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Abstract

This paper studies the problem of partial hedging within the framework of rough volatility models
in an incomplete market setting. We employ a stochastic control problem formulation to minimize the
discrepancy between a stochastic target and the terminal value of a hedging portfolio. As rough volatility
models are neither Markovian nor semi-martingales, stochastic control problems associated with rough
models are quite complex to solve. Therefore, we propose a multifactor approximation of the rough
volatility model and introduce the associated Markov stochastic control problem. We establish the con-
vergence of the optimal solution for the Markov partial hedging problem to the optimal solution of the
original problem as the number of factors tends to infinity. Furthermore, the optimal solution of the
Markov problem can be derived by solving a Hamilton-Jacobi-Bellman (HJB) equation and more pre-
cisely a nonlinear partial differential equation (PDE). Due to the inherent complexity of this nonlinear
PDE, an explicit formula for the optimal solution is generally unattainable. By introducing the dual
solution of the Markov problem and expressing the primal solution as a function of the dual solution, we
derive approximate solutions to the Markov problem using a dual control method. This method enables
for sub-optimal choices of dual control to deduce lower and upper bounds on the optimal solution as
well as sub-optimal hedging ratios. In particular, explicit formulas for partial hedging strategies in rough
Heston model are derived.

KEYWORDS: Partial hedging, rough volatility, rough Heston, stochastic control, Hamilton-Jacobi-Bellman,
Markov approximation, dual control method.

1 Introduction

Rough volatility models have gained significant popularity in quantitative finance since the pioneering work
of Gatheral et al. [26]. These models incorporate short-range dependence, capturing important empirical
stylized facts such as volatility clustering and roughness, which are often neglected in classical volatility
models. In option pricing, rough volatility models generate implied volatility surfaces that are consistent
with observed volatility surfaces, as shown in subsequent papers [10, 18, 24, 26, 33]. Moreover, |1, 6] show
that Markovian approximation of rough volatility models can also effectively capture, with few parameters,
implied volatility smile as well as at-the-money skew and recent extensive empirical results [5, 28, 40| show
that Markovian counterparts of rough models perform well in capturing the SPX smiles and skew. The
interest in rough processes also extends to other domains such as insurance, whether in terms of their impact
on pricing and insurance portfolios [15, 16] or on claims modelling [31].

In this paper, we investigate the problem of hedging in rough volatility models. While previous research
[17, 25] have explored this matter in the context of complete market, where the volatility risk can be hedged
either by trading forward variance curve or variance swap, our paper takes a different approach. We relax
the complete market assumption and focus on an incomplete market, considering only underlying assets
as hedging instruments. Since the market is incomplete, a perfect hedging strategy does not exist for any
given contingent claim, this is why we are interested in partial hedging strategies. Partial hedging strategies
introduced by Follmer and Leukert [19, 20], are powerful techniques for minimizing hedging losses at a fixed
cost lower than the super-replication price. Their results have next been applied to various markets and
various risk processes, we can mention among others [12, 14, 27, 34, 35, 38]. Notably, [34] extends the theory
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of partial hedging to stochastic volatility environment by formulating the problem as a stochastic control
problem. However, the problem of partial hedging in rough volatility models has not yet been investigated,
so this article aims to fill this gap.

To this end, we introduce a stochastic control problem under rough volatility models. While the literature
has studied stochastic control problems in rough volatility models primarily focusing on portfolio optimization,
see [4, 7,9, 22, 23, 29, 37|, problems involving hedging or stochastic targets have received less attention.
The non-Markovian nature of rough volatility processes poses significant challenges in solving these control
problems. In portfolio optimization problems, 7, 22, 23] propose first order approximate solutions by relying
on martingale distortion transformation of the value function, while [9, 37] employ a Markov approximation
of the rough volatility models. It is the latter technique that is developed in this paper to solve the control
problem. Relying on several papers [1, 2, 8, 11, 31], we introduce a Markov multifactor approximation of
rough volatility models based on the representation of the kernel function in terms of a Laplace transform.
Then, we consider the Markov control problem associated with the approximate volatility model and show,
with the help of convergence results stated in [1, 2], that instead of solving the initial non-Markovian problem,
we can solve the Markovian problem with negligible error.

The introduced Markov stochastic control problem is similar to a stochastic control problem associated
to a partial hedging problem in multivariate stochastic volatility. Previous studies [21, 34, 36] have shown
that the optimal value function for such problems satisfies a nonlinear partial differential equation that
cannot be completely linearized, even by switching to the dual formulation of the problem. There are mainly
two techniques developed in the literature to overcome this nonlinearity issue. [21, 34] consider fast-mean
reverting volatility models to propose asymptotic solutions, while [36] considers a dual control method to
provide approximate solutions of the optimal solution. In this paper, we adopt a similar approach to the dual
control method introduced by [36] to propose approximate solutions of the Markov problem for sub-optimal
choices of dual control. Our approach has several advantages: it works with general classes of volatility
models, gives lower and upper bounds to the optimal solution and allows to deduce convergence results
toward the optimal solution.

The paper is outlined as follows. First, in Section 2, the mathematical framework is presented. We
introduce the class of rough volatility models studied and we formulate the partial hedging problem. Next,
in Sections 3 and 4, we discuss the multifactor approximation of the rough volatility model and introduce
the associated Markov stochastic control problem. Moreover, we demonstrate the convergence of the optimal
solution of the Markov problem to the optimal solution of the original problem. Then, in Section 5, we
solve the Markov problem by introducing the Hamilton-Jacobi-Bellman (HJB) equation and deduce that the
optimal solution satisfies a nonlinear PDE. Consequently, by expressing the primal solution in terms of the
dual solution, we derive approximate solutions using a dual control method. Notably, we provide explicit
formulas for sub-optimal partial hedging strategies in the rough Heston model. Finally, in Section 6, we
conclude the paper by presenting a numerical application that focuses on the partial hedging of linear and
vanilla options within the rough Heston model.

2 Statement of the problem

Consider a finite horizon T' > 0 and a filtered probability space (2, F, (F;)o<t<t,P) where P stands for
the real measure, the filtration (F3)o<¢<r is the canonical filtration of a two-dimensional Brownian motion
(Wg, B,) and denotes all information known over time. Assume an arbitrage-free financial market in which
we have a cash-account and a risky asset denoted respectively by (Sy)o<t<7 and (S;)o<t<7. We suppose that
those processes have the following dynamics

ds? =r S%dt, S9 =1,

and
dSt = //ftStdt + mStdWS(t), SO = Sg > 0,

on (Q, F, (Ft)o<i<,P), where r € R is the risk-free interest rate, u; := r + Ay, A € Ry and (v)o<i<T a
rough volatility process. The rough volatility satisfies a stochastic Volterra equation of the form

yt=u0+/0 G(t—s)b(us)ds+/0 Gt — )0 (vs)dW, (5) (1)

1We assume that the excess of return of the risky asset is proportional to its variance.



on (9, F,(Ft)o<t<r,P), where vy € Ry, b : R — R Lipschitz continuous with 5(0) > 0 and ¢ : R — R
n—Holder continuous with ¢(0) = 0 and n € [1/2,1], W, is a standard Brownian motion such that W, =
pWs++/1—p2B, for p € (—1,1) and G a kernel assumed to be completely monotone?. The rough volatility
model (1) is a general model that incorporates well known rough models such for example the rough Heston
model introduced in [17] with volatility process given by

= o+ /0 Glt — 5) k(0 — vJ)ds + /0 Gt — 5) Cy/Ted W (s),

where k € R is the speed of mean reversion toward the level § € Ry and ¢ € R, is the vol-of-vol parameter.
In the following, we consider the fractional kernel defined by

tH—l/Q

G(t) == T

(H+1/2) @)

where H is the Hurst coeficient such that H € (0,1/2) in order to consider rough volatility models. Note that
using Corollary B.2. in [2], since functions b(.) and o(.) are in particular continuous with linear growth, we
can prove the existence of an unconstrained weak solution of the stochastic Volterra equation (1) when the
fractional kernel satisfies (2). Moreover, the existence of a non-negative solution can be obtained by relying
on Theorem B.4. in [2] .

Remark. If we consider the rough Heston model with b(z) = (6 — z) and o(x) = (y/x, we can prove the
uniqueness of a non-negative weak solution of the stochastic Volterra equation (1) when the kernel satisfies
(2), see for instance [3].

In this financial market with rough volatility, we are concerned with the hedging of any contingent claim
given by Fr—measurable square-integrable random variable of the form

Hr = h(Sr),

with h(.) a continuous function. El Euch and Rosenbaum [17] already tackle the question of hedging in rough
volatility environment. They prove that perfect hedging is possible in rough Heston model provided that
the forward variance curve can be taken as hedging instrument. However, this assumption is quite strong,
which is why we are interested in the question of hedging in a financial market with only underlying assets as
hedging instruments. As the market is incomplete, we already know that perfect hedging is not possible for
any contingent claim but we can still stay on the safe side by super-hedging the contingent claims. However,
super-hedging strategies generally lead to super-hedging prices that are too high to be considered in practice.
In cases where the initial capital available is smaller than the super-hedging prices, we know that we are not
hedged in 100% of the cases. We can nevertheless define hedging strategies that aim at minimizing a loss
arising from the hedging operation. This type of hedging strategy is called partial hedging strategy and was
introduced in [19, 20]. Tt is this kind of strategy that we consider in the following. In this perspective, as
usual for hedging problems?®, we consider a self-financing hedging portfolio denoted by (V;)o<¢<7 and defined
by investment in the assets available in the market (cash-account and the risky asset). The amount invested
at time ¢t € [0, 7] in the risky asset is denoted by &; and the portfolio evolves according to the following SDE

AV =r (Vi — §S)dt + & dSy,
Vo = vo,

on (Q, F, (Fi)o<i<t,P). The hedging ratio process (& )o<i<r is admissible if (§;)o<i<7 is progressively mea-
surable in regards to F; such that E( fOT £2S%,dt) < 4oo. Similarly, we can also define the Profit and Loss
(P&L) at maturity T' denoted by 7 and defined by

T = VT - HT.

Let R be the set of all progressively measurable processes (§;)o<i<r valued in R such that E( fOT E2S2y,dt) <
400, since we already mentionned that, in our framework, perfect hedging is not possible for any given

2A Kernel G(.) is completely monotone if it is infinitely differentiable on (0, +00) such that (=1)7G)(t) > 0 for t > 0 and
ji>o0.

3For more details on how hedging problems can be tackled in complete and incomplete markets, we refer the reader to the
book [13].



contingent claim, there exist payoffs?! Hy for which

B(&)o<i<r € R st. i =0 a.s.

We thus consider the partial hedging problem and define in this sense an optimal hedging strategy satisfying
the following optimization problem

s, ) 5= 0. B (DAA(S1). Vi) 3

where L(.) is a continuous proper convex loss function. Note that different choices can be made for the loss
function L(.). We can consider symmetric loss functions, like for example, power loss functions of the form

1
Lpower(xay) = 5(56 - y)p7 p =2k, k € Ny, (4)

with the particular case p = 2 linked to mean-variance minimization problem. For other types of risk-averse
traders, we can consider asymmetric functions, such as, for example, exponential or shortfall loss functions. At
this stage, the main problem in solving the introduced stochastic control problem is that the rough volatility
model (1) is neither Markovian nor a semi-martingale. Thus, the principle of dynamic programming cannot
be applied to solve the stochastic control problem. To overcome this problem, and following the idea of [9],
we will consider a Markovian approximation of our initial problem and then solve the Markovian problem
using the principle of dynamic programming.

3 Markov approximation

The non-Markovian structure of the rough volatility prevents from directly solving the partial hedging problem
using classical stochastic control techniques. However, as shown in [9] in the case of portfolio optimization,
the problem can be solved with a small error by considering a Markov approximation of the volatility process.
As shown in several papers [1, 2, 8, 11, 31, 32|, the starting point of the Markovian approximation is the
representation of the kernel G(t) in terms of a Laplace transform® such that

+oo
Glt) = /0 =17\ (d),

where A is a measure on R,. For the fractional kernel, we have that
tH=1/2

D(H +1/2)

_ 1 /+°o e—tr = H=1/2 ..
I'(H+1/2)T(1/2—-H) J,

=Cy

—+oo
:C’H/ e trpH=1/24y
0

G(t) =

where for z > 0,
Nz) = Cya—H-124g,

Then, we approximate the integral by a finite sum and consider the approximate kernel G defined by
n
G(t) =Y wie "™, (5)
i=1

where (w;)i=1,...n are the weights and (z;)i=1,..., the mean reversion terms that should be appropriately
defined, we discuss later on the choice of these parameters. In this way, we can approximate the rough

4Perfect hedging strategies exist for linear-form payoffs.
5This representation is possible since G(.) is assumed to be completely monotone.



volatility process by defining a new stochastic process denoted by (2:)o<¢<7 as the unique strong continuous
solution to the stochastic Volterra equation (1) with a kernel G(.) such that, for ¢ € [0, T],

Uy =1+ /0 G(t — s)b(vg)ds + /0 G(t — s)o(vg)dW,(s), (6)

on (Q,F,(Ft)o<i<r,P) where vy € R4, b : R — R Lipschitz continuous with 5(0) > 0 and ¢ : R — R
n—Holder continuous with (0) = 0 and n € [1/2,1]. As for the rough volatility process, the existence of a
non-negative weak solution of (6) can be obtained by relying on Theorem B.4 in [2]. Moreover, as, unlike the
fractional kernel, the approximate kernel is smooth, the strong existence and uniqueness of (#;)o<i<7 follow
from Proposition B.3. in [2]. The following proposition states that the stochastic Volterra equation (6) can
be reduced to a n—dimensional stochastic differential equation.

