.ac.be/index/info1-theory

2
https://syllabus-interactif.info.ucl.ac.be/syllabus/info1-exercises

3
https://inginious.info.ucl.ac.be/courselist

https://syllabus-interactif.info.ucl.ac.be/index/info1-theory
https://syllabus-interactif.info.ucl.ac.be/syllabus/info1-exercises
https://inginious.info.ucl.ac.be/courselist

44 Chapter 4. Use Case: a CS1 Course

give them access to the various course resources. Its forum is especially use-
ful for exchanges and questions/answers between students and with course
assistants. The online exerciser, Inginious4, is an online exercise platform
with auto-grading [Der+15] that students can use during their preparation
phase. After the first tutored session, additional exercises with feedback are
o!ered via the platform, as well as after the sum-up session.

4
https://inginious.org

https://inginious.org

Part II

Design Research Iterations

45

Course Analysis 5

!
This chapter is largely based on my final assignment of the course
LFOPA2115B: Pedagogical practices and training setups - (part
of UCLouvain’s Master of Education) followed in anticipation of
this thesis (and which received the highest grade):
O. Goletti. En quoi le dispositif mis en œuvre dans le cours
d’introduction à l’informatique en BAC1 ingénieur civil basé sur
l’apprentissage par problèmes soutient les processus du transfert
des apprentissages : l’encodage et l’accessibilité aux connais-
sances ? Tech. rep. http : / / hdl . handle . net / 2078 . 1 /
245579. UCLouvain, 2019.
The title of that work can be translated as “How does the
problem-based learning approach implemented in the engineering
CS1 course support the processes of learning transfer: knowledge
encoding and knowledge accessibility?”.

This chapter presents our analysis of the introductory programming
course. A presentation of the CS1 course was already provided in Chapter 4
and its reading necessary to understand this chapter. Our analysis is based
on two processes of learning transfer. We first present in more detail the
learning transfer processes of knowledge encoding and knowledge accessibil-
ity (5.2.1). We then propose some criteria (5.2.2) inspired by literature on
learning transfer to e!ectively analyse (5.3) the material of a specific week
of the course. From this analysis, we derive three proposals (5.4) to guide
instructional design intervention in the course in order to foster learning
transfer.

5.1 Introduction

Having been a student of this course during my first year of a bachelor’s
degree in civil engineering, then a tutor during my years of a master’s degree
in computer science and now a teaching assistant in the department, I know
the course particularly well. It should be noted that since the academic
year 2018-2019, a change in content has been implemented as the course

47

http://hdl.handle.net/2078.1/245579
http://hdl.handle.net/2078.1/245579

48 Chapter 5. Course Analysis

uses from now on the Python programming language rather than the Java
language used previously. The analysis presented here is based on previous
editions of the course when it was still based on the Java language. However,
the methodology and concepts of the course are essentially the same, which
allows the results of the analysis to be extended to the current course setup.

This is the research question we answer in this chapter:

RQ5.1 How does the CS1 course align with the learning transfer processes
of knowledge encoding and knowledge accessibility?

5.2 Study Design and Methodology

To analyse this course, we performed a document analysis based on the
di!erent resources for the course as presented in Section 4.2.3. We use
a conceptual model of learning transfer by Tardif [Tar99]. This model is
based on Bracke’s model [Bra04]. Tardif’s model is close to the steps of
problem-solving strategies. Typical problem-solving steps include: problem
identification, the formulation of a strategy based on similar problems, and
evaluating this solution. This is well-adapted to the way CS is generally
taught and these steps are often reused and adapted in the context of CS
problem-solving [LK16].

5.2.1 Conceptual Model

For Tardif [Tar99], the transfer mechanism is characterised by a new situ-
ation (target task) which has the characteristics of a problem that has to
be solved. In order to solve this target task, knowledge acquired previously
(in a source task) will have to be reused. However, a di"culty must be
present in the target task. This will therefore require a certain adaptation
of knowledge and will lead to learning.

Tardif [Tar99] proposes a model with seven processes. The interactions
between the di!erent processes of this model are shown in Figure 5.1.

1. Encoding of learning from a source task: from the beginning of the
construction of new knowledge, the individual must project himself in
possible contexts of reuse.

2. Representation of the target task: construction of a provisional and
evolving mental model of the problem to be solved.

3. Accessibility to knowledge and skills in long-term memory (LTM):
provide access to / awareness of knowledge and skills (= cognitive
tools) directly related to the mental model and create the conditions
for them to be reusable in the particular context of the problem.

5.2. Study Design and Methodology 49

Figure 5.1: Tardif’s model of learning transfer (adapted from [Tar99]).

Encoding of
learning from
a source task

Representation
of the tar-
get task

Accessibility to
knowledge and
skills in long-
term memory

Matching the
elements of the
target task and
the source task

Adaptation of
non-matching

elements

Evaluation of
the validity of
the mapping

Generation of
new learning

Analogical
reasoning

A

B

C
D

E
F

G

H

Ideally, the person makes an exhaustive inventory of the cognitive
tools that they have mastered in order to avoid placing themselves in
an initial learning situation.

4. Matching the elements of the target task and the source task (begin-
ning of reasoning by analogy): identify similar elements and determine
the power of these similarities in solving the problem leading to a con-
clusion.

5. Adaptation of non-matching elements: assess the importance of sim-
ilarities and di!erences. If the di!erences are significant, adaptation
is necessary in order to reduce them or even eliminate them.

6. Evaluation of the validity of the mapping (termination and validation
of reasoning by analogy): The conclusion of this step is either to solve
the problem, or to return to a previous process because something has
been forgotten (links E, F, G in Figure 5.1), or to stop for lack of
transferable knowledge.

50 Chapter 5. Course Analysis

7. Generation of new learning : supporting decontextualisation, identifi-
cation of new structures or adaptations of existing structures, links
with learning already encoded in relation to the source task.

Bracke explains in detail the cognitive processes involved during the
knowledge transfer [Bra04] and how the di!erent knowledge elements are
stored in long term memory and retrieved through processes such as the third
sub-process in Tardif’s model. All those processes are there to compensate
the very limited Short Term Memory (STM) of the learner:

1. Mental model representation of the problem in Short Term Memory
(STM): this phase corresponds to the phase 2 of Tardif’s model.

2. Access to previous useful knowledge through External Memory and
Long Term Memory. This matches the third phase of Tardif’s model
by emphasising information and knowledge structures.

3. Processing using analogous reasoning in the STM. This step is akin
to Tardif’s phases 4 to 6 with some steps out of order, but this is not
discussed here.

4. The conclusion corresponds to the last phase in Tardif’s model.

The first di!erence between both models is that there is no knowledge
encoding process in Bracke’s model. In fact, she explicitly states that it
is “di"cult to specify which of the multiple previous encodings should be
retrospectively retained as phase 0 of the current process” [Bra04]. Bracke
also sets out to define the di!erent knowledge structures specific to the
di!erent memories involved in transfer. Without going into too much detail,
she nevertheless emphasises the following concepts:

A!ordances are structures associated with external memory (EM) and the
capacity for action o!ered by the learner’s environment.

Categories are structures associated with long-term memory (LTM), which
enable knowledge to be stored, prioritised and associated with more
or less distant examples of a prototype. These LTM categories are
also linked together by a series of relations.

Mental models are structures associated with short-term memory (STM),
which are temporary and “rough” constructions due to the very nature
of STM and its limitations.

What these structures have in common is that they are functional,
i.e. associated with the functions inherent to the di!erent information and

5.2. Study Design and Methodology 51

knowledge elements to which they relate. This is important in her model, as
access to relevant knowledge is a specific process, distinct from processing
based on similarities between these di!erent structures. This justifies the
attention paid in this work to the support o!ered by the instruction design
to the representation and relationships proposed between these structures.

5.2.2 Analysis Criteria

To analyse our CS1 course, we selected only the learning transfer processes
that were most appropriate to its methodology and organisation, and most
likely to yield interesting results. Our analysis of the course material fo-
cused on the first and third steps of this model: the encoding of previous
knowledge and the access to this knowledge in a situation of transfer.

Based on those steps, our analysis was done on specific extracted cri-
teria to see whether the course was in accordance with them or not. The

Table 5.1: Analysis criteria of learning transfer sub-processes (inspired from
Brouillette et Presseau [BP04]).

Sub-process Category Criteria

Encoding of
learning from
the source
task

Viability of
learning

- The source task is presented in a
meaningful context.
- Many contextualised examples are
o!ered.
- Identification of potential transfer
contexts.
- Identification of necessary and
su"cient conditions for reuse.

Organisation
of learning

- Presence of preparatory stages.
- Conditional indexing according to
both a!ordances and categories.
- Proposal for an organisational /
summary diagram.
- Proposal of relationships with other
knowledge.
- Validation by peers, tutor, teacher.

Accessibility
to knowledge
and skills in
long-term
memory
(LTM)

-

- Prior knowledge exploration
strategies.
- Presence of recall strategies.
- Taking into account the External
Memory (EM).

52 Chapter 5. Course Analysis

criteria we used are inspired in particular by a grid proposed by Brouillette
and Presseau [BP04]. Our criteria are presented in Table 5.1. The first two
categories in this table correspond to the first process of encoding of learn-
ing. They are taken from Tardif, who talks about the viability of learning,
which is making sure that the learner perceives the usefulness of his learning
process and the phenomena that they allow to understand. The associated
criteria are:

↭ The source task is presented in a meaningful context, with reference to
the importance of the learning context as emphasised above. Beyond
a context that makes sense, we also look from the perspective of
situated learning whether this context refers to the future profession
(software engineer in this case) of the learners, so that the learning
makes sense for the learner.

↭ Many contextualised examples are o!ered. Here the idea is to ob-
serve what are the areas of application of learning and to multiply the
possibilities of links with future areas of transfer.

↭ Identification of potential transfer contexts. Beyond the examples
worked on, does the course explicitly support this identification?

↭ Identification of necessary and su"cient conditions for reuse.

The second category deals with the organisation of learning. The as-
sociated criteria are linked to the identification of links and strategies for
recalling this new learning:

↭ Presence of preparatory stages, in order to bring out concepts specific
to the learning of the source task in order to be able to “classify and
synthesise them”.

↭ Conditional indexing according to both a!ordances and categories:
explicit implementation of a mechanism for recalling knowledge linked
to the context.

↭ Proposal for an organisational / summary diagram. As pointed out
by Bracke, knowledge is organised in LTM in the form of hierarchical
categories. It makes sense to support the encoding process and to
ease the recall of knowledge. Does the course explicitly propose this
kind of organisation of new learning?

↭ Proposal of relationships with other knowledge, in connection with the
representation of knowledge structures in LTM. The previous criterion
was more about hierarchical organisation. This one is more about the
links of similarity with other knowledge.

5.3. Analysis of the CS1 Course Material 53

↭ Validation by peers, tutor, teacher. Explicit restructuring with ex-
changes between di!erent actors and learners to provide feedback on
the organisation of learning. This is also linked to the cognitive com-
panionship recommended by contextualists.

The second process analysed is Bracke’s second and Tardif’s third,
namely access to LTM knowledge. The criteria used are:

↭ Prior knowledge exploration strategies. Are these strategies explicitly
proposed to seek out prior knowledge in a systematic way ?

↭ Presence of recall strategies. We are not yet in the comparison but
rather on the exploitation of task similarities to recall structures in
STM.

↭ Taking into account the external memory : Presence of external sup-
ports and indices: learners are encouraged to use relevant documents
such as summaries or previous diagrams of organisation of knowledge.
In particular to overcome the limitations of STM in the recall strate-
gies of the previous criterion.

5.3 Analysis of the CS1 Course Material

This section summarises the salient features of the CS1 course setup match-
ing our analysis criteria from the grid presented in Table 5.1. A filled-in grid
resulted of this analysis and the results are provided here inline and in a bet-
ter organised way. The grid was filled according to the di!erent moments
of a course’s mission, focusing mainly on the fourth week of the course.
However, some elements were taken from other parts of the course when
week 4 alone was not su"cient to illustrate certain criteria. The main con-
cepts seen in week 4 are strings manipulations and functions, the context is
around DNA sequences.

5.3.1 Viability of Learning

This category specifically covers the criteria which ensure that the learning
involved in the source task is meaningful for the learner, in particular by
linking the learning to a context which is meaningful for them, but also by
presenting opportunities for re-use.

5.3.1.1 The Source Task is Presented in a Meaningful Context

It is mainly in the realisation phase (see Figure 4.2) on the processing of
DNA strings, the sum-up session and the restructuring lecture that we find

54 Chapter 5. Course Analysis

this notion of context. In the restructuring lecture, we talk in particular
about the encoding of characters as used in today’s information systems.
Moreover, the exercises regularly ask for implementation and o!er explana-
tion on the working of functions that the student will be asked to use again
later. For example, comparing two strings of characters.

5.3.1.2 Many Contextualised Examples are O!ered

There are di!erent examples of exercises, in particular this week the exercises
that work on string traversal. These exercises are proposed in di!erent
contexts. Gradually, from the preparation phase onward, they are included
in the realisation phase and in the sum-up session at increasing levels of
di"culty, and this technique is used again in the restructuring lecture. It
should be noted, however, that in “drill” exercises, a meaningful context is
not systematically provided.

5.3.1.3 Identification of Potential Transfer Contexts

Although most of what is learned about string traversal is reusable, this is
not really presented explicitly in the course. This issue will be discussed
more generally in Section 5.4.

5.3.1.4 Identification of Necessary and Su"cient Conditions for
Reuse

A whole more schematic part linked to the graphical representation of ob-
jects will clearly be useful later on and is introduced here and reworked
in the following week with arrays. However, once again, the conditions of
reuse for the concept of string traversals are not explicitly highlighted in the
course.

5.3.2 Organisation of Learning

5.3.2.1 Presence of Preparatory Stages

Clearly, the course methodology makes it possible to really work on this
criterion. Giving only certain notions about the new concept at first, then
providing resources to read during the preparation phase and then getting
the learners to work individually on the new learning really fits with what
the theory was proposing in order to bring out the characteristics of the new
learning and thus be better able to relate it to existing knowledge. Some of
these steps are specific to computer science, such as that the learner is also
asked to read the API, the o"cial documentation for the Java language.

5.3. Analysis of the CS1 Course Material 55

Figure 5.2: Graphical representation of variables containing references to
String objects.

5.3.2.2 Conditional Indexing According to Both A!ordances and
Categories

Again for this criterion, even if it is not explicitly mentioned to the learner,
there are two striking examples in the course of highlighting similarities
which will later be useful in learning. Firstly, the representation of objects
in the form of a drawn reference1 as shown on Figure 5.2. This graphical
concept will help learners to imagine that variables can contain references
to objects, which is an important mental model and used in many future
learning activities in the course (in particular object comparisons, tables or
the manipulation of linked data structures, and even in later courses in their
curriculum). This notation is also used in the reference book.

The second element is the steps involved in traversing a character string.
Although there is never a description of a step-by-step procedure for this
type of exercise, this concept is covered several times during the week and
will be reused the week that follows in the array traversals. The graph-
ical representation, particularly in the preparation of such exercises when
deciphering a statement of this type, can be used as a trigger to remind
students of the framework for solving such exercises.

5.3.2.3 Proposal for an Organisational / Summary Diagram

While this criterion could help students better organise their knowledge, the
analysis of the course did not identify any elements for this criterion.

5.3.2.4 Proposal of Relationships with Other Knowledge

Systematically, the construction of new learning is based on concepts already
covered, and the course does not fail to emphasise this. For example, by

1
While strings are not objects in Python, the notation is still used in previous mission

when using the turtle module for example.

56 Chapter 5. Course Analysis

showing in the restructuring lecture that characters are treated as integers,
the learner will be encouraged to transfer what they know about integers for
this type of data. We can also appreciate that even for a concept that has
not yet been covered in detail in week 4, the concept of objects, strings are
nevertheless presented as specific objects and as such already get a special
place in the concepts handled. This will make a lot of sense in the weeks
to come.

5.3.2.5 Validation by Peers, Tutor, Teacher

The aim of this criterion is to discuss as much as possible, with help when
necessary, to bring out as many links as possible with existing knowledge.
The course methodology specifically supports these approaches by encour-
aging and alternating phases of individual work followed by tutored sessions,
group work and restructuring in lectures. In particular, the tutored sessions
provide a safe framework for all misunderstandings and errors. Because of
the structure of the course, learners know that they are likely to arrive at the
start-up session with misconceptions. It is then by going over the various
start-up questions with the tutor that students hopefully find themselves
spotting these errors, correcting them and making links with what they had
understood up to that point.

5.3.3 Accessibility to Knowledge and Skills in Long-Term Memory
(LTM)

5.3.3.1 Prior Knowledge Exploration Strategies

Although some tutors or teachers may suggest such strategies from time to
time, they were not found explicitly in the course resources.

5.3.3.2 Presence of Recall Strategies

Again, for this criterion, nothing found explicitly in the course resources.

5.3.3.3 Taking into Account the External Memory (EM)

Of the three criteria, this is where we find the most elements in the course
material. In particular, because many strategies are suggested in the course
for working graphically, on paper, even before starting to think about a solu-
tion in the form of a program. Learners are therefore constantly encouraged
to use drawings to represent objects, and those who have acquired this re-
flex will use it again later to solve reference problems such as adding a node
to a linked list data structure. As these notations are also used by teachers
and in the book, they undoubtedly help learners to remember the associated

5.4. Results 57

Figure 5.3: A schematic instance diagram of a linked list data structure.

knowledge. A good example of that is Figure 5.3, which shows a chained
structure from the January 2018 exam. It clearly shows the references as
worked on in the course in week 4.

During the exam, students also have access to the entire syllabus and
o"cial Java documentation. So clearly, an external memory representation
is present and its use encouraged.

5.4 Results

In terms of the course itself, the analysis shows that despite the fact that the
course implements a PBL methodology and that learning transfer processes
are inspired by problem solving, some of the elements suggested by the
analysis grid were missing. This does not come as a total surprise, given
that the chosen focus is on certain processes of learning transfer which are
not necessarily at the centre of problem-based learning, which is itself no
more than a methodological resource for the course.

In the chosen conceptual framework, much has been said about similar-
ity, and it is clear that several of the criteria mentioned refer to it. However,
the disadvantages of similarity for learning transfer were not really explored.
Such an analysis could be done using Bracke’s model which shows that the
learner relies mainly on surface similarities which can lead to misconceptions
and negative transfers. Such an analysis would allow to identify these sim-
ilarities and try to avoid misconceptions as soon as students start learning
the associated concepts.

In the following subsections, we propose three ways to foster learning
transfer based on this chapter analysis.

58 Chapter 5. Course Analysis

5.4.1 Explain how Knowledge is Organised

E!ective encoding of knowledge in the learner’s memory in order to foster
learning transfer requires links between knowledge elements to be made
explicit. While this was noted as being somewhat present, it is perhaps due
to our expert point of view. Quite a few interconnected concepts are not
explicitly identified as such in the course, which can give a certain impression
of disorganisation. In short, even if the di!erent subjects are sequenced, the
order in which they are taught might only make sense to the expert. In the
light of the analysis carried out as part of this work, it would seem that
from a transfer perspective, it would be beneficial to make these di!erent
links and choices more explicit in the course. In particular, as suggested by
the criteria, by organising the learning more systematically, in particular by
means of summaries and organisational diagrams.

5.4.2 Emphasise Transfer Opportunities a Priori

Another shortcoming identified was the lack of strategies and elements
for identifying potential transfer contexts. This is particularly true of the
schematic representation of objects introduced in this week, or string traver-
sal, which turns out to be similar to the topic of array traversal covered the
following week.

If the potential transfer context is not explicitly highlighted, there is a
risk that the learner will not realise that this is a method to be reused by
adapting it. Even if the method is repeated the following week, the chances
of transfer are increased by mentioning it in the source task, thus giving
meaning to the learning and enabling the learner to be ‘on the lookout’ for
a transfer situation. The specific format of the restructuring lecture partly
compensates for this shortcoming, as it tackles the new subject just after
the previous week’s restructuring lecture, thus facilitating the transfer.

One recommendation at this level could be to teach the questions to ask
in order to identify the situations in which certain knowledge can be reused.
In this way, the learner will be able to recognise a problem that calls on the
strategies to do a data structure traversal, for example, and will therefore
be able to make the link with what he already knows. In short, we would
be working on structuring and making explicit the abstractions to be made
in the various learning processes.

5.4.3 Use Explicit Recall Strategies

The grid is also quite empty when it comes to recall strategies. It would
seem that, by following the previous recommendations for clarifying the
conditions for reusing knowledge, we could equip the learner with a series

5.5. Conclusion 59

of questions and criteria to use when tackling a new problem. This could
then feed into a more general strategy of exploring existing knowledge and
enrich recall strategies.

One tool from explicit teaching is to think aloud or ‘put a loudspeaker
on your thoughts’. If this technique is used by the tutors during the session,
it will make it possible to identify what strategy the learners need to use to
identify the knowledge to be mobilised depending on the type of problem.
In this case, the example solution and clarification of criteria would no doubt
provide learners with more specific tools, enabling them to remember how
to approach a similar problem in the future and mobilise the appropriate
knowledge.

5.4.4 Threats to Validity

It is worth pointing out that for this work, we only analysed selected parts
of a larger course. While the overall structure of this course repeats this or-
ganisation, this limited analysis still might constitute a limitation. However,
thanks to our knowledge of the course and the links between its di!erent
concepts we did not entirely restrict the analysis to week 4 anyway in order
to not miss important links relevant to learning transfer. In other words,
even though week 4 was used to analyse certain aspects of the course in
detail, we still took elements from other moments in the course to illustrate
all aspects, in particular the evaluation or aspects of content taught later
in the course.

As mentioned in the introduction, another possible limitation of our
analysis was that it was performed on the material of an earlier course setup
when the programming language of the course still was Java and not Python.
Nevertheless, the course has always had as main learning objective to teach
introductory programming in a way that is not tied too closely to a particular
programming language. It is regarded by the teachers as a conceptual
introduction to programming, where the particular programming language
chosen is only a means to an end. In fact, when the course switched to
Python, the structure, missions and basic concepts have mainly remained
the same. While some adaptations necessarily have been made for Python,
we still think the results of the analysis can be extended straightforwardly
to the current setup of the course.

5.5 Conclusion

In this chapter, in order to answer RQ5.1, we analysed the CS1 course
based on the following processes of learning transfer models [Tar99; Bra04]:
knowledge encoding (knowledge viability and knowledge organisation) and

60 Chapter 5. Course Analysis

knowledge retrieval. Based on this thorough inspection of the course ma-
terial, we suggested that explicit programming strategies can help foster
learning transfer in this context. In particular, the analysis yielded three
proposals to improve the course:

P1. The organisation of the learning objectives should be made more
apparent throughout the entire course. P1 is related to literature
on explicit direct instruction and the way Hollingsworth et al. suggest
to organise lessons [HY17].

P2. Transfer opportunities should be pointed at beforehand in order
to prepare the learner to recognise future situations in which they
could recall previous knowledge.

P3. More explicit recall strategies should be proposed in the course
to help retrieve known bits of knowledge in order to apply them to
solve new similar situations.

P2 and P3 are in accordance with what CLT prescribes about instruc-
tional design. It promotes explicit strategies in the sense that we must auto-
mate content-related knowledge and so, familiarise learners to new content
and enable them to transfer knowledge.

In the next chapter, these proposals serve as a basis to select the explicit
instructional programming strategies we will use throughout our research.
The four strategies we selected are aligned with P2, P3 and the instructional
recommendations aligned with CLT.

First iteration:
Exploration 6

!
This chapter is largely based on the paper:
O. Goletti, K. Mens, and F. Hermans. “Tutors’ Experiences in
Using Explicit Strategies in a Problem-Based Learning Introduc-
tory Programming Course”. In: ITiCSE ’21. Virtual Event,
Germany: ACM Press, June 2021. doi: 10.1145/3430665.
3456348.

This first exploratory study aims to explore how tutors could benefit in
their tutoring from explicit instructional strategies. Prior work has shown
that the strategies we selected in this study are e!ective [XNK18; MMD19;
EMR17; Lok+16] (cf. Section 2.5). Therefore, we focus our study on
tutors to assess how comfortable they are with adopting new instructional
strategies. These are the research questions we answer in this chapter:

RQ6.1 How did tutors apply and adapt the strategies?

RQ6.2 What strategies did tutors prefer and why?

RQ6.3 What do the tutors think about using explicit programming strate-
gies?

6.1 Selected Strategies

Our study focuses on four strategies from research literature. Each of these
strategies was already presented in Chapter 2. To select these strategies,
we first identified criteria based on the analysis’ results presented in the
previous chapter and on cognitive load theory. We then searched the CSEd
literature for evidence-based instructional strategies reported on in the con-
text of introductory programming courses and picked those strategies that
correspond to our identified criteria and that match cognitive load theory
(CLT) instructional recommendations and the three learning transfer in-
spired proposals (P1, P2 and P3, cf. Section 5.5) from our course analysis:

61

https://doi.org/10.1145/3430665.3456348
https://doi.org/10.1145/3430665.3456348

62 Chapter 6. First iteration: Exploration

Explicit tracing, cf. Section 2.5.1. Explicit tracing is in alignment with
CLT because it automates the process of executing code and uses
external representations to lower cognitive load. The use of a written
representation of the state of the program is also aligned with the
learning transfer model of Bracke as discussed in the previous chap-
ter (5.2.1). This helps with unloading the working memory, fostering
accessibility of knowledge and learning transfer. It addresses P3 be-
cause it is an explicit recall strategy that will remind students about
the semantics of a program and how to execute code properly.

Subgoal learning (SL), cf. Section 2.5.3. SL is linked to proposal P2 and
the promotion of transfer opportunities. This is achieved by naming
the concepts and labeling the steps needed to use these concepts when
solving a related programming exercise. It also aims to automate the
recognition of patterns as proposed in P3. Worked examples are also
a strategy identified by CLT proponents to lower cognitive load for
learners. By showing and explaining in detail the steps of a solved
example, the learner is able to focus on the solving procedure better
than when they need to solve an exercise at the same time, allowing
for better learning.

Parsons problems, cf. Section 2.5.4. The idea of putting lines of code in
the right order instead of writing them is heavily inspired by CLT and
diminishes cognitive load. Novice programmers do not need to focus
on remembering the syntax and how to write code properly. They can
focus on understanding the proposed pieces of code and on the logic
needed to rearrange them in a working solution. It is also a way to
practice the recognition of patterns shown in worked examples, and
is therefore linked to proposal P3.

Explicit problem solving, cf. Section 2.5.5. This strategy has as main
goal to automate the self-regulation that will help a learner take ad-
vantage of metacognition. It is a way to diminish the di"culty of
using higher level cognitive strategies in an unfamiliar context as sug-
gested by CLT. Naming the di!erent steps involved in the higher level
process of solving problems and explicitly prompting students to think
about previously seen problems and how to adapt their solutions fos-
ters the learning transfer by making it visible. Doing this in an explicit
way is aligned with proposal P3.

6.2. Study Design and Methodology 63

6.2 Study Design and Methodology

The goal of this study was to understand how tutors could incorporate ex-
plicit strategies in their tutoring and what were their thoughts on the use
of explicit strategies. Therefore we had to find those tutors, explain the
strategies to them and interview them. This section details our methodol-
ogy.

To the twenty-five tutors of our CS1 course, we distributed a survey
with questions on how they saw their role as tutors for the course. Twelve
responded and four among them accepted to test our explicit programming
strategies. Since tutors had little pedagogical experience, we introduced the
strategies to the tutors gradually. This was done to not overwhelm them
with too much information at once. We also thought it would give them
more time to fully focus on each strategy at a time. We met those four
tutors once a week nearly each week of the semester. During these weekly
twenty-minute meetings, we would discuss the previously seen strategies.
We discussed feedback, adaptation, best practices, interrogations, etc. Ev-
ery two other weeks, we proposed a new strategy, gave the paper it was
taken from to the tutors, presented its motivations and objectives, explained
how to apply it, gave a usage example and answered tutors questions.

Tutors were encouraged to use these strategies with their students and
to modify and adapt them as needed. Regular feedback through the weekly
meetings allowed us to know what tutors tested and how they adapted the
initial proposed strategy. This approach was preferred instead of a more
rigid “follow these steps” approach because we trust them in the end to
“weave it all together into something that works in the classroom” [Lis16].

