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This article introduces a new class of self-excited jump processes, with a
dampened rough (DR) kernel. The memory of this process is driven by the
product of an exponential decreasing function and a kernel involved in the con-
struction of the rough Brownian motion. This process, called rough Hawkes
process, is nearly unstable since its intensity diverges to +∞ for a very brief
duration when a jump occurs. Firstly, we find the conditions that ensure
the stability of the process and provide the closed form expression of the ex-
pected intensity. We next reformulate the intensity as an infinite dimensional
Markov process. Approaching these processes by discretization and next con-
sidering the limit leads to the Laplace’s transform of the point process. This
transform depends on the solution of an elegant fractional integro-differential
equation. The fractional operator is defined by the DR kernel and is similar
to the left-fractional Riemann-Liouville integral. We provide a simple method
for computing the Laplace’s transform. This is easily invertible by discrete
Fourier’s transform for retrieving the probability density of the process. We
also modify the Ogata’s algorithm to manage the instability of the process.
We conclude by presenting the log-likelihood of the rough Hawkes process and
fit it to hourly Bitcoin log-returns from the 9/2/18 to the 9/2/23.
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1 Introduction
Self-excited processes offer a natural solution to introduce contagion between shocks in
time-series. In this approach, the occurrence of a jump depends on the history of previous
shocks. This dynamic was initially introduced by Hawkes [12, 13] and Hawkes and Oakes
[14] to model earthquake aftershocks. The literature on these processes is vast and we
refer to Hawkes [15] for a review. In its standard version, the intensity of the self-excited
processes, that is akin to the instantaneous probability of a shock, increases as soon as a
jump of price occurs. The influence of this jump on the intensity next decays according
to a memory function of time, called kernel. In the most common and simplest specifi-
cation, the kernel is exponential and the pair, jump and intensity processes, is Markov.
In this case, the moment generating function (mgf) admits an analytical solution, found
by Itô’s calculus. In a general setting, we lose most of the analytical tractability offered
by stochastic calculus as the claim-intensity process is not Markov anymore. Apart from
moments or asymptotic properties, very few results are available in the literature. For
instance, Muzy et al. [17] find the first moments of stationary processes and their limit be-
haviour. Stabile and Torrisi [21] study the asymptotic behavior of non-stationary hawkes.
Hainaut [9] establishes the mgf of self-excited claim processes with memory functions that
admit a spectral representation. Jaisson and Rosenbaum [16] remark that nearly unstable
Hawkes processes often fit high-frequency finance data properly. They show that under
certain conditions, the limiting law of an unstable process corresponds to a Brownian
Volterra process with a kernel, k(u) = uα−1Eα,α(−uα), where α ∈ (0, 1] and Eα,α is the
Mittag-Leffler function. Chen et al. [2] and Habyarimana et al. [8] use the same kernel
for defining the fractional Hawkes process. Despite that this kernel diverges at the ori-
gin, the process remains stable and the expected intensity and number of jumps admit a
closed-form expression. In this article, we study another type of Hawkes process with a
diverging kernel at the origin, directly inspired from the literature on fractional and rough
Brownian motions.

Unlike the regular Brownian motion (Bm), the fractional Brownian motion (fBm) has
dependent increments. This dependence is measured on a scale from zero to one by the
Hurst parameter or index, H ∈ (0, 1). A value of 1/2 corresponds to the Bm with inde-
pendent increments. A value of H greater (resp. lower) than 1/2 corresponds to positive
(resp. negative) correlation between increments. We refer the reader to chapter 6 of [10]
for a detailled introduction to fBm. The sample paths of fBm with H < 1/2, exhibit a
high ruggedness compared to the Bm and are called rough for this reason. The fBm at
time t > 0 admits an integral representation with respect to a Bm over (−∞, t] . A rough
process is defined as this integral truncated to the positive time axis:

∫ t

0
(t−s)α−1

Γ(α)
dWs where

α ∈ (0, 1] and Wt is a Bm. This stochastic integral is well-posed even if the rough kernel
k(u) = uα−1

Γ(α)
, diverges when u→ 0. Rough asset dynamics recently received a great deal of

attention in the fractional literature and especially in finance because they are consistent
with empirical behaviour of stock price volatility. Gatheral et al. [6] propose a model in
which the variance of stock prices is driven by a fractional Brownian motion (fBm) with
a Hurst index H < 1/2. The properties of this model are studied in details by El Euch
and Rosenbaum [3] and [4], who express the characteristic function of the rough pro-
cess in terms of a fractional Ricatti equation. In this article, we define a Hawkes process
with a rough kernel, dampened by an exponential decaying function to ensure its stability.
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The contributions of this article are multiple. At our knowledge, this work is the first
to study the properties of a Hawkes process with a dampened rough kernel. We infer
the closed-form expressions of expected intensity and number of jumps. We next find
the conditions that guarantee the stability of the process. We build an equivalent infi-
nite dimensional Markov representation. Approaching this by discretization allows us to
approximate the Laplace’s transform of the rough Hawkes by solving forward ordinary
differential equations (ODE’s). As the dampened rough kernel belongs to the family of
Sonine function, it admits a conjugate kernel and we can define a similar operator to the
left fractional Riemann-Liouville (RL) integral, called dampened RL integral. Consid-
ering the limit of the finite dimensional approximation leads to the Laplace’s transform
of the rough Hawkes process. In a similar manner to El Euch and Rosenbaum [4], this
transform is expressed in terms of a fractional differential equation involving the damp-
ened RL integral. Finally, we discuss practical aspects such as simulation and statistical
estimation.

The outline of this article is as follows. Section 2 introduces the rough Hawkes process
and presents the properties of the dampened rough kernel. We find next the first mo-
ment of the process and the conditions of stability. We close the section by reformulating
the rough Hawkes process as an infinite dimensional process. Section 3 develops a finite
dimensional approximation. In this setting, we express the Laplace’s transform of the
rough Hawkes process in terms of backward and forward ODE’s. In the fourth section, we
consider the limit of forward ODE’s when the size of the finite dimensional approximation
tends to +∞. We obtain an elegant formulation of the Laplace’s transform depending on
a fractional equation, involving the dampened RL integral. Section 5 presents a modified
version of the Ogata’s algorithm to simulate the rough Hawkes process. In Section 6, we
provide the closed form expression of the log-likelihood. We conclude by fitting the rough
process to the time-series of excessive negative jumps in the hourly Bitcoin return. The
model is benchmarked to an exponential Hawkes process.