Proposition 1. The solution of (6) is given by
n
=1y + Z w;vg (7)
i=1

where (Vt)o<i<T = ((z/tl, vE .., 1/{‘)) is solution of the n-dimensional SDE defined by
0<t<T

t t t
vi = —/ rivids —l—/ b(vg)ds —|—/ o(Dg)dW,(s), i=1,...,n, (8)
0 0 0

on (Q, ]:, (ft)0§t§T7 IP)
Proof. We refer the reader to the proof of Proposition 2.1. in [§]. O

Based on the approximate volatility process (6) and its Markov representation induced by SDEs (8), we can
define the Markovian approximation of the stochastic control problem introduced in (3). First, we consider
the approximate process (S}")o<i<r for which its SDE can either be written in terms of the approximate
volatility process (0¢)o<i<r or in terms of its Markov representation. Thus, for ¢ € [0,T], the dynamic of
(S?)OStST is given by

ASP = [, SPdt + /D, S AW (t), 9)

but also by

vy + Z wvi S dWs(t), (10)
i=1

Sy = ju,Sidt +

on (0 F,(Fi)o<i<r,P), with S§ = sp and iy = r+ Ay =r+ A (Vo + > ", wivf ). In the same way,
denoting the approximate hedging process by (£]')o<i<7, we define the associated hedging portfolio (V;")o<i<r

satisfying the following SDE
AVt = r(Vi" = &Sy )dt + §dSy, (11)

n o __
0 = Vo,

on (Q,F, (F)o<t<r, P), where (§")o<i<r is admissible if (£}")o<t<7 is a progressively measurable process in
regards to F; such that E(fOT(éf)2(S{‘)2ﬁtdt) < 4o00. The approximate P&L is defined by
wp =V — Hp, (12)

with H} := h(S%}), a Fr—measurable square-integrable random variable. As the market is incomplete, there
exist payoffs for which

ﬂ(f?)ogtST € R, s.t. W% =0a.s.,
where R,, the set of all progressively measurable processes (£}")o<i<r With regards to F; valued in R such
that E(fOT(ff)z(Sf)2ﬁtdt) < 400. Thus, we introduce the approximate partial hedging problem that can



be written either by considering the dependence on the approximate volatility process (¥)o<i<r or the
dependence on its Markovian representation. In fact, by considering the dynamic (9) of (S}")o<i<r written
in terms of (#;)o<i<7, we define the stochastic control problem

50,000 = 0 B (LS. V) ) (13)
TERR
Considering now the dynamic (10) of (S])o<i<r written in terms of (vt)o<i<r, we have the Markovian
stochastic control problem

l’ﬂ’l’(so, Vo, UO) = 5”1272 ESO,VO,UO (L(h(S%L VYT“L>> (14)
+ n
such that, for vy = 0™,
ln,5 (50, 0, v0) = lnu (50, Vo, Vo).

Thanks to the approximation of the volatility process (6) and its Markov representation, we obtain a Marko-
vian framework in which we solve the stochastic control problem (14) using the principle of dynamic pro-
gramming. Nevertheless, before solving the control problem, it is interesting to consider the question of
convergence of the approximate solution I, ,(.) toward I(.). Indeed, without proof of convergence, solving
the approximate problem would be pointless, this is why we dedicate a section to this issue.

4 Convergence results

In this section, we prove a convergence between the approximate solution I, ,,(.) and I(.). The first step is
to prove, the weak convergence of the value at time ¢ € [0, T] of the approximate volatility process ¥ to vy.
To prove it, we rely on [1] and [2]. First, under specific assumptions on the weights (w;);=1,.., and mean
reversion terms (xi)izl,wn, we can prove that G converges to G in L[20,T]'

Assumption 2. Fix r, > 1 and suppose that the weights (w;);=1,... » and mean reversion terms (2;)i=1,....n
are given by

l—a _ 1 7(10‘_1)(1"""/2) .
w; = (rn )7‘ ,],,7(11—(1)17 2

T()I(2 - )

T

T ,1=1,...,n,

_lmarmmt ol
22— arh
with o := H +1/2 for H € (0,1/2) and (r,),>1 satisfying
rn 4 1, nln(r,) — oo,
as n goes to infinity.
Remark. As stated in [1], Assumption 2 is satisfied if we consider (r,,),>1 of the form
r, =14+ 10n*0‘9, n>1.
Therefore, without loss of generality, we consider this form of auxiliary terms in the numerical results.
Proposition 3. A(Lemma A.3in [1]) Suppqse that for allm > 1, (w;)i=1,....n and (z;)i=1,....n Satisfy Assump-
tion 2 and that G is defined by (5). Then G converges in L[2O,T] to G when n goes to infinity i.e.
1G = Gllgs,, 0.
as n goes to infinity.
Proof. We refer to [1] for the proof. O

Lemma 4. Assume thatn > 1, (w;)i=1,...n and (¥;)i=1,... n Satisfy Assumption 2. Let G'() be the approzimate
fractional kernel defined by (5), then there exist positive constants 6 and C such that

sup </Oh |G(s)|?ds + /OT_h |G(h +5) — G‘(s)|2ds) < Ch%,

n>1

foranyt,h >0 witht+h <T.



Proof. As (w;)i=1,....n and (z;);=1,... n satisfy Assumption 2, we can rewrite thoses parameters such that for

1=1,..,n,
n; 1 n;'
wj :/ Adx), z; = —/ x A(dz)
ny Wi Jyp

i—1

with 0}’ = rffn/ %, As ng # 0, the Assumption 3.1. in [2] is not satisfied and therefore the result of Lemma

5.2. in [2] cannot be directly applied. However, as mentioned in [1], the result of this lemma is deduced by
adapting the proof of Lemma 5.2. in [2] using the same small adjustments highlighted in the proof of Lemma
A3. in [1]. O

Based on Proposition 3 and Lemma 4, we now establish a weak convergence of the value at time ¢ € [0, T
of the approximate volatility process 7y toward v;.

Remark. In the subsequent results, the notation £, refers to weak convergence.

Theorem 5. Assume that n > 1, (w;)i=1,...n and (x;)i=1,..n satisfy Assumption 2. Let ((%)0§th>
n>1

be a sequence of unique strong solutions to (6) and suppose that the stochastic Volterra equation (1) with
fractional kernel admits a unique weak solution, then, ¥t € [0,T],

n
. i L
=1+ E WiV, = 1
i=1
as n goes to infinity.

Proof. The proof is similar to the proof of Theorem 3.5 in [2] and is an immediate consequence of Theorem
3.6. in [2] for one dimension. We need to check that the assumptions of the theorem are satisfied. By Lemma
4, we know that there exist positive constants § and C such that

sup </Oh IGi(s)2ds + /OT_h G(h +5) — G’(s)|2ds> <on,

n>1

for any ¢, h > 0 with ¢t + h < T. Thus, we just need to check that
T A
/ IG(s) — C(s)[2ds — 0, 76 — v
0

as n goes to infinity. The first convergence is obtained by Proposition 3 since assumptions of this proposition
are fulfilled, we know that G converges in L[QO 7 to G, therefore, we have that

T
/ |G(s) — G(s)]*ds — 0.
0
Similarly, the second convergence is direct since, by definition, we consider for all n > 1,
Vg = 1.

As the assumptions of Theorem 3.6 in [2] are valid for one dimension, we can conclude that  is tight for the
uniform topology and any point limit v is a solution of the Volterra equation (1). Thus, as we assume that
the stochastic Volterra equation (1) with fractional kernel admits a unique weak solution, we deduce that

L L
Vi — V¢,
as n goes to infinity. O

Now that we establish a weak convergence for the value at time ¢ € [0,7] of the volatility process, we
can go a step further and show that that value of the approximate processes Sj* and V;* converge weakly
respectively toward S; and V;.



Proposition 6. Assume that n > 1, (w;)i=1,...n and (z;)i=1,... n Satisfy Assumption 2. Let ((ﬁt)0<t<T>

n>1
a sequence of unique strong solutions to (6) and suppose that the stochastic Volterra equation (1) with frac-
tional kernel admits a unique weak solution. Consider the approzimate processes (S} )o<i<r and (Vi")o<i<r
satisfying SDEs (9) and (11) such that ¥t € [0,T], & = & a.s., then we have the following convergence
results

sp 5 s,
AN
as n goes to infinity.
Proof. The proof is provided in Appendix A. O

With Proposition 6, we have shown that the value at time ¢ € [0, T of the approximate processes converge
in law to the value at time ¢t € [0, 7] of rough volatility dependent processes. Using these results, we are now
able to show the convergence of the approximate solution to the solution of the control problem under rough
volatility. To do so, inspired by [9], we define I¢(sq, vo, vo) and 1" (so, 1o, vo) by

I (50, 70, %0) = Eay v g (L<h<sT>, vT@)))

1 (50,20, = Bup s ( LS, V™) )
such that
1(s0,v0,v0) = 51161%15(50,1/0,1)0),
ln.5(s0,0,v0) = &{‘ig%n lfln(so, Vo, Vp)-
We first consider a lemma before stating the convergence result we want to achieve.

Lemma 7. Assume that n > 1, (w;)i=1,...n and (;)i=1,...n Satisfy Assumption 2. Let ((l?t)0<t<T> a
n>1
sequence of unique strong solutions to (6) and suppose that the stochastic Volterra equation (1) with fractional

kernel admits a unique weak solution. Fiz admissible hedging strategies (& )o<i<t, (&§)o<i<r Such that

Yt € [0,T], & = & a.s., if the sequence <L(h(S§i)7 V{J)) is uniformly integrable, then
n>1

15, (s0, 10, v0) = 1(s0, v0, v0),
as n goes to infinity.
Proof. Using Proposition 6, since we assume that V¢t € [0,T], & = & a.s., we have that
sp 5 s,
VS,
as the loss function L(.) and h(.) are continuous, we deduce that

L(h(S3), Vi) £+ L(h(St), Vi),

and the uniform integrability of (L(h(SgE), V;f)) implies that

n>1

B( sy v ) - (2. vr) ),
as n goes to infinity. Thus we obtain that

16 (s0, 10, v0) — 15(0, 10, v0),

as n goes to infinity. O



We are now able to consider the statement of the desired convergence result.

Theorem 8. Assume that n > 1, (w;)i=1,...n ond (;)i=1,.. n Satisfy Assumption 2. Let ((ﬁt)0<t<T) a
n>1
sequence of unique strong solutions to (6), suppose that the stochastic Volterra equation (1) with fractional

kernel admits a unique weak solution and that the sequence (L(h(S%)7 Vi) is uniformly integrable. Let
n>1

(&" ")o<t<r be the optimal hedging ratio associated to the n—approzimate stochastic control problem (14)

with vg = 0™. For every € > 0, AN € N, such that ¥n > N,

|1(s0, v0,v0) — 1€ (50, 10, v0)]| < €,

i.e.
. n, *
nglfoo 15" (s0, 0, v0) = U(s0, v, o).
Moreover, for vg = 0™,
ngrfoo In,5(50,10,v0) = ngffoo Inw (80, V0,v0) = (50, 10, Vo).