At the end of the semester, each of the tutors was interviewed for about
one hour in a semi-structured way. Questions were prepared to not miss any
specific point during the interview, as presented in Section 3.4.1. In order to
answer RQ6.1 on their use and adaptation of the strategies, we asked more
detailed questions on what they recalled of each of the four strategies, how
and when they applied it and its perceived pros and cons. To answer RQ6.2
on the tutors’ preference, we asked them to compare the strategies and rate
them according to some criteria such as ease of application or e!ectiveness.
The interview also included a few questions on their experience as a tutor,
what changed in their practice throughout the semester and their thoughts
on explicit methodologies. These questions aimed at answering RQ6.3
on their views on explicit strategies. The weekly meetings were recorded
and were used along with the interviews of the tutors as a source for the
qualitative aspect of this study.

The transcripts of the interviews were coded following the method de-
scribed in Section 3.4.2. We used codes emerging from the interviews, as

64 Chapter 6. First iteration: Exploration

well as codes induced by the themes of the di!erent parts of the interview.
The first interview was coded by two researchers and then the author of
this dissertation coded the three other interviews. In total, we coded 431
quotes from the interviews and the weekly meetings. The codes were then
regrouped in categories that we used to answer our three research questions.

6.3 Results

This section first presents overall information derived from the coding of
the interviews, then we answer the three research questions one by one. In
this section, some quotes from tutors’ interviews are provided and tutors
are anonymised by using “TX”, with X between 1 and 4, which refers to
tutor X.

6.3.1 Tutor’s Use of the Four Strategies

In this section we analyse what the tutors reported on their use of each of
the four strategies, by order in which they were introduced to the tutors.
For each strategy, the categories are treated in order of number of coded
quotes given in brackets. When no quote was coded in a category, it is left
out. The final coded categories are presented in Table 6.1.

Table 6.1: Final coded categories representing tutors’ comments on the
strategies during their interviews.

Category Description from tutors’ point of view
Pros for tutors seen as a benefit of using a strategy
Pros for students seen as helping the students
Limitations what hindered students when using a strategy
Application di"culties what hindered tutors
Suggestions improvement suggested to a strategy

6.3.1.1 Explicit Tracing

This strategy was the favorite of all four tutors. For tutors, it is easy to
understand and simple to apply. It is useful for all students, simple to
use, and helps code comprehension, testing and debugging code. Tutors
considered explicit tracing as reassuring for the students. T4 said tracing
would help later in their curriculum. Tutors also stated it reduces e!ectively
the mental load for students. Tutors regarded the strategy as unfit for longer
executions. They made some suggestions to improve this strategy.

6.3. Results 65

Pros for students (38) Tracing was mostly used to help students identify
where they misunderstood a statement or made an incorrect assumption.
T3 said: “Students can figure out by executing step by step that what they
think is di!erent from the result of the execution. By forcing oneself to
write and trace, a student can arrive by himself to a conflict and then to
the correction of the code.”

Tutors agreed it really helped students. For example T2 said: “The idea
is to write it instead of keeping it all in their head”.

Pros for tutors (25) Tracing was compared with debugging and thus
felt familiar to tutors. T4 was shocked that it wasn’t explicitly taught to
students: “I thought tracing code was already taught in [this course]. . . I
think it is very useful to trace at the beginning.”

This strategy was the easiest to apply with the best results. For example,
T1 described how the strategy helps students: “It’s the strategy I used the
most [. . .] At first, one doesn’t have the proper methodology to trace code.
We just try to remember all variables and we just go too fast. But with
the table we take our time, we update it after each statement, we calculate
each expression separately, I think it helped them. I just did a reminder on
this at Tuesday’s lab because they asked me [. . .] It’s just that, it is clear
and it works well [. . .] They seemed to say they would use it during the
exam.”

Limitations (12) The four tutors were unanimous to say that tracing
takes a lot of time, especially for longer code.

Suggestions (7) Tutors suggested how to improve explicit tracing. E.g.,
one proposed to use several students “chained” to execute separate parts
of the code or nested function calls. Another adaptation was to trace only
chosen variables of interest in a program.

6.3.1.2 Subgoal Learning

Tutors regarded subgoal learning (SL) as more complicated to apply than
the previous strategy. They had a hard time applying this strategy prop-
erly. They said they understood the underlying ideas but that it needed
preparation and memorising of the proper labels.

Application di"culties (20) Although tutors saw that identifying the
subgoals for the students was helpful, they said it was di"cult to articulate
the di!erence between context steps and generic steps. Tutors could not
relate to a similar strategy emphasising the generality of the steps to write

66 Chapter 6. First iteration: Exploration

a loop. Identifying these steps felt implicit for the tutors so the strategy
seemed “overly theoretical” (T3).

Tutors fell into a live attempt to find the proper steps to use a specific
construct if they did not stick to the provided labels. Such a live exercise is
di"cult and is a reason why the strategy was designed [MMD19]. T1 said
on this topic: “Well, if it’s not explicit for us, it’s di"cult to explain it for
the students. . . We know all that implicitly. But, it’s never easy to explain
like that if we haven’t taken the time to sit down and say when I do a loop,
step 1 is that, then that, etc.”

Because SL needs preparation and memorising, it demanded time from
the tutors. This was a major hindrance in their first attempt at applying
the strategy. Another di"culty was that subgoals were provided for many
di!erent constructs and are di!erent when reading or writing. This led tutors
to adapt the strategy by doing it orally and not as explicitly as proposed in
the paper.

Limitations (7) A limitation mentioned by two tutors is that students
would expect the solution to be given to them if the tutor often wrote it on
the board to highlight the di!erent subgoals.

Pros for students (7) Three tutors used the strategy and found that it
was particularly useful for students who had more di"culties starting from a
blank page. The idea of showing an example was fairly well adopted, espe-
cially during the introduction of a new concept. Tutors saw it as presenting
a plan that students could refer to later on but stressed that one example is
not enough and that balance should be found to avoid students expecting
answers to be given. For example, T2 said: “It’s good to do this for the
first time when a concept is discussed to show them how to solve a new
type of exercise. . . It saves time rather than floundering. . . It provides them
a well-solved reference exercise that shows the steps.”

6.3.1.3 Parsons Problems

This was the second-favourite strategy of the tutors. They liked it because
it was engaging for students of all levels. Another main advantage was that
students could see more examples in less time. Nevertheless, tutors said it
required time to prepare and it was not always clear when to use it.

Pros for students (28) The importance of good paired distractors was
stressed since it forced students to justify their choice. One tutor tried
unpaired distractors, but found that this was too hard for the students since
they would try to fit all the lines of code in one solution. T3 describes

6.3. Results 67

its use: “Line by line, without indentation, with distractors. To stimulate
discussions in certain structures. For example to see if an else is mandatory
or not.”

Tutors highlighted the benefit of Parsons problems to enable students
to see more examples of solved programs in a short time, as reported in the
original study [EMR17]. E.g., T1 said “[students are] really just thinking
about the meaning. That way, they could see more di!erent examples since
they don’t have to waste time writing. And learn faster, well that’s the
objective of the method.”

It was motivating for student not having to write all exercises by them-
selves. It mitigated the blank page syndrome. Tutors reported that students
were more involved, more active and enjoyed the strategy; even those stu-
dents who had more di"culties.

Limitations (10) Nevertheless all tutors agreed that Parsons problems,
when done on paper, required time and preparation.

Application di"culties (10) The main di"culty for tutors was to identify
exercises that would benefit from Parsons problems. Two tutors said they
did not know when to use it and would have preferred to experience it by
themselves first, to have more practice.

Suggestions (8) Some suggestions were made for Parsons problems. T3
suggested it could be used as a way of assessing student knowledge or
diagnosing if a mistake is systematic, by giving them distractors on a specific
misconception. T3 said that “[with this strategy] we could see if we used
a variable before assigning it or if we swapped two lines of code if it is
systematic or a distraction error.”

Tutors also said that an automatic online solution might be more usable,
but then they would lose the opportunity of discussion with and between
the students in the classroom.

Pros for tutors (6) In order to properly invent a new Parsons exercise, T2
said tutors need to “know how to trap students. To make good distractors,
you have to know the corner cases that make a program not work” and that
he liked that. T3 said that it allowed him to put more or less di"culty in
an exercise.

6.3.1.4 Explicit Problem Solving

This strategy was more controversial. While two tutors rated it as di"cult
to apply and understand, the other two used it successfully. It was straight-

68 Chapter 6. First iteration: Exploration

forward to use for the students but di"cult to understand because it was
meta and at the same time described obvious steps of problem solving.

Pros for students (19) As with previous strategies, tutors noted that
this strategy helped students who did not know where to begin. T3 said:
“some students need a course of action or they don’t know what to do.”

The strategy was helpful to students. It needed to be applied system-
atically and if students didn’t stick to it, they would burn steps and make
mistakes. Self-regulation is di"cult for students [LK16]. We can see the
meta-cognitive impact when T2 said: “They can see that it works when I
ask them questions but cannot ask the question themselves.” or when T1
said: “It’s a bit like trying to work as if you are working in a group but
alone.”

Tutors found this strategy complementary to the second strategy as
they regarded that one as about translating a natural language resolution
to code and this one about the whole process, starting from reinterpreting
the statement in natural language.

This recall strategy especially matches a need identified in our analysis
and was seen as such by T1: “If you remember something that worked, it’s
very easy to reapply it. And taking the time to explicitly ask ‘OK have I
already done something that looks like that?’ Sometimes it’s quite silly but
if you think about it for two or three minutes you find that it is the case.”

Limitations (11) Some di"culties were also mentioned. Tutors found it
di"cult for students to identify similar problems, especially when seeing so
much new material in the course. But even tutors often only saw similar
problems in a very narrow sense.

Application di"culties (9) Even though tutors saw the need to make
the steps of problem solving explicit, they found it sometimes too obvious
and so did students. Some tutors reported that they were not sure if it
would help. They had to be convinced of the usefulness of a strategy before
using it, as T4 stated: “I didn’t test it for lack of time and because I didn’t
really see the point.”

6.3.2 RQ6.1: Use and adaptation of the strategies

The overall impression is that tutors found the strategies useful and e!ective.
Tutors used a strategy more easily if they could understand the motivation
behind it. They would reuse a strategy when it helped the students, didn’t
take too much time and when it increased the students’ motivation. The
tutors did not hesitate to test the strategies. They adapted it to their own

6.3. Results 69

practice or to what they understood. Still, they sometimes reported not
being sure on when to use a strategy and a need for more practice before
using it with the students. T4 even said that for one strategy they felt lost:
“Do not just leave the tutors facing the paper because there is quickly a
way to get lost and make mistakes.”

Tutors really need to understand the goal of a strategy to be convinced it
has value and to use it properly. Otherwise, they would have a tendency to
focus on the context and not on the general principle a strategy emphasises.
Especially with more abstract strategies like subgoal learning, they needed
to understand them well. Otherwise, they would struggle to find the proper
labels on the spot, which is kind of the main reason for using that strategy.

A di"culty encountered was that lack of time and preparation were a
brake on instructional changes. It is known that TA’s and by extension
also tutors su!er from class management issues [LBG00]. It is well possible
that in this case, since they had little pedagogical background and since
three of them were tutoring this course for the first time, it hampered their
pedagogical confidence and hence the degree to which they could adapt
instructional experiments.

6.3.3 RQ6.2: Preferred Strategies

When comparing strategies, tutors found that explicit tracing was the easiest
to understand and apply as well as the most e!ective one. Using Parsons
problems was considered easy and e!ective even though it took more time
to prepare. The third most e!ective strategy was explicit problem solving
according to tutors and it was also third easiest to understand. Finally,
subgoal learning was the most di"cult to understand and least e!ective
according to the tutors.

The strategies seen as more e!ective were not necessarily easier to apply.
For example Parsons’ problems was di"cult to apply according to tutors.
They liked to see that a strategy was useful. Even though some strate-
gies were seen as broadly applicable, tutors mainly saw them as useful for
students in di"culty. This was a major motivation for tutors to try the
strategies.

Overall, based on the follow-up of four di!erent tutors and our analysis
of the interviews, we can say that when adopting strategies tutors preferred
those matching these four criteria: easy to understand, straightforward to
apply, useful for students on the long term and supported by literature.

6.3.4 RQ6.3: On Explicit Programming Strategies

Tutors found the explicit nature of the strategies e!ective and “less demand-
ing for the students” (T1). To counterbalance explicit strategies, they said

70 Chapter 6. First iteration: Exploration

that students still need occasions to explore strategies by themselves and
figure out what works best for them. They said that explicit strategies
should be shown especially when introducing new material but that stu-
dents should then have some less guided time to try them out and adopt or
adapt them. T2 said: “I think it is good to do things that are very explicit
for a student, to show him how to do an exercise properly and that he can
adapt it for himself.”

Two tutors also feared that students would not search by themselves
anymore because of explicit strategies. T1 said: “The disadvantage is that
they may not search by themselves, it will be much less personal. It will be
like that. Because we said it works. But not because they have tested it
and . . . Maybe there are other methods that work well and they may never
find out on their own.”

The tutors seem to agree that more open exercises are also beneficial for
students and that less explicit methods would force students to learn how
to “figure it out”. They clearly associate implicit with letting the students
work it out by themselves, like T2: “Less explicit, it is rather when they
have more freedom, when we give them the statement . . . and we do not
give a course of action [. . .] It is good from time to time to leave the
students a little more on their own.”

To summarise, tutors view explicit strategies as an e!ective way to teach
and automate good practices for students. But they have a more balanced
view than expected on this topic. Indeed, for most of the tutors, an inquiry-
based, less guided methodology still has its place in the course. This might
be due to their own experience of the course and also by their feeling that
students need to learn to search by themselves.

6.3.5 Threats to Validity

One main perceived limitation of this first study is the small number of par-
ticipants. Nevertheless, we think the qualitative nature of this exploratory
work allowed us to have an in-depth view of tutors’ perspective on strategy
usage. Also, for this exploratory study, we preferred motivated tutors gen-
uinely interested in learning new pedagogic tools, rather than imposing new
strategies on all tutors yet. Since tutors are used in similar setups in other
institutions’ CS courses, we also hypothesise our criteria can be generalis-
able. However, our main goal was to take these criteria as a starting point
to guide the design of our next iteration, in which we intend to involve more
tutors.

6.4. Conclusion 71

6.4 Conclusion

In this exploratory study, we studied how four tutors used and experienced
the use of four explicit strategies in a CS1 university course. The strategies
were chosen because they were shown to be e!ective and explicit, and
in accordance with the three proposals that were drawn from our earlier
analysis of the course and following instructional recommendations made
by cognitive load theory.

The four strategies were gradually presented to and tested by the tutors
in the course during which regular meetings were held. At the end of the
semester interviews were conducted, transcribed and analysed to answer
three research questions. We observed that the tutors liked these new
instructional strategies even though it was sometimes di"cult for them to
use them properly. They neither had su"cient time to prepare their lab
sessions with these strategies nor the pedagogical experience to be confident
enough to try more complicated strategies.

Based upon our interview analysis, we propose four criteria for a strat-
egy to be more easily adopted by tutors with little pedagogical background.
A strategy has to be easy to understand, straightforward to apply, use-
ful on the long term and supported by literature. Tutors consider explicit
strategies e!ective and useful. In particular, tutors preferred explicit tracing
according to these criteria. Nevertheless, they believe a trade-o! is to be
found regarding more inquiry-based strategies so that students are left the
opportunity to find out by themselves the best strategies for them to use.

We believe our results can be generalised to other introductory pro-
gramming courses with a similar setup. In particular, since problem-based
learning and tutoring are widely adopted in CS courses, our work could sup-
port them using more explicit programming strategies. Our research points
in the direction of more actionable materials that could be given to tutors.
A short training with the highlights of a strategy and an example of how
and when to use it properly could help them a lot.

This exploratory study still left a lot of research questions unanswered.
In further chapters, we will elaborate on some of them like how do tutors
do actually put these strategies into practice? How do tutors adapt them?
How often do tutors do use the strategies? And how does it all compare to
what they said and reported in this chapter?

Subgoals Creation 7

!
This chapter is largely based on the paper:
O. Goletti, F. De Pierpont, and K. Mens. “Création d’exemples
résolus avec objectifs étiquetés pour l’apprentissage de la pro-
grammation avec Python”. In: Didapro 9–DidaSTIC. 2022.
The title of this publication can be translated as “Creation of
subgoal labeled worked examples for teaching programming with
Python”.

To continue with the subgoal learning strategy, and with the aim of
creating a training document to encourage its use by tutors, in this chapter,
we present the work that went into creating the subgoal labeled worked
examples (SLWEs) adapted to the concepts of the course and to Python,
the programming language of the course.

7.1 Introduction

To create the SLWEs, we analyzed exercise resolutions made by experts.
The methodology for this analysis is Task Analysis, an e!ective method for
extracting implicit procedures that domain experts use implicitly to solve
complex tasks. In particular, we have adapted Catrambone [Cat11]’s Task
analysis by problem solving (TAPS) methodology, used and recommended
by Margulieux et al. [MMD19] when creating SLWEs for Java concepts.

This chapter therefore presents our adaptation of the TAPS methodol-
ogy for creating SLWEs, as well as the SLWEs we have created.

This chapter answers the following research questions:

RQ7.1 How to create appropriate subgoals for the concepts of a CS1
course?

RQ7.2 How to present subgoals for tutors’ training and usage?

73

74 Chapter 7. Subgoals Creation

7.2 Study Design and Methodology

7.2.1 Task analysis by problem solving (TAPS)

The aim of task analysis is to make a domain expert extract his implicit
automated knowledge and his way of solving a problem [Cla+08]. Sev-
eral techniques exist for this purpose, based in particular on observation of
problem-solving by an expert, note-taking, writing up a procedure, and so
on. Experts solve problems di!erently from novices, and their explanations
are typically incomplete and insu"cient for a novice. Even teachers who try
have this expert blind spot and don’t especially succeed [Cat98].

Catrambone’s Task Analysis by Problem Solving (TAPS) [Cat11] is the
methodology used and recommended by Margulieux et al. In TAPS, the
subject expert is called SME (Subject-Matter Expert), and will be referred
to as “the expert” in the remainder of this chapter. As for the Knowedlge
Extractor Expert (KEE), we’ll call him “the analyst”. The expert must
identify tasks related to the concepts to be processed and solve them in
front of the analyst. The analyst is preferably a novice in the subject to be
analyzed, and should take notes on the expert(s)’ solving technique.

The steps recommended by TAPS are:

1. The expert identifies the exercises that a learner should be able to
solve if they mastered the material.

2. The expert solves one of these exercises.

3. The analyst takes detailed notes on the reason for each step in the
solution and asks the expert to justify each of these steps, which the
expert sometimes finds di"cult to verbalise.

4. The analyst goes back to their notes, reorganises them, extracts the
procedures and justifications.

5. The expert solves a new problem.

6. The analyst completes their notes to fill in gaps and resolve inconsis-
tencies.

7. The analyst attempts to solve a similar problem based on their notes.

8. The analyst re-interviews the expert until he can solve the exercises
themselves.

Finally, exchanges between the experts and the analyst lead to the draft-
ing of a document. For each concept addressed, this document describes
the resolution procedure, labeled objectives for structuring generic elements,
and annotated solved examples illustrating the resolution procedure.

7.3. Results 75

7.2.2 Adapted TAPS

The methodology used in our work is very similar to TAPS. The experts were
four: a professor of computer science for over twenty years and co-teacher
of the introductory programming course for the past four years1; the author
of this dissertation, an assistant for the introductory programming course
for the past six years and a doctoral student in computer science education;
and two doctoral students in computer science, also TAs for the course. As
for the analyst, he was a master’s student in computer science, so he was
not a novice in programming as recommended by TAPS, but he had never
taken a course in Python.

Each time, the experts identified the exercises to be mastered for the
various concepts covered in the course (cf. Table 7.1). The analyst then in-
vited one or more experts, through videoconferencing if necessary, to record
their resolution of the selected exercises. The experts worked in Thonny2

(a simple Python IDE) with a shared screen. The analyst asked the experts
questions to justify the various steps. The analyst took notes and could
consult the recording afterwards. If necessary, however, he could call in
another expert for the same concept to fill in gaps or resolve inconsistencies
in his notes.

As the analyst was a master’s student in computer science, we decided
not to do the last two steps of TAPS, which expect the KEE to attempt to
solve problems on his own, based on his notes.

7.3 Results

We have created SLWEs for the concepts given in Table 7.1. The entire
training document is available online3 (in French).

To illustrate the training document and the created labels, Figure 7.1
presents the subgoal labels for writing a program that reads a file in Python
with the labels in bold and the associated SLWE in Figure 7.2.

The training document containing all SLWEs and a description of their
use was used to train tutors in the first semester of the academic year 2021-
2022 and again in 2023-2024. The way in which tutors used this strategy
during their tutoring session will be the subject of the next chapters.

1
The dates mentioned in this paragraph have not been updated and need to be un-

derstood as at the time of submission of the corresponding paper, ie. 2022
2
https://thonny.org/

3SLWE - v13.pdf at http://hdl.handle.net/2078.1/263637.

https://thonny.org/
http://hdl.handle.net/2078.1/263637

76 Chapter 7. Subgoals Creation

Table 7.1: Concepts for which SLWEs have been created for Python

Concept code
reading

code
writing

Python
adaption
from [MMD19]

assignment x x x
conditional x x x
while loop x x x
function x x x
for loop/
sequence traversal x

file read x
file write x
dictionary
creation or update x

class creation x
add a node in a
linked list x

remove a node in a
linked list x

7.3. Results 77

Figure 7.1: Subgoal labels for writing a program that reads a file in Python.

1. Open file

(a) Identify the file name and path (usually as part of filename)
(b) Choose appropriate mode (typically: "r")
(c) Open the file by choosing either:

↭ with open(filename, mode) as f:
↭ f = open(filename, mode)

2. File processing depending on its format

(a) File traversal
↭ Line by line with: f.readline()
↭ Iterating over each line with: for line in f:

(b) Line processing
↭ Getting rid of leading and trailing white spaces: line.strip()
↭ Splitting in tokens according to line format: line.split()
↭ Converting tokens depending on expected type

(c) Handling formatting errors (ignore line, raise ValueError)

3. Close file

↭ If you used a with statement, skip this step
↭ Else, with: f.close()

4. Handle exceptions that might occur during file processing (typically
IOError)

(a) Surround your file processing code by: try: ... except:

(b) Handle specific exceptions with: except error_type: ...

78 Chapter 7. Subgoals Creation

Figure 7.2: Worked example of a file reading exercise in Python labeled
with our created subgoals for that concept: (1) Open; (2) Processing; (3)
Close; (4) Exceptions.

7.4. Conclusion 79

Threats to Validity

As explained in Section 7.2.2, as opposed to the original TAPS protocol, the
KEE was not a novice. While he had never followed a course on Python, we
are aware that his programming expertise in other languages may introduce
a bias in the SLWEs. However, we felt that the richness of the di!erent
profiles of the research team (researcher in CS education and assistant,
teacher, student) enriched the view and attention paid to the choices of
SLWEs and constituted an advantage for this work.

7.4 Conclusion

The aim of this chapter was to contribute to computing education by propos-
ing subgoal labeled worked examples (SLWEs) for teaching programming
concepts with Python. The use of these SLWEs is aligned with the instruc-
tional recommendations of cognitive load and learning transfer theories.
The creation of SLWEs was necessary because none existed yet for the con-
cepts studied in Python. We answered RQ7.1 by showing it was possible
to produce SLWEs for the selected concepts using a task analysis method-
ology documented in literature. The TAPS task analysis was adapted to
extract the knowledge of a programming expert. A list of concepts seen in
a first university-level introductory programming course was selected, and
the recordings of exercise resolutions for each concept by several experts
were analysed by our analyst, the KEE. He derived a problem-solving pro-
cedure for each concept and identified labeled subgoals for each procedure.
These labeled procedures and subgoals were discussed and validated by the
authors. A training document was then written to train the course tutors
involved in the experiment to answer RQ7.2. In this document, the proce-
dures for each concept are detailed, labeled subgoals are provided and one
or more subgoal labeled worked examples are provided. This document was
used to train seven tutors in the use of subgoal learning in their tutoring
of an introductory programming course in Python. This document is pub-
licly available (in French) and reusable by other members of the computing
education community.

Second Iteration:
Characterisation 8

!
This chapter is largely based on the paper:
O. Goletti, K. Mens, and F. Hermans. “An Analysis of Tutors’
Adoption of Explicit Instructional Strategies in an Introductory
Programming Course”. In: Proceedings of the 22nd Koli Call-
ing International Conference on Computing Education Research.
2022, pp. 1–12. doi: 10.1145/3564721.3565951.

Previous research showed that tutors struggle to identify and use best
practices [Rie+21]. Explicit instructional strategies are gaining traction
lately and the e!ort to bring research results into tutors’ practice is worth
exploring as advocated by Sue Sentance during the keynote she presented
at Koli Calling 2021 [Sen21].

Based on the opinion of the tutors in their interviews during the first
iteration (see Chapter 6), we decided to support their adoption of explicit
strategies by providing dedicated training material, by limiting to only two
the amount of presented strategies (explicit tracing and subgoal learning),
by introducing both strategies at the beginning of the semester in dedi-
cated training sessions and with a personalised follow-up during the course
semester. For the subgoal learning strategy, we used subgoals and subgoal
labeled worked examples created specifically for the CS1 course in Python
as presented in the previous Chapter 7. This extra training and support
aimed at ensuring both strategies were easy to use and straightforward to
apply.

Based on research on educational change, fidelity of implementation
and adaptation of research-based instructional strategies [ODo08; Bor+13],
we used in this study a mixed methodology to analyse recordings of tutor
interventions during their lab sessions. Our aim was to understand how
tutors adopt and adapt explicit instructional strategies in their classroom
setting.

Based on Chapter 6), we already have a good grasp of what tutors’
views on using such explicit strategies are. Our current chapter gets a
better insight on what tutors actually do in the classroom. The research

81

https://doi.org/10.1145/3564721.3565951

82 Chapter 8. Second Iteration: Characterisation

questions we answer in this chapter:

RQ8.1 What triggers the use of a specific instructional strategy by tutors?

RQ8.2 What is the fidelity of implementation of the instructional strategies
by tutors?

RQ8.3 What adaptations of the strategies are made by tutors during in-
struction?

8.1 Study Design and Methodology

8.1.1 Training Material

Our prior experiences with training tutors with instructional strategies ad-
vised to put more e!ort in training them. Moreover, it was observed that
adoption is facilitated when tutors understand the underlying hypotheses
and claims of instructional strategies. In that study, tutors themselves also
asked for more guidance on how and when to apply the strategies. In re-
sponse to that request, for this study two documents were prepared for
training the tutors. Each of these documents explain the promises of the
strategies, provide instructions on how to apply them as well as quotes from
previous adopters and exercises to verify proper understanding of the strate-
gies1 [GDM22]. In Chapter 6, four strategies were progressively introduced
to tutors throughout the semester of the course. In the current experiment,
we decided to present our strategies at the start of the semester instead
and limit ourselves to two strategies, in order to reach more depth. The
two strategies were selected among the four strategies explored previously
as follows. Explicit tracing was chosen because it seemed to have been the
most e!ective and preferred strategy according to the tutors. And even
though it seemed less e!ective to tutors, subgoal learning was also selected
because we believe that with better training it could also be e!ective as
supported by the literature presented in Section 2.5.3. Tutors in our prior
study explicitly mentioned lack of training and lack of time as main obstacle
for proper strategy use. We addressed that shortcoming in this chapter by
providing more training and guidance through dedicated training, dedicated
training documents and follow-up during the semester. Also, both selected
strategies have the advantage of being easily observable since they require
tutors to make use of the blackboard.

1SLWE - v13.pdf and Explicit Tracing - v5.pdf at

http://hdl.handle.net/2078.1/263637.

http://hdl.handle.net/2078.1/263637

8.1. Study Design and Methodology 83

Figure 8.1: External representation of a list (inspired by Dickson et
al. [DD21]) as handed out to our tutors. Translation, ellipses, arrows and
highlighted parts have been provided for readability.