2 A dampened rough kernel
We consider a point process (Lt)t≥0 defined on a probability space Ω, that is a self-excited
process with an intensity (λt)t≥0. This process is the sum of random increments , noted
Jk,

Lt =
Nt∑
k=1

Jk ,

where (Nt)t≥0 is the number of jumps or events observed up to time t. The statistical
distribution of Jk ∼ J is denoted by m(.) and is defined on (R+,B (R+)) to ensure
the positivity of the intensity. The natural filtration of (Lt, Nt, λt) and the probability
measure are respectively denoted by Ft = σ ((Ls, Ns, λs) , s ≤ t) and P. The intensity
depends upon the past realizations of the counting process (Nt)t≥0 in the following way:

λt = λ0 + η

∫ t−

0

e−β(t−s) (t− s)α−1

Γ(α)
dNs , (1)

where α ∈ (0, 1], β, η ∈ R+. We will discuss later the conditions ensuring the stability
of the intensity. The function k(u) = e−βu uα−1

Γ(α)
is called the memory kernel in the rest
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of the article. This is the product of a dampening term, e−βu, and of the rough kernel,
uα−1

Γ(α)
. This rough kernel presents several interesting features. Jaisson and Rosenbaum [16]

have shown that the limit of nearly unstable Hawkes processes is a Brownian Volterra
process with this rough kernel. On the other hand, Gatheral et al. [6] have provided
empirical arguments that stock price variances are well fitted by a rough Brownian motion.
This rough Brownian motion is defined as the integral

∫ t

0
(t−s)α−1

Γ(α)
dWs where (Ws)s≥0 is

a Brownian motion. This naturally leads us to consider a Hawkes process with a rough
kernel. As we will see in the next paragraphs, a dampening factor is nevertheless required
to avoid the divergence of the intensity process. The presence of this dampening factor
also implies that the rough model with α = 1 is a standard Hawkes process with an
exponential kernel.
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Figure 1: Comparison of two simulated samples: η = 2, β = 10.80, λ0 = 4 and α ∈
{0.60 , 0.90}.

Figure 1 shows two simulated sample paths of the rough Hawkes process. The seed
of the generator of random numbers and parameters excepted α, are the same in both
cases. The left reveals that the number of events observed over the same time horizon is
higher for α = 0.6 than for α = 0.9 . The algorithm used for this simulation is detailed
in Section 5. In both cases, the intensity quickly reverts to the baseline λ0.

The dampened rough kernel has several interesting features. Firstly, it belongs to the
family of Sonine functions [20], defined hereafter. Secondly, we can associate an operator
similar to the left fractional Riemann-Liouville integral (see Equation 52).

Definition 1. A kernel k(u) ∈ L1
loc(R+) is a Sonine function if there exists a conjugate

kernel l(u) ∈ L1
loc(R+) such that∫ t

0

l(t− u) k(u) du = 1 , ∀t ≥ 0. (2)
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Let ϕ ∈ L1(R+), the Sonine operators associated to k(u) and l(u) are defined as

(Kϕ)(t) =

∫ t

0

k (t− u)ϕ (u) du , ∀t ≥ 0, (3)

(Lϕ)(t) =

∫ t

0

l (t− u)ϕ (u) du , ∀t ≥ 0.

Given the similarity between Kϕ and Iα0+ϕ, we call the operator K as the dampened
Riemann-Liouville (RL) integral. Notice that by definition, the kernels k(u) and l(u) are
necessary unbounded as u → 0. We have to introduce some conditions on the kernel to
guarantee the existence of the integral on Lp functions. In this article, k(u) has the form

k(u) =
g(u)

u1−α
, x > 0 , sup

u≥0
|g(u)| <∞ ,

where g(u) = 1
Γ(α)

e−β u is a bounded function and α ∈ (0, 1). From the Hardy-Littlewood
[11] Sobolev inequality, a sufficient condition is α < 1/p. In this case, the operator acts
from Lp(R), 1 < p < 1/α into Lq(R) where 1/q = 1/p − α. In the remainder of this
article, we consider L1-integrands which ensures that the operator Kϕ is well defined for
α ∈ (0, 1). We refer the refer to Samko and Cardoso [19] for the necessary conditions for
the existence of other integrals with general Sonine kernels.

If we denote by (Lϕ) (z) =
∫∞
0
e−zuϕ(u) du, the Laplace’s transform of a function, ϕ ∈

L1(R+), we infer by direct calculation that

(Lk) (z) =
1

(β + z)α
. (4)

Furthermore, the Sonine condition (2) may be rewritten in terms of Laplace’s transforms
of k(.) and l(.):

(Lk) (z) (Ll) (z) =
1

z
. (5)

This last relation is the key to prove the next result.

Proposition 1. The conjugate kernel l(.) of k(.) satisfying condition (2), is :

l(u) = βα +
α

Γ(1− α)

∫ ∞

u

e−βs

s1+α
ds , (6)

Proof. We will check that the Laplace’s transform of l(.) fulfills the condition (5). Firstly,
we integrate by parts the integral in Eq. (6):

α

∫ ∞

u

e−βs

s1+α
ds = e−βuu−α − β

∫ ∞

u

e−βss−α du .

This allows us to rewrite (Ll) (z) as the sum:

(Ll) (z) = βα

∫ ∞

0

e−zudu+
1

Γ(1− α)

∫ ∞

0

e−(z+β)uu−αdu (7)

− β

Γ(1− α)

∫ ∞

0

∫ ∞

u

e−βse−zus−α ds du .
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If we perform a change of variable v = (z + β)u, we immediately infer that∫ ∞

0

e−(z+β)uu−αdu = (z + β)α−1Γ(1− α) .

Next, we change the order of integration in the last integral of Equation (7) using the
Fubini’s theorem. We obtain that∫ ∞

0

∫ ∞

u

e−βse−zus−α ds du

=

∫ ∞

0

e−βss−α ds− 1

z

∫ ∞

0

e−(β+z)ss−α ds

=
βα−1

z
Γ(1− α)− (β + z)α−1

z
Γ(1− α) .

Combining previous intermediate results allows us to infer that the Laplace’s transform
of the conjugate kernel of k(.) is equal to (Ll) (z) = (β+z)α

z
, which fulfills the condition

(5).

The dampened RL integral (Kϕ)(t) admits an inverse operator, provided in the next
proposition and comparable to a fractional derivative.

Proposition 2. The inverse operator of the dampened RL integral K, is the derivative
of its conjugate kernel. For ϕ ∈ L1 (R+), it is equal to

(
K−1ϕ

)
(t) =

d

dt
(Lϕ) (t) (8)

=
d

dt

∫ t

0

l (t− u)ϕ (u) du .

This inverse operator is called the dampened RL derivative.

Proof. This result is a direct consequence of the Sonine condition. We apply the operator
L to Kϕ and permut the order of integration. We next perform the change of variable
v = s− u:

(LKϕ) (t) =

∫ t

0

l(t− s)

∫ s

0

k(s− u)ϕ(u) du ds

=

∫ t

0

ϕ(u)

∫ t−u

0

l(t− s)k(s− u) ds du

=

∫ t

0

ϕ(u)

∫ t−u

0

l(t− u− v)k(v) dv du

From the Sonine condition (2), we deduce that the inner integral is equal to 1. Differen-
tiating both sides with respect to t, allows to conclude that K−1ϕ = d

dt
(Lϕ).

