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Abstract

External beam radiation therapy is a standard cancer treatment that uses
a source of radiation to destroy the tumor. Proton therapy uses a beam of
protons to irradiate cancerous tissue. It offers a physical advantage over
conventional radiotherapy thanks to the very localised dose deposition of
protons within the body. This decreases the risk of side effects because the
dose delivered in the surrounding healthy tissue is lower. However, it also
means that it is highly vulnerable to uncertainties. A variety of geometrical
uncertainties may affect the accuracy of photon and proton therapy, such as
respiratory motion, tumor delineation or inter-fraction setup errors. Those
inaccuracies are generally overcome by applying safety margins around
the target, but larger margins result in increased irradiated healthy tissue.
Modern radiation therapy is generally performed using daily image guid-
ance to reduce the uncertainty of overall tumor targeting. However, these
technologies are expensive and require the installation of new dedicated
devices, not all of which is suitable for proton therapy. The majority of ra-
diation therapy treatment rooms are currently equipped with a projection
radiography system. Adaptive radiation therapy is another modern ra-
diation therapy technique that uses imaging information acquired during
treatment to re-plan the treatment plan in order to improve target coverage
and reduce treatment toxicity. However, the decision to re-plan is made by
the radiotherapist and is subject to inter-physician variability.

In the context of real-time tumor tracking during treatment delivery,
this thesis explores the use of artificial intelligence to reconstruct a 3DCT
image from a fluoroscopy image. This research is motivated by the ease
of acquiring a x-rays projection in the treatment room, and the need to
have a 3DCT image to compute the radiation dose deposition. The recon-
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⋆ | Abstract

structed 3DCT image can be used for several purposes: give a feedback to
the machine on the 3D positions of the tumor and internal organs, and/or
to compute the radiation dose delivered to the patient. The radiation dose
can either be given as feedback to the machine or be used by the radiother-
apist to decide whether re-planning is necessary.

The research approach taken in this thesis can be divided into three
main contributions. The first contribution implements a data augmenta-
tion tool to overcome the lack of medical data available to train and val-
idate neural networks. The second contribution focuses on the design of
a methodology for reconstructing a 3DCT image from a projection radiog-
raphy using a patient-specific training of a convolutional neural network.
This contribution assesses the quality of the reconstructed images using
similarity metrics. The third contribution deals with the use of these im-
ages in a proton therapy treatment. To this end, the delivery of a treatment
plan on reconstructed 3DCT images is simulated. In each of these last two
contributions, a base case and two variants are studied. The aim of the
variants is to evaluate and compare the robustness of different training
methods to events that may occur in the clinic, such as a change in layout
and a change in image acquisition time.
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Introduction

Cancer is a pathology characterised by a mutation in a cell leading to the
uncontrollable growth of abnormal cells. This mutation is due to a genetic
instability that results in a loss of cell cycle control, insensitivity to apop-
tosis or abnormalities in the DNA repair process. This transformation can
start in almost any organ or tissue of the body, leading to a specific type of
cancer. Carcinoma is the most frequently diagnosed type of cancer and re-
sults from the development of a tumor from the cells of the epithelium.
Leukemia is a blood cancer caused by the growth of white blood cells.
Lymphoma is the cancer affecting the lymphocytes and targets the lymph
nodes, increasing their sizes. Sarcoma is the cancer arising in connective
tissues such as bones, muscles, blood vessels or cartilages [SMNJ23].

Most common cancer sites differ for men and women. Among cancers
diagnosed in women, breast cancer accounts for 29.4%, colorectum cancer
for 12.4% and lung cancer for 9.1%. For men, prostate cancer represents
22.6%, lung cancer 13.8% and colorectum cancer 13.5% [EC]. According to
World Health Organisation (WHO) in [WHOa], there are around 20 million
new cases of cancer and 10 million deaths every year due to this disease,
making it the second leading cause of death after heart disease [FEL+]. The
number of cancer cases is predicted to increase by around 60% over the
next two decades, further straining health systems, people and commu-
nities. It is estimated that the global burden will reach around 30 million
new cancer cases annually by 2040, with the largest increases occurring in
low- and middle-income countries. However, unlike other leading causes
of death, the cancer death rate continues to decline, with an overall reduc-
tion of 33% since 1991 [WHOb].

| 1



I | Introduction

The significant drop in the cancer mortality rate is the result of many
years of research, which have led to the development of several types of
treatment to cure the disease. Figure I.1 highlights the different types of
treatment and their main characteristics. Hormone therapy stops or slows
the development of cancer cells that use hormone to grow [AS16]. Surgery
removes a part of the tissue affected by cancer [Ben14]. Bone marrow trans-
plantation does not act directly against cancer. Rather, it restores the ability
of the body to produce new blood cells after treatment with high doses of
chemotherapy or radiation [WPZ06]. Chemotherapy administers a drug
by an intravenous way to destroy cancerous cells by preventing their di-
vision and eliminating them from the whole body [ADC+23]. Targeted
therapy targets proteins that control the division, growth and spread of the
cancer cells [Shu22]. Radiation therapy irradiates the tumor to destroy the
DNA of cancer cells and stop their proliferation [BLYY12]. Immunother-
apy acts on the immune system to fight cancer [LYZ+22]. Surgery and
radiation therapy are local treatments used to target a specific part of the
body, whereas other treatments are systemic and affect the whole body.
The most commonly used treatment methods are surgery, chemotherapy
and radiation therapy, with usually a combination of them [atNIoH].

CANCER 
TREATMENT 

OPTIONS

Hormone therapy

Surgery

Bone marrow 
transplantation

Chemotherapy

Targeted
therapy

Radiation
therapy

Immunotherapy

Fig. I.1 Different methods commonly used to treat cancer.

This thesis focuses on the use of radiation therapy in the treatment of
lung and liver cancer. Today, around 40% of lung cancers and more than
50% of liver cancers are treated with radiation therapy, making it an in-
dispensable component of comprehensive treatment. Besides, it offers a
3-year survival rate that is higher than surgery [CCD20]. This is made
possible by medical physicists, who optimise the treatment plan in order

2 |



Challenges | I.1

to deliver the prescribed dose to the target, while minimising the radia-
tion dose delivered to organs at risk and surrounding healthy tissues. Spe-
cific strategies had to be deployed in the traditional radiotherapy workflow
to consider the internal anatomical deformations generated by the breath-
ing of the patient and ensure adequate target coverage through successive
treatment sessions. These strategies are generally classified in two cate-
gories: off-line techniques and on-line techniques. Off-line techniques are
all methods used before the treatment plan is delivered, whereas on-line
techniques are all methods used during the delivery of the treatment plan.
Among the on-line techniques, motion tracking consists in tracking the tu-
mor movement in real-time and adapting the beam delivery accordingly
in order to minimise the zone irradiated around the target. Two types of
tumor monitoring are possible and available in the treatment room: direct
monitoring based on imaging or indirect monitoring based on an external
surrogate. Different image modalities exist for daily imaging. However,
some require the installation of new, expensive dedicated devices or are
not compatible with proton therapy, a particular type of radiation therapy
that offers a very localised dose deposition within the body. This thesis
focuses on projection radiography, which has the advantage of being al-
ready available in the majority of photon and proton therapy treatment
rooms. However, this irradiating imaging modality only provides a two-
dimensional image, on which it is difficult to localise the tumor without
the use of a marker. Therefore, this thesis explores the use of artificial in-
telligence to reconstruct a 3DCT image from a fluoroscopy image.

I.1 Challenges

Although radiation therapy has been used for decades to improve the lot
of patients with thoracic cancer, there are still many areas where the treat-
ment can be improved.

Acquiring enough 3DCT images of the same patient is impossible. Com-
puted tomography is a medical imaging modality that allows to observe
the inside of the body. However, this modality uses x-rays, which have the
disadvantage of being irradiating for the patient. The ALARA precaution-
ary principle has therefore been defined to ensure that human exposure to
radiation remains "as low as reasonably achievable" [HB05]. It is therefore
not permitted to acquire a large number of 3DCT images of the same pa-
tient. This is a major problem for this thesis and other research works, as

| 3



I | Introduction

all artificial intelligence algorithms require a large number of data to train
and validate the neural network.

Tracking the movement of the target with real-time 3-dimensional image
is limited. A number of specialised equipment have been developed in
recent years to enable real-time 3D image-guided radiation therapy. How-
ever, common to all of these approaches is the need for dedicated devices to
add to or replace standard-equipped radiation therapy systems. Real-time
2-dimensional image-guided radiation therapy with implanted markers
has been implemented on standard-equipped linear accelerators. This is
mainly based on room-mounted x-rays imagers, which enable fluoroscopy
imaging [KNO+18].

Guaranteeing an unchanged anatomy of the patient during treatment is
complex. Immobilising and positioning the patient on the treatment couch
is essential to ensure that the dose is delivered as planned. In-room imag-
ing technologies enable evaluation and correction of setup errors, anatomic
changes related to weight loss, or internal organ motion. However, posi-
tion changes are typically restricted to simple translational adjustments as
most linear accelerators are not equipped with rotational adjustment sys-
tems [RBW11].

Deciding whether re-planning is necessary is difficult. The aim of adap-
tive radiation therapy is to adapt treatment plans to accommodate during-
treatment anatomical changes due to weight loss, tumor regression and/or
diminution of the volume of surrounding healthy tissues and organs at
risk. The difficulties of decisions on re-planning arise from a range of fac-
tors such as uncertainty in treatment response and inter-patient hetero-
geneity. Clinical decisions are also primarily influenced by the professional
experiences of the physician, which may result in inter-physician variabil-
ity [NSJ+23].

Measuring the dose actually delivered during treatment is tricky. It is
necessary to accumulate the dose delivered to the target and organs at risk
as treatment progresses in order to guide decisions on treatment plan adap-
tation. This is achieved by non-rigidly aligning the daily cone-beam com-
puted tomography image with the planning CT. However, non-rigid reg-
istration methods are deterministic and ignore uncertainties, which could
lead to errors in the dosimetric evaluation [RBW11].
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I.2 Contributions

In the previous section, five limitations of the current radiation therapy
workflow were described. In this thesis, we attempted to remedy these
major issues in radiation therapy through a number of contributions.

Implementation of a data augmentation tool. We propose a data augmen-
tation tool to create a database of sufficient size for training and validating
neural networks. This data augmentation tool requires the acquisition of
a 4DCT and generates new 3DCT images of a patient representing intra-
and inter-fractional anatomical deformations. This data augmentation tool
is implemented in an open-source treatment planning system for research
in proton therapy, OpenTPS1.

Patient-specific 3DCT reconstruction from a single x-rays projection us-
ing a CNN for on-line radiotherapy applications. We propose a method
able to reconstruct a 3DCT image from a single digitally reconstructed ra-
diograph by means of patient-specific training of a convolutional neural
network. Through neural network inference, this method provides a real-
time volumetric image in the treatment room. In addition, this method
does not require implanted markers to visualise the tumor as the computed
tomography modality provides relatively good soft tissue contrast.

Robustness to changes in layout and in image acquisition time. We pro-
pose strategies to train the neural network able to counter errors in ma-
chine positioning, or to deal with during-treatment anatomical deforma-
tions.

Dosimetric evaluation of the synthetic 3DCTs. We propose a dosimetric
evaluation of the synthetic 3DCTs reconstructed using the patient-specific
trained neural network. This evaluation includes a simulation of the deliv-
ery of a treatment plan on the synthetic 3DCTs and provides quantitative
metrics on the accumulated dose to help physicians make a decision on re-
planning. The use of the synthetic 3DCT images has the major advantage
of eliminating the errors caused by non-rigid registration algorithms.

1http://www.opentps.org/
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I.3 Outline of the thesis

This thesis is divided into six chapters. The first two chapters are back-
ground chapters that lay out the theory and state-of-the-art methods. All
the tools required to understand this thesis are presented in the third chap-
ter. The next three chapters are based on peer-review articles that are either
published or submitted. A list of publications is given at the beginning of
the manuscript. Figure I.2 gives the organisation chart of the thesis. It high-
lights the different chapters with their main topic and how they are related
to each other in the general context of this work.

Chapter 1 gives some background on radiation therapy. The first part
of this chapter describes the radiation therapy treatment workflow. The
second part presents modern radiation therapy techniques. The third part
explains the characteristics of proton therapy. The last part of this chapter
discusses the particularities of mobile tumors as well as the motion moni-
toring and mitigation techniques currently in use.