8.1.1.1 Explicit Tracing

The document presenting the explicit tracing strategy is written in French
and available online2 [GM22]. Figure 8.1 is an example of memory repre-
sentation of a concept as given in the document. Annotations have been
added to highlight the important parts and we translated the example to
English for the sake of readability.

Our document introduces the explicit tracing strategy, gives step by
step instructions on how to apply it as presented in Section 2.5.1, sums up
its advantages and claims, gives advice on when to use it and introduces
and exemplifies each memory representation of the di!erent programming
constructs introduced in the course.

The explicit tracing strategy we use has been presented in Section 2.5.1.
The main steps are reused and explained in the handout document we
prepared. However, since using an external representation when tracing code
can take many forms [Cun+17], we decided to use a normalised memory
representation based on the work of Dragon and Dickson [DD16; DD21].
The examples and exercises proposed in our document are adapted to the
Python programming language and specifically limited to the programming
concepts seen in the CS1 course.

2Explicit Tracing - v5.pdf at http://hdl.handle.net/2078.1/263637.

http://hdl.handle.net/2078.1/263637

84 Chapter 8. Second Iteration: Characterisation

Figure 8.2: SLWE for file writing in Python. (The presentation on the left
is inspired by Margulieux et al. [MMD19].) Subgoals’ translation, ellipses,
arrows and highlighted parts have been provided for readability.

8.1.1.2 Subgoal learning

The document presenting the subgoal learning strategy is written in French
and also available online3 [GDM22]. Figure 8.2 is an example of an SLWE as
given in the document. Annotations were added to highlight the important
parts and we translated part of the example to English for the sake of
readability.

The strategy is for the tutors to use subgoal learning (SL) in their teach-
ing by presenting the subgoal labeled worked examples (SLWEs) to the
students to illustrate how to solve problems involving new programming
concepts. Then tutors need to reuse the labels of the subgoals to anno-
tate code when solving similar problems and go through the labels to help
construct such a solution.

The worked examples presented in the training document are extracted
from the CS1 course to illustrate the di!erent concepts. They are anno-
tated in color with the corresponding subgoal labels. The subgoal labels
for the four first concepts (assignment, conditionals, loops and functions)
are adaptations to the Python programming language of those proposed by
Margulieux et al. in their article [MMD19]. The others (list traversal, file
reading and writing, dictionary creation and update, class creation, node
insertion and removal in a linked list) have been created by the authors.

3SLWE - v13.pdf at http://hdl.handle.net/2078.1/263637.

http://hdl.handle.net/2078.1/263637

8.1. Study Design and Methodology 85

For more details on the procedure we used to extract these subgoal labels,
see Chapter 7.

8.1.2 Participants

Twenty eight tutors were recruited for this iteration of the course, in 2021.
Before the start of the semester, our research project was exposed to

all tutors. Tutors were o!ered the possibility to be trained and to test
the selected explicit strategies. There was a small financial incentive to
participate in the study to compensate for the hours invested in preparation,
training, focus group meetings and interviews. Among the twenty eight
CS1 tutors, seven tutors volunteered and participated in the study. Five
were tutors for the first time, the two others had prior experience tutoring
courses and only one of them had experience tutoring this CS1 course and
was tutoring it for the third time.

In the scope of this study, a training session took place at the start
of the semester. The seven tutors were introduced in detail to the two
strategies, the theoretical bases on which they are built and their main
objectives. The two aforementioned documents were handed out to the
tutors. The strategies were exemplified by the author of this dissertation
and then practised by the seven tutors to ensure proper understanding. The
training session lasted two hours.

During the course semester, the author of this dissertation met weekly
with the seven participating tutors for one hour. The goal of those focus
groups was to discuss, share and troubleshoot the use of the strategies. Each
tutor would typically share how he or she used the strategies during the past
week. During the first weeks of the semester, class observations were made
by the author of this dissertation to give feedback on how the strategies were
used. At the end of the semester, tutors were also interviewed in a semi-
directed way to collect their impressions over the course and their practice
of using the strategies. The training session, focus groups and interviews
were recorded.

8.1.3 Fidelity criteria

In order to assess the fidelity of implementation (cf. Section 3.3) of the
strategies by the tutors, criteria had to be developed. To develop our fi-
delity criteria (see Table 8.1), we used that method. Similarly to Borrego et
al.’s study on research-based instructional strategies’ fidelity of implemen-
tation [Bor+13], which also used this method, we based ourselves on the
literature describing each of the strategies and on our own expertise in using
and applying the strategies with tutors from our previous iteration presented
in Chapter 6.

86 Chapter 8. Second Iteration: Characterisation

8.1.3.1 Explicit Tracing

Two critical aspects come from the description of the explicit tracing strat-
egy in Xie et al. [XNK18] who a"rm the strategy is e!ective for ameliorating
tracing performance. We also find these aspects in other similar work on
tracing [HJ13]. They ground their strategy in two critical aspects:

1. source code needs to be traced line-by-line “like a computer does”
to enforce a systematic tracing strategy for students and avoid errors.
This aspect is supported by the importance of tracing [Lis+04; HJ13]
and not letting students invent their own strategy [Per+86];

2. an external representation of memory needs to be used to reduce
the working memory load of remembering the values of variables. This
aspect is grounded in CLT [SvP19] and in the e"ciency of sketching
in computer science [Cun+17; DD16].

These two aspects combine three elements: line-by-line tracing, using an
external representation, but also the mapping process between the exe-
cution of a line and the update of the state of the program represented in
the memory table. We translated these in the three explicit tracing fidelity
criteria ET1, ET2 and ET3 listed in Table 8.1.
Since the decision was made from the beginning that we wanted to focus on
adaptations and not to enforce only exact use of the strategy, we decided
to keep the external representation criterion unconstrained to a specific
representation such as the one presented in Dragon et al. [DD16]. The
strategy’s e"ciency seems not to be based on that representation and the

Table 8.1: Fidelity criteria derived from literature for the considered explicit
instructional strategies.

1. Explicit Tracing
ET1. The source code is traced line-by-line;
ET2. An external representation of the memory is used;
ET3. The values of the traced variables are explicitly updated.
2. Subgoal Learning
SL1. An SLWE from the document is explicitly introduced to

the students;
SL2. The tutor solves a similar problem in a worked example;
SL3. The tutor reminds the students about the subgoal labels

of a SLWE;
SL4. The solving procedure of a SLWE is used to solve a practice

exercise with the students.

8.1. Study Design and Methodology 87

validation of the strategy for more advanced memory representation such as
objects and data structures had not been established by Xie et al. [XNK18].

8.1.3.2 Subgoal learning

Looking at the di!erent studies using subgoal learning (SL) through the
use of worked examples [MGC12; MMG15; MMD19] the main aspect of
this strategy is to interleave subgoal labeled worked examples (SLWEs)
with practical exercises. This element is grounded in the fading guidance
e!ect [SvP19] and the interleaving of theory and exercises [TR93].
As explained in Section 2.5.3, SLWEs are built on the e!ectiveness of show-
ing worked examples. Therefore, the labels are first shown in a given SLWE
provided in the document. During instruction a worked example needs to
be solved by the tutor and the steps of the solution procedure need to be
shown and addressed. Subgoal learning through the use of SLWEs adds
to this the use of labels to highlight the generic structure of the solution
procedure. Finally the last critical component is to reuse the solving pro-
cedure in a similar problem with the students in a practice exercise. We
translated these elements in the four SL fidelity criteria SL1, SL2, SL3 and
SL4 listed in Table 8.1.

8.1.4 Methodology

We used a mixed methodology in this study. We observed the tutors during
their lab sessions and recorded those sessions for further analysis. During
the semester, we observed tutors’ lab practices during three di!erent weeks:
week 5 on tuples and binary search, week 8 on classes and objects, and week
11 on linked lists. Due to schedule overlap, it was not physically possible
to observe all 42 tutors’ interventions (7 tutors with 2 sessions per week
on 3 di!erent weeks), hence only 24 observations were made. During each
observation, the author of this dissertation sat in the classroom on the side
and did not intervene. He took notes of tutor’s usage of the strategies
and recorded the lab session. In total, more than 26 hours of videos were
analysed. In the rest of our analysis, we refer to tutors by the notations
T1 to T7. Since the di!erent observations were made of di!erent sessions
and by di!erent tutors, we decided to analyse all the recordings. The final
codes and categories presented in the results below are the result of the
whole data, we did not stop for saturation in order not to miss adaptations.

During the analysis, we coded segments of all observed sessions us-
ing both deductive and inductive coding. Deductive codes come from the
strategies’ fidelity criteria introduced in Section 8.1.3. They were used for
determining when a strategy was used. The coded segments corresponding
to fidelity criteria occurrences were counted and used to answer the second

88 Chapter 8. Second Iteration: Characterisation

research question on the fidelity of implementation of the strategies by tu-
tors (RQ8.2) in a quantitative manner. Those segments were also part of
the answer to the third research question on adaptation of the strategies
by tutors (RQ8.3). For this third research question, a more inductive cod-
ing emerged from the recordings and we categorised those codes using a
thematic analysis [BC19]. For each strategy use, we also coded and cate-
gorised the trigger event in order to answer the first research question on
what triggers strategy usage by tutors (RQ8.1). In order to code the tutor’s
usage of the strategies, we took note of the timestamp, the context, the
trigger, the fidelity criteria observed and the adaptations when appropriate.
We also transcribed quotes of tutors speaking about the strategy and kept
a screenshot of visible usage or adaptation of the strategies. This allowed
us to easily come back to previous coded segments when the codes and
categories had saturated. The coding of the di!erent video segments was
mainly done by the author of this dissertation with the help of Prof. Kim
Mens to confirm that deductive coding was done in a consistent manner
and that the inductive coding covered all observed triggers and adaptations.
Two full lab sessions were coded by both coders and conflicts were discussed
and resolved. Once all the material had been coded, themes emerged for the
first and third research questions. Codes were regrouped in those themes
through discussions between the coders.

8.2 Results

Based on the analysis of the recordings of the tutors’ lab sessions, we answer
our three research questions.

8.2.1 Triggers for Strategy Usage

Since we wanted to understand what triggers strategy usage (RQ8.1), dur-
ing our analysis of the recorded observations we documented for each strat-
egy use the event that triggered the use of the strategy. For this part of
the analysis, the coding was induced by the observations and the source
categories emerged from the data (cf. Section 3.4.2). The following sub-
sections detail the triggers for each strategy and Table 8.2 summarises the
number of occurrences of each source.

8.2.1.1 Explicit Tracing

Among the di!erent events that triggered the use of explicit tracing, we
identified three sources depending on the origin of the strategy use:

8.2. Results 89

Students. Students are the principal triggers (total: 33 times). Tutors
would use the strategy when a student would ask a question (16
times), when students would be confused about the expected output
of a program (7 times), when they observed a bug in a student’s
answer on the blackboard (5 times), when they would see a lack of
understanding of an important concept (4 times) or when a conflict
would arise between two students’ predictions on the output of a
program (1 time).

Tutors. Tutors’ decisions are the second most occurring trigger (total: 27
times). A tutor would take the initiative to trace a program be-
cause they prepared an example for a topic they would consider dif-
ficult or to emphasise an important concept (16 times). Tutors also
asked students to trace code to verify their proper understanding (6
times). Tutors would also be triggered to use explicit tracing when
they wanted to show that two alternative solutions were equivalent
or not (4 times). On one occasion, a tutor traced a code snippet
because he made an error of prediction himself and decided to take
advantage of the situation to model the strategy.

Exercises. Exercises themselves are the third trigger. Some exercises ex-
plicitly required the students to make sketches or to draw the state
of the memory (13 times).

Table 8.2: Sources of the trigger event for each strategy use.

Sources Trigger events Explicit
Tracing

Subgoal
Learning

Students Question from a student 16 1
Expected output unclear 7 -
Bug in student’s code 5 -
Important concept misunderstood 4 3
Conflict in students’ predictions 1 -

Tutors Important concept 16 16
Verify proper understanding 6 -
Show alternative solution 4 -
Correct own mistake 1 -
Verification check list - 1

Exercises Exercise statement 13 -
Total 73 21

90 Chapter 8. Second Iteration: Characterisation

8.2.1.2 Subgoal learning

For subgoal learning, we only observed triggers from two of the three sources
mentioned above.

Tutors. Tutors would mainly decide to read an SLWE or use it to solve
a similar problem, for introducing new concepts, or to summarise a
concept at the end of a week (16 times). One tutor would also use
the labels as a check list to verify that a proposed solution contains
all the needed steps of the solution (1 time).

Students. Students were a second encountered trigger. Tutors would use
the labels or revisit an SLWE after having observed multiple instances
of misunderstanding (3 times) or similar questions by di!erent stu-
dents on a corresponding concept (1 time).

8.2.2 Fidelity of Tutors’ Strategy Implementation

During our analysis of the video recordings of our observations, system-
atic counting of the fidelity criteria was done to understand the fidelity of
implementation of the strategies. While our goal was not to force tutors
to respect the strategies to the letter, we wanted a measure of how often
they did apply the strategy as presented. This data will help us answer the
second research question on the fidelity of implementation of the strategies
by tutors (RQ8.2). Since the criteria were deduced from research literature
on the strategies, the codes for this part of the analysis were a priori codes
and lead to deductive coding (cf. Section 3.4.2). This part of our analysis
was thus of more quantitative nature.

We used the following metrics. We counted how many times each strat-
egy was used by each tutor per session. Then we calculate the percentage
of number of criteria used for these strategy uses. We counted a strategy
as used as soon as at least one of the criteria for the corresponding strategy
was observed in the instructional practice of the tutor. One might argue
that if not all criteria are present, the strategy is not properly used but that
will be the whole point of looking at the adaptations made by tutors in
Section 8.2.3 (RQ8.3).

8.2.2.1 Explicit Tracing

Our measures for the usage of the explicit tracing strategy are summarised
in Table 8.3.

From the 24 observed lab sessions, we can see that overall tutors used
explicit tracing 73 times. The duration of a tracing intervention ranged from
1 minute to 16 minutes with a mean of 3 minutes 27 seconds. Slightly less

8.2. Results 91

than half of the observations (42%) can be considered as expected strategy
uses: the tutor would trace a program line by line, typically with the help
of the students, and update variable values in a memory table. In nearly
all observed strategy uses (99%), an external representation of memory was
used (ET2). In fact, it was not observed in one case only. In that specific
case, T4 traced the program line by line (ET1) but orally and without
external representation. We did observe other instances of oral tracing, but
those were quickly followed by the use of a memory table and were counted
as using one. The di!erent usage variations of this strategy are discussed in
Section 8.2.3.1. When only an external representation was used (i.e., ET2
without ET1 nor ET3), it was to illustrate a specific state of the memory
at a specific moment of the execution. It was often used to illustrate the
outcome of an execution or the starting state before the execution. Often,
such sketches would serve as a basis for more explanations by the tutors but
without actual tracing or value updates. This has been observed 21 times.
In all 51 occurrences of value updates (ET3), an external representation was
used (ET2), but sometimes without a systematic line by line tracing (ET1).
This occurred typically when a tutor would draw a sketch of the execution
and update variables while making shortcuts in his or her explanations or
when they would explain the steps of the program but without referring to
the code.

8.2.2.2 Subgoal learning

Our measures for the usage of the SL strategy are summarised in Table 8.4.
The first observation from the data is that the subgoal learning strategy

has been used much less than the explicit tracing strategy. Most of the 21
observed uses were pretty shallow with nearly half matching only one criteria
(11 times) which often was only mentioning the labels (SL3: 7 times) or
providing a detailed worked example solution (SL2: 3 times) on the board

Table 8.3: Measures of fidelity of implementation for tutors’ usage of the
Explicit Tracing Strategy.

Tutors Uses Number of fidelity criteria observed
3 2 1

7 73 31 (42%) 20 (27%) 22 (30%)
Which fidelity criteria observed
ET1 ET2 ET3

32 (44%) 72 (99%) 51 (70%)

92 Chapter 8. Second Iteration: Characterisation

Table 8.4: Scores of fidelity of implementation for tutors’ usage of the
subgoal learning strategy

Tutors Uses Number of fidelity criteria observed
4 3 2 1

7 21 3 (12%) 1 (4%) 10 (40%) 11 (44%)
Which fidelity criteria observed

SL1 SL2 SL3 SL4
6 (24%) 8 (32%) 20 (80%) 12 (48%)

for the students or discussing/reminding the students of specific labels not
to forget before solving an exercise. In 6 occurrences, mentioning labels
(SL3) was done while solving a practice example with the students (SL4).
These cases represent the majority of occurrences of two criteria for the
strategy. This is a typical use of the strategy that we expected when a
tutor would solve with the students a similar problem as one illustrated in
the training document using a similar solving procedure. In two occurrences
though, the labels were discussed by the tutor (SL3) and a worked example
to illustrate them (SL2) was provided. In 3 occurrences, we observed the
four criteria, which means that the tutor would use the document (SL1) with
the students, provide an equivalent worked example (SL2) or go through the
worked example of the document while discussing the labels (SL3) of the
corresponding solving steps and then apply the solving procedure to solve a
similar exercise (SL4).

Globally, it seems that it was more di"cult for tutors to apply the subgoal
learning strategy. This might be explained by the need to present the labels
to the students. Tutors might not have been prepared enough. Tutors
mentioned also in the first iteration they were less familiar with this more
abstract strategy than with explicit tracing.

8.2.3 Tutors’ Adaptation of Strategies

Finally, we also performed a qualitative analysis to understand and observe
which adaptations were made by the tutors to the strategies they used and
how far di!erent tutors’ instruction diverged from the proposed instructional
strategies (RQ8.3). For that, we analysed expected and partial uses of the
strategies. Figure 8.3 illustrates expected uses and adaptations of both
strategies. The coding of the segments was done with the fidelity criteria
and also directly induced by the observations. Our acceptation of what
constituted an adaptation was broad and is detailed in the following. We
present the observed adaptations of strategies by tutors and, as a result of

8.2. Results 93

a thematic analysis (cf. Section 3.4.2), we categorise them in three kind of
adaptations: additions, e!ects and misuses.

Additions. These additions are small adaptations made by the tutors to
the proposed strategy. We hypothesise those adaptations will mainly
have a neutral or small positive e!ect on the outcomes of the strategy.

E!ects. These e!ects are observed changes to tutors’ instructional prac-
tice. They are not modifications to the strategy itself but observations
of recurring instructional change in tutors’ practice.

Misuses. These are adaptations made by tutors that we hypothesise might
lessen the outcomes of the strategy.

8.2.3.1 Explicit Tracing

Additions

Inverse tracing. In this interesting adaptation of the explicit tracing strat-
egy, we observed multiple cases of inverse usage of an external repre-
sentation. By this we mean, from a misunderstanding of a statement,
a tutor would advise to use or use himself an external representation
of the expected output or even a sequence of dynamic manipulation
on a drawing and this would then serve as a basis to write the so-
lution program to the statement. It is interesting to notice that in
several instances, this practice was quite dynamic in the sense that
the external representation would be updated while discussing with
the students the steps needed to achieve the expected output. This
addition was observed 10 times (in 7 di!erent sessions by 4 di!erent
tutors).

Progressive tracing. Another typical use of explicit tracing was a progres-
sion in the details added to the sketch. A tutor would typically explain
the solution orally, then do a first drawing with very few details, some-
times with generic elements. And when students would still require
explanations, they would fall back to a full line by line systematic use
of the strategy and update the drawing systematically. This addition
was observed 9 times (in 6 di!erent sessions by 4 di!erent tutors).

Tracing of program variations. Using an external representation was some-
times triggered by a di"culty identified by the tutor, through a mis-
understanding or in response to a question from a student. In such
cases, after tracing the program in question, another adaptation we
observed was that tutors would ask students to evaluate expressions

94 Chapter 8. Second Iteration: Characterisation

based on slight variations of the code and check whether they under-
stood it properly with the help of an external representation. This
addition was observed 8 times (in 6 di!erent sessions by 4 di!erent
tutors, one did it 4 di!erent times).

Coloring updates. Tutors would sometimes use di!erent colors to note
updates in the traces to make them more visible. This addition was
observed 6 times (in 6 di!erents sessions by 5 di!erent tutors).

E!ects

Representation-based explanation. An interesting positive e!ect observed
nearly every time an external representation was used, is that this
representation served as a basis for further explanation. Tutors would
often gesture towards the memory representation, replaying with their
hand the evolution that brought the memory in its actual state. This
e!ect was observed 47 times (in 19 di!erent sessions by all tutors.
One used it 24 times over 4 sessions and the others between 1 and 7
times). An example is given in Figure 8.3a.

Collaborative tracing. Instead of just verbalising aloud their thought pro-
cesses while tracing, tutors often involved their students in the eval-
uation of the expressions and updating the memory table. Tutors
would often ask the class questions such as: “Do I enter this while
loop?” (T5), “What is the new value of this variable? What do I
write here?” (T4) while pointing in the table towards a value to up-
date. This e!ect was observed 29 times (in 14 di!erent sessions by
all tutors. Tutors used it between 1 and 9 times).

Encouraging discussions. In multiple instances, tracing code stimulated
relevant questions from the students, explanations from the tutors,
etc. Students would ask about small variations and exchanges be-
tween students and the tutor would occur naturally. This e!ect was
observed 9 times (in 8 di!erent sessions by 5 di!erent tutors).

Code annotation. Tutors would sometimes write down intermediate values
directly in the code. This often happened for compound expressions
that did not appear directly in the table. This was sometimes used
in conjunction with a memory table, but sometimes not. This e!ect
was observed 6 times (in 5 di!erent sessions by 5 di!erent tutors).

Program explanation. While tracing, tutors would sometimes give more
natural language explanations about the code. As they built the mem-
ory table on the board, copying variable names and initial values or

8.2. Results 95

Figure 8.3: Some examples of both strategies used by tutors. (a) and (c)
are expected uses while (b) and (d) are observed adaptations. Permissions
to publish these pictures have been granted by the tutors and students.

(a) Expected use of the Explicit Tracing with Representation-
based explanation e!ect.

(b) Oversimplified memory representation (not all variables are
sketched).

(c) Expected use of the Subgoal
Learning through (colored) code an-
notations.

(d) Unlabeled subgoals during an ex-
planation of alternative solutions for
list traversals.

when they executed specific lines of a program, tutors would naturally
explain the role and reasons for those variable names or the executed
statements. Tutors seemed naturally driven to give more comments
about the names and constructs used in traced code. This e!ect was
observed 6 times (in 4 di!erent sessions by 3 di!erent tutors. One
used it 4 times over two sessions).

96 Chapter 8. Second Iteration: Characterisation

Misuses

Oversimplified memory representation. Often, tutors would not use the
proposed memory representations and would simplify a lot their draw-
ings. Sometimes, this translated in incomplete drawings, oversimpli-
fied notations (e.g., object instances without attribute names), or very
partial sketches. Those less detailed drawings sometimes evolved in
more refined traces as with progressive tracing. This misuse has been
observed 32 times (in 14 di!erent sessions by all tutors. One used
it 12 times over 4 sessions, it was also the tutor who used explicit
tracing the most overall). An example is given in Figure 8.3b.

Tracing aloud. Tutors would sometimes do the tracing out loud, without
the code available to the students or at least without them following.
The tutor executes the code in their head and just give the di!erent
values aloud as if it were evident. This often triggered a progres-
sive tracing e!ect. This misuse was observed 6 times (in 6 di!erent
sessions by 5 di!erent tutors).

8.2.3.2 Subgoal learning

Additions No addition was observed.

E!ects

Shared vocabulary. A positive e!ect of the SL strategy is that since the ex-
planations of the solution steps use a specific vocabulary, tutors would
use themselves but also encourage students to use a more precise vo-
cabulary when talking about their code, so that they could associate
it more easily with the corresponding SLWE. A tutor, when distin-
guishing arguments from parameters for the function concept would
say “It is important to use the proper vocabulary” (T5). This e!ect
was di"cult to count exactly but was observed in a lot of recordings.

Collaborative code building. On a few occasions, a tutor used the strat-
egy to solve a new problem with the students based on the labels
(SL4). But they did it cooperatively, with a high degree of interac-
tion and students helping to build a correct solution on the board.
The tutors sometimes built correct code only by themselves too. This
notable e!ect was observed 6 times (in 5 di!erent sessions by 3 dif-
ferent tutors).

Explanation of alternative solutions. Since some of the subgoal labels
we used correspond to steps only to follow as the result of an alterna-
tive, when discussing those with the students, tutors had to explain

8.2. Results 97

them and give explanations on the di!erent alternatives. Using the
strategy thus favored discussion and understanding on those specific
points. “If we use a for loop with a range, the i variable will suc-
cessively have the value from 0 to the end of the list. l[i] will have
exactly the same value as the element of the list and this can also be
achieved by iterating with the form for e in l. [. . .] Who can tell
me when we should prefer one or the other form?” (T5). This e!ect
was observed 6 times (in 4 di!erent sessions by 4 di!erent tutors).
An example of this e!ect is shown in Figure 8.3d.

Misuses

Unlabeled subgoals. The labels provide a shared vocabulary. But in some
observations, tutors would not use the labels, or only just a few. In
those cases, tutors would discuss about subgoals linked to a con-
cept but without mentioning the corresponding name of the label or
without referring to the generic problem solving procedure. Some ex-
amples were tutors discussing list traversal with the students without
mentioning the provided labels in the document, or a tutor discussing
the importance of naming for classes and attributes without referring
to the corresponding SLWE. This misuse was observed 12 times (in
8 di!erent sessions by 4 di!erent tutors). An example is shown in
Figure 8.3d.

Tutor-defined labels. On a few occasions, we also observed tutors using
other labels than those provided in the SL document. It was because
they did their own attempt at labeling the important solving steps
for a given concept or because they misunderstood the strategy as a
“divide and conquer” strategy and would develop subgoals for solving
a problem, label them, and then annotate the solution code with
those di!erent subgoals. In those cases, subgoals and labels would
not be complete or generic. This misuse was observed two times (in
2 di!erent sessions by 2 di!erent tutors).

Oral annotation. One tutor tried to apply the strategy by reading and
mentioning the labels and subgoals while students were writing their
solution on the board. This caused confusion since students in the
classroom were trying to read the code first. Explicitly annotating the
code as exemplified in the document was more e!ective.

8.2.3.3 Combined strategies

Subgoal learning with external representation. Observed on 4 di!erent
occasions during 3 di!erent sessions given by 3 di!erent tutors, tutors

98 Chapter 8. Second Iteration: Characterisation

would reuse the labels of a specific concept and illustrate the di!erent
steps and cases covered by the labels with an external representation.
On one of those occurrences, for writing the code solution for inserting
a node in a linked list, the adaptation was combined with the “Inverse
tracing” variation of the explicit tracing strategy and the code of the
solution was built based on the sketches.

8.2.4 Threats to Validity

Again, as in Section 6.3.5, the small number of 7 participants and the fact
that they volunteered for this study poses obvious threats to generalizations
beyond the context of our study. However, we rigorously based our anal-
ysis on 24 observations. We reported for each trigger and adaptation the
number of times they had been observed so that the reader can consider
their prevalence. Our main goal was to characterise tutors’ usage of the
proposed strategies in this second iteration in order to refine the design of
our next design intervention.

The high number of adaptations and misuses (nearly half of the strategy
uses for explicit tracing) show that it is not trivial for tutors nor necessarily
advisable for tutors to apply instructional strategies as is. A lack of rigor in
the use of a standardised memory representation was at the root of many
misuses. It is di"cult to assess the origin of these partial implementations
of the strategies. Tutors mentioned in interviews that they were doing
that deliberately, mostly for time reasons and for “fast forwarding” to the
student’s actual mistake. It could also be that tutors could benefit from
more pedagogical training and follow up to remedy their misuses.

It is important to note that some prompts were already present in the
course material for making drawings and memory representations. These
assignments however were not explicitly linked with the systematic line-
by-line explicit tracing strategy. This might have biased the number of
observed uses of this strategy by raising it. However, Table 8.2 shows
that only roughly one in five of the explicit tracing uses were triggered by
exercise statements. Also, the fact that exercises statements can be used
for triggering strategy usage will lead to a more systematic use of prompts
for the subgoal learning strategy integration in the next chapter.

8.3 Conclusion

In this study, we analysed how seven tutors adopted two explicit instruc-
tional strategies in a CS1 course. The two chosen strategies were selected
because they are research-based, recognised as e!ective instructional strate-
gies and designed to reduce the cognitive load of the learners. We based

8.3. Conclusion 99

ourselves on the education change literature to analyse the fidelity of imple-
mentation and the adaptations that tutors made to the strategies. Based
on that, we derived fidelity criteria for both strategies based on the corre-
sponding literature. We used a mixed methodology to treat three research
questions by coding tutors’ session recordings: we did a qualitative analy-
sis of the observations to understand what triggers strategy usage by the
tutors; we quantified based on our criteria the fidelity of implementation of
both strategies; we further qualitatively analysed the di!erent adaptations
made by the tutors to the strategies.

The first result we can draw from the analysis of our observations is that
Explicit Tracing was more used than Subgoal Learning. We identified three
main categories that could trigger either strategy. Events that made tutors
use a strategy originated either from: the students (their questions, their
mistakes and their misunderstandings); the tutors (their preparation, the
importance of concepts and their modeling of solutions and alternatives);
the exercises (when prompting to trace). Both strategies were adopted by
tutors with adaptations, simplifications and even by combining them. The
fidelity of implementation of the explicit tracing strategy was higher than
for the subgoal learning strategy. Tutors used overall a lot of external rep-
resentations with a variety of adaptations. In their main use, they progres-
sively transitioned from an oral explanation to a detailed line-by-line tracing
depending on students’ needs and understanding. The subgoal learning
strategy took more time to apply and was often applied partially. A sig-
nificant number of adaptations for both strategies have been documented.
These adaptation were categorised as additions, e!ects and misuses. We
hypothesise most of these additions and side-e!ects marginally favor the
expected outcomes of the strategy. The main obstacle to the use of both
strategies seems to have been a lack of time since we can see that a full
use of the subgoal learning strategy could take up to half an hour. While
many adaptations were made, some seemed to be an incomplete use of the
strategies or a misunderstanding by the tutor of the strategy. Based on
our analysis, we proposed some pieces of advice to teachers responsible for
introductory programming courses.

Tutors’ feedback again pointed to the time constraints of introducing
students to the SLWEs. It is not uncommon for TAs to mention time
constraints as a threat to best practice [Rie+21]. Integrating them in the
course material and observing the impact on strategy use in classroom would
be an interesting lead to explore. We hypothesize that in such a setup,
subgoal learning would be used more by the tutors. The next chapter
will present the integration of the subgoal learning strategy throughout the
course, taking into account the advice to practitioners proposed in this
chapter. The Koli publication this chapter is based on already proposed in

100 Chapter 8. Second Iteration: Characterisation

it’s future work section to use trained observers that could help in such an
experimental setup with an observation grid to fill out immediately during
class observation.

Third Iteration:
Integration 9

!
This chapter is largely based on the paper:
O. Goletti, K. Mens, and F. Hermans. “An Observational Study
of Undergraduate Teaching Assistants’ Use of Subgoal Learning
Integrated in an Introductory Programming Course”. In: Pro-
ceedings of the 2024 ACM SIGPLAN International Symposium on
SPLASH-E (SPLASH-E ’24). Pasadena, CA, USA: ACM Press,
Oct. 2024. doi: 10.1145/3689493.3689986.

Extending the research presented in Chapters 6 and 8 on the integra-
tion of explicit strategies and following design research principles in educa-
tion [Bak18], this chapter presents the integration of subgoal learning (SL)
throughout the studied course. We followed the advice to practitioners pro-
posed in the previous chapter. Since prompts to the strategy were a big
trigger (cf Table 8.2) for strategy use and since tutors mentioned lacking
time to properly introduce subgoals to students during their lab sessions,
in this study, we integrated SL throughout the course by integrating these
labels in the di!erent resources of the course: course’s slides, exercises’
statement, UTAs training and material. Our goal is to bring research to
practice [Sen21] and to observe and analyse how 21 UTAs make actual
use of subgoal learning as explicit instructional strategy in their teaching
practice. We extract empirical evidence for instructional design advice on
the integration of subgoal learning throughout a CS1 course. This chapter
answers the following research questions:

RQ9.1 What are the e!ects of subgoal learning integration on UTAs’ uses
of the strategy?

RQ9.2 How do UTAs use the subgoal learning strategy according to our
fidelity of implementation criteria?

RQ9.3 Can we classify UTAs’ usage of the strategy in categories according
to their observed usage and self-reported opinion on their usage of
subgoal learning?

101

https://doi.org/10.1145/3689493.3689986

102 Chapter 9. Third Iteration: Integration

We will also discuss briefly what is the level of students’ awareness of the
strategy.

9.1 Study Design and Methodology

This section describes the methodology followed to integrate subgoal learn-
ing in the course and to collect and analyse data during the study. Figure 9.1
presents a comprehensive timeline of the di!erent moments in the semester
when training and data collection were done.

We used a mixed-method approach in our study. We used qualitative
analysis throughout both the coding of observations and surveys. To answer
RQ9.3 we wanted to be able to cross the results of the observations of the
21 UTAs made by our 6 observers, the UTAs’ self-reported perception on
their appropriation of the strategy and the students’ perspective.

In Figure 9.1, for each observed week, an id of the type “wXmY” is used.
It stands for “week number X of the semester and mission number Y of the
course”1. Apart from the training week (w3m2), three other weeks were
observed, each of which with its associated course topics and concepts:

↭ w5m4 on list traversals and functions;

↭ w7m6 on file manipulation and exceptions;

↭ w12-13m11 on the linked list data structure.

9.1.1 Subgoal Learning Integration

In our current study, we identified key resources of the course that could
be impacted by the integration of Subgoal Learning (SL) and designed a
fading approach for the integration of subgoals and labels in the course, in
accordance with CLT inspired instructional principles. The present study
makes use of our own subgoals and labels developed and adapted to the
concepts and language (Python) of our own CS1 course (cf. Chapter 7).
Table 9.1 presents for each course moment as presented in Figure 4.2, what
sta! is involved, what resources mobilised and how SL was integrated.

The subgoals used in our study are specific to the concepts seen in the
course and adapted to Python. They were written following a task analysis
procedure as describe in Chapter 7. The concepts covered are: assignment,
conditionals, while loop, for loop and sequence traversal, functions, file read,
file write, dictionary update, adding a node to a linked list and removing a
node from a linked list.

1
Typically, Y = X - 1, except for the last mission wich was spread over two semester

weeks.

9.1. Study Design and Methodology 103

Figure 9.1: Timeline of the semester with observers’ training weeks in green
and actual observations in purple

semester21/09
Observers’ Training

w2m1

Observers’ Coding Homework
25/09 - 29/09

26/09
UTAs’ Training

w3m2

Observers’ Training Week
02/10 - 06/10

w5m4

First Obs
16/10 - 20/10

12/10
Debrief1

w7m6

Second Obs
30/10 - 03/11

26/10
Debrief2

02/11
Survey1

w12-13m11

Third Obs
04/12 - 15/12

01/12
Students’ Survey

09/11
Debrief3

21/12
Debrief4

22/12
Survey2

Table 9.1: Resources used in the course per moment and how they were
adapted to integrate subgoal learning. (T = Teachers; TA = Teaching
Assistants; UTA = Undergraduate Teaching Assistants; S = Students-; SL
= Subgoal Learning; SBS = Step-By-Step SLWEs; SLFS = Subgoal Labeled
Final Solution; RQ = SL integration done by tutors we are researching in
this chapter).

moment sta! audience resource SL
Tutor briefing i T + TA UTA oral
Lecture week i T S introduction

slides
SBS

Preparation phase - S exercises
syllabus

prompts

Tutored start-up
session

UTA S exercises
syllabus

RQ

Realisation phase - S exercises
syllabus

-

Realisation evaluation UTA correction
guide

SLFS

Tutored sum-up
session

UTA S correction
guide

RQ

Lecture week i + 1 T S restructuring
slides

SLFS

We distinguish two di!erent types of subgoal labeling utilisation. (1)
Step-By-Step Subgoal labeled worked examples (SBS) are worked examples
that use each label one by one to illustrate at each step how the generic
corresponding subgoal for that concept is used in a concrete example. The
integration of such SBSs is mainly done by teachers during their lectures,
but a UTA using the labels and solving procedure to provide students with
an exercise solution could also use SBSs. In order to integrate SBSs in the

104 Chapter 9. Third Iteration: Integration

course, we had to modify teachers’ slide decks and this took some work
back and forth with teachers. (2) Subgoal Labeled Final Solutions (SLFS)
would be used after the labels had already been introduced once. The aim is
to show final solution or solved examples without necessarily going through
the whole solving process but by annotating what code pertains to what
label. Typically, those would be shown in the teachers restructuring slides
to remind students of the labels or the result of an UTA annotating code
on the blackboard during a lab session.

The integration of SL in the course consisted in the modification of
the slides with SBSs and SLFSs, as shown in Figure 9.2. This allowed for
the introduction and repetition of the labels for the students in a passive
way. Since it was also new for the teachers, some details on the extended
subgoals, not just the labels, were also added in their presenter notes. Since
we knew that prompts in students’ exercises statements were also triggers
for strategy use, we also added the labels in the first exercises making
use of the targeted concepts. The labels are linked each time to a complete
SLFS listing, called the catalogue, where the subgoals, labels and annotated
examples (SLWEs) are gathered per concept. This full catalogue is available
to the students as an appendix of the exercises syllabus2. Prompts are a
list of the labels or simplified subgoals with a link to this catalogue.

The last integration step relates to the UTAs. Next to the training of
UTAs, we add reminders in the correction guide for UTAs that they will
use for the “Realisation evaluation” 3. This helps them to know where and
when new concepts are used and which labels to use. This information is
also discussed during the weekly “Tutor briefing” meetings with the UTAs.

9.1.2 UTAs’ Training and Follow up

In our new course design, the subgoal learning integration is systemic through-
out the whole course, its material as well as its teaching methodology. All
UTAs followed a mandatory training before the beginning of the course,
consisting of theoretical background on the SL strategy, a description and
demonstration of when and how to use the strategy, recording extracts from
previous observations of good use and misuse and previous results, like the
main triggers for strategy use (cf. Section 8.2.1). Follow up sessions for
the UTAs occurred during the weekly “Tutor briefing” meetings. Questions
were asked weekly on UTAs’ strategy uses, feedback and rich discussions
occurred between the UTAs and with the sta!. Subgoals and labels corre-
sponding to the weekly concepts were discussed during those meetings and

2
https://syllabus-interactif.info.ucl.ac.be/syllabus/info1-exercises/EXTRA

3
I.e., the evaluation of and feedback by UTAs on a weekly assignment made by the

students on the course topic of that week (cf. Chapter 4).

https://syllabus-interactif.info.ucl.ac.be/syllabus/info1-exercises/EXTRA

9.1. Study Design and Methodology 105

Figure 9.2: Modified slide with the code annotated with (French) subgoals
and the presenter notes for the teacher. The presenter notes have been
translated from French for readability.

strategy use was encouraged.

9.1.3 Fidelity of Implementation and Deductive Codes

The criteria used to measure fidelity of implementation were adapted from
Chapter 8 to take into account the integration of the presentation of the
di!erent subgoals in the course. Subgoals and labels are now introduced
directly during the lectures by the teachers, so that tutors don’t have to
introduce them during their one hour lab sessions. The criteria, derived
from literature, adapted and refined for this study are:

SL1 The strategy or the catalogue is mentioned;

SL2 The tutor solves a similar problem in a worked example;

SL3a The tutor reminds the students about one of the subgoals of a con-
cept;

SL3al The tutor reminds the students about one of the subgoals of a con-
cept with mention of the label;

SL3b The tutor reminds the students about all the subgoals of a concept;

SL3bl The tutor reminds the students about all the subgoals of a concept
with mention of the labels;

106 Chapter 9. Third Iteration: Integration

SL4 The solving procedure of a concept is used to solve a practice exercise
with the students.

During the coding, we noticed some observers made a di!erence in
coding when UTAs mentioned one or all the subgoals of a concept and with
or without the provided labels. Since this was an interesting distinction
that brought nuance to strategy usage, it led us to separate SL3 from
Section 8.1.3 across these two dimensions. SL3a and SL3b are with one or
multiple subgoals but without mention of the labels, whereas in SL3al and
SL3bl the labels are explicitly mentioned. So in the end we split SL3 into
four sub-criteria that are mutually exclusive. This mention of the subgoals
can either be done orally or by code annotation.

Based on this distinction, we will also introduce the notion of “stronger”
use of the strategy when either two or more criteria are being used at the
same time, or when SL3 is used with the labels being mentioned explicitly
(ie. SL3al or SL3bl).

9.1.4 Observations

Since the intervention of this study involved a full integration of an in-
structional strategy at the scale of a whole CS1 course (→600 students),
it involved 21 UTAs and 22 di!erent lab sessions. The 11 missions of the
course (2 lab sessions per week) are organised following five di!erent se-
ries, dependent on the students’ program, each with their own schedule.
Two series for a total of 358 engineering students, two series for a total
of 169 computer science students, and one series for 69 mathematicians
and students with other backgrounds. Together, the series amounted to 27
di!erent classrooms of →24 students, each with their own (U)TA or in total
594 sessions to be observe. Among these 27 classrooms, 25 are tutored
by UTAs (the other two by doctoral students, TAs), but only 21 of them
agreed to participate in the study (ie. being observed and recorded during
the whole semester).

In order to observe enough di!erent UTAs on di!erent sessions, 6 master
students were recruited as observers. Five of them were paid as part of a
student’s job and the sixth one participated in the scope of his master thesis.

The observers were trained in the SL strategy with the same material
used for tutors but also on what to observe and how to report it. They
were tasked with the recording of the sessions and (pre)coding of those
videos. Since the observers are CS master students and not qualitative re-
searchers, they needed a training for their observation and coding tasks.
Also, they were asked to do deductive coding based on the fidelity of im-
plementation criteria of Section 9.1.3. We assigned them to code three
recording extracts from past observations. Their coding was then discussed

9.1. Study Design and Methodology 107

and corrected. Moreover, a first round of observation in classrooms was
dedicated as a training week, so they could test their recording setup (their
smartphone), and the time it took them to code. Most of them took
notes during the lab sessions, then later watched again the recording to
refine their coding. Both the recording and coding of each session was then
uploaded to a shared repository according to a simple naming convention
obs/YYYYMMDD-HHHH-room. The first author was able to download, watch
and control the observation process.

Each observed week, observers were randomly assigned to three to four
sessions. For example, for w7m6, one observer was assigned two “Tutored
start-up sessions” (noted session w7m6-1): those of tutors T15 and T18
and two “Tutored sum-up sessions” (noted session w7m6-2): those of T14
and T13.

Each observer did between 8 and 11 observations spread over the three
selected weeks as seen in Figure 9.1. For each session they observed, they
had to record the session and code the observed strategy uses by the UTA. A
line in the coding file consists of a timestamp, some notes on the context,
an eventual quote and the code itself. For each strategy use, they were
asked to also note the trigger. Their coding was then reviewed by the first
author who coded entirely three sessions of each observer. The SL3 codes
had to be corrected and some strategy uses that were not generic enough
had to be removed, some repetitions of codes for a same strategy use also
had to be removed. Nevertheless, globally the observers coded accurately
and thanks to their notes and quote fields, all corrections could be applied
to the entire coding.

9.1.5 Surveys

UTAs’ Surveys. To answer RQ9.3, we crossed the observations data
with self-reported data from UTAs through surveys. At two points in the
semester, UTAs were asked to fill a survey on their usage of the strategy.
They were asked Likert-scaled questions on familiarity, frequency of use and
opinion on the pedagogical value of the strategy. They were also provided
with more open questions on their strategy usage. For the first survey, we
asked for their agreement level on the following items:

S1Q1 I feel confident about giving my lab sessions;

S1Q2 I can see how to use the subgoals in practice in my lab sessions;

S1Q3 I had time to prepare my sessions this week;

S1Q4 I was influenced by the subgoals to prepare my sessions this week;

108 Chapter 9. Third Iteration: Integration

S1Q5 I used the subgoals during my sessions this week;

S1Q6 I thought about using the subgoals during my sessions this week but
didn’t actually do it.

For the second survey, the same items as the five last ones of the first
survey were proposed but with a more global timeline (i.e. “my sessions
this week” was replaced by “my sessions”). Moreover, seven new opinion
items were added in the form of “I think the subgoals are useful”:

S2Q7 for all students;

S2Q8 for stronger students;

S2Q9 for weaker students;

S2Q10 for all concepts;

S2Q11 for some concepts;

S2Q12 more for introducing concepts;

S2Q13 more for restructuring concepts.

Students’ Survey. One survey was also passed to the students of the
course. It mainly consisted of Likert-scaled questions on their awareness,
familiarity and perception of the subgoal learning strategy and its integration
in the course.

9.2 Results

9.2.1 Observations

In the end, 74 observations were made, 12 of which during w2m1 for training
purposes. Each lab session is supposed to last one hour but the UTAs have
sometimes room for more, so we ended up coding more than 62 hours of
video.

Strategy Uses. Figure 9.3 presents the normalised number of uses and
“stronger” uses per session of the strategy for each UTA4. With a mean
of 3.92 observed uses of the strategy per session (see Table. 9.5), we can
answer RQ9.1: the integration of subgoal learning throughout the course
pushed UTAs to e!ectively use the strategy. We can also see that the vast
majority (16 out of the 21 studied UTAs) use on average 3 times or more

4
UTAs are referred to as TXX (T from tutor and XX is an id between 01 and 21)

throughout the Results Section.

9.2. Results 109

Figure 9.3: Normalised number of use of the SL strategy per session for
each UTA. The darker bottom part of each bar corresponds to “stronger”
uses. In red: the engineering program, in green: the math program, in
blue: the CS program.

the strategy per session. The rest of this section will answer RQ9.2 on the
observed fidelity criteria.

From Table 9.2 we can see that the most used criterion is SL3 (214 times
in total), i.e. mentioning one or more subgoals with or without especially
mentioning the labels. This occurs naturally in a UTAs’ mentoring when
reexplaining a concept. Only generic subgoals explanations were coded as
such, not explanations linked to the specific context of an exercise.

From Table 9.2 we also see that SL3 was mostly used alone. Drilling
down in detail in Table 9.35, it was flagged as criterion SL3a (53↑), SL3al
(38↑), SL3bl (26↑) and finally SL3b (21↑) or in total 138 times or more
than half of the total 243 strategy uses. The strategy was mostly used to
explain a single subgoal at a time (53+38=91 with only one subgoal vs.
26+21=47 with multiple subgoals) and the labels are explicitly mentioned
38+26=64 times or nearly for half of the SL3 single uses.

5
For conciseness and readability these details were dropped from Table 9.2 in the

original publication and added as Table 9.3 in the dissertation.

110 Chapter 9. Third Iteration: Integration

Table 9.2: Number of occurrences of each observed combination of criteria
(with SL3 sub-criteria summed for readability).

criteria SL1 SL2 SL3 SL4 n_occ
↑ 138

↑ ↑ 44
↑ 20

↑ ↑ 13
↑ ↑ 9
↑ 8
↑ ↑ ↑ 8

↑ ↑ 1
↑ ↑ ↑ 1

↑ ↑ ↑ 1
total 26 67 214 23 243

% 11 28 88 9 100

Illustrated further by Table 9.2, when SL3 is used with other criteria,
it is mostly (44↑) with SL2 for detailing the steps in a worked example.
This corresponds to an UTA demonstrating how to use a specific concept
while mentioning the subgoals they want to highlight. This is done either
orally or by annotating code on the blackboard. An example of SL3bl with
blackboard annotations is provided in Figure 9.4a. For oral SL3 strategy
usage, the triggers were mostly the exercise prompts or the correction of
an exercise. SL3bl was observed 17↑ with SL4 (among which 8↑ also with
SL1), those are the “strongest” uses of the strategy we can hope for. Again,
adaptations of the strategy usage were also observed, for example six UTAs
would make the students recite the subgoals for a concept (like writing a
function or opening a file). One UTA also proposed a skeleton of a solution
code based on the subgoals for helping the students to visualise this generic
template (see Figure 9.4c).

The second most used criteria is SL2, i.e. providing students with a
worked example. This was mainly used for demonstrating the use of a
concept, at the start of a session or to illustrate an alternative solution.
SL2 was used 20↑ alone as a criterion, and 44↑ with SL3 as mentioned
above. An example of SL2 and SL3 is provided in Figure 9.4d.

SL4 was only observed together with other criteria, and mainly with
SL3bl which makes total sense since it represents a reuse of the subgoals
to solve another similar problem with the tutors. SL1, mentioning the
catalogue, was observed 26↑ in total and only 8↑ alone. This low use of
the catalogue might be an indication of a misunderstanding or a lack of

9.2. Results 111

Table 9.3: Number of occurrences of each observed combination of criteria.

criteria SL1 SL2 SL3a SL3al SL3b SL3bl SL4
↑ 53

↑ 38
↑ 26

↑ 21
↑ 20
↑ ↑ 17
↑ ↑ 10
↑ ↑ 10

↑ ↑ 9
↑ 8
↑ ↑ ↑ 8

↑ ↑ 7
↑ ↑ 7

↑ ↑ 2
↑ ↑ 1

↑ ↑ 1
↑ ↑ 1

↑ ↑ ↑ 1
↑ ↑ 1
↑ ↑ 1
↑ ↑ ↑ 1

total 26 67 72 48 34 60 23 243
% 11 28 30 20 14 25 9 100

training and/or preparation of the UTAs. An example of SL4 used with
SL3bl is an UTA annotating or mentioning the subgoals labels and using
them to solve a new example, what we called earlier an SBS for step-by-step
use of the strategy. An example is provided in Figure 9.4b.

Apart from these criteria uses, we can see in Table 9.5 that most strategy
uses were accounted for in w7m6. That week concept was file manipulation.
In the upper part of the table, both w7m6-1 and w12-13m11-1 have the most
strategy uses per session. We can see that the start-up sessions gathered
significantly more strategy uses than sum-up sessions, meaning that UTAs
use the strategy more often when introducing concepts.

There seemed to be little or no impact of the student audience on strat-
egy usage (i.e., either engineering students or computer science students6).

6
Since the Math. audience was only observed six times it is hard to draw conclusions

112 Chapter 9. Third Iteration: Integration

Figure 9.4: Some strategy use examples from the recordings.

(a) SL3bl example.
(b) SL3bl (oral) with SL4 example
with code skeleton.

(c) SL3bl annotations during stu-
dents’ code correction. (d) SL3bl with SL2 example.

Table 9.4: Number of observed triggers by source.

source trigger code n
UTA before an exercise t1 40

as a correction check-list t2 39
before a session t3 21
to show a better solution t4 13
as an exercise for students t5 8
sub-total 121

Exercise prompts e1 63
sub-total 63

Student question from a student s1 29
to help student solve exercise s2 18
misunderstanding s3 7
bug in a student’s code s4 5
sub-total 59

Total 243

from that.

9.2. Results 113

Ta
bl

e
9.

5:
N

um
be

r
of

tim
es

ea
ch

fid
el

ity
of

im
pl

em
en

ta
tio

n
cr

ite
rio

n
w

as
ob

se
rv

ed
pe

r
m

iss
io

n,
se

ss
io

n
or

pr
og

ra
m

.
*

m
ea

ns
al

ld
i!

er
en

t
va

lu
es

ar
e

co
ns

id
er

ed
,w

hi
ch

m
ak

es
th

e
la

st
lin

e
an

ag
gr

eg
at

ed
to

ta
lo

fa
ll

ob
se

rv
ed

us
es

.
T

he
“S

L3
(!

)”
co

lu
m

n
ad

ds
up

th
e

fo
ur

SL
3

su
b-

cr
ite

ria
.

T
he

la
st

co
lu

m
n

gi
ve

s
a

no
rm

al
ise

d
st

ra
te

gy
us

es
pe

r
se

ss
io

n
va

lu
e.

m
iss

io
n

se
ss

io
n

pr
og

ra
m

SL
1

SL
2

SL
3a

SL
3a

l
SL

3b
SL

3b
l

SL
3

(!
)

SL
4

us
es

st
ro

ng
us

es
n

us
es

/
se

ss
io

n

w
5m

4
1

*
5

9
14

5
4

5
28

4
35

11
9

3.
89

2
2

16
10

5
6

7
28

3
34

15
11

3.
09

*
7

25
24

10
10

12
56

7
69

26
20

3.
45

w
7m

6
1

*
4

10
16

13
6

24
49

6
63

31
10

6.
30

2
2

10
12

14
2

5
33

1
35

11
12

2.
92

*
6

20
28

27
8

29
92

7
98

42
22

4.
45

w
12

-
13

m
11

1
*

9
13

12
4

9
14

39
9

45
23

9
5.

00
2

4
9

8
7

7
5

19
0

31
11

11
2.

82
*

13
22

20
11

16
19

66
9

76
34

20
3.

80

*
1

*
18

32
42

22
19

43
12

8
19

14
3

65
28

5.
11

2
8

35
30

26
15

17
88

4
10

0
37

34
2.

94

*
*

En
g.

14
39

29
20

15
30

94
13

11
1

48
28

3.
96

CS
11

26
28

19
16

29
92

10
10

4
50

26
4.

00
M

at
h.

1
2

15
9

3
1

28
0

28
4

6
4.

67
*

*
*

26
67

72
48

34
60

21
4

23
24

3
10

2
62

3.
92

114 Chapter 9. Third Iteration: Integration

Triggers. Table 9.4 summarises what triggered UTAs to use the strat-
egy. First, we notice that UTAs remain the main trigger for strategy use and
mainly for reintroducing a concept at the beginning of a session of an exer-
cise, or as a check-list to restructure the concept after an answer has been
given. Then, we can see that the exercise prompts we added accounted for
one out of four strategy. When students are the triggers, it is mainly when
they ask a question or when they need to be guided to solve an exercise,
that UTAs will use the strategy. The e!ect of exercise prompts weight also
in favor of SL integration.

9.2.2 UTAs’ Surveys

Of the overall 25 UTAs of the course, 21 agreed to take part in the research
meaning being observed, recorded and letting us use their data for this
research by answering surveys. Among those, 12 answered the first survey
and 11 the second one. The first survey was sent to the UTAs in the middle
of the semester after all concepts had not yet been seen in the course (see
Figure 9.1 for details). The second survey took place after the end of the
course. UTAs’ answers will help us answer RQ9.3 on classification of UTAs’
usage of the strategy.

Familiarity and Frequency

The results of the Likert-scaled questions on familiarity and frequency of
use for the di!erent concepts are shown in Figure 9.5a, 9.5b, 9.5c and
9.5d.

The data is only partial since not all UTAs answered the surveys. Overall,
we can say that the familiarity of the UTAs with the concepts is reported
as high. There’s more variation in understanding of file operations and
advanced topics. Between the two surveys, most UTAs maintained or im-
proved their familiarity with the di!erent concepts. T02, T05 and T20 have
a lower aggregated score but due to the newest, more advanced concepts.

Regarding the frequency, there’s a general trend towards increased fre-
quency of use for most concepts among the UTAs who participated in both
surveys. The best scoring concepts are loops, file operations and linked list
operations.

We found that UTAs’ self-reported familiarity correlates positively with
their self-reported frequency (Pearson’s correlation r = 0.72, p = 0.00) as
presented in Figure 9.6.

9.2. Results 115

Figure 9.5: UTAs’ aggregated answers from the two surveys to Likert-scaled
questions on their familiarity, frequency and opinion on their use of subgoal
learning.

(a) Familiarity of use of concepts re-
ported in first survey

0%

0%

0%

0%

0%

0%

8%

100%

92%

92%

92%

83%

75%

58%

0%

8%

8%

8%

17%

25%

33%

file.write

file.read

function.

for.loop.sequence

while.loop

conditional

assignment

100 50 0 50 100

I don't know them
I barely know them
I need to read them again
I know them well
I know them by heart

(b) Familiarity of use of concepts re-
ported in second survey

0%

0%

0%

0%

0%

9%

0%

0%

9%

18%

9%

100%

100%

100%

91%

82%

82%

73%

73%

73%

73%

64%

0%

0%

0%

9%

18%

9%

27%

27%

18%

9%

27%ll.remove.node

ll.add.node

class

dict

file.write

file.read

function.

for.loop.sequence

while.loop

conditional

assignment

100 50 0 50 100

I don't know them
I barely know them
I need to read them again
I know them well
I know them by heart

(c) Frequency of use of concepts re-
ported in first survey

17%

25%

42%

42%

50%

58%

83%

83%

75%

58%

58%

50%

42%

17%

file.write

file.read

function.

for.loop.sequence

while.loop

conditional

assignment

100 50 0 50 100

Never
A few times
Several times
As often as I can

(d) Frequency of use of concepts re-
ported in second survey

18%

27%

27%

27%

36%

36%

36%

45%

45%

64%

64%

82%

73%

73%

73%

64%

64%

64%

55%

55%

36%

36%

ll.remove.node

ll.add.node

class

dict

file.write

file.read

function.

for.loop.sequence

while.loop

conditional

assignment

100 50 0 50 100

Never
A few times
Several times
As often as I can

(e) Opinion on the strategy as reported
in first survey

0%

0%

0%

0%

50%

25%

100%

92%

75%

58%

50%

33%

0%

8%

25%

42%

0%

42%S1Q6

S1Q5

S1Q4

S1Q3

S1Q2

S1Q1

100 50 0 50 100

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

(f) Opinion on the strategy as reported
in second survey

0%

0%

0%

27%

0%

9%

27%

18%

18%

27%

45%

27%

91%

91%

73%

73%

73%

64%

64%

64%

64%

55%

27%

18%

9%

9%

27%

0%

27%

27%

9%

18%

18%

18%

27%

55%

S2Q13

S2Q12

S2Q11

S2Q10

S2Q9

S2Q8

S2Q7

S2Q6

S2Q5

S2Q4

S2Q3

S2Q2

100 50 0 50 100

Strongly disagree
Disagree
Neutral
Agree
Strongly agree

UTAs’ Opinion of the Strategy

From the survey results presented in Figure 9.5e and 9.5f, we can see that
Q2 on UTAs vision on how to use subgoals got overall better results in the
second survey, which is good news meaning that with time, UTAs felt they
got better at applying the strategy. Q3’s result on whether they had enough
time to prepare their sessions are a bit worse but overall UTAs complained
more about time during the sessions than the time to prepare. Q4, on the
influence of subgoals on UTAs’ preparation is a bit better in the second sur-
vey. This is, like Q2, interpreted by the amount of practice and experience
UTAs have gained with using the strategy by the end of the course. In their
open answers, the UTAs who used the labels specified they were useful to
structure the session, prepared them to know how to answer students’ ques-
tions or to help them remember the content of the course. Q5 on whether
they declare using the subgoals during their sessions is roughly the same.
Three out of four declared using the subgoals during their classroom sessions

116 Chapter 9. Third Iteration: Integration

Figure 9.6: Correlation between UTAs’ reported familiarity and frequency
of use of the SL strategy.

and the rest is neutral (neither agrees nor disagrees with the statement).
T06 says on this account: “In my opinion, I used the optimum number of
steps; using more would have been counterproductive”. Q6 asked about
whether they at least thought about using the labels even if in the end they
didn’t; here also the results got better with two thirds declaring agreeing
with this item. This shows at the same time more reflection on the UTAs
part, but also that they either forgot or decided not using it during their
sessions. Some UTAs said explicitly that they sometimes chose not to use
the strategy: “I used it less for simpler or mastered concepts, in order to
not confuse students” (T08). UTAs mentioned other obstacles too. Four
mentioned not enough time during sessions and three mentioned that they
themselves did not learn with them: “I haven’t learned to code with sub-
goals, I sometimes forget the point and realise it when a student gets stuck
on something that shouldn’t be too complicated” (T05). Finally, T03 also
mentioned that a lot of exercises do not use all subgoals of a concept but
only a subset.

Questions S2Q7–13 interrogate the perceived usefulness of the strategy.
S2Q7–9 concern the student audience the strategy helps. UTAs think the
strategy is mainly useful for weaker students and one in four do not agree it

9.2. Results 117

helps stronger students. Answers to open questions refine this. While one
in four totally agrees that the strategy if useful for all concepts, three out
of four agree that it’s at least useful for some concepts. Finally, UTAs think
that SL is more suited to introduce concepts while half of them still think
it can also be useful for restructuring concepts.

In the open questions, T03 suggested that “the first exercises for each
concept should nearly force students to use the subgoals or to add multi-
ple choice questions on the subgoals”, but that is something the teachers
explicitly forbade. T18 also suggested adding subgoals for unit tests.

9.2.3 Crossing the Data Sources

UTAs’ opinions on when to use the strategy corresponded to their actual
use of the strategy which happened more often during introduction ses-
sions than sum-up sessions. T01 said “When students have trouble getting
started ..., I show everyone what to do in general at the beginning (the steps
to follow).” which matches both triggers t3 and s1 from Table 9.4. T18
said something similar: “To help students if the student cannot start, or it
they start writing code directly, to highlight the subgoals (sometimes with
the help of the classroom) in colour”. UTAs also reported using the strat-
egy more for some concepts, especially the more structured and advanced
ones. This is in line with the higher use of the strategy during w7m6-1
(introduction to file operations) and w12-13m11-1 (introduction to linked
list operations) as seen in Table 9.5. They agreed that the concept of file
operations was more structured in the sense that the structure was more
visible and therefore more easily mapped to named subgoals. UTAs also
agreed they used the strategy more to illustrate a concept when used for
the first time, to introduce it before a session or before a specific exercise.
This also aligns with the observed higher use for introducing concepts than
during sum-up sessions (session 2 in Table 9.5).

We did find a significant moderately positive correlation (Pearson’s cor-
relation r = 0.58, p = 0.024) between UTAs self-reported frequency and the
ratio of their observed number of “stronger” (i.e. at least two criteria or an
explicit mention of the labels) uses to the total uses, see Figure 9.7. We
don’t know yet if that correlation is just accidental or could be strengthened
by giving UTAs even more guidance.

9.2.4 Students’ Awareness of the Strategy

An optional survey was sent to the students before the last course mission.
It was answered by 48 students only, which is less than 10% of all students.
The survey consisted of eight questions on three themes. Overall, regard-
ing awareness and frequency of mentioning the catalogue and the subgoals,

118 Chapter 9. Third Iteration: Integration

Figure 9.7: Correlation between UTAs’ reported frequency of strategy use
and their observed “stronger” use ratio.

a majority of the respondents seemed unaware of this strategy. On their
awareness of the subgoal strategy integration in the course material, surpris-
ingly around 70% of the respondents declared not having explicitly heard
of the strategy by the teaching sta! nor of its integration in the course.
When provided with a modified slide or an exercise with subgoals prompts,
however, more than 70% acknowledged they had noticed those. On the
frequency at which they heard about the catalogue, 60% declared not hav-
ing heard of it at all neither during lectures nor the lab sessions. This falls
to 30% for the subgoals during those same moments. The subgoals have
been noticed weekly by one out of four respondents during lab sessions and
nearly one in three for the lectures. 30% had regularly seen the catalogue
mentioned in the exercises syllabus and a bit more for the subgoals.

Overall, regarding the usefulness of the catalogue, even though the strat-
egy seemed not to be seen that frequently by the students, most of them did
consider it moderately to very helpful. Around 65% declared it being not
or only a little bit useful while it did seem useful for nearly 15% of the re-
sponding students. The subgoals during the lecture and in the exercises are
considered very useful by nearly 30% of the students and by 30% in the lab
sessions. If we add the students declaring the subgoals moderately useful,

9.3. Conclusion 119

we reach nearly 60% of the students for the lectures, labs and exercises.
Regarding the di!erent concepts finally, the majority of the students

declared knowing the five first concepts (from assignment to function) by
heart. For the four next concepts asked (file manipulation, dictionary and
class) one in three declared knowing them. Overall, it seems students think
they know the first concepts treated by the subgoal labels well and the later
ones a bit less.

9.2.5 Threats to validity

While we ensured that UTAs were comfortable with the observation process
by having a training week and letting them opt out, at least one tutor did
stop participating during the process. Meanwhile, at least three UTAs asked
for feedback on their teaching practice during their lab session when they
knew they had been recorded. This shows a real interest to become better
tutors.

Another limitation, is that teachers have not been trained or observed
in this study, since the focus of this study was on UTAs. While we had
discussions with the teachers of the course, training was deemed unnecessary
for them. We did not check how they discussed the labels since they had
been integrated in their slides. It might be that teachers did not properly
highlight the labels or did not discuss them at all. However, we could
confirm teachers discussed them through indirect information like students
mentioning hearing about the labels in the courses, and informal feedback
from the teachers.

Since there were 6 observers, newly trained for coding the recordings
segment, a threat is the inter-rater reliability of the actual coding. To
mitigate this threat, the first author verified and harmonised the coding of
the di!erent observations. This process was eased by regular meetings with
the observers to discuss what and how to code di!erent observations made
during the week.

9.3 Conclusion

Subgoal learning as an instructional strategy highlights generic solving steps
when learning and using programming concepts. It is a promising teach-
ing strategy for CS1 programming courses to enhance students’ learning
experience and outcomes. Through a detailed analysis of a large-scale CS1
course in which we fully integrated this strategy, and studied its fidelity
of implementation among undergraduate teaching assistants (UTAs), our
study revealed key insights.

120 Chapter 9. Third Iteration: Integration

We answered RQ9.1 by acknowledging the e!ect of SL integration
throughout the course, in particular the e!ect of exercise prompts on UTAs’
strategy uses. Training and follow-up sessions with UTAs played a crucial
role in the successful deployment of this strategy. As the course progressed,
UTAs reported increased familiarity and frequency of use of the labels for
the di!erent concepts taught. This may indicate that the subgoal learn-
ing method helped streamline their instructional process and improved their
teaching practice. We also found a moderately positive correlation be-
tween their self-reported frequency and the ratio of their observed number
of stronger uses over their total strategy uses.

We use fidelity criteria to answer RQ9.2 and introduced the notion of
“stronger” use of the strategy. The mention of subgoals remained the most
observed use while around 40% of the strategy uses have been classified as
“stronger” uses which seems correlate with UTAs reported frequency of use.

Answering RQ9.3 to classify UTAs use of the subgoal learning strategy,
we observed it was used more by UTAs during sessions introducing new con-
cepts than during sum-up sessions, and more for structured and advanced
concepts than for simpler ones. This structured dimension of concepts that
would better fit with the strategy is a lead for further research. The program
of the students audience had little impact on UTAs use of the strategy.

Another working point is to make the strategy’s use more visible to the
students. Despite students’ infrequent perception of the strategy’s men-
tion during lab sessions and lectures, a majority found the subgoals to be
moderately to very helpful. This suggests that even limited exposure to sub-
goal learning can positively influence student understanding and retention
of programming concepts.

Overall, the findings from this design research study provide interest-
ing insights on how subgoal learning can and is used as a tool by UTAs
for reducing cognitive load and promoting learning transfer in introductory
programming courses.

Part III

Discussion and Future
Directions

121

Overall Results 10
This chapter first summarises (10.1) the results obtained in the previous
five chapters of Part II. Answers to the main research questions of this
dissertation (cf. Section 1.1) are then proposed (10.2). Since we want the
results of our research to be actionable, we reformulate these answers as
advice to practitioners (10.3) and to UTAs (10.4). CS educators wanting to
integrate instructional strategies in their course can follow this advice and
get informed and inspired by our research results. We then discuss some
limitations to our work. To conclude, I share some opinions and lessons
learned (10.6) on the methods I used in this dissertation.

10.1 Summary of the Results

In the five previous chapters, we covered the analysis of a CS1 course based
on two processes of learning transfer: knowledge encoding and knowledge
accessibility in a situation of transfer. This analysis yielded three instruc-
tional intervention proposals: (P1) make the organisation of the course’s
learning objectives visible; (P2) highlight transfer conditions and opportu-
nities when teaching knowledge; (P3) Propose explicitly recall strategies.
Following a design research approach, we intervened on the design of the
course through three iterations. We selected four evidence-based explicit
strategies aligned with cognitive load theory and our learning transfer in-
structional recommendations: explicit tracing, subgoal learning, Parsons
problems and explicit problem solving.

During our exploration in our first iteration on the design of the course,
we introduced the four selected strategies to four tutors, we followed-up on
their strategy usage through weekly focus groups and collected their per-
ceptions on the explicit instructional strategies. Based on their reporting,
we extracted four criteria that make them prefer a strategy: easy to under-
stand, straightforward to apply, useful for students on the long term and
supported by literature. Nevertheless a main limitation reported was the
time it took before or during lab sessions to prepare and use the strategies.

In order not to overwhelm our UTAs and in order to better focus on
less strategies, we used only explicit tracing and subgoal labelling in our
second iteration. For this intervention on the design of the course, we

123

124 Chapter 10. Overall Results

used subgoals tailored to the concepts and programming language of the
course. We also selected a standardised external memory representation
for the explicit tracing strategy. We handed out to the participating tutors
support documents we prepared with information on how and when to use
the strategies, with Python examples based on actual exercises from the
course. We trained seven tutors by presenting, explaining, demonstrating
and exercising both strategies at the beginning of the course. We recorded
and coded observations of the tutors during their lab sessions. Using mixed-
methods, we analysed the recordings using thematic analysis and fidelity of
implementation in order to characterise tutor’s usage of the strategies. The
analysis yielded three categories of triggers: students, tutors and prompts in
exercises. We quantified the fidelity of implementation of both strategies.
We also documented adaptations of the strategies made by the tutors.

Based on the lessons learned from that characterisation study and the
advice to practitioners proposed, we presented a third intervention: a full
integration of the subgoal learning strategy throughout the course. For
this intervention on the design of the course, all resources of the course
have been impacted by the integration of the strategy. They have been
modified in order to gain time for tutors so that they did not need to
introduce the subgoals themselves and could focus on using them in their
lab sessions. We analysed their strategy usage through observations during
three weeks and two surveys using mixed-methods: thematic coding and
fidelity of implementation. In that iteration, we acknowledged the e!ect of
exercise prompts, training and follow-up sessions on tutors’ strategy usage.
We introduced the notion of stronger use of the strategy and observed
that 2 out of 5 strategy use were “stronger” in that sense. We found a
positive correlation between tutors’ self-reported frequency of use and their
normalised stronger SL uses. Finally, tutors used SL more often to introduce
new concepts and specifically for more structured and advanced concepts.

Overall, these results indicate that it is possible to integrate explicit in-
structional strategies in an introductory programming course at university
to improve tutors’ teaching practice. These results show that training, per-
sonalised follow-up and exercise prompts where important factors to favor
adoption of the strategy by tutors. In all three iterations, tutors used (or
reported using) strategies more often in order to introduce a concept. Glob-
ally, tutors’ self-reported frequency of uses can be used as a proxy for their
actual frequency of uses.

10.2 Main Answers

Based on our results from the previous chapters summarised above, we can
now answer the main RQs from Section 1.1. More specific and actionable

10.2. Main Answers 125

advice based on our research results are then presented in the next section.

10.2.1 (RQ1) Strategy Choice

How and what instructional programming strategies to select to integrate
in a CS course?

Our answer to this question is rooted in the methodology we followed in
Chapter 5 and in literature. First, the choice of a conceptual model on which
to base our analysis was determinant in the intervention proposals that led
to how we selected evidence-based instructional programming strategies. In
our case, we based our analysis on the conceptual model of learning trans-
fer. This allowed us to identify a need for explicit instructional programming
strategies that would emphasise transfer opportunities and help recall pre-
viously learned material. Then, the actual selection of strategies was done
according to cognitive load theory inspired instructional recommendations
and our own learning transfer intervention guidelines. Proper alignment be-
tween selected strategies and the conceptual model is important (cf. 6.1). A
partial literature review allowed us to identify four evidence-based strategies
recently used in CS education. Such strategies help learners recognise similar
problems where they will need to reuse previously learned knowledge. The
proposed strategies also help learners fetch that learned knowledge in their
long term memory. For example, in our research, explicit tracing helped as
a debugging strategy to showcase how the state of a program evolves when
executing it line-by-line. It helps students remember the semantics of the
di!erent constructs introduced in the course. Subgoal learning gives a name
– and labels – to the important concepts and the intermediate solving steps
to apply when using them in a program. How we chose to proceed with
the selected strategies, in particular which one to iterate with, is answered
in the next section.

10.2.2 (RQ2) Strategy Usage: Pros and Cons

What makes explicit programming instructional strategies easily usable and
applicable by UTAs? What are the obstacles to use these strategies?

Chapter 6, even though it presented an exploratory study based on a
small sample, allowed us to learn early on that tutors with little pedagogical
background preferred strategies that are easy to understand and to apply.
The evidence-based character of the strategies convinced and motivated
them to apply it to help students learn, on the long term if possible. Strate-
gies that are less meta or abstract were considered easier to understand.
Strategies were considered easier to apply if they didn’t need too much
preparation, took less time or seemed already familiar to the tutors (like
tracing which was close to debugging for example).

126 Chapter 10. Overall Results

Thanks to the tutors’ feedback collected across all our interventions, we
identified as obstacles that they were overwhelmed by too many strategies,
needed more support and training and lacked time during lab sessions. In
Chapter 6, tutors reported it was not always clear how and when to apply
strategies. In Chapter 9, tutors also mentioned that not having learned
themselves with a specific strategy was an obstacle. The training and sup-
port we decided to put into place based on this feedback is detailed in the
next section.

Globally, integrating strategies for tutors who are novice educators was
a challenge for them. Some of their di"culties were already reported in
literature on CS TAs like the classroom management challenges or the lack
of time [Mir+19; Rie+21]. Based on our observations, the lack of expe-
rience with teaching and with applying specific instructional strategies due
to a lack of dedicated training was a major brake to strategy use. While
UTAs made an explicit choice to take the job, we also observed di"culties
for some of them to learn the subgoals or to anticipate and prepare when
to use the strategies during sessions.

10.2.3 (RQ3) Training and Support

How to train and support UTAs to integrate explicit instructional program-
ming strategies in their teaching practice?

In order to train UTAs, we converged after our di!erent iterations to
propose a dedicated training session at the beginning of the course where
we explained and demonstrated the strategies, their motivation and e!ect,
when tutors should use them and how. We modeled the strategy for the
tutors so they could observe how it should be used and also provided tutors
with practice exercises. In order to support UTAs, we proposed a constant
follow-up to discuss, remind, share and ask about their strategy usage. We
adapted the strategies to tailor them to the specific content and concepts
of our course in Chapters 7 and 8. Based on our observed list of triggers
and adaptations, we integrated presentations and prompts to the strategy
throughout the course material: in the slides, in exercises and as a catalogue
of all the covered concepts. We observed that UTAs benefited from sharing
their own practice during tutor meetings and that it inspired them to try
out the proposed strategies. We also observed that proper training and
integration of the strategies benefited UTAs and allowed them to better
use the strategies and more often. Overall, our research results show that
it is not trivial for UTAs to properly integrate instructional strategies in
their tutoring and that carefully designed training and regular follow-up was
needed.

Literature on peer teaching or peer tutoring – another term referring to

10.2. Main Answers 127

the usage of undergraduate teaching assistants [JH20] – also recommends
doing peer observations as a training strategy [BM08; BM15] even for UTAs
in CS [Kir06]. We found little literature on (U)TAs training programs ded-
icated to didactical knowledge or pedagogical content knowledge while the
importance of PCK in education is well recognised [Abe08]. In their review
on peer tutors and the learning they gain from tutoring, Roscoe et al. [RC07]
also show the importance of proper tutor training to develop their capac-
ity to explain in detail the solving steps of a problem or giving meaningful
worked-out examples (“knowledge-building”) instead of just “knowledge-
telling” interactions [RC07]. Our findings that there is a need and positive
impact for tutor follow-up and training, seem coherent with the literature
that we found.

10.2.4 (RQ4) Usage and Adaptions

How do tutors use and adapt explicit instructional programming strategies
in their teaching practice?

In the studies on explicit tracing [XNK18] and subgoal learning [MMD19]
on which we based our research, the teaching was given by the researchers
themselves and we found little detail on how to train educators to use these
strategies. This gap was filled by our research in which we designed handout
documents and material to train UTAs and corresponding fidelity criteria to
assess their fidelity of implementation of the strategies. We also cataloged
and reported on triggers and adaptations for both these strategies. The
categories and lists of triggers and adaptations are the results of our analyses
of observations and recordings of tutors’ actual usage of the strategies during
their tutoring sessions.

Collecting this information was done through observations, exchanges
during the tutor briefings and meetings, surveys and open questions. We
now know that UTAs reporting higher frequency of use of a strategy are
those who will report higher familiarity and who will demonstrate a stronger
use of the strategy. We also found that given su"cient time, tutors would
use the strategy more during the semester. We observed that subgoal learn-
ing integration in the course pushed tutors to integrate more subgoals in
their practice. Chapter 8 also presented in Section 8.2.3 di!erent categories
of adaptations made by the tutors. We observed a lot of impact of the
strategy on tutors’ practice which we called e!ects. We observed that tu-
tors, while integrating the strategies, proposed some additions in line with
the strategies and that we thought could prove beneficial. We also observed
some misuses of the strategy but in retrospect, most of the reported mis-
uses are either part of a fading of the strategy usage or susceptible to be
corrected through more support and training. That being said, the fact

128 Chapter 10. Overall Results

remains that an incomplete usage of the subgoal learning strategy means
that tutors will not leverage its full power. Catrambone [Cat98] already
mentioned that incomplete steps knowledge will lessen the chances for the
learner “to identify what prior knowledge he or she possesses that might be
useful”. Further research should definitely pay attention to proper subgoal
labels learning for UTAs. Globally, for both explicit tracing and subgoal
learning, we seldomly observed fully accurate implementations. While par-
tial usage is already a step in the right direction and while adaptations might
have benefits, a conclusion of our work is that tutors have di"culties to im-
plement the strategies as well as we would have hoped for. Partial tracing,
not mentioning the subgoal catalogue, etc. remain areas of improvement
for better fidelity of implementation.

10.3 Advice to Practitioners

In this section, we reformulate the results of our research in actionable advice
to practitioners willing to integrate instructional strategies from research in
their own teaching sta! practice.

10.3.1 How to Choose Instructional Strategies?

Aligned with learning objectives. Practitioners should choose a concep-
tual model aligned with their learning objectives. Chapter 5 saw how
a thorough analysis of a course material based on an educational con-
ceptual model can help identify recommendations and amelioration
opportunities. In our case, we wanted to enhance learning transfer
between the di!erent concepts seen along the course and our analysis
of the course hinted towards three proposals that guided our strategy
selection.

Evidence-based. The chosen strategies should be rooted in literature and
proven e!ective. From Chapter 6, we learned that tutors liked and
were motivated by the evidence-based character of the proposed strate-
gies. In our second iteration presented in Chapter 8, we integrated
some theoretical context and evidence from literature to make the
case of our strategies stronger for our UTAs.

Simple to apply. Our advice to practitioners is to select simple strategies.
Chapter 6 already highlighted that too abstract or complex strategies
were harder for tutors to grasp and put into practice. However, we also
showed that by integrating subgoal learning in the course, a strategy
that was at first considered di"cult to apply by tutors might still be

10.3. Advice to Practitioners 129

used when more e!ort was put in supporting and simplifying strategy
adoption.

A couple at a time. Only introduce introduce strategies one at a time,
before introducing them with another strategy. It is better that tutors
have a few strategies that work for them, as opposed to having seen
so many that they don’t remember when to use them, or apply them
wrongly because they start to confuse them with other strategies. The
trend in the research presented in this dissertation was to go from more
to less strategies. While one of the reasons was to focus the research
to deepen our understanding of tutors’ adoption of subgoal learning,
another reason was that tutors had been a bit overwhelmed in the
first iteration by the di!erent possibilities o!ered.

10.3.2 How to Train UTAs?

Provide evidence. Linked to the evidence-based character of the strate-
gies, the training should be showing to UTAs the reason behind the
strategy e"cacy. For example, in our research, we told them how
it will support students learning, foster learning transfer, lower their
mental load, sca!old the learning of students that needed it, poten-
tially lower student’s drop rates. UTAs needed to be convinced by
those evidences in order to apply the strategies.

Provide training material. Tutors asked for more training and support in
Chapter 6. We advise providing a good training supported by train-
ing documents. We included in our training material results of our
research like hints on when to use the strategy based on our identified
trigger for example.

Model strategy use. The tutors’ training should include demonstrating
and modeling of proper strategy use. This was requested by tutors in
order not to be lost with only a paper or a training document and it
gave tutors a better idea on how to apply it themselves. This could
be done through small videos.

Allow for adaptations. We advise to give the liberty to the teaching sta!
to integrate a strategy in their practice as they see fit while also
modeling, supporting and defending proper advised use. As we have
seen in Chapter 8, tutors will adapt the strategy anyway and we have
seen that most of these adaptations stay in line with the big ideas of
the strategies and some might even be beneficial.

Provide practice exercises. Again, based on UTAs’ feedback in Chapter 6
where they asked for more training and support, we decided to let

130 Chapter 10. Overall Results

them practice the strategy beforehand. We advise to integrate prac-
tice into UTAs’ training to give them the opportunity to try out the
strategy, ensure proper understanding and boost confidence before
applying it into the classroom.

Be patient. We found in Chapter 9 that giving tutors time to get used
to the strategy was beneficial as the further in the course semester
they were, the more they used it. Therefore, practitioners should give
su"cient time to tutors to assimilate and try out the strategies.

10.3.3 How to Support Instructional Change?

Experiment. Strategies should be integrated progressively through small
experiments if one can a!ord the time. An iterative integration pro-
cess definitely allowed us to recognise tutors’ needs and di"culties
(like the time it took them to present SLWEs in Chapter 8) and to
fine tune our interventions accordingly.

Integrate the strategy. When documenting the main triggers for strategy
use in Chapter 8 and 9, strategy prompts integrated into the course
material played a big part. Chapter 9 specifically showed that an
integration throughout the course, with presentation of the subgoals
in the slides and prompts in the exercises favored tutors’ strategy
usage. Therefore, our advice is to integrate hints to the strategy in
the course material to support and trigger strategy use.

Adapt the strategy to the course. It is important to note that the strat-
egy should be adapted to the course if needed. We applied this ad-
vice by creating our own SLWEs adapted to the Python programming
concepts or our course in Chapter 7 or when we chose an appropriate
external memory representation in Chapter 8.

Follow-up tutors. An opportunity should be provided to tutors for shar-
ing, between them and with the teaching sta!, their practice and
perception on strategy usage. Our research showed that personalised
follow-up of our UTAs allowed them to share how they used the strate-
gies, to give us feedback and discuss di"culties. We are convinced
that some tutors, hearing how others did, were led to try out more
strategy usages and adaptations in their practice.

Collect feedback. We learned in Chapter 9 that UTAs’ feedback corre-
lates with how they used the strategy. Therefore, we advise collecting
feedback on usage and frequency of use through surveys and open
questions. This will allow some reflection on the tutors side, it will

10.4. Advice to UTAs 131

serve as proxy to how tutors are adopting the new practice and might
highlights di"culties and suggestions to adapt the strategy integra-
tion.

10.4 Advice to UTAs

In this section, based on our observations and mentoring of tutors during
our research, we formulate some advice to tutors to apply strategies in their
teaching practice.

Prepare. Tutors should come prepared to the classroom. The more tutors
know about the content of a tutored session as well as the possible
moments to use an instructional strategy, the better they will be able
to anticipate how and when to apply it. We observed tutors who tried
to improvise subgoal labeling on the fly or who traced code poorly,
and we believe that with more preparation, they would have performed
better.

Try. Tutors should give it a chance. We have seen tutors who needed more
examples of how to use the strategy, or to listen to experience from
other tutors, before daring using it by themselves. We also observed
that, given time, tutors will use the strategy more.

Share. Related to the previous one, it is important for tutors to share good
and bad experiences. This can help their peers to figure out other
possible usage of the strategy. It also leads to community building
which we consider very useful and relevant.

Adapt. Tutors should feel free to adapt strategies to their own teaching
style. While adaptations have to remain reasonable and in line with
the strategy motivations, we have observed promising adaptations
in tutors’ practice. It is also a good indication of ownership of the
strategy.

Understand. UTAs should understand well the strategy motivations and
principles. We observed this motivated them to apply it. It also will
push them to apply and adapt it properly.

Discuss. When in doubt on how or when to best apply the strategy, UTAs
should refer back to the provided documentation or training, or their
peers’ experience, or even a specialist or dedicated member of the
teaching sta!.

132 Chapter 10. Overall Results

Refine. Tutors should give feedback to the teaching sta!. It can help the
teaching sta! to know what is hindering or helping them and what
they can do to better adapt and integrate the strategy in the course
if needed.

10.5 Threats to Validity

Inherent to qualitative research methods and in particular to observations,
it is di"cult to assess the impact of observation on tutors actual strategy
usage. We observed tutors mentioning they applied the strategy “to please
the observer” during the training week of observations of the third iteration.
The training week was put in place specifically to make tutors used to being
observed and to mitigate the e!ect of observations on their behavior. We
also made it clear all along to tutors that they could withdraw from the
research. Some tutors opted out of the research from the beginning and
one tutor actually withdrew during the semester, mentioning observations
put too much pressure on them. We believe others would have done so too
if they would have felt the need for it. It is also interesting to mention that
as a side e!ect some UTAs asked for personal feedback on their teaching
practice during their lab session when they knew they had been observed.
This shows a real interest to become better tutors. Overall, we think this
limitation has been mitigated in our study design.

While for our two first iterations one might argue that our sample size
was quite limited, it was deliberate in the design research approach we chose
for this thesis to start small and grow bigger. Those two first iterations still
allowed us the develop some deep insights into tutors’ strategy use and their
perspective on it. This approach allowed us to refine our design principles
and to better anticipate tutors’ needs for the next iteration. Finally, in our
third iteration, we no longer su!ered from that limitation since all tutors
had to apply subgoal learning.

Since we only worked on one specific CS1 course, it is di"cult to judge
whether our results and advice are generalisable to other courses or course
settings. Nevertheless, as discussed in Section 2.6, it is common in CS1
courses to use (U)TAs and in our opinion, the training setups and advice to
practitioners we proposed can be integrated in di!erent kind of CS1 setups.

10.6 Lessons Learned on the Methodology

In retrospect we do think that mixing research methods from di!erent re-
search paradigms (cf. Section 3.1) has been beneficial to the overall research
work and conclusions presented in this dissertation. In particular, crossing
results and analysis from observation and interviews with more deductive

10.6. Lessons Learned on the Methodology 133

tools such as fidelity of implementation criteria allowed to both have a more
synthetic normative appreciation of tutors’ usage of the strategies as well as
some deeper knowledge on how they actually used the strategies and their
opinion and perspective on the subject.

Qualitative research, and coding interview transcripts or recording seg-
ments always has a subjective part, and while this might be intimidating
at first, we really enjoyed the process of coding and “discovering” themes
from the data. While the coding itself can be quite tedious when confronted
to a lot of data, being able to o#oad part of this on hired observers has
really been e"cient in our opinion. However, this did not come at no cost.
Dividing the work between multiple observers also holds its own challenges.
The main costs were the training and the logistic to coordinate. Regarding
observers’ training, the combination of theoretical elements from literature
on the strategy motivations and usage, and actual observational training
on old recordings and during a training week proved enough in the end to
ensure the quality of the observation. Regarding logistics, we had to setup
a shared server to host all the recording, to assign observers to tutors during
specific weeks and to organise follow-up meetings. These meetings allowed
us to discuss operational and methodological issues with the observers and
to ensure methodological reliability in how the coded their video segments.
We would definitely recommend this multi-observers approach for CEd re-
searchers that have the time to set it up properly.

On design-based research as a whole, we think it proved to be a really
nice method that allowed us to progressively better understand the studied
tutors’ need and feeling about our strategy integration. It also allowed us to
focus more and more on less strategies and more tutors while at the same
time refining and tailoring our instructional design interventions. While this
obviously takes time, it also allowed to make trials and more exploratory
work at first to finally integrate subgoal learning in the course material the
best we could, one informed by previous iterations. We would definitely
recommend this research methodology for similar long term interventions.

A last element on literature, we found it quite challenging at times to
have to combine di!erent research traditions from di!erent countries and
languages (in particular, English- and French-speaking (CS)Ed research).
There was sometimes quite a disconnection between the research interests,
the theories and conceptual models used in research (e.g., more didactical
approaches in the French-speaking Didapro1 community) or the “influen-
tial” sources which are not the same (e.g., the learning transfer references
in French). We ended up mixing references to both literature when appro-
priate.

1
See https://www.didapro.org/ for more informations on Didapro.

https://www.didapro.org/

Conclusion and Future
Directions 11
This chapter presents some possible future directions for this dissertation.
We first consider the possibility to train school teachers with explicit instruc-
tional programming strategies (11.1), we then propose some other future
work (11.2) and finally we conclude (11.3).

11.1 Another Audience: School Teachers

Revisiting my initial thesis proposal in hindsight, it is clear that training
school teachers had always been an implicit long term objective. This still
perspires in the title of my ICER doctoral consortium submission [Gol21]
(“Promoting Learning Transfer in Computer Science Education by Train-
ing Teachers to Use Explicit Programming Strategies”), even though this
dissertation eventually targeted an audience of UTAs. In this section, we
reflect back upon this initial idea and try to identify some elements from
literature to assess whether an introduction of explicit instructional pro-
gramming strategies could make sense and be provided for school teachers
in the Belgian context.

In order to discuss the training of school teachers, we decided to com-
pare both the UTA and teacher audiences using the concepts of professional
identity and motivation to teach. We will look at the main factors influ-
encing these fundamental concepts and how close or di!erent to each other
both audiences are in that regard.

Before comparing both UTA and teacher audiences, here is a summary
of what worked and did not work in UTAs’ usage of explicit instructional
programming strategies. Some of these elements come from observations
and interview segments not necessarily reported on explicitly earlier in pre-
vious chapters:

↭ Tutors often have close to no experience with teaching. An impact
of this is they had trouble identifying when using a strategy. To
compensate for this, we provided them with training and follow-up
during the course.

↭ Tutors never seem to have enough time. Their time is scarce outside of

135

136 Chapter 11. Conclusion and Future Directions

the lab since they have other courses to follow and need to prepare for
the tutored sessions. To compensate this, we tailored the strategies to
the course content and integrated subgoals presentation in the course
material in order for them not to have to introduce them themselves.

↭ Tutors have class management issues. We observed this, UTAs re-
ported on this and literature also states this [LBG00]. Such issues
were discussed during tutors weekly briefings and in their required
faculty-level training.

↭ Tutors need training for their “professional development” and to be
able to better know how and when to use instructional strategies. We
supported UTAs with in-person training and training material.

The questions that guided us in this post-facto analysis are:

↭ How di!erent are both audiences’ (the studied UTAs and school
teachers) professional identities and motivations?

↭ How feasible and realistic would it be to train school teachers with
explicit instructional programming strategies in the Belgian context?

We first introduce the French-speaking Belgian context, then compare
the professional identities and motivations of school teachers and UTAs, and
finally we give our own take on the feasibility of training school teachers
with explicit instructional programming strategies.

11.1.1 The Context in Belgium

After multiple calls internationally for more computer science for all in
schools [Gan+13; Cas+18] and following a European trend to reintroduce
computer science in school curricula [Roy12; Vah+17], the French speak-
ing part of Belgium — “FWB”, for “Fédération Wallonie-Bruxelles”, the
language community responsible for french speaking education — is rein-
troducing some CS elements as part of a reform1 of the grades 1-9 curric-
ula2. Since CS wasn’t o"cially part of the general curriculum before this
reform [HJ16], the questions of who will teach this subject and of which
background they will have are still unanswered. In France or England, it
was observed early into the reintroduction of CS into schools that teach-
ers at lower-secondary school/middle school level came largely from other

1
See https://pactepourunenseignementdexcellence.cfwb.be for more information on

the reform.
2
See http://www.enseignement.be/index.php?page=23827&do_id=17242&do_-

check=CNEJLFQGEC for more information on the “manual, technical, technological and

digital” curriculum

https://pactepourunenseignementdexcellence.cfwb.be
http://www.enseignement.be/index.php?page=23827&do_id=17242&do_check=CNEJLFQGEC
http://www.enseignement.be/index.php?page=23827&do_id=17242&do_check=CNEJLFQGEC

11.1. Another Audience: School Teachers 137

disciplines such as mathematics, sciences and technologies and had low con-
fidence in their knowledge of computing subjects [Bra23; FV21]. It seems
realistic to expect the same in FWB. The CER community is well aware that
such policy changes ask for more teacher training and has already proposed
guidelines on how to train teachers [Cas+18; DeL+18].

Pedagogical content knowledge (PCK) [Shu86] in computing educa-
tion [Sae+11; Hub18] was up until recently not taught in higher education in
FWB [HS18]. Before the enactment of FWB’s primary and lower-secondary
school reform, school teachers in FWB were already interested in training for
teaching computing [HS18]. Contrary to UTAs, in-service teachers already
have pedagogical knowledge. When pursuing professional development in
order to teach computing topics, they will be in need for both computing
content knowledge and pedagogical content knowledge [HS18; MD19].

11.1.2 Identity and Motivation

Teachers Teacher identity is the sense of being recognised as a teacher
by oneself and by others [BT09]. Many factors of teacher motivation seem
to be linked to their identity. Education research talks about the concept
of teacher identity. Teacher’s identity is a continuous process that shifts
over time under the influence of a range of both internal and external
factors [BT09]. Cattonar states teacher identity has three main compo-
nents [Cat05]:

↭ a collective one, coming from shared experience like training.

↭ an individual one, linked to their personal story and experiences.

↭ a contextual one, depending on their school environment and social
relations.

Cattonar also states: “[Teachers] chose the profession primarily for the
content of the work (working with pupils, teaching the subject or pedagogy)
and not for favourable employment conditions such as free time or job
security.” [Cat05]. Cattonar also mentions that teachers in FWB are more
and more pushed towards a model of “reflexive practitioners”.

Regarding motivation, Han and Yin distinguish initiating motivation
and sustaining motivation [HY16]. They report on pre-service teachers
stating that “intrinsic and altruistic motivations were crucial for satisfying
and enduring career in the classroom in developed countries”. For teachers,
they also mention Thoonen et al. [Tho+11] who presented a model that
assumes that teacher motivation indirectly influences the quality of teaching
practice through their engagement in professional learning activities.

138 Chapter 11. Conclusion and Future Directions

For computing teachers specifically, research identified major challenges
for computer science teachers. Ni et al. mention [Ni+21]: unstable and
new curriculum, lack of subject knowledge especially for teachers for whom
CS is not the main subject, isolation since CS teachers are often alone with
the few CS hours being taught.

It is quite clear already that being a computing teacher will be a chal-
lenge and that support will be needed for teachers retention and identity.
This could be done through building communities and providing opportuni-
ties for professional development [NG12].

Since it seems that secondary school teachers prefer to learn from direct
peers and informal contexts [Lec+19], models of communities of practice
for computer teachers could foster teachers’ professional development and
building their identity [Ni+11]. There are examples such as the Comput-
ing At School e!orts in England [JMH13] or the high-school CS teacher
community we documented during our Erasmus+ project [Bac+23].

UTAs We did not find the equivalent amount of research on (U)TA’s
identity or motivations to teach. Mostly, literature speaks about intrinsic
(student interactions, helping others, societal usefulness) and extrinsic fac-
tors (salary, ECTS, CV building) to motivation. E!ective feedback seems
to be related to intrinsic motivation [Rod+14].

Meyers et al. mention three major themes as motivation for enrolling
as a TA [MGG12]: “(1) helping others — many indicated that they wanted
to help First-Year students in their transition into engineering since it was
di"cult for them, (2) resume-builder — others also indicated they needed a
job anyway and it was related to engineering, and (3) they looked up to their
student assistant when they were first year students”. Prior experience with
a teaching method and beliefs in this teaching method are also mentioned
by Wheeler et al. [Whe+19]. In our context, tutors also gain ECTS and are
paid for the job once trained.

Comparison The main di!erence between teachers and UTAs in our view
and based on the previous research-informed sections is that teachers are
mainly teaching while UTAs are mainly students. Both audiences seem to
share an intrinsic motivation to help and interact with students. However,
the scarcity of UTAs’ identity literature leaves this mainly as a conjecture.

While literature on teachers’ identity already mentions multiple iden-
tities, it seems in the case of new CS teachers the lack of a CS teacher
identity might hinder their motivation to train in CS teaching. If the future
teachers in charge of CS identify mainly as other subject teachers, this main
aspect might be a major hindrance. It seems to us that Ni et al.’s idea of

11.1. Another Audience: School Teachers 139

building teachers communities could really help in that regard and might
also be an opportunity to provide professional development.

Another big di!erence is that CS teachers will likely lack in CS con-
tent knowledge while they will have more pedagogical knowledge, classroom
management skills and their own subject pedagogical content knowledge.
This makes them quite di!erent that UTAs that are in a sense subject ex-
perts but with very little teaching experience and little pedagogical knowl-
edge.

11.1.3 Discussion

Education literature on the gap between education research and teachers’
practice advocates for an e!ort from both sides [McI05]. Suggested steps
to bridge this gap include school participation and practice-informed re-
search [McI05; Ryc22]. We believe e!orts to bring evidence-based practice
through teacher training goes in the right direction.

While both audiences have di!erent identities and motivations to teach,
our research and literature show that both UTAs and school teachers benefit
from professional development, are motivated by being included in research
and by their interactions with students. Education literature also shows
that teachers will adapt professional development content and weave it into
their practice, like the studied UTAs did.

Overall, the idea of teaching using explicit instruction programming
strategies would also need to fit teachers own subjective educational the-
ory [Kel09]. In fact, regarding our own strategies, we already had the
opportunity to present our own research results to pre-service and in-serve
teachers in multiple professional development workshops [GM22]. While
this remains anecdotal, it shows at least some interest of the teacher com-
munity. We also supervised a master thesis on bringing research-supported
instructional practice in schools: the integration of PRIMM-inspired block
programming sequences [Deb22].

We can also expect di"culties when transitioning from block-based to
text programming. This has been described in detail in literature, by Wein-
trop’s series on the subject [WH17; WW19] or in France by Branthôme in
his dissertation [Bra23]. Nevertheless, Tshukudu’s series on transfer when
switching between two programming languages suggest that explicitly teach-
ing for transfer could help [TJ20; Tsh+21].

Computing education research from school-focused venues like ACM’s
WiPSCE — Workshop in Primary and Secondary Computing Education —
and ISSEP — Informatics in Schools: Situation, Evolution and Perspectives
— will continue to produce research that is more practice-informed. It could
then make for a source of (explicit) instructional (programming) strategies

140 Chapter 11. Conclusion and Future Directions

used in teacher’s professional development.
Teachers will have less classroom management issues, more time at

hand and overall more pedagogical expertise than UTAs, but they will (at
first) lack in CS content knowledge. We hypothesise for teachers that
explicit strategies might be of help to increase their self-e"cacy to teach
programming concepts. It they are less confident on the content but are
provided with research-informed strategies to teach it, this might actually
boost their motivation and help them cope with the new challenge of being
CS teachers.

We hypothesise that the strategies presented in this dissertation could be
adapted to school teaching and presented to CS teachers during their initial
training or during professional development training. The strategies would
have to be adapted and aligned to the learning objectives. The programming
language in lower-secondary school will be block-based at first. Depending
on the notional machine, the explicit tracing steps could be adapted for
memory representation but the main steps would still remain. In a school
context, we also think subgoal learning would maybe be more interesting
for simpler concepts than perceived by the UTAs.

11.2 Future Directions

A (big) question we deliberately decided not to study in this dissertation
is the impact on students’ learning outcomes. While we already collected
some feedback and students seem to find subgoal learning useful, it would
make sense to measure the actual gain of students having had tutors using
the strategies. As discussed before, the benefits might not be limited to
learning outcomes, but a reduction in student drop-rates or variance in
students’ results to tests could be measured as well. Does it help them?
(How) do they use and adapt them? Such questions seem relevant questions
to address in future follow-up research.

Another interesting question worth investigating is the long term im-
pact of our design intervention on the course and on UTAs’ practice. We
put a lot of e!ort in the integration of subgoal learning in the course and
produced companion training documents that could be used to keep new
tutors informed of the way to use explicit tracing and subgoal learning. Will
trained tutors and future UTAs continue to use the strategies? Will the
course teachers remain su"ciently motivated to train the tutors?

Other strategies, integration ideas or research informed practices could
be considered for integration in CS1 courses. We actually already tried
some ideas at small scale in the scope of master theses like: the variation
of type of feedback given to students [Ver23] or the integration of Parsons
problems in the online auto-grader for the course [Len24].

11.3. Conclusion 141

Finally, a last research avenue is to apply the outcomes of this research
to other institutions. We would be interested in feedback on other higher ed-
ucation faculty members using our advice to practitioners (cf. Section 10.3)
to introduce the same or other strategies in their own setup. Can our results
be reproduced in other courses and university setups? What other strategies
are integrated by other practitioners?

11.3 Conclusion

In this dissertation, we researched how di!erent iterations of design interven-
tions in an introductory programming course can encourage undergraduate
teaching assistants to make use of evidence-based strategies in their prac-
tice. After three main iterations, we showed that the combination of UTA
training, follow-up and the integration of explicit strategies and especially
subgoal learning in the course material and in companion documents can
indeed foster the use of such strategies by the studied UTAs. We believe our
research also demonstrated how di!erent flavours of instructional practice
and in particular how more guided strategies could blend together with the
problem-based setup of a CS1 course. Since most higher-education insti-
tutions with CS1 courses will need to scale and since the number of UTAs
can easily scale with the number of students, we believe our approach can
be applied in other CS1 setups. To facilitate the integration of explicit
strategies in other course setups, we provided to willing practitioners a set
of actionable advice informed by our own experience and research. We have
also showed how mixed research methods from di!erent paradigms and
epistemologies can be combined for a richer and deeper analysis of comput-
ing education research questions. While acknowledging the limitations of
our work, we also hope our results will prove valuable contributions to the
field and would be pleased to see more integration of explicit instructional
programming strategies discussed in computing education research.

Bibliography

[Abe08] S. K. Abell. “Twenty Years Later: Does pedagogical content
knowledge remain a useful idea?” In: International Journal of
Science Education 30.10 (2008), pp. 1405–1416. doi: 10 .
1080/09500690802187041.

[AD13] R. K. Atkinson and S. J. Derry. “Computer-Based Examples
Designed to Encourage Optimal Example Processing: A Study
Examining the Impact of Sequentially Presented, Subgoal-
Oriented Worked Examples 1”. In: International Conference of
the Learning Sciences. Psychology Press. 2013, pp. 132–133.
isbn: 9780203763865.

[AEJ17] T. E. Adams, C. Ellis, and S. H. Jones. “Autoethnography”.
In: The International Encyclopedia of Communication Research
Methods. John Wiley & Sons, Ltd, 2017, pp. 1–11. isbn: 978-
1-118-90173-1. doi: 10.1002/9781118901731.iecrm0011.

[AKS20] G. Ashman, S. Kalyuga, and J. Sweller. “Problem-Solving or
Explicit Instruction: Which Should Go First When Element In-
teractivity Is High?” In: Educational Psychology Review 32.1
(Mar. 2020), pp. 229–247. issn: 1573-336X. doi: 10.1007/
s10648-019-09500-5.

[AP20] H. H. Alharahsheh and A. Pius. “A Review of Key Paradigms:
Positivism VS Interpretivism”. In: Global Academic Journal of
Humanities and Social Sciences 2.3 (2020), pp. 39–43. doi:
10.36348/gajhss.2020.v02i03.001.

[Bac+23] S. Bachy, F. Chambon, P. Corieri, O. Goletti, S. Hoarau, V.
Komis, T. Massart, K. Mens, G. Parriaux, C. Poulmaire, M.
Romero, M. Rafalska, and T. Viéville. “Création d’une Commu-
nauté d’Apprentissage de l’Informatique”. In: Adjectif : analy-
ses et recherches sur les TICE (Nov. 2023).

[Bak18] A. Bakker. Design research in education: A practical guide
for early career researchers. London and New York: Routledge
(Taylor & Francis), 2018. isbn: 9781138574489.

143

https://doi.org/10.1080/09500690802187041
https://doi.org/10.1080/09500690802187041
https://doi.org/10.1002/9781118901731.iecrm0011
https://doi.org/10.1007/s10648-019-09500-5
https://doi.org/10.1007/s10648-019-09500-5
https://doi.org/10.36348/gajhss.2020.v02i03.001

144 BIBLIOGRAPHY

[Bar96] H. S. Barrows. “Problem-based learning in medicine and be-
yond: A brief overview”. In: New Directions for Teaching and
Learning 1996.68 (1996), pp. 3–12. doi: 10 . 1002 / tl .
37219966804.

[BC19] V. Braun and V. Clarke. “Reflecting on reflexive thematic anal-
ysis”. In: Qualitative Research in Sport, Exercise and Health
11.4 (2019), pp. 589–597. doi: 10.1080/2159676X.2019.
1628806.

[BM08] A. Bell and R. Mladenovic. “The Benefits of Peer Observation
of Teaching for Tutor Development”. In: Higher Education 55.6
(June 2008), pp. 735–752. issn: 1573-174X. doi: 10.1007/
s10734-007-9093-1.

[BM15] A. Bell and R. Mladenovic. “Situated learning, reflective prac-
tice and conceptual expansion: e!ective peer observation for
tutor development”. In: Teaching in Higher Education 20.1
(2015), pp. 24–36. doi: 10.1080/13562517.2014.945163.

[Bor+13] M. Borrego, S. Cutler, M. Prince, C. Henderson, and J. E.
Froyd. “Fidelity of Implementation of Research-Based Instruc-
tional Strategies (RBIS) in Engineering Science Courses”. In:
Journal of Engineering Education 102.3 (2013), pp. 394–425.
issn: 2168-9830. doi: 10.1002/jee.20020.

[BP04] N. Brouillette and A. Presseau. “Expérimentation En Contexte
Scolaire d’un Modèle Axé Sur Le Transfert Des Apprentis-
sages”. In: Le Transfert Des Apprentissages: Comprendre Pour
Mieux Intervenir. Presses Université Laval, 2004, pp. 161–212.
doi: 10.2307/jj.8816087.10.

[Bra04] D. Bracke. “Un Modèle Fonctionnel Du Tranfert Pour
l’éducation”. In: Le Transfert Des Apprentissages: Comprendre
Pour Mieux Intervenir. Presses Université Laval, 2004, pp. 77–
106. doi: 10.2307/jj.8816087.7.

[Bra23] M. Branthôme. “Apprentissage de la programmation informa-
tique : analyses et ressources pour accompagner la transition
collège-lycée”. Theses. Université de Bretagne occidentale -
Brest, Oct. 2023.

[BT09] C. Beauchamp and L. Thomas. “Understanding Teacher Iden-
tity: An Overview of Issues in the Literature and Implications
for Teacher Education”. In: Cambridge Journal of Education
39.2 (June 2009), pp. 175–189. issn: 0305-764x. doi: 10.
1080/03057640902902252.

https://doi.org/10.1002/tl.37219966804
https://doi.org/10.1002/tl.37219966804
https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1007/s10734-007-9093-1
https://doi.org/10.1007/s10734-007-9093-1
https://doi.org/10.1080/13562517.2014.945163
https://doi.org/10.1002/jee.20020
https://doi.org/10.2307/jj.8816087.10
https://doi.org/10.2307/jj.8816087.7
https://doi.org/10.1080/03057640902902252
https://doi.org/10.1080/03057640902902252

BIBLIOGRAPHY 145

[Cas+18] M. E. Caspersen, J. Gal-Ezer, A. McGettrick, and E. Nardelli.
Informatics for All The Strategy. Tech. rep. Acm, Feb. 2018.
doi: 10.1145/3185594.

[Cat05] B. Cattonar. “Convergence et diversité de l’identité profession-
nelle des enseignants du secondaire en Communauté française
de Belgique. Tensions entre le vrai travail et le sale boulot”.
In: Education et Francophonie 1 (2005).

[Cat11] R. Catrambone. “Task Analysis by Problem Solving (TAPS):
Uncovering Expert Knowledge to Develop High-Quality In-
structional Materials and Training”. In: Learning and Tech-
nology Symposium, Columbus, GA. 2011.

[Cat98] R. Catrambone. “The subgoal learning model: Creating better
examples so that students can solve novel problems.” In: Jour-
nal of experimental psychology: General 127.4 (1998), p. 355.
doi: 10.1037/0096-3445.127.4.355.

[CH89] R. Catrambone and K. J. Holyoak. “Overcoming contextual
limitations on problem-solving transfer.” In: Journal of Ex-
perimental Psychology: Learning, Memory, and Cognition 15.6
(1989), p. 1147. doi: 10.1037/0278-7393.15.6.1147.

[Chi+21] L. Chiodini, I. Moreno Santos, A. Gallidabino, A. Tafliovich,
A. L. Santos, and M. Hauswirth. “A Curated Inventory of
Programming Language Misconceptions”. In: Proceedings of
the 26th ACM Conference on Innovation and Technology in
Computer Science Education V. 1. Virtual Event Germany:
Acm, June 2021, pp. 380–386. isbn: 978-1-4503-8214-4. doi:
10.1145/3430665.3456343.

[Cho+22] K. Choi, H. Shin, M. Xia, and J. Kim. “AlgoSolve: Supporting
Subgoal Learning in Algorithmic Problem-Solving with Learn-
ersourced Microtasks”. In: Proceedings of the 2022 CHI Con-
ference on Human Factors in Computing Systems. Chi ’22.
New Orleans, LA, USA: Association for Computing Machin-
ery, 2022. isbn: 9781450391573. doi: 10.1145/3491102.
3501917.

[Cla+08] R. Clark, D. Feldon, J. J. G. Van Merrienboer, K. Yates, and
S. Early. “Cognitive Task Analysis”. In: Handbook of Research
on Educational Communications and Technology. Routledge,
Jan. 2008. Chap. 43, pp. 577–593. isbn: 9780203880869.

https://doi.org/10.1145/3185594
https://doi.org/10.1037/0096-3445.127.4.355
https://doi.org/10.1037/0278-7393.15.6.1147
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3491102.3501917
https://doi.org/10.1145/3491102.3501917

146 BIBLIOGRAPHY

[Cor+20] P. Corieri, M. Romero, T. Massart, O. Goletti, K. Mens,
M. Rafalska, T. Viéville, L. Meziane, J. Christophe, S. Hoa-
rau, et al. “Enjeux dans la création d’une communauté
d’enseignants engagés dans l’apprentissage de l’informatique”.
In: Didapro 8-DidaSTIC-Colloques francophones de didactique
de l’informatique. Poster. 2020.

[Cre12a] J. W. Creswell. “Analyzing and Interpreting Qualitative Data”.
In: Educational Research: Planning, Conducting, and Evaluat-
ing Quantitative and Qualitative Research. 4th ed. Boston:
Pearson, 2012. Chap. 8, pp. 236–246. isbn: 978-0-13-261394-
1.

[Cre12b] J. W. Creswell. “Collecting Qualitative Data”. In: Educational
Research: Planning, Conducting, and Evaluating Quantitative
and Qualitative Research. 4th ed. Boston: Pearson, 2012.
Chap. 7, pp. 212–217. isbn: 978-0-13-261394-1.

[Cre12c] J. W. Creswell. “Survey Designs”. In: Educational Research:
Planning, Conducting, and Evaluating Quantitative and Qual-
itative Research. 4th ed. Boston: Pearson, 2012. Chap. 12,
pp. 375–422. isbn: 978-0-13-261394-1.

[Cun+17] K. Cunningham, S. Blanchard, B. Ericson, and M. Guzdial.
“Using Tracing and Sketching to Solve Programming Prob-
lems: Replicating and Extending an Analysis of What Stu-
dents Draw”. In: Proceedings of the 2017 ACM Conference
on International Computing Education Research. ICER ’17.
Tacoma, Washington, USA: Association for Computing Ma-
chinery, 2017, pp. 164–172. isbn: 9781450349680. doi: 10.
1145/3105726.3106190.

[Dan+17] H. Danielsiek, J. Vahrenhold, P. Hubwieser, J. Krugel, J. Ma-
genheim, L. Ohrndorf, D. Ossenschmidt, and N. Schaper.
“Undergraduate Teaching Assistants in Computer Science:
Teaching-related Beliefs, Tasks, and Competences”. In: 2017
IEEE Global Engineering Education Conference (EDUCON).
Athens, Greece: Ieee, Apr. 2017, pp. 718–725. isbn: 978-1-
5090-5467-1. doi: 10.1109/educon.2017.7942927.

[DD16] T. Dragon and P. E. Dickson. “Memory Diagrams: A Consis-
tant Approach Across Concepts and Languages”. In: Proceed-
ings of the 47th ACM Technical Symposium on Computing
Science Education. SIGCSE ’16. New York, NY, USA: Acm,
2016, pp. 546–551. isbn: 978-1-4503-3685-7. doi: 10.1145/
2839509.2844607.

https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1145/3105726.3106190
https://doi.org/10.1109/educon.2017.7942927
https://doi.org/10.1145/2839509.2844607
https://doi.org/10.1145/2839509.2844607

BIBLIOGRAPHY 147

[DD21] P. E. Dickson and T. Dragon. “A Memory Diagram for All
Seasons”. In: Proceedings of the 26th ACM Conference on
Innovation and Technology in Computer Science Education V.
1. ITiCSE ’21. New York, NY, USA: Association for Computing
Machinery, June 2021, pp. 150–156. isbn: 978-1-4503-8214-4.
doi: 10.1145/3430665.3456317.

[DDL17] P. E. Dickson, T. Dragon, and A. Lee. “Using Undergraduate
Teaching Assistants in Small Classes”. In: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Sci-
ence Education. SIGCSE ’17. Seattle, Washington, USA: As-
sociation for Computing Machinery, 2017, pp. 165–170. isbn:
9781450346986. doi: 10.1145/3017680.3017725.

[Deb22] C. Debongnie. “Didactique de l’informatique : la méthodologie
PRIMM”. MA thesis. UCL - Ecole polytechnique de Louvain,
2022.

[deJ+22] T. de Jong, A. W. Lazonder, C. A. Chinn, F. Fischer, J. Gobert,
C. E. Hmelo-Silver, K. R. Koedinger, J. S. Krajcik, E. A. Kyza,
M. C. Linn, M. Pedaste, K. Scheiter, and Z. C. Zacharia. “Let’s
talk evidence – The case for combining inquiry-based and di-
rect instruction”. In: Educational Research Review 39 (2023),
p. 100536. issn: 1747-938X. doi: 10.1016/j.edurev.2023.
100536.

[DeL+18] L. A. DeLyser, M. Guzdial, J. Goode, Y. Kafai, and A. Yadav.
Priming the CS Teacher Pump. Integrating Computer Science
Education into Schools of Education. Tech. rep. CSforALL,
2018.

[Dem24] A. Demblon. “Intégration de l’apprentissage par étapes dans
les ressources d’un cours d’introduction à la programmation”.
MA thesis. UCL - Ecole polytechnique de Louvain, 2024.

[DeP22] F. De Pierpont. “Intégration des stratégies Subgoal Labeled
Worked Exemples (SLWEs) et Explicit Tracing aux travaux
pratiques du cours d’introduction à la programmation”. MA
thesis. UCL - Ecole polytechnique de Louvain, 2022.

[Der+15] G. Derval, A. Gego, P. Reinbold, B. Frantzen, and P. Van Roy.
“Automatic grading of programming exercises in a MOOC us-
ing the INGInious platform”. In: European Stakeholder Sum-
mit on experiences and best practices in and around MOOCs
(EMOOCS’15) (2015), pp. 86–91.

https://doi.org/10.1145/3430665.3456317
https://doi.org/10.1145/3017680.3017725
https://doi.org/10.1016/j.edurev.2023.100536
https://doi.org/10.1016/j.edurev.2023.100536

148 BIBLIOGRAPHY

[DLD20] Y. Du, A. Luxton-Reilly, and P. Denny. “A Review of Research
on Parsons Problems”. In: Proceedings of the Twenty-Second
Australasian Computing Education Conference. ACE’20. Mel-
bourne, VIC, Australia: Association for Computing Machinery,
2020, pp. 195–202. isbn: 9781450376860. doi: 10 . 1145 /
3373165.3373187.

[DLS08] P. Denny, A. Luxton-Reilly, and B. Simon. “Evaluating a new
exam question: Parsons problems”. In: Proceedings of the
Fourth International Workshop on Computing Education Re-
search. ICER ’08. Sydney, Australia: Association for Comput-
ing Machinery, 2008, pp. 113–124. isbn: 9781605582160. doi:
10.1145/1404520.1404532.

[duB86] B. du Boulay. “Some Di"culties of Learning to Program”. In:
Journal of Educational Computing Research 2.1 (Feb. 1986),
pp. 57–73. issn: 0735-6331, 1541-4140. doi: 10.2190/3lfx-
9rrf-67t8-uvk9.

[DZS22] R. Duran, A. Zavgorodniaia, and J. Sorva. “Cognitive Load
Theory in Computing Education Research: A Review”. In:
ACM Transactions on Computing Education 22.4 (Sept. 2022),
40:1–40:27. doi: 10.1145/3483843.

[EFR18] B. J. Ericson, J. D. Foley, and J. Rick. “Evaluating the E"-
ciency and E!ectiveness of Adaptive Parsons Problems”. In:
Proceedings of the 2018 ACM Conference on International
Computing Education Research. ICER ’18. New York, NY,
USA: Acm, 2018, pp. 60–68. isbn: 978-1-4503-5628-2. doi:
10.1145/3230977.3231000.

[EMR17] B. J. Ericson, L. E. Margulieux, and J. Rick. “Solving Parsons
Problems Versus Fixing and Writing Code”. In: Proceedings of
the 17th Koli Calling International Conference on Computing
Education Research. Koli Calling ’17. New York, NY, USA:
Acm, 2017, pp. 20–29. isbn: 978-1-4503-5301-4. doi: 10 .
1145/3141880.3141895.

[Eri+16] B. J. Ericson, K. Rogers, M. Parker, B. Morrison, and M.
Guzdial. “Identifying Design Principles for CS Teacher Ebooks
Through Design-Based Research”. In: Proceedings of the 2016
ACM Conference on International Computing Education Re-
search. ICER ’16. New York, NY, USA: Acm, 2016, pp. 191–
200. isbn: 978-1-4503-4449-4. doi: 10 . 1145 / 2960310 .
2960335.

https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.2190/3lfx-9rrf-67t8-uvk9
https://doi.org/10.1145/3483843
https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/2960310.2960335
https://doi.org/10.1145/2960310.2960335

BIBLIOGRAPHY 149

[Eri+22] B. J. Ericson, P. Denny, J. Prather, R. Duran, A. Hellas, J.
Leinonen, C. S. Miller, B. B. Morrison, J. L. Pearce, and S. H.
Rodger. “Parsons Problems and Beyond: Systematic Literature
Review and Empirical Study Designs”. In: ITiCSE-WGR ’22
(2022), pp. 191–234. doi: 10.1145/3571785.3574127.

[ET17] F. J. Estrada and A. Tafliovich. “Bridging the Gap Between
Desired and Actual Qualifications of Teaching Assistants: An
Experience Report”. In: Proceedings of the 2017 ACM Con-
ference on Innovation and Technology in Computer Science
Education. ITiCSE ’17. New York, NY, USA: Association for
Computing Machinery, June 2017, pp. 134–139. isbn: 978-1-
4503-4704-4. doi: 10.1145/3059009.3059023.

[FHE22] C. J. Felege, C. J. Hunter, and S. N. Ellis-Felege. “Personal
Impacts of the Undergraduate Teaching Assistant Experience”.
In: Journal of the Scholarship of Teaching and Learning 22.2
(June 2022). issn: 1527-9316. doi: 10.14434/josotl.v22i
2.31306.

[Fin+20] S. Fincher, J. Jeuring, C. S. Miller, P. Donaldson, B. du Boulay,
M. Hauswirth, A. Hellas, F. Hermans, C. Lewis, A. Mühling,
J. L. Pearce, and A. Petersen. “Notional Machines in Comput-
ing Education: The Education of Attention”. In: Proceedings
of the Working Group Reports on Innovation and Technology
in Computer Science Education. ITiCSE-WGR ’20. Trondheim,
Norway: Association for Computing Machinery, 2020, pp. 21–
50. isbn: 9781450382939. doi: 10.1145/3437800.3439202.

[For+17] J. Forbes, D. J. Malan, H. Pon-Barry, S. Reges, and M.
Sahami. “Scaling Introductory Courses Using Undergradu-
ate Teaching Assistants”. In: Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Edu-
cation. SIGCSE ’17. Seattle, Washington, USA: Associa-
tion for Computing Machinery, 2017, pp. 657–658. isbn:
9781450346986. doi: 10.1145/3017680.3017694.

[Fre+07] M. Frenay, B. Galand, E. Milgrom, and B. Raucent. “Project-
and Problem-Based Learning in the Engineering Curriculum
at the University of Louvain”. In: Leiden, The Netherlands:
Brill, 2007, pp. 93–108. isbn: 9789087900922. doi: 10.1163/
9789087900922_008.

[FV21] B. Fowler and E. Vegas. How England Implemented Its Com-
puter Science Education Program. Tech. rep. Center for Uni-
versal Education at The Brookings Institution, Jan. 2021.

https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3059009.3059023
https://doi.org/10.14434/josotl.v22i2.31306
https://doi.org/10.14434/josotl.v22i2.31306
https://doi.org/10.1145/3437800.3439202
https://doi.org/10.1145/3017680.3017694
https://doi.org/10.1163/9789087900922_008
https://doi.org/10.1163/9789087900922_008

150 BIBLIOGRAPHY

[Gan+13] W. Gander, A. Petit, G. Berry, B. Demo, J. Vahrenhold, A.
McGettrick, R. Boyle, A. Mendelson, C. Stephenson, and C.
Ghezzi. Informatics Education: Europe Cannot A!ord to Miss
the Boat. Tech. rep. Informatics Europe & ACM Europe Work-
ing Group on Informatics Education, 2013.

[GDM22] O. Goletti, F. De Pierpont, and K. Mens. “Création d’exemples
résolus avec objectifs étiquetés pour l’apprentissage de la pro-
grammation avec Python”. In: Didapro 9–DidaSTIC. 2022.

[GFR12] B. Galand, M. Frenay, and B. Raucent. “E!ectiveness of
problem-based learning in engineering education: a compar-
ative study on three levels of knowledge structure”. In: The
International journal of engineering education 28.4 (2012),
pp. 939–947.

[GM22] O. Goletti and K. Mens. “Atelier : Utiliser des stratégies
d’instruction explicites dans l’enseignement de la programma-
tion”. In: Didapro 9 – DidaSTIC. 2022.

[GMH21] O. Goletti, K. Mens, and F. Hermans. “Tutors’ Experiences in
Using Explicit Strategies in a Problem-Based Learning Intro-
ductory Programming Course”. In: ITiCSE ’21. Virtual Event,
Germany: ACM Press, June 2021. doi: 10.1145/3430665.
3456348.

[GMH22] O. Goletti, K. Mens, and F. Hermans. “An Analysis of Tutors’
Adoption of Explicit Instructional Strategies in an Introductory
Programming Course”. In: Proceedings of the 22nd Koli Calling
International Conference on Computing Education Research.
2022, pp. 1–12. doi: 10.1145/3564721.3565951.

[GMH24] O. Goletti, K. Mens, and F. Hermans. “An Observational Study
of Undergraduate Teaching Assistants’ Use of Subgoal Learn-
ing Integrated in an Introductory Programming Course”. In:
Proceedings of the 2024 ACM SIGPLAN International Sym-
posium on SPLASH-E (SPLASH-E ’24). Pasadena, CA, USA:
ACM Press, Oct. 2024. doi: 10.1145/3689493.3689986.

[Gol19] O. Goletti. En quoi le dispositif mis en œuvre dans le cours
d’introduction à l’informatique en BAC1 ingénieur civil basé sur
l’apprentissage par problèmes soutient les processus du trans-
fert des apprentissages : l’encodage et l’accessibilité aux con-
naissances ? Tech. rep. http://hdl.handle.net/2078.1/
245579. UCLouvain, 2019.

https://doi.org/10.1145/3430665.3456348
https://doi.org/10.1145/3430665.3456348
https://doi.org/10.1145/3564721.3565951
https://doi.org/10.1145/3689493.3689986
http://hdl.handle.net/2078.1/245579
http://hdl.handle.net/2078.1/245579

BIBLIOGRAPHY 151

[Gol21] O. Goletti. “Promoting Learning Transfer in Computer Science
Education by Training Teachers to Use Explicit Programming
Strategies”. In: ICER ’17. Virtual Event USA: Acm, Aug. 2021,
pp. 411–412. doi: 10.1145/3446871.3469776.

[Gol24] O. Goletti. “Subgoal Learning Integration in a CS1 Course”.
In: Colloque Didapro 10 Sur La Didactique de l’informatique
et Des STIC. 2024, pp. 131–135.

[GSH19] K. Geldreich, A. Simon, and P. Hubwieser. “A Design-Based
Research Approach for Introducing Algorithmics and Program-
ming to Bavarian Primary Schools”. In: MediaEducation: Jour-
nal for Theory and Practice of Media Education (Feb. 2019),
53–75 Seiten. doi: 10.21240/mpaed/33/2019.02.15.x.

[GSM11] D. Ginat, E. Shifroni, and E. Menashe. “Transfer, Cognitive
Load, and Program Design Di"culties”. In: Informatics in
Schools. Contributing to 21st Century Education. Ed. by I.
Kala$ and R. T. Mittermeir. Vol. 7013. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 165–176. isbn: 978-3-
642-24722-4. doi: 10.1007/978-3-642-24722-4_15.

[Guz03] M. Guzdial. “A media computation course for non-majors”. In:
SIGCSE Bull. 35.3 (June 2003), pp. 104–108. issn: 0097-8418.
doi: 10.1145/961290.961542.

[Guz16] M. J. Guzdial. Learner-Centered Design of Computing Educa-
tion: Research on Computing for Everyone. Synthesis Lectures
on Human-Centered Informatics 33. San Rafael?: Morgan &
Claypool Publishers, 2016. isbn: 978-1-62705-351-8.

[Haz+06] O. Hazzan, Y. Dubinsky, L. Eidelman, V. Sakhnini, and M.
Teif. “Qualitative research in computer science education”. In:
SIGCSE ’06 (2006), pp. 408–412. doi: 10.1145/1121341.
1121469.

[HDC07] C. E. Hmelo-Silver, R. G. Duncan, and C. A. Chinn. “Scaf-
folding and Achievement in Problem-Based and Inquiry Learn-
ing: A Response to Kirschner, Sweller, And”. In: Educa-
tional psychologist 42.2 (2007), pp. 99–107. doi: 10.1080/
00461520701263368.

[HHB20] M. Hennink, I. Hutter, and A. Bailey. Qualitative Research
Methods. Sage, 2020. isbn: 9781473903913.

https://doi.org/10.1145/3446871.3469776
https://doi.org/10.21240/mpaed/33/2019.02.15.x
https://doi.org/10.1007/978-3-642-24722-4_15
https://doi.org/10.1145/961290.961542
https://doi.org/10.1145/1121341.1121469
https://doi.org/10.1145/1121341.1121469
https://doi.org/10.1080/00461520701263368
https://doi.org/10.1080/00461520701263368

152 BIBLIOGRAPHY

[HJ13] M. Hertz and M. Jump. “Trace-based teaching in early pro-
gramming courses”. In: Proceeding of the 44th ACM Techni-
cal Symposium on Computer Science Education. SIGCSE ’13.
Denver, Colorado, USA: Association for Computing Machin-
ery, 2013, pp. 561–566. isbn: 9781450318686. doi: 10.1145/
2445196.2445364.

[HJ16] J. Henry and N. Joris. Informatics at Secondary Schools in the
French-speaking Region of Belgium: Myth or Reality? Tech.
rep. accepted for the country reports track, Informatics in
Schools: Improvement of Informatics Knowledge and Percep-
tion (ISSEP’16). UNamur, 2016.

[HMF16] F. Heintz, L. Mannila, and T. Farnqvist. “A Review of Mod-
els for Introducing Computational Thinking, Computer Science
and Computing in K-12 Education”. In: 2016 IEEE Frontiers in
Education Conference (FIE). Erie, PA, USA: Ieee, Oct. 2016,
pp. 1–9. isbn: 978-1-5090-1790-4. doi: 10.1109/fie.2016.
7757410.

[HS18] J. Henry and A. Smal. “«Et Si Demain Je Devais Enseigner
l’informatique?» Le Cas Des Enseignants de Belgique Fran-
cophone”. In: Didapro 7–DidaSTIC. De 0 à 1 Ou l’heure de
l’informatique à l’école. 2018.

[Hub18] A. Hubbard. “Pedagogical Content Knowledge in Computing
Education: A Review of the Research Literature”. In: Computer
Science Education 28.2 (2018), pp. 117–135.

[HWC13] M. Hu, M. Winiko!, and S. Cranefield. “A process for novice
programming using goals and plans”. In: Proceedings of the
Fifteenth Australasian Computing Education Conference - Vol-
ume 136. ACE ’13. Adelaide, Australia: Australian Computer
Society, Inc., 2013, pp. 3–12. isbn: 9781921770210.

[HY16] J. Han and H. Yin. “Teacher Motivation: Definition, Research
Development and Implications for Teachers”. In: Cogent Edu-
cation 3.1 (Dec. 2016). Ed. by M. Boylan, p. 1217819. issn:
2331-186x. doi: 10.1080/2331186x.2016.1217819.

[HY17] J. R. Hollingsworth and S. E. Ybarra. Explicit Direct Instruction
(EDI): The Power of the Well-Crafted, Well-Taught Lesson.
Corwin Press, 2017. isbn: 978-1506337517.

[IK11] P. Ihantola and V. Karavirta. “Two-dimensional parson’s puz-
zles: The concept, tools, and first observations”. In: Journal of
Information Technology Education. Innovations in Practice 10
(2011), p. 119. doi: 10.28945/1394.

https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1145/2445196.2445364
https://doi.org/10.1109/fie.2016.7757410
https://doi.org/10.1109/fie.2016.7757410
https://doi.org/10.1080/2331186x.2016.1217819
https://doi.org/10.28945/1394

BIBLIOGRAPHY 153

[IM21] C. Izu and C. Mirolo. “Learning Transfer in Novice Program-
mers: A Preliminary Study”. In: Proceedings of the 26th ACM
Conference on Innovation and Technology in Computer Sci-
ence Education V. 1. ITiCSE ’21. Virtual Event, Germany: As-
sociation for Computing Machinery, 2021, pp. 178–184. isbn:
9781450382144. doi: 10.1145/3430665.3456336.

[JH20] F. D. F.-M. José L. Arco-Tirado and M. Hervás-Torres.
“Evidence-based peer-tutoring program to improve students’
performance at the university”. In: Studies in Higher Educa-
tion 45.11 (2020), pp. 2190–2202. doi: 10.1080/03075079.
2019.1597038.

[JMH13] S. P. Jones, B. Mitchell, and S. Humphreys. “Computing at
School in the UK”. In: CACM Report (2013).

[JS87] W. Johnson and E. Soloway. “Intention-Based Diagnosis of
Novice Programming Errors”. In: IEEE Expert 2 (Oct. 1987),
pp. 94–94. doi: 10.1109/mex.1987.4307101.

[Kal17] M. Kallia. “Assessment in Computer Science Courses: A Liter-
ature Review”. In: Royal Society (2017).

[Kau16] J.-C. Kaufmann. L’entretien Compréhensif-4e Éd. Armand
Colin, 2016. isbn: 9782200613976.

[Kel09] G. Kelchtermans. “Who I Am in How I Teach Is the Message:
Self-understanding, Vulnerability and Reflection”. In: Teachers
and Teaching 15.2 (Apr. 2009), pp. 257–272. issn: 1354-0602.
doi: 10.1080/13540600902875332.

[Kir02] P. A. Kirschner. “Cognitive Load Theory: Implications of Cog-
nitive Load Theory on the Design of Learning”. In: Learning
and Instruction 12.1 (Feb. 2002), pp. 1–10. issn: 0959-4752.
doi: 10.1016/s0959-4752(01)00014-7.

[Kir06] M. Kirley. “Supporting casual tutors and demonstrators: a case
study in computer science and software engineering”. In: Pro-
ceedings of the 8th Australasian Conference on Computing Ed-
ucation - Volume 52. ACE ’06. Hobart, Australia: Australian
Computer Society, Inc., 2006, pp. 109–115. isbn: 1920682341.

[KJH18] H. Keuning, J. Jeuring, and B. Heeren. “A Systematic Litera-
ture Review of Automated Feedback Generation for Program-
ming Exercises”. In: ACM Trans. Comput. Educ. 19.1 (Sept.
2018). doi: 10.1145/3231711.

https://doi.org/10.1145/3430665.3456336
https://doi.org/10.1080/03075079.2019.1597038
https://doi.org/10.1080/03075079.2019.1597038
https://doi.org/10.1109/mex.1987.4307101
https://doi.org/10.1080/13540600902875332
https://doi.org/10.1016/s0959-4752(01)00014-7
https://doi.org/10.1145/3231711

154 BIBLIOGRAPHY

[Ko+19] A. J. Ko, T. D. LaToza, S. Hull, E. A. Ko, W. Kwok, J. Quicho-
cho, H. Akkaraju, and R. Pandit. “Teaching Explicit Program-
ming Strategies to Adolescents”. In: Proceedings of the 50th
ACM Technical Symposium on Computer Science Education.
SIGCSE ’19. New York, NY, USA: Acm, 2019, pp. 469–475.
isbn: 978-1-4503-5890-3. doi: 10.1145/3287324.3287371.

[Kom+22] V. Komis, S. Bachy, O. Goletti, G. Parriaux, M. Rafalska, and
K. Lavidas. “Connaissances du contenu et connaissances tech-
nologiques des enseignants en Informatique en milieu franco-
phone”. In: Review of Science, Mathematics and ICT Educa-
tion 16.2 (2022), pp. 105–133. doi: 10.26220/rev.4080.

[KSC06] P. A. Kirschner, J. Sweller, and R. E. Clark. “Why Minimal
Guidance During Instruction Does Not Work: An Analysis of
the Failure of Constructivist, Discovery, Problem-Based, Ex-
periential, and Inquiry-Based Teaching”. In: Educational Psy-
chologist 41.2 (June 2006), pp. 75–86. issn: 0046-1520, 1532-
6985. doi: 10.1207/s15326985ep4102_1.

[LaT+20] T. D. LaToza, M. Arab, D. Loksa, and A. J. Ko. “Explicit
Programming Strategies”. In: Empirical Software Engineering
25.4 (July 2020), pp. 2416–2449. issn: 1382-3256, 1573-7616.
doi: 10.1007/s10664-020-09810-1.

[LBG00] J. Luo, L. Bellows, and M. Grady. “Classroom Management
Issues for Teaching Assistants”. In: Research in Higher Edu-
cation 41.3 (June 2000), pp. 353–383. issn: 1573-188X. doi:
10.1023/A:1007042911919.

[Lec+19] A. Lecat, I. Raemdonck, S. Beausaert, and V. März. “The
what and why of primary and secondary school teachers’ in-
formal learning activities”. In: International Journal of Educa-
tional Research 96 (2019), pp. 100–110. issn: 0883-0355. doi:
10.1016/j.ijer.2019.06.003.

[Len24] C. Lengelé. “Integrating Parsons problems in a CS1 program-
ming course autograder”. MA thesis. UCL - Ecole polytech-
nique de Louvain, 2024.

[LFT09] R. Lister, C. Fidge, and D. Teague. “Further evidence of a
relationship between explaining, tracing and writing skills in
introductory programming”. In: Proceedings of the 14th An-
nual ACM SIGCSE Conference on Innovation and Technology
in Computer Science Education. ITiCSE ’09. Paris, France: As-
sociation for Computing Machinery, 2009, pp. 161–165. isbn:
9781605583815. doi: 10.1145/1562877.1562930.

https://doi.org/10.1145/3287324.3287371
https://doi.org/10.26220/rev.4080
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1023/A:1007042911919
https://doi.org/10.1016/j.ijer.2019.06.003
https://doi.org/10.1145/1562877.1562930

BIBLIOGRAPHY 155

[Lis+04] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M.
Lindholm, R. McCartney, J. E. Moström, K. Sanders, O. Sep-
pälä, B. Simon, and L. Thomas. “A multi-national study of
reading and tracing skills in novice programmers”. In: Work-
ing Group Reports from ITiCSE on Innovation and Technol-
ogy in Computer Science Education. ITiCSE-WGR ’04. Leeds,
United Kingdom: Association for Computing Machinery, 2004,
pp. 119–150. isbn: 9781450377942. doi: 10.1145/1044550.
1041673.

[Lis16] R. Lister. “Toward a Developmental Epistemology of Com-
puter Programming”. In: Proceedings of the 11th Workshop
in Primary and Secondary Computing Education. WiPSCE
’16. Münster, Germany: Association for Computing Machin-
ery, 2016, pp. 5–16. isbn: 9781450342230. doi: 10.1145/
2978249.2978251.

[LK16] D. Loksa and A. J. Ko. “The Role of Self-Regulation in Pro-
gramming Problem Solving Process and Success”. In: Proceed-
ings of the 2016 ACM Conference on International Computing
Education Research. ICER ’16. Melbourne, VIC, Australia: As-
sociation for Computing Machinery, 2016, pp. 83–91. isbn:
9781450344494. doi: 10.1145/2960310.2960334.

[Lok+16] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez,
and M. M. Burnett. “Programming, Problem Solving, and
Self-Awareness: E!ects of Explicit Guidance”. In: Proceedings
of the 2016 CHI Conference on Human Factors in Comput-
ing Systems. CHI ’16. San Jose, California, USA: Associa-
tion for Computing Machinery, 2016, pp. 1449–1461. isbn:
9781450333627. doi: 10.1145/2858036.2858252.

[Lux+18] A. Luxton-Reilly, Simon, I. Albluwi, B. A. Becker, M. Gian-
nakos, A. N. Kumar, L. Ott, J. Paterson, M. J. Scott, J.
Sheard, and C. Szabo. “Introductory Programming: A Sys-
tematic Literature Review”. In: Proceedings Companion of the
23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. ITiCSE 2018 Companion. New
York, NY, USA: Association for Computing Machinery, July
2018, pp. 55–106. isbn: 978-1-4503-6223-8. doi: 10.1145/
3293881.3295779.

[Lux16] A. Luxton-Reilly. “Learning to Program is Easy”. In: Pro-
ceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education. ITiCSE ’16. Are-

https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/1044550.1041673
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/2978249.2978251
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779

156 BIBLIOGRAPHY

quipa, Peru: Association for Computing Machinery, 2016,
pp. 284–289. isbn: 9781450342315. doi: 10.1145/2899415.
2899432.

[Mar+22] L. E. Margulieux, P. Enderle, P. J. Clarke, N. King, C. Sulli-
van, M. Zoss, and J. Many. “Integrating Computing into Pre-
service Teacher Preparation Programs across the Core: Lan-
guage, Mathematics, and Science”. In: Journal of Computer
Science Integration 5.1 (Nov. 2022). issn: 2574-108x. doi:
10.26716/jcsi.2022.11.15.35.

[McC+01] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Ha-
gan, Y. B.-D. Kolikant, C. Laxer, L. Thomas, I. Utting, and
T. Wilusz. “A multi-national, multi-institutional study of as-
sessment of programming skills of first-year CS students”.
In: Working Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education. ITiCSE-WGR ’01.
Canterbury, UK: Association for Computing Machinery, 2001,
pp. 125–180. isbn: 9781450373593. doi: 10.1145/572133.
572137.

[MCG13] L. Margulieux, R. Catrambone, and M. Guzdial. “Subgoal La-
beled Worked Examples Improve K-12 Teacher Performance in
Computer Programming Training”. In: Proceedings of the An-
nual Meeting of the Cognitive Science Society. Vol. 35. 2013.

[McI05] D. McIntyre. “Bridging the Gap between Research and
Practice”. In: Cambridge Journal of Education 35.3 (Nov.
2005), pp. 357–382. issn: 0305-764X. doi: 10 . 1080 /
03057640500319065.

[MD19] P. Marquet and C. Declercq. “DIU Enseigner l’informatique
Au Lycée”. In: 1024 : Bulletin de la Société Informatique de
France 13 (Apr. 2019), pp. 47–56.

[Men15] M. Menekse. “Computer Science Teacher Professional Devel-
opment in the United States: A Review of Studies Published
between 2004 and 2014”. In: Computer Science Education
25.4 (2015), pp. 325–350. doi: 10.1080/08993408.2015.
1111645.

[MGC12] L. E. Margulieux, M. Guzdial, and R. Catrambone. “Subgoal-
Labeled Instructional Material Improves Performance and
Transfer in Learning to Develop Mobile Applications”. In: Pro-
ceedings of the Ninth Annual International Conference on In-
ternational Computing Education Research. ICER ’12. New
York, NY, USA: Association for Computing Machinery, Sept.

https://doi.org/10.1145/2899415.2899432
https://doi.org/10.1145/2899415.2899432
https://doi.org/10.26716/jcsi.2022.11.15.35
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/572133.572137
https://doi.org/10.1080/03057640500319065
https://doi.org/10.1080/03057640500319065
https://doi.org/10.1080/08993408.2015.1111645
https://doi.org/10.1080/08993408.2015.1111645

BIBLIOGRAPHY 157

2012, pp. 71–78. isbn: 978-1-4503-1604-0. doi: 10.1145/
2361276.2361291.

[MGG12] K. Meyers, V. E. Goodrich, and N. Gedde. “Participation in
an Undergraduate Teaching Assistantship: Experiences, Influ-
ences, and Outcomes”. In: 2012 ASEE Annual Conference &
Exposition. 2012, pp. 25–1026.

[Mir+19] D. Mirza, P. T. Conrad, C. Lloyd, Z. Matni, and A. Gatin. “Un-
dergraduate Teaching Assistants in Computer Science: A Sys-
tematic Literature Review”. In: Proceedings of the 2019 ACM
Conference on International Computing Education Research.
ICER ’19. Toronto ON, Canada: Association for Computing
Machinery, 2019, pp. 31–40. isbn: 9781450361859. doi: 10.
1145/3291279.3339422.

[MMD19] L. E. Margulieux, B. B. Morrison, and A. Decker. “Design and
Pilot Testing of Subgoal Labeled Worked Examples for Five
Core Concepts in CS1”. In: Proceedings of the 2019 ACM
Conference on Innovation and Technology in Computer Sci-
ence Education - ITiCSE ’19. Aberdeen, Scotland Uk: ACM
Press, 2019, pp. 548–554. isbn: 978-1-4503-6895-7. doi: 10.
1145/3304221.3319756.

[MMD20] L. E. Margulieux, B. B. Morrison, and A. Decker. “Reduc-
ing Withdrawal and Failure Rates in Introductory Program-
ming with Subgoal Labeled Worked Examples”. In: Interna-
tional Journal of STEM Education 7.1 (May 2020), p. 19.
issn: 2196-7822. doi: 10.1186/s40594-020-00222-7.

[MMG15] B. B. Morrison, L. E. Margulieux, and M. Guzdial. “Sub-
goals, Context, and Worked Examples in Learning Comput-
ing Problem Solving”. In: Proceedings of the Eleventh An-
nual International Conference on International Computing Ed-
ucation Research. ICER ’15. Omaha, Nebraska, USA: As-
sociation for Computing Machinery, 2015, pp. 21–29. isbn:
9781450336307. doi: 10.1145/2787622.2787733.

[Moo+13] A. Moon, H. Jung, F. Marbouti, K. Rodgers, and H. Diefes-
Dux. “Undergraduate and Graduate Teaching Assistants’ Per-
ceptions of Their Responsibilities - Factors That Help or Hin-
der”. In: 2013 IEEE Frontiers in Education Conference (FIE).
Oct. 2013, pp. 1576–1578. doi: 10 . 1109 / FIE . 2013 .
6685103.

https://doi.org/10.1145/2361276.2361291
https://doi.org/10.1145/2361276.2361291
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/3304221.3319756
https://doi.org/10.1145/3304221.3319756
https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1109/FIE.2013.6685103
https://doi.org/10.1109/FIE.2013.6685103

158 BIBLIOGRAPHY

[Mor14] D. L. Morgan. “Pragmatism as a Paradigm for Social Re-
search”. In: Qualitative Inquiry 20.8 (2014), pp. 1045–1053.
doi: 10.1177/1077800413513733.

[Mow+03] C. T. Mowbray, M. C. Holter, G. B. Teague, and D. Bybee. “Fi-
delity Criteria: Development, Measurement, and Validation”.
In: American Journal of Evaluation 24.3 (2003), pp. 315–340.

[MS05] J. J. G. van Merriënboer and J. Sweller. “Cognitive Load The-
ory and Complex Learning: Recent Developments and Future
Directions”. In: Educational Psychology Review 17.2 (June
2005), pp. 147–177. issn: 1573-336x. doi: 10.1007/s10648-
005-3951-0.

[MS23] F. Muzny and M. D. Shah. “Teaching Assistant Training: An
Adjustable Curriculum for Computing Disciplines”. In: Pro-
ceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. SIGCSE 2023. Toronto ON, Canada:
Association for Computing Machinery, 2023, pp. 430–436.
isbn: 9781450394314. doi: 10.1145/3545945.3569866.

[Nae+23] M. Naeem, W. Ozuem, K. Howell, and S. Ranfagni. “A Step-
by-Step Process of Thematic Analysis to Develop a Conceptual
Model in Qualitative Research”. In: International Journal of
Qualitative Methods 22 (2023), p. 16094069231205789. doi:
10.1177/16094069231205789.

[Nat00] National Research Council. How People Learn: Brain, Mind,
Experience, and School: Expanded Edition. Washington, DC:
The National Academies Press, 2000. isbn: 978-0-309-07036-
2. doi: 10.17226/9853.

[NG12] L. Ni and M. Guzdial. “Who AM I? understanding high school
computer science teachers’ professional identity”. In: Proceed-
ings of the 43rd ACM Technical Symposium on Computer Sci-
ence Education. SIGCSE ’12. Raleigh, North Carolina, USA:
Association for Computing Machinery, 2012, pp. 499–504.
isbn: 9781450310987. doi: 10.1145/2157136.2157283.

[Ni+11] L. Ni, M. Guzdial, A. E. Tew, B. Morrison, and R. Galanos.
“Building a Community to Support HS CS Teachers: The Dis-
ciplinary Commons for Computing Educators”. In: Proceed-
ings of the 42Nd ACM Technical Symposium on Computer
Science Education. SIGCSE ’11. New York, NY, USA: Acm,
2011, pp. 553–558. isbn: 978-1-4503-0500-6. doi: 10.1145/
1953163.1953319.

https://doi.org/10.1177/1077800413513733
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1145/3545945.3569866
https://doi.org/10.1177/16094069231205789
https://doi.org/10.17226/9853
https://doi.org/10.1145/2157136.2157283
https://doi.org/10.1145/1953163.1953319
https://doi.org/10.1145/1953163.1953319

BIBLIOGRAPHY 159

[Ni+21] L. Ni, T. McKlin, H. Hao, J. Baskin, J. Bohrer, and Y.
Tian. “Understanding Professional Identity of Computer Sci-
ence Teachers: Design of the Computer Science Teacher Iden-
tity Survey”. In: Proceedings of the 17th ACM Conference on
International Computing Education Research. ICER 2021. New
York, NY, USA: Association for Computing Machinery, Aug.
2021, pp. 281–293. isbn: 978-1-4503-8326-4. doi: 10.1145/
3446871.3469766.

[NK18] G. L. Nelson and A. J. Ko. “On Use of Theory in Comput-
ing Education Research”. In: Proceedings of the 2018 ACM
Conference on International Computing Education Research -
ICER ’18. Espoo, Finland: ACM Press, 2018, pp. 31–39. isbn:
978-1-4503-5628-2. doi: 10.1145/3230977.3230992.

[ODo08] C. L. O’Donnell. “Defining, conceptualizing, and measuring fi-
delity of implementation and its relationship to outcomes in
K–12 curriculum intervention research”. In: Review of edu-
cational research 78.1 (2008). Publisher: Sage Publications,
pp. 33–84.

[Pal90] D. B. Palumbo. “Programming Language/Problem-Solving
Research: A Review of Relevant Issues”. In: Review of Educa-
tional Research 60.1 (Mar. 1990), pp. 65–89. issn: 0034-6543.
doi: 10.3102/00346543060001065.

[Pap80] S. Papert. Mindstorms: children, computers, and powerful
ideas. Usa: Basic Books, Inc., 1980. isbn: 0465046274.

[Pat12] E. Patitsas. “A Case Study of Environmental Factors Influ-
encing Teaching Assistant Job Satisfaction”. In: Proceedings
of the Ninth Annual International Conference on International
Computing Education Research. 2012, pp. 11–16.

[Pat13] E. Patitsas. “A case study of the development of CS teaching
assistants and their experiences with team teaching”. In: Pro-
ceedings of the 13th Koli Calling International Conference on
Computing Education Research. Koli Calling ’13. Koli, Finland:
Association for Computing Machinery, 2013, pp. 115–124.
isbn: 9781450324823. doi: 10.1145/2526968.2526981.

[Pea+07] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams, J.
Bennedsen, M. Devlin, and J. Paterson. “A Survey of Lit-
erature on the Teaching of Introductory Programming”. In:
Working Group Reports on ITiCSE on Innovation and Technol-
ogy in Computer Science Education. ITiCSE-WGR ’07. New
York, NY, USA: Association for Computing Machinery, Dec.

https://doi.org/10.1145/3446871.3469766
https://doi.org/10.1145/3446871.3469766
https://doi.org/10.1145/3230977.3230992
https://doi.org/10.3102/00346543060001065
https://doi.org/10.1145/2526968.2526981

160 BIBLIOGRAPHY

2007, pp. 204–223. isbn: 978-1-4503-7842-0. doi: 10.1145/
1345443.1345441.

[Pea86] R. D. Pea. “Language-Independent Conceptual “Bugs” in
Novice Programming”. In: Journal of Educational Computing
Research 2.1 (Feb. 1986), pp. 25–36. issn: 0735-6331, 1541-
4140. doi: 10.2190/689t-1r2a-x4w4-29j2.

[Per+86] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R.
Simmons. “Conditions of learning in novice programmers”.
In: Journal of Educational Computing Research 2.1 (1986),
pp. 37–55.

[PH06] D. Parsons and P. Haden. “Parson’s programming puzzles: a
fun and e!ective learning tool for first programming courses”.
In: Proceedings of the 8th Australasian Conference on Com-
puting Education - Volume 52. ACE ’06. Hobart, Australia:
Australian Computer Society, Inc., 2006, pp. 157–163. isbn:
1920682341.

[PRS03] F. Paas, A. Renkl, and J. Sweller. “Cognitive load theory and
instructional design: Recent developments”. In: Educational
psychologist 38.1 (2003), pp. 1–4.

[PS13] L. Porter and B. Simon. “Retaining nearly one-third more ma-
jors with a trio of instructional best practices in CS1”. In: Pro-
ceeding of the 44th ACM Technical Symposium on Computer
Science Education. SIGCSE ’13. Denver, Colorado, USA: As-
sociation for Computing Machinery, 2013, pp. 165–170. isbn:
9781450318686. doi: 10.1145/2445196.2445248.

[QL17] Y. Qian and J. Lehman. “Students’ Misconceptions and Other
Di"culties in Introductory Programming: A Literature Re-
view”. In: ACM Trans. Comput. Educ. 18.1 (Oct. 2017), 1:1–
1:24. issn: 1946-6226. doi: 10.1145/3077618.

[Rau+04] B. Raucent, J.-M. Braibant, M. N. d. Theux, C. Jacq-
mot, E. Milgrom, C. Vander Borght, and P. Wouters.
“Devenir ingénieur par apprentissage actif: compte rendu
d’innovation/How to become an engineer through active learn-
ing: report of innovation”. In: Didaskalia 24.1 (2004), pp. 81–
101.

[Rau04] B. Raucent. “What Kind of Project in the Basic Year of an
Engineering Curriculum”. In: Journal of Engineering Design
15.1 (2004), pp. 107–121.

https://doi.org/10.1145/1345443.1345441
https://doi.org/10.1145/1345443.1345441
https://doi.org/10.2190/689t-1r2a-x4w4-29j2
https://doi.org/10.1145/2445196.2445248
https://doi.org/10.1145/3077618

BIBLIOGRAPHY 161

[RC07] R. D. Roscoe and M. T. Chi. “Understanding tutor learning:
Knowledge-building and knowledge-telling in peer tutors’ ex-
planations and questions”. In: Review of educational research
77.4 (2007), pp. 534–574.

[Ren+98] A. Renkl, R. Stark, H. Gruber, and H. Mandl. “Learning from
Worked-out Examples: The E!ects of Example Variability and
Elicited Self-Explanations”. In: Contemporary educational psy-
chology 23.1 (1998), pp. 90–108.

[Rie+21] E. Riese, M. Lorås, M. Ukrop, and T. E!enberger. “Challenges
Faced by Teaching Assistants in Computer Science Educa-
tion Across Europe”. In: Proceedings of the 26th ACM Con-
ference on Innovation and Technology in Computer Science
Education V. 1. ITiCSE ’21. Virtual Event, Germany: Asso-
ciation for Computing Machinery, 2021, pp. 547–553. isbn:
9781450382144. doi: 10.1145/3430665.3456304.

[RK22] E. Riese and V. Kann. “Training Teaching Assistants by Of-
fering an Introductory Course”. In: Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education
- Volume 1. Vol. 1. SIGCSE 2022. New York, NY, USA: As-
sociation for Computing Machinery, Feb. 2022, pp. 745–751.
isbn: 978-1-4503-9070-5. doi: 10.1145/3478431.3499270.

[RLR95] E. Roberts, J. Lilly, and B. Rollins. “Using undergraduates as
teaching assistants in introductory programming courses: an
update on the Stanford experience”. In: SIGCSE Bull. 27.1
(Mar. 1995), pp. 48–52. issn: 0097-8418. doi: 10 . 1145 /
199691.199716.

[Rod+14] K. J. Rodgers, F. Marbouti, A. Shafaat, H. Jung, and H. A.
Diefes-Dux. “Influence of Teaching Assistants’ Motivation on
Student Learning”. In: 2014 IEEE Frontiers in Education Con-
ference (FIE) Proceedings. Oct. 2014, pp. 1–8. doi: 10.1109/
fie.2014.7044004.

[Roy12] Royal Society. Shut Down Or Restart?: The Way Forward for
Computing in UK Schools. Tech. rep. Royal Society (Great
Britain), 2012.

[RTW07] M. de Raadt, M. Toleman, and R. Watson. “Incorporating pro-
gramming strategies explicitly into curricula”. In: Proceedings
of the Seventh Baltic Sea Conference on Computing Education
Research - Volume 88. Koli Calling ’07. Koli National Park,
Finland: Australian Computer Society, Inc., 2007, pp. 41–52.
isbn: 9781920682699.

https://doi.org/10.1145/3430665.3456304
https://doi.org/10.1145/3478431.3499270
https://doi.org/10.1145/199691.199716
https://doi.org/10.1145/199691.199716
https://doi.org/10.1109/fie.2014.7044004
https://doi.org/10.1109/fie.2014.7044004

162 BIBLIOGRAPHY

[Ryc22] L. Rycroft-Smith. “Knowledge Brokering to Bridge the
Research-practice Gap in Education: Where Are We Now?”
In: Review of Education 10.1 (Apr. 2022), e3341. issn: 2049-
6613, 2049-6613. doi: 10.1002/rev3.3341.

[Sae+11] M. Saeli, J. Perrenet, W. M. Jochems, and B. Zwaneveld.
“Teaching Programming in Secondary School: A Pedagogical
Content Knowledge Perspective.” In: Informatics in education
10.1 (2011), pp. 73–88.

[SAK11] J. Sweller, P. Ayres, and S. Kalyuga. Cognitive Load Theory,
Volume 1 of Explorations in the Learning Sciences, Instruc-
tional Systems and Performance Technologies. Springer, New
York, 2011.

[Sal+10] R. J. Salden, K. R. Koedinger, A. Renkl, V. Aleven, and B. M.
McLaren. “Accounting for Beneficial E!ects of Worked Exam-
ples in Tutored Problem Solving”. In: Educational Psychology
Review 22.4 (2010), pp. 379–392.

[Sch+07] H. G. Schmidt, S. M. Loyens, T. Van Gog, and F. Paas.
“Problem-Based Learning Is Compatible with Human Cogni-
tive Architecture: Commentary on Kirschner, Sweller, And”.
In: Educational psychologist 42.2 (2007), pp. 91–97.

[SDW17] P. Sobieski, D. Ducarme, and V. Wertz. “Renforcer l’analyse
réflexive des tuteurs en formation”. In: Actes - Questions de
pédagogie dans l’enseignement supérieur, QPES. 2017.

[Sen21] S. Sentance. “Teaching computing in school: is K-12 research
reaching classroom practice?” In: Proceedings of the 21st
Koli Calling International Conference on Computing Educa-
tion Research. Koli Calling ’21. Joensuu, Finland: Association
for Computing Machinery, 2021. isbn: 9781450384889. doi:
10.1145/3488042.3491040.

[Shu86] L. S. Shulman. “Those who understand: Knowledge growth in
teaching”. In: Educational researcher 15.2 (1986), pp. 4–14.

[SL14] B. Skudder and A. Luxton-Reilly. “Worked Examples in Com-
puter Science”. In: Proceedings of the Sixteenth Australasian
Computing Education Conference - Volume 148. Ace ’14. Aus:
Australian Computer Society, Inc., Jan. 2014, pp. 59–64. isbn:
978-1-921770-31-9.

[Sol86] E. Soloway. “Learning to Program= Learning to Construct
Mechanisms and Explanations”. In: Communications of the
ACM 29.9 (1986), pp. 850–858.

https://doi.org/10.1002/rev3.3341
https://doi.org/10.1145/3488042.3491040

BIBLIOGRAPHY 163

[Sor12] J. Sorva. “Visual Program Simulation in Introductory Program-
ming Education”. PhD thesis. 2012. isbn: 978-952-60-4626-6.

[SvP19] J. Sweller, J. J. van Merriënboer, and F. Paas. “Cognitive Ar-
chitecture and Instructional Design: 20 Years Later”. In: Ed-
ucational Psychology Review 31 (2019). Publisher: Springer,
pp. 1–32.

[Swe88] J. Sweller. “Cognitive load during problem solving: E!ects on
learning”. In: Cognitive science 12.2 (1988), pp. 257–285.

[Sza+19] C. Szabo, N. Falkner, A. Petersen, H. Bort, K. Cunningham,
P. Donaldson, A. Hellas, J. Robinson, and J. Sheard. “Review
and Use of Learning Theories within Computer Science Ed-
ucation Research: Primer for Researchers and Practitioners”.
In: Proceedings of the Working Group Reports on Innovation
and Technology in Computer Science Education. ITiCSE-WGR
’19. New York, NY, USA: Association for Computing Machin-
ery, Dec. 2019, pp. 89–109. isbn: 978-1-4503-7567-2. doi:
10.1145/3344429.3372504.

[Tar99] J. Tardif. Le Transfert Des Apprentissages. Editions logiques,
1999.

[Tho+11] E. E. J. Thoonen, P. J. C. Sleegers, F. J. Oort, T. T. D.
Peetsma, and F. P. Geijsel. “How to Improve Teaching Prac-
tices: The Role of Teacher Motivation, Organizational Fac-
tors, and Leadership Practices”. In: Educational Administration
Quarterly 47.3 (Aug. 2011), pp. 496–536. issn: 0013-161x,
1552-3519. doi: 10.1177/0013161x11400185.

[TJ20] E. Tshukudu and S. A. M. Jensen. “The Role of Explicit In-
struction on Students Learning Their Second Programming
Language”. In: United Kingdom & Ireland Computing Edu-
cation Research Conference. 2020, pp. 10–16.

[TR93] J. G. Trafton and B. J. Reiser. “Studying examples and solving
problems: Contributions to skill acquisition”. In: Proceedings of
the 15th conference of the Cognitive Science Society. Citeseer.
1993, pp. 1017–1022.

[Tsh+21] E. Tshukudu, Q. Cutts, O. Goletti, A. Swidan, and F. Hermans.
“Teachers’ Views and Experiences on Teaching Second and
Subsequent Programming Languages”. In: Proceedings of the
17th ACM Conference on International Computing Education
Research. ICER 2021. New York, NY, USA: Association for
Computing Machinery, Aug. 2021, pp. 294–305. isbn: 978-1-
4503-8326-4. doi: 10.1145/3446871.3469752.

https://doi.org/10.1145/3344429.3372504
https://doi.org/10.1177/0013161x11400185
https://doi.org/10.1145/3446871.3469752

164 BIBLIOGRAPHY

[TW01] E. L. Thorndike and R. S. Woodworth. “The Influence of
Improvement in One Mental Function upon the E"ciency
of Other Functions.(I).” In: Psychological review 8.3 (1901),
p. 247.

[Vah+17] J. Vahrenhold, M. Caspersen, G. Berry, J. Gal-Ezer, M. Kölling,
A. McGettrick, E. Nardelli, C. Pereira, and M. Westermeier.
Informatics Education in Europe: Are We All In The Same
Boat? Tech. rep. New York, NY, USA: ACM and Informatics
Europe, 2017.

[VAW14] A. Vihavainen, J. Airaksinen, and C. Watson. “A systematic
review of approaches for teaching introductory programming
and their influence on success”. In: Proceedings of the Tenth
Annual Conference on International Computing Education Re-
search. ICER ’14. Glasgow, Scotland, United Kingdom: As-
sociation for Computing Machinery, 2014, pp. 19–26. isbn:
9781450327558. doi: 10.1145/2632320.2632349.

[Ver23] C. Verstraete. “Increasing the diversity of feedback types in a
CS1 course”. MA thesis. UCL - Ecole polytechnique de Lou-
vain, 2023.

[VKK03] J. J. G. Van Merrienboer, P. A. Kirschner, and L. Kester. “Tak-
ing the Load O! a Learner’s Mind: Instructional Design for
Complex Learning”. In: Educational Psychologist 38.1 (Jan.
2003), pp. 5–13. issn: 0046-1520, 1532-6985. doi: 10.1207/
s15326985ep3801_2.

[vPS10] T. van Gog, F. Paas, and J. Sweller. “Cognitive Load The-
ory: Advances in Research on Worked Examples, Animations,
and Cognitive Load Measurement”. In: Educational Psychol-
ogy Review 22.4 (Dec. 2010), pp. 375–378. issn: 1573-336x.
doi: 10.1007/s10648-010-9145-4.

[VS07] V. Vainio and J. Sajaniemi. “Factors in novice program-
mers’ poor tracing skills”. In: Proceedings of the 12th Annual
SIGCSE Conference on Innovation and Technology in Com-
puter Science Education. ITiCSE ’07. Dundee, Scotland: As-
sociation for Computing Machinery, 2007, pp. 236–240. isbn:
9781595936103. doi: 10.1145/1268784.1268853.

[WH17] D. Weintrop and N. Holbert. “From Blocks to Text and Back:
Programming Patterns in a Dual-Modality Environment”. In:
Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education - SIGCSE ’17. Seattle, Wash-

https://doi.org/10.1145/2632320.2632349
https://doi.org/10.1207/s15326985ep3801_2
https://doi.org/10.1207/s15326985ep3801_2
https://doi.org/10.1007/s10648-010-9145-4
https://doi.org/10.1145/1268784.1268853

BIBLIOGRAPHY 165

ington, USA: ACM Press, 2017, pp. 633–638. isbn: 978-1-
4503-4698-6. doi: 10.1145/3017680.3017707.

[Whe+19] L. B. Wheeler, J. L. Chiu, J. L. Maeng, and R. L. Bell. “An Ex-
ploratory Study of Teaching Assistants’ Motivation for Inquiry-
Based Teaching in an Undergraduate Laboratory Context”. In:
Chemistry Education Research and Practice 20.1 (Jan. 2019),
pp. 53–67. issn: 1756-1108. doi: 10.1039/c8rp00157j.

[WS90] M. Ward and J. Sweller. “Structuring e!ective worked exam-
ples”. In: Cognition and instruction 7.1 (1990), pp. 1–39.

[WW19] D. Weintrop and U. Wilensky. “Transitioning from Introductory
Block-Based and Text-Based Environments to Professional
Programming Languages in High School Computer Science
Classrooms”. In: Computers & Education 142 (Dec. 2019),
p. 103646. issn: 0360-1315. doi: 10 . 1016 / j . compedu .
2019.103646.

[XNK18] B. Xie, G. L. Nelson, and A. J. Ko. “An Explicit Strategy to
Sca!old Novice Program Tracing”. In: Proceedings of the 49th
ACM Technical Symposium on Computer Science Education.
SIGCSE ’18. Baltimore, Maryland, USA: Association for Com-
puting Machinery, 2018, pp. 344–349. isbn: 9781450351034.
doi: 10.1145/3159450.3159527.

https://doi.org/10.1145/3017680.3017707
https://doi.org/10.1039/c8rp00157j
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1145/3159450.3159527

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Preamble
	Motivation
	Positionality
	Research Goals
	Approach
	Supporting Publications
	Structure

	I Related Work
	Computing Education Principles
	Introductory Programming Education
	Cognitive Load Theory
	Learning Transfer
	Problem-Based Learning
	Explicit Instructional Programming Strategies
	Explicit Tracing
	Worked Examples
	Subgoal Learning
	Parsons Problems
	Explicit Problem Solving

	Undergraduate Teaching Assistants in Computer Science
	Summary

	Methods and Tools
	Pragmatism as a Research Paradigm
	From CS to CEd
	On Pragmatism

	Design Research in Education
	Adaptation and Fidelity of Implementation
	Qualitative Research Tools
	Data Collection
	Coding

	Summary

	Use Case: a CS1 Course
	Introduction
	Course Setup
	Stakeholders
	Course Organisation
	Resources

	II Design Research Iterations
	Course Analysis
	Introduction
	Study Design and Methodology
	Conceptual Model
	Analysis Criteria

	Analysis of the CS1 Course Material
	Viability of Learning
	Organisation of Learning
	Accessibility to Knowledge and Skills in Long-Term Memory (LTM)

	Results
	Explain how Knowledge is Organised
	Emphasise Transfer Opportunities a Priori
	Use Explicit Recall Strategies
	Threats to Validity

	Conclusion

	First iteration: Exploration
	Selected Strategies
	Study Design and Methodology
	Results
	Tutor's Use of the Four Strategies
	RQ6.1: Use and adaptation of the strategies
	RQ6.2: Preferred Strategies
	RQ6.3: On Explicit Programming Strategies
	Threats to Validity

	Conclusion

	Subgoals Creation
	Introduction
	Study Design and Methodology
	Task analysis by problem solving (TAPS)
	Adapted TAPS

	Results
	Threats to Validity

	Conclusion

	Second Iteration: Characterisation
	Study Design and Methodology
	Training Material
	Participants
	Fidelity criteria
	Methodology

	Results
	Triggers for Strategy Usage
	Fidelity of Tutors' Strategy Implementation
	Tutors' Adaptation of Strategies
	Threats to Validity

	Conclusion

	Third Iteration: Integration
	Study Design and Methodology
	Subgoal Learning Integration
	UTAs' Training and Follow up
	Fidelity of Implementation and Deductive Codes
	Observations
	Surveys

	Results
	Observations
	UTAs' Surveys
	Crossing the Data Sources
	Students' Awareness of the Strategy
	Threats to validity

	Conclusion

	III Discussion and Future Directions
	Overall Results
	Summary of the Results
	Main Answers
	(RQ1) Strategy Choice
	(RQ2) Strategy Usage: Pros and Cons
	(RQ3) Training and Support
	(RQ4) Usage and Adaptions

	Advice to Practitioners
	How to Choose Instructional Strategies?
	How to Train UTAs?
	How to Support Instructional Change?

	Advice to UTAs
	Threats to Validity
	Lessons Learned on the Methodology

	Conclusion and Future Directions
	Another Audience: School Teachers
	The Context in Belgium
	Identity and Motivation
	Discussion

	Future Directions
	Conclusion