The dampened RL integral and derivative will later be involved in the definition of the
Laplace’s transform of point and intensity processes. Before exploring this, we find the
expectation of the intensity which involves the Mittag-Leffler function with one and two
parameters (see Appendix A).
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Proposition 3. The expected intensity at time t ≥ 0 conditionally to the filtration F0, is
equal to

E0 (λt) = λ0Eα (ηt
α) e−βt + βλ0

∫ t−

0

Eα (η(t− s)α) e−β(t−s)ds . (9)

If α ∈ (0, 1] and β ∈ R+ are such that limt→∞Eα(ηt
α)e−βt → 0 and βα ≥ η then

λ∞ := lim
t→∞

E0 (λt) = λ0
βα

βα − η
. (10)

Proof. Let us denote by u(t) = eβtE0 (λt), then Eq (1) is rephrased as follows

u(t) = λ0e
βt +

η

Γ(α)

∫ t−

0

(t− s)α−1u(s)ds . (11)

From Gorenflo et al. ([7], page 63 Theorem 4.2), this equation admits an unique solution
that is

u(t) = λ0e
βt +

∫ t−

0

η(t− s)α−1Eα,α (η (t− s)α) eβsλ0ds (12)

If we remind Equation (53) in Appendix A, we have that

dEα (η(t− s)α)

ds
= − dEα(ηx

α)

dx

∣∣∣∣
x=(t−s)

= −η(t− s)α−1Eα,α (η(t− s)α) .

This allows us to rewrite Equation (12) as follows

E0 (λt) = λ0 + λ0

∫ t−

0

η(t− s)α−1Eα,α (η (t− s)α) e−β(t−s)ds (13)

= λ0 − λ0

∫ t−

0

dEα (η(t− s)α)

ds
e−β(t−s)ds .

Combining Equations (12) and (13) leads to the result (9). We next Integrate by parts
and obtain that ∫ t−

0

dEα (η(t− s)α)

ds
e−β(t−s)ds (14)

=
(
1− Eα (ηt

α) e−βt
)
− β

∫ t−

0

Eα (η(t− s)α) e−β(t−s)ds .

By assumption, the limit of the first term when t→ ∞ is equal to

lim
t→∞

(
1− Eα (ηt

α) e−βt
)
= 1 .

The limit of the second term in Eq. (14) is the Laplace’s transform of Eα (ηx
α) (see Eq.

54 in Appendix A):

lim
t→∞

∫ t−

0

Eα (η(t− s)α) e−β(t−s)ds =

∫ ∞

0

e−βxEα (ηx
α) dx

=
βα−1

βα − η
.
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Therefore

λ∞ = λ0 − λ0

(
1− βα

βα − η

)
= λ0

βα

βα − η
,

which is well defined if βα > η.

The previous proposition reveals that the intensity diverges to +∞ if one of the two
following conditions are breached:

lim
t→∞

Eα(ηt
α)e−βt → 0 and βα ≥ η . (15)

We deduce from the first relation that a Hawkes process with a non-dampened rough
kernel (β = 0) has an explosive intensity. This observation motivates the multiplication
of the rough kernel by a dampening factor.

It is interesting to compare asymptotic expected intensities of exponential and rough
Hawkes processes. In the exponential process, α = 1 and the intensity of the counting
process denoted by Nh

t , has an exponential decaying kernel:

λht = λh,0 + ηh

∫ t−

0

e−βh(t−s)dNh
s , (16)

where ηh, βh ∈ R+. The condition βh − ηh > 0 ensures the stability of the process. The
expected intensity is in this case given by

E0

(
λht
)

=
λh,0

βh − ηh

(
βh − ηhe

−(βh−ηh)t
)
,

whereas the asymptotic intensity is

λh∞ := lim
t→∞

E0

(
λht
)
= λh,0

βh
βh − η

. (17)

A comparison with Equation (10) reveals that the rough Hawkes process observed behaves
at long term like an exponential Hawkes process with a parameter βα instead of βh. In
Section 6, we will compare the goodness of fit of rough and exponential Hawkes processes.
Corollary 1. The expected number of events at time t, conditionally to F0 is equal to

E0 (Nt) = λ0

(
eα(t) +

∫ t

0

eα(u) du

)
, (18)

where eα(t) is the incomplete Laplace’s transform of Eα ( ηu
α):

eα(u) =

∫ u

0

Eα ( ηs
α) e−βsds . (19)

Proof. By construction, the expectation of a counting process is the expectation of the
integrated intensity. If we remember Eq. (9), this integral is developped as follows:

E0 (Nt) =

∫ t

0

E0 (λu) du

= λ0

∫ t

0

Eα (ηu
α) e−βudu+ λ0

∫ t

0

∫ u−

0

Eα (η(u− s)α) e−β(u−s)ds du

= λ0eα(t) + λ0

∫ t

0

∫ u−

0

Eα (η(v)
α) e−βvdv du .
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The integral eα(t) cannot be calculated in closed-form but is easily computable by
discretizing the integral. Figure 2 displays expected intensities and number of events,
computed with the same parameters used for simulating the sample paths in Figure 1.
For both values of α, we observe a quick convergence of E0 (λt) toward λ∞ (respectively
equal to 5.23 and 7.69 for α = 0.9 and α = 0.6) . Both plots confirm our first intuition,
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Figure 2: Left plot: computation of E0 (λt). Right plot: comparison of counting process
of Figure 1 to their expectation. η = 2, β = 10.80, λ0 = 4 and α ∈ {0.60 , 0.90}.

By construction, the rough Hawkes process is not Markov since its intensity λt cannot
be rewritten as a function of λs for 0 ≤ s ≤ t. Nevertheless, we can reformulate the model
as an infinite dimensional Markov process because the power xα−1 admits an integral
representation. We detail this in the next proposition.

Proposition 4. Let us define a family of auxiliary jump processes Z(ξ)
t , indexed by ξ ∈ R+

and defined as

Z
(ξ)
t = η

∫ t

0

e−(β+ξ)(t−s)dNs . (20)

If we denote by γ(dξ) := ξ−α

Γ(1−α)
dξ for ξ ≥ 0, the intensity λt is rewritten as an integral of

Z
(ξ)
t with respect to γ(dξ):

λt = λ0 +
1

Γ(α)

∫ ∞

0

Z
(ξ)
t γ(dξ) . (21)

Proof. We can check by direct integration that xα−1 admits an integral representation

xα−1 =

∫ ∞

0

e−xξ ξ−α

Γ(1− α)
dξ .

On the other hand, the process Z(ξ)
t is an Ornstein-Uhlenbeck jump process reverting

toward 0, with the infinitesimal dynamic

dZ
(ξ)
t = −(β + ξ)Z

(ξ)
t dt+ ηdNt . (22)
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This process having a finite expectation for all ξ ∈ R+,we can rewrite the intensity using
the Fubini’s theorem:

λt = λ0 + η

∫ t

0

e−β(t−s) (t− s)α−1

Γ(α)
dNs

= λ0 +
η

Γ(α)

∫ t

0

(∫ ∞

0

e−(β+ξ)(t−s) ξ−α

Γ(1− α)
dξ

)
dNs

= λ0 +
1

Γ(α)

∫ ∞

0

Z
(ξ)
t γ(dξ) .

By definition, the processes
(
λt, Lt,

(
Z

(ξ)
t

)
ξ∈R+

)
is Markov. A similar reformulation

of a non-Markov Hawkes process into an infinite Markov one in used in Hainaut [9] for
processes with kernels admitting a spectral representation. The main differences with
the current article are that the considered kernels do not diverge at the origin and that
equivalent processes to Z(ξ)

t are defined in the complex plane. We will also see that the
divergence at the origin of the dampened rough kernel prevent us to express the Laplace’s
transform in terms of backward ordinary equations.

3 Finite dimensional approximation
In this section , we approach the integral in (21) on a finite grid of processes Z(ξ)

t . This
method makes possible to use the Itô’s calculus to find the Laplace’s transform of (Lt)t≥0.
For this purpose, we approximate γ(.) by a discrete measure on a finite numbers of atoms.
Let us define the partition E (n) := {0 < ξ

(n)
0 < ξ

(n)
1 < ... < ξ

(n)
n < ∞}. The mid point of

each interval (ξ(n)l , ξ
(n)
l+1) is denoted by

bl =
ξ
(n)
l + ξ

(n)
l+1

2
, l ∈ {0, ..., n− 1} (23)

The mass of atoms is defined as the integral of γ(.) over the interval :

wl =

∫ ξ
(n)
l+1

ξ
(n)
l

γ(dz) , l ∈ {0, ..., n− 1} (24)

we note Z̃(l)
t := Z

(bl)
t for l = 1, ...n− 1. Each Z̃(l)

t is mean reverting and ruled by the SDE

dZ̃
(l)
t =

(
− (β + bl) Z̃

(l)
t

)
dt+ η dÑt ,

where Ñt is the counting process in the finite dimensional model. Its intensity, noted λ̃t,
is the sum of Z̃(l)

t , weighted by the mass of atoms:

λ̃t = λ0 +
n−1∑
l=0

wl

Γ(α)
Z̃

(l)
t .
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Its differential is given by

dλ̃t = −
n−1∑
l=0

wl

Γ(α)
(β + bl) Z̃

(l)
t dt+ η

(
n−1∑
l=0

wl

Γ(α)

)
dÑt . (25)

The next proposition provides the joint Laplace’s transform of L̃s and λ̃s conditionally to
the filtration of Ft, in terms of backward ordinary differential equations (ODE’s).

Proposition 5. Let ω1, ω2 ∈ R+. The joint Laplace’s function of jump and intensity
processes at time t, conditionally to Ft, is given by the following expression

E
(
e−ω1L̃s−ω2λ̃s | Ft

)
= exp

(
qλ(t, s)λ̃t +

n−1∑
l=0

ql(t, s)
wl

Γ(α)
Z̃

(l)
t − ω1L̃t

)
(26)

where functions qλ(t, s), ql(t, s) : R+ × R+ → R, solves the ODE’s:
∂tqλ(t, s) = −

(
E
(
e−ω1J

)
exp

(
η
∑n−1

l=0
wl

Γ(α)
(qλ(t, s) + ql(t, s))

)
− 1
)
,

∂tql(t, s) = (β + bl) (ql(t, s) + qλ(t, s)) .

(27)

with the terminal conditions qλ(s, s) = −ω2 and ql(s, s) = 0 for l = 0, ..., n− 1.

Proof. Let us denote the Laplace’s transform by f
(
t, λt,

(
Z

(ξ)
t

)
ξ∈R+

, Lt

)
= E

(
e−ω1L̃s−ω2λ̃s | Ft

)
.

By definition f(.) is a conditional expectation and then a martingale. This implies that
E (df | Ft) = 0. From the Itô’s lemma, f(.) satisfies the following stochastic differential
equation (SDE):

0 = ∂tf(.)−
n−1∑
l=0

(β + bl) Z̃
(l)
t ∂

Z̃
(l)
t
f(.)− ∂λ̃f(.)

n−1∑
l=0

wl

Γ(α)
(β + bl) Z̃

(l)
t (28)

+λ̃t

∫ ∞

0

f

(
t, λ̃t + η

(
n−1∑
l=0

wl

Γ(α)

)
,
(
Z̃

(l)
t + η

)
l=0,...,n−1

, L̃t + z

)
− f(.)m(dz) .

We do the ansatz that f(.) is an exponential affine function that looks like

f(.) = exp
(
q0(t, s) + qλ(t, s)λ̃t +

n−1∑
l=0

ql(t, s)
wl

Γ(α)
Z̃

(l)
t − ω1L̃t

)
. (29)

The partial derivatives of f(.) with respect to state variables and times are given by

∂Z̃(l)f(.) = f(.)
wl

Γ(α)
ql(t, s)

∂λ̃f(.) = f(.)qλ(t, s) ,

and the derivative with respect to time is

∂tf(.) = f(.)

(
∂tq0(t, s) + ∂tqλ(t, s)λ̃t +

n−1∑
l=0

∂tql(t, s)
wl

Γ(α)
Z̃

(l)
t

)
.
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Under assumption (29), the jump term in Equation (28) becomes

f

(
t, λ̃t + η

(
n−1∑
l=0

wl

Γ(α)

)
,
(
Z̃

(l)
t + η

)
l=0,...,n−1

, L̃t + z

)
− f(.) =

f(.)

(
exp

(
η

n−1∑
l=0

wl

Γ(α)
(qλ(t, s) + ql(t, s))− ω1 z

)
− 1

)
.

Combining the previous equations allows us to infer that q0(t, s) , qλ(t, s) and ql(t, s)
satisfy the relation

0 = ∂tq0(t, s) + ∂tqλ(t, s)λ̃t +
n−1∑
l=0

∂tql(t, s)
wl

Γ(α)
Z̃

(l)
t (30)

−
n−1∑
l=0

(β + bl) Z̃
(l)
t

wl

Γ(α)
ql(t, s)− qλ(t, s)

n−1∑
l=0

wl

Γ(α)
(β + bl) Z̃

(l)
t

+λ̃t

∫ ∞

0

(
exp

(
η

n−1∑
l=0

wl

Γ(α)
(qλ(t, s) + ql(t, s))− ω1 z

)
− 1

)
m(dz) .

Grouping terms allows us to infer that q0(t, s) = 0 and

0 = ∂tqλ(t, s) +
(
eη

∑n−1
l=0

wl
Γ(α)

(qλ(t,s)+ql(t,s))E
(
e−ω1 J

)
− 1
)
,

0 =
n−1∑
l=0

∂tql(t, s)
wl

Γ(α)
−

n−1∑
l=0

(β + bl)
wl

Γ(α)
ql(t, s)− qλ(t, s)

n−1∑
l=0

wl

Γ(α)
(β + bl) .

This last equation is fulfilled if

∂tql(t, s) = (β + bl) (ql(t, s) + qλ(t, s)) .

The next corollary states that the function ql(t, s) admits an integral representation.

Corollary 2. The function ql(t, s) solving the second ODE in Equation (27) is equal to

ql(t, s) = −
∫ s

t

(β + bl) e
− (β+bl) (u−t)qλ(u, s) du . (31)

This result is checked by deriving the expression of ql(t, s) with respect to t. We
immediately retrieve the first ODE in (27). In Hainaut ([10], Chapter 5), the characteristic
function of the non-Markov Hawkes process Lt, is retrieved by increasing the size n of the
partition E (n), up to infinity. Unfortunately, we cannot apply the same approach for the
dampened rough kernel. Indeed, the limit of the sum of wl, involved in Equation (27), is
not defined when n→ ∞ because

lim
n→∞

n−1∑
l=0

wl

Γ(α)
=

1

Γ(α)

∫ ∞

0

ξ−α

Γ(1− α)
dξ = ∞ .

Nevertheless, we can convert the backward ODE’s (27) into forward ones, which admit a
limit when n→ ∞. To establish these forward ODE’s, we need the next result.
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Corollary 3. For any s, s′ ∈ R+ and v ∈ R+ such that v ≤ min(s, s′), the following
equality holds

qλ(s− v, s) = qλ(s
′ − v, s′) . (32)

Proof. By definition the equality (32) is true for v = 0, qλ(s, s) = qλ(s
′, s′) = −ω2. Let

us then assume that the property (32) holds for all r ∈ [0, v] where 0 < v ≤ s. From
previous equations, we notice that

∂qλ(s− v, s)

∂v
= − ∂qλ(t, s)

∂t

∣∣∣∣
t=s−v

=(
E
(
e−ω1J

)
exp

(
η

n−1∑
l=0

wl

Γ(α)
(qλ(s− v, s) + ql(s− v, s))

)
− 1

)

where

ql(s− v, s) = − (β + bl)

∫ s

s−v

e− (β+bl) (u−(s−v))qλ(u, s) du .

We rewrite the integrals in the previous equation using the change of variable u = s− r,∫ s

s−v

e− (β+bl) (u−(s−v))qλ(u, s) du =

∫ v

0

e−(β+bl) (v−r)qλ(s− r, s) dr

Since qλ(s− r, s) = qλ(s
′ − r, s′) for all r ∈ [0, v], we infer that∫ v

0

e−(β+bl) (v−r)qλ(s− r, s) dr =

∫ v

0

e−(β+bl) (v−r)qλ(s
′ − r, s′) dr

=

∫ s′

s′−v

e− (β+bl) (u−(s′−v))qλ(u, s
′) du

and ql(s− v, s) = ql(s
′ − v, s′). Therefore we have well

∂qλ(s− v, s)

∂v
=
∂qλ(s

′ − v, s′)

∂v

and conclude that the equality (32) also holds for v + dv.

A direct consequence of this last corollary is that qλ(t, s) = qλ(s − t) and ql(t, s) =
ql(s− t). Then, we infer that

∂tqλ(t, s) = −∂sqλ(t, s) ,
∂tql(t, s) = −∂sql(t, s) .

This allows to rewrite the Laplace’s transform in terms of a forward differential equation
ruling qλ(t, s).

Proposition 6. Let ω1, ω2 ∈ R+. The joint Laplace’s function of jump and intensity
processes at time t, conditionally to Ft, is given by the following expression

E
(
e−ω1L̃s−ω2λ̃s | Ft

)
= exp

(
qλ(t, s)λ̃t +

n−1∑
l=0

ql(t, s)
wl

Γ(α)
Z̃

(l)
t − ω1L̃t

)
(33)

13



where qλ(t, s) solves a forward ODE:

∂sqλ(t, s) = E
(
e−ω1J

)
exp

(
−η

(
n−1∑
l=0

wl

Γ(α) (β + bl)
∂sql(t, s)

))
− 1 (34)

and

∂sql(t, s) = −∂s
∫ s

t

(β + bl) e
− (β+bl) (u−t)qλ(u, s) du , (35)

with the initial condition qλ(t, t) = −ω2 and ql(s, s) = 0 for l = 0, ..., n− 1.

Proof. From equation (27) and as ∂tql(t, s) = −∂sql(t, s), we have that

ql(t, s) + qλ(t, s) =
1

β + bl
∂tql(t, s) = − 1

β + bl
∂sql(t, s) .

On the other hand, the backward ODE ruling qλ(., .) is rewritten as follows

∂tqλ(t, s) = −

(
E
(
e−ω1J

)
exp

(
η

n−1∑
l=0

wl

Γ(α) (β + bl)
∂tql(t, s)

)
− 1

)
.

As ∂tqλ(t, s) = −∂sqλ(t, s) and ∂tql(t, s) = −∂sql(t, s), this is equivalent to

∂sqλ(t, s) =

(
E
(
e−ω1J

)
exp

(
−η

n−1∑
l=0

wl

Γ(α) (β + bl)
∂sql(t, s)

)
− 1

)
.

This last proposition is the conerstone that allows us to find the Laplace’s transform
of the dampened rough Hawkes process in the next section.

4 Laplace’s transform of the rough Hawkes process
We now dispose of necessary tools for retrieving the Laplace’s transform of the rough
Hawkes process. The next proposition states that its initial value depends on a func-
tion solving a fractional differential equation involving the dampened RL integral and
derivative.

Proposition 7. The Laplace’s transform of the rough point process (Lt)t≥0, conditionally
to F0, for ω ∈ R+, is equal to

Υs(ω) := E
(
e−ωLs | F0

)
= exp (qλ(s)λ0) (36)

where qλ(s) solves a forward ODE:

dqλ(s)

ds
= E

(
e−ωJ

)
exp

(
η

(
K
dqλ
ds

)
(s)

)
− 1 (37)

with the initial condition qλ(0) = 0 and where K dqλ
ds

is the dampened Riemann-Liouville
integral of dqλ

ds
: (

K
dqλ
ds

)
(s) =

1

Γ(α)

∫ s

0

e−β (s−u)

(s− u)1−α

dqλ(u)

du
du.
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An equivalent representation is obtained by defining ψ(s) :=
(
K dqλ

ds

)
(s). this function

solves the fractional differential equation(
K−1ψ

)
(s) = E

(
eωJ
)

exp (η ψ(s))− 1 , (38)

where (K−1ψ) (s) = dqλ
ds
(s) is the dampened Riemann-Liouville derivative of ψ(s):(

K−1ψ
)
(s) =

d

ds

∫ s

0

(
βα +

α

Γ(1− α)

∫ ∞

s−u

e−βv

v1+α
dv

)
ψ (u) du .

Proof. As in this case, qλ(s, s) = 0, we develop the forward derivative of ql(t, s) provided
in Equation (35), as follows

∂sql(t, s) = −∂s
∫ s

t

(β + bl) e
− (β+bl) (u−t)qλ(u, s) du

= −
∫ s

t

(β + bl) e
− (β+bl) (u−t)∂sqλ(u, s) du .

We have proven in the previous section that qλ(u, s) is in fact a function of s−u : qλ(s−u)
, if we perform the change of variable v = s− u, the derivative ∂sql(t, s) can be rewritten
as

∂sql(t, s) = −
∫ s−t

0

(β + bl) e
− (β+bl) (s−t−v)dqλ(v)

dv
dv .

Furthermore, we have seen that ∂sqλ(t, s) = dqλ(s−t)
ds

. Then, we reformulate the forward
ODE (34) as:

dqλ(s− t)

ds
= E

(
e−ωJ

)
exp

(
η

(
n−1∑
l=0

wl

Γ(α)

∫ s−t

0

e− (β+bl) (s−t−v)dqλ(v)

dv
dv

))
− 1 .(39)

We next consider the limit of the term in the exponential when the size of the partition
E (n) tends to infinity. By construction, the following limit is well defined:

lim
n→∞

n−1∑
l=0

wl

Γ(α)

∫ s−t

0

e− (β+bl) (s−t−v)dqλ(v)

dv
dv

=
1

Γ(α)

∫ s−t

0

∫ ∞

0

e− ξ (s−t−v) γ(dξ)e−β (s−t−v)dqλ(v)

dv
dv

=

∫ s−t

0

e−β (s−t−v)

Γ(α)(s− t− v)1−α

dqλ(v)

dv
dv .

At time t = 0, i.e. conditionally to F0, we recognize the the dampened Riemann-Liouville
of ∂sqλ: (

K
dqλ
ds

)
(s) =

∫ s

0

e−β (s−u)

Γ(α)(s− u)1−α

dqλ(u)

du
du , (40)

and combining Equations (39) and (40) leads to the fractional equation (37).

dqλ(s)

ds
= E

(
e−ωJ

)
exp

(
η

(
K
dqλ
ds

)
(s)

)
− 1

Given that K−1Kϕ = ϕ, We immediately infer that ψ(s) =
(
K dqλ

ds

)
(s) and Equation

(55).
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When α → 1, the rough process converges toward a Hawkes process with an exponential
kernel. In this case, the dampened RL integral of dqλ

ds
converges toward the following

integral

lim
α→1

(
K
dqλ
ds

)
(s) =

∫ s

0

e−β (s−u)dqλ(u)

du
du ,

and from Equation (39), dqλ
ds

solves the integro-differential equation:

dqλ(s)

ds
= E

(
e−ωJ

)
exp

(
η

∫ s

0

e−β (s−u)dqλ(u)

du
du

)
− 1 . (41)

This formulation is not standard in the literature. For this reason, we show in Appendix C,
that eqλ(s)λ0 with dqλ

ds
satisfying the above equation, does also correspond to the Laplace’s

transform an exponential Hawkes process.

In practice, we solve numerically Equation (37). We divide [0, s] in n subintervals [sj, sj+1]

of length ∆, for j = 0, ..., n− 1. We denote by g(k) := dqλ(s)
ds

∣∣∣
s=sk

, the differential of qλ at
time sk and we next use an explicit approximation of the dampened RL fractional integral
:

g(k) = E
(
e−ωJ

)
exp

(
η

Γ(α)

k−1∑
j=0

e−β (sk−sj)

(sk − sj) 1−α
g(j)∆

)
− 1 . (42)

The recursion is initialized by setting g(0) = E
(
eωJ
)
− 1. We can exploit previous results

to compute the probability density functions of the point process (Lt)t≥0. Our approach is
based on a discrete fast Fourier’s transform (DFFT). It consists to invert the characteristic
function of the process, that is the Laplace’s transform (36) valued on the imaginary axis.
Let us denote the characteristic function of Ls by Υs(iω) = E

(
ei ωLs | F0

)
for ω ∈ R. This

is also the inverse Fourier’s transform of the probability density function (pdf) fL
s (x) of

Ls|F0. Therefore, this density can be retrieved by computing the following integral (the
Fourier’s transform, F [.], of Υs(.)):

fL
s (x) =

1

2π
F [Υs(iω)](x)

=
1

2π

∫ +∞

−∞
Υs(iω)e

−iωxdω . (43)

This integral is approximated by discretization with the DFFT algorithm recalled in
Appendix B.
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Moments of LT Quantiles of LT

α E(LT )
√

V(LT ) 5% 95%
0.9 0.144 0.067 0.047 0.267
0.8 0.159 0.075 0.051 0.298
0.7 0.179 0.087 0.055 0.341
0.6 0.209 0.106 0.063 0.408
0.5 0.250 0.134 0.071 0.502
0.4 0.298 0.167 0.078 0.624

Table 1: Expectation, standard deviation, 5% and 95% quantiles of LT for α = 0.4 up to
α = 0.9.
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Figure 3: Left plot, dqλ(s)
ds

∣∣∣
s=sk

for r ω ∈ {0.1 , 0.2 , 0.3}. Right plot, pdf’s of L1 for
α ∈ {0.5 , 0.7 , 0.9}.

The recursion (42) and the inversion by DFFT is illustrated in Figure 3. The left plot
shows the derivative dqλ(s)

ds

∣∣∣
s=sk

for ω ∈ {0.1 , 0.2 , 0.3}. We consider a dampened rough
process with parameters α = 0.6, η = 2, β = 6.35 and λ0 = 10. Jumps are exponential
random variables parametrized by ρ = 100. In this case, E

(
e−ωJ

)
= ρ

ρ+ω
, for ω > −ρ. We

consider n = 200 steps of time. The graph reveals a very fast increase of the differential
over a short time horizon. After this, the dqλ(s)

ds

∣∣∣
s=sk

’s slowly converge to values close to
zero. The right plot of Figure 3 presents the pdf’s fL

1 (x) of L1 for various levels of α (all
other parameters remaining unchanged). These distributions are computed with M = 28

discretization steps of the Fourier’s integral (43). This graph emphasizes the impact of
α on the distribution shape of LT . Decreasing α clearly raises the mean and variance of
LT . This is confirmed by table 1 which provides the moments, standard deviations, 5%
and 95% quantiles of LT for α = 0.4 up to α = 0.9.

17



5 Simulation
The thinning procedure of Ogata [18] to sample a standard Hawkes processes is based on
two conditions. The first one is that between two jumps occurring at times τk and τk+1,
the counting process behaves locally like an non-homogeneous Poisson process. This is
well the case for the rough Hawkes process that has an intensity

λ(t) = λ0 +
η

Γ(α)

k∑
j=1

e−β(t−τj)(t− τj)
α−1 t ≥ τk . (44)

The second condition is that λ(t) is a decreasing function, bounded by λ∗ = λ(τk) <∞. In
this case, the exponential random time, τ with pdf fτ (t) = λ∗e−λ∗t and cdf Fτ (t) = 1−e−λ∗t

is well defined. Because Fτ (t) and F−1
τ (t) admit a closed-form expression, we can use the

inverse transform technique to sample waiting times. We know that F−1
τ (τ) is an uniform

random variable U[0,1]. Therefore, sampling a waiting interval τ for a Poisson process is
done by:

sampling U ∼ U[0,1] and setting s = − 1

λ∗
lnU . (45)

On the other hand, the thinning property of Poisson processes states that a Poisson pro-
cess with an intensity λ can be split into two independent processes with intensities λ1
and λ2, so that λ = λ1 + λ2. A jump is respectively caused by the first or the second
processes with probabilities λ1

λ
and λ2

λ
. From this property, we can see that we can sim-

ulate of a non-homogeneous Poisson process with the intensity function λ(t) by thinning
a homogeneous Poisson process with the intensity λ∗ ≥ λ(t) for all t ≥ 0.

Unfortunately, the intensity (44) is by construction not bounded at the instant of jump.
Nevertheless, λ(t) is bounded over [τk+ϵ , ∞) by λ∗ϵ = λ(τk+ϵ) <∞ for any infinitesimal
ϵ > 0. This allows us to sample the rough Hawkes process with the Algorithm 1.

To summarize, let us consider that we start our time counter at T = τk. We sample
an inter-arrival time τ , with Equations (45) and λ∗ϵ = λ(T + ϵ). Next, we update the time
counter T = T +τ . We accept or reject this inter-arrival time according to the ratio of the
true event rate to the thinning rate λ∗ϵ (step 5 of the Algorithm). If accepted, we record
the (k+1) event time as τk+1 = T . Otherwise, we repeat the sampling of an inter-arrival
time until one is accepted. Notice that even if an inter-arrival time is rejected, the time
counter T is updated. As similar approach is used by Chen et al. [2] for simulating frac-
tional Hawkes processes whose kernel diverges to ∞ at zero. The illustration in Figure 1
is computed with this algorithm and ϵ = 10−10.

6 Estimation
We estimate the rough Hawkes process by log-likelihood maximization. Given that the
intensity reaches +∞ for an extremely brief moment after a jump, we detail the calculation
of this log-likelihood. We assume to observe the process over the time interval [0, T ]. The
kth jump time of Lt is denoted by τk for k = 1, ..., NT . From Equation (1), the sample
intensity at time τk− is equal to

λτk− = λ0 +
η

Γ(α)

k−1∑
j=1

e−β(τk−−τj)(τk− − τj)
α−1 .
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Algorithm 1 Sampling algorithm of N jumps of the rough Hawkes process.
Set current time T = 0, ϵ > 0 and jump counter k = 1

While k ≤ N

1. Set the upper bound of Poisson intensity λ∗ϵ = λ(T + ϵ) with Equation (44).

2. Sample U ∼ U[0,1], and set τ = − 1
λ∗
ϵ

lnU

3. Update current time: T = T + τ .

4. Sample R ∼ U[0,1].

5. If R ≤ λ(T−)

λ*ϵ
then , τk = T , k = k + 1

6. Otherwise reject the sample and return to step 1.

We will see in the next proposition that this realized intensity is involved in calculation
of the log-likelihood.
Proposition 8. We denote the Gamma incomplete function by Γ (α, x) =

∫∞
x
e−uuα−1du.

The log-likelihood of a sample of observations over [0, T ] is defined as:

lnL = −
∫ T

0

λsds+

NT∑
k=1

log (λτk−) , (46)

where the integral of the intensity is equal to∫ T

0

λsds = λ0T +
η

βα

NT∑
k=1

(
1− Γ (α, β (T − τk))

Γ(α)

)
. (47)

Proof. From e.g. Embrechts et al. [5], the log-likelihood of the sample is given by Equation
(46). Using the expression (1) of λt and changing the order of integration, we develop the
integral of the intensity as follows:∫ T

0

λudu = λ0T + η

∫ T

0

∫ u−

0

e−β(u−s) (u− s)α−1

Γ(α)
dNs du (48)

= λ0T + η

∫ T

0

∫ T

s

e−β(u−s) (u− s)α−1

Γ(α)
du dNs

The inner integral is reformulated in terms of Gamma functions by performing the change
of variable v = β (u− s)∫ T

s

e−β(u−s) (u− s)α−1

Γ(α)
du (49)

=

∫ ∞

s

e−β(u−s) (u− s)α−1

Γ(α)
du−

∫ ∞

T
e−β(u−s) (u− s)α−1

Γ(α)
du

=
β−α

Γ(α)

∫ ∞

0

e−vvα−1 dv − β−α

Γ(α)

∫ ∞

β(T −s)

e−vvα−1 dv

= β−α

(
1− Γ (α, β (T − s))

Γ(α)

)
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Combining Equations (48) and (49) leads to the expression (47).

To benchmark our model, we consider a Hawkes process with an exponential memory
kernel, such as defined by Equation (16). The log-likelihood in this case, has the same
form as Equation (46) with an intensity computed iteratively by

λhτk− = λh,0
(
1− e−βh(τk−τk−1)

)
+ e−βh((τk−τk−1)

(
λhτ(k−1)−

+ ηh

)
, (50)

whereas the integral of intensity is equal to

∫ T

0

λhudu = λh,0T +
ηh
βh

Nh
T∑

k=1

(
1− e−βh(T −τk)

)
. (51)

We recall that this corresponds to the rough model with α = 1. We respectively denote
by ΘN and Θh

N , the set of parameters defining the exponential and rough processes. Their
estimates, noted Θ̂N or Θ̂h

N are obtained by maximization of log-likelihoods

Θ̂N = arg max
ΘN

lnL(ΘN) .

The distribution m(.) of jumps is fitted independently of counting processes. If {j1, ..., jNt}
and ΘJ are respectively the sample of jumps and the set of parameters of m(.), estimates
are found by log-likelihood maximization:

Θ̂J = arg max
ΘJ

Nt∑
k=1

ln (m (jk |ΘJ)) .

To conclude this section, we fit the model to time-series of negative jumps in Bitcoin
returns. The dataset contains hourly Bitcoin log-returns from the 9/2/2018 to 9/2/2023,
traded in USD on the exchange platform Gemini, as illustrated in Figure 4. We adopt a
“peak over threshold” approach for detecting jumps. If the Bitcoin log-return falls below
a certain threshold, we assume that a jump has occurred. We consider three thresholds:
-1.0%, -1.5% and -2.0%. For each of them, we fit an exponential and a rough Hawkes
process to jump times.
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Figure 4: Hourly log-returns of Bitcoin. The three dotted lines are the thresholds -1.0%,
-1.5% and -2.0%
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Threshold α β η λ0 λ∞ Log-lik. p-value

-1.0% 145.392 145.391 51.407 518.318 e4 13521.892
0.940 166.518 99.039 94.894 496.177 13548.497 0.0000

-1.5% 173.005 128.627 64.284 250.605 6084.924
0.846 125.548 45.568 58.997 250.811 6087.705 0.0184

-2.0% 158.551 111.093 40.93 136.741 2962.557
0.844 115.773 39.788 38.269 136.765 2964.171 0.0724

Table 2: Parameter estimates, asymptotic intensities, log-likelihoods and p-values of the
test with the null hypothesis H0 ; α = 1.

Results of the estimation procedure are provided in Table (2).The first four columns
provide parameter estimates. The fifth and sixth columns report the asymptotic intensi-
ties and log-likelihoods. In order to check the relevance of the rough Hawkes model, we
perform a log-likelihood ratio test. Under the assumption that α = 1, the statistic

2
(

lnL(Θ̂N)− lnL(Θ̂h
N)
)
∼ χ2

1

is (asymptotically) a chi-square random variable with one degree of freedom. We conclude
from the observation of p-values of this test that the rough Hawkes model better explains
jumps than the exponential Hawkes process, for -1% and -1.5% thresholds. For larger
thresholds, jumps are too scarce and the rough model has no added value. We explain
this by the relatively long average duration between two jumps (i.e. several hours). For
such durations, the behaviour of the kernel is mainly ruled by the dampening factor.
The rough process behaves then like an exponential Hawkes process in this case. This is
confirmed by another test in which we fit the rough and exponential processes to time
series of negative shocks in daily log-returns of the Eurostoxx 50. The comparison of
log-likelihoods also reveals that the rough model does not outperform the exponential
process. This is again explained by the minimum 1 day delay between two successive
jumps. Beyond this period of time, the kernel behaves like a decreasing exponential.
Therefore, we do not recommend to fit a rough Hawkes process to time series of low
frequency events. We also notice that the estimated exponential Hawkes process, for a
-1% threshold, is nearly unstable as λ∞ is abnormally high. This observation is in line
with conclusions of Jaisson and Rosenbaum [16] who remark that nearly unstable Hawkes
processes often fit high-frequency finance data properly.

7 Conclusions
As detailed in this article, the rough Hawkes process presents several interesting prop-
erties and a sufficient level of analytical tractability for many future applications. Even
if its kernel diverges at origin, the process remains stable under mild conditions. The
expected intensity and number of jumps admit closed form expression. When α tends to
one, the process converges to a classical Hawkes process with an exponential kernel. It
is also possible to rewrite it as an infinite dimensional process. Considering the limit of
a finite approximation allows us to retrieve the Laplace’s transform of the rough Hawkes
process. This is expressed in terms of a solution of particular kind of fractional differen-
tial equation. This equation is solved numerically and the density of the rough Hawkes
process is retrieved by DFFT. The rough process can be simulated by a modified Ogata’s
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algorithm. Finally, the log-likelihood of the rough process has an analytical expression
which allows us to fit it to time-series.

This article paves the way to further research. We can for instance develop a multivariate
extension in order to replicate contagion of shocks between different time-series. An ap-
plication of this model would be the modelling of the order book of stock prices, at high
frequency. Another possible development is to consider jumps of intensity proportional
to jumps of Lt.

Appendix A. Mittag Leffler function
The Mittag-Leffler functions with one and two parameters are respectively defined by

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
,

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
,

where α > 0 and β ∈ C. The function u(x) = Eα(ηx
α) is closely related to fractional

calculus when α ∈ (0, 1). We denote by Iα0+u is the following Riemann-Liouville fractional
integral

(
Iα0+u

)
(t) =

1

Γ(α)

∫ t

0

u(s)

(t− s)1−αds . (52)

The left Riemann-Liouville derivative, denoted by Dα
0+u(t), is the derivative of I1−α

0+ u(t):

(
Dα

0+u
)
(t) =

d
(
I1−α
0+ u

)
(t)

dt
=

1

Γ(1− α)

d

dt

∫ t

0

u(s)

(t− s)α
ds ,

and is such that Dα
0+I

α
0+u(t) = u(t). The solution of the fractional integral/differential

equations (
Dα

0+u
)
(t) = η u(t)

is precisely the function u(x) = Eα(ηx
α). In this article we also use the relation

dEα( ηx
α)

dx
= ηxα−1Eα,α( ηx

α) . (53)

From the Laplace’s transform of Eα(±xα),

L (Eα(±xα)) :=
∫ ∞

0

e−zxEα(±xα) dx =
zα−1

zα ∓ 1
, (54)

(see Gorenflo et al. [7], pages 40 and 41), we infer that

L (Eα(±ηxα)) =
zα−1

zα ∓ η
. (55)
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Appendix B. Fast Fourier’s transform
Let M be the number of steps used in the Discrete Fast Fourier’s Transform (DFFT) and
∆x = xmax

M
, be a step of discretization. Let us denote ∆ω = 2π

M ∆x
and ωj = −M

2
∆ω + (j −

1)∆ω for j = 1, ...,M + 1. The values of fL
s (.) at points xk = (k − 1)∆x for k = 1, ...,M

are approached by

fL
s (xk) = ∆ω

M+1∑
j=1

δjΥs (iωj) exp (i ((k − 1)π)) (56)

× exp
(
−i(k − 1)(j − 1)

2π

M

)
,

whereδj =
(
1
2

)1{j1=1} + 1{j ̸=1}.

Appendix C. Laplace’s transform of an exponential
Hawkes process
We rewrite the intensity of a Hawkes process with an exponential kernel, such as described
by Equation (16) as the following sum λht = λh,0 +Zt, where Zt = ηh

∫ t−
0
e−βh(t−s)dNs. Zt

is solution of the SDE:

dZt = −βh Zt dt+ ηh dNt .

Proposition 9. The Laplace’s transform of the point process Lh
t =

∑Nh
t

k=0 Jk, conditionally
to F0, for ω ∈ R+, is equal to

E
(
e−ωLh

s | F0

)
= exp (qh(s)λ0) , (57)

where qh(s) solves a forward ODE:

dqh(s)

ds
= E

(
e−ωJ

)
exp

(
ηh

(∫ s

0

e−βh (s−u)dqh(u)

du
du

))
− 1 . (58)

Proof. The function f
(
t, Zt, L

h
t

)
= E

(
e−ωLh

s |Ft

)
solves the partial differential equation:

0 = ∂tf(.)− βhZt∂λf(.) + (λ0 + Zt)

∫ ∞

0

f
(
t, Zt + ηh , L

h
t + z

)
− f(.)m(dz) .

We can prove that f(.) is an exponential affine function that is

f(.) = exp
(
qh(t, s)λh,0 + qz(t, s)Zt − ωLh

t

)
. (59)

where qh and qz solve the backward ODE’s:{
∂tqh(t, s) = −

(
eqz(t,s)ηhE

(
e−ωJ

)
− 1
)
,

∂tqz(t, s) = βhqz(t, s)−
(
eqz(t,s)ηhE

(
e−ωJ

)
− 1
)
.
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When t = 0, f(.) = exp (qh(0, s)λh,0) and q0, qh solve the forward ODE’s:{
∂sqh(0, s) =

(
eqz(0,s)ηhE

(
e−ωJ

)
− 1
)
,

∂sqz(0, s) = −βhqz(0, s) +
(
eqz(0,s)ηhE

(
e−ωJ

)
− 1
)
.

(60)

If we insert the expression of ∂sqh(0, s) in the second equation, we have

∂sqz(0, s) = −βhqz(0, s) + ∂sqh(0, s) ,

which admits the solution:

qz(0, s) =

∫ s

0

e−β(s−u)∂uqh(0, u)du .

Combining this with the first Equation of (60) leads to the result (58).
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