Proof. Let fix £ > 0. Suppose that (£, *)o<t<r is the optimal hedging ratio associated to the n—approximate
stochastic control problem (14) with vy = 0™, as Vn > 1,

ln,5 (50, v0,v0) = lnu (50, Vo, Vo),

for vg = 0™, then we have that
Ln.5 (S0, v0,v0) = 18" (50, 0, v0)-

Using Lemma 7, we have that

nlgglo ln,5(80, V0, 0) = mlyllgloo 15" (50, V0, 00)

= lim lfny ) (807 Lo, UQ)
n—00

or equivalently

lim <ln79(50, vo,v0) — 187 (50, Vg,v0)> =0. (15)

n—oo

Therefore by definition of the limit, 3N; € N, such that Vn > Ny,

[ln,5(s0, v0,v0) = 15" (0, v0,v0)| < % (16)
Moreover, considering (g, g, vg) defined by
1(s0,v0,v0) := nlbrréo ln.5(S0,v0,v0) = nh_)rréo E?igfa" lfln (so,v0,v0),
thus 3N, € N, such that Vn > No,
1150, 0, 20) = bn,o (50, v0,v0) | < (17)

Note that since

1(s0,v0,v0) = Eirelga nh_{lgo Eso.v0.v0 (L(h(S?), V:,Tf)),

we have that
l(s0,v0,v0) > U(s0,10,v0)-

By choosing N := max(N;, N2), we have that for n > N inequalities (16) and (17) are satisfied. In this case,
we have that

(50, v0,v0) — 18" (50, 10, v0)| < |1(50,v0,v0) — 1€ (50, v0, 0)]

< 1U(s0,v0,v0) = ln,5(S0, V0, v0)| + |ln,+(s0, V0, v0) — 15" (s0, V0, v0)|

< <

o
o



Therefore, AN € N such that Vn > N,
(50, 0, v0) — 18" (50, 0, v0)| < €
or equivalently

nllgloo 1€ " (50, 10, v0) = 1(50, V0, v0)-

Moreover, using (15), we deduce that

ngffoo Inw (80, V0, v0) = nEIEOO In,5(50,10,v0) = ngffoo 15" (50, v0,v0)
= 1(80, Lo, ’U()).
This completes the proof as we have proved the two stated convergence results. O

These convergence results are crucial for the following. On the one hand, it means that the optimal
hedging ratio (£ *)o<t<7 associated to the n—approximate stochastic control problem (14) is e—optimal for
the original problem. On the other hand, we know that the solution of the approximate control problem
Iy (.) converges toward the solution of the initial control problem [(.). Therefore, thanks to these results, we
know that instead of solving the original non-Markovian problem, we can solve the approximate Markovian
problem with an error that can be relatively small if n is large enough.

5 Solution of the approximate Markovian problem

We have just shown that we can solve the optimal problem with a small error by solving the Markovian
problem. In this section, we thus solve this problem using classical dynamic programming techniques and more
precisely the Hamilton-Jacobi-Bellman (HJB) equation. The Markovian problem is equivalent to solving a
partial hedging problem in a multidimensional stochastic volatility environment. The partial hedging problem
under stochastic (one dimensional) volatility model has already been investigated in the literature by [34].
From [34], it follows that the problem requires solving a nonlinear partial differential equation and therefore
the solution cannot be reduced to an expectation by the Feynman-Kac theorem. In our multidimensional
volatility case, we will also observe that the control problem involves solving a nonlinear PDE making it quite
complex and not allowing to deduce an explicit form of the optimal solution. Inspired by [36], we propose a
dual control method to obtain approximate solutions of the problem.

Assumption 9. For the rest of the paper, we still assume that b(.) is Lipschitz continuous with b(0) > 0
and o(.) is n—Hdlder continuous with o(0) = 0, n € [1/2,1] but we additionally assume that these functions
satisfy sufficient conditions for the approzimate volatility process (0¢)o<i<r = (Vo + D sy Wit} )o<t<T tO
remain strictly positive i.e. fort € [0,T],

Uy > 0,

almost surely. As shown in Appendix B, this assumption is satisfied in the approximate rough Heston case

i.e. b(x) = k(0 —x) and o(x) = (V/x if

n
2k6 > 2 Zwi, vy > 0,

i=1

such that for alle >0, i € {1,...,n} and t € [0,T],

E(l{tgﬁ}wwéﬂ; ”““’) < E(l{@}ﬁ;m) (18)
with 7. :=min{t > 0: &, < e} and m := %
i=1 K3

For n > 1, the approximate partial hedging problem (14) involves solving a Markovian stochastic control
problem with value function of the form®:

In(t,s,v,v) ;= inf E(L(h(S%),Vf‘ﬂSt” =s, =0,V = v), (19)

EreRy,

6For ¢t = 0, we have I, (t = 0, 50,20, v0) = ln,v (S0, V0, v0).
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for (t,s,v,v) € [0,T| xRy x {v e R" : pp + Z w;v; > 0} x R and R, the set of all progressively measurable
i=1

=S
processes (£")o<t<r With regards to F; valued in R such that E(fOT(ff)Q(Sf)Qﬁtdt) < 400. As the stochastic
control problem (19) is Markovian, we can solve it using the HJB equation. Assuming that [, (¢, s, v,v) is
locally bounded on [0,7) X S and the hamiltonian associated to the problem (19) is finite and continuous on
[0,T) x S x R**" x Sy, classic results from dynamic programming (see Theorems 7.4. and 7.6. in [41])
imply that [,,(¢, s,v,v) is the viscosity solution of the following HJB":

—O4l,— 1nf {8 I 15 + Z&,ﬁl ( -z + b(z?)) + Oylp (rv +(p—r) gns)

i=1

1 ~ o2 2 n
+§ﬁssln st + &wl vst+ - Zzayﬂ,y n + Ogoly, €™ 05>

2131

03 Bualu V5 0(0) + 9> Oyl € ﬁsa@)} o,
i=1 i=1

(T, s,v,v) = L(h(s), v). (20)
Proposition 10. The primal optimal control (& )o<t<T is given by

Aol (e = 1)SP + Dsvln V:(SP)* + p D1y Qoo VULST 0(0)
Duoln U1 (S1)2

gn,* _
¢ =

with oy = vy + Y wiv} and the associated solution l,,(.) solves a nonlinear PDE of the form

2
<8vl" (i — )5 + Osplyn, 15> + pZLl Ov,vln Vs a(ﬁ))
0

ln swln oln - N =Y, 21
Ol + Ls p 0l + 0yl T0 20,1 737 (21)

1o(T) 5,v,0) = L(h(s),v).

with L, the generator associated to S™ and v.

Proof. To deduce the optimal control associated with the Markovian control problem, we solve the HJB
equation (20). The HJB equation has a solution if the infimum is different from —oo, it is the case if
Opvln > 0. In this case, assuming that J,,0, > 0, the infimum is obtained by the first order condition i.e.
by cancelling the derivative of the function with respect to £”. Therefore, the optimal £™ denoted by £™ * is
such that

Oyl £"05% + Oyl (1= )5 + Osiln 05° + p Y Dol Vs o) =0,
i=1
as v > 0, we deduce that
gn = Ol (f1 = 7)8 + Bsuly 05 + p 3L vl Vs a(f/).

Oply V52

Plugging the optimal control into the HJB equation and consider the generator £, defined by
n 1 1 n n n
—Aa 0 - 2 2/ = N
Ly :=0s [15s+ ;&,i ( — v + b(u)) + 5853 s + 5 ;; Ov,vy 0°(0) + p;&,ﬁ Vis a(D),

the optimal solution satisfies the nonlinear PDE given by

2
<avzn (ft = 7)8 + Ospln 082 + p Y iy Ouivly, ﬁsa(a)>

=0.
20yply V82

Ol + Ls 1y + Oyl v —

"For the sake of clarity, we write Iy, instead of I, (¢, s,v,v) and ¥ instead of vo + > 1, wiv;

11



O

The PDE satisfied by the optimal solution is nonlinear, therefore we cannot reduce [,, as an expectation
using the Feynman-Kac theorem. The dual problem is a way to overcome this nonlinearity problem as it
usually allows to transform a nonlinear PDE into a linear one. In our problem, the dual transformation
does not allow to obtain a linear PDE. Nevertheless, we still consider the dual approach as it will allow to
deduce approximate solutions to our problem by applying a dual control method. To this end, we apply the
Legendre-Fenchel transform to the problem (19) and consider the concave dual [, (.) of I,,(.) with respect to
the variable v as the additive inverse of the Legendre-Fenchel transform, such that

lAn(t7 $,v,z) = —sup{zv — I, (¢, s,v,v)},

=inf{l, (¢, s,v,v) — zv},

for (t,s,v,2) € [0,T] xS. We observe that as I,,(¢, s, v, v) is convex in v then Zn(t, s,V, z) is concave in z. We
also associate the terminal value to the dual solution I,, given by

(T, s,v,2) = L(h(s), z) = inf{L(h(s),v) — 2v}.

Based on the PDE satisfied by the primal solution I, (¢, s, ,v), we deduce the PDE satisfied by lAn(L‘7 SV, 2).

Proposition 11. The dual solution in(t, s,v, z) satisfies the nonlinear PDE

7 a > I 5. 224 7 N 7
0 =0, + Ls 1, — 20,1, + wz (b —71)*s°0.20, — 2z (L — 7) 8051,

1 n . 1 n o on ) ~
= 3l,.zlnz i —7r)o(v) — — o (D 2 1-— 2 6y,-zln8y,-zln7 22
7572 B 2 (= 1)o0) = o o0 (1= ) 303 0uchid, (22

i=1 j=1

with the associated terminal value 1, (T, s,v,z) = L(h(s), z).
Proof. The proof is provided in Appendix A. O

Actually, the dual solution is the solution of a new stochastic control problem. To prove it, we introduce
the dual process (Z;)o<i<r controlled by the dual control process (7y;)o<i<r and defined, for ¢ € [0,T1], by
the following SDE

(e —1)
dZt —’f'tht — Zt dW ( ) + ’}/tdBl,(t),
Vi,

n (9, F, (Fo<i<r,P). The dual control process (v;)o<i<r is admissible if (7;)o<i<7 is a progressively
measurable and square integrable process in regards to F;. We now define the dual stochastic control
problem. In addition, we show that there is no duality gap as the primal solution can be written in terms of
the dual solution.

Proposition 12. The dual solution in(t, s,V,z) is the solution of a stochastic control problem such that
In(t,s,v,2) = sup Eisu.- (ﬁ(h(S%), ZT)>,
Y+ €D

with D the set of all progressively measurable and square integrable processes in regards to Fy valued in R.
Moreover the optimal dual control (7] )o<i<T is given by

ol
o)1 —p Z i (23)
Proof. Assume that [%5(t, s, v, z) is defined by
1%(t, 5,1, 2) := sup Eysup.. (I:(h(S%), ZT)). (24)
Yt €D

12



We just have to prove that the HJB equation associated to l?fs matches the PDE (22). The HJB equation
associated to the control problem (24) is given by

. . . 1 . 0 —r)2
0= atz;‘js + [,S,f,lfl” —z razlffs + sup {&mlfjs <z2 7@ AQT) + ’72)
~ER 2 12

—,,1%% z(’&\kr)\fﬁs + Z 8y, 10 ( — pz (ﬂ\/}r) o(0)++/1— p270(0)> },
i=1 ¢

[bis(T, SV, 2) = f/(h(s), 2).

The supremum is different of +oo if azzifjs < 0. In this case, using the first order condition, the optimal dual

control (v;)o<t<r is given by
L VTP S, 00

BZZl’ly,‘LlS

Thus, [Zis is the solution of the following PDE

. . . 1 . 0 —r)2 .
0 =9,1b + Lo 055 — 2 rd 1% + §5zzlffsz2 7@ ﬁ;ﬂ) — .60 2(f—1)s

n o N 1 n n Ay - Ay -
_ 8u-zlbzs Py (M r) a(D) — _ 02 (1 — 2 ay-zlbzsay-zlbw7 25
>0l 02 L 00) = 01 = ) D sl (29)

i=1 j=1
We can observe that (25) is exactly the same PDE as (22) and as the two PDE’s have the same terminal

value, we can conclude by unicity that

Zn(t,s,u,z) = lAffs(t,s,V,z) = sup Etsu- (ﬁ(h(S%),ZT)).
vt €D

In this case, the optimal dual control is given by

V1= po(vy) Z?:l awzin

T 0.1,
O
Proposition 13. By choosing z(t, s,v,v) solution of
azin(t, s,v,z)+v=0, (26)
then .
ln(t,s,v,v) = l,(t, s,v, 2) + 2v, (27)

with z = z(t, s,v,v) the value at time t of the dual process (Z;)o<i<1. Moreover, the optimal primal control
(&" ")o<t<r can be expressed in term of dual solution such that, for t € [0,T],

n,x __ Z(t7 Stnavta V;n) azzin (/lt - T)Stn - 8szlAn l;t(Stn)z - PZ:L:l 6Vizin \/Z/TtSZL U(’}t)
gt - I/At(Sg«L)Q ’ (28)

with z(t, s,v,v) solution of (26).

Proof. Consider [%(t,s,v,v) to be the dual of the dual solution and defined by
lffs(t, $,V,v) := sup {[n(t, s,v,z) + zv}.
Our goal is to prove that the dual of the dual is the primal. Using the first order condition since Zn(t, $,V, 2)

is concave in z, we have that z(t, s, v, v) is solution of

O ln(t,s,v,2) +v=0, (29)

13



in this case %" reduces to

1%5(t,5,v,0) = [n(t, s,v,z) + 2v
with z satisfying (29). Now, we just have to prove that 1%%%(¢, s, v, v) = l,,(t, s, v, v). The proof of this equality
is similar to the proof of Proposition 11 this is why we have decided not to go into detail but it is easy to
show that 1%(t, s, v, v) satisfies the same PDE then the primal solution I, (¢, s, v, v) given by (21). Moreover,
the two PDEs have the same terminal value. In fact, we can rewrite the terminal value of 1% as

LMSUKSLU):sgp{igf(LUﬂs%v)—zv)-%zv}

= sup {zv —sup (ZU — L(h(s), U)) }

As sup, (zv — L(h(s),v)> is the Legendre transform of L(h(s),v), L***(h(s),v) is the Legendre transform

of the Legendre transform of L(h(s),v). By the Theorem of Fenchel-Moreau, as L(.) is a proper continuous
convex function, we obtain that _
L (h(s),v) = L(h(s),v).

Therefore, as I, (t, s,v,v) and lffs (t,s,v,v) satisfy the same PDE with the same terminal value, we conclude
by unicity that _
l’l:lls(t7 87 U? U) = ln(t7 87 V? U)'

Thus we obtain that given z(t, s, v, v) is solution of

O ln(t,s,v,2) +v=0,

then A

In(t,s,v,0) = l,(t, s,v, 2) + 2v.

Finally, for ¢ € [0,7T], using the form of the optimal primal control & * and the expression of the primal

value I,,(.) as function of the dual value [,(.), we deduce that

z(t, Sy v, Vi) azzin (fu —1)S} — asz[n ’/At(S?)2 - pZ?:1 8Vizin \/Z/Ttsf a(vy)
v (Sp)?

& =

O

As the primal solution and the optimal primal control are functions of the dual solution, we can derive
those expressions in the case where the dual solution admits a closed formula. However, in our case, we
observe that by switching to the dual problem, although the nonlinear term of the PDE is less important,
the PDE (22) satisfied by the dual solution I, remains nonlinear. Thus, as the nonlinearity problem persists,
we are not able, in general, to express the dual solution as an expectation. The partial hedging problem is
still complicated to solve. There is nevertheless a specific case for which a closed formula of the dual solution
can be obtained. Indeed, if we consider a linear payoff defined as

HEmeom .= o+ BSr, (30)

a power loss function and a rough Heston model then the solution of the dual problem is obtained by closed
formula. This particular case is a toy case since most of the payoffs are generally not linear functions of
the underlyings. However, it will allow to quantify the errors made when considering sub-optimal hedging
strategies deduced by the dual control method and therefore to benchmark this dual control approach.

Lemma 14. Suppose a power loss of the form L(h,v) = I%(h — )P with p =2k, k € Ny, then

L(h(s),z) = ,ézq — h(s) z,

with ¢ = p’%l.

Proof. The proof is provided in Appendix A. O
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Proposition 15. Consider a linear payoff HE™%" given by (30), a power loss of the form L(h(s),v) =
%(h(s) — )P with p = 2k, k € Ny, suppose that the volatility is modeled by a approzimate rough Heston model

i.e. b(z) = k(0—z) and o(x) = (/x with 2k0 > (2> | w; and vy > 0 such that (18) is satisfied. Therefore,

. q LA
ln(t,s,v,2) = —% exp (C’t + ZDzul) - (eT(Tt)oz + ﬁs) Z,

i=1
where Cy and (Dy);=1,., are time-dependent functions solution of Riccati ODEs given respectively by

1 n ) 1 n n ) )
OCc=ra = gala—1) 4 = 3 Di(k(0 =) —apdcn) — 5 35" DiDI (1 (1= ) ).

i=1 i=1 j=1

Cr =0,

and fori=1,..n

A Y . J T2, J Nk _ .
oD} =z; D} + w; g D (x + qpAQ) 2( w; E E D] D; (1 (1 )q— 1>
j=1 j=1k=1
1 2
D =0.

Moreover, the primal solution is given by
2(t, s,v,v)? L
ln(t7 s, V, U) =——"" €Xp (Ct + Z Dzyl> - Z(t’ SV, U) (eT(Tt)O‘ + ﬂS - U>7
q i=1

with

—r(T- =1 1 —~
2(t, s,v,v) = (U— (e (T t)a—|—ﬂs>) eXP(—C]_l(Ct+ZDtV ))

=1

and the associated optimal hedging ratio is such that

1 1
K —r(T—t) n __ ymn 7 D?
& = oo (e ase v ) (It m}j {)+5.

Proof. The full proof is in Appendix A. Here is a summary of the steps in the proof. Firstly, to obtain the
form of [,,(.), we just need to consider the following ansatz

. a LN
ln(t,s,v,2) = _Z exp (Ct + ZDzul) — (e_T(T_t)a + Bs) z,
q

=1

and plug it into PDE (22). Then using the form of [,(.) and the relation (27) between the primal and the
dual, we deduce the form of /,,(.). Finally, the form of the optimal heding ratio is deduced using the form
(28) of £ and the closed form of the dual solution. O

Remark. Using the same assumptions as Proposition 15 but instead of the rough Heston model, consider the
classical Heston model, i.e. n = 1, then C; and D; admit closed formulas, see for instance Appendix A in [36].

For linear payoffs, the nonlinearity of the PDE satisfied by the dual solution® disappears because the
Vega? is zero which is not the case for more general payoffs. As it is not possible to obtain explicit forms of
the primal value function and the optimal hedging ratios for general payoffs, we are interested in deducing
approximate solutions close enough to the optimal one. To approximate the solution of our problem in the
general case, we rely on the expression of the primal as a function of the dual. For that, define a set U C R
such that U is a convex compact subset of R with non-empty interior and denote U a set of progressively

8In the rough Heston case with a power loss function.
9Measure of option’s price sensitivity to changes in the volatility of the risky asset.
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measurable and square integrable processes valued in U such that & C D. Using the relation between the
primal and the dual solution, we deduce that

ln(t, s,v,v) = sup { sup Eisu.» <IA/(h(S§5), ZT)> + zv}

2 vt €D
> sup { sup By s . (ﬁ(h(S{,ﬁ), ZT)> + zv}. (31)
z ye€U

Based on inequality (31) and inspired by the dual control method stated in [36], we will define lower and upper
bounds for the primal solution of the Markov partial hedging problem. For that, for every fixed admissible
dual control (v;)o<i<7, we define

V(ts5.0.259) = Brae(LCH(SP 200)) ) (32)
We derive now a theorem that states how to deduce upper and lower bounds for the primal solution.

Theorem 16. Let U C D be a set of admissible dual controls and define f:(t, s,v,2) by

u .
L, (t,s,v,2) := sup Y(¢,s,v,2;7) < ln(t, s, v, 2).
YeEU

Therefore, defining I (t,s,v,v) by

24 U
L (t,8,v,v) :=sup {ln (t,s,v,2) + zv},
z
we have that
LY (t,s,v,0) < n(t,s,v,0).

U
Moreover, suppose that L, (t, s,v,v) is twice continuously differentiable, stricly concave and z(t,s,v,v) is the
solution of

U
0L, (t,s,v,z) +v=0. (33)
We define the primal control function by €4 (t,s, v, z) such that

2t 5,0,0) Ol (1= 1) — Dol 052 — p X0, 0,2l VD5 (D)

cU
t = 34
é—n( ’S’V7v) lf)sz ) ( )
with z(t, s,v,v) solution of (33). We consider the approximate hedging process
gt =8 St v, Vi) (35)

and the associated self-financing portfolio denoted by (V;”’M)OQST satisfying SDE (11) with €0 = &Y. If
we define

B (t,5,0,0) = Eysma (L(hw%), v;">“>)7

then the primal solution satisfies -
ln(t7 57 V? U) S ln(t) 87 V7 U)'

Therefore, we obtain lower and upper bounds for the primal solution such that
ﬁf(t,s,y,fu) < la(t,s,v,0) <M (t,s,v,0).
Proof. The proof is almost direct. Fix a set of admissible dual controls U C D, as

In(t,s,v,2) = sup Ei g, (i( h(S%), Zr(7) )),
Y+ €D

= sup Y(t,s,v,2;7),
v+ €D
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we immediately obtain that

u
L, (t,8,v,2) < 1,(t,s,v,2).

Moreover, we observe that

o~

ln(t, s,v,v) = sup {An(t, $,V,v) + zv}

The inequality of the upper bound is obvious since using the definition of the optimal solution,

ln (ta S, V, ’U) = ll’lf Et,SyVJJ (L(h(s’?‘)7 V'ZT’L)>

§{E€ERn

— Brvwa (L(h(ssm v *))

S Et,s,u,v (L(h<s%)7 V;"Lu))
= F;:(usauav)'

Therefore, we prove
f:(t,s,u,v) < Io(t,s,v,0) < H(t,s,v,0).

O

Remark. The way we define the upper bound is different than in [36]. We have made this choice in order
to prove a convergence result of the bounds toward the primal solution when considering large dual control
subsets U. Note also that the approximate hedging ratio (&' ’u)ogth defined by (35) has the same form
as the optimal hedging ratio (£, )<< defined in (28) with the difference that we consider the subset of
admissible dual control U instead of D.

Theorem 16 is important since it allows to approximate the primal by different sub-optimal choices of
dual controls and thus, enables to easily deduce sub-optimal hedging strategies that can be computed relying
on Monte Carlo simulations. Note that there is a wide range of possible subset choices, but depending on
the choice of the subset U, the computation time of the bounds can be quite substantial. We refer to [36] for
the algorithm allowing to compute the bounds via a Monte Carlo approach. In this paper, we decide to only
focus on a particular dual control subset that allows to obtain explicit formulas for the lower bound and the
approximate hedging ratio. We discuss later the choice of the dual control subset.

Theorem 16 introduces a sub-optimal hedging strategy associated with the approximate hedging ratio (&;” u)ogth
and the upper bound /% (¢, s, v, v) that can be implemented in practice and for which we can obtain a bound
on the error made by considering this strategy instead of the optimal since:

(L, s,0,0) — Lp(t, s,v,0)| < |IH(t,s,v,0) = H(t, s,v,0)]
= C%L.
In practice, by computing upper and lower bounds, we can deduce an upper bound on the error between the
dual control approximate solution and the optimal solution of the Markov problem. Therefore, it enables to
verify that the error is acceptable and that the proposed dual control method is relevant. Moreover, we show

that if we consider a set sequence of admissible dual control (I4;);en such that U; C U; 41 and lim; oo U; =D
then the approximate solution of the Markov problem also converges to the primal solution.

Proposition 17. Consider a compact set sequence of admissible dual controls (U;);en such that U; C Uiy

with lim; s oo U; = D. For n > 1, suppose that the sequence of functions (ln ()) 1s twice continuously
ieN
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€N

differentiable with second derivatives that converge uniformly in R and the sequence (L(h(S%), VTTL’ui))

is uniformly integrable, then Vt € [0,T],
lim |4 (t,s,v,v) —lffi (t,s,v,v)| =0,

1—+o00
_ Y
=001

lim “i(t,s,v,v) = 1,(t,s,v,0).

1.e.
i—o00
Proof. Consider a compact set sequence of admissible dual controls (U;);eny such that U; C U;4q1 and
i(t,s,u,v) toward Zn(t,s,u,v).

U
lim; ,1ooU; = D and fix n > 1. First, we can show the convergence of [,

In fact, as for i € N, U; C U;11, we have that Vt € [0, T,
i Uit ~D
L, (t,s,v,2) <L, (t,s,v,z) <l (ts,v,z2),

and as (U;)i=1,... n is a sequence of compact set, the infimum function over ¥; is continuous for ¢ € N. Thus

3
taking the limit of i — 400, we have that V¢ € [0, T],
U; ~
lim L, (t,s,v,2) = 1,(t, s, v, 2).
1—~400
In this case, we deduce the convergence of the lower bound of the primal solution toward the primal solution

since Vt € 0,77,
<sup {ZJ: (t,s,v,z) + ZU})

lim I (t = i
dm Lt s v) = m
U;
= sup{ lim [, (t,s,v,z) + zv}
P 71— +00

= sup {LL(t, s, v, z) + zv}
z
=1,(t,s,v,0).

It remains to show the convergence of the upper bound to the primal solution. For this purpose, we need to
show that the approximate hedge ratio converges to the optimal hedge ratio. As the sequence of functions

is twice continuously differentiable with second derivatives that converge uniformly in R, standard

ln'(.)>

(ul
ieN
result in Analysis states that V¢ € [0, 7],
N Ui n Ui = N
lim &t s,v,0) = lim = Ol (A= 7)3 = Ouchy Vji_ pLoin Ouicly Vb30(7)
i—~400 1——+00 vs
_z Ozl (1 —1)s — Dguly 5% — POy By, 2l D5 o(D)
N Us?
= 5:(t7 S) V7 v>7
with z = z(t, s, v,v) solution of
U;
lim 0,(, (t,s,v,z)+v =0.
11—

=9,1, (t,s,v,z)

Thus, since we have that
Ui £ )k
g L,
as ¢ goes to infinity, using similar arguments as for the proof of Proposition 6, we deduce that

. L
vt Sy
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as 1 goes to infinity. Moreover, as (L(h(S%), |74 ul)) is uniformly integrable, using similar arguments as
ieN
for the proof of Lemma 7, we obtain that, V¢ € [0, 77,

: U; _
1—13+moo Iyt s,v,0) = 1, (t, s,v,v).

We therefore conclude that V¢ € [0, T,
nglfoo <l74 (t,s,v,v) — ﬁ’f (t, s, V,v))) =1,(t,s,v,v) — (¢, s,v,v)
=0.
That concludes the proof since we have proved the stated proposition. O

The previous proposition shows that if we consider a large enough set of admissible dual controls, the
approximate solution converges to the primal solution of the Markov problem. In practice, we observe that
even if the set of admissible dual controls i/ is small, the error is small, which seems to show that the choice
of the dual control does not significantly impact the value of the primal solution.

Let’s go back to the original hedging problem under rough volatility, the initial control problem posed was
I(s0,v0,v0) = Eigz Esq vo.00 <L(h(ST), VT)>.

The proposed sub-optimal hedging strategy is (fZL’u)OStST associated with the approximate initial value
function % (sg, Vo, vo) defined by

l—l'r/L{(SO?VOva) = l—l»r/:(t = O,SOaVO;UO)a

with vg = 0™. It is a two-fold approximate solution, on the one hand by the Markov discretization of the
volatility process and on the other hand by the sub-optimal choice of the dual control. However, we can show
that the error with respect to the optimal solution of the initial problem can be small if n and U/ are large
enough, this is the purpose of the following proposition.

Proposition 18. Consider a compact set sequence of admissible dual controls (U;);en such that U; C Uitq
with lim;_, o U; = D. Suppose that the assumptions of Theorem 8 and Proposition 17 are satisfied. Ve > 0,
dN € N, such thatVn > N, M € N such that Vi > M,

|l(80,l/0,’l}0) — lzjl{i(SO,Vo,Uoﬂ <é€

and "
1(s0, 0, v0) — 1" (80, 10, v0)| < €,

with vg = 0™. It means that the approrimate hedging ratio (ft"’ui)ogth associated to 1Yi(so,vo,v0) is
e—optimal for the original problem.

Proof. The proof is almost direct. Fix € > 0, from Theorem 8, we know that 3N € N such that ¥n > N,
€
‘Z(SOa o, UO) - ln,u(507 Vo, 'UO)| < 5?
with vg = 0™, and

- €
|1(s0, 10, v0) — ¢ (s,v0,0)| < 7

Moreover, from Proposition 17, we have that Vn > 1, M, € N such that Vi > M,
. €
|ln,l/(507 VO? UO) - l—l;lll (507 VOv 'UO)| < 57

n, x

and since &' Ui £y &7 as 1 — 400, we deduce, using similar arguments as for the proof of Proposition 6
and Lemma 7, that Vn > 1, M, € N such that Vi > My,

n, * n, U; g
11" (50, 0, v0) — I ) (50, v0,v0)| < 7
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Therefore choosing M := max(M7, Ms), for vg = 0™, we know that Vn > N, IM € N such that Vi > M,

1(s0, v0,v0) — % (50, V0, v0)| =|1(50,v0,v0) — ln.u (50, V05 V0) + ln.w (50, Vo, v0) — 14 (50, Vo, v0)|
§|l(807 V07U0) - ln,u(307 Vo, U0)| + |ln,V(807V07UO) - 177/74[1 (801 V07UO)|
<e,

and

e Ui e

[1(s0,v0,v0) — 1 (50, 70, v0)| = [1(50, v0,v0) — 1€ (50, 0, v0) + 15" (50, 10, v0) — | (s, 0,v0)]

n, * n, * n, U;
< [U(s0,v0,v0) — 1 (s0, v0,v0)| + 11 (s0, 70, v0) — 157 (50, 0, 00)|
<e.

O

The result of Proposition 18 is of course a theoretical result. It is not necessarily satisfied if, for example,
we only consider a single set of dual control U and not a sequence of dual control sets. Nevertheless, if n and
the dual control set U are large enough then the error with respect to the original problem should be quite
small. In practice, for a fixed set of dual control U, the error is controlled by the number of factors n and
the gap CllfL between lower and upper bounds.

Appropriate choice of the dual control subset ¢/ C D

Now, we consider a particular subset of dual controls for which explicit formulas can be obtained. Thus for
the following, the dual control subset considered is defined as

U= {(’}/t)ogtST = (c X Zy X U(ﬁt)) ,celUC R} CD. (36)

0<t<T

We notice that the chosen form of the dual controls belonging to U is similar to the form of the optimal
dual control (23). This particular subset (36) enables to interpret the sub-optimal hedging strategy as well
as obtain closed forms for the lower bound and the approximate hedging ratio. First, assuming this subset
of admissible dual control, we observe that

f;f(t, S, V,0) = sup{ sup Y (t,s,v, z;7v) + zv}

z Yyt €U
= sup { max Y(t,s,v,2;¢) + zv} (37)
P ce
= max sup {Y(t, s,v,z;¢) + zv}. (38)
ceU 4

Defining, for c € U, [,,(t, s,v,v;c) by

L, (t, s,v,v;c) := sup {Y(t, sV, z;¢) + zv},
z
we have that
&L{(@ S, V, U) = én(t7 S,V,0; C*)
with

¢* = argmax L, (t,s,v,v;c).
ceU

In this case, the value at time ¢ € [0,7] of the sub-optimal hedging portfolio th,u is easily interpreted as

the price at time ¢ of a modified payoff. This is in line with Follmer and Leukert [19, 20| who present partial
hedging strategies as perfect hedging of knock-out options.
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Proposition 19. If we consider a subset of admissible dual control U of the form (36), for t € [0,T], if
z = z(t,s,v,v) solution of (33) with v=V,"", then

where (Q(c))cev called “risk-neutral” measures are P—equivalent measures such that, for ¢ € U, the processes
have the following dynamics
dS; = rSP + /i S AW (1),

r)

vt = ( — 2l + b(Dy) + o(y) ( - P(Mi/;t

dz, = 7 (( —r (ﬂtl)— n*, c202(ﬁt)> dt — (u\/_;;) AW (1) + c o (i) dBI) (t))

on a filtred probability space (€2, Fe), (.7:t (©) Jo<t<t,Q(c)), where .F,i@(c) is the canonical filtration of a two-

dimensional Brownian motion (WQ(C) BQ ) and WQ 9 — =y WQ ©) + /1 BQ(C . In particular, for a
power loss function of the form L(h(s),v) = l(h(S) —v)Pwith p=2k, k € No, the value sub-optimal hedging

portfolio at time t € [0,T] is given by

o= 23, (-0 (s 7))

+V1-p% 0(%)) )dt + 0 (D) dW2 (1), i =1,...,n

with ¢ = %

Proof. From the Theorem 16, we know, using (33), that, at time t € [0,7], z = 2z* = z(t,s,v,v) with
z(t, s,v,v) solution of

- _azf:(t7 S, V7 Z)a

Thus, by (37), we have that
Mt s,v,0) =Y(t,s,v,2% ¢ (29) + 2*v,

with

*(2) := Y(t ;).
c*(2) arg max (t,s,v,2;¢)

But using (38), we also have that
Mt s,v,0) =Y (t,s,v,2%(c*); ¢*) + 2°(¢*)v

with z*(c) solution of
v=-0,Y(t,s,v,z;c),

we conclude by unicity that, at time ¢ € [0,T], z = z* = z(t, s,v,v) = z*(c*) and ¢*(2*) = ¢*. Therefore, we
obtain, at time ¢ € [0,7] and for z = z*(c*) with v = V¥, the following relation

VY = 0B (ﬁ(h(s;;z), ZT(C*))
Using the theorem of exchanging expectation and derivative, we have that
V0l = B~ 0L, Z0())
=Eisu.: < — 0z, L(W(S}), Z7(c*)) x athT(c*)>.
But as, for ¢t € [0, 7], the dual control is given by v = ¢ X Z; X o(#), ¢ € U, we have that

= o) —r —(ﬂt_r) co(?,
dZi(c) = Zy( )( dt N dWs(t) + co( t)dBv(t)>
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and therefore, for ¢ € [0, T7,

. dQ(c)
=5 lF

Since (0“\/;), ca(Dt))

Girsanov’s Theorem, we can define P—equivalent probability measures (Q(c)).cy with change of measure

defined by 2| - such that

is a 2 dimensional vector of adapted and square integrable processes, using
0<t<T

w2 @) =aws() + LDy,
5 Vi
dBY) () =dB,,(t) — ¢ o()d.
Therefore, dynamics of processes under the Q(c)—measure are given by

dSp = rSp + /i S; AW 2 (1),

dv; = ( — xivy + b(1) + o (1) ( - Pw 1- P2ca(ﬁt)> >dt + o (0)dWE (1), i =1,...,n,
Vi
N 2
dZt_Zt<(_r+(ﬂt T)

—0 c%“"(m)) dt — P ) gt 1 e o()dBY (t))

Vi

are standard Brownian motions under Q(c¢)—measure with d(VV;YQ(C)7 W9(0)>t = pdt and

BX© is a standard Brownian motion, independent from WS(C) such that W = pr(c) +/1- B2,
In this case we have that

where Wg(c) , WP(C)

Moreover, if we consider a power loss, we know that

- Z3(c*
E(sp, o) = -2 — e
we deduce that in this case,

02, L(W(SE), Zr(¢")) = =237 (") — HE,

vt = ) (e (27 )

Therefore, we obtain that

O
Still assuming that the subset of admissible dual controls U has the form (36), we next show that, for the

rough Heston model, the lower bond as well as the approximate hedging ratio associated with a power loss
function have explicit forms.
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Proposition 20. Consider a power loss of the form L(h(s),v) = %(h(s) —v)P with p = 2k, k € Ny, suppose

that the volatility is modeled by a approximate rough Heston model i.e. b(x) = k(0 —x) and o(x) = (/= with
260 > (230 w; and vg > 0 such that (18) is satisfied. Moreover, assume that the subset of admissible dual
control is given by (36). Therefore Y (t,s,v,z;7y) defined by (32) is such that

1 c
Y(t,s,v,2;¢) = ——2z%exp(Cy(c) + ZDl E;@g l),( (=g »
q
where Cy(c) and (Dy(c))i=1,..n are time-dependent functions, solutions of Riccati ODEs given respectively by

0Cx(e) :Tq_%Q(q_l) (4% + ) ”O_ZDZ< +CICV0<_PA+ MCQC))
1 n n ) .
—5w¢*Y Y DiDi,

i=1j=1
Cr(c) =
and fori=1,...,n

. ) n . 1 n
j=1 J=1 k=1
1
— pWi q(q —1) (A% + *c?),
Di(c) = 0.

In this case, the lower bound satisfies
1
H(t,s,vv) = 3 2(t, s,v,v)? exp(Cy(c —I—ZDl )+ z(t, s,v,v) (v —E;@S( ,,)( _’”(T_t)H%)), (39)

with

1

s e (- (G +ZD W) x (o= BT om)) L o

Moreover, if z = z(t, s,v,v),
U
Ln (t,S,l/,Z) = Y(t,S7I/’Z;C*).

Proof. The proof is similar to the proof of Proposition 15 and is essentially obtained by using the Feynman-
Kac formula. First, using Lemma 14, we have that

Y(t,s,v,2;¢) = Ei 502 (ﬁ(h(S;i), ZT)>

1
= Et,s,u,z ( - 72’% - H%ZT>
q

1
= Et,u,z ( - Z’1q"> - Et,s,u,z <H%ZT> .
q

:=Y1(t,v,z) :=Ya(t,s,v,2)

Let focus on Y7, using Feynman-Kac formula, we have that

~ 2 n
0=0/Y1 -0, Y11z + %(9“3/1 22 ((Mﬁ’“) + 0219(2) + Z 0, Y1 (—zv; + k(0 — D))

+%ZZ W]Y1§V+Z&,Z Y; 2 < (ﬁr)<ﬁ+mc2ﬁc>,
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Suppose that Y7 has the following form

1 oo
Y1 = ——2%exp(Ct —|—ZD§VZ),
q

i=1

In this case, as we consider that ji = r + AP, we have that

0=Y; (atct +Y 0Dy + > Di(—awvi+ k(0 — ) + g%i > > Dpip]

=1 =1 1=1 j=1
1 . . N - i
—rq+ iq(q —1) (A2 + AP+ Q< — pAPC+ /1 — P2C2V0> ZDt)a
=1
as v = Vo + Z?:l w; Vi, we have

0 :<8tC’t + Z D; (Iﬁ:(a — ) + q( — pAr( ++/1— p2§2z/oc> ) —rq+ 1q(q —1) (A* + 2wy

2
i=1
+ %CQVO Z Z DiDi)
i=1 j=1
+ zn: v; (atD;j —2;D! —w;k zn: D! + Czwi% zn: Zn: DI DF
i=1 j=1 j=1k=1

T Swiglg — 1) (A% + ¢3C) + qu < —pAC+ V1~ p2C26> ZD{> >
j=1

2

We obtain that C; and (D});—; ., solve Riccati type ODEs of the form

0,Cy =rq — %q(q —1) (A% + vy — Z D; (/{(9 — ) + q( — pAvy( ++/1— p2C2z/oc> ) (41)

i=1
=5 > DD, (42)
=1 5=1
Cr=0
and fori=1,...,n,
i i =~ 1O
0D} =2, Dy + w; ZD{ (FL - q< — pAC+ /1 — P2C20)> _ C2w25 ZZD{D?
j=1 j=1k=1
1
- Swala—1) (42 + ), (13)
Dk =0.

Let now consider the second function Ys. Using the Feynman-Kac formula, we obtain that Y satisfies

o 2 n
0=0,Ys —0,Yorz+ %@ZYQ 22 <(N1>7") + 62C219> + ZainQ ( —xv; + k(0 — f/))

i=1

D 3D SLIRCYCES S D ( U }”Nﬁ mg>
i=1 v

i=1 j=1

1 = h—r
05Ys fis + =045 Yo 15> Oy, sYa sUCp — 05, Yo 2
+ 2,us+2 2 Us —|—; Y2 SUCp 22’\/55\5

Yo(T, s,z) = h(s)z.
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Suppose that Y5 has the form
Yo =g(t,s,v) 2

Therefore, we have that

O—Z(atg gr—l-zaulg(—ﬂw/z"'ﬁ' ) Zza”“ﬁgcy

i=1 11]1

+Zautg< _TC+V1_ CVC>+659M5+ aasgys

+ Z Dv,s9 80Cp — Osg (f1 — 7")8)-

i=1
The function ¢(t, s, v) satisfies the following PDE

O:&tg—gr—I—asgrs—i—Z@wg (—xivi+f£(9—ﬁ)+ﬁ§(—pA+ \/1_p2<c))

i=1

+ % Z Z B, g G0+ %8559 Ds? 4+ Z Oy,s9 SVop,

i=1 j=1 i=1
9(T,s,v) = h(s).

We deduce, using once again the Feynman-Kac theorem (this time in the other sense), that
glt,s,v) = B (e TV HE),

with under Q(c)—measure,

dS =Sy + /i Spaw (),
dvi = (— 2 (Vi — Vb)) + k(0 — D) + DC(—pA+ /1 — p2( c))dt + (VO AW, i =1,...,n,

where WS(C) and W2 are standard brownian motions under Q(c)—measure with d(Wg(c), W9(6)>t = pdt.
Finally, combining the different results, we obtain the annonced result

t,s,v

1
Y(t,s,v,z;¢) = ——2z%exp(Ci(c) + Z Dz EQ(C)( *T(T*t)Hﬁ z
q
Furthermore, as by definition,

1,(t,s,v,v;¢) = sup {Y(t, s,v,z;¢) + zv},

z

using the first order condition, we obtain that, given ¢ € U, the value at time ¢ of z(¢, s, v, v; ¢) satisfies

1

1 oo . L
cAtoswid e (- G0+ 3o DH) ) x (v - BALT0m) )
i=1
and then
1 c
L,(t s,v,v;c) = —gz(t,s,u,v;c) exp(Cy(c —i—X:DZ W) + 2(t, s,v,v;¢) (v Egg)g(e_r(T_t)H%).
=1

Thus, as
E’f(t,s,u,v) =1,(t,s,v,v;c"),

we deduce the annonced result. Finally, as in the proof of Proposition 19 , we show that ¢* = ¢*(2*) and
z(t, s,v,v;c*) = z(t, s,v,v), we conclude that if z = 2(¢, s,v,v) then

U
L, (t,s,v,2) =Y (t,s,v,2;c").
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Remark. Compared to the optimal solution in the case of linear payoff (see Proposition 15), we observe that
the form of the solution is the same, the only difference lies in the expression of the coefficients C; and
(DY)i=1...n- In the classical Heston model, i.e. n =1, then C; and D; admit closed formulas, see for instance
Appendix A in [36].

Proposition 21. Using the same assumptions as the Proposition 20 and denoting g(t, s,v) = E?S("V) (e7m(T=0HR),
the approximate hedging ratio §f’u defined by (35) is such that

n 1 n n 1 7
gt’u: VAtSn (g(t7St3yt)_‘/; ’u> (p (/‘Lt_’r pCVtZD )
t

+ Dsg(t, P vy) + 2 Z( g(t, St,ut)> (44)

where th,u is the value at time t of the self-financing portfolio associated to the sub-optimal hedging strategy.

Proof. The proof is simple and relies on the definition of the approximate hedging ratio and on Proposition
20. By definition, we have that

Zazzf: (A—r)s aszl s —py iy el \/>30()

052

g”/l{(t7 S’ V7,U) =

)

with z = z(t, s, v,v). With our assumptions, we know, by Proposition 20, that, for z = z(¢t, s, v, v),

1
f:(t, S,v,z) = —;zq exp(Ce(c*) + ZDl ( )(e_T(T_t)H%) z

U
thus, we can easily deduce the partial derivatives of the process [, (.) such that

n

0.0y = =29 exp(Cilc") + 3 Dy ') — glt, s,v),

=1

and
U 5 ;
0221, = — (g — 1)z % exp(Ci(c*) + E Dy(

U
azsén - - sg(t,S,V)

Gwif: = — 277 Di(c*) exp(Cy(c*) + ZDZ V') —d,,9(t,s,v),

therefore, the approximate hedging ratio process &Y = €4(t, S, vy, V/"Y) is given by

1 2
gy = — ( — (g —1) 2(t, S ve, VM) L exp(Cy(¢*) + ZDz (fig —7)ST + 0s9(t, ST v1) P, (S")
i (S)
T pCSy wZ( (570, VDI exp(Coe) + 3 DA ) + Dt 57,00 ) ). (45)
=1

Using the form (40) of the function z(¢, s,v,v), the approximate hedging ratio becomes

e = G (g(LSt,Ut)_Vt ,u> (p (g — 1) — CVtZD )
¢

#0h0(t57) + G0 3 (Auolt 51 )

That concludes the proof since we proved the announced result. O
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For the partial hedging problem in the rough Heston model with power loss function, the lower bound
LI{{() and the approximate hedging ratio &' U admit explicit formulas. In particular, we observe that & U
is split into three parts: the first part is linked to a sharpe ratio, the second part corresponds to the Delta
and the third part is linked to a Vega. Moreover, as the approximate rough Heston model allows a closed
form for the characteristic function of the log-price, it enables, using a FFT (Fast Fourier Transform) pricing
method, to efficiently compute the price but also the Greeks of vanilla options under the approximate rough
Heston model. Thus, for vanilla options, the lower bound as well as the approximate hedging ratio can be
quickly computed. Note that the characteristic function of the log-price is presented in the Appendix C.

6 Numerical results
In this section, we illustrate the partial hedging method discussed in this paper for the rough Heston model.
Without loss of generality, we consider the following parameters (under the real measure P) for the rough

Heston model:

r=002 A=1, Sy =100, vy = 0.09, § = 0.09, x = 2.95, ( =0.3and p = —0.7. (46)

Remark. With those parameters and T' = 0.25, the Feller’s condition for the approximate rough Heston
model (see Appendix B) is satisfied for different Hurst indexes H and number of factors n. For example, if
H = 0.1, the sufficient condition of strict positivity of the volatility is satisfied for all n < 20. Figure 1 shows
the region for which the Feller’s condition is satisfied as a function of the Hurst coefficient H and the number

of factors n.

Region where the Feller's condition is satisfied with respect to H and n
[

=== Limit points

120 ,'
f Feller's condition OK

100

60
¢

Figure 1: Region where the Feller’s condition is satisfied with respect to H and n for the approximate rough
Heston with parameters (46) and T' = 0.25.

As already mentioned, rough volatility models and their Markovian approximation, including the (approx-
imate) rough Heston model, allow to capture stylized facts observed on the financial markets. In particular,
in option pricing, they allow to represent the implied volatility smile as well as the ATM (at-the-money) skew.
Using the characteristic function of the log-price in the approximate rough Heston, we can price vanilla op-
tions using a FFT method. From these prices, we can deduce the implied volatility for several strikes and
time-to-maturity but also compute the ATM skew i.e. the derivative of the ATM implied volatility with
respect to the log strikes. As discussed in [1], the difference between the characteristics (implied volatility
smile and ATM skew) of the rough Heston and its Markov approximation can be negligible even with a
reduced number of factors (for example, n = 20). Thus, as n = 20 is sufficient for a relevant approximation
of the rough Heston model, without loss of generality, we take n = 20 for most of the numerical results re-
garding partial hedging strategies. For more analysis and discussions about the rough Heston and its Markov

approximation, we refer among others to [1, 2, 6, 18, 30].

27



6.1 Partial hedging of linear payoff

In this section, we consider the hedging of a linear payoff with a quadratic loss function. We take this toy
case because we have shown that with a quadratic loss, the approximate partial hedging problem is solved
with a closed formula. Thus, the objective of this paragraph is to check the convergence of the approximate
solution when n — 400 but also to verify that the lower and upper bounds of the optimal solution deduced
using the dual control method are close enough to this optimal solution. The linear payoff considered for the
following is _
Héznear —a4+ 6ST3
and its replication price at time ¢ € [0,T] is
Héinear _ efr(Tft)a + BSt
We will thus consider several initial values of the hedging portfolio such as
VE) < H(l)inea'r.

We first look at the convergence of the approximate optimal solution [, when n — +o0o. Figures 2 and 3
present the evolution of I, and £)” ™ with respect to n for different values of H'? and with Vj = 0.8 x Hi"e".
We observe that, as expected from the theoretical results, the approximate solution and initial hedging ratio
converge for different Hurst coefficients.

1, (Quadratic Loss) for Hy™" = a + 3 x Sp with Vj =0.8 x H'™™" (a =0, =1 and T=0.25)

=01
H=02
=03
H=04

ARN

Figure 2: Convergence analysis of [,, for quadratic loss and linear payoff with a =0, 3 =1 and T = 0.25

& " (Quadratic Loss) for Hy = a + 3 x Sy with V; = 0.8 x H™™ (a=0, 3= 1 and T=0.25)

Figure 3: Convergence analysis of )" for quadratic loss and linear payoff with « =0, 8 =1 and T = 0.25

=)
N

10Results are generated to check the convergence but we have to keep in mind that the sufficient condition of strict positivity
of the volatility is not satisfied for all n and H.



We next compare the optimal solution with the upper and lower bounds deduced by the dual control
method. As in the theoretical part, we consider dual controls of the form:

,Yt:CXthC\/;taCGU:R7 (47)

because it allows to keep closed formulas under the approximate rough Heston model. In this case, the
associated lower bound is given by (39) and the upper bound can be computed with the hedging ratio given

by (44).

[ Coef | H] 1, “ “ Abs. diff. [I, — | | Abs. diff. [/ —1,] | Abs. diff. [ — ] |
0.75 [ 0.1 [ 308.1899 | 308.1888 | 308.1925 1.11 x 1073 2.64 x 1073 3.71 x 1073
0.75 | 0.5 | 308.3811 | 308.3759 | 308.3853 5.26 x 1073 428 x 1073 9.42 x 1073
0.5 | 0.1 | 1232.7597 | 1232.7553 | 1232.7693 441 x 1073 9.62 x 1073 1.43 x 102
0.5 | 0.5 | 1233.5242 | 1233.5234 | 1233.5304 8.23 x 1014 6.21 x 103 7.45 x 1073
0.25 | 0.1 | 2773.7095 | 2773.6996 | 2773.7263 9.91 x 1073 1.68 x 102 2.67 x 1072
0.25 | 0.5 | 2775.4295 | 2775.4226 | 2775.4338 6.96 x 1073 4.32 x 1073 1.12 x 1072

Table 1: Comparison of the optimal solution, the lower bound and the upper bound for quadratic loss and
linear payoff with Vy = Coef x H{"" o =0, 3 =1and T = 0.25 (for H = 0.1: n = 20; for H = 0.5 :
n=1 w; =1and z; =0).

Table 1 compares the results for different values of V{. Firstly, we observe that the optimal solution,
the lower and upper bounds are very close, as we notice an absolute error that varies between O(10~%) and
0O(1072), this allows to validate the relevance of the bounds deduced by using the dual control method. We
also notice that the closer V; is to the replication price, the more the quadratic loss decreases and finally,
we observe that the quadratic loss is less when considering H = 0.1 compared to H = 0.5. This seems to
indicate that for a linear payoff, the rougher is the volatility, the lower is the quadratic loss. The orders of
the absolute errors between the bounds and the primal solutions are consistent with the order of the absolute
errors made in applying the dual control method to portfolio optimization problems as in [36, 37]. This
can be explained by the fact that the problem reduces to a portfolio optimization problem when considering
partial hedging of linear payoff. Indeed, assuming for simplicity that » = 0, we can easily observe that our
problem has the form of a portfolio optimization problem such that

1 r 2

ln(tv S,I/,’U) = lnf ELS,V,’U ( (04 + Bstn - V;t" + / (6 - §g)d52) )
EPERR 2 +

Therefore, we observe that in the case of a linear payoff, there is no stochastic target to reach, which is not

the case if we consider nonlinear payoffs like, for example, vanilla options.

6.2 Partial hedging of vanilla options

We now focus on more relevant payoffs, namely vanilla options. As for the linear case, we take a quadratic
loss function. Notice that we only consider Call options, but similar results can be deduced for Put options.
For this type of payoff, we cannot derive an optimal solution to the partial hedging problem, but by using
the dual control method, we can derive upper and lower bounds. To do this, for the same reasons as in the
previous section, we consider dual controls of the form (47). Moreover, as the characteristic function of the
log-price in the approximate rough Heston model is available, the lower bound as well as the approximate
hedge ratio are computed using a FFT method. For our numerical results, we decide to consider an initial
portfolio value Vj proportional to the Black-Scholes (BS) price of a Call option with as constant volatility,
the mean-reverting level of the rough model. Thus, we consider that

V() = C’oef X BSca”(O' = \/@)

Furthermore, as in [34], we benchmark the proposed partial hedging strategy with the optimal strategy
assuming a constant volatility model of the BS type. Notice that for the BS model, the optimal hedge ratio
denoted by ¢P5 associated with a quadratic loss has an explicit formula that is presented in the Appendix

D (see (55)) and has a similar form to & U except that it does not depend on the volatility process. Figure
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4 presents the lower bound _ll;f as a function of the number of factors n, for different values of H. As in the

linear payoff case, we notice a convergence as the number of factors increases.

14 for Hy= (S — K) , with Vy = 0.8 x BS,,u(V8) (Sy = 100, K = 100 and T=0.25)

082

u

088

H=0.1

e H=03

H=04

Figure 4: Convergence analysis for £ for quadratic loss and ATM call with Vj = 0.8 x BSeq(0 = v0) and
T =0.25.

Figure 5 compares the histogram of the simulated P&L generated by the sub-optimal strategy (&;" ,u) and
the benchmark strategy (££°, o = \/9) with a daily hedging frequency. We observe that the sub-optimal
strategy generates a more centred distribution with a thinner left tail and lower variance than the benchmark
strategy. This is also confirmed by Table 3 which shows, for different strikes and hedging frequencies, that
the sub-optimal strategy outperforms the benchmark strategy in terms of the variance of the P&L. Note
that in terms of P&L expectation, the benchmark slightly outperforms the sub-optimal strategy, but the gap
between the two strategies is not really significant, as revealed by Table 2.

P&L for ATM Call with V;, = 0.8 x B.Sr,,,u,-[\-""ﬂv] (Sp =100, K =100 and T= 0.25)

1 BS partial hedging strategy for L” Loss (¢")

"% mmm Sub-optimal partial hedging strategy for L* Loss (£, ')

o1

U
)

Figure 5: Histogram of the P&Ls associated to the sub-optimal strategy ( and the benchmark strategy
(PS5, 0 = v/B), ATM Call with Vy = 0.8 X BSeau(oc = v6), H=0.1, n =20, T = 0.25 and A, = 1/365.

| Strike | E(P&Ly) with & | E(P&Lr) with £ |

So —1.1376 —1.1284
0.9 x Sp —2.6539 —2.6413
1.1 xSy —0.0801 —0.0757

Table 2: Expectation of the P&Ls associated to the sub-optimal strategy (&' ,u) and the benchmark strategy
(€89, 0 = v/6) with Vy = 0.8 X BSeqy(c =+/6), H=0.1, n =20, T = 0.25 and A; = 1/365.
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Strike | A, | V(P&Ly) with &% [ V(P&Lr) with €5 | Rel. diff. |

So 1/365 1.0157 1.1520 13.42%
So 1/730 0.8456 0.9901 17.08%
0.9 x Sy | 1/365 0.7931 1.0756 35.61%
0.9 xSy | 1/730 0.6421 0.9553 48.78%
1.1 xSy | 1/365 0.9086 1.0588 16.53%
1.1x Sy | 1/730 0.7479 0.9031 20.76%

Table 3: Variance of the P&Ls associated to the sub-optimal strategy (&' ,u) and the benchmark strategy
(¢PS, o0 = V/0) with Vg = 0.8 x BS.au(0 = v0), H=0.1, n =20, and T = 0.25.

Table 4 compares the results for different values of V4. In contrast to the linear payoff, the gap between
the upper and lower bounds is more pronounced. There are several reasons explaining this. As the vanilla
options are nonlinear payoffs, the partial hedging problem cannot be reduced to a portfolio optimization
problem. Therefore, we have a stochastic target leading to a more noisy problem. In this case, we notice that
the approximate hedging ratio depends more on the choice of the sub-optimal dual control. In fact, in con-
trast with the linear case, we remark that the approximate hedging ratio (44) is affected by the choice of dual
control, notably through the risk-neutral measure Q(c*) used to compute the Greeks. The difference between
the bounds can also be explained by the tracking error i.e. the error made by not continuously hedging the
portfolio. Indeed, we observe in Table 5 that by increasing the frequency of portfolio rebalancing, the gap
between the bounds decreases since the variance of the simulated P&L decreases as the hedging frequency
increases (see also Table 3).

Benchmarking the sub-optimal strategy against the Black-Scholes strategy in terms of quadratic loss,
we observe at Tables 4 and 5 that the hedging strategy associated with the upper bound outperforms the
benchmark strategy, and the gap between the two strategies is much more pronounced when H = 0.1.
Thus, the rougher is the volatility trajectory, the worse the benchmark strategy performs compared to the
sub-optimal strategy.

| Coef [ H | B | K Ipsiva | Abs. diff. [ — Ef | Abs. diff. |45 — ]|

1T 01 0.0927 | 0.4659 | 0.5678 0.3732 0.1019

1 |05 0.0147 | 0.2601 | 0.2943 0.2454 0.0306
0.75 | 0.1 | 1.2929 | 1.5342 | 1.6358 0.2413 0.1016
0.75 | 0.5 | 1.2621 1.4210 1.4454 0.1589 0.0244

0.5 | 0.1 | 47731 | 4.9361 | 5.0357 0.1631 0.0996

0.5 | 0.5 | 4.7994 | 4.9231 | 4.9436 0.1237 0.0205
0.25 | 0.1 | 10.5916 | 10.6751 | 10.7555 0.0835 0.0804

0.25 | 0.5 | 10.6839 | 10.7528 | 10.7870 0.0689 0.0342

Table 4: Comparison of the lower bound, the upper bound and the benchmark (I, S(V0) with o = \/5) for

quadratic loss, ATM Call with Vo = Coef x BScan(oc =v0) , T = 0.25, A, = 1/365 (for H = 0.1: n = 20;
for H=05:n=1,w; =1 and 2; =0).
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| Coef | A | I} “ Ipsiva | Abs. diff. [IFf — ET| | Abs. diff. [l54.5 — K] |

1 1/365 | 0.0927 | 0.4659 | 0.5678 0.3732 0.1019

1 1/730 | 0.0927 | 0.3773 | 0.4831 0.2846 0.1058
0.75 | 1/365 | 1.2929 | 1.5342 | 1.6358 0.2413 0.1016
0.75 | 1/730 | 1.2929 | 1.4562 | 1.5549 0.1633 0.0987
0.5 1/365 | 4.7731 | 4.9361 | 5.0357 0.1631 0.0996
0.5 1/730 | 4.7731 | 4.8513 | 4.9598 0.0712 0.1085
0.25 | 1/365 | 10.5916 | 10.6751 | 10.7555 0.0835 0.0804
0.25 | 1/730 | 10.5916 | 10.6333 | 10.7143 0.0418 0.0813

Table 5: Comparison of the lower bound, the upper bound and the benchmark (I, S(VB) with ¢ = \/5) for
quadratic loss, ATM Call for different hedging frenquencies with H = 0.1, n = 20, Vi = Coef x BScau(o =
V6) and T = 0.25.

Finally, it is also interesting to study the impact of the correlation p on the hedging strategy. Figure 6
presents the impact of the correlation p on the bounds. We observe that the loss is reduced as p decreases
because the closer the absolute value of the correlation is to 1, the more the volatility risk can be hedged by
taking a hedging strategy on the underlying. We also observe that the relative difference between the upper
bound and the benchmark loss widens as the correlation decreases. This can be explained by the fact that
the closer the absolute value correlation is to 1, the larger is the difference between the approximate hedging
ratio &' " and the Black-Scholes hedging ratio £2°.

Comparison of bounds and benchmark for L loss with respect to p for Hy = (5p — K) , (S, = 100, K = 100 and T'= 0.25)

Relative difference between upper bound and benchmark for L7 loss with respect to p for Hy Sy~ K}, (85=100, K = 100 and T'= 0.25)

Figure 6: Impact of the correlation p for ATM Call with H = 0.1, n = 20, V5 = 0.8 x BSca”(\/g), A, = 1/365
and T = 0.25.

7 Conclusion

This paper discusses partial hedging strategies in rough volatility models. We formulate the problem as a
stochastic control problem but, due to the non-Markovian nature of the rough volatility models, this problem
is considerably difficult to solve.

32



Thanks to a Markov multifactor approximation of the volatility process, we introduce a Markov stochastic
control problem. We show, using convergence results, that, instead of solving the original problem, we can
solve the Markov problem with a small error. The optimal solution to this problem is characterized by
a Hamilton-Jacobi-Bellman (HJB) equation. However, even by switching to the dual formulation of the
problem, we need to solve a nonlinear PDE to obtain the optimal solution. Therefore, in general, we cannot
derive an explicit form of the optimal solution.

In order to obtain explicit hedging strategies, we introduce a dual control method. We derive lower and
upper bounds as well as sub-optimal hedging ratios for sub-optimal choices of dual control. Moreover, if the
subset of admissible dual controls is large enough, we show that the discrepancies between bounds and the
optimal solution are quite small. For a particular subset, explicit formulas for lower bound and sub-optimal
hedging ratio are deduced in rough Heston model with power loss function. Furthermore, in rough Heston
model, the sub-optimal hedging ratio exhibits a meaningful interpretation in term of Greeks and can be
efficiently computed using a FFT method for hedging of vanilla options.

Numerical results show satisfying results especially for linear payoffs hedging since errors between bounds
and optimal solution are of order @(10~3). For vanilla option hedging, the discrepancy between the bounds
is slightly larger, yet remains acceptable. This can be explained by the fact that the nonlinear payoff hedging
problem is noisier and that the sub-optimal choices of the dual control have more influence on the hedging
strategies than in the linear case.

In terms of future research, several promising avenues can be explored within the context of hedging
in rough volatility models. One potential direction involves investigating a backward stochastic differential
equation (BSDE) approach, building upon previous work [4], to obtain the optimal solution of the Markov
problem. Furthermore, considering a deep learning approach for solving the nonlinear partial differential
equation arising from the HJB equation, as explored by [39], could provide valuable insights. A comparative
study between the solutions obtained via these alternative methods and those derived from the dual control
method discussed in this paper would be of great interest.

Appendix

A. Additional proofs
Proof of Proposition 6

Proof. First, based on their SDE and provided that (S7)o<i<7 and (S;)o<t<r have the same initial value
So = S§ = s0, it can be shown that the processes are solutions of

t 1 t
5= s e [ o= grads+ [ ymaws(s)
0 0
t 1 t
5f—50xexp( [t yois+ [ ﬁsdws(s)),
0 0

on (Q, F,(Fi)o<i<t,P). By Theorem (5) and uniform integrability of (),>1, for ¢ € [0, T7,
E(ﬁt) — E(Vt),

as n goes to infinity. By applying Fubini’s theorem, we obtain that

t t
lim E(/ ﬁsds) = E(/ Vsds).

Therefore, by the definition of the stochastic It6 integral, we obtain that

/ odWs(s) £ / W (s

But since L? convergence implies convergence in law, we obtain that

/ rdWs(s) 5 / W (s).
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Moroever, using Theorem (5), we deduce that

t 1 r t
/ (fis — 50s)ds = / (1
0 2 0

Finally as the exponential function is continuous, we conclude that

exp (/Ot(u _ %yq ds+/ oA Ws(s) ) £, exp (/Ot(us - ;ys)ds+/0t \/zzdws(s))

and then .
S;ﬂ — St,

as n goes to infinity.

The proof of the convergence of (V")o<i<r is similar. For sake of simplicity, we only consider the case
where r = 0. In this case, as we assume V¢ € [0, 7], & = &, we have that

t t
Voot [ GnSids+ [ €ymS.aws(s
0 0
t t
Ve =+ [ Gnsids [ 6v/msiawse)
0 0
on (Q, F, (Ft)o<t<t,P). By Theorem (5), and Fubini’s theorem, for t € [0, T,
t
lim E(/ 5%55”(15) :E</ gfusssds)
n—oo 0
Therefore, by the definition of the stochastic It6 integral, we obtain that

/sﬁs AW (s /fﬁSdWsm

But since L? convergence implies convergence in law, we obtain that

t t
/ €N/ S AW s (s) S / Ea/Us S, dWs(s).
0 0

Finally, as
t t
/gsgssgdsﬁ/ €4 p1sSsds,
0 0

we conclude that .
Vit = Vi,

as n goes to infinity. O

Proof of Proposition 11

Proof. To deduce the PDE of Zn(t, s,v, z) using the PDE of [,,(¢, s, v, v), we use the following relations between
the primal and dual solution. We can remark that

Oply, = 2, Oppln = — lA
aZZlTL
sl
8 n—a ny as ln—_ szAn
B Dzl
aqln = 6SZ7L7 al/,vl = _avizAn
822 n

34



and

- 2
assln = 6zzlnassln _ (852171)
azzln
0alnBur, B — (8,200 (B, 21
ayil,jln = Kt (A i )( ' )
azz n
3,,isln _ azzlnal/isln - (?Szln)<al/1zln)
8zzln

Using now the PDE (21) satisfied by 1,,(.), we can easily derive that the PDE satisfied by [,,(.) is given by

~ ~ ~ 1 ~ ~
0 =0y, + Ls vl — 210,10, + ?2’2 (fi — 7)25%0..00 — 2 (1 — 1)80s21,

20s
1 n R 1 n n ) R
— Oy ly 2z (L —1)o(D) — — o (D)?(1 = p? Oy 1,0, .1,
\/5/0; 2ln 2 (1 )o () 991, ()( p);; 12tnOp; zln
Thus we just have shown that I,, satisfies the announed PDE and that concludes the proof. O

Proof of Lemma 14

Proof. The proof is simple and involves the first order condition since L(h,v) is convex with respect to the
variable v. By definition, the dual terminal value is such that

L(h(s),z) := iIgf{L(h(s), v) — 2zv},

in our case, it reduces to
. 1
L(h(s),z2) = inf{;(h(s) —v)P — zv}. (48)

Using the first order condition, we have that the optimal v is such that
—(h(s) —v)P™t =2 =0,

we easily deduce that

- 1 ) 1
Lh(s),2) = 2(=2)77F = 2(h(s) = (=2)77)
1 »
= —zp-1 —zp-1 — z h(s
p (s)
p—1 »
=— 271 — z h(s
, ()
=——29—2zh(s
. (s)
O
Proof of Proposition 15
Proof. From (11), we know that l,, satisfies the PDE (22). Let consider the ansatz
A 24 n o T
ln(t,s,v,2) = v exp (C’t + Z DZVZ> —(e_r( Do+ ﬁs) z, (49)
—_——

=l i=g(t,s)

::i},

35



with

Cr =0,
Di=0,i=1,...n
ot 5.) = 1"

such that

] 2 1 )
ln(T7 s, V, Z) = L(h(s), z) = _62(1 _ h(s)lmearz.

Plugging (49) in the PDE (22), we obtain

R n . n ) ) 1 n o n o
0=1} (BtCt + Z O Div; + Z Dy(—xwv; + k(0 — D)) + C2V§ Z Z D;D!

i=1 i=1 i=1j=1
1 . e 1 g N
—rq+ galg — 1) A% — gpAi¢y Dy — (1~ ,02)4“2”; > ZDiD§>
i=1 i=1 j=1

1
— 2z <3tg + 0sg f1s + iassg ps? — rg— (fr — r)sasg>,

equivalently, we have

11 ) 7 2 2
0= ln<3tC’t+ ElDt(l-@(GVo) qul/oC) + = 2 2 ng D]C Vo(l —(1- )1> —rq+ Eq(qf 1HA V0>
i= i=1j

n n

zlzyl(at wl<n+qu§>iD + w( —(1- >ZZDJD’“

j=1 j=1k=1
+ gwifJ(q -1) A2>
1 . 9 N
—z |0+ 0sgpus+ iassg vs” —rg—(ft —1)s0s9 |.
Using the definition of g(¢, s),we observe that

1
0¢g + 0sg s + 58559 vs? —rg— (it — 7)s0sg = 0.

In this case, the PDE reduces to

P ~ i L QX iy q 1
0=1. <8tCt + ZDt (n(@ — 1) — quV()C) + 3 ;;Dthgzz/o (1 —(1- p2)q_1> —rq+ iq(q -1) A21/0)

=1
+Z;Zui(8tD§—xiD§—wi<n+qug>ZDJ+ wz< — (1= p?)¢? )ZZDJDk
i=1 j=1 j=1k=1
1 2
+ §wiq(q —1)A%).

We obtain that C; and (D?);— .., solve Riccati type ODEs of the form

.....

1 7 2 q
8tCt7rqf§q(q71 I/OZD( — 1) quVOC);]ZlDDJC yo(l(lp)q_1>,
(50)
Cr=0
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and fori=1,...,n,

0,D} =; D} + w; »_ Di (H + quC> - Wi (C2 -(1- p2)42q> D;Df

=1 ¢—1 j=1k=1
1
- gwialg — 1) A% (51)
Di = 0.

Moreover, by (26), we know that the value of the dual process at time ¢ € [0, T] can be expressed in function
of (t,s,v,v) such that z = z(¢, s,v,v) with z(¢, s,v,v) satisfying

Oy, +v=0.

We easily deduce that

n
v=g(t,s) + 29 exp(C; + Z DivY),
i=1

and )
2(t, s,v,v) = exp (— q—il(ct + Z Diy’)) X (1} —g(t, S)) o (52)
i=1

Therefore, using the relation between the primal and the dual, we conclude that the primal solution is given
by
z(t, s,v,v)? o o (T—t
I(t,s,v,v) = Yy exp (Ct + Z Dzul> — 2(t, s,v,v) (e (Tt + Bs — 0)7
i=1
with z(t, s, v,v) satisfying (52). Let now focus on the expression of the optimal hedging ratio. For that, we
need to compute partial derivatives of I,,. Using the closed form of I, we deduce that

azin - _Zq_l eXp(Ct + Z Diyi) - g(tv 8)7
=1
and

— (g —1)27 2 exp(C; + Z DivY)

azzln =

=1
azs[n = - ﬁ
Doily = — 297 Dl exp(C; + Z Div'),

i=1

Plugging now these values in the expression of the optimal hedging ratio leads to

n, * 1 n n\qg— - ) ~ n ~ n
e =(—<q—1> 2(t, 87,00, V) exp(Cy + 3 Divd) (e — 1)) +/m(st)2

2
()

n

+pCSP Y (z(t, S v, Vi) Diexp(Cr + Y Dzug))> : (53)

=1 i=1

Finally, using the fact that Z; = z(¢, S}*, vy, V) with 2(¢, s, v, v) satisfying (52), we conclude that the optimal
hedging ratio is given by

1 1 S
(TR 77‘(T7t) Sn o V’n N o ~ D’L .
& 0SP (e a+ (S t ) (p—l(ut T) PCW;Zl ¢ )+ 8
That concludes the proof as we have shown all the stated results. O
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B. Feller condition in approximate rough Heston

Proposition. Assume that the approzimate volatility process (0y)o<i<r s modeled by a approzimate rough
Heston model with b(z) = k(8 — z), o(z) = (/x and suppose that (w;)i=1,...n and (z;)i=1,... n Satisfy As-
sumption 2. If 2k6 > (23" w; and vy > 0 such that for allt € [0,T], i € {1,....,n} and £ > 0,

E(l{t<r ywiity )> < E<1{t<7's}ﬁtm)’

2 «—n )
with 7. :=min{t > 0: 0, < e} and m := %W Then ¥Vt € [0, T,

Dy > 0,
almost surely.

Proof. Let € > 0 and, for t € [0, 7], denote 7. := min{t > 0: &y < e} and 7. At := min{7.,t}. Define a strict
positive constant m such that

and apply the Ito’s lemma to the function f(z) = x~™. In this case as

n
Uy =1+ E w;vy,
i=1

with fori=1,...,n
dl/f = < — CEiVZ + /{(0 — ﬁt))dt + C\/;tdWV(t)’

we deduce that

n

Te At )
N =y " = /0 mﬁ;(/\rzﬂ) w; ( — iy _pg + K(0 — ﬁTEAS))dS
i=1
1 TeNt (m+2) - 2
+ 5/ m(m + ]‘)AT As <2ﬁ75/\5 (sz> ds
0 i=1
Te AL
- / ?(X’i“”’CZw A
0
TeNL
—l—mmel/ v ds
n Te At 1/2
- mCZwi/ D7 (2w, (s)
0
+/ ( m(m + 1 CQsz mnG)Zwl T_(Arz—‘_l)d
0

Te AL n
+/ me (xz 2 AS)ﬁTE(A72+1)ds.
0 =1

=
Using the definition of m, we have that

Te At n 1
+/ me <£L'Zl/,,_ /\s)ﬁTs(/\n‘:-‘r ) ds.
0 =1

K2
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Taking now the expectation, we obtain

E( ><VO +ngwz/ (%"XZ)

¢
+/ minE<wi1{s§TE}1/gﬁs(mﬂ))ds
0

i=1

+ngwz/ ( TA5>

+ mZml/ E(1{5<7—E}ﬁ5_m>d8

e o) [ (o)

Using the Gronwall’s inequality, we deduce that

E(Z/T M) <yi™exp (m(HZwi + sz) t).
Finally, using the Markov’s inequality, we obtain that

P(r. <t)= P

with m > 0. Therefore we conclude that for ¢ € [0, 7],

lim P(7. <t)=0

e—0

and Vt € [0, 7],
Dy >0,

almost surely. O

C. Characteristic function of the log-price in approximate rough Heston

Remember that the approximate rough Heston volatility model is given by oy = vy + Y., w;v; where
(v}, ...,v1) is solution of the n—dimensionnal SDE defined by

t t
vi = —/ xivids —|—/ k(0 — Us)ds +/ CVDsdW, (s vy Ty (54)
0 0

i
vy =0,

Proposition. The characteristic function of the log-price in approzimate rough Heston is given by, for
te[0,7],

&(T,z) = FEy s, (exp(i x log(ST) )) = exp (C’t + Z Divi+ix log(S{‘)),

i=1

with for 0 <t < T, Cy and (D})i=1...n solve Riccati type ODEs of the form

,,,,,

. 1 , 1 =
8tC't:—7“zx+1/0<2 (A—f ) ZD Cuozx+m(9—y0))_§C2yOZZDfDi,

Cr=0
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and fork=1,...,n,

1 1. . . ) 1 ]
8th :kaf—ka (2x2 —(A- 2)zx) —wkZDg (PCZI—K> _ §<2wkZZDgDi
J

=1 j=11=1

Dk =0.

Proof. The proof is a direct application of Feynman-Kac theorem to Ey s, (exp(im log(S%) )) with SDEs
(10) and (54). O

D. Partial hedging in Black and Scholes framework

Proposition. Suppose that the risky asset (Si)o<i<r has the following Black-Scholes dynamic under the real
measure P
dSt = /Lstdt + O'StdWS(t),

the optimal hedging ratio associated to a power loss (EtBS)ogth 18 given by

1 -

ps = L (poiEy — v ) Yo 4 gy R, (55)
p— 1 O'St

with the “classical” risk-neutral measure Q such that under this measure

dS; = rS;dt + oS dW(t).

Proof. In Black and Scholes framework, the dual solution satisfies the PDE (22) that is linear (the derivatives
with respect to the volatility process disappear). Then, for power loss functions, we can easily deduce the
explicit form of the dual solution and, using the link between the optimal hedging ratio and the dual solution,
we derive the form the optimal hedging ratio (55). O
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