Chapter 2 gives some background on deep learning. The first part of
this chapter presents the components needed to build a neural network.
The second part explains the main steps involved in the training of a neu-
ral network. The last part of this chapter focuses on the use of artificial
intelligence in radiation therapy and discusses the motivations, challenges
and areas of application.

Chapter 3 presents the resources required to produce this thesis. The
first part of this chapter defines the general context behind this work. The
second part presents the medical imaging modalities involved and details
the data augmentation tool developed for this thesis. This part is based on
a paper published on arXiv [WDSJ+23]. The third part explains the fea-
tures of the neural network. The last part of this chapter focuses on the
treatment plan optimisation.

Chapter 4 details the patient-specific method able to reconstruct a 3DCT
image from a single x-rays projection. Image quality metrics are used to
assess the accuracy of the method. This chapter is based on a published
article [LDSM23], and additional analyses are provided.

Chapter 5 discusses variants in the patient-specific 3DCT reconstruc-
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tion method. This chapter is divided into two parts. The first part assesses
the robustness of the method to changes in layout. This analysis is based
on a conference paper [LDSM22a]. The second part assesses the robust-
ness of the method to changes in image acquisition time. This analysis is
adapted from a submitted paper.
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Fig. I.2 Organisation chart of the thesis. It highlights the different chapters with
their main topic and how they are related to each other in the general context of
this work.
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Chapter 6 evaluates the dosimetric accuracy of the synthetic 3DCTs.
The impact on using a synthetic 3DCT image on the estimate of the re-
quired proton energy and on the treatment plan delivery is studied. This
chapter is adapted from a submitted paper.

Finally, the thesis is concluded in the last chapter with a review of the
contributions to the field of radiation therapy and a discussion on the pos-
sible application scenarios.
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An introduction to adaptive
radiation therapy for mobile

tumors

This chapter is inspired by the course of John Lee, Edmond Sterpin and Guillaume
Janssens on proton therapy given at UCLouvain (LGBIO2070 - Engineering chal-
lenges in proton therapy) [LSJ20]. This chapter contains mainly theoretical sec-
tions, experienced authors can skip to the next chapter.

Radiation therapy (RT) is involved in about half of the cancer cases. It
uses ionising radiations such as x-rays, gamma rays, electrons or protons
to destroy or damage cancer cells. The ionising radiations carry enough
energy to damage the genetic material of cancer cells, leading to the in-
ability of cells to divide and proliferate. The energy deposited in tissues
during those interactions is called the absorbed dose and is expressed in
the unit of Gray (Gy). This unit represents the energy (Joule) absorbed
per unit of mass (kg). Radiation therapy can be delivered to patients in
three ways. Brachytherapy uses a radioactive source inserted in the body
at the site of the tumor to destroy cancer cells. Systemic radiation uses
a radioactive drug administered by infusion or orally, which circulates in
the body, locates the tumor and kills cancer cells. External beam radiation
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therapy (EBRT) uses a machine that directs high-energy rays from outside
the body towards the tumor. The radiation therapy technique studied in
this thesis is EBRT. This is the most common form of radiation therapy and
involves targeting the tumor with ionising radiation while the patient is
immobilised on a couch.

1.1 Treatment workflow

The external beam radiation therapy workflow is presented in figure 1.1.
It aims at achieving the prescribed dose to the tumor while respecting the
constraints on the organs at risk (OARs). It consists of five steps that are
explained in the following sub-sections.

Treatment 
deliveryImaging Contouring and 

prescription
Treatment 

optimisation

30x

Treatment planning 1x
Quality assessment 

and treatment 
verification

Fig. 1.1 The radiation therapy workflow is composed of 5 main steps: 1) imag-
ing, 2) contouring of the organs and dose prescription, 3) treatment plan optimisa-
tion, 4) quality assessment and treatment plan verification, and 5) treatment plan
delivery.

1.1.1 Imaging

The first step of the radiation therapy workflow consists of the acquisi-
tion of a medical image, a computed tomography (CT) scan. This image
is acquired for treatment planning, and is therefore called planning CT. To
produce this image, the patient is placed on the couch in the same position
he will remain throughout the treatment. Some equipment may be used to
support the patient in the right position, such as chest board, neck rest or
arm pole.

1.1.2 Contouring and prescription

The second step of the radiation therapy workflow consists of the delin-
eation of the target contour and organs at risk (OARs) contours on the
planning CT scan by radiation oncologists. This phase is time-consuming
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as it is performed by hand by physicians on a contouring software. Dif-
ferent target volumes encompassing the tumor are defined to account for
different types of uncertainty. These are visible in figure 1.2. The gross tu-
mor volume (GTV) is the tumor visible on the planning CT and is manually
contoured by the physician. The clinical target volume (CTV) extends the
GTV to include the possible infiltration of the tumor cells into surround-
ing tissues. If the tumor is located on a mobile organ, motion margins
extend the CTV to cover the movement. The internal target volume (ITV)
is the union of the CTVs defined in all breathing phases of the 4DCT scan
(3D + time) acquired during the imaging step. Finally, the planning target
volume (PTV) considers setup margins to include uncertainties in patient
position. It extends the ITV in case of a mobile tumor, or the CTV in case
of a static tumor.

GTV

PTV

ITV

CTV

MM

SM

Fig. 1.2 Representation of the different target volumes. The GTV is visible on
the CT scan and is manually delineated by a physician. The CTV includes tumor
spread, the ITV covers motion of the tumor if located on a mobile organ and the
PTV encompasses setup errors. Image adapted form [ASH+17].

Once the target volume and organs at risk have been contoured, the on-
cologist determines the dose to be prescribed in the target volume and the
maximum permissible dose in the surrounding OARs. In general, these
doses are described as inequality constraints based on the mean, the maxi-
mum or the minimum dose in the volumes of interest. The dose prescribed
by the radiotherapist depends on the type and stage of the cancer to be
treated.

Besides, it has been shown that healthy tissue has a greater capacity for
regeneration than tumor cells and that cell survival is lower when a dose
is delivered in a single irradiation session than when the same dose is de-
livered in several irradiation sessions. In order to preserve healthy tissue,
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the dose is delivered to the patient in several sessions, called treatment
fractions. The number of fractions required to deliver the treatment is also
decided in this step of the workflow [HMZ14]. A typical prescription for
lung cancer is given in table 1.1. Thanks to advances in techniques for con-
trolling the position of the tumor, it is increasingly common to prescribe
hypo-fractionated treatments in which the number of scheduled sessions
is significantly reduced (down to around 5 sessions) and the dose delivered
per fraction is much higher (7 to 20 Gy) [IWH+20, PDR22].

Table 1.1 Example of a radiation therapy prescription for lung cancer.

Prescribed dose 60 Gy
Number of fractions 30 fractions
Staggering treatment 6 weeks
Number of sessions per week 5
Dose per fraction 2 Gy

1.1.3 Treatment optimisation

The third step of the radiation therapy workflow consists in optimising the
treatment plan to ensure optimum dose distribution in accordance with
the prescription given in the previous step. Optimising radiation ther-
apy treatment is a multi-criteria problem, since it involves balancing the
dose between the tumor and the neighbouring organs in order to obtain
the best possible quality of life for patients. This problem requires an in-
dividual solution for each patient because the anatomy of the patient is
unique [BCvH19]. Figure 1.3 shows the numerical decomposition of the
radiation therapy problem.

In this figure, the beam reaches the multi-leaf collimator and is then dis-
cretised into beamlets. These beams are the decision variables in the radia-
tion therapy optimisation problem. The numerical value of these variables
is the intensity of the beam after passing through the grid. The intensity
of the beam is then converted into a dose when a numerical value is mea-
sured in the patient. The dose received by the patient is related to the beam
intensity by a linear relationship:

d = d(x) = Ax (1.1)

In equation 1.1, d is the dose per voxel, x is the beam intensity and A is
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Beam source

Collimator gridPatient grid
Ray

Dose

voxel 𝑑!
belonging to tumor

voxel 𝑑!
belonging to OAR

beamlet 𝑥!
inline with tumor

Fig. 1.3 Decomposition of the radiation therapy optimisation problem. Top part:
ionising radiations are emitted by a beam source, passing through a modulation
device. The beam is divided into beamlets. Bottom part: the patient is divided into
voxels. Intensity modulation is possible by delivering multiple shape or different
beamlets exposure times. Image adapted from [BCvH19].

the dose-fluence matrix. The matrix can be calculated by algorithms using
scanner images and the beam position. Instead of optimising the dose over
the entire scanned volume of the patient, the dose is divided into volumes
of interest and the dose for each volume is optimised separately.

Consequently, the optimisation problem can be written as follows:

minimisex f (d1)

subject to g1(d2) ≤ b1

g2(d2) ≥ b2

g3(d3) ≤ b3

g4(x) ≤ b4

x ≥ 0

where d1 = A1x

d2 = A2x

d3 = A3x

(1.2)
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In equations 1.2, d1, d2 and d3 are the doses delivered in three different
organs, while f () and g() are two cost functions. This problem involves
minimising the dose delivered to organ1 as a function of f (). This min-
imisation must consider that the dose to organ2 has to lie between two
constraints. A third structure is also considered in this optimisation prob-
lem. The constraint x ≥ 0 ensures that the beam intensity remains positive.

In practice, the contours of the organs and the constraints imposed on
them are given as input to a treatment planning system (TPS) which starts
the optimisation process using physical and mathematical tools. The re-
sult is a treatment plan, i.e. machine parameters settings (energy levels,
number of beams, beams angles, etc.) required to deliver a dose to the tar-
get sufficiently close to the prescribed dose and a dose to OAR below the
maximum value authorised by the radiotherapist. The first plan produced
by the TPS is rarely immediately accepted by the medical doctor. The con-
straints then have to be relaxed and the optimisation process repeated. It
is therefore important to be able to compare different treatment plans.

1.1.4 Quality assessment and treatment verification

The fourth step of the radiation therapy workflow consists of two main
stages. The physicist ensures that the machine delivers the right dose us-
ing a phantom specifically designed to mimic human anatomy, while the
oncologist checks that the treatment plan meets all the necessary require-
ments before validating it. Physicians use several tools to assess the quality
of a treatment plan. The dose-volume histogram (DVH) is a technique for
quickly assessing the quality of a treatment plan and an example is repre-
sented in figure 1.4.

A DVH is a cumulative histogram of the radiation dose received in a
volume of interest. It is represented by a curve, with the x-axis being the
value of the dose and the y-axis the percentage of the volume receiving this
dose value. In the dose-volume histogram, each curve represents an organ
and reflects the proportion of its volume that receives that amount of dose.
As figure 1.4 shows, the curves should remain as close as possible to the left
for organs at risk, with the maximum volume receiving a zero dose. For
the target volume, the curve should be oriented to the right, with a steep
downward slope at the prescribed dose. A more quantitative assessment
of the quality of the treatment plan is carried out using DVH metrics. The
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Fig. 1.4 Example of a dose-volume histogram. This tool is commonly used by
radiotherapists to ensure that all constraints on the volumes of interest are satisfied.

metrics generally used are the mean, the maximum and the minimum dose
in a given volume, but also the dose received in a percentage of the volume.
For example, the metric D95% is defined as the minimum dose received in
at least 95% of the volume. The D95% and D5% metrics are commonly used
to compare and validate treatment plans.

1.1.5 Treatment delivery

The last step of the radiation therapy workflow consists in administering
the treatment plan to the patient. The treatment plan generally only con-
tains instructions on the spot location (position and energy) and intensity
(weight). The machine takes charge of the order in which the spots are
shot. Usually, the spots are delivered layer by layer, from highest to lowest
energy, and the lateral movement follows a serpentine pattern, as shown in
figure 1.5. This method is called pencil beam scanning. The treatment plan
is administered to the patient in several fractions to take advantage from
the fact that healthy tissues recover faster from radiation than cancerous
cells. In general, the patient has around 5 sessions per week during 5 to
8 weeks. The treatment plan can be adapted if the anatomy of the patient
changes too much, which would induce a significant dosimetric change.
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Beam source

Final slice (E min) First slice (E max)

Fig. 1.5 Example of pencil beam scanning, a discrete spots delivery system.

1.2 Modern radiation therapy techniques

Over the last few decades, technological advances have enabled the de-
velopment of new radiation therapy techniques, making treatment more
effective by reducing safety margins while increasing the dose to the tar-
get volume. The techniques developed and commonly used in clinics are
described in the following sub-sections.

1.2.1 Intensity-modulated radiation therapy

Intensity-modulated radiation therapy (IMRT) is a type of radiation ther-
apy that uses a linear accelerator (linac) to deliver high-precision radiation
therapy by shaping the radiation beam to closely fit the shape of the tu-
mor. To this end, the linear accelerator is equipped with a device called
a multi-leaf collimator, made up of thin leaves that move independently
and are able to form shapes that precisely match the treatment area. This
means that the tumor receives a high radiation dose, while nearby healthy
tissues receive a much lower dose. This type of radiation therapy allows
the dose to be shaped to the tumor by modulating the intensity of the ra-
diation beam. The main advantage of this technique is that it creates a
concave treatment zone. This avoids administering high radiation dose to
structures that would otherwise be damaged by radiation therapy, thereby
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reducing the risk of long term side effects [NDW00].

1.2.2 Volumetric-modulated arc therapy

Volumetric-modulated arc therapy (VMAT) is an evolution of IMRT. The
linear accelerator rotates around the patient during irradiation at the same
time as the leaves of the collimator move. The machine continuously re-
shapes and changes the intensity of the radiation beam as it moves around
the body. The advantages of this radiation therapy technique are that it
is very accurate, it shortens the treatment time and it uses a lower overall
dose of radiation [Ott08, WYK+09, TEL+10].

1.2.3 Image-guided radiation therapy

Image-guided radiation therapy (IGRT) was defined by van Herk in 2007
as "Increasing the precision by frequently imaging the target and/or healthy tis-
sues just before treatment and acting on these images to adapt the treatment"
[vH07]. The key component of any image-guided radiation therapy de-
vice is an image acquisition system that provides good soft tissue contrast
and/or adequate imaging of a fiducial marker. To be useful, the imaging
system must be in a calibrated position and have a high acquisition and
processing speed. There are a number of different IGRT techniques. A
non-integrated option uses a CT scanner outside the treatment room. In-
tegrated options in the treatment room use x-rays imagining, ultrasound,
etc.

1.3 Characteristics of proton therapy

In most cases of external beam radiation therapy, x-rays are the ionising ra-
diation type used. The photon beam is produced using a linear accelerator.
Radiation therapy involving x-rays is referred as radiotherapy. Another ra-
diation modality is particle therapy, which employs a beam of protons or
heavier ions to treat cancer cells. Proton therapy is by far the most widely
used particle therapy, accounting for 86% of such treatment, while carbon
ions account for the remaining 14% [Dur24]. However, recent estimates
suggest that only 1.6% of all external beam radiation therapy treatments in
the United States are delivered with proton therapy [HSG+24].

Proton therapy involves using high-energy protons to irradiate cancer
cells. The key difference between photons and protons lies in the way they
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interact with tissues. Figure 1.6 displays the percentage depth dose curve
of both ionisation types, which relates the absorbed dose deposited by a
radiation beam in a medium as a function of depth along the beam direc-
tion. A photon beam delivers the highest dose at a depth of 1−3 cm and
then slowly decreases with depth. Rather, a proton beam shows a small
dose deposition increasing with depth, a sharp increase at a certain depth
followed by an extremely sharp fall off to zero. Protons lose energy and
slow down as they move through tissues due to atomic and nuclear inter-
actions. As they slow down, there are more and more interactions with
orbiting electrons, resulting in a maximum energy release at the end of
their range, called the Bragg peak.
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Fig. 1.6 Percentage depth dose curve of photons and protons.

The depth of the Bragg peak depends on the energy of the proton beam,
meaning that the beam can be focused accurately on the area to be irradi-
ated. The ideal scenario is a low dose deposition in front of the tumor, a
high dose deposition in the tumor, and a minimal dose after the tumor. To
cover the entire tumor, proton beams of different energies must be super-
posed by either passive scattering or spot scanning techniques, resulting
in the so-called spread-out Bragg peak (SOBP). Both techniques result in
a much greater dose deposition in front of the tumor and a similar fall-off
after. Nevertheless, protons have the potential to be more precise than pho-
tons and are therefore better suited for targeting small tumors or tumors
close to organs at risk.

Despite the physical advantage of protons, their precision is accompa-
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nied by a high degree of vulnerability to uncertainties. In particular, the
uncertainty of the proton range (determined by the position of the Bragg
peak in the body) can lead to a deterioration in the quality of the treat-
ment. The position of the Bragg peak depends on the energy of the proton
beam and on the density and composition of the tissues across its path. If
the density of tissues changes during treatment, e.g. due to breathing mo-
tion or weight gain/loss, the Bragg peak is moved to a different position
from that originally expected. This can result in a missed target and an
unwanted high dose in healthy tissues, leading to an overall deterioration
in the optimised dose distribution. Uncertainties related to tumor position
and tissue density are also present in photon therapy, but increasing the
target volume with safety margins around tumors can mitigate dose de-
terioration. However, in proton therapy, the simple margin approach is
sometimes not sufficient and more complex techniques are required.

1.4 Characteristics of mobile tumors

This work focuses on the treatment of mobile tumors, particularly lung and
liver cancers. Lung cancer is the leading cause of cancer deaths, account-
ing for around 1.8 million deaths (18%) in 2020 [WHOb]. The movement
of organs due to breathing is a source of uncertainties in the treatment of
thoracic cancers [Goi04]. Tumors located in the lung or in the liver move
with respiration, resulting in ballistic uncertainties. The potential risks are
under-dosage of the tumor and over-dosage of surrounding healthy tis-
sues. In order to better understand the problem of movement in radiation
therapy, this section defines the directions of movement, the types of move-
ment and the effects of respiratory movement in radiation therapy, as well
as the techniques used to control the motion.

1.4.1 Definition of movement directions

Before going on to describe the different types of movement, it is impor-
tant to define the terms used to describe the directions of movement. The
anterior-posterior (AP) direction corresponds to an axis running from the
front (chest) to the rear (back). The cranio-caudal (CC) direction corre-
sponds to an axis running from the head to the foot. The left-right direc-
tion corresponds to an axis running from the left to the right. Figure 1.7
illustrates these designations.
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Fig. 1.7 Illustration of the three main directions of movement and definition of
the terms used to refer to them.

1.4.2 Types of movement

The breathing motion is not the only movement making the treatment of
mobile tumors more difficult. Two types of movement with different mo-
tion timings need to be considered and addressed adequately to avoid de-
teriorating the quality of the treatment.

Intra-fraction motion is the movement occurring on a small time-scale,
in the scale of seconds during one treatment fraction. Intra-fraction motion
includes periodic movements that are repeated many times during a single
treatment session. The cardiac cycle contributes to these periodic move-
ments, on a small spatial-scale and at a high frequency. The respiratory
cycle is primarily responsible for intra-fraction motion. The respiratory
cycle comprises two phases: inhalation and exhalation. During the inhala-
tion phase, the diaphragm contracts, causing it to move downwards in the
cranio-caudal direction. This enlarges the rib cage, causing the thorax to
expand in the anterior-posterior direction. Through the pleura, this causes
the lungs to expand and fill with air. During the exhalation phase, the
diaphragm relaxes, causing it to be pushed upwards by intra-abdominal
pressure. The rib cage and the lungs return to their initial positions. These
movements cause the tumor to move in all three directions. Figure 1.8
shows the inhalation and exhalation mechanisms.

At rest, a healthy adult needs 12 to 15 respiratory cycles per minute to
supply oxygen and eliminate carbon dioxide. However, in the presence
of pulmonary pathologies, this frequency may increase. Moreover, it may
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Fig. 1.8 Inhalation and exhalation mechanisms.

happen that the patient has an irregular breathing pattern (apnea or cough)
during a treatment fraction, altering the periodicity of the movement. All
this means that the respiratory movement is complex and variable from
one patient to another and from one cycle to another, complicating the au-
tomation to predict the motion.

Inter-fraction motion is the movement happening on a large time-scale,
over a period of several days or weeks. For instance, this can be due to a
displacement of some organs, a change in anatomy due to weight loss or
gain, or an expansion or shrinkage of the tumor size as a result of the dose
already delivered within the tissue. A baseline shift is a systematic shift
in the position of an organ, which means that its average position over the
breathing phases is shifted. This may be caused by gastrointestinal activi-
ties such as bladder filling or peristalsis. Setup errors in patient positioning
(small translation or rotation) may also be considered as inter-fraction mo-
tion. Inter-fraction motion does not strictly concern thoracic tumors.

The consequences of these movements affect both radiotherapy and
proton therapy treatment quality, although it affects proton therapy to a
greater extent. Two additional problems arise in proton therapy using pen-
cil beam scanning.
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Variation in proton range is the result of a variation in density along the
beam due to tumor motion, shifting the expected proton range and wors-
ening the overall dose distribution, as represented in figure 1.9.

Tumor under-dosed

PTV PTV

Dose cloud Dose cloud

Fig. 1.9 Consequence of motion uncertainties in proton therapy. Adding PTV
margins around the tumor does not guarantee coverage of the target due to density
variations along the beam path.

Interplay effect is the result of the interaction between the tumor and the
beam scanning motions as they occur on the same time-scale. This effect
can cause hot and cold spots in the target, worsening the overall dose dis-
tribution [SRTP09]. This process is illustrated in figure 1.10.

Start irradiation Time Result

Fig. 1.10 Illustration of the interplay effect. In the presence of tumor movement,
delivery of the scanning beam results in dose deterioration. During beam delivery,
the target moves represented by the blue, purple and green circles, while the pencil
beam is delivered at fixed coordinates. Target movement therefore alters the rela-
tive position of the pencil beam within the target. The result is a deterioration in
the dose delivered.

1.4.3 Motion management techniques

This section is inspired by the review of Mori et al. on motion management in
particle therapy [MKU18], as well as by the works of Keall [KMB+06] and Dhont
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[DHC+20] on the management of respiratory motion in radiation oncology and
image-guided radiotherapy.

Several solutions have been developed over the last few decades to
manage mobile tumors and mitigate their negative dosimetric effect. Mo-
tion management techniques can be classified as off-line or on-line. Off-
line techniques refer to methods that are used prior to treatment delivery,
while on-line techniques refer to methods that are used during treatment
delivery. These techniques are detailed in the following sub-sections and
summarised in figure 1.11.
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Fig. 1.11 Illustration of the different off-line and on-line respiratory motion
management strategies and associated margins (in orange). The respiratory mo-
tion is shown in green, as hysteresis. This figure is adapted from [DHC+20].

Off-line motion management techniques

4D robust optimisation is the current treatment planning approach to deal
with intra- and inter-fraction motions. Robust optimisation is designed to
withstand small changes in anatomy between two treatment fractions by
optimising the worst-case scenario. In addition to the usual 3D robust-
ness scenarios, such as range and setup errors, 4D robust optimisation is
designed to be robust to the multiple anatomical variations present in the
4DCT [LSC+16]. Although this approach is effective and current best prac-
tice for thoracic cancer treatment, two drawbacks can be formulated: the
treatment is only designed to withstand the movements observed in the
planning 4DCT, and the robustness to respiratory phases increases the dose
received by the surrounding organs at risk [CZK+17].
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Adaptive radiation therapy involves restarting the treatment planning pro-
cess using a new image acquired at the start of the treatment fraction if it
shows a too different anatomy from the one used for planning. The treat-
ment plan optimised on the planning image is then deemed unsuitable by
the physician and a replanning is necessary. This replanning is carried out
taking into account the dose already delivered to the target during the pre-
vious treatment fractions [AMN+20, Bro19]. While adaptation has tradi-
tionally been done off-line with re-planning based on a new 3DCT image,
on-line treatment adaptation based on on-board imaging has gained mo-
mentum in recent years thanks to advanced imaging techniques combined
with treatment delivery systems [PBSW21].

Optimising the beam delivery parameters, such as spot size, spot spacing
or beam velocity, has an impact on the interplay effect. Large spot sizes
(σ ≈ 9 − 16 mm) improve dose homogeneity in the target compared with
small spot sizes (σ ≈ 2 − 4 mm) [DGSP13]. A smaller spot spacing and
a longer treatment duration improve dose homogeneity in the target and
reduce the interplay effect. The sequence of spot delivery also has an im-
pact on the dose uncertainty induced by respiratory movements. The op-
timal sequence of spot delivery consists in increasing the area covered by
the proton beam over a certain period to reduce the fluence delivered to a
given point over this period [LZZ15]. In a more recent study, Engwall et al.
investigated the inclusion of uncertainties in the temporal structures of de-
livery within the robust optimisation [EFG18]. They considered multiple
scenarios in which beam spots are distributed in the different breathing
phases of the planning 4DCT. This allows to reduce the interplay effect,
particularly for large tumor movements, when combined with rescanning.

Rescanning, also known as repainting, consists in delivering the dose in
several iterations within a treatment fraction in order to attenuate the in-
homogeneities resulting from the interplay effect by statistically averaging
the motion effects. Rescanning is generally used when fractionation does
not provide enough repetitions to mitigate the interplay effect [SRTP09].
There are two types of rescanning: volumetric rescanning and layered
rescanning. Volumetric rescanning involves irradiating the entire volume
once before the start of the next scan. In this case, the dose delivered to
a point during one scan is equal to the total dose divided by the num-
ber of scans. Layered rescanning involves scanning the same iso-energy
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layer several times before changing the beam energy to scan the next en-
ergy layer. In this case, the irradiation duration is limited by a maximum
value. The choice between the two rescanning techniques depends on the
treatment machine and the motion of the target.

On-line motion management techniques
Breathing regulation consists in regularising the breathing amplitude of
the patient. One technique is mask ventilation, the patient is forced to
breathe at a certain pattern [VODSL+19]. Another technique is audio-
visual coaching, the patient is trained to breath in synchronisation with
a sound heard through headphones [GSL+14].

Breath-hold consists in repeating breath-hold during the treatment deliv-
ery. Breath-hold can be achieved voluntary or with a computer-controlled
device that can assist breath-hold via airway blocking and feedback ap-
proaches. This technique can be used for both moving targets in conjunc-
tion with gating in an attempt to decrease tumor motion, and for breast or
lung cancer to maximise the distance between the tumor and the surround-
ing organs at risk. In this case, the patient holds his breath at the end of
deep inhalation to benefit from the increase in lung volume at that precise
moment. This leads to a reduction in the density of lung tissue and there-
fore a reduction in the percentage of healthy tissue irradiated. For an in-
depth review of clinical applications, the reader can refer to [BHKSC+16].

Motion reduction consists in limiting the motion amplitude. In this case,
mask ventilation can be used to force a breathing pattern of small ampli-
tude [VODSG19]. Another method is abdominal compression, which em-
ploys a compression belt placed on the abdomen of the patient to apply
a constant force and reduce the movement of the diaphragm. This tech-
nique has been shown to reduce organs movement and was proven effec-
tive in decreasing the interplay effect in liver tumors [SGK+16]. It has also
been shown that this method reduces tumor movement in some cases of
lung cancers [EPS+10, LSK+17]. However, the work of Bouilhol et al. in
[BAR+13] has shown that abdominal compression does not provide clini-
cally relevant improvements for patients with tumors located in the upper
or middle lobes. For the patients included in this study, the use of abdomi-
nal compression reduced the amplitude of movement by an average of 3.5
mm for tumors located in the lower lobe of the lung, but only by 0.8 mm
for those located in the upper and middle lobes.
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Motion tracking consists in tracking the tumor movement in real-time and
adapting the beam delivery accordingly. This is the optimum technique
for mitigating movement, as it does not require the use of safety margins
around the target and does not increase treatment time. Motion tracking
techniques require continuous monitoring of the motion of the anatomy
of the patient. Two types of monitoring are possible and available in the
treatment room: direct monitoring based on imaging or indirect monitor-
ing based on an external surrogate. Direct methods use an imaging device
to monitor the movement of the tumor and internal organs. Imaging-based
motion monitoring can be divided into two types of tracking method: fidu-
cial marker tracking and marker-less tracking. Fiducial marker tracking
involves inserting a fiducial marker on or near the tumor and extracting
the 3D coordinates of the tumor using a triangulation method. Marker-less
tracking has the advantage of being non-invasive and involves tracking the
tumor using precise computer vision algorithms to find its position. Indi-
rect methods use an external device, such as an optical surface imaging
system, infrared reflectors or a pressure belt, to measure the displacement
of the body surface. A correlation model is then required to map the move-
ment of the skin surface and the internal movement of the tumor. While
this approach has the advantage of being non-invasive, it lacks the accu-
racy of direct methods because tumor movement does not always corre-
late well with surface movement. The main direct and indirect monitoring
methods are explained below and are schematically represented in figure
1.12.

X-rays imaging is the most commonly used imaging modality to monitor
the motion of the tumor and internal organs. Unfortunately, soft tis-
sue contrast on x-rays images is poor and most tumors are not easily
visible. To overcome this problem, metallic implants are implanted
in or around the target. The implants are tracked on the images in
place of the tumor, and the position of the tumor is deduced from the
position of the implants. This technique has several disadvantages:
implant placement is an invasive procedure and x-rays imaging irra-
diates the patient, preventing its continuous use. Improving motion
tracking and anatomy monitoring using x-rays imaging is one of the
main motivations behind this thesis.
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Ultrasound

X-rays

Surface imaging

Optical markers

X-rays imaging detectors

Target

X-rays fiducials

MRI

Fig. 1.12 Schematic representation of the four main imaging modalities used
to continuously monitor the motion of the anatomy of the patient. This figure is
inspired by [OBF+16].

The Cyberknife1, developed by Accuray, is a device currently on the
market and in clinical use with radiotherapy. The first version of
this system appeared around thirty years ago [GA92]. This robot,
described in numerous technical reports during the 1990s [ACM+97,
AMCH99], combines the properties of both stereotaxy and tracking.
This technique is capable of irradiating small thoracic lesions with a
narrow beam in respiratory synchronisation. The linear accelerator is
mounted on a robotised head with six degrees of freedom, enabling
numerous independent targets to be reached and high-precision non
co-planar treatments to be carried out. Two orthogonal x-rays im-
ages are taken to measure translational and rotational errors. These
x-rays projections are compared with the digitally reconstructed ra-
diographs generated from the planning 3DCT images. This process
is very fast, enabling the treatment to be monitored and corrected
according to the movements of the tumor during treatment. In the
case of thoracic cancer treatment, tumor tracking is carried out us-
ing a number of optical markers detected by a synchrony camera. A
motion model correlating the external movement of the patient with
the movement of the tumor is integrated into the machine, providing

1http://cyberknife.com
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real-time tracking of moving tumors. X-rays projections taken reg-
ularly during treatment ensure that the correlation is still valid. A
full technical description of the Cyberknife system can be found in
[KDK+10]. Figure 1.13 illustrates the main components of the Cy-
berknife system.

Synchrony camera

X-rays source

Linear accelerator

X-rays imaging detectors

Fig. 1.13 Main elements of the Cyberknife system. It shows the camera, the x-
rays sources, the linear accelerator as well as the x-rays imaging detectors.

The Heavy Ion Therapy CI-1000S2, developed by Toshiba, is a track-
ing system that uses x-rays projection. This device is currently on the
market and is used clinically with particle therapy.

Magnetic Resonance Imaging (MRI) is a non-irradiating imaging modality
that provides excellent soft tissue contrast. MR-linac, a device com-
bining a MRI scanner and a radiotherapy linac, is already commer-
cially available for photon therapy. For example, the MRIdian™ sys-
tem combines a radiation delivery device with a localisation software
that allows tumors to be targeted and visualised on soft organs while
tracking their positions and shapes during radiation delivery. The
real-time analysis offered by the MRI technology allows the differen-
tiation of tumors from other organs during treatment to prevent ra-
diation from affecting healthy tissue [MLC+16]. However, MR-linac
is not yet available for proton therapy, as this type of machine poses

2https://www.global.toshiba/ww/products-solutions/heavy-ion/about.html
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additional technical problems due to the effect of the magnetic field
on the particle beam.

Surface imaging is a non-irradiating and non-invasive technology used for
the continuous localisation of the patient during the treatment frac-
tion. This technique employs a combination of light projectors and
optical cameras to generate 3D map of the topography of the patient.
Surface imaging is mainly used to reduce the variability of the ini-
tial setup, to verify continuous immobilisation of the patient during
treatment and to provide dynamic information about the body sur-
face of the patient.

Ultrasound imaging is a non-irradiating modality that offers good soft tis-
sue contrast, resolution and acquisition frequency. The main dis-
advantage of this modality is the difficulty to place the ultrasound
probe in a reproducible manner. This one must be placed in contact
with the skin with almost constant pressure so as not to cause dis-
placement [GMO+18].

Respiratory gating consists in delivering the treatment beam at a precise
moment in the periodic movement of the target during which its position
is known with a high degree of confidence [LBS+07]. This method is based
on the acquisition of an external surrogate signal acquired in real-time and
correlated with the target motion, which controls the beam activation. The
gating window can be defined on a single or multiple phases, allowing a
trade-off between delivery efficiency and dose conformity [MKU18]. There
are two types of gate: phase-based synchronisation and amplitude-based
synchronisation. Phase-based synchronisation defines the activation win-
dow as part of the respiratory period, while amplitude-based synchroni-
sation defines the activation window as part of the respiratory amplitude
or in a specific position. Two types of external surrogate can be used to
obtain information about the breathing signal: infrared reflectors and cam-
era are used to follow the position of the reflectors placed on the skin, or a
pressure belt is placed around the patient abdomen and measures the belt
tension using a pressure sensor. The two main drawbacks of respiratory
gating are the increase in the treatment duration and the use of an external
surrogate, which requires a good correlation between its external motion
and the internal movement of the tumor.
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1.5 Summary

In this chapter, we set out the medical context of our research by describing
the treatment of thoracic cancer by radiation therapy. We also discussed the
special case of proton therapy, which enables tumors to be targeted more
precisely thanks to the interactions of protons in the tissue. We addressed
the issue of respiratory movement in chest cancer. This movement must
be taken into account to avoid over-dosage of healthy tissue and under-
dosage of the tumor. We presented the current techniques for motion man-
agement and monitoring in the last part of this chapter.
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An introduction to deep

learning for image-guided
radiation therapy

This chapter is inspired by the course of John Lee and Michel Verleysen on ma-
chine learning given at UCLouvain (LELEC2870 - Machine learning: regression,
deep networks and dimensionality reduction) [LV20] and by the technology review
of Ana Barragán-Montero [BMJV+21]. This chapter contains mainly theoretical
sections, experienced authors can skip to the next chapter.

For more than a decade, the development and adoption of artificial in-
telligence (AI) technologies has been accelerating. In medicine, it is used
in fundamental and clinical research, hospital practice, medical examina-
tions, care and logistics. It is contributing to the refinement of diagnoses
and prognoses, even more personalised and targeted medicine, advances
observation and analysis technologies, as well as surgical tools and other
assistance robots. Numerous challenges specific to AI and medicine, such
as the digitisation of data, respect for data privacy, algorithm explanation,
design of inclusive AI systems and their repeatability, need to be overcome
if hospital staff wants to have confidence in these tools. This requires a
mastery of the fundamental concepts that are presented in this chapter.
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2.1 Building a neural network

This work requires the use of a neural network to reconstruct a 3DCT im-
age from a digitally reconstructed radiograph. In order to understand the
neural network used in the proposed method, it is essential to master the
main components of an artificial neural network.

2.1.1 Artificial neuron

An artificial neuron takes as input a vector x ∈ Rn and produces as output
a scalar y = g(w⊺x + b), where w ∈ Rn and b ∈ R are the model parame-
ters, and g is a non-linear activation function [VDM86]. An example with
n = 2 is illustrated in figure 2.1.

𝑥!

𝑥"

𝑤!

𝑤"

𝑏

𝑦 = 𝑔(𝑤!𝑥! +𝑤"𝑥" + 𝑏)

Sigmoid

ReLU

Fig. 2.1 Schematic representation of an artificial neuron. The sigmoid function
and the rectified linear unit (ReLU) function are common activation functions of
artificial neural networks.

2.1.2 Artificial neural network

An artificial neural network (ANN) is formed by stacking several artificial
neurons together. This architecture is organised into three types of layer:
input layer, hidden layer and output layer. The input layer is the first layer
of the network, the output is the last, and the hidden layers correspond
to the layers in-between. The non-linear activation function is used to ac-
tivate or inhibit the neuron output as a function of its input value. Fig-
ure 2.2 shows the calculation of a single hidden layer with three hidden
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neurons, and of an output layer with two output neurons. This ANN is
fully-connected, meaning that the output of each neuron in one layer is
transmitted to the input of each neuron in the next layer. The input of each
neuron is then the weighted sum of the outputs of all the neurons in the
previous layer [PBPPM09]. The weights w are called the hidden weights
and are specific to each neuron. These hidden weights are computed dur-
ing the training phase of the neural network, explained in detail in section
2.2.
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Fig. 2.2 Calculation of an artificial neural network containing an input layer
composed of two neurons, one hidden layer composed of three neurons and an
output layer composed of two neurons.

It has been shown that an ANN with a single hidden layer is a universal
approximator, any function can be approximated by this model assuming
that the hidden layer contains enough neurons [Cyb89, HSW89]. How-
ever, the number of neurons required to model a given function using a
single hidden layer is often too high and the model may not generalise
well. For a given number of neurons, arranging them in several hidden
layers instead of a single one is often more practical and allows better gen-
eralisation. The study of these artificial neural networks with several hid-
den layers is known as deep learning [GBCB16]. More generally, assume a
deep neural network with L hidden layers and an activation function g[l]
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at layer l whose output is governed by the following equations:

z[l] = W [l−1]a[l−1]

a[l] = g[l](z[l])
(2.1)

for 1 ≤ l ≤ L. In these equations, a[0] = x is the input of the network and
a[L] = ŷ is the output of the network.

Activation functions
There are a large number of activation functions. Three functions are fre-
quently used. The first function is the sigmoid defined by g(z) = 1/(1 +

exp(1 − z)) whose output is between 0 and 1. The second one is the hy-
perbolic tangent defined by g(z) = tanh(z) whose output is between −1
and 1. However, activation functions with such a small range are subject
to the vanishing gradient phenomenon, which prevents the kernel weights
from being updated during the training of deep neural networks. The third
popular activation function is the rectified linear unit (ReLU) defined by
g(z) = max(0, z). The response curves of the sigmoid and ReLU functions
are depicted in figure 2.1.

Hyper-parameters
Hyper-parameters are all the parameters that are not chosen by the training
process but that must be defined before it. There are two types of hyper-
parameter: parameters determining the structure of the network and pa-
rameters determining the learning process. The hyper-parameters relative
to the structure of the network are the number of hidden layers and neu-
rons per layer, the initialisation of weights, the type of activation function
and the dropout percentage. The hyper-parameters relative to the training
process are the learning rate, the number of epochs and the batch size [Bro].
The learning rate controls the extent to which the model is modified in re-
sponse to the estimated error each time the model weights are updated, the
number of epochs defines the number of times the learning algorithm runs
through the entire training dataset and the batch size defines the number
of samples to be processed before updating the model parameters.

2.1.3 Convolutional neural network

The network presented in figure 2.2 is fully-connected, each neuron in a
given layer is connected to all neurons of the next layer. Although this is
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useful in many applications, it is not the most appropriate configuration
when the inputs are images. Indeed, the number of connections between a
2D input image and the first hidden layer grows quadratically with the size
of the input patch. If the input is a 3D image, the growth is cubic. Large in-
put images are often required to provide sufficient contextual information,
and large networks are more difficult to train. Besides, fully-connected net-
works lack a desirable property: spatial invariance. Small translations of
the input image result in different outputs from the artificial neural net-
work.

Convolutional layer

The convolutional layer has been proposed to exploit spatial component of
an image [LBD+89]. This layer prevents the network from using pixels too
far apart in the image to extract spatial features, while reducing the number
of trainable weights of the network. To calculate the activation of a hidden
neuron, an element-wise multiplication and a sum are calculated with a
given set of weights. This set of weights is called the kernel. Figure 2.3
illustrates this principle. The kernel enables the weighted sum calculation
to be limited to a particular region of the input image. Each element of
the kernel can therefore be considered as the weight of the corresponding
input pixel in the sum. For the next hidden neuron, the kernel is shift by
a fixed number of elements, called the stride, and the process is repeated
until the whole image is covered. A typical value of the stride is 1, but a
larger stride can also be used, resulting in under-sampling of the output
[YND18].

𝑥!! 𝑥!" 𝑥!#

𝑥"! 𝑥"" 𝑥"#

𝑥#! 𝑥#" 𝑥##

*

𝑘! 𝑘" 𝑘#

𝑘$ 𝑘% 𝑘&

𝑘' 𝑘( 𝑘)

𝑎!! = 𝑥!!𝑘! + 𝑥!"𝑘" + 𝑥!#𝑘#
									+	𝑥"!𝑘$ + 𝑥""𝑘% + 𝑥"#𝑘&
										+ 𝑥#!𝑘' + 𝑥#"𝑘( + 𝑥##𝑘)

𝑎!" = 𝑥!"𝑘! + 𝑥!#𝑘" + 𝑥!$𝑘#
									+	𝑥""𝑘$ + 𝑥"#𝑘% + 𝑥"$𝑘&
									+ 𝑥#"𝑘' + 𝑥##𝑘( + 𝑥#$𝑘)

𝑥!$

𝑥"$

𝑥#$

𝑥!% 𝑥!&

𝑥"% 𝑥"&

𝑥#% 𝑥#&

𝑥$! 𝑥$" 𝑥$#

𝑥%! 𝑥%" 𝑥%#

𝑥&! 𝑥&" 𝑥&#

𝑥$$

𝑥%$

𝑥&$

𝑥$% 𝑥$&

𝑥%% 𝑥%&

𝑥&% 𝑥&&

𝑎!! 𝑎!"

Input image Kernel Feature map

Stride = 1

Fig. 2.3 Calculation of the two first neurons of the feature map in a convolu-
tional layer.
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In practice, different kernels are used to produce a multitude of output
arrays. Hidden weights corresponding to a same kernel are considered as
belonging to the same feature map. Each kernel is therefore an extractor
of specific features. In a convolutional neural network, the first convo-
lutions detect small patterns, such as edges. Intermediate layers build on
these simple patterns to search for more complex ones, such as complicated
curves. Deeper convolutions assemble these curves to find even more ab-
stract objects.

Sometimes, convolution with padding is used. This means that zero
entries are added around feature maps before convolution as represented
in figure 2.4. The purpose of padding is to control the resolution of the
feature map and to avoid a reduction in resolution.
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Fig. 2.4 Illustration of a convolutional layer with zero-padding. The input layer
is extended with a border composed of zeros to produce a feature map of the same
size than the input image.

The stride, the kernel size, the padding and the number of kernels are
hyper-parameters of the neural network and are fixed before the training
process.

Pooling layer
Convolutional layers use efficient weight sharing to search for patterns in
images. However, they do not exhibit the property of spatial invariance.
An artificial neural network composed only of convolutional layers is very
sensitive to small translations in the input image as the extracted features
depend on the exact positions in the image. Minor translations in the in-
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put image result in a different feature map. One solution to mitigate this
effect is to use a pooling layer after the convolution. This operation con-
sists in replacing the neurons of a given region of the feature map by their
maximum value in case of max-pooling or by their mean value in case of
average-pooling. This introduces spatial invariance and reduces the num-
ber of weights which limits over-fitting and improves generalisation, but it
also results in a loss of accuracy in feature localisation. This is graphically
represented in figure 2.5.

0 0 0

0 0 0

0 0 0 *
0 1

0 1

0

0

0

0

0

0

0 1 0

0 1 0

0

0

0

0

Stride = 1

0 0 0 0

0 0 0 0

1 0 0 0

2 0 0 0

0 0

2 0
max

0 0

03/4
mean

Input image
Convolution

Kernel Feature map

Stride = 2

0 0 0

0 0 0

0 1 0 *
0 1

0 1

0

0

0

0

0

0

0 1 0

0 0 0

0

0

0

0

Stride = 1

0 0 0 0

0 0 0 0

2 0 0 0

1 0 0 0

0 0

2 0
max

0 0

03/4
mean

Input image
Convolution

Kernel Feature map

Stride = 2

0 0 0

0 0 0

0 0 1 *
0 1

0 1

0

0

0

0

0

0

0 0 1

0 0 0

0

0

0

0

Stride = 1

0 0 0 0

0 0 0 0

0 2 0 0

0 1 0 0

0 0

2 0
max

0 0

03/4
mean

Input image
Convolution

Kernel Feature map

Stride = 2

O
ri

gi
na

l i
m

ag
e

V
er

ti
ca

l t
ra

ns
la

ti
on

H
or

iz
on

ta
l t

ra
ns

la
ti

on

Fig. 2.5 Illustration of a pooling layer, either max-pooling or average-pooling.
The output of the pooling layer is the same in all three cases, demonstrating spatial
invariance with respect to small translations in the input image.
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2.1.4 High resolution neural network

The convolutional layer and the pooling layer presented in the previous
sub-section are the main building blocks of the neural networks that take
an image as input. These elements must then be combined to perform the
desired task. For image segmentation or image reconstruction tasks, high-
resolution output is required [CGGS12]. For this reason, high resolution
neural networks have been developed to maintain a high resolution repre-
sentation throughout the network architecture.

Encoder-decoder
An encoder-decoder network, also called autoencoder, is a specific neural
network used to produce high resolution output. An autoencoder consists
of two parts: an encoder and a decoder. The first part of the network, the
encoder, extracts the characteristics of the input to represent it in a compact
state vector. This part looks like a classical CNN in the way that successive
blocks use an increasing number of layers, with decreasing resolution. The
second part of the network, the decoder, has a similar shape to a tradi-
tional CNN but the pooling layers are replaced by up-sampling layers to
progressively extend the output of the encoder to full resolution [GBCB16].

Residual connections
Another characteristic of high resolution neural networks is the presence
of residual connections. A skip connection is defined as a direct connection
between the output of a contraction block and the input of an expansion
block, it bypasses certain parts of the network to connect the output of cer-
tain blocks directly to the input of blocks further down the network. A
skip connection allows the network to make its prediction based on a com-
bination of low-level features and more global features. Low-level features
are specific to a small group of pixels in the image and accurately located
at earlier levels of the network, while global features characterise the full
image and require a wider spatial context. These are not accurately located
on the image due to the lower resolution of features maps at deeper levels.

2.2 Training a neural network

Training a neural network refers to determining the best set of weights for
maximising its accuracy. There are several learning frameworks and strate-
gies, but they are all based on the same technique, the gradient descent
method.
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2.2.1 Gradient descent

A neural network can be seen as a function f (x, θ), where x is the input
and θ is a vector containing the weights and the biases of all layers. The
loss function is a cost function designed to measure the dissimilarity be-
tween the network prediction and the ground-truth. Training a neural net-
work aims to minimise the loss function over the samples of the training
set. Stochastic gradient is an algorithm based on the derivatives of f with
respect to θ, which aims to choose biases and weights that maximise the
proximity between f (x, θ) and the true label of x. The gradient provides
the neural network with a direction and an amplitude for adjusting the
weights. The amplitude is scaled by the learning rate. A learning rate too
small requires many iterations to converge to a minimum, while a large
learning rate frequently results in a sub-optimal final set of weights. A de-
sirable learning rate is low enough for the network to converge on some-
thing useful, yet high enough to train in a reasonable length of time. Adap-
tive learning rate algorithms dynamically adjust the learning rate during
the training process in order to combine a rapid convergence to the mini-
mum at the beginning of the gradient descent with a more stable behavior
as the minimum is approached. This is illustrated in figure 2.6.

Lo
ss

 fu
nc

ti
on

 (
𝜃)

𝜃 𝜃 𝜃 𝜃
Small learning rate Large learning rate Desirable learning rate Adaptive learning rate

Lo
ss

 fu
nc

ti
on

 (
𝜃)

Lo
ss

 fu
nc

ti
on

 (
𝜃)

Lo
ss

 fu
nc

ti
on

 (
𝜃)

Fig. 2.6 Effect of different learning rates on the gradient descent process.

In order to reduce the cost of calculating the gradient, gradient descent
is generally replaced by stochastic gradient descent (SGD). In stochastic
gradient descent, the gradient is replaced by an estimate of the gradient
calculated from a randomly selected subset of training data. A common
extension of stochastic gradient descent is adaptive moment estimation
(Adam), which involves combining gradient estimation with lower mo-
ments of the gradients [KB14]. Other notable and widely used variants of
SGD include SGD with momentum [RHW86], RMSprop [ZS19] and Ada-
Grad [DHS11]. Readers can refer to the sources for a detailed explanation
of these variations.
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It is not enough to have good accuracy on the training set. The ulti-
mate goal is to perform well on unseen data. Over-fitting occurs when the
network performs well on the training set, but its performance drops dra-
matically on unknown data. In order to determine the optimal weights and
to choose the hyper-parameters, the performance of trained models with
different hyper-parameters is evaluated on another set, called the valida-
tion set [Yin19]. To obtain an accurate and unbiased approximation of the
network quality on unseen data, another set is needed, the test set. This
subset of data is used neither by the network for training, nor by the pro-
grammer to determine the optimal hyper-parameters of the network, but
only after the training phase to evaluate the performance of the model.

2.2.2 Performance evaluation

The performance of a neural network can be evaluated in various ways.
To this end, several metrics are used and depend on the task performed by
the neural network.

Classification neural network

Accuracy measures the frequency with which the classifier correctly pre-
dicts. It is defined as:

A =
Tp + Tn

Tp + Tn + Fp + Fn

where Tp is the number of true positives, Tn is the number of true neg-
atives, Fp is the number of false positives and Fn is the number of false
negatives. High accuracy indicates that the network has a high number of
correct predictions. Accuracy is useful when the target class is well bal-
anced but is not a good choice for unbalanced classes.

Precision measures the relevance of positive results. It is defined as:

P =
Tp

Tp + Fp

High precision indicates that the samples assigned to the class in question
have a high probability of actually belonging to that class.
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Recall measures the ratio of positives detected. It is defined as:

R =
Tp

Tp + Fn

High recall indicates that the samples belonging to the class in question
have a high probability of actually being assigned to that class by the model.

Precision and recall give a partial idea of the network performance. For
example, consider a neural network designed to achieve binary classifica-
tion. If the network predicts a true value for all pixels of the image, the
recall is maximised but the precision is very low. On the other hand, if the
network predicts a true value only for pixels with a very high confidence
level, the precision is maximised but the recall is very low. However, even
combined, these two metrics are not always sufficient.

F1 score gives a combined idea about precision and recall metrics and is
maximum when precision is equal to recall. It is defined as:

F1 =
2(P × R)

P + R

Regression neural network

Mean absolute error computes the absolute difference between actual and
predicted values. It is defined as:

MAE =
1
N ∑|y − ŷ|

where N is the number of data, y is the actual output and ŷ is the predicted
output. It has the advantage of returning a value in the same unit as the
output variable.

Mean squared error computes the squared difference between actual and
predicted values. It is defined as:

MSE =
1
N ∑(y − ŷ)2

It returns a value in the unit squared as the output variable. This metric
aims to heavily penalise outliers.
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Root mean squared error computes the square root of the squared differ-
ence between actual and predicted values. It is defined as:

RMSE =

√
1
N ∑(y − ŷ)2

It allows to return a value in the same unit as the output variable, but it is
not that robust in case of outliers.

R2 score, also known as coefficient of determination, computes the perfor-
mance of a model independently of the context. It is defined as:

R2 = 1 − ∑(y − ŷ)2

∑(y − ȳ)2

where ȳ is the mean of the data. It makes it easy to compare different mod-
els. However, it is a metric difficult to interpret and it gives no information
about the average error of the model.

2.2.3 Learning frameworks and strategies

Machine learning algorithms are classified into several categories depend-
ing on how the models are trained and the type of training data used
[MN18].

Basic learning frameworks
Unsupervised learning algorithms work with a dataset containing many
features and learn useful properties from the inherent structure of that
dataset. The dataset is only composed of input data, without any asso-
ciated output. This type of learning is useful to find unknown pattern in
the dataset and is used for clustering, which consists in dividing a dataset
into several groups that share similarities.

Supervised learning algorithms work with a dataset containing many fea-
tures, but each example is also associated with a label. The model con-
structs a function that attempts to predict the output for each training in-
put. It then compares these predictions with the actual desired outputs in
an iterative process, and corrects its objective function accordingly to ob-
tain predictions as close as possible to the labels.
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Reinforcement learning algorithms teach an agent to evolve and inter-
act in a specific environment on the basis of its previous experience with
the aim to optimise a cumulative reward. Unlike supervised learning that
uses targets to improve its predictions, reinforcement learning only needs
a feedback loop between the learning system and its experiences.

Hybrid learning frameworks
Semi-supervised learning is a hybrid framework halfway between super-
vised and unsupervised learning. It involves data for which the desired
results are only partially known. The groups identified as clusters by un-
supervised learning can be used as possible class labels.

Self-supervised learning is a recent hybrid framework and can be consid-
ered halfway between supervised and unsupervised learning. The trick
is to exploit the labels that can be extracted from the structure of the data
itself. Self-supervised algorithms work in two steps. The first step is to
pre-train the model to solve a preliminary task whose objective is to ob-
tain supervisory signals from the data. The second step is to transfer the
acquired knowledge and to fine tune the model to solve the main task.

Learning strategies
In addition to these basic and hybrid learning frameworks, there are also
strategies for reusing previously trained models or for combining models.

Transfer learning reuses and refines the blocks and layers of a model that
has already been trained with certain data and for a certain task, in order
to apply it to other data and/or task. Transfer learning allows knowledge
from different but related domains to be exploited, reducing the need for a
large dataset for the target task and improving the model performance.

Ensemble learning combines the results of several models or algorithms
to perform a task, improving overall performance and model stability.

2.3 Artificial intelligence in radiation therapy

This section is inspired by two reviews on the role of artificial intelligence in radi-
ation therapy [HHG+20, LKT23].

The development of artificial intelligence in a wide range of fields has

| 43



2 | Introduction to deep learning for IGRT

led to growing interest in deep learning applications in the field of radia-
tion therapy. However, the techniques developed in recent years are very
rarely deployed in hospitals and traditional methods based on manual in-
spection of images by professionals still predominate. The section explores
the motivations behind artificial intelligence in radiation therapy, its chal-
lenges and current areas of application.

2.3.1 Motivations

The interest in artificial intelligence for radiation therapy is part of the
wider context of artificial intelligence for medicine. Today, doctors are un-
der pressure to carry out numerous administrative tasks, forcing them to
be more productive and to drastically reduce the average consultation time
per patient. The increased pressure leads to symptoms of burnout in many
doctors, which can contribute to misdiagnosis. The role of artificial intel-
ligence would then be to reduce the number of diagnostic errors through
technology, but also to reduce the number of burnout cases by reducing
the workload on doctors [Top19].

One of the advantages of deep learning over manual inspection is the
speed of diagnosis. Given sufficient computing power, an automated sys-
tem can analyse a very large number of images simultaneously, at any one
time. A computer processes data at an inhuman speed. This acceleration in
diagnostic speed has been reinforced by advances in GPU-based machine
learning [SKP10]. This technical advance means that real-time algorithms
can support, and even automate, certain medical procedures [ZZC+19]. It
also has the considerable advantage of speeding up certain tasks carried
out by doctors, allowing them to devote more time to patients.

Another advantage of deep learning is the elimination of human per-
ception bias in diagnosis. Physicians are human beings and are subject to
biases, such as cognitive bias, anchoring bias or confirmation bias, all of
which can lead to medical errors [CKC13]. Furthermore, an experienced
physician is only exposed to a small sample of possible pathologies over
the course of his or her career. An autonomous system based on deep
learning can process data from many sources and have multiple examples
of rare diseases that may be frequently overlooked. The artificial intelli-
gence system could alert the practitioner to the need for further inspection
or additional tests to rule out a specific pathology.
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An additional advantage of image processing based on deep learning
is the ability to detect objects in images that are invisible to the eye. This is
made possible by the use of many filters in convolutional neural networks,
which are based on correlations between surrounding structures.

2.3.2 Challenges

The use of artificial intelligence in clinics faces a number of challenges.
These can be divided into two categories: technical challenges as well as
ethical and legal challenges.

Technical challenges
One challenge of using artificial intelligence in medicine is the access to
sufficient data. In most applications, the theoretical limit on the number of
medical images available is less than what is needed to match human per-
formance. To match or exceed human performance, the training dataset
must contain at least millions of examples [GBCB16]. However, it is im-
possible to acquire such a database for most medical image analysis appli-
cations. Fortunately, although a ten-million-image database is often nec-
essary in natural images to match human performance, a smaller amount
of data has been shown to be sufficient for certain applications in medical
image analysis. Rajpukar et al. in [RIB+18] achieve radiologist-level per-
formance for pneumonia detection on chest x-rays using 112.120 images,
and Esteva et al. in [EKN+17] achieve dermatologist-level performance
for classification of skin cancer with 129.450 images. The creation of large
databases is also complicated by the fact that many medical images are not
stored. After acquisition, images are stored in the hospital database for a
limited time and then deleted. This limits the number of images available.
Moreover, image retrieval within a hospital is very time-consuming. Im-
ages can only be retrieved using a specific software, which is installed on
only a few computers as it requires an expensive license. These computers
are also used for clinical work, and their availability for image retrieval is
therefore limited. In addition, most of these programs are not designed to
extract large numbers of images, and often require many clicks of the user
to extract images one by one, making it impossible to automate this step.

Another technical problem with medical data is the variation in image
quality acquired by one scanner or another. A model trained on data from
a single scanner is generally not generic enough to perform well on images
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acquired by another machine.

An additional difficulty with medical images is the expertise required
to label the data. This expertise is scarce and expensive, although essential
for supervised learning. For natural images, anyone can determine the po-
sition of a person, a bike or a cat on an image. In medical imaging, expertise
is rare and the availability of physicians for the annotation task is limited.
Annotations take time to produce and are therefore costly. Another prob-
lem with these annotations is the lack of inter-hospital and inter-observer
consensus on the labeling protocol. Different clinics or physicians give dif-
ferent names to the same organ or use different languages for annotation.
A time-consuming pre-processing step is then essential to standardise all
names.

Ethical and legal challenges

One of the main ethical challenges facing artificial intelligence in medicine
relates to the data used. Medical data is personal, private and sensitive.
This creates a tension between the need for more data to train and validate
powerful algorithms and the obligation to preserve the privacy of personal
health data. There is no good way to solve this conflict, because different
cultures with different systems of beliefs lead to different choices.

Another problem is access to healthcare. Underprivileged populations
currently have less access to healthcare and in consequence, the existing
medical databases are biased towards the privileged populations. More-
over, the incidences of different pathologies vary between regions. As a
result, underprivileged populations may have less access to algorithms
adapted to their medical needs, creating an undesirable reinforcement of
inequalities [NHA+21].

A major legal challenge for the application of artificial intelligence in
medicine is legal liability in the event of misdiagnosis. It is difficult to as-
sign responsibility for a medical error resulting from a faulty prediction of
the algorithm. Is the error attributable to the medical doctor, the software
engineer or the manufacturer of the imaging device? It is also important
to determine the minimum performance required of the algorithm before
deploying it on a large scale.
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2.3.3 Areas of application

Artificial intelligence has the potential to improve radiation therapy for
cancer patients by increasing the efficiency of the staff involved, improv-
ing the quality of treatment and providing additional clinical information
and treatment response predictions to aid and improve clinical decision
making. In this section, we discuss the promise of artificial intelligence to
transform the treatment of cancers by radiation therapy. Examples of how
AI could increase the efficiency of radiation therapy treatments and how it
would integrate into the usual workflow are presented.

Initial treatment decision
The clinical workflow of radiation therapy starts with patient intake and
evaluation. This step typically involves a consultation by the radiothera-
pist that includes a review of the symptoms of the patient, medical history,
physical examination and an evaluation of the risk of toxicities from radi-
ation therapy. On the basis of a synthesis of these data, the radiotherapist
recommends a treatment plan. AI-based methods can automatically ex-
tract key clinical features from all this data to serve as a decision-support
tool.

For example, Draguet et al. in [DBMCV+22] develop a fully automated
clinical decision-support tool to refer a patient to either radiotherapy or
proton therapy. This tool exploits recent advances in artificial intelligence
applied to radiotherapy and combines them with state-of-the-art normal
tissue complications probabilities models to recommend a specific treat-
ment for each patient.

Synthetic CT generation
During the imaging step of the radiation therapy workflow, medical im-
ages are acquired for the preparation of the treatment plan. Computed
tomography is the main imaging modality in radiation therapy as it pro-
vides a precise and high resolution geometry of the patient, and it enables
direct conversion of the electron density needed to calculate the radiation
dose. However, each acquisition of a CT image irradiates the patient. For
these reasons, many research groups investigate the possibility of generat-
ing a CT image from an image of another modality.

Cone-beam computed tomography (CBCT) is used on a daily or weekly ba-
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sis during the treatment for accurate patient positioning in image-
guided radiation therapy. However, the inaccuracy of CT numbers
prevents CBCT from performing advanced tasks such as dose cal-
culation. Some studies focus on improving CBCT image quality for
better image-guided radiation therapy, and other studies assess the
validity of the synthetic image for dose calculation.

Liang et al. in [LCN+19] develop a cycle-consistent adversarial gen-
erative network to synthesise CT images from CBCT images. This
model is capable of translating one image modality into the other
using unpaired CT and CBCT, and unsupervised learning. The syn-
thetic CT images generated by their model are visually and quantita-
tively similar to real CT images, with a mean absolute error of about
30 HU for head and neck cancer patients. They also demonstrate that
dose distributions calculated on the synthetic CT images are more ac-
curate than those calculated on the CBCT images.

Chen et al. in [CLS+20] use a U-Net architecture to take advantage
of the anatomical structure of on-treatment CBCT and intensity infor-
mation of the planning CT image. The synthetic CT generation U-Net
model is trained using on-treatment CBCT and initial planning CT as
input. The same-day CT is taken as reference. The mean absolute er-
ror is lower than 19 HU between the synthetic CT and the reference
CT, while it is around 45 HU between the CBCT and the reference CT
for head and neck cancer patients.

Liu et al. in [LLW+20] study the generation of a synthetic CT based
on a CBCT for patients treated with radiotherapy for pancreatic can-
cer using a self-attention cycle generative adversarial network. The
CBCT acquired before the first treatment fraction is registered on the
planning CT for training and synthetic CT generation. CT-based con-
tours and treatment plans are transferred to the CBCT and sCT of the
first treatment fraction for dosimetric comparison. In the abdomen
area, the mean absolute error is around 55 HU between the synthetic
CT and the reference CT, while it is around 80 HU between the CBCT
and the reference CT. They do not observe significant differences in
dose-volume histogram metrics between CT- and sCT-based treat-
ment plans, while significant differences are observed between CT-
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and CBCT-based treatment plans.

Magnetic resonance imaging has also proved its added value in delineating
tumors and organs at risk, thanks to its excellent soft-tissue contrast.
To benefit from the complementary advantages offered by the differ-
ent imaging modalities, MRI is generally registered with CT. How-
ever, residual registration errors and differences in patient position-
ing can introduce systematic errors that would affect the accuracy of
the overall treatment. MRI-only radiation therapy has been proposed
to eliminate residual registration error, to simplify and accelerate the
workflow, and also to reduce the exposure of the patient to ionising
radiation [FMD+87, LBCE+03]. The main obstacle to the introduc-
tion of MRI-only radiation therapy is the lack of tissue attenuation
information required for accurate dose calculation. Various methods
have therefore been proposed for converting MRI into CT equivalent
representations using deep learning [BNC+21].

Han et al. in [Han17] develop a model with an architecture simi-
lar to a U-Net to generate a synthetic CT from magnetic resonance
imaging. The model uses 2D slices of the 3D-MRI image to recon-
struct the 2D slices of the synthetic CT. This 2D U-Net model directly
learns the mapping between the 2D grey-scale MRI image and the
corresponding CT slice. It is therefore necessary to predict all slices
independently in order to reconstruct the whole 3DCT image.

Emami et al. in [EDNDGH18] use a generative adversarial network
to generate synthetic CTs from magnetic resonance images. The gen-
erator part of the model learns the mapping between a T1-weighted
MRI image as input and a real CT image, while the discriminator part
of the network classifies the synthetic CT image as real or synthetic.

X-rays projections are acquired during a radiation therapy treatment frac-
tion using the equipment available in the treatment room. However,
these images only give 2D information and it is sometimes difficult to
localise the tumor on them. Several studies have therefore focused on
the reconstruction of a 3DCT image from these x-rays radiographs.
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Montaya et al. in [MZL+21] generate 3D tomographic patient mod-
els from two-view scout images using a deep learning strategy. They
also show that the 3D reconstructed patient models enable accurate
organ-specific dose delivery in the subsequent CT scans.

Ying et al. in [YGM+19] propose a generative adversarial network
to reconstruct a CT scan from two orthogonal x-rays. The proposed
method is able to reconstruct the general structure accurately, but
small anatomies still suffer from some artifacts.

Shen et al. in [SZX19] demonstrate that a deep learning model trained
to map projection radiographs of a patient to the corresponding 3D
anatomy can generate volumetric tomographic x-rays images of the
patient from a single projection view.

Segmentation
The contouring step of the treatment workflow has a significant influence
on the success of radiation therapy. However, manual segmentation is a te-
dious and time-consuming task for clinicians, and inter-observer variabil-
ity can affect the results of the radiation therapy. These two disadvantages
may be mitigated with automatic segmentation. For automatic segmen-
tation, convolutional neural networks, and in particular U-Net, have be-
come workhorses and produce clinically acceptable results. It is currently
accepted that automatic segmentation is not to be used in an unsupervised
manner, but that the correction of automatic contours saves time compared
with a solely manual workflow.

For example, Baek et al. in [BHAea19] train a convolutional neural
network to perform tumor segmentation, with no other information than
physician contours. They show that the neural network is able to identify
a rich set of survival-related image features with remarkable prognostic
value. The CNN algorithm trained for tumor segmentation contains fea-
tures having strong correlation with 2- and 5-year survivals.

Dong et al. in [DLW+19] propose an adversarial training strategy to
train deep neural networks for the segmentation of multiple organs on tho-
racic CT images. The generator produces a segmentation map of multiple
organs. The discriminator distinguishes between the ground-truth and the
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segmented organs at risk produced by the generator. The generator and
the discriminator compete against each other in an adversarial learning
process to produce the optimal segmentation map of the multiple organs.

Dose prediction

During the treatment optimisation step, the medical dosimetrist creates the
optimal treatment plan for the patient. The aim of this plan is to maximise
the dose delivered to the tumor while sparing the surrounding organs.
Treatment planing is a time-consuming process during which the medical
dosimetrist optimises the dose distribution to achieve the objectives de-
fined in the dose prescription. The quality of a treatment plan depends on
a number of different human factors, such as the choice of radiation beams
angles and plan optimisation parameters, leading to significant intra- and
inter-institutional variations. The results of several studies demonstrate
the ability of deep learning algorithms to predict the optimal entire dose
distribution, which allows to steer the optimiser to directly achieve that
dose distribution.

For example, Fan et al. in [FWC+19] use a residual neural network to
predict a dose distribution based on the specific geometry of the patient
and the prescribed dose for head-and-neck patients. The input data of the
model is a CT image as well as the contours of the planning target vol-
ume and organs at risk on this image. The algorithm is trained to predict
the dose distribution over the slices of the CT image. The results demon-
strate that a deep learning method is able to predict clinically acceptable
dose distributions as there is no statistically significant difference between
the predicted and actual treatment plans for all relevant dose-volume his-
togram metrics.

Nguyen et al. in [NJS+19] propose a new deep learning-based dose pre-
diction model, called Hierarchically densely connected U-Net. This new
architecture is based on two popular network architectures: U-Net and
DenseNet. This new architecture is able to accurately and efficiently pre-
dict the dose distribution. The model predicts, in the organs at risk, the
maximal dose within 6.3% and mean dose within 5.1% of the prescription
dose on the test data.
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Image guidance and motion management
During the treatment delivery step, the patient is placed in the same posi-
tion as the one used to create the treatment plan. Image-guided radiation
therapy currently uses imaging during treatment to position the patient
correctly. Artificial intelligence can be used to generate the correspond-
ing synthetic 3DCT image, as explained in the previous sub-section on
synthetic CT generation. Another challenge to consider during treatment
delivery is the movement of the patient and of its internal organs. These
movements can lead to over-dosage of the surrounding healthy tissues and
under-dosage of the target. Current methods for motion management and
mitigation aim to control and/or reduce the motion. However, there is con-
siderable variability in motion between and within individuals in terms
of amplitude and frequency, which complicates predictive modelling of
the tumor motion. Artificial intelligence can be used to generate patient-
specific dynamic motion management models that adapt to changes in pat-
terns of motion in order to improve tumor tracking.

For example, Rotsart de Hertaing et al. in [RdHDSJM23] train a vision
transformer network to forecast the motion of the tumor. The training of
the neural network is patient-specific and the prediction error of the model
is 1.30 mm in the three directions at an horizon of 1 s.

Adaptive radiation therapy
Throughout the treatment delivery, major changes can occur in the anatomy
of the patient. These changes often reflect tumor shrinkage or internal
anatomical variations that could potentially lead to a change in the doses
delivered to the tumor and organs at risk. This may warrant re-planning.
Adaptive radiation therapy involves the creation of a new treatment plan
based on updated images of the anatomy of the patient. The potential use
of artificial intelligence in all steps of treatment planning suggests that re-
planning could be simpler and, above all, quicker. Another challenge of
current adaptive radiation therapy is that the radiotherapist has to decide
when the anatomical changes are significant enough to be clinically rele-
vant, based on his or her own qualitative evaluation of the clinical param-
eters and images of the patient. Artificial intelligence could provide tools
for predicting which patients need treatment adaptation and the ideal time
to do so.

For example, Guidi et al. in [GMM+16] develop a machine-learning
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classifier to analyse volume and dose variations of parotid glands, and to
predict patients who would benefit from adaptive radiotherapy and re-
planning intervention. A double-blind evaluation by two radiotherapists
is carried out to validate the day or the week selected by the classifier for
re-planning.

2.4 Summary

In this chapter, we set out the context of artificial intelligence. We began
by explaining the different elements that constitute a neural network, from
the simplest to the most complex. We also looked at the different strate-
gies currently employed for training a neural network. We then discussed
the motivations behind the use of artificial intelligence in radiation therapy
and the challenges involved. In the last part of this chapter, we explained
which stages of the clinical workflow could benefit from artificial intelli-
gence and where research currently stands.
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Implementation strategies

This chapter presents the implementation strategies pursued in this thesis.
The first section of this chapter begins by explaining the general context
of the thesis and where the implementation strategies are involved. The
second section describes the data management strategy, the third section
discusses the neural network architecture and the fourth section explains
the treatment plan optimisation strategy.

3.1 Context

Figure 3.1 illustrates the general context of this thesis. The strategy devel-
oped in this thesis is based on a patient-specific training of a convolutional
neural network that learns the mapping between a 2D x-rays projection
and a 3DCT image. The purpose of the patient-specific feature is to refine
the neural network to the deformations of that patient, while requiring a
smaller sample of data than a generalised method. The neural network
takes as input a digitally reconstructed radiograph (DRR) that simulates
a daily projection radiography acquired using room-mounted x-rays im-
agers. The trained neural network outputs the associated 3DCT image. The
3DCT image can then be used for several purposes: give a feedback to the
machine on the 3D positions of the tumor and internal organs, and/or to
compute the dose delivered to the patient. This dose can either be given as
feedback to the machine or be used by the radiotherapist to decide whether
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re-planning is necessary.
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Fig. 3.1 Organisation chart of the thesis. It shows the different contributions
and how they are related to each other in the general context of this work. It also
highlights the implementation strategies pursued in this thesis and where they are
involved.

The research approach taken in this thesis can be divided into several
contributions, which are the topics of the next three chapters. The main
contribution focuses on the design of a methodology for reconstructing a
3DCT image from a projection radiography using a patient-specific train-
ing of a convolutional neural network. This contribution assesses the qual-
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ity of the reconstructed images using similarity metrics. The second contri-
bution deals with the use of these images in a proton therapy treatment. To
this end, the delivery of a treatment plan on reconstructed 3DCT images is
simulated. In each of these two contributions, a base case and two variants
are studied. The aim of the variants is to evaluate and compare the robust-
ness of different training methods to events that may occur in the clinic,
such as a change in layout and a change in image acquisition time.

To fully understand each contribution of this work, it is necessary to
master the implementation strategies pursued. These are detailed inde-
pendently in the following sections.

3.2 Data management

The theoretical parts of this section are based on the course of Benoît Macq, John
Lee, Greet Kerckhofs and Frank Peters on medical imaging given at UCLouvain
(LGBIO2050 - Medical Imaging) [MLKP20]. The last part of this section about
the data augmentation tool was published on arXiv [WDSJ+23].

The medical images required for this thesis are acquired using radio-
graphy. Radiography is an imaging technique that uses x-rays, gamma
rays or similar ionising and non-ionising radiation to visualise the internal
structure of an object. As the body is composed of different tissues with
different densities, ionising and non-ionising radiation allow to reveal the
internal structure of the body on an image receptor by highlighting these
differences through the attenuation or the absorption of x-rays photons.
Medical radiography is generally acquired by radiographers, while image
analysis is usually carried out by radiologists. Medical radiography com-
prises a range of modalities producing many types of image, each with a
different clinical application.

3.2.1 Projection radiography

Projection radiography is the simplest form of radiography and produces
two-dimensional images using x-rays. A radiograph is a two-dimensional
view of the total absorption of x-rays through the body along a given axis,
such that two objects placed in front of each other are superimposed on the
image.
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Basic principles
The system used to acquire x-rays projections is divided into several com-
ponents, all of which are essential for correct image acquisition. The basic
principles of this medical imaging modality are displayed in figure 3.2.

x-rays tube

Detector
Grid

Absorbed beam

Transmitted beam

𝑒!
𝑒! 𝑒!

Scattered beam

Anode

Target

Cathode

x-rays beam

Fig. 3.2 Representation of the device used to acquire a projection radiography.

The x-rays tube consists of two electrodes placed in a vacuum enve-
lope that can withstand high temperatures. The negative electrode is a fil-
ament that emits electrons by thermionic emission. These electrons are ac-
celerated towards an anode by a peak voltage. X-rays are produced when
highly energetic electrons interact with matter and convert their kinetic
energy into electromagnetic radiation. The conversion of electrons kinetic
energy into electromagnetic radiation takes place in the anode material.
The electrons are deflected by a positively charged nucleus in the target
and lose energy emitted in the form of Bremsstrahlung radiation. The sub-
atomic distance between the electron and the nucleus determines the en-
ergy lost by the electron during this process: the closer the electron is to
the nucleus, the more energy it loses. The probability of a direct impact of
the electron with the nucleus is extremely low and lower x-rays energies
are generally generated in greater quantities. The energy of the x-rays pho-
tons is equal to the energy of the incident electron and therefore depends
on the peak voltage.
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The x-rays emitted by the x-rays tube can be absorbed, scattered by
the patient or transmitted without interaction. The transmitted photons,
known as primary photons, produce the x-rays image. They provide in-
formation about the properties (thickness, density or atomic number) of
the tissue passed through. Scattered photons, known as secondary pho-
tons, are not useful for imaging because they have lost their original di-
rection and degrade the contrast of the image. In general, most secondary
photons are eliminated by an anti-scatter grid placed between the patient
and the detector. In computed radiography, storage phosphors are used
as screens of photostimulable phosphor detectors. When a ray is absorbed
by a photostimulable phosphor detector, some light is emitted rapidly as
in an intensifying screen, but much of the absorbed energy is trapped in
the screen and can be read out later. Photostimulable screens are made
from a mixture of barium fluorohalides and are enclosed in a cassette. Af-
ter x-rays exposure, the cassette is placed in a readout unit, where a red
laser light scans the imaging plate and stimulates emission of the trapped
energy in the form of visible light. The released light is then collected by
a fiber-optic light guide and sent to a photo-multiplier tube, where it pro-
duces an electronic signal that is digitised and stored. The cassette is then
exposed to bright white light to erase any residual trapped energy, and is
ready for re-use.

Projection radiography in radiotherapy

Standard-equipped linear accelerators of radiation therapy contain room-
mounted x-rays imagers. This enables fluoroscopy which allows real-time
2-dimensional image-guided radiation therapy with implanted markers.
In-room imaging technologies enable evaluation and correction of setup
errors, anatomic changes related to weight loss, or internal organ motion
[Kor15, Kru18, VSV+18].

Digitally reconstructed radiograph

A digitally reconstructed radiograph (DRR) is a simulation of a conven-
tional two-dimensional projection radiography created from a computed
tomography image. Figure 3.3 illustrates the principle of simulating a dig-
itally reconstructed radiograph and shows an example of the result. The
x-rays beams are emitted from a source with a fixed initial energy. The
energy of the beam decreases as it passes through the body of the patient.
The energy of the attenuated beam is measured when the x-rays reach a
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point on the detector, producing the DRR.

The most commonly used algorithm to compute a DRR is the Siddon
algorithm. In this model, the image value at position (x, y) is the weighted
average of the intensities of the voxels crossed by the beam, where the
weight is the length of its intersection with the voxel:

DRR(x, y) = ∑
i

∑
j

∑
k

ρ(i, j, k)l(i, j, k) (3.1)

where ρ(i, j, k) is the voxel intensity value and l(i, j, k) is the length of the
intersection between the beam and that voxel.

Detector plane

CT image

x-rays source

x
y

j
i k

Intersection length

DRR

Fig. 3.3 Illustration of the DRR generation geometry.

In this work, digitally reconstructed radiographs are generated using
the TomoPy Python library and a projection angle of 0° along the anterior-
posterior axis [GDCXJ14]. The projection geometry is a 1440 x 1440 image
with a pixel size of 0.296 x 0.296 mm2.

3.2.2 Computed Tomography

Computed tomography (CT) was the first imaging modality to probe the
inner depths of the body, slice by slice. Since the first head CT scan in 1972,
CT has gained in technical sophistication, with concomitant changes in the
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quality of CT images. Imaging time has also been considerably improved,
and modern computers allow images to be reconstructed in almost real-
time.

Basic principles

CT scanners work by shooting multiple beams of x-rays with the machine
rotating around the patient. The signals generated are then picked up by
the detectors on the other side of the x-rays source and processed by a
computer to generate a two-dimensional cross-sectional image, known as a
slice. Figure 3.4 illustrates the two possible types of geometry. Figure 3.4(a)
shows the parallel beam geometry implemented in the first CT scanners. In
this case, all x-rays are parallel to each other. Figure 3.4(b) presents the fan
beam geometry used in modern scanners. In this case, all x-rays diverge at
a given projection angle.

x-rays source

Single detector

(a) Parallel beam geometry

x-rays source

Detector array

(b) Fan beam geometry

Fig. 3.4 Two different projection geometries have been used in CT imaging: par-
allel beam geometry and fan beam geometry.

Each ray is a measure of the transmission through the patient along a
line, where the detector measures the intensity of the transmitted x-rays
(It). The intensity of the unattenuated x-rays (Io) is also measured dur-
ing the scan by a reference detector. These two intensities are machine-
dependent values. For an ideal monoenergetic photon beam, It and Io are
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related by the following formulas:

It = Io. exp(−µx)

p(E) = − ln(It/Io)
(3.2)

where x is the thickness of the patient along the ray, µ is the average linear
attenuation coefficient along the same ray and p is the line integral of the
attenuation coefficient µ along the ray. This calculation, which is a prepro-
cessing step prior to reconstruction, reduces the dependency of the final
image on machine-dependent parameters and explains the great clinical
utility of CT images. After collecting a complete set of line integrals, a re-
constructed distribution of attenuation coefficients can be obtained using
filtered back-projection. The reconstructed value in each image pixel rep-
resents the linear attenuation coefficient for the corresponding tissue voxel.

Hounsfield units (HU) is the unit in which the pixels of a CT image are
expressed. For a useful display of the image, the values obtained for each
pixel are normalised and truncated into integer values using:

CT(x, y) = 1000 · [(µt(x, y)− µw)/µw] (3.3)

where µt(x, y) is the value obtained in pixel (x, y) before conversion and
µw is the attenuation coefficient of water. The value of µw is approximately
0.197 cm−1 for the x-rays beam energies usually used in CT scanning.
This standardisation makes it possible to obtain CT numbers ranging from
− 1000 HU to + 3000 HU. Air corresponds to − 1000 HU, soft tissue ranges
from − 300 HU to − 100 HU, water is 0 HU, and dense bone or areas filled
with contrast agent range up to + 3000 HU. CT numbers are quantitative,
allowing a more accurate diagnosis in certain clinical contexts. CT is also
quantitative in terms of linear dimensions and can therefore be used to
measure the volumes of organs of interest.

CT images generally have 12 bits of grey scale for a total of 4096 shades
of grey, with CT numbers ranging from − 1000 to + 3095. However, the
human eye has a limited ability to resolve relative differences in grey scale
and 8 bits, 256 shades of grey, are considered sufficient for image visual-
isation. 12-bit CT images need to be reduced to 8-bit to suit most image
display hardware. Contrast can be improved when displaying the image
by windowing and levelling the CT image. The width of the window de-
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termines the contrast of the image and the level corresponds to the CT
number at the centre of the window. To facilitate image interpretation, the
window is chosen to cover the tissue of interest.

Compared to x-rays radiography, CT scanning has significantly lower
spatial resolution and better contrast resolution. The limiting spatial fre-
quency for a CT scan is around 1 to 1.5 lp/mm, depending primarily on
the size of the detector elements. The contrast resolution for a CT scan
is approximately 0.5%. There are two main methods to reduce noise and
improve contrast resolution: increasing the number of incident x-rays or
increasing the number of photons absorbed by a pixel of the image. A
compromise must clearly be found between spatial resolution and contrast
resolution as the radiation dose administered to the patient must remain
within acceptable limits.

Three-dimensional CT

The basic principles presented in the previous sub-section allows to gener-
ate a two-dimensional cross-sectional image. It is then necessary to trans-
late the x-rays source in cranio-caudal direction to obtain a volumetric im-
age of the patient. Modern scanners use multiple detector arrays to in-
crease the axial coverage. The slices are stacked one on top of the other to
form the three-dimensional CT (3DCT) image. A 3DCT image is usually
composed of 150 to 180 slices. The slice thickness is determined by the de-
tector size and is generally equal to 2 mm. Each slice is then composed of
512 × 512 pixels with a pixel spacing of 1.074 mm in both directions.

Digital Imaging and Communications in Medicine (DICOM) is the in-
ternational standard for medical images and related information. It defines
the format to be used to store medical images to enable easy data exchange
and to guarantee the quality expected for clinical use. In practice, each two-
dimensional cross-sectional image is saved in an independent DICOM file.
3DCT images are essential for radiation therapy as the treatment planning
is based on a three-dimensional computed tomography scan.

Four-dimensional CT

Four-dimensional computed tomography (4DCT) is a type of CT scan that
records multiple three-dimensional computed tomography volumes over
a period of time, creating a dynamic volume dataset. A 4DCT is created by
acquiring a large number of two-dimensional cross-sectional images over
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a couple of minutes, while the patient breathes in a trained pattern. The
slices are then sorted into several groups, called breathing phases, using
an external surrogate signal. All slices corresponding to a same breathing
phase are re-arranged in space to form the relevant 3DCT image.

Four-dimensional computed tomography aims to consider the motion
of the tumor during treatment planning. A schematic representation of the
tumor motion is displayed in figure 3.5(a). The treatment planning of a
mobile tumor is based on the midpCT image. To create this image, defor-
mation fields are computed from every breathing phase of the 4DCT to a
reference phase using non-rigid registration, as shown in figure 3.5(b). This
gives an average position called the mid-position. Every breathing phase is
then deformed to the mid-position, where the median is computed to cre-
ate the mid-position 3DCT (midpCT) image, as displayed in figure 3.5(c).
The midpCT image represents the average position over the breathing cy-
cle. This image is not blurred as the mean is directly performed on the
deformation fields. On top of this, the median over all deformed breath-
ing phases allows to remove noise and reconstruction artefacts. The mid-
position image has the same size and resolution than the breathing phases
in the 4DCT. The midpCT and the deformation fields are saved in the DI-
COM format, and are given to the treatment planning system to consