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Abstract. This paper investigates integrality properties of perfect match-
ing polytopes, focusing on box-total dual integrality and integer decom-
position properties.
We begin by characterizing the graphs whose perfect matching polytope
is a slice of the nonnegative orthant, identifying these as the solid graphs
introduced by de Carvalho, Lucchesi, and Murty in On a Conjecture of
Lovász Concerning Bricks: I. The Characteristic of a Matching Covered
Graph (Journal of Combinatorial Theory, Series B).
As a result, we show that the perfect matching polytope of solid graphs
admits a compact description, and we establish that deciding the box-
total dual integrality of a perfect matching polytope can be done in
polynomial time.
Additionally, we characterize the conditions under which perfect match-
ing polytopes of two fundamental graph classes, namely near-bricks and
bicritical graphs, are box-totally dual integral. We discuss implications of
these results for identifying perfect matching polytopes with the integer
decomposition property.

Keywords: Perfect matching polytope · Box-totally dual integral poly-
hedron · Integer decomposition property.

1 Introduction

This paper investigates integrality properties of perfect matching polytopes,
widely studied in combinatorial optimization, with a focus on box-total dual
integrality and integer decomposition properties, two fundamental notions in
integer programming.

Totally dual integral and box-totally dual integral systems were introduced as
a versatile framework for establishing various min-max relations in combinatorial
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optimization [38]. A rational linear system Ax ď b is totally dual integral (TDI)
if the minimum in the linear duality equation

maxtwJx : Ax ď b, x ě 0u “ mintbJy : AJy ě w, y ě 0u

has an integer optimal solution for every integer vector w such that the optimum
is finite. If a system is TDI, then the right-hand side can be chosen integer if
and only if the polyhedron described by the system is integer [23].

A stronger property for a system Ax ď b is to be box-total dual integrality
(box-TDI), that is when Ax ď b, ℓ ď x ď u is TDI for all rational vectors ℓ and
u (with possible infinite components). Classical examples of box-TDI systems
are those defined by totally unimodular matrices, which are the matrices whose
minors are all 0,˘1 [37]. Examples are the classical Kőnig’s Theorem [31] and the
MaxFlow-MinCut Theorem of Ford and Fulkerson [24]. While every polyhedron
can be described by a TDI system [26], there are polyhedra that are not described
by any box-TDI system. A polyhedron is box-TDI if it can be described by a
box-TDI system. Cook [12] proved that any TDI system describing a box-TDI
polyhedron is a box-TDI system.

Box-TDI systems and polyhedra have been actively studied the past three
decades. Box-Mengerian matroid ports are characterized in [7]. Series-parallel
graphs form a class in which several polyhedra turn out to be box-TDI: a box-
TDI system describes their 2-edge-connected spanning subgraph polyhedron [8]
and is generalized for k-edge-connectivity [1]; [13] provide several other related
box-TDI systems; [2] proves the box-TDIness of their flow cone. Regarding box-
perfect graphs, which are the perfect graphs having a box-TDI stable set poly-
tope, new classes of box-perfect graphs are introduced in [20], and a weak box-
perfect graph theorem is given in [9]. Matricial and geometrical characterizations
of box-TDI polyhedra can be found in [11]. Complexity results regarding box-
TDIness are given in [10]. Graphs for which the matching polytope is box-TDI
are characterized in [19].

A polyhedron P has the integer decomposition property (IDP) if every inte-
ger point in the k-th dilation kP of P is the sum of k integer points from P ,
for all k P Zą0. If P has the integer decomposition property, then P is integer,
and every face of P also has the this property [37, Section 22.10]. Originally
introduced in integer programming by Baum and Trotter [3], the integer decom-
position property has since been studied in fields such as algebraic geometry and
combinatorial commutative algebra [27].

Several classes of polyhedra are known to have the integer decomposition
property, including projections of polyhedra defined by totally unimodular ma-
trices [39], polyhedra defined by nearly totally unimodular matrices [25], certain
polyhedra defined by k-balanced matrices [42], and stable set polytopes of claw-
free t-perfect graphs and h-perfect line-graphs [5]. Additional connections with
Fulkerson’s theory of blocking and anti-blocking polyhedra are explored in [4].
The matching polytope of a bipartite graph has the integer decomposition prop-
erty, since it is described by a totally unimodular matrix. This is generalized
in [40] to matchings of size k ď tn{2u of a bipartite graph with n vertices.
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In a graph, a matching is a subset of pairwise nonincident edges, and a perfect
matching is a matching that covers all the vertices. The matching polytope of a
graph is the convex hull of the incidence vectors of its matchings. Similarly, the
perfect matching polytope (PMP) of a graph is the convex hull of the incidence
vectors of its perfect matchings. Since the perfect matching polytope is a face
of the matching polytope and as box-TDIness is preserved under taking faces,
Ding, Tan, and Zang [19]’s characterization in terms of forbidden subgraphs
gives sufficient conditions for the box-TDIness of the perfect matching polytope.
However, as the perfect matching polytope of a subgraph needs not to be a face of
the perfect matching polytope of the original graph, there is no characterization
of its box-TDIness in terms of forbidden subgraphs.

In this paper, we report progress on the box-TDIness and the integer decom-
position property of the perfect matching polytope of nonbipartite graphs.

Contributions. Our contributions are threefold. First, we characterize the graphs
for which the perfect matching polytope is the intersection of its affine hull
with the nonnegative orthant: these are precisely the so-called solid graphs. This
extends a result of de Carvalho et al. [16].

Second, we characterize the box-TDIness of the perfect matching polytope
of two fundamental classes of graphs in the context of perfect matchings: near-
bricks and bicritical graphs. This graphic characterization involves odd inter-
cyclicity and follows from the study of the impact of tight cut contractions on
the box-TDIness of the perfect matching polytope. More precisely, we prove
that contracting a tight cut preserves the box-TDI of the perfect matching poly-
tope. We observe that the converse does not hold in general. Nevertheless, for
2-separation cuts, which are particular tight cuts, we prove that the converse
holds.

It is known that a box-TDI polyhedron has a box-TDI affine hull. We prove
that the converse holds for the perfect matching polytope, that is, the perfect
matching polytope is box-TDI if and only if its affine hull is. As a consequence,
determining whether the perfect matching polytope is box-TDI can be done in
polynomial time. As another consequence, box-TDI perfect matching polytopes
have the integer decomposition property. We highlight that the converse does
not hold by providing a general class of graphs whose perfect matching polytopes
have the integer decomposition property but is not box-TDI.

Outline. In Section 2, we provide the results from the literature that we shall
use throughout: about the perfect matching polytope, matching covered graphs
and their tight cut decomposition, and box-TDI polyhedra. We also discuss
the difference between characterizing the box-TDIness of the matching polytope
and that of the perfect matching polytope. In Section 3, we characterize the
graphs for which the perfect matching polytope is the intersection of its affine
hull with the nonnegative orthant. Moreover, we prove that the box-TDIness
of perfect matching polytopes is characterized by that of its affine hull. This
yields a polynomial-time algorithm for verifying the box-TDIness of the perfect
matching polytope of any graph. In Section 4, we characterize which near-bricks
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and bicritical graphs have a box-TDI perfect matching polytope. In Section 5,
we discuss the integer decomposition property of the perfect matching polytope.

Due to space constraints, the proofs are provided in the appendix.

2 Preliminaries

In this section, we give the results that we shall use throughout the paper: about
box-TDI polyhedra, the perfect matching polytope, matching covered graphs and
their tight cut decompositions, and the affine hull of perfect matchings. Finally,
we discuss differences between the box-TDIness of the matching polytope and
that of the perfect matching polytope.

In this work, all considered graphs are undirected. Without loss of generality,
we assume all graphs to be connected with at least one edge, as our results extend
immediately to general undirected loopless graphs. A special role is played by
odd intercyclic graphs, which are the graphs having no two vertex-disjoint odd
cycles.

For a given graph G “ pV,Eq we denote by AG the (vertex-edge) incidence
matrix of G. For C Ď E, we denote by χC the incidence vector of C. Through-
out, 0 (resp. 1) will respectively denote a zero (resp. one) entrywise matrix of
appropriate size.

2.1 Box-total dual integrality, equimodularity, and integer
decomposition property

A matrix is equimodular if it has full row rank and all maximal nonzero mi-
nors are equal up to the sign. Equimodularity is characterized in terms of total
unimodularity.

Theorem 1 (Heller [28]). An m ˆ n matrix A is equimodular if and only if
B´1A is totally unimodular for every nonsingular m ˆ m submatrix B of A.
Equivalently, B´1A is a t0,˘1u-matrix for every nonsingular m ˆ m submatrix
B of A.

It is well-known that the incidence matrix of a graph is totally unimodular
if and only if the graph is bipartite [29]. The following result characterizes the
class of graphs whose incidence matrix is equimodular.

Theorem 2 (Chervet et al. [10]). The incidence matrix of a connected non-
bipartite graph G is equimodular if and only if G is odd intercyclic.

Box-TDI polyhedra are characterized in terms of equimodular matrices as
follows. A matrix is face-defining for a polyhedron P if it has full row rank and
describes the affine hull of some face of P .

Theorem 3 (Chervet et al. [11]). A polyhedron is box-TDI if and only if all
its face-defining matrices are equimodular. Equivalently, each of its faces admits
an equimodular face-defining matrix.
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Theorem 3 contains the well-known fact that polyhedra described by totally
unimodular matrices are box-TDI [37, Chapter 22]. Moreover, these polyhedra
have the integer decomposition property.

Theorem 4 (Baum and Trotter [3]). If A is totally unimodular and b inte-
ger, then P “ tx : Ax ď bu has the integer decomposition property.

2.2 Perfect matchings

We refer to [33] for an extensive introduction about perfect matchings. We first
recall the following well-known characterization of the existence of a perfect
matching, where OpGq denotes the family of connected components of odd car-
dinality of the graph G.

Theorem 5 (Tutte [41]). A graph G “ pV,Eq has a perfect matching if and
only if |OpGzSq| ď |S| for all S Ď V .

When looking at the perfect matchings of a graph, one may restrict to match-
ing covered graphs, which are the graphs in which every edge belongs to a per-
fect matching. By definition, a matching covered graph is 2-connected, that is,
no vertex removal disconnects the graph. The following theorem of Lovász [34]
characterizes matching covered graphs. A subset S of vertices of a graph G is a
barrier if |OpGzSq| “ |S|.

Theorem 6 (Lovász [34]). A graph having a perfect matching is matching
covered if and only if each barrier is composed of pairwise nonadjacent vertices.

Let G “ pV,Eq be a matching covered graph. For a subset X of vertices,
EpXq is the set of edges of G having both extremities in X, and δpXq denotes
the cut determined by X, that is, the set of edges having precisely one extremity
in X. The shores of a cut δpXq are X and X “ V zX. A cut is trivial if one of
its shores is a singleton. For X Ď V , contracting X to a single vertex x means
replacing X by a new vertex x with δpxq “ δpXq, and we denote the resulting
graph by G{X. The two graphs G{X and G{X are referred to as the two δpXq-
contractions of G. A cut C of G is tight if |CXM | “ 1 for every perfect matching
M of G. A cut C of G is a separating cut if both of the C-contractions of G are
also matching covered. Every tight cut of a matching covered graph is separating,
but the converse does not hold. For example, the set of edges of C6 contained
in no triangle is a separating cut, and it is not tight since it is also a perfect
matching. Two tight cuts δpXq and δpY q are laminar if either X Ď Y or X Ď Y .
A laminar family of tight cuts is a family of pairwise laminar tight cuts.

A graph is solid if it is matching covered and all its separating cuts are tight.
A matching covered graph free of nontrivial tight cuts is a brace if it is bipartite
and a brick otherwise. A graph is bicritical if removing any couple of vertices
yields a graph having a perfect matching. A graph is a brick if and only if it is 3-
connected and bicritical [34]. Typical examples of bricks are the complete graph
on four vertices K4, the prism C6 – K6zEpC6q, which is a the complement of a
cycle of length 6, and the Petersen graph [34].
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For a matching covered graph, the following holds.

Theorem 7 (Edmonds et al. [22]). Let G be a matching covered graph, and
δpUq and C be two laminar tight cuts of G. If C is a cut of G{U , then C is tight
for G{U .

Let F be a family of laminar nontrivial tight cuts of a matching covered graph
G. Note that contracting a shore of some tight cut of F yields a smaller matching
covered graph. By Theorem 7, this can be repeated with the cuts of F which
remain nontrivial cuts in the resulting graph, until a graph with no nontrivial
tight cut from F is obtained. The graphs obtained by this procedure are called
F-contractions of G. When F is an inclusionwise maximal family of laminar
nontrivial tight cuts, the F-contractions contain no nontrivial tight cuts, hence
are either bricks or braces. Given such an F , a tight cut decomposition of G is the
list of all bricks and braces that are F-contractions of G [34]. Lovász [34] proved
that any tight cut decomposition of a given graph provides the same list of bricks
and braces (up to edge multiplicities). Moreover, a family of laminar nontrivial
tight cuts F has the odd cycle property if every F-contraction is nonbipartite.
A nontrivial tight cut δpUq has the odd cycle property if tδpUqu has it. For a
family F of nontrivial laminar tight cuts and a nontrivial tight cut δpUq that is
laminar with each tight cut of F , we denote by FG{U the set of tight cuts in F
that are cuts of G{U .

Let denote by FG the family whose elements are maximal inclusionwise fami-
lies of laminar nontrivial tight cuts having the odd cycle property. Every F P FG

has the same cardinality, which is the number of bricks of G minus one [34].
When FG “ H and G is nonbipartite, G is called near-brick. In particular, a
near-brick has a single brick, and any brick is a near-brick.

In [16], the following connection between the solidity of a graph and the one
of its bricks is established.

Theorem 8 (de Carvalho et al. [16]). A matching covered graph is solid if
and only if all its bricks are.

By de Carvalho et al. [16, Lemma 2.29], odd intercyclic matching covered
graphs are solid, such as bipartite matching covered graphs, odd wheels, and
Möbius ladders of even order [18].

2.3 The matching polytope

Given a graph G “ pV,Eq, the matching polytope of G is denoted by PMpGq.
The following system of inequalities describes PMpGq and is known as Edmonds’
system [21].

(1)

$

’

&

’

%

xpEpUqq ď p|U | ´ 1q{2, for each U Ď V with U | ě 3 odd,
xpδpuqq ď 1, for each u P V,

x ě 0.

(1a)
(1b)
(1c)
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Cunningham and Marsh [14] proved that Edmonds’ system is always TDI.
In [19], the authors characterized the graphs for which Edmonds’ system is box-
TDI. A graph H is a fully odd subdivision of a graph G if H is obtained from
G by subdividing each edge of G into a path of odd length (possibly the length
is one), where the length is the number of edges in the path. Since Edmonds’
system is always TDI [15], its box-TDIness is equivalent to that of the underlying
polytope [12], hence we can restate their result as follows.

Theorem 9 (Ding et al. [19]). The matching polytope of a graph G is box-
TDI if and only if G has no fully odd subdivision of G1, G2, G3, and G4 of
Figure 1 as a subgraph.

G1 G2 G3 G4

Fig. 1: The graphs Gi, i “ 1, 2, 3, 4, are the forbidden subgraphs for the box-
TDIness of the matching polytope (up to fully odd subdivision).

2.4 The perfect matching polytope

The perfect matching polytope P pGq of a graph G is described by the TDI
system obtained from Edmonds’ system by setting (1b) to equality. However,
the following system also describes the perfect matching polytope [21], and is
more convenient to investigate its box-TDIness:

(2)

$

’

&

’

%

xpδpUqq ě 1, for each U Ď V with U | ě 3 odd,
xpδpuqq “ 1, for each u P V,

x ě 0

(2a)
(2b)
(2c)

Note that for bipartite graphs, inequalities (2a) are redundant, and the remain-
ing system (2b)-(2c) is box-TDI by the total unimodularity of the incidence
matrix [37, Section 19.3].

Let F P FG with G “ pV,Eq matching covered. In their seminal works,
Naddef [35], Edmonds et al. [22], and Lovász [34], proved that the matrix MF

G

whose |V | ` |F | rows are associated with equalities (2b) and inequalities (2a)
associated with the cuts of F has full row rank. Moreover, the maximum number
of linearly independent perfect matchings is |E| ´ |V | ´ |F | ` 1. We restate the
results of Naddef [35], Edmonds et al. [22], and Lovász [34] in terms of face-
defining matrices.
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Theorem 10 ([22,34,35]). Let G be a nonbipartite matching covered graph.
Then, MF

G is face-defining for affpP pGqq for every F P FG.

In particular, the equality associated with any tight cut is a linear combina-
tion of equalities associated with tight cuts of F .

2.5 Box-TDIness: matchings VS perfect matchings

The box-TDIness of the matching polytope implies that of the perfect matching
polytope, since the latter is a face of the former. However, the converse does
not hold. For instance, the PMP of the graph G1 in Figure 1 is box-TDI —
containing only a single point — while its matching polytope is not, as shown
by Theorem 9.

This phenomenon also occurs for matching covered graphs: we provide below
four infinite families of near-bricks whose PMP is box-TDI, but whose matching
polytopes are not, as they contain one of the forbidden structures of Theorem 9.
Indeed, by Theorem 16 and Corollary 18, the PMP of any fully odd subdivision of
the graphs G1

1, G1
2, G1

3, and G1
4 of Figure 2 is box-TDI. Their matching polytope

is not box-TDI, as each of them contains one of the forbidden subgraphs of
Theorem 9

G1
1 G1

2 G1
3 G1

4

Fig. 2: The graphs G1
1, G1

2, G1
3, and G1

4 are the smallest matching covered graphs
whose PMP is box-TDI, yet their matching polytope is not.

3 When is the perfect matching polytope a slice of RE
ě0?

In [17, Theorem 2.1], de Carvalho et al. characterize the class of matching covered
graphs for which the perfect matching polytope can be described by the system
xpδpuqq “ 1 for all u P V , x ě 0: they are the solid near-bricks and the bipartite
graphs. In this section, following the line of their proof, we generalize this result
and prove that the perfect matching polytope of a graph is a slice of nonnegative
orthant if and only if the graph is solid. This yields a compact description for the
perfect matching polytope of solid graphs, whereas this polytope has no compact
formulation in general [36].

Theorem 11. Let G “ pV,Eq be a matching covered graph. Then, P pGq “

affpP pGqq X RE
ě0 if and only if G is solid.
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Moreover, it turns out that the box-TDIness of a perfect matching polytope
is captured by that of its affine hull.

Theorem 12. Let G be a nonbipartite matching covered graph and F P FG.
Then, the following statements are equivalent:

1. P pGq is box-TDI;
2. affpP pGqq is box-TDI;
3. MF

G is equimodular;
4. P pGq “ tx : Mx “ b, x ě 0u with M totally unimodular.

Moreover, if P pGq is box-TDI, then P pGq “ affpP qpGq X RE
ě0.

Note that when G is bipartite, MF
G “ AG so MF

G has not full row rank by
Theorem 2 and hence, it is not equimodular. However, Statements 1, 2, and 4 of
Theorem 12 hold in this case, and P pGq is the intersection of its affine hull and
the nonnegative orthant.

As a consequence of Theorem 12, the box-TDIness of perfect matching poly-
topes can be checked in polynomial time. This stands in contrast to the gen-
eral case, where determining whether a given polytope is box-TDI is co-NP-
complete [10]. Since testing the equimodularity of a given matrix can be done
in polynomial-time [11], as well as determining a maximal inclusionwise family
of laminar tight cuts [34], statement 3 of Theorem 12 implies the following.

Corollary 13. Deciding whether the perfect matching polytope of a matching
covered graph is box-TDI can be done in polynomial time.

4 Near-bricks and bicritical graphs

In this section, we characterize the box-TDIness of the perfect matching polytope
of near-bricks using forbidden subgraphs. We also characterize the box-TDIness
of perfect matching polytopes of bicritical graphs through tight cut decomposi-
tion.

We first prove that tight cut contractions preserve the box-TDIness of the
perfect matching polytope.

Lemma 14. Let G be a matching covered graph. If P pGq is box-TDI, then so
is P pG{Uq for each tight cut δpUq.

4.1 The case of near-bricks

Recall that a near-brick is a nonbipartite matching covered graph such that no
tight cut has the odd cycle property.

Lemma 15. If a near-brick is odd intercyclic, then so is its brick.

Theorem 16. The perfect matching polytope of a near-brick is box-TDI if and
only if the near-brick is odd intercyclic.
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4.2 The case of bicritical graphs

Let u and v be two vertices of a matching covered graph G such that Gztu, vu has
precisely two connected components G1 and G2 which are even. Then, δpV pG1qY

tuuq is a 2-separation cut with respect to u and v (see Figure 3). Similarly,
δpV pG2q Y tuuq is a 2-separation cut. Note that a 2-separation cut is tight.

u

v

Fig. 3: A 2-separation cut with respect to u and v.

It turns out that the converse of Lemma 14 holds for 2-separation cuts.

Theorem 17. Let δpXq be a 2-separation cut of a nonbipartite matching cov-
ered graph G. Then, P pGq is box-TDI if and only if both P pG{Xq and P pG{Xq

are.

Fully odd subdividing a graph preserves the nonbox-TDIness of its matching
polytope, yet the converse does not hold [19]. For perfect matchings, it is an
equivalence.

Corollary 18. The perfect matching polytope of a fully odd subdivision of a
matching covered graph G is box-TDI if and only if P pGq is.

A graph G “ pV,Eq is bicritical if Gztu, vu has a perfect matching for every
u, v P V . Edmonds et al. [22] proved that a bicritical graph is a matching covered
graph whose tight cut decomposition can be accomplished by a sequence of tight
cut contractions stepping exclusively in 2-separation cuts. Then, Theorems 16
and 17 and Corollary 18 give the following.

Corollary 19. The perfect matching polytope of a fully odd subdivision of a
bicritical graph is box-TDI if and only if all the bricks of the graph are odd
intercyclic.

In [16], the authors proved that the only solid planar bricks are odd wheels.
Thus, the following holds.

Corollary 20. The perfect matching polytope of a fully odd subdivision of a
bicritical planar graph is box-TDI if and only if all the bricks of the graph are
odd wheels.
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4.3 A necessary unsufficient condition

Theorem 16 immediately gives the following.

Corollary 21. Let G be a matching covered graph and F P FG. If P pGq is
box-TDI, then the near-bricks obtained by any sequence contracting all the cuts
of F are odd intercyclic.

C
C’

Fig. 4: The Moonfish graph M.

The converse of Corollary 21 does not hold. Figure 4 provides the Moonfish
graph M, which is the smallest graph with two bricks illustrating this. Specif-
ically, FM “ ttCu, tC 1uu, and all C and C 1-contractions are odd intercyclic.
However, by Theorems 3 and 10, P pMq is not box-TDI, as tCu P FM and M

tCu

M
is not equimodular.

5 Integer decomposition property

Lovász [33] proved that a vector u belongs to the perfect matching lattice of a
matching covered graph G if and only if all restrictions of u to the bricks of G
belongs to their perfect matching lattices. We observe that a similar result holds
regarding the integer decomposition property. By projection, it is immediate
that contracting a tight cut preserves the integer decomposition property of the
perfect matching polytope. This is turned into an equivalence as follows.

Lemma 22. Let G be a matching covered graph and δpUq a tight cut of G.
Then, P pGq has the integer decomposition property if and only if both P pG{Uq

and P pG{Uq have it.

Applied to a tight cut decomposition, Lemma 22 give the the following.

Corollary 23. The perfect matching polytope of a matching covered graph has
the integer decomposition property if and only if the perfect matching polytope
of each of its bricks has this property.
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In [32, Section 2.1], the authors mention that they are not aware whether
0, 1 polytopes with the integer decomposition property are all box-TDI. This is
not the case, and actually it is the converse that holds for perfect matchings.
Indeed, Theorem 4 and statement 4 of Theorem 12 yield that box-TDI perfect
matching polytopes have the integer decomposition property. However, P pC6q

has this property but is not box-TDI by Theorem 16. We provide a more general
class of graphs whose perfect matching polytope has the integer decomposition
property. The following is a consequence of Theorems 4 and 16 and Lemma 22.

Corollary 24. If all the bricks of a matching covered graph are odd intercylic,
then its perfect matching polytope has the integer decomposition property.

In particular, the perfect matching polytope of the Moonfish graph in Fig-
ure 4 has the integer decomposition property.

Holyer [30] showed that deciding whether a bridgeless cubic graph G is 3-
edge-colorable is NP-complete, which is equivalent to deciding whether 1 belongs
to the integer cone of the perfect matchings of G. Thus, Corollary 24 implies the
following.

Corollary 25. Let G be a d-edge-connected d-regular graph. If the bricks of
G are odd intercyclic, then G is d-edge-colorable.

Further questions

This paper explores integer properties of perfect matching polytopes and raises
several further questions suggested by our findings.

Concerning the box-TDIness of perfect matching polytopes, the impact of
barrier cuts remains to be investigated, as Edmonds et al. [22] essentially proves
that every matching covered graph admits a tight cut decomposition consisting
only of 2-separation cuts and barrier cuts. Can one characterize which barrier
cut contractions preserve the box-TDIness of perfect matching polytopes?

Additionnaly, statement 4 of Theorem 12 prompts the following question,
suggesting a potential min-max theorem: Can an explicit totally unimodular
matrix be found to describe box-TDI perfect matching polytopes?

Lastly, our findings provide a new characterization of solid graphs, though it
remains unknown whether an efficient recognition algorithm or graphic charac-
terization exists for nonplanar solid graphs [6]. Could this new polyhedral char-
acterization help?
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Appendix

Proof (of Theorem 11). We prove the result for nonbipartite graphs, as for bipar-
tite graphs it holds thanks to the total unimodularity of the incidence matrix [29].
Let F P FG. By Theorem 10, it is sufficient to prove that P pGq “ tx : MF

G x “

1, x ě 0u if and only if G is solid.
pñq Suppose that G “ pV,Eq is not solid. Then, there exists a separating cut

C which is not tight, and hence a perfect matching M of G such that |MXC| ą 1.
In [16, Lemma 2.19], de Carvalho et al. proved that a cut is separating if and
only if for each edge, there exists a perfect matching that contains this edge and
exactly one edge in the cut. Hence, since C is separating, for every edge e P M ,
there exists a perfect matching Me of G including e for which |MeXC| “ 1. Then,
let p “ 1

|M |´1 pp
ř

ePM χMeq ´ χM q. By construction, p P tx : MF
G x “ 1, x ě 0u,

since Me, e P E, and M intersect each tight cut exactly once by definition. But
pJχC ă 1, hence p R P pGq.

pðq Let P “ tx : MF
G x “ 1, x ě 0u, suppose that P ‰ P pGq, and let us

prove that G is not solid. Since P pGq Ď P and every integer point of P is
the characteristic vector of a perfect matching of G, P has a fractional vertex
p R P pGq. Then, let C be the family of cuts associated with inequalities (2a) that
are not satisfied by p. By Theorem 10, every point of P satisfies to equality the
inequalities (2a) associated with tight cuts. Hence, no cut in C is tight. Let M
denote the family of all perfect matchings of G. Let δpUq be a cut in C such that
there exists no cut C P C for which |C X M | ď |δpUq X M | for all M in M and
|C X M 1| ă |δpUq X M 1| for some M 1 P M.

Let us prove that δpUq is separating, that is, G{U and G{U are both matching
covered. This will contradict the solidity of G. Let u be the contraction of U in
G{U and suppose that G{U is not matching covered. Then, by Theorems 5 and 6,
there exists a node set S such that |OppG{UqzSq| ą |S| or S is a barrier with
adjacent nodes. In both cases, u belongs to S, as otherwise G is not matching
covered since |U | is odd. Since

ď

KPOppG{UqzSq

δpKq is contained in δpSq, we have

ÿ

KPOppG{UqzSq

pJχδpKq ď pJχδpSq

“ pJχδpuqzEpSq `
ÿ

sPSztuu

pJχδpsqzEpSq

ď pJχδpUq `
ÿ

sPSztuu

pJχδpsq

ă 1 ` p|S| ´ 1q,

where the last inequality holds since p violates the inequality (2a) associated
with U but satisfies (2b). Thus, there is an odd component L of pG{UqzS such
that pJχδpLq ă 1. Equalities (2b) imply that L is nontrivial so L P C. Note that
every odd component of pG{UqzS is an odd component of GzpSztuu Y Uq. For
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every perfect matching M of G, we have

|δpUq X M | ` |OppG{UqzSq| ´ 1 ě |δpUq X M | ` |S| ´ 1

“ |δpUq X M | `
ÿ

sPSztuu

|δpsq X M |

ě |δpSztuu Y Uq X M |

ě |p
ď

KPOppG{UqzSq

δpKqq X M |

“
ÿ

KPOppG{UqzSq

|δpKq X M |

ě |δpLq X M | ` |OppG{UqzSq| ´ 1,

where the last inequality holds because |δpKqXM | ě 1 for all K P OppG{UqzSq.
This implies that |δpLq X M | ď |δpUq X M | for every perfect matching M .

Let us show that this is impossible. First, if |OppG{UqzSq| ą |S|, then:

|OppG{UqzSq| ´ 1 ` |M X δpUq| ą |S| ´ 1 ` |M X δpUq|

ě |M X δpOppG{UqzSqq|

ě |OppG{UqzSq| ´ 1 ` |M X δpLq|,

which contradicts the choice of δpUq in C.
Otherwise, we have |OppG{UqzSq| “ |S| and, by Theorem 6, there exists an

edge e P S, and since G is matching covered, there exists a perfect matching Me

of G including e. Then, we have:

|OppG{UqzSq| ` |Me X δpUq| “ |S| ` |Me X δpUq|

ě |Me X δpSq| ` 2 ` |Me X δpUq|

ě |Me X δpOppG{UqzSqq| ` 2

ě |OppG{UqzSq| ` |Me X δpLq| ` 2,

and Me contradicts the choice of δpUq in C.
Therefore, G{U is matching covered. Similarly, G{U is matching covered.

Hence, δpUq is separating and G is not solid. [\

Proof (of Theorem 12). p1. ñ 2.q Every face of a box-TDI polyhedron is also
box-TDI.

p2. ô 3.q Since an affine space has a single face, this follows from Theorems 3
and 10.

p2.&3. ñ 4.q By Theorem 10, affpP pGqq “ tx : MF
G x “ 1u. Since affpP pGqq is

integer and box-TDI, so is affpP pGqqXRE
ě0. In particular, the latter is P pGq. Let

B be a basis of MF
G , M “ B´1MF

G , and b “ B´11. Since MF
G is equimodular,

M is totally unimodular by Theorem 1, and P pGq “ tx : Mx “ b, x ě 0u. Note
that b is integer since 1 P latticepMF

G q.
p4. ñ 1.q When M is totally unimodular, tx : Mx “ b, x ě 0u is box-TDI [29].

[\
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Proof (of Lemma 14). Since δpUq is tight, P pG{Uq is the orthogonal projection
of P pGq onto the coordinates indexed by δpUqYEpŪq. Such projections preserve
box-TDIness [37, Page 323], and the result follows.

Proof (of Lemma 15). Let G be a near-brick and B its brick. If G “ B there is
nothing to prove. Thus, we assume that there exists a nontrivial tight cut of G.
Let δpUq be a nontrivial tight cut of G such that U X V pBq ‰ H. Suppose by
contradiction that B contains two vertex-disjoint odd circuits C1 and C2, and
let C̃1 and C̃2 be two circuits of G such that C1 Ď pV pC̃1q, C̃1q{U and C2 Ď

pV pC̃2q, C̃2q{U . Since G is a near-brick, FG “ H. That is, G{U is bipartite, and
the lengths of C̃1 and C̃2 have the same parity as those of C1 and C2. Therefore,
both C̃1 and C̃2 share some edges with δpUq, and, hence, V pC1q X V pC2q ‰ H,
a contradiction. [\

Proof (of Theorem 16). Let G “ pV,Eq be a near-brick.
pñq We equivalently prove that if G has two vertex-disjoint odd circuits, then

P pGq is not box-TDI. Suppose that G contains two vertex-disjoint odd circuits.
Since G is a near-brick, FG “ H. Thus, AG is face-defining for affpP pGqq, by
Theorem 10. By Theorem 2, AG is not equimodular. Thus, PPMpGq is not box-
TDI by Theorem 3.

pðq Suppose that G is odd intercyclic. By Lemma 15, its brick is odd in-
tercyclic, hence, is a solid graph by [16, Lemma 2.29]. Thus, by Theorem 11,
P pGq “ affpP pGqqXtx ě 0u. By Theorem 2 and Theorem 10, AG is an equimodu-
lar face-defining matrix for affpP pGqq. Thus, P pGq “ tx : AGx “ 1uXtx : x ě 0u

is box-TDI by Theorem 3 and the definition of box-TDIness. [\

Observation 26. Let G be a matching covered graph and δpUq P F for some
F P FG. Then,

”

M
FG{U

G{U 0
ı

is composed of rows of MF
G .

Proof (of Theorem 17). The “only if” part comes from Lemma 14, hence let us
prove the “if” part.

Suppose that Gztu,wu has precisely two even connected components GrU s

and GrW s, and let X “ U Ytuu form a 2-separation cut δpXq such that P pG{Xq

and P pG{Xq are box-TDI.
Since δpXq is tight, there exists F P FG such that tδpXqu Y F is laminar.

By laminarity of F , the tight cuts of F have either a shore Y Ď X or a shore
Z Ě X. The former type of cuts correspond to rows M

FG{X

G{X
, the latter don’t.

Let e be an edge of G. Up to replacing U Y tuu by W Y twu, we may assume
that e belongs to EpU Y tu,wuq. Let B be a basis of MF

G not containing e, and
denote by µe the e-th column of MF

G . Let us prove that there exists a 0,˘1 vector
x such that Bx “ µe. By Theorem 1, this will imply the equimodularity of MF

G ,
and hence the box-TDIness of P pGq by statement 3 of Theorem 12.

Suppose uw P EpGq and let K and H be the graphs respectively obtained
from G{X and G{X by removing edges parallel to uw. Then, e is in EpHq, and
P pHq is box-TDI as the removal of duplicate edges does not impact box-TDIness.
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Let BH (resp. BK) be the submatrix of B whose rows are indexed by δpY q for
Y Ď X (resp. Y Ě X) and whose columns are indexed by the edges of H (resp.
K) corresponding to columns of B. Let νe denote the e-th column of M

FG{X

G{X
.

Note that νe is the restriction of µe to the rows of M
FG{X

G{X
.

There are two cases.

First, suppose that H is bipartite. Then, δpXq R F and no cut of F has a
shore contained in X. In particular, note that rBH , νes is a submatrix of AH , and
the rows of BH are indexed by δphq for all h P V pHq. Since H is 2-connected,
any matrix M obtained from BH by removing a single row is face-defining for
P pHq. Let M be such a matrix and C a basis of M . Denote by ρe the column
obtained from νe by removing the coordinate associated with the removed row.
By the total unimodularity of M , there exists a 0,˘1 vector v such that Cv “ ρe.
Let y be the 0,˘1 vector obtained by completing y with 0 coordinates on the
columns of BH that are not columns of C. We have My “ ρe, and since the row
removed from rBH , νes is a linear combination of the rows of rM,ρes, we also
have BHy “ νe.

Second, suppose that H is nonbipartite. Let M be the matrix obtained from
M

FG{X

G{X
by removing the duplicates of column uw. Then, BH is the submatrix

of M whose columns are indexed by those of B contained in M . Hence, a basis
C of BH is also a basis of M . By Theorem 10, M is face-defining for P pHq, and
is a submatrix of MF

G by Observation 26. By Theorem 1 and by statement 3
of Theorem 12, since P pHq is box-TDI, there exists a 0,˘1 vector v such that
Cv “ νe. Completing v with 0 coordinates on the columns of BH that are not
columns of C yields a 0,˘1 vector y such that BHy “ νe.

Suppose that yuw “ 0 or uw is a column of B. Let x be the vector of
t0,˘1uEpGq obtained by completing y with 0 coordinates on the edges EpGqzEpHq.
Note that nonzero coordinates of x involve only edges of EpU Y tu,wuq.

Suppose now that yuw ‰ 0 and uw is not a column of B. Due to the structure
of the matrix, one can check that if every basis of BK contains uw, then there
exists a basis CH not containing uw. Considering this basis instead yields a y
such that yuw “ 0. This case has been treated just above. Then, let CK be
a basis of BK not containing uw. Since P pKq is box-TDI, there exists a 0,˘1
vector z such that CKz “ χuw. Now, define the vector x P t0,˘1uEpGq as follows:

• if e P EpHq and e ‰ uw, then let xe “ ye,
• if e P EpKq, then let xe “ yuwze.

Now, let us prove that Bx “ µe. Let Br be a row of B, and let us treat the
different possibilities for Brx. First, there are the rows of B associated with δpsq

for s P V .

• If Br is associated with δpsq for some s P U , then xpδpsqq “ ypδpsqq “ 1 if
s P e and 0 otherwise. That is, Bδpsqx “ µe

δpsq
.

• If Br is associated with δpsq for some s P W , then xpδpsqq “ zpδpsqq “ 0.
That is, Bδpsqx “ µe

δpsq
.
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• If Br is associated with δpuq, we have either xpδpuqq “ ypδpu, Uqq ` yuw “

νeδpuq
, or we have xpδpuqq “ ypδpu, Uqq ` yuwzpδpu,W qq “ ypδpu, Uqq `

yuwχ
uw
u “ ypδpuqq “ νeδpuq

.
• Similarly, xpδpwqq “ νeδpwq

.

Second, there are the rows of B associated with tights cuts of F which are tights
cuts of H or K.

• If Br corresponds to a tight cut δpY q of H with u R Y , then Brx “

ypδpY, twu Y XzY qq “ νeδpY q
.

• If Br corresponds to a tight cut δpY q of H with u P Y , then Brx “

xpδpY, pw Y UqzY qztuwuq ` xuw ` xpδpu,W qq. Hence, we have either Brx “

ypδpY, pw Y UqzY qztuwuq ` yuw “ ypδpY qq “ νeδpY q
. Or we have Brx “

ypδpY, pwYUqzY qztuwuq`yuwzpδpu,W qq “ ypδpY, pwYUqzY qztuwuq`yuw “

ypδpY qq “ νeδpY q
.

• The cases where Br corresponds to a tight cut of K are similar.

Since νe is a restriction of µe, overall we have Bx “ µe, which concludes the
case in which uw P EpGq.

Suppose uw R EpGq. Recall that adding or removing edge duplicates main-
tains box-TDIness. Since GrU s and GrW s are even and connected, both G{X
and G{X contain the edge uw. Since their perfect matching polytope is box-TDI,
so is that of pG{Xq `uw and pG{Xq `uw. Those are the two δpXq-contractions
of G`uw, in which uw is an edge, hence P pG`uwq is box-TDI as we have shown
above. Since P pGq “ P pG ` uwq X tx : xuw “ 0u, P pGq is also box-TDI. [\

Proof (of Corollary 18). Let H be the graph obtained by replacing the edge uv
of G with the path u, u1, . . . , u2k, v, with k P Zą0. Note that δptu, u1, . . . , u2kuq

is a 2-separation cut of G, and the δptu, u1, . . . , u2kuq-contractions are G and
C2k`2. The latter is bipartite, hence its perfect matching polytope is box-TDI.
Therefore, by Theorem 17, P pHq is box-TDI if and only if P pGq is. [\

Proof (of Corollary 21). By Lemma 14, if P pGq is box-TDI, then so is the perfect
matching polytope of any near-brick that arises from a sequence of contractions
of tight cuts of G. By Theorem 16, all these near-bricks is odd intercyclic. [\

Proof (of Lemma 22). Let k P Zě0 and x P kP pGq. Denote by x|G{U the re-
striction of x to G{U . Since δpUq is tight, note that x|G{U P kP pG{Uq and
x

|G{U P kP pG{Uq. Then, if both P pG{Uq and P pG{Uq have the IDP, x|G{U and
x

|G{U are respectively the sum of k perfect matchings of G{U and G{U . Since
the contributions of x|G{U and x

|G{U to the edges of δpUq “ δpUq are identical,
pairing appropriately these matchings of G{U and G{U decomposes x into k
perfect matchings of G. [\
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A graph whose PMP is box-TDI on the contrary to one of its
subgraph

We provide an example highlighting that, unlike the elegant characterization of
box-TDI matching polytopes given in Theorem 9, it is not possible to character-
ize box-TDI perfect matching polytopes solely in terms of forbidden subgraphs.
This limitation arises because, in the context of perfect matchings, using a sub-
graph approach requires that if an edge is deleted, all edges that appear exclu-
sively in perfect matchings containing the deleted edge must also be removed.

Let G be the graph illustrated in Figure 5. By Theorem 8 and [16, Lemma
2.29] G is solid, since the bricks obtained with the tight cut decomposition as-
sociated with the family

H “ tδpt1, 2, 3u, δpt5, 6, 7u, δpt8, 9, 10uq, δpt11, 12, 13uq, δpt14, 15, 16uqu

are all K4. A maximal subfamily of laminar nontrivial tight cuts with the odd-
cycle property of H is

F “ tδpt1, 2, 3u, δpt5, 6, 7u, δpt8, 9, 10uq, δpt11, 12, 13uqu.

The family F P FG gives the matrix MF
G which is equimodular4. By Theorem 12,

P pGq is box-TDI.
The PMP of the brick C6 is not box-TDI by Theorem 16. Hence, none is

any of its fully odd subdivision by Corollary 18. Since the subgraph in red in
Figure 5 is a fully odd subdivision of C6, it implies that G contains a subgraph
whose PMP is not box-TDI whereas the PMP of G is.
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Fig. 5: The smallest matching covered graph containing a fully odd subdivision
of C6 (in red) as a subgraph and whose perfect matching polytope is box-TDI.

4 The equimodularity has been checked by enumerating all the nonzero maximal mi-
nors and verifying that they equal up to absolute value.
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