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Abstract

Experiencing music often entails the perception of a periodic beat. Despite

being a widespread phenomenon across cultures, the nature and neural under-

pinnings of beat perception remain largely unknown. In the last decade, there

has been a growing interest in developing methods to probe these processes,

particularly to measure the extent to which beat-related information is

contained in behavioral and neural responses. Here, we propose a theoretical

framework and practical implementation of an analytic approach to capture

beat-related periodicity in empirical signals using frequency-tagging. We high-

light its sensitivity in measuring the extent to which the periodicity of a per-

ceived beat is represented in a range of continuous time-varying signals with

minimal assumptions. We also discuss a limitation of this approach with

respect to its specificity when restricted to measuring beat-related periodicity

only from the magnitude spectrum of a signal and introduce a novel extension

of the approach based on autocorrelation to overcome this issue. We test the

new autocorrelation-based method using simulated signals and by re-

analyzing previously published data and show how it can be used to process

Abbreviations: ACF, autocorrelation function; DFT, discrete Fourier transform; ERP, event-related potential; EEG, electroencephalography; SNR,
signal-to-noise ratio.
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measurements of brain activity as captured with surface EEG in adults and

infants in response to rhythmic inputs. Taken together, the theoretical frame-

work and related methodological advances confirm and elaborate the

frequency-tagging approach as a promising window into the processes under-

lying beat perception and, more generally, temporally coordinated behaviors.
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1 | INTRODUCTION

Humans across cultures show a remarkable capacity to
coordinate movement in time with music. Such musical
behaviors are often guided by a specific kind of internal
time representation, typically referred to as the “beat”
(Honing & Bouwer, 2018; Jones & Mcauley, 2005;
Large, 2008; London, 2012). More specifically, the current
paper focuses on instances where the term “beat” refers
to an internal representation consisting of seamlessly recur-
ring periods that can be used to time movement, and are
elicited by, and temporally coordinated with, a rhythmic
sensory stimulus. In fact, rhythms typically used in
musical contexts often elicit an internal representation of
a set of faster and slower beat layers that form a nested
temporal structure called “meter” (Brochard et al., 2003;
Cohn, 2020; Large et al., 2002; Lenc et al., 2021;
Repp, 2008; Toiviainen et al., 2010).

What remains poorly understood is how the brain
establishes a stable representation of a beat from complex
sensory inputs such as music. This question is far
from trivial since the periodic beats perceived when
listening to rhythmic stimuli are almost never directly
present in the acoustic input (Honing & Bouwer, 2018;
London, 2012). In other words, rhythms that elicit
perception of highly regular, often isochronous beats are
themselves rarely regular to the same degree, not to
speak of isochronous; instead, such musical rhythms
mostly show various, sometimes only weak degrees of
acoustic congruency with the beats they afford (Lenc
et al., 2021; London et al., 2017). This illustrates a core
property of beat representation, that is, its high degree of
invariance with respect to the sensory input (Lenc
et al., 2021; Nozaradan, Keller, et al., 2017). Hence, beat
perception can be viewed as a form of perceptual categori-
zation (Clarke, 1987; Goldstone et al., 2018; Holt &
Lotto, 2010; Schulze, 1989; Windsor, 1993), that is, a
function that maps an internal periodic template onto
sensory inputs spanning a range of physical properties,
including various arrangements of sounds in time (see
Figure 1a) (Chemin et al., 2014; Large et al., 2015;

Nozaradan et al., 2012; Phillips-Silver & Trainor, 2005;
Su & Pöppel, 2012; Tal et al., 2017; Witek et al., 2014).

In this paper, we discuss how our understanding of
beat perception can be advanced by capturing representa-
tions of beat periodicities reflected in behavioral and neu-
ral responses to rhythmic sensory inputs. We argue that
beat periodicity can be reliably captured by measuring
self-similarity of signals over time, and we focus on a
practical implementation of this concept using a method-
ology based on the frequency-tagging approach. We
develop an extension of frequency-tagging based on auto-
correlation and propose tools to facilitate the practical
application of this method to empirical measurements.

2 | CONCEPTUALIZING BEAT
PERIODICITY AS SELF-SIMILARITY

A particular beat periodicity can be measured from
behavioral or neural responses elicited by a rhythmic
stimulus. By definition, any time-varying response
(e.g. firing rate of a neuron, state of a population of neu-
rons or spatial position of an effector) can be considered
to reflect a particular internally represented beat when
this response systematically repeats itself at the rate given
by the beat period (see Figure 1b). In other words, a time-
varying behavioral or neural response contains beat-
related information if its dynamics exhibit periodic self-
similarity or recurrence precisely locked onto the beat
period (for an extended discussion, see Lenc et al., 2021).

This conceptualization can be framed in a broader
context of systems neuroscience, particularly its central
tenet that an internal representation of a particular vari-
able is reflected in a systematic relationship between that
variable and some attribute of the response measured
from the system (Kriegeskorte & Wei, 2021; Rossion
et al., 2023). In other words, the system is expected to
generate selective (i.e. discriminant) responses to differ-
ent values of the variable and reproducible
(i.e. generalizable) responses to the same values of the
variable across a wide range of conditions. Beyond this
systematic pattern of similarities/dissimilarities based on
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the targeted functional phenomenon (also referred to as a
“second-order isomorphism”) (Shepard & Chipman,
1970), the particular form of the response can be
considered irrelevant. Approaches relying on second-
order isomorphisms are increasingly popular in systems
neuroscience, as they offer a comparable method to cap-
ture internal representations from a range of response

modalities with minimum number of assumptions
(Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013).

Along these lines, we posit that the representation of
a musical beat periodicity can be captured in the
response signal based on the structure of self-similarity
over time. In other words, a response representing a beat
with a particular period should exhibit similar values at
particular positions within the beat period across many
repetitions of the period and not otherwise. The advan-
tage of using such a self-similarity framework is that it
allows abstracting away from specific properties of the
response that are not relevant to the phenomenon of inter-
est, thus focusing on beat operationalized only as periodic
recurrence. Indeed, a particular periodic beat can be, in
principle, equivalently reflected in response signals with
a wide range of shapes and properties, as long as these
signals show a high degree of periodic self-similarity (see
Figure 1c).

3 | CAPTURING BEAT-RELATED
INFORMATION FROM BODY
MOVEMENT: FINGER-TAPPING

A widely used method in the research field to capture
information about the perceived beat is based on measur-
ing periodic recurrence in finger-tapping responses from
participants explicitly instructed to tap the beat that they
perceive when listening to a rhythmic stimulus (Large
et al., 2015; McKinney & Moelants, 2006; Parncutt, 1994;
Repp & Su, 2013; Toiviainen & Snyder, 2003). This spe-
cific form of behavioral response is assumed to represent
beat-related information through a characteristic form of
self-similarity, whereby the effector systematically
impacts the surface at a fixed time position within each
beat period and not otherwise. Hence, the main advan-
tage of tapping is that it provides a well-defined marker
of each beat period. The rate of the perceived beat can be
therefore easily identified directly from the time intervals
between successive taps. It should be noted that the
self-similarity framework taken here does not need to
assume that finger impact provides a marker of
absolute beat position, i.e., the specific phase or align-
ment of the periodic beat with respect to the stimulus
(Aschersleben, 2002; Repp, 2005; Repp & Su, 2013).

However, critical insights into the nature of beat per-
ception may require capturing beat-related information
in populations that may not be able to perform instructed
behaviors such as tapping the perceived beat, for example
patients, young infants, and non-human animals (Lenc
et al., 2022; Merchant & Honing, 2014; Nozaradan,
Schwartze, et al., 2017; Phillips-Silver & Trainor, 2005;
Sifuentes-Ortega et al., 2022). In fact, a behavioral

F I GURE 1 Beat as perceptual categorization. (a) Illustration

of the categorization or mapping of external auditory input

(in gray) onto an internal representation consisting of a periodic

beat (in orange). The beat is represented abstractly as a series of

regularly recurring periods. (b) A schematic illustrating that beat-

related information, namely prominence of perceived beat

periodicity, can be captured from various time-varying signals,

including firing-rate dynamics of subcortical auditory neurons

(top), electrophysiological brain activity (middle) or overt

movement such as hand clapping (bottom). (c) A range of signals

with different shapes but comparable periodic recurrence (i.e. self-

similarity) at the rate of the beat. Each row shows an example

signal in black, and the period of the beat is indicated by the orange

curve on the top as well as the vertical dashed lines. Icon sources:

“Ear” by Eucalyp, “EEG” by Aenne Brielmann and “clapping” by
Adrien Coquet from the Noun Project under CC BY 3.0 license.
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outcome such as overt movement produced intentionally
and following explicit instructions may be biased by
decisional and cognitive factors, thus potentially leading
to instances where one-to-one correspondence between
the rate of movement and the perceived beat cannot be
guaranteed (Lenc et al., 2021).

Moreover, the nature of the movement performed as
an outcome of the explicit instruction may bias the
response due to mechanical constraints. For example,
hand clapping might express beats up to a much lower
rate compared to finger tapping (Bamford et al., 2023;
Repp & Su, 2013; Toiviainen et al., 2010); conversely,
bimanual finger tapping might reflect beats at higher
rates than unimanual tapping (Loseby et al., 2001). In
addition, overt movement itself may significantly modu-
late processing of musical rhythm through concomitantly
produced sensory input (e.g. proprioceptive) (Cannon,
2021; Manning & Schutz, 2013; Su & Pöppel, 2012).
Therefore, movement-free approaches to capturing beat
representation covertly may prove relevant to comple-
menting existing research paradigms for advancing our
understanding of the perceptual phenomenon, including
its embodied nature and interactions with overt
movement.

One way to go beyond the limitations of behavioral
tasks is to measure beat-related information from neural
responses to rhythmic stimuli. However, the dynamics of
brain activity elicited by rhythmic stimuli does not
provide well-defined temporal markers of beat periods,
in contrast to finger tapping. That is, physiological
responses (including brain activity) elicited by rhythmic
sounds typically constitute complex waveforms including
slow fluctuations rather than series of transient discrete
events with clear temporal onsets (Bamford et al., 2023;
G�amez et al., 2019; Leman & Naveda, 2010; Nozaradan
et al., 2018). Consequently, time-domain methods

typically used to capture periodic recurrence in finger
tapping cannot be applied to neural responses. Instead, a
number of recent studies have adopted a more general
approach based on frequency-tagging, which allows beat-
related information to be captured by quantifying peri-
odic recurrence in a range of continuous time-varying
signals.

4 | FREQUENCY-TAGGING BASED
ON MAGNITUDE SPECTRUM
ANALYSIS

Frequency-tagging is based on the fact that periodic
recurrence in a signal is reflected in the frequency
domain as peaks occurring at an exact set of frequencies
corresponding to (1/recurrence period) and harmonics
(Bach & Meigen, 1999; Norcia et al., 2015; Regan, 1989;
Rossion et al., 2020). This can be illustrated with an
example of a signal shown in Figure 2, consisting of
11 repetitions of an identical segment. The signal there-
fore contains periodic self-similarity at the repetition rate
of the segment (i.e. at the rate corresponding to the
inverse of segment duration). Taking the discrete Fourier
transform (DFT) of this example signal yields a spectrum
with narrow peaks positioned exactly at frequencies
corresponding to integer multiples, i.e. harmonics, of the
segment repetition rate. This is because any periodically
recurring signal can be described as a weighted sum
(a linear combination) of sine waves that complete an
integer number of cycles within the signal repetition
period. The magnitudes of peaks observed in the obtained
spectrum are thus proportional to these weights.

In fact, if the signal perfectly repeats itself with a fixed
period (and an exact integer number of these repetitions
has been captured), no other frequencies besides the

F I GURE 2 Periodic recurrence is reflected in the discrete Fourier transform (DFT) and autocorrelation function of the signal. (a) A

signal was generated by repeating a smooth complex trajectory periodically every P seconds (N = 11 repetitions), giving rise to recurrence at

the rate 1/P = F times per second. Taking the DFT of this signal yields a magnitude spectrum with narrow peaks centered at frequencies

corresponding to integer multiples (i.e. harmonics) of F. Autocorrelation function of the signal reveals local maxima at lags corresponding to

integer multiples of P. (b) Signal generated by randomly varying the shape as well as onset time (i.e. phase consistency) of the repeated

trajectory, which decreases the self-similarity of the signal. The peaks at the harmonics of F become relatively less prominent in the

spectrum, as do the peaks at the multiples of P in the autocorrelation function.
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harmonics of the repetition rate are required to describe
the signal. In contrast, reduced self-similarity of the
repeated signal leads to lower peaks at the harmonic fre-
quencies as the magnitudes become less concentrated
and “leak” to other frequencies unrelated to the repeti-
tion rate. These principles are powerful because they can
be harnessed to identify and quantify periodic recurrence
by (1) “tagging” a set of objectively defined harmonic
frequencies given a rate of interest and (2) measuring the
prominence of peaks at these frequencies in the spectrum
of any time-varying response.

4.1 | Taking harmonics into account

While observing peaks at a set of harmonics indicates the
presence of periodic recurrence in the signal, the relative
distribution of magnitudes across harmonics is deter-
mined by the specific shape of the recurring trajectory in
the signal (see also Zhou et al., 2016). Consequently, to
capture periodic recurrence irrespective of the shape of
the repeating pattern (see Section 2), harmonics must be
considered together as a whole (Retter et al., 2021).

It is important to underscore that the magnitude of a
single harmonic, or generally of a single frequency
(which can be seen as a very narrow band-pass filter
whose width corresponds to the spectral resolution), can
be essentially thought of as describing a correlation
between the signal and a sine wave with that particular
frequency (that is, the DFT at a given frequency answers
the question: “How much does the signal resemble a sine
wave with this frequency?”). While sine waves have
mathematical properties that make them suitable for
signal decomposition, periodic recurrence as discussed in
the context of the current paper extends beyond sine
waves. In other words, if the aim of frequency-tagging
here is to capture the representation of a beat simply
defined as a periodically recurring trajectory in the signal
irrespective of its particular shape, there is no reason to
assume that the trajectory must correspond to a
sine wave.

4.2 | Optimizing the design of rhythmic
stimuli for frequency-tagging

To precisely tag frequencies expected to capture beat-
related information in the neural response, the exact
period of the to-be-measured beat must be specified a
priori (Bach & Meigen, 1999; Norcia et al., 2015). There-
fore, frequency-tagging is typically used in tandem with
another method, which allows identifying the beat period
most consistently perceived by participants when

listening to the same stimulus. For instance, participants
can be asked to tap the perceived beat while listening to
the rhythmic stimulus in a dedicated session (Lenc
et al., 2018, 2020; Nozaradan et al., 2012, 2018). However,
the period of the perceived beat estimated from tapping
data will necessarily be subject to noise. Therefore, reduc-
ing the number of plausible beat periods to a few well-
defined candidates is particularly critical.

To limit the number of plausible beat periods,
frequency-tagging studies have often taken advantage of
the common practice of using rhythmic sequences con-
structed by assigning sounds to positions corresponding
to an evenly spaced (i.e. isochronous) grid of time points
(Grahn & Brett, 2007; Nozaradan et al., 2012; Povel &
Essens, 1985) (see example in Figure S1A). The advan-
tage of this approach is that arranging the constituent
sounds on an isochronous time grid restricts the number
of possible beat periods that are likely to be induced by
the stimulus. Specifically, grid-based rhythmic stimuli
only allow beats with periods corresponding to integer
multiples of the grid interval, to enable temporal coordi-
nation between the stimulus and the perceived beat.
Therefore, knowing the grid interval used to construct
the stimulus helps in precisely inferring the rate of the
beat that the rhythmic input is susceptible to induce.

For example, if the stimulus was constructed on a .2-s
interval grid, observing the average tapping rate of
1.22 Hz (�.82-s inter-tap interval) in response to that
stimulus indicates that the most likely rate of the per-
ceived beat was 1.25 Hz, i.e. a .8-s period, corresponding
to exactly four grid intervals. Then, informed by this
observation, frequency-tagging can subsequently capture
beat-related information by measuring magnitudes at
harmonics of 1.25 Hz in neural responses to the same
rhythm. It is important to note that the hypothesis about
the to-be-measured beat period can be based on data
from the same population yet may also come from a
different population than the one producing the
responses that are analyzed with frequency-tagging. This
would presumably depend on the particular goal and
context of each experiment, and as such is thus an empir-
ical question. For example, tapping data from a group of
healthy Western adults may be used to make a precise
hypothesis about the period of a beat subsequently
probed in neural responses to the exact same stimuli
obtained from young human infants (Lenc et al., 2022),
patients (Nozaradan, Mouraux, et al., 2016, Nozaradan,
Schwartze, et al., 2017), or non-human animals
(Rajendran et al., 2017, 2020).

In addition to constructing rhythmic stimuli based on
an isochronous grid of time intervals, another way to
reduce the number of plausible beat periods is to use
rhythms made up of a repeating rhythmic pattern,
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seamlessly looped to form a long sequence (Lenc et al.,
2018; Nozaradan et al., 2012; Tal et al., 2017). Notably,
using looped rhythmic patterns has high ecological valid-
ity, since periodically repeating rhythms are characteristic
for music, particularly dance music, across many cultures
(Butler, 2006; Câmara & Danielsen, 2018; London, 2012;
London et al., 2017; Margulis, 2014; Witek, 2017).

The advantage of using repeated rhythms is that if the
duration of the rhythmic pattern is not too long, humans
tend to pick up the periodic recurrence from the pattern
repetition (Asokan et al., 2021; Harrison et al., 2020;
Norman-Haignere et al., 2022) and use it to constrain the
perceived beat period such that the beat is nested
within the pattern repetition cycle (Milne et al., 2023;
Parncutt, 1994; Temperley & Bartlette, 2002). In other
words, stimuli made of repeated rhythmic patterns tend
to induce perception of beats that complete an integer
number of periods within each rhythmic pattern repeti-
tion. Therefore, periodically recurring rhythmic patterns
are optimal to ensure an integer number of perceived
beat periods within the analyzed response signal (one of
the assumptions of frequency-tagging). In addition, as
discussed in the following section, looped rhythms offer a
straightforward way to obtain a standardized estimate of
self-similarity at the beat period, which can be directly
compared across various signals.

4.3 | Standardization and lower level
sensory confounds

Frequency-tagging can be used to measure how strongly
a particular periodicity corresponding to a given beat is
represented in a response signal. To this end, a set of
harmonic frequencies of interest is selected based on a
specific choice of the to-be-measured beat period
(informed by behavior and stimulus parameters, as
detailed in the above section). Hereafter, these harmonics
will be referred to as “beat-related frequencies”. Observ-
ing peaks centered at beat-related frequencies in the spec-
trum of the response indicates a recurring self-similarity
at the rate of the beat.

However, such periodic recurrence can be only inter-
preted after taking the physical features of the stimulus
into account. Specifically, it is critical to ensure that the
physical features of the rhythmic input fluctuate over
time in a way that is largely orthogonal to the periodicity
of the perceived beat. The reason is that if the
periodicity of the perceived beat matches a periodicity
that is prominent in one of the time-varying physical fea-
tures of the stimulus to which the neural system is sus-
ceptible to respond to, the elicited response will likely
also show a high degree of self-similarity at this same

periodicity. Yet, such a periodic response, while poten-
tially related to internal representation of the beat, would
be virtually impossible to dissociate from these lower
level sensory confounds obtained at the same periodicity.
Arguably, this issue is encountered in any instance of
high-level perceptual categorization, i.e. where the inter-
nal representation is characterized, by definition, by a
high degree of invariance from the physical features of
the stimulus (see, for example, Rossion and Retter [2020]
for a discussion in the context of face perception).

A simple way to illustrate the issue of lower level sen-
sory confounds in the case of capturing beat representa-
tion is when the stimulus is an auditory metronome
sequence, where a click sound occurs periodically. In a
hypothetical experiment, one would first collect finger-
tapping data to determine the rate of the perceived beat
elicited by the metronome. If the metronome tempo is
within a reasonable range, it is likely that participants
will tap a beat at the rate of the metronome (Repp, 2005;
Repp & Su, 2013). Based on the tapping, one may choose
to use frequency-tagging to measure the representation of
the perceived beat in brain activity elicited by the metro-
nome during listening without movement. Observing
narrow peaks centered at the metronome rate and har-
monics in the spectrum of the neural response, that is,
periodic recurrence at the rate of the perceived beat, may
be interpreted as prominent neural representation of the
beat. However, the neural response may be mostly
explained by lower level sensory processing, whereby
each metronome click evokes a consistent response from
the auditory system, regardless of whether these recurrent
responses are related to an actual internal representation
of the beat or not. In other words, this instance does not
provide a possibility to check whether the invariance
with respect to the physical features of the stimulus—a
criterion that is central to the definition of beat as a high-
level perceptual categorization process—is met or not.

While the example of a metronomic stimulus seems
trivial, it has important implications. In general, if the
temporal arrangement of physical features in the stimu-
lus itself shows prominent periodic recurrence at the rate
of the beat, it is difficult to tease apart the relative
contribution of (i) beat representation and (ii) tracking of
stimulus features to the elicited neural and behavioral
responses (Lenc et al., 2021; Nozaradan, Keller,
et al., 2017). To go beyond lower level sensory confounds,
one must show that the periodic recurrence observed in
the response is above and beyond what could be expected
if the system was merely driven by the physical features
of the sensory input. A valid approach therefore needs to
rely on comparing the relative prominence of beat-related
periodicities between stimulus features and correspond-
ing response.
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However, frequency-tagging in its basic form does
not offer a valid way to directly compare periodic recur-
rence in the stimulus and response. The reason is that
stimulus features (e.g. sound intensity) and response
(e.g. electrophysiological brain activity) have different
units. Notably, while raw magnitudes at the beat-related
frequencies are sensitive to changes in periodic recur-
rence, they are also affected by the unit and scale of the
signal. For example, changing the overall gain of the sig-
nal without modifying its temporal structure leads to a
proportional change of magnitudes across all frequencies
in the spectrum. Consequently, solely measuring magni-
tudes at beat-related frequencies may be misleading in
general, as the magnitudes will be affected by the scale of
the signal.

Instead, the fact that magnitudes at all frequencies in
the spectrum change proportionally as a function of
signal scale may be exploited to obtain a standardized
measure of magnitude at beat-related frequencies.
Specifically, magnitudes at beat-related frequencies can
be expressed relative to magnitudes at other frequencies in
the spectrum. By expressing how much the beat-related
frequencies stand out in the spectrum in comparison to
other frequencies, this standardization thus provides a
unitless measure that can be compared across stimulus
and response, irrespective of the scale of these different
signals. Moreover, taking other frequencies in the spec-
trum into account is important to quantify periodic recur-
rence. Indeed, measuring magnitude at beat-related
frequencies is not enough to infer the prominence of self-
similarity in the signal at the rate of the beat because one
must also ensure that there are no prominent peaks at
other, “beat-unrelated” frequencies in the spectrum.

How to select the “beat-unrelated” frequencies for
standardization? A powerful approach is to select a set of
frequencies that may be expected a priori based on the
design of the stimulus but do not correspond to the
harmonics of the to-be-measured beat rate. Such an
approach is easily applied when the stimulus consists of a
repeating rhythmic pattern. As the rhythmic pattern in
the physical input periodically repeats RP times per
second (pattern repetition rate), the stimulus is expected
to elicit a corresponding periodic response simply due
to lower level sensory tracking.

Hence, the spectrum of the response is expected to
contain peaks at frequencies corresponding to the
harmonics of the pattern repetition rate, i.e., RP, 2RP, 3RP,

4RP, etc. In fact, these harmonics will isolate any
response as long as it consistently occurs at every repeti-
tion of the rhythmic pattern. This idea is powerful
because it offers a straightforward approach to isolate a
response consistently elicited by the rhythmic pattern
from noise (Nozaradan et al., 2018; Sifuentes-Ortega

et al., 2022). In other words, harmonics of the pattern
repetition rate capture any response that is time-locked
onto the rhythmic pattern in a similar way as averaging
across many trials isolates activity consistently elicited
by (i.e. time-locked to) a transient sensory input
(Luck, 2014). Importantly, the relative distribution of
magnitudes across these harmonics will depend on the
shape of the response within the cycle of the repeated pat-
tern. For example, if the response prominently represents
a beat with a period three times faster than the pattern
repetition rate, the response should comprise three repe-
titions of a consistent trajectory evenly spanning the cycle
of the rhythmic stimulus. The more self-similar these
nested repeated trajectories within the response, the
more magnitude will be concentrated at frequencies
corresponding to the beat-related frequencies at 3RP, 6RP,
9RP, etc. relative to the other harmonics of the pattern
repetition rate (see Figure 3).

In order to obtain a standardized measure of this
relative prominence, the magnitudes at beat-related
frequencies can be standardized by considering a set of
beat-unrelated frequencies corresponding to non-
overlapping harmonics of the pattern repetition rate
(i.e. RP, 2RP, 4RP, 5RP, 7RP, etc.). The standardized rela-
tive prominence of the beat-related frequencies can be
then quantified by z-scoring magnitudes across all
frequencies of interest (beat-related and beat-unrelated
frequencies) and taking mean z-score at beat-related
frequencies.

In the current paper, z-scoring will be used for stan-
dardization, since the measure has several relevant prop-
erties. In particular, z-scoring is robust in situations
where the analyzed set of values at beat-related and
-unrelated frequencies may (i) have different unit or
scale, (ii) be shifted by an offset and (iii) contain positive
and negative values. Having a measure of periodic recur-
rence invariant to these signal characteristics is impor-
tant in the context of frequency-tagging, especially when
a noise-subtraction procedure is used to process empirical
measurements (see “Methods” and Figure S4). Likewise,
these properties of z-score standardization will prove
particularly relevant when interpreting signal autocorre-
lation, as discussed in detail in Section 5 (see also
Figures 6 and S8).

Despite the relevant characteristics of the z-score
standardization, it is important to acknowledge its poten-
tial undesired behavior in certain extreme cases. For
instance, if the analyzed values are near constant, any
small deviations due to, for example, noise, may cause
large changes in the z-scored values. This is because the
z-score computation involves division by the standard
deviation across all (beat-related end -unrelated) frequen-
cies. Hence, if there is little variance across frequencies in
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the response (relative to noise), the z-score may become
too sensitive to even small changes in the measured
values (and in some extreme cases, such as for an iso-
chronous rhythm where each grid point contains a uni-
tary event, even intractable). In fact, similar issues arise
in any method that involves normalization (e.g. ratio or
contrast), when the measured values are near zero (i.e. in
the case of low signal-to-noise ratio [SNR]).

It is worth emphasizing that z-scoring as used here
should not be taken as a statistical measure (related to
Gaussian distribution) but only as a way to obtain a
standardized measure that is comparable across signals
of various origins and characteristics. Notably, there
are several other possible standardization methods
(e.g. calculating differences in percentage between mean
values at beat-related and -unrelated frequencies). Taken
together, it is important that an informed choice of a par-
ticular standardization method is made case by case,
based on the knowledge of the stimulus as well as the

measured empirical signals. Ideally, several methods
could be used in a complementary way to confirm the
convergence of experimental results (as has been done in
many prior studies, e.g. Nozaradan, Mouraux, et al.,
2016; Lenc et al., 2018, 2022).

As shown in Figure 3, mean z-score at beat-related fre-
quencies captures the gradual transformation from a sim-
ulated response with little periodic recurrence at the rate
of a to-be-measured beat towards a response where this
recurrence is particularly prominent. In fact, this measure
is sensitive to changes in periodic recurrence at the beat
rate irrespective of the particular shape of the signal (see
Figure 4), which is fundamental for capturing beat repre-
sentation based on the structure of self-similarity over
time (see Section 2). Critically, as the z-scored magnitude
at beat-related frequencies is invariant to unit and scale,
the measure can be calculated from the spectrum of a
time-varying stimulus feature (e.g. sound intensity) and
directly compared to the beat z-score calculated from a

F I GURE 3 Sensitivity of frequency-tagging to periodic recurrence. Each row shows a simulated signal based on a repeating 2.4-s-long

rhythmic pattern (N = 20 repetitions) and a square-wave unitary response. Across rows, the periodic recurrence at the rate of the beat

(indicated by the red bracket on the top) is gradually increased (indicated by green color gradient). On the left, each row shows a 7.2-s-long

segment of the signal in the time domain, corresponding to three full repetitions of the constituent rhythmic pattern (as indicated by the

black bracket on the top). The magnitude spectrum of the signal is shown in the middle, and the corresponding autocorrelation function

(trimmed at 12 s for visualization purposes) is shown on the right. Beat-related frequencies/lags are highlighted in red and beat-unrelated

frequencies/lags in blue. The mean z-scored magnitude at beat-related frequencies and the mean z-scored autocorrelation at beat-related lags

are shown on the top right of the figure. Each point corresponds to a single condition. Frequency-tagging based on both, the magnitude

spectrum and autocorrelation, is sensitive to periodic recurrence, as indicated by a progressively increasing beat-related z-score as a function

of periodic recurrence in the signal.
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corresponding response (e.g. neural activity). If the system
selectively enhances the representation of the beat,
beyond lower level sensory tracking of stimulus features,
beat-related frequencies (as captured by their mean z-
scored magnitude) should stand out in the spectrum of
the response significantly more than in the spectrum of
the stimulus (Nozaradan, Keller, et al., 2017).

However, recently, it has been suggested that a selec-
tive enhancement of beat periodicity as measured in the
magnitude spectrum of neural responses may be driven
by response properties that are unspecific to periodicity
(Rajendran et al., 2017). Specifically, the relative promi-
nence of beat-related frequencies may change depending
on the shape of the signal, even when the periodic recur-
rence itself remains constant. This is illustrated in
Figure 5, where a simulated rhythmic signal with a given
amount of periodic recurrence at the rate of the beat is
assembled from unitary events corresponding to a simple
square wave. Depending on duration of the square-wave
event, the mean z-scored magnitude at beat-related fre-
quencies changes, despite the fact that the periodic recur-
rence (i.e. self-similarity) within the signal at the rate of
the beat remains constant. To address this issue, we pro-
pose a complementary method based on autocorrelation,
which can be considered an extension within the
frequency-tagging approach.

5 | AUTOCORRELATION-BASED
ANALYSIS

The goal of the novel autocorrelation-based extension is
to obtain a measure of periodic recurrence that is invari-
ant to the particular shape of the recurring signal. The
autocorrelation approach rests on the fact that a signal
with strong recurrence at a particular period will be highly
correlated with a time-lagged version of itself, as long as
the time lag corresponds to an integer multiple of that
period (for examples of autocorrelation being used in the
context of beat processing, see Brown, 1993;
Tzanetakis & Cook, 2002; Toiviainen & Eerola, 2006;
Ravignani & Norton, 2017).

One way to capture this self-similarity could be to
compute the correlation between the original and time-
shifted version of the signal, i.e. lagged exactly by one
period of interest. The advantage of correlation methods,
such as Pearson’s correlation, is the fact that it is normal-
ized, hence invariant to offset and scale of the signal (see
Figure 6a,b). However, as illustrated in Figure 6c, the
Pearson’s correlation coefficient is affected by changes in
the shape of the signal that do not impact periodic
recurrence.

To achieve invariance with respect to the signal
shape, the correlation computed after time-shifting the

F I GURE 4 Sensitivity of frequency-tagging to periodic recurrence in signals comprising smooth complex waveforms. The structure is

identical to Figure 3, but instead of a square-wave, a complex waveform is used as a unitary response.
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signal by the target lag (i.e. the lag corresponding to the
to-be-measured beat period) must be expressed relative to
correlation values based on other, non-target lags, as
determined based on the evenly spaced grid of time
intervals used to construct the rhythmic stimulus (see
Section 5.1 below). In particular, the autocorrelation at
the target lag can be standardized using z-scoring, while
taking values at several other lags into account. This
yields a measure generally invariant to shape changes
that do not affect the periodicity of the signal (see
Figures 6 and S8). z-score standardization can be applied
directly to Pearson’s correlation coefficients computed
after shifting the signal by the different lags of interest.

The approach is likewise valid for values obtained
from a non-normalized circular autocorrelation function,
which can be efficiently calculated from the DFT of the
signal (see Section 7). As discussed in the following
sections, the ability to compute autocorrelation via DFT
turns out to be critical when accounting for the effect of
noise on the signal of interest (see Section 5.2).

5.1 | Selecting beat-related and
-unrelated lags

Given its high specificity to periodic recurrence in
signals, autocorrelation can be exploited to capture beat-
related information in response signals elicited by
rhythmic stimuli. Critically, the approach allows direct
comparison of periodic self-similarity in the response and
in the physical stimulus that elicited it, thus providing a
way to avoid lower level sensory confounds. Moreover, it
is important to stress that the autocorrelation-based
extension relies, for the most part, on principles discussed
above in the context of frequency-tagging studies using
the magnitude spectrum of signals.

First, a specific decision must be made about the tar-
get beat period one wishes to measure in the response.
As for magnitude spectrum-based frequency-tagging, this
can be informed by the design of the stimulus sequence
combined with behavioral responses. Subsequently, lags
corresponding to integer multiples of the target beat

F I GURE 5 Effect of unitary response shape on the estimated periodic recurrence. Same as Figure 3, but periodic recurrence at the beat

rate was kept constant across conditions. Instead, the shape of the unitary response making up the signal was gradually changed across

conditions (shown in separate rows and indicated by the color gradient). Specifically, the shape was gradually changed from short duty cycle

to long duty cycle (duty cycles referring to the ratio between the time interval where the unitary response shows a non-zero value and the

inter-onset interval determined by the periodic grid of time intervals used to construct the rhythmic stimulus). Despite the periodic

recurrence of the signal being constant, the mean z-score at beat-related frequencies as captured from the magnitude spectrum changes

across conditions (shown on the top right). On the other hand, the mean z-scored autocorrelation at beat-related lags is identical across

conditions.
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period can be tagged as “beat-related”. This is motivated
by the fact that if a response consistently repeats itself
with a period PB, the correlation of the response with a
time-shifted version of itself is expected to be maximal
when the time shift corresponds to 1PB, 2PB, 3PB, 4PB,
etc. (see Figure 2).

Next, “beat-unrelated” lags need to be selected, in
order to standardize the autocorrelation values obtained
from the “beat-related” lags. Here, a similar approach to
the magnitude spectrum-based frequency-tagging can be
applied, by selecting lags that are not integer multiples of
the beat period, yet high autocorrelation values may be

F I GURE 6 Invariance of the autocorrelation measure to signal features that do not affect periodic recurrence. (a) Sensitivity to scale of

the signal. An identical signal (made up of 20 repetitions of a 2.4-s-long pattern) is scaled by a range of factors (indicated by color gradient),

as illustrated on the top. The autocorrelation functions (ACF) of the scaled signals are shown on the bottom. The red vertical line indicates a

target lag capturing a chosen period of recurrence. The blue vertical lines indicate several other lags used for standardization. The plots on

the right show the autocorrelation at the target lag obtained (and standardized) using several different methods. Each point corresponds to

one scale factor applied to the signal. “Raw ACF” value was directly extracted at the target lag from the ACF. “Pearson’s r” was calculated
using the time-domain signal circularly shifted by the target lag. Ratio, contrast, and z-score were calculated from ACF values at the target

and standardization lags using equations provided in Section 7. The figure shows that all the tested methods to obtain the autocorrelation

value, except of “raw ACF”, are invariant to the scale of the signal. (b) Sensitivity to the shift of the signal. Same as panel a, except here, the

signal is transformed by adding a constant offset, that is, shifted along the y-axis. The only two methods invariant to shift transformation are

Pearson’s correlation, and the ACF value standardized by z-scoring. (c) Sensitivity to changes in signal shape. Two versions of a signal based

on a repeating rhythmic pattern and a square-wave unitary response are shown on the left. The orange signal was generated using a square

wave with a short duty cycle, whereas the purple signal was generated using a long duty cycle (see also Figure 5). Pearson’s correlation taken

between the original signal and a version time-shifted by the target lag is affected by the shape of the unitary responses, despite their

unaltered temporal relative arrangement. The ACF of each signal is shown on the right. The z-scored ACF value at the target lag is equal for

the two versions of the signal, demonstrating high sensitivity and specificity to periodic recurrence provided by the z-scoring standardization.
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expected at these lags given the design of the stimulus.
When the rhythmic stimulus sequence is constructed on
an isochronous grid of time points (see Figure S1A), a set
of beat-unrelated periods can be chosen, such that they
correspond to integer multiples of the grid interval
(hence plausible beat periods given the temporal struc-
ture of the stimulus).

A set of beat-unrelated lags can be built by taking
integer multiples of these periods that do not overlap
with the beat-related lags. For example, if the stimulus
was constructed on a regular grid with a .2-s interval and
one aims to quantify the representation of a beat with
period .8 s in the response signal, beat-unrelated lags can
be selected as integer multiples of .6, 1.0 and 1.4 s that do
not overlap with multiples of .8 s. This example is illus-
trated using simulated signals in Figure 3 (note that mul-
tiples of .4 s were excluded from the set of beat-unrelated
lags to match the selection applied to the empirical data-
sets; see Section 5.3).

As expected, increasing self-similarity of the signal at
.8 s leads to gradually increasing mean z-scored autocor-
relation values at beat-related lags. Critically, the z-score
remains unchanged when the self-similarity at .8 s is kept
constant but the signal is assembled from a unitary
response that has a different shape (see Figure 5). These
two complementary simulations thus demonstrate both
the high sensitivity and specificity of this measure to peri-
odic recurrence.

5.2 | Accounting for noise

As illustrated in the previous section, the autocorrelation-
based extension of the frequency-tagging approach is
valid when applied to simulated signals. However, empir-
ical measurements of physiological signals in general,
and scalp recordings of brain activity in particular,
inherently contain noise originating from (i) activity
unrelated to the processing of the rhythmic stimulus and
(ii) artifacts due to, for example sweating, movement,
electrode and amplifier noise, etc. (Luck, 2014).

The noise predominant in physiological recordings
can be described as broadband, aperiodic, with a charac-
teristic 1/f-like spectrum where power is inversely pro-
portional to frequency (Groppe et al., 2013; He, 2014; He
et al., 2010; Miller et al., 2009). This kind of noise can
have detrimental effects on the estimated periodic recur-
rence of a response. Specifically, by systematically distort-
ing the autocorrelation function, 1/f noise can strongly
bias the mean z-scored autocorrelation observed at
beat-related lags. An example is shown in Figure 7a,
demonstrating that the more noisy the signal, the more
the estimated beat-related z-score is “pulled” away from

its true value. Importantly, when the noise dominates the
signal, the estimated z-score converges towards a small
non-zero value (Figure 7b).

The detrimental effect of noise can be reduced by
using an appropriate noise-correction method. It is
important to note that no method can fully “remove”
noise. Rather, the effect of noise can be suppressed to an
extent given by the quality of the applied method, as well
as the nature of the response and noise. Indeed, capitaliz-
ing on the prior knowledge of the response and noise is
critical to the development of a powerful noise-correction
method. For example, as discussed in Section 4.2, beat
perception is often investigated using stimuli generated
by seamlessly looping a rhythmic pattern. In such cases,
the spectrum of the elicited response is expected to con-
tain sharp peaks only at frequencies corresponding to the
pattern repetition rate and harmonics (see Section 4.3).
Since the noise is expected to be broadband, its spectrum
should comprise smoothly varying magnitudes across all
frequency bins (Bach & Meigen, 1999; Norcia et al., 1989;
Retter et al., 2021; Strasburger, 1987).

Based on these assumptions, there are several ways to
estimate the magnitude spectrum of the noise that can be
separated from the response. For example, the magnitude
spectrum of the recorded signal can be low-pass filtered,
which effectively removes the narrow peaks correspond-
ing to the response, leaving an estimate of the noise spec-
trum. Likewise, the noise can be estimated by fitting a
1/f-shaped function to the spectrum of the signal (cf.,
e.g. Donoghue et al., 2020).

The method used in the current paper is based on a
recently proposed irregular-resampling auto-spectral
analysis (IRASA; Wen & Liu, 2016; Gerster et al., 2022).
This method aims to decompose the spectrum of a signal
into a periodic component (here corresponding to the
response elicited by a periodically repeating rhythmic
stimulus) and an aperiodic 1/f component (here corre-
sponding to noise). The estimated magnitude spectrum of
the noise can be subtracted from the complex-valued
Fourier spectrum of the recorded signal (as illustrated in
Figure 8). If the noise estimate has a larger magnitude
than the signal at a particular frequency, the complex
Fourier coefficients at that frequency can be set to zero.
Subsequently, the autocorrelation function can be com-
puted from the noise-subtracted spectrum. As shown in
Figure 7c, autocorrelation values obtained after applying
the noise-subtraction method are less distorted by noise,
compared to values obtained from the raw signal.

The effect of noise can be further reduced by using
the a-priori known frequency content of the response.
Since all frequencies that do not overlap with the pattern
repetition rate and harmonics only capture noise (see
Section 4.3), they can be removed from the spectrum by
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F I GURE 7 Autocorrelation from noisy data. (a) Mean z-scored autocorrelation at beat-related lags calculated from a signal generated

by summing a simulated response (made up of 20 repetitions of a 2.4-s-long pattern) with different amounts of resting-state EEG noise (see

Methods). The autocorrelation was computed either directly from the noisy signal (shown in green) or after noise correction (shown in

purple). Individual light circles correspond to z-scores obtained from individual simulated signals. Dark circles indicate the mean calculated

across simulations separately for each signal-to-noise (SNR) level. Error bars indicate 95% confidence intervals. The horizontal dashed line

indicates the ground-truth value calculated from the corresponding response without any noise. The response used in the top panel was

chosen to yield a strongly positive z-score at beat-related lags, whereas the response in the bottom panel shows a strongly negative z-score.

Examples corresponding to time-domain segments of the generated signals are shown on the top of each panel. For both panels, the

estimated z-score remains close to the ground truth value when little noise is present (i.e. the SNR is high). As more noise is added to the

signal and the SNR decreases, the z-score estimated without noise correction is increasingly biased towards a small non-zero value. When

the autocorrelation function is noise-corrected, the estimated z-score stays close to the ground-truth value even with lower SNR, and the

estimate converges towards zero once the noise dominates the signal, as theoretically expected. (b) Mean z-scored autocorrelation at beat-

related lags obtained from pure noise (i.e. without any response; example time-domain segment shown on the top). Gray points indicate

values obtained from individual simulated signals. The mean and standard deviation across simulations are indicated by the black circle and

error bars, respectively. Without noise correction (left plot in green), the observed values are biased towards a small non-zero value (here

positive). Applying noise correction removes the bias (although it does increase the variance), and the values converge to zero (right plot in

purple). (c) Recovering ground-truth autocorrelation (ACF) values of a simulated response from noisy signals without accounting for noise

at all (top), after estimating and subtracting the 1/f-like noise component (middle), and after additionally zeroing-out magnitudes at

frequencies that do not capture the response (bottom). A schematic of the time-course, magnitude spectrum and the corresponding ACF of

an example signal are shown on the left, separately for each ACF estimation method. The frequencies capturing the simulated response are

highlighted in red. The lags where ACF values were extracted are indicated by red vertical lines. The vector of extracted ACF values was

correlated with the vector obtained from the ground-truth response without noise. The distribution of the correlation values across all

simulated signals is shown on the right, as a function of the observed signal-to-noise ratio (zSNR, see Section 7.2). Individual simulated

samples are shown as small black circles. Without noise correction, the correlation quickly drops to zero as the noise level increases.

Subtracting the estimated 1/f component before computing the autocorrelation function helps to retain bigger correlation values at lower

levels of zSNR. Notably, zeroing-out all frequencies where no response is expected leads to a substantial increase of correlation values even

at higher levels of noise.
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setting their complex Fourier coefficients to zero
(as illustrated in Figure 8). Figure 7c shows that this addi-
tional step makes the estimated autocorrelation values
robust to even higher levels of noise compared to the
noise-subtraction step alone. Similarly, the z-score at
beat-related lags obtained after applying the two-step
noise correction is less biased by noise (Figure 7a), and in
cases where the noise dominates the recorded signal, the
z-score converges towards zero as theoretically expected,
rather than a small non-zero value (Figure 7b).

5.3 | Applying autocorrelation to
empirical signals

The previous sections have shown how autocorrelation
can be used to measure periodic self-similarity of a
response to a rhythmic stimulus in a way that is compa-
rable across signals and robust to noise. The validity of
the method has been demonstrated using simulated data,
which has the benefit of allowing the ground-truth to be
known and the properties of the signal to be carefully

controlled. What remains to be shown is that the autocor-
relation method can be successfully applied to empirical
signals. To this end, the method is used here to re-
analyze datasets from two previous studies that originally
employed frequency-tagging restricted to magnitude
spectrum analysis to measure beat-related information in
neural activity captured with surface electroencephalog-
raphy (EEG).

The two studies used a comparable stimulus design,
described in detail in the corresponding publications
(Lenc et al., 2018, 2022). In short, participants listened to
rhythmic sequences created by seamlessly looping a
2.4-s-long rhythmic pattern. The pattern was generated
by arranging eight identical pure tones on an isochronous
grid of 12 time points separated by .2 s. The rhythm was
either made up of low-pitched tones (130 Hz) or high-
pitched tones (1236.8 Hz). In one condition, the constitu-
ent pattern was considered a “strongly periodic rhythm”,
since the groups of tones were arranged in a way that
closely matches a beat with a rate of 1.25 Hz. This rate
was further confirmed as corresponding to the perceived
beat by asking the adult participants in the study of Lenc

F I GURE 8 Illustration of the noise-correction method. (a) Example noisy time-domain signal comprising a periodic response based on

a repeating rhythmic pattern (16 out of 20 repetitions shown for visualization purposes). (b) Magnitude spectrum of the raw signal with

response frequencies highlighted in red. The estimated 1/f-like noise component is indicated by a purple line. (c) (Left) Full complex-valued

spectrum of the raw signal up to the sampling rate (fs = 100 Hz). The real and imaginary component as a function of frequency is shown on

the top. Below, the same information is expressed as magnitude and phase as a function of frequency. As the signal is real, the complex-

valued spectrum is conjugate-symmetric around the Nyquist frequency (i.e. half of the sampling rate). The magnitude of the estimated noise

component is shown in purple. (Middle) The complex-valued spectrum after the magnitude of the estimated noise has been subtracted,

separately for each frequency. This subtraction does not affect the phase. (Right) The complex-valued spectrum after all frequency bins

except those capturing the response were set to zero. Again, this operation does not affect the phase spectrum. (d) Autocorrelation functions

calculated directly from the complex-valued spectra above.
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et al. (2018) to tap the perceived beat while listening to
the same rhythmic stimulus in a dedicated session subse-
quent to EEG recording (with a minority of participants
tapping at a rate of 2.5 Hz, i.e. a tempo twice as fast as
most other participants).

Neural responses were captured by recording EEG
activity from the scalp surface of these adult participants
as they were listening to the strongly periodic rhythm in
eight 50.4-s-long trials (i.e. the stimulus presented in each
trial comprised 21 repetitions of the rhythmic pattern)
without any movement. Five 60-s-long trials (i.e. four
more pattern repetitions per trial as compared to adults)

were obtained for the infant dataset. As expected based
on stimulus design, transforming the trial-averaged EEG
responses to the frequency domain revealed peaks at fre-
quencies corresponding to the pattern repetition rate
(1/2.4 s = .416 Hz) and harmonics (see Figure 9). As dis-
cussed in Section 4.3, these peaks effectively isolate time-
locked EEG activity that consistently occurred at every
repetition of the rhythmic pattern in the stimulus
sequence.

Having captured the neural activity related to the pro-
cessing of the stimulus, the next step is to investigate to
what extent the EEG response shows self-similarity at the

F I GURE 9 Re-analysis of previously published EEG data. (a) Data from healthy adult participants (N = 14) (Lenc et al., 2018). (Left)

Magnitude spectra and autocorrelation functions of responses to the rhythmic stimuli are shown separately for each rhythm (strongly and

weakly periodic) and tone (low and high). For each condition, the top row shows the spectrum and autocorrelation of a lower-level sensory

representation obtained from the cochlear model. The bottom row shows the EEG response averaged across participants. Standard error of

the mean for the autocorrelation function is indicated using shaded regions. A single repetition of the rhythmic sound pattern used to

construct the stimulus sequence in each condition is depicted on the top of the figure, and the corresponding beat period most consistently

tapped by participants in response to the rhythm is illustrated by the red curves. Beat-related frequencies/lags are shown in red, and beat-

unrelated frequencies/lags used for standardization are depicted in blue. The autocorrelation function was trimmed at 7.2 s for visualization

purposes. (Right) Values extracted from EEG responses of individual participants are shown as light-colored individual circles connected by

gray lines. Dark-colored circles correspond to the mean response across participants, and error bars indicate 95% confidence intervals

(Morey, 2008). The horizontal line segments indicate values extracted from the cochlear model. Asterisks indicate a significant one-tailed t-

test against zero (FDR corrected, *p < .05, **p < .01, ***p < .001). Mean z-scored magnitudes at beat-related frequencies are shown in the

top panel, and mean z-scored autocorrelation values at beat-related lags in the bottom panel. The scatter plot on the right side of each panel

depicts the relationship between beat-related z-score values extracted from the EEG responses using the magnitude spectrum (x-axis) and

autocorrelation (y-axis). Each gray circle represents a response from one participant and condition. Pearson’s correlation coefficient (r) is

shown on the top of the scatter plot. (b) Same structure as panel a, but showing EEG responses from healthy 5- to 6-month-old infants

(N = 20) (Lenc et al., 2022).
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rate of the perceived beat, nested within the cycle of
the repeating rhythmic pattern. Given the rate of the
most consistently perceived beat, the peaks in the EEG
spectrum at the harmonics of 1.25 Hz were tagged as
beat-related, and the rest of the peaks as beat-unrelated.

It should be pointed out that the maximum frequency
of interest here was 4.58 Hz. Higher frequencies were
excluded to avoid distortion of the EEG spectra by the
alpha activity artifact (approximately between 8 and
12 Hz; Luck, 2014; van Diepen et al., 2016; van Diepen &
Mazaheri, 2017). The peak at 5 Hz was also discarded
from further analysis as it corresponds to the frequency
of the time grid on which the rhythmic stimulus was
constructed (i.e. shortest inter-onset interval), and is
therefore prone to be substantially modulated by features
non-specific to periodic recurrence of the signal (see
Figure S2). The magnitudes across all selected frequen-
cies were standardized by z-scoring as described in
Section 4.3 (see Equation 7 in Section 7.2).

Across participants, the beat-related frequencies
prominently stood out in the EEG spectra (in contrast to
beat-unrelated frequencies), as reflected in their high z-
scored magnitudes. High positive beat-related z-scores
indicating prominent periodic recurrence at the rate of
the beat were observed in the EEG responses of both
adults and infants, irrespective of the pitch of the tone
delivering the strongly periodic rhythm (all p-values <
.01, one-tailed t-test against 0, see Table S1).

However, as discussed in Section 4.3, these EEG
responses may be largely explained by lower level sen-
sory tracking of acoustic features. This was tested by
simulating neural responses elicited by the stimulus at
the level of the auditory nerve with a well-established
biomimetic model of the auditory periphery (Slaney,
1998). The output of this “cochlear model” was trans-
formed into the frequency domain, revealing positive z-
scored magnitude at beat-related frequencies, which was
never exceeded by the corresponding EEG responses (all
p-values >.05 across datasets and tone conditions, one-
tailed t-test, see Table S1). Firstly, this shows that for the
strongly periodic rhythm, the perceived beat matched
the most prominent periodic recurrence already present
in the physical structure of the stimulus. More impor-
tantly, this case highlights how the neural representation
of the beat can be confounded by lower level tracking
of acoustic features, in the case of strongly periodic
sensory inputs.

To control for this acoustic confound, the stimulus
sequence in the second condition was made of a repeat-
ing “weakly periodic rhythm”, whereby the same number
of tones was positioned based on the same periodic grid
of time intervals as for the strongly periodic rhythm, but
in a way that did not systematically match any plausible

periodic beat. Despite this, the tapping responses con-
firmed that participants consistently perceived a beat at
the same rate as for the strongly periodic rhythm (this
result has been corroborated by several other studies,
e.g. Nozaradan et al., 2012, 2018).

The fact that this induced beat did not correspond to
an acoustically prominent periodicity in the weakly peri-
odic stimulus was confirmed by the low z-scored magni-
tude of beat-related frequencies in the spectrum of the
lower level sensory response simulated with the cochlear
model. Yet, when the rhythm was delivered with
low-pitched tones, the EEG responses showed an
enhancement of beat-related frequencies, indicated by
significantly positive z-scores above the values obtained
from the cochlear model. This effect was consistently
observed in the responses from both adults (t13 = 2,
p = .04) and infants (t19 = 1.94, p = .04, one-tailed t-test
against 0) and did not occur in the high-tone condition
(all p-values >.05, see Table S1).

These results indicate that low-pitched rhythmic
sounds may engage internal transformation processes
that selectively emphasize the beat in the neural repre-
sentation when it is not prominent in the sensory input.
In other words, when stimulated with “bass-like” sounds,
the neural system seems to “periodize” the internal repre-
sentation of the stimulus towards the perceived beats
even in the absence of overt body movement.

However, these results could have been driven by
response properties that are unspecific to periodicity,
thus constituting a false positive. Specifically, an equiva-
lent unitary brain response could have been uniformly
elicited by every tone of the weakly periodic rhythm
within conditions, yet with differences in its shape across
conditions (and with respect to the cochlear model), thus
giving rise to differences in beat-related z-scores across
conditions as observed here (see Figure 5 for a simulated
example).

A powerful way to test whether the magnitude
spectrum–based results reported above constitute a false
positive is to capitalize on the new autocorrelation-based
extension of frequency-tagging developed in the current
paper. Namely, autocorrelation offers a way to measure
periodic self-similarity invariant to the particular shape
of the recurring signal. Therefore, confirming the results
obtained with the magnitude spectrum–based analysis
using the autocorrelation-based analysis would provide
critical confirmation for a true selectively enhanced rep-
resentation of periodicities at the rate where human
adults tend to tap the beat when listening to the weakly
periodic rhythm, particularly when the rhythm is
delivered by low-pitched sounds.

Based on the rate of the most consistently perceived
beat, lags corresponding to integer multiples of
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1/1.25 Hz = .8 s were tagged as beat-related lags. Beat-
unrelated lags were selected as .6, 1.0 and 1.4 s and their
integer multiples, which all in turn correspond to integer
multiples of the periodic grid of time intervals used to
construct the rhythmic stimulus (see Section 5.1). Lags
overlapping between the two sets (beat-related lags and
beat-unrelated lags) were excluded from the analysis. In
addition, since some participants tapped the beat rate of
2.5 Hz, the beat-unrelated lags overlapping with integer
multiples of 1/2.5 Hz = .4 s were excluded as well. This
way, the mean z-score at beat-related frequencies was
optimized to measure periodic recurrence at the beat rate
most commonly tapped by participants, yet still account-
ing for another, perhaps less perceptually salient metric
layer (note that the results remained unchanged even
when beat-unrelated lags overlapping with multiples of
.4 s were not excluded).

As shown in Figure 9, for the cochlear model output,
the mean z-scored autocorrelation at beat-related lags
was highly positive for the strongly periodic rhythm, and
below zero for the weakly periodic rhythm. In other
words, autocorrelation converged with the magnitude
spectrum analysis at showing that the acoustic structure
of the strongly periodic rhythm was characterized by
prominent periodic recurrence at the rate of the
perceived beat, which was not the case for the weakly
periodic rhythm.

For the EEG responses, the autocorrelation function
was obtained after applying the noise-correction proce-
dure as described in Section 5.2. First, the 1/f-like noise
component was estimated using IRASA, separately for
each condition and participant, and subtracted from the
complex-valued spectrum of the response. Then, magni-
tudes at all frequencies, except harmonics of the pattern
repetition rate (1/2.4 s = .416 Hz), were set to zero. The
autocorrelation function calculated from the noise-
corrected spectrum was used to extract values at beat-
related and -unrelated lags. For the strongly periodic
rhythm, beat-related z-scores in the EEG were fully
explained by lower level sensory tracking of acoustic fea-
tures, as captured by the cochlear model (all p-values
>.05 across datasets and tone conditions, one-tailed t-test,
see Table S1). On the other hand, the EEG responses to
the weakly periodic rhythm delivered by low-pitched
tones revealed significantly enhanced beat-related z-
scores in the data obtained from both adults (t13 = 2.10,
p = .04) and infants (t19 = 2.14, p = .03, one-tailed t-test
against 0). Such significant enhancements of the beat
periodicity were not observed for the high-pitched tones
(all p-values >.05, see Table S1).

Thus, for the two re-analyzed datasets, the magnitude
spectrum- and autocorrelation-based analyses provided
convergent results. Importantly, the z-scores at beat-

related frequencies (magnitude spectrum-based analysis)
and z-scores at beat-related lags (autocorrelation-based
analysis) were strongly correlated across participants in
the data from adults (r = .83, p < .001) as well as infants
(r = .77, p < .001) (see Figure 9). Together, these results
demonstrate two important points. First, the
autocorrelation-based analysis can be successfully
applied to empirical noisy data such as surface EEG
(even recorded in human infants), while having sufficient
sensitivity to reveal differences between conditions. Sec-
ond, the convergence between the two analyses provides
strong evidence that the results obtained by analyzing
these particular datasets using magnitude spectra cannot
be simply explained by properties of the EEG responses
that are non-specific to periodicity. For further discussion
of the theoretical implications of these results, we
encourage readers to refer to the original publications
(Lenc et al., 2018, 2022).

To show that the autocorrelation approach can be
applied to a range of time-varying responses beyond
EEG, the same analysis was performed on the finger-
tapping data obtained from adult participants during a
session following the EEG recording. These responses
corresponded to time-series of mechanical vibrations
elicited by the tapping finger on the underlying surface of
a tapping box. As shown in Figure S3, the observed
z-scores at beat-related frequencies and beat-related lags
were again strongly correlated across participants, condi-
tions, and trials (Pearson’s r = .93, p < .001). This result
further corroborates the convergence between the magni-
tude spectrum–based and the autocorrelation-based
analysis, as indicated already through the analysis of the
EEG data above.

6 | DISCUSSION

6.1 | Measuring beat-related information
in empirical signals as a second-order
isomorphism

Rhythm perception often relies on mapping an external
sensory input onto an internal temporal reference
consisting in a periodic beat (Honing & Bouwer, 2018;
Large, 2008; London, 2012). The nature of this mapping
can be investigated by measuring how the periodicity of
the perceived beat is represented in a rhythmic sensory
input vs. behavioral/neural response to this input. How-
ever, this periodicity can take many forms in empirical
signals, as diverse as slow ramping versus transient burst
of neuronal firing rates produced at fixed positions within
each cycle of the beat period (see e.g. G�amez et al., 2019;
Merchant et al., 2014).
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Moreover, the beat has been often conceptualized as a
series of regularly recurring, homogeneous psychological
events (Honing & Bouwer, 2018; Large & Snyder, 2009).
But it remains to be determined whether these events
correspond to discrete points in time (Cohn, 2020), or
whether they may have some substantial temporal span,
thus better characterized as beat bins (Danielsen
et al., 2023; Large & Palmer, 2002). An equally plausible
way to describe the beat could be as a continuous phase
representing progress through each cycle of the beat
period (Cannon, 2021).

Crucially, while the exact nature of the beat is not yet
definitively resolved, all these perspectives sustain the
basic notion of beat as periodic recurrence. Therefore,
the current paper argues that conceptualizing beat as a
periodic self-similarity (i.e. periodic recurrence) constitutes
a promising framework to measure how beat-related
information is contained in empirical signals while mini-
mizing underlying assumptions (see also Lenc et al.,
2021). Such a parsimonious approach allows to study the
mapping between external sensory inputs and perceived
beat from a functional perspective, without additional
assumptions about the particular shape of the recurring
trajectory.

Based on this conceptual framework, the current
paper proposes a new methodological approach whereby
the extent to which neural/behavioral responses contain
beat-related information is measured as a second-order
isomorphism (Kriegeskorte et al., 2008; Shepard &
Chipman, 1970). More specifically, the methods dis-
cussed here assess the extent to which the response
repeats itself at a rate compatible with the hypothesized
perceived beat rate.

6.2 | Highlighting strengths and going
beyond limitations of frequency-tagging
based on magnitude spectrum analysis

Among the variety of methods that have been proposed
to capture periodic recurrence (see Lenc et al., 2021 for a
review), frequency-tagging has been increasingly adopted
in the neuroscience community over the last decade
(Bouvet et al., 2020; Celma-Miralles et al., 2016; Celma-
Miralles & Toro, 2019; CSifuentes-Ortega et al., 2022;
Cirelli et al., 2016; Lenc et al., 2018, 2020, 2022;
Li et al., 2019; Nozaradan, Mouraux, et al., 2016;
Nozaradan, Peretz, & Keller, 2016; Nozaradan et al.,
2011, 2012; Nozaradan et al., 2018; Okawa et al., 2017;
Sifuentes-Ortega et al., 2022; Tal et al., 2017; Tierney &
Kraus, 2014).

Our simulations corroborate the high sensitivity of
frequency-tagging to periodic recurrence as measured

from the magnitude spectrum of slowly fluctuating,
physiologically plausible responses, without the need to
rely on additional assumptions about the particular shape
of the recurring trajectory. Following up on previous
work (Nozaradan, Keller, et al., 2017; Lenc et al., 2021),
we re-iterate the critical role of taking stimulus features
into account in order to prevent lower level sensory
confounds and show how this can be effectively accom-
plished by measuring periodic recurrence in the stimulus
with magnitude spectrum-based analysis.

Importantly, we also discuss the caveats of the
method, particularly related to the limited specificity with
respect to periodic recurrence as measured using the
magnitude spectrum of the signal (Rajendran et al., 2017;
Rajendran & Schnupp, 2019). To address this well-known
limitation, alternative approaches had already been put
forward, consisting for instance in decomposing the
signal into periodic but non-sinusoidal components that
are not specified a-priori but estimated directly from the
signal (Leman & Naveda, 2010; Sethares & Staley, 2001).

Here, this limitation is addressed by introducing a
novel analysis based on autocorrelation, generally
inspired by recent work on neural processing of musical
rhythm (Herff et al., 2020). Our method offers a straight-
forward and deterministic way to quantify periodic
recurrence in a signal at a given rate of interest, without
the need to choose between various algorithms that
search for periodic components (c.f., e.g. Sethares &
Staley, 2001).

Using simulations, we demonstrate that the
autocorrelation-based analysis is both sensitive and
specific to periodic recurrence, showing invariance to
changes in the shape of the signal that preserve periodic
self-similarity. Critically, we show how the method can
be used to directly compare beat-related information in
the physical features of a sensory input and in the associ-
ated response.

More generally, the capacity to quantify and compare
periodic recurrence across a range of signals provides a
pivotal tool for studying the gradual emergence of beat
representation across different brain areas and processing
stages. For example, the autocorrelation-based analysis
could be used to characterize the progressive transforma-
tion from a representation of lower level sensory features
in the peripheral receptors to an abstracted representa-
tion in high-level cortical regions that would predomi-
nantly reflect a periodic beat, which would itself be
exclusively represented in the overt body movement of
the participant (Nozaradan et al., 2018, Nozaradan,
Mouraux, et al., 2016, Rajendran et al., 2017, 2020). In
fact, as long as they have sufficient temporal resolution,
the compared signals can come from very different
empirical modalities, such as time-varying acoustic
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envelope (Ding et al., 2017), output of a computational
model (Zuk et al., 2018), spiking rate (Chang, 2015;
Merchant & Averbeck, 2017; Rajendran et al., 2017),
oscillatory power (Fujioka et al., 2015; Herff et al., 2020;
Iversen et al., 2009; Merchant & Bartolo, 2018), large-
scale field potentials (Nozaradan, 2014; Nozaradan,
Mouraux, et al., 2016; Tal et al., 2017) or movement
velocity (Patel et al., 2009; Schachner et al., 2009).

Overall, the autocorrelation-based analysis thus
appears promising to shed light on beat perception by
offering a functional perspective that can connect key ele-
ments of systems neuroscience, i.e., the external input,
the associated brain activity, the elicited behavior as well
as computational models (Kriegeskorte et al., 2008;
Kriegeskorte & Wei, 2021).

6.3 | What stimulus features to take into
account?

While we highlighted the issue of lower level sensory
confounds, and the critical role of taking the stimulus
into account, we did not specify which exact features of
the stimulus should be compared to the neural/
behavioral responses. This depends on the particular
experimental context and the nature of the stimulus. In
principle, the neural system may show a representation
of any acoustic feature. In other words, the neural
activity may be a function of that feature (Brodbeck
et al., 2018; Daube et al., 2019; Hamilton et al., 2021;
Nourski & Howard, 2015; Wang, 2018). If the feature
varies with high periodic recurrence over time, the
associated response will, likewise, show high periodic
recurrence, thus conflating lower level sensory processing
with internal beat representation (Nozaradan, Keller,
et al., 2017).

Determining the relevant acoustic features may not
be trivial, especially with more ecologically valid stimuli.
For tightly controlled stimuli, acoustic amplitude
envelope or frequency may be the only feature modulated
at a time scale relevant for beat perception (e.g. Lenc
et al., 2018; Nozaradan et al., 2018). However, for more
complex stimuli, one may choose to control for variations
in timbre, pitch and perhaps even higher-level attributes
such as harmony and different combinations thereof
(Hannon et al., 2004; Keller & Schubert, 2011; Povel &
Okkerman, 1981; Toiviainen & Snyder, 2003).

Selection and extraction of the relevant sensory fea-
tures remain an empirical endeavor, which can be facili-
tated by using computational models with various
degrees of physiological plausibility (Daube et al., 2019;
Weineck et al., 2022). Relatedly, the choice of a particular
computational model must be justified by the research

question being addressed. For example, when re-
analyzing the empirical datasets in the current paper, we
used a biomimetic model which simulates sound proces-
sing up to the level of the auditory nerve (Slaney, 1998).
By comparing the surface EEG activity to this cochlear
model, we could evaluate the selective enhancement of
the beat-related periodicity beyond what is already pre-
sent in the auditory nerve. However, it is important to
note that transformations of sound-evoked activity before
it reaches the auditory nerve are not in any sense less rel-
evant. For example, nonlinear properties of the cochlea
may produce rudiments of periodic recurrence as com-
pared to the acoustic input itself (Rajendran et al., 2020;
Wojtczak et al., 2017; Zuk et al., 2018).

In sum, considering different representations and
transformations of the sensory input and comparing their
periodic recurrence can isolate processes which contrib-
ute to the emergence of the beat representation through-
out the nervous system (Hamilton et al., 2021; Mattioni
et al., 2022; McDermott & Simoncelli, 2011; Sankaran
et al., 2018).

6.4 | The frequency-tagging approach as
implemented through autocorrelation-
based and magnitude spectrum-based
analyses

In the current paper, we also directly examined how
noise impacts the measures obtained with the
autocorrelation-based analysis, and we provided concrete
ways to mitigate these detrimental effects. Explicitly char-
acterizing the potential biases and confounds due to
noise and SNR are critical for any methodological
approach that may be applied to physiological signals
(e.g. van Diepen & Mazaheri, 2018). Yet, such endeavors
remain scarce, particularly in the field of timing and
music neuroscience.

Our simulations indicate that the autocorrelation-
based analysis is robust to noise, particularly when the
impact of noise is suppressed by capitalizing on the same
principles exploited in magnitude spectrum-based imple-
mentations of frequency-tagging to achieve high segrega-
tion between signal and noise (Norcia et al., 2015;
Rossion et al., 2020). In particular, tightly controlling the
temporal structure of the input allows for objectively iso-
lating the response concentrated in a small set of a priori
defined frequency bins (see Section 4.2). For this reason,
the autocorrelation approach can be thought of as an
extension of frequency-tagging. Indeed, the DFT and
autocorrelation are linked by an invertible transforma-
tion, essentially reflecting the same information albeit in
different, potentially complementary, formats.
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6.5 | Complementarity of
autocorrelation-based and magnitude
spectrum–based analyses to disentangle
multiple beat layers: Investigating
musical meter

The different ways in which magnitude spectrum and
autocorrelation reflect similar information offer robust
complementarity across the two methods, particularly in
the context of studying meter perception. In the current
paper, we mainly considered the internal representation
of a single periodic layer (the beat) for simplicity.

However, as mentioned in Section 1, listening to
music often induces perception of a meter, which consists
of multiple nested layers of periodic recurrence (beat
layers) forming a coherent temporal structure (Cohn,
2020; London, 2012). For example, the tapping data of
Lenc et al. (2018) indicate that a meter with at least two
periodic beat layers may have been perceived by the par-
ticipants, who were then constrained by the behavioral
task to select and tap one of these layers (see Section 5.3)
(for similar observations, see, e.g. McKinney & Moelants,
2006; Martens, 2011). In fact, it has been argued that
perception of a single periodic layer representing the
main beat (“the” beat) may be an idealization that lacks
unequivocal support from empirical data (Brochard
et al., 2003; Cohn, 2014; Large et al., 2002; Repp, 2008;
Repp & Jendoubi, 2009; Toiviainen & Carlson, 2022).

The magnitude spectrum and autocorrelation imple-
mentations of frequency-tagging both inherently capture
periodic recurrence at multiple rates simultaneously, thus
allowing the representation of a particular meter as a
whole to be quantified in the analyzed response. On the
one hand, tagging harmonic frequencies of, for instance,
1.25 Hz (e.g. 1.25 Hz �1, �2, �3, �4, etc.) within the
magnitude spectrum includes periodic recurrence not
only at .8 s (i.e. 1/1.25 Hz) but also at faster rates corre-
sponding to integer divisors of .8 s (i.e. the metrical layers
that could be nested within this period), i.e. at .4 s (.8 s/2),
.2 s (.8 s/4), etc. This is because all harmonics of these
faster layers coincide themselves with the harmonics of
the slowest layer. On the other hand, tagging integer
multiples of a lag, for example .8 s (i.e. .8 s �1, �2, �3,
�4, etc.) in the autocorrelation function, captures peri-
odic recurrence at slower rates corresponding to metrical
layers that could nest .8 s within their period, for example
at 1.6 s (.8 s �2), 2.4 s (.8 s �3), etc.

While both methods allow the internal representation
of a meter to be captured without unnecessary assump-
tions about the relative status of its constituent nested
periodic layers, determining which particular layer is
predominantly reflected in the analyzed response poses a
challenge. Nevertheless, combining the two methods

with specific sub-selections of frequencies/lags allows
partially dissociating between different nested metrical
layers that may be driving the experimental effect. This
complementarity lies in the fact that autocorrelation
contains a subset of lags that only pick up self-similarity
at rates corresponding to faster metrical layers without
being influenced by the slower metrical layers. Con-
versely, magnitude spectrum contains a set of frequencies
that are only sensitive to periodic self-similarity at the
rates of slower but not faster metrical layers (as further
illustrated in Figure S6).

Hence, the analyses based on magnitude spectrum
and autocorrelation are expected to provide convergent
results if the selection of frequencies and lags captures
the metrical layer(s) that are prominently represented in
the analyzed response, as exemplified in the strong corre-
lation between the two methods we observed in our data.

6.6 | Corroborating conclusions of
previous studies

Our analysis corroborates the results obtained with mag-
nitude spectrum–based analysis in the original papers
(Lenc et al., 2018, 2022), providing evidence that these
original effects were not merely driven by changes in sig-
nal shape that were not specific to periodic recurrence
(Rajendran et al., 2017; Rajendran & Schnupp, 2019). In
saying that, one difference from the original papers was
the lack of significant enhancement of beat periodicities
in the EEG responses to the weakly periodic rhythm
delivered by high tones. In the case of the magnitude
spectrum-based analysis, this may be partly explained by
a slightly different selection of frequencies (excluding the
grid rate frequency; see Figure S2). More importantly,
this may be due to a more stringent test of the beat-
related z-score against zero rather than the beat z-score
from the cochlear model. While directly comparing the z-
score of a response to some baseline (here cochlear
model) is valid in theoretical noise-free scenarios, caution
is required when analyzing noisy physiological signals. In
particular, our simulations reveal that in situations with
a low SNR, the noise-corrected z-score at beat-related lags
is biased towards zero, and the same can be argued for
z-scores at beat-related frequencies. Consequently, in
cases where the baseline against which the response is
compared has a negative z-score value, noise may
spuriously enhance the z-score value of the response by
making it less negative.

However, once aware of the detrimental effects of
noise, one can adjust the statistical analyses accordingly
to make sure the results are robust. For example, when
multiple experimental conditions are compared, one
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possibility is to empirically estimate the SNR from the
data, and use it as a regressor in the statistical model.
However, in scenarios with an insufficient amount of
data, a reasonable alternative is to make sure that the
significant contrasts cannot be simply reproduced when
taking the SNR as a dependent variable instead of the
beat-related z-score (for an example, see Lenc et al., 2018,
2022). These suggestions thus point toward general
recommendations for optimization of stimuli and data
acquisition, to maximize SNR of the collected data
(Boudewyn et al., 2018; Luck, 2014).

6.7 | Limitations and cautionary notes

The simulations conducted in the current paper were
designed to yield insights directly relevant to the analysis
of real-world empirical data, while maintaining control
over the relevant parameters. For instance, rather than
artificially generating noise (e.g. van Diepen & Mazaheri,
2018), we opted for sampling it from an actual EEG
recording. Likewise, we demonstrated the validity of the
method using a unitary response with a physiologically
plausible shape.

However, the shape of the unitary response was not
estimated from real data, and, in fact, the mere concept
of unitary response may be questionable in the context of
highly nonlinear neural systems (Ahrens et al., 2008;
David et al., 2009; Doelling et al., 2019; Drennan &
Lalor, 2019). While this does not challenge the validity of
our findings, it is important to acknowledge that the data
simulated in the current study may be different from
real-world data acquired in various experimental situa-
tions. Therefore, the implementation of the autocorrela-
tion approach presented here should be taken as a proof
of concept, rather than as a “recipe” for a “plug-and-play”
analysis pipeline.

Instead, we provide a set of plausible and validated
analytical tools, while pointing out their strengths and
limitations, thus opening to further development depend-
ing on the requirements of the particular application. For
example, while we show how the SNR can be empirically
estimated from data, and we use simulations to demon-
strate that it affects the autocorrelation method in a pre-
dictable way, we do not offer a minimum value of SNR
that should be achieved in an empirical experiment to
guarantee interpretable data. This is because the absolute
SNR may depend on many variables including the num-
ber of harmonics taken into account, as well as the distri-
bution of response magnitude across these harmonics.
Indeed, different kinds of responses may predominantly
project to different regions of the spectrum. For instance,
transient burst-like periodic responses will contain more

energy concentrated at higher harmonics, whereas slowly
varying periodic responses will mainly contain promi-
nent peaks at lower harmonics (Retter et al., 2021; Zhou
et al., 2016). Likewise, signals from different empirical
modalities may be susceptible to certain idiosyncratic
artifacts that distort the spectrum of the response in a
particular way (e.g. alpha activity in EEG). All this
should be taken into account to fine-tune the selection of
frequencies and lags for a particular application of the
frequency-tagging as implemented through magnitude
spectrum or autocorrelation analyses.

Similarly, we demonstrated the validity of the noise-
correction procedure using a particular tool (IRASA) to
estimate the noise spectrum from data. However, there
are several available approaches to estimate 1/f-like noise
component from signals, with different strengths and
weaknesses which are beyond the scope of this paper
(Gerster et al., 2022). Again, the decision to use a particu-
lar method to capture the noise component should be
informed by the nature of the data and noise in the par-
ticular application.

Yet, it should be noted that there are practical recom-
mendations regarding the duration of the analyzed
signal, particularly pertinent to the noise-correction pro-
cedure described in Section 5.2. Specifically, to minimize
the impact of noise, one needs to (i) reliably estimate the
1/f-like noise component for subtraction and (ii) ensure
that the response is concentrated into narrow frequency
bins that are clearly separable from frequency bins that
are driven solely by noise, which can be subsequently set
to zero (see Sections 5.2 and 7.2 for further details of this
two-step procedure). This separation depends on the
spectral resolution, which is determined by the duration
of the analyzed signal (and hence by the number of repe-
titions of the rhythmic pattern therein).

For example, when a rhythmic pattern is presented
only once, with no seamless repetition, the corresponding
spectrum contains no additional frequency bins between
the frequencies of interest (i.e. the inverse of pattern
duration and harmonics). In such a case, the magnitudes
captured at the frequencies of interest would receive
equal contribution from the response and the noise
(Bach & Meigen, 1999). Two seamless repetitions of the
rhythmic pattern would yield one frequency bin separat-
ing the neighbouring frequencies of interest; three repeti-
tions would yield two bins in between the frequencies of
interest, etc. In other words, the higher the number of
repetitions, the greater the ability to separate signal from
noise. However, in practice, a higher number of repeti-
tions comes at the expense of participant compliance and
vigilance due to increased trial duration. Therefore, in
most experimental designs, SNR can be bolstered by find-
ing a reasonable compromise between (i) the number of
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seamless rhythmic pattern repetitions within a trial,
(ii) the quality of the recorded data and (iii) the number
of trial repetitions averaged per condition (Norcia
et al., 2015).

Finally, it is important to keep in mind that the mini-
mal required number of seamless pattern repetitions
should be also determined by the functional phenome-
non of interest. For example, beat representation may
take several repetitions of a rhythmic pattern to build up
(Su & Pöppel, 2012; Tal et al., 2017), and this time course
is thus relevant to be accounted for when designing an
experiment.

Besides validating the new approach on simulated
data where ground-truth is known, we also demonstrated
its plausibility with empirical data obtained in two previ-
ous studies. Despite the relatively small number of partic-
ipants (N = 14 adults and N = 20 infants), convergent
results were observed across these two independent data-
sets. While the statistical power of the frequency-tagging
approach remains to be systematically evaluated in future
work, the current observation of significant effects
consistent with the effects originally reported in each
respective study provides support to the claim that the
autocorrelation-based analysis is sufficiently sensitive
and robust to be applied to limited and inherently noisy
physiological data.

6.8 | Neural and behavioral responses as
complementary ways to study perception

Probing the internal representation of a high-level per-
ceptual phenomenon such as the beat is a nontrivial
endeavor. In line with researchers from other fields
(Kappenman & Luck, 2011; Moshel et al., 2022; Rossion
et al., 2020; Rossion et al., 2023), we argue that relying
solely on overt behavioral responses may give an incom-
plete image of the internal representations due to the
intrinsic constraints and number of internal processes
that may contribute to the behavioral response eventually
executed by the system.

In contrast, measures of brain activity can circumvent
several of these constraints, thus isolating aspects of the
processes related to the internal representation of interest
which otherwise could be masked or distorted. However,
it is important to note that neural responses (even at the
level of a single neuron) are also likely to be driven by a
range of processes (Grootswagers et al., 2019; Mattioni
et al., 2020; Merchant et al., 2014; Norman-Haignere
et al., 2015). In this view, both behavior and neural
activity should be considered as incomplete, yet comple-
mentary windows into the underlying system, each with
its own set of advantages and drawbacks (Krakauer

et al., 2017; Niv, 2021; Rossion et al., 2020). Analyzing a
range of behavioral and neural responses acquired with
a variety of tools and in many contexts may therefore
prove an optimal way to learn about the nature of beat
perception.

While the methods described here allow researchers
to go a step forward by capturing beat-related informa-
tion in neural activity, it is important to acknowledge
that our methods are not fully dissociated from behavior.
In fact, they are informed by behavioral measures in
terms of identifying a particular rate for the perceived
beat as elicited in response to a particular external input
in a particular context. This is similar to most methodo-
logical approaches that study the neural underpinnings
of high-level perception (Kriegeskorte et al., 2008;
Norman-Haignere et al., 2015; Rossion et al., 2020). For
example, capturing the internal representation of a visual
category from brain activity relies on the analysis of neu-
ral responses to a set of images that either contain the
visual category or not (Grootswagers et al., 2019; Hagen
et al., 2020). This stimulus categorization is often based
on behavioral responses of the researchers themselves
when they build the set of stimulus images, but could be
equally well determined by relying on consistent rating
responses of a pool of participants (Grootswagers
et al., 2022; Norman-Haignere et al., 2015; Shatek
et al., 2022; Wardle et al., 2020), which is similar to the
approach we propose in the current paper.

6.9 | Beyond isochronous grid-based and
repeating rhythms

The current work mainly focuses on situations where the
perceived beat is induced by rhythmic patterns that are
periodically repeated to form long sequences, and whose
structure is based on an isochronous temporal grid. While
such stimuli constitute an optimal setting to capitalize on
the advantages of the frequency-tagging approach in its
magnitude spectrum and autocorrelation implementa-
tions (such as robustness to noise), it is worth pointing out
that the methods can be generalized to other scenarios.

For instance, even if the stimulus consists of a
sequence made of non-repeating rhythmic patterns,
beat-related frequencies and lags can be selected in the
same way as for stimuli made of looped rhythmic pat-
terns, as long as it can be assumed that the rate of the
internal beat is fixed at an exact known value throughout
the whole duration of the analyzed response. Examples
of such stimuli comprise, for example, artificially gener-
ated non-repeating sound sequences constructed on an
isochronous time grid (see, e.g. Lenc et al., 2020), or
quantized music without tempo fluctuations.
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However, using non-repeating rhythmic stimuli
makes the selection of beat-unrelated lags/frequencies
less straightforward. If the stimulus is non-repeating but
nevertheless constructed on an isochronous time grid,
the beat-unrelated lags can still be selected in the way
described here, since the autocorrelation peaks would be
expected at integer multiples of the grid interval. How-
ever, as illustrated in Figure S7, tagging beat-unrelated
frequencies may turn challenging because the precise
location of peaks in the spectrum driven by the sensory
input is not apparent. Careful analysis of peaks emerging
in the magnitude spectrum of the sensory input as well
as the elicited response is required to ensure that an
appropriate set of beat-unrelated frequencies is selected
to obtain a valid estimate of periodic recurrence.

What about situations where the rate of the internal
beat may slowly fluctuate in a known/controlled man-
ner? For instance, a rhythmic sequence that induces
internal beat representation as captured by behavioral
motor responses may gradually change in tempo over
time. Indeed, humans readily adjust the rate of the inter-
nal beat to maintain tight temporal coordination with a
tempo-changing external stimulus (Van Der Steen
et al., 2015). The two implementations of the frequency-
tagging approach presented in the current paper have not
been specifically designed to capture the representation
of a tempo-changing beat, since they specifically rely on
signals’ stationarity (especially stationarity of the per-
ceived beat throughout presentation of the rhythmic
stimulus).

Nevertheless, it may be possible to capitalize on
recent advances in the development of time-warping
methods (Chemin et al., 2018; Merchant et al., 2015;
Perez et al., 2013), which could be used as a pre-
processing step to rescale the temporal structure of the
signal in a way that restores stationarity. However, while
an in-depth discussion of the assumptions and potential
pitfalls of different time-warping methods is beyond the
scope of the current paper, it is important to be aware of
any caveats related to the chosen time-warping method
when interpreting results.

Finally, the current work only deals with capturing
internal representations of isochronous beats, that is,
beats comprising recurring evenly spaced time intervals.
While perception of isochronous beats is pervasive in
musical behaviors around the world (Mehr et al., 2019;
Savage et al., 2015), increasing evidence suggests that per-
ception of beat and meter formed of uneven time inter-
vals is far from peculiar over the globe (Polak &
London, 2014; Polak et al., 2018), highlighting the
remarkable ability of the human brain to map complex
internal representations (Hannon & Trehub, 2005;
Holt & Lotto, 2010; Ley et al., 2014). Here again, the

methods as presented in the current paper have not been
specifically designed to capture representations of non-
isochronous beats.

However, this methodological constraint in no way
downplays the significance of the work aimed at shed-
ding light on the perception of non-isochronous beats
(Hannon & Trainor, 2007; Jacoby et al., 2024; Jacoby &
McDermott, 2017; Polak & London, 2014). On the con-
trary, taking advantage of all suitable methods to study
the rich musical behaviors across cultures and traditions
is critical to move a step forward from models in music
sciences that have been built on long-standing Western
biases, towards a more comprehensive and accurate
understanding of human perception (Jacoby et al., 2024;
Sauvé et al., 2023).

6.10 | Magnitude spectrum–based and
autocorrelation-based analyses do not
ignore phase

It has been argued that the magnitude spectrum–based
implementation of the frequency-tagging approach ignores
temporal properties of the response encoded in its phase
spectrum that may be critical to quantifying how much
the response reflects a periodic beat (Cameron et al., 2019;
Rajendran & Schnupp, 2019; Rosso et al., 2021, 2023; Tal
et al., 2017). Counter-arguments to this claim have been
already discussed elsewhere (Lenc et al., 2019) (but see
also relevant papers addressing this issue in the wider
frequency-tagging community, e.g. Bach & Meigen, 1999;
Norcia et al., 2015; Rossion et al., 2020). However, it seems
relevant to re-iterate here several key points that may
remain under-acknowledged in the field.

First and foremost, the spectrum of a periodically
repeating response only contains peaks at harmonics of
the response repetition rate. The relative distribution
of magnitudes and phases across these harmonics is
determined by the particular shape of the repeating
response. Critically, as discussed in the current paper, the
periodic repetition itself rather than the shape of the
recurring response is relevant to measure the prominence
of periodicity corresponding to the beat perceived in
time-varying signals. It follows from the above that
measuring beat-related information (namely prominence
of beat-related periodicity) in a signal can be achieved
irrespective of the relative distribution of magnitudes and
phases across the beat-related harmonics, as demon-
strated in Section 4 (see also Figures 3 and 4).

Second, the claim that the magnitude spectrum–based
implementation of frequency-tagging ignores temporal
information may stem from the false assumption that the
method works with a spectrum obtained in a similar way
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as it is in time-frequency decompositions typically used
to analyze oscillatory responses in neuroscience (Keil
et al., 2022). This is incorrect, since frequency-tagging
does not compute and average the magnitude spectrum
of successive short time windows, which would indeed
discard phase information. Rather, the spectrum is com-
puted from a long signal that captures many repetitions
of the beat period (Bach & Meigen, 1999). This means
that any temporal jitter or phase inconsistencies in the
perceived beat, which can be, in fact, essentially under-
stood as reduced periodic self-similarity, would be
reflected in lower magnitude at beat-related frequencies
(due to spectral leakage). A reduction of peaks at beat-
related lags due to reduced phase stability can be likewise
observed in the autocorrelation function, as demon-
strated in Figure 2 of the current paper, and further cor-
roborated by Figure S5.

Highlighting the sensitivity of frequency-tagging to
phase-stability in both the magnitude spectrum and auto-
correlation implementations of the approach is important
in order to address recent arguments in favour of alterna-
tive methods focusing on phase-locking measures
(Rajendran & Schnupp, 2019; Rosso et al., 2021). These
methods allow the stability of a phase relationship
between two systems (here a periodic beat and the ana-
lyzed response) to be addressed directly, as a fundamen-
tal way to capture synchronization (also often referred to
as “entrainment”; Rosenblum et al., 2001; Pikovsky
et al., 2003).

However, this comes with a caveat about how exactly
to estimate the phase in the first place. Estimating phase
of a system from data is notoriously far from trivial
(Kralemann et al., 2007), especially with noisy measure-
ments of complex systems such as the brain (Erra et al.,
2017). For example, neuroscientific work has often mea-
sured phase values from signals after applying a band-pass
filter and computing the Hilbert transform (e.g. Doelling
et al., 2019; Rosso et al., 2021), which is equivalent to
focusing on a single harmonic of a periodic response in
the magnitude spectrum (see also Chang et al., 2022; Ding
et al., 2017). As discussed in the current paper, such an
approach may overlook instances where the shape of the
response may be anything other than a sinusoid. These
considerations therefore highlight the advantage of the
magnitude spectrum– and autocorrelation-based analyses,
which are both sensitive to phase stability without relying
on explicit phase estimation from data.

6.11 | Conclusion

In conclusion, the frequency-tagging approach in both
its magnitude spectrum and new autocorrelation

implementations constitutes a valid way to probe beat-
related information, in particular beat periodicity, in
empirical signals. The novel autocorrelation-based analy-
sis resolves the hurdle posed by the many-to-one relation-
ship between the beat as a perceptual phenomenon, and
many equivalent ways in which it can be encoded in
time-domain signals captured from the responding sys-
tem. Likewise, the techniques described here enable rig-
orous comparison between physical sensory inputs and
the responses captured from the system at different pro-
cessing stages and through different empirical modalities.

Together, these methodological advances open new
promising avenues towards a nuanced exploration of pro-
cesses that enable the mapping between complex sensory
inputs such as music and internal representations of
time. Specifically, this approach has the potential to facil-
itate further research into the development, plasticity,
and neural basis of this mapping in healthy and impaired
populations of human and non-human animals.

7 | METHODS

Simulations and data analyses were carried out using
Matlab 9.4.0 (The MathWorks, Natick, MA). Statistical
tests were performed using R (4.3.2).

7.1 | Simulations

Responses based on a repeating rhythmic pattern. The
signal in Figure 2 was generated based on 11 seamless
repetitions of a .2-s-long segment. The segment was cre-
ated using a method inspired by van Diepen and Maza-
heri (2018). The waveform comprised a sum of three
sinusoidal components, each generated using the equa-
tion below:

ERPkt ¼Ak
t� t0,k
τk

e1� t�t0,kð Þ=τk sin 2πf k t� t0,kð Þð Þ ð1Þ

where Ak is the amplitude, f k is the frequency, t0k is the
start time and τk is the exponential decay time of the
amplitude. The parameters of the three components
(A1 = .1, A2 = .1, A3 = .2; τ1 = .2, τ2 = .05, τ3 = .3 s; f1 = 1,
f2 = 9, f3 = 20Hz; all t0s = 0 s) were chosen arbitrarily,
with the intention of creating a smooth yet complex tra-
jectory in the time domain. To decrease the periodic
recurrence of the resulting signal, two manipulations
were introduced. First, the onset time of each segment
was jittered using uniformly distributed values between
�15 and +15% of the underlying repetition interval (.2 s).
This decreased the phase consistency of the signal at the

24 of 37 LENC ET AL.



rate of the segment repetition. In addition, the shape of
each individual segment was slightly changed by adding
a snippet of low-pass filtered white noise (Butterworth
4th order filter with 12Hz cutoff), thus further decreasing
the self-similarity of the signal at the segment
repetition rate.

The simulations of time-varying responses used for
the analyses reported in Figures 3–8 were carried out
using the following steps. First, a rhythmic pattern was
constructed by arranging several events on a grid of time
points separated by a fixed interval (here .2 s). Unless
stated otherwise, the pattern used across simulations in
the current paper could be represented as [x.xxxx.xxx..],
where “x” stands for a grid position with an event and “.”
marks an empty grid position. These specific rhythmic
pattern and grid interval were intentionally identical to
the “weakly periodic rhythm” used as a stimulus in the
empirical datasets (Lenc et al., 2018, 2022), for compari-
son purposes. The groups of events in the pattern were
arranged in a way that did not clearly align with any
plausible periodic beat. Therefore, time-varying signals
based on this rhythmic pattern were expected to exhibit
low periodic recurrence at different beat rates allowed by
the underlying grid structure. The 2.4-s-long pattern
(12 � .2 s) was then seamlessly repeated 20 times to form
a long sequence.

Furthermore, a time-domain signal was generated by
assigning a unitary response to each grid point that con-
tained an event. The unitary response could be either a
Dirac impulse (e.g. Figure S1B), a square wave
(e.g. Figures 3 and 5) or a simulated event-related poten-
tial (ERP; Luck, 2014) (see Figures S1C and 4). The ERP
was generated using a method inspired by van Diepen
and Mazaheri (2018). The waveform comprised a sum of
several sinusoidal components generated using the equa-
tion below:

ERPkt ¼Ak
t� t0,k
τk

e1� t�t0,kð Þ=τk sin 2πf k t� t0,kð Þð Þ ð2Þ

where Ak is the amplitude, f k is the frequency, t0k is the
start time and τk is the exponential decay time of the
amplitude. Two frequency components were summed to
generate the complex ERP-like unitary response with
total duration restricted to .5 s. The first component cor-
responded to a fast transient response, akin to the P50
evoked potential (Picton, 2010) (A1 = .75, f1 = 7Hz,
t0,1 = 0 s, τ1 = .05 s). The second component had a longer
integration time and contributed to the slow dynamics of
the response (A2 = .4, f2 = 1Hz, t0,2 = 0 s, τ2 = .2 s).

Periodic recurrence of the signal at the rate of
1/.8 s = 1.25 Hz (corresponding to a beat period spanning
four grid points) was selectively enhanced by

manipulating the amplitude of the unitary response
assigned to each grid position. In particular, the ampli-
tude of unitary responses that occurred at grid points
overlapping with integer multiples of the beat period
(i.e. .8 s, 1.6 s, 3.2 s, etc.) was kept constant, while the
amplitude of all other unitary responses was reduced.
The beat rate of 1.25 Hz was chosen to match the most
consistently perceived beat rate in the empirical studies
re-analyzed in the current paper (see Section 5.3). Like-
wise, the selection of beat-related and -unrelated frequen-
cies and lags was equivalent to the selection used to
analyze the EEG data, except of simulations for Figure 6
that were carried out using a single target lag set to .8 s
and flanking lags .6, 1.0 and 1.2 s chosen for simplicity to
demonstrate the effect of standardization.

To assess the sensitivity of the magnitude spectrum-
based and autocorrelation-based analyses to phase stabil-
ity, a perfectly periodic signal was generated at the beat
rate of 1.25 Hz using a repeated square-wave unitary
response. All other parameters were identical to the
sequences described above. Periodic recurrence was then
systematically decreased by randomly jittering the onset
times of each individual unitary response (normal distri-
bution with standard deviation log-spaced between
10 and 200 ms across conditions), as shown in Figure S5.

To illustrate the magnitude spectrum and autocorre-
lation function computed from a non-repeating rhythmic
signal constructed on an isochronous grid of time points
(Figure S7), square-wave unitary responses were assigned
to positions on a 240-point grid (.2 s grid interval) to form
a long sequence. Whether or not a grid position would
contain a unitary response was determined at random,
with the constraint that a response occurred at more than
half of grid points within the sequence, which corre-
sponded to integer multiples of a .8-s period, in order to
slightly enhance the periodic recurrence at the rate of
1/.8 s = 1.25 Hz.

7.1.1 | Signal transformations non-specific to
periodicity

In order to probe the specificity of a method to capturing
periodic recurrence, several transformations that preserve
periodicity were applied to the simulated signals. Firstly,
multiplication by a constant was used to change the scale
of the signal. Secondly, adding a constant offset to the sig-
nal was used to introduce a shift. Finally, the shape of the
signal was changed in a way that does not affect periodic
recurrence at a given rate. This was done in the context
of signals based on a grid of time points and a repeating
rhythmic pattern as described above. Specifically, the
shape of the unitary response was changed, while
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keeping all other parameters constant. Several versions of
the same signal were generated using square-wave uni-
tary responses with duty cycles (i.e. the proportion of the
grid interval during which the square wave has a “high”
vs. “low” value) ranging from 25% to 90%.

7.1.2 | Simulating noisy signals

The noise used across all simulations was sampled from
an open dataset of resting-state EEG recordings (Wang
et al., 2022). The dataset comprises brain activity of
60 participants, recorded at 500 Hz sampling rate using
64 active Ag-AgCl electrodes placed according to the
10/20 international system (Brain Products GmbH,
Germany). The study was approved by the Review Board
of the Institute of Southwest University, and written
informed consent was obtained from all the participants.

Resting-state EEG data from the “Eyes Open” task
were used. These data consisted of 5-min recordings
where participants were instructed to fixate a point in
front of them and avoid any unnecessary movement. The
EEG data were re-referenced to common average.
The noise for each individual simulated signal was pre-
pared by (1) selecting a random participant, (2) selecting a
random channel, (3) resampling to the required sampling
rate and (4) randomly picking segment of the required
duration within the 5-min recording. Finally, the sampled
noise segment was summed with a simulated response to
yield a noisy signal. The response and noise were scaled to
yield a desired SNR defined by the equation below:

SNR¼ 20� log10 rms xsignal
� �

rms xnoiseð Þ
� �

ð3Þ

where rms xsignal
� �

is the root-mean-square amplitude of
the simulated response and rms xnoiseð Þ is the root-
mean-square amplitude of the noise segment.

To investigate how the noise level affected the mean
z-scored autocorrelation at beat-related lags, two example
response signals were generated. Both responses were
based on a repeating rhythmic pattern generated using
an isochronous grid of time points, as described above.
The pattern for each response was chosen from a set of
all possible seven-event patterns constructed on a
12-point grid with a restriction that at most four succes-
sive grid points could contain an event.

For each pattern, a time-varying response was gener-
ated using a square wave as a unitary response. The
mean z-scored autocorrelation at beat-related lags was
obtained from each simulated response. The response
with beat-related z-score closest to .5 (based on the

pattern [xx.xx.x.x.x.]) was selected as an example of a
large positive z-score. The second response (based on the
pattern [xx.xx.x.xx..]) was selected since its beat-related z-
score was closest to �.5, thus serving as an example of a
largely negative z-score.

The two selected example responses were used to gen-
erate noisy signals with 10 different SNR levels linearly
between �40 and 18 dB (50 simulations generated for
each SNR level). The z-score at beat-related lags was esti-
mated from the autocorrelation obtained either directly
from each simulated noisy signal or after applying the
full noise-correction method described in Sections 5.2
and 7.3. In addition, the same analysis was applied to
500 signals generated only from noise (i.e. without any
response).

In order to investigate how the noise distorts the
values obtained from the autocorrelation function, a
range of noisy signals were generated. The signals were
based on responses generated from five randomly chosen
rhythmic patterns ([xx.xxx.x.x..], [xxxx.x.x.x..], [xxx.x.xx.
x..], [xxxx.xx.x…], [xxx.xx.x.x..]). For each pattern, 50 noisy
signals were prepared separately for 10 SNR levels (line-
arly between �40 and 18 dB). All other parameters were
identical to the simulations and analyses described above.
The empirical zSNR was estimated from the spectrum of
each simulated signal by pooling all beat-related and
-unrelated frequencies and taking adjacent frequency bin
2 to 5 from each side to estimate the local noise baseline
(see Section 7.3 for details).

The autocorrelation function was estimated either
(i) directly from the noisy signal, (ii) after estimating and
subtracting the 1/f noise component using IRASA or
(iii) by additionally zeroing-out magnitudes at frequencies
that did not capture the simulated response (see Section 7.3
for details). The autocorrelation values extracted across all
beat-related and -unrelated lags were arranged into a sin-
gle vector. For each signal, this vector was correlated
(Pearson’s r) with the equivalent vector obtained from the
autocorrelation of the corresponding response without
noise (i.e. the “ground-truth”). This correlation was used
to quantify how well the response autocorrelation can be
reconstructed from the noisy signal. Finally, the distribu-
tion density of the obtained correlation coefficients was
estimated separately for 11 equally spaced bins covering
the empirical zSNR range of all simulated signals.

7.2 | Analysis

7.2.1 | DFT

The DFT of a time-domain signal was calculated using
the fft function in Matlab, which returns an array of
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complex-valued coefficients, one per frequency bin. Abso-
lute value of each complex coefficient was taken to obtain
the magnitude spectrum of the signal.

7.2.2 | Autocorrelation

The circular autocorrelation of the time-domain signal
was efficiently computed in the frequency domain, using
the convolution theorem (Smith, 2007) as shown in the
equation below

ACFt ¼Re ifft fft xtð Þ fft xtð Þ�Þð Þð ð4Þ

where ACFt corresponds to the autocorrelation (as a
function of time), xt is the time-domain signal, fft is the
DFT (implemented via Fast Fourier Transform), ifft is
the inverse DFT, Re indicates taking the real component
of a complex number and � represents complex conjuga-
tion. Specifically, the complex-valued DFT of the signal
was point-wise multiplied by its complex conjugate and
transformed back to the time-domain using the inverse
DFT followed by taking the real component.

7.2.3 | Standardized metrics of relative
prominence

The main goal of standardization in the context of the
current paper is to obtain a metric which quantifies the
prominence of magnitudes at a set of target frequencies
(here beat-related frequencies), relative to a set of standardi-
zation frequencies (here beat-unrelated frequencies). This
relative prominence can be measured by calculating, for
example, a ratio or contrast using the following equations:

ratiotarget freqs ¼
mean Xtarget freqs

� �
mean Xstandardization freqs

� � ð5Þ

contrasttarget freqs ¼mean Xtarget freqs
� ��mean Xstandardization freqs

� �
mean Xtarget freqs

� �þmean Xstandardization freqs
� �

ð6Þ

Alternatively, each value can be z-scored using the
equation below:

z scorei ¼
Xi�mean Xall freqs

� �
sd Xall freqs
� � ð7Þ

where z scorei is the z-scored magnitude at frequency i, Xi

is the raw magnitude at frequency i (Xi being the DFT of

the time-domain signal xt), Xall freqs indicates a set of
magnitudes at all frequencies of interest (i.e. all target
and standardization frequencies), mean indicates an
average and sd corresponds to the standard deviation.
The obtained z-scored magnitudes at a set of target fre-
quencies can be averaged to calculate a composite mea-
sure of their relative prominence.

The exact same metrics can be used to quantify the
relative prominence of autocorrelation values at a set of
chosen target lags.

7.3 | Accounting for noise

7.3.1 | Accounting for noise in DFT

The frequency-tagging approach relies on the ability to
reliably measure the magnitudes at several frequencies of
interest in the spectrum of the response. However,
magnitudes taken from the spectrum of a raw recorded
signal can be significantly biased by noise, as discussed in
Section 5.2. In order to minimize the contribution of
noise to the estimated magnitudes, a common approach
capitalizes on the fact that the noise is expected to have a
smooth and broadband spectrum, while the spectrum of
a periodic response only contains narrow peaks at
a-priori known frequency bins (see Section 4). Hence, the
noise-corrected magnitude at a frequency bin of interest
can be approximated by measuring how much the peak
at that frequency stands out relative to the local noise
baseline. This can be simply quantified by taking the dif-
ference between the magnitude at the bin of interest and
the average magnitude at adjacent frequency bins (see
Figure S4).

A similar rationale can be used to quantify how much
the response of interest stands out from the noise, a
quantity often referred to as “SNR” (Meigen &
Bach, 2000). As shown in Figure S4, the magnitude and
local noise baseline can be pooled (i.e. summed) across
all response frequencies (i.e. frequencies corresponding
to the rate of the periodic response and harmonics). Sub-
sequently, a z-scored signal-to-noise ratio (zSNR) can be
calculated using the following equation:

zSNRresponse bin ¼
Xresponse bin�mean Xadjacent bins

� �
sd Xadjacent bins
� � ð8Þ

where Xresponse bin is the magnitude summed across
response frequencies, mean Xadjacent bins

� �
is the average

magnitude of the neighboring bins summed across
response frequencies (i.e. local noise baseline) and
sd Xadjacent bins
� �

is the standard deviation across the
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neighboring bins. This approach has been widely used in
the frequency-tagging literature, as it offers a straightfor-
ward way to statistically test whether the response stands
out significantly from the noise in the recorded signal
(Hagen et al., 2021; Jonas et al., 2016; Liu-Shuang
et al., 2014; Lochy et al., 2018; Volfart et al., 2020).

7.3.2 | Accounting for noise in
autocorrelation

In order to minimize the impact of noise on the
autocorrelation-based estimate of beat periodicity, we
used a two-step procedure.

First, the 1/f-like noise magnitude was estimated
using IRASA by irregular resampling of the signal in the
time domain (Wen & Liu, 2016). The advantage of using
this method is that it does not rely on fitting an explicit
function to the magnitude spectrum (cf., e.g. Donoghue
et al., 2020). Rather, it capitalizes on the fact that the
magnitude spectrum of an aperiodic 1/f signal (here con-
sidered noise) is invariant when the signal is resampled,
whereas the spectrum of a periodic signal (here consid-
ered response of interest) will be strongly affected by
resampling. The method was implemented using a
Matlab library published in Wen and Liu (2016). Nine-
teen scaling factors were used, spaced between 1.1 and
2 in equal steps of .05. As noted by Gerster et al. (2022),
the resampling procedure causes a reduction of band-
width determined by the highest scaling factor (here 2).
However, the original sampling rate of the simulated and
empirical signals used in the current study was always
sufficiently high to cover the frequency range of interest
even after a bandwidth reduction by a factor of 2.

Using these parameters, IRASA estimated the magni-
tude spectrum of the aperiodic noise component from
0 Hz up to 1/4 of the original sampling rate. The part of
the estimated noise spectrum that was missing due to
bandwidth reduction (i.e. from 1/4 to 1/2 of the sampling
rate) was filled with zeros. Finally, the full magnitude
spectrum of the noise component was reconstructed by
mirroring around 1/2 of the sampling rate (i.e. the
Nyquist frequency), using the conjugate symmetry of the
DFT for real signals (Smith, 2007).

The magnitude of the estimated noise spectrum was
then subtracted from the complex-valued spectrum of the
raw signal, separately for each frequency bin, as follows.
If the magnitude of the noise was larger than the magni-
tude of the signal, the value at the corresponding fre-
quency was set to a zero vector. Otherwise, the length of
the complex vector in signal’s spectrum was reduced by
the amount equal to the magnitude of the noise at the
corresponding frequency.

After the noise subtraction, the second step comprised
further suppressing the effect of noise by only keeping
frequencies that captured the response of interest. The
selection of these frequencies depends on the particular
design and goals of the analysis and is further discussed
in Section 5.2. The complex coefficient at any frequency
bin that did not overlap with the chosen set of response
frequencies was set to a zero vector. This “zeroing” opera-
tion is justified by the fact that the response was elicited
by a stimulus made up of a seamlessly looped rhythmic
pattern, hence was expected to itself periodically repeat
at the same rate as the rhythmic pattern in the input
(in fact, the assumption that the same response will be
consistently elicited when repeating the same stimulus or
experimental condition constitutes a fundamental princi-
ple used in neurosciences to isolate a response from
noise). In addition, the design of the stimulus sequence
ensured that an exact integer number of pattern-
repetition periods was captured. Consequently, the DFT
of any response obtained with the paradigm used here
can be expected to only contain energy at the exact fre-
quency bins corresponding to integer multiples of the
rhythmic pattern repetition rate.

Notably, this set of frequencies comprises all beat-
related and -unrelated frequencies (as discussed in
Section 4.3); thus, zeroing out frequency bins outside of
this set is not expected to systematically bias the periodic
recurrence of the signal at the rate of the beat targeted in
the current analysis. Nevertheless, it is important to note
that the “zeroing” operation will yield a periodic signal
when converted back to the time domain (similarly to
what a very sharp comb filter would do). In other words,
only keeping frequencies corresponding to harmonics of
the pattern repetition rate will result in a signal that peri-
odically repeats at the rate of the pattern repetition. Criti-
cally, the shape of the repeated signal segment will be
determined by the characteristics of the original signal,
and thus, it is valid to analyze this shape to learn about
the prominence of periodicities nested within the rhyth-
mic pattern, such as the beat periodicity measured in our
analysis. In saying that, there are several remarks that
deserve attention.

The fact that the noise “zeroing” step makes the sig-
nal periodic in the time domain means that the ACF of
the signal will be likewise periodic, strictly repeating
itself at the rate determined by the duration of the rhyth-
mic pattern. Hence, the ACF values taken from lags
higher than the pattern duration (in fact, half of the pat-
tern duration due to the symmetries in ACF) will be
redundant. Why then consider lags all the way to half sig-
nal duration, as done in the current analysis (see
Section 5.1)? One reason is that this is a straightforward
way to weight the lags according to how much they
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capture the different periodicities taken as beat-related,
as well as beat-unrelated. Specifically, here, the beat
period of .8 s was evaluated relative to the prominence of
periods equal to .6, 1.0 and 1.4 s, which correspond to
plausible alternative periodic pulses that do not necessar-
ily complete an integer number of cycles within the dura-
tion of the repeated rhythmic pattern (here 2.4 s). Hence,
these beat-unrelated periodicities will project to lags
beyond 2.4 s in the ACF of the original signal and will
therefore contribute differently to the shape of the peri-
odically repeating ACF segment after the noise “zeroing”
step has been applied. This can be simply accounted for
by considering multiples of the beat-unrelated periods all
the way up to half signal duration.

Relatedly, the periodicity in the ACF after applying
the noise “zeroing” step may lead to increased variance
of the observed z-scores at beat-related lags when the
noise level is high. This is because having only a few
unique autocorrelation values in the periodically repeat-
ing ACF segment increases the likelihood that very high
or very low mean z-score at beat-related lags will be
observed by chance, if the signal is dominated by random
noise. This can be observed in Figure 7b,c, whereby the
correlation between ground-truth ACF values and values
reconstructed from a noisy version of the signal become
uniformly distributed between �1 and 1 across many
simulations, indicating the instability of the estimate
once noise level is too high.

This high variance can be reduced by leaving a
small frequency band around each response frequency
that smoothly tappers off, rather than abruptly setting
all frequency bins other than the response bins to zero.
To illustrate this effect (see Figure S9), a small symmet-
rical band was retained around each response fre-
quency, with a magnitude linearly decreasing from 1 to
0 starting from the half of the band on each side of the
response frequency bin. Indeed, as shown in Figure S9,
allowing a wider band around each response frequency
bin reduces the variance of similarity between ground-
truth ACF values and the estimated ACF values at high
noise levels, as the noise is allowed to yield unique
random ACF values all the way up to the lag corre-
sponding to the half of signal duration. This would
correspondingly decrease the variance of z-score values
estimated from such high-noise signals. However,
Figure S9 also shows that leaving a small band around
each response frequency decreases the ability to recon-
struct ground truth ACF at medium noise levels. This
can be thought of as a form of bias-variance trade-off,
and choosing the width of the band taken around each
response frequency should be informed by the knowl-
edge of the empirical data, as well as the particular
goals of the analysis.

7.4 | Empirical data

Datasets from two previously published studies (Lenc
et al., 2018, 2022) were used. A detailed description of the
experimental design and procedures, as well as the data
acquisition parameters and preprocessing are provided in
the original publications.

7.4.1 | Stimuli

The stimuli consisted of rhythmic auditory sequences.
Each sequence was created by seamlessly looping a 2.4-s-
long rhythmic pattern. The pattern was generated by
arranging eight identical pure tones on an isochronous
grid of 12 time points separated by .2 s. The rhythm was
either made up of low-pitched tones (130 Hz) or high-
pitched tones (1236.8 Hz). In one condition, the constitu-
ent pattern was a “strongly periodic rhythm”, since the
groups of tones were arranged in a way that closely
matched a beat with a rate of 1.25 Hz. In the other condi-
tion, the sequence was made of a repeating “weakly peri-
odic rhythm”, whereby the tones were arranged in a way
that did not systematically match any plausible
periodic beat.

7.4.2 | Cochlear model

A biomimetic model was used to obtain a lower level sen-
sory representation of the stimulus (Slaney, 1998). This
model (hereafter cochlear model) simulates cochlear fil-
tering and subsequent nonlinearities due to neural trans-
duction in the inner hair-cell/auditory-nerve synapse.
The time-domain output of the model can be considered
as an approximation of the mean firing rate response in
the auditory nerve, that is, at an early subcortical stage of
the auditory pathway.

7.4.3 | Adult dataset

The EEG activity was recorded from 14 healthy adult par-
ticipants using a Biosemi Active-Two system (Biosemi,
Amsterdan, The Netherlands) with 64 Ag-AgCl placed on
the scalp according to the international 10/20 system. All
participants gave informed consent, and the study was
approved by the Research Ethics Committee of Western
Sydney University. Participants were asked to listen to
auditory sequences in 50.4-second-long trials (eight trials
per condition), avoid unnecessary movement and carry
out a temporal deviant identification task to ensure their
attention to the stimuli.
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The EEG data were re-referenced to the common
average electrode, further low-pass filtered at 30 Hz (2nd
order Butterworth filter), and averaged across nine fron-
tocentral channels and trials. The nine channels were
chosen since high SNR of responses to rhythmic stimuli
has been consistently observed at these channels
throughout prior studies (Kaneshiro et al., 2020; Lenc
et al., 2020; Nozaradan et al., 2012). Transforming the
data into the frequency domain using DFT yielded a
spectrum with frequency resolution of 1/50.4 s = .02 Hz.
The limit up to which unique autocorrelation values
could be obtained from the EEG responses was equal to
half the trial duration, i.e., 50.4/2 = 25.2 s.

7.4.4 | Infant dataset

The EEG activity was recorded from 20 infants (aged
from 5 to 6 months) using a 128-channel HydroCel GSN
net and an Electrical Geodesic NetAmps 200 amplifier.
The research was approved by the Research Ethics Com-
mittee of Western Sydney University, as part of the pro-
ject H9660, and informed consent was obtained from
legal representatives of the infants. The infants were pas-
sively listening to the rhythmic stimuli in 60-s-long trials
(five trials per condition). The pre-processed EEG data
were re-referenced to the average of mastoid electrodes
and averaged across 28 frontocentral channels. Data from
each trial were further cut into two 26.4-s epochs, and
these were averaged within and across trials. Since EEG
of young infants is typically highly contaminated with
low-frequency artifacts, the data were filtered with a rela-
tively high cut-off frequency during preprocessing
(.5 Hz). The cochlear model output was filtered using the
same parameters to ensure valid comparison with the
EEG responses. Because the filtering strongly affected the
lowest frequency of interest at .416 Hz (i.e. the first har-
monic of the stimulus pattern repetition rate), this fre-
quency was excluded from further analyses. Given the
pre-processed response had a duration of 26.4 s, the DFT
yielded a spectrum with frequency bins separated by 1/
26.4 s = .038 Hz. Likewise, the autocorrelation function
yielded unique values up the lag of 26.4/2 s.

7.4.5 | Continuous tapping data

The dataset of Lenc et al. (2018) also contained tapping
data collected from each participant after the EEG ses-
sion. Participants tapped their finger on a custom-built
box with a piezoelectric sensor, which captured the
mechanical vibrations elicited by the impact of the tap-
ping finger. The resulting signal contained information

about the intensity or force with which each tap was exe-
cuted as a function of time. The continuous tapping
responses were analyzed separately for each trial (two tri-
als per participant and condition), otherwise using the
same procedure and parameters that were applied to
the EEG data.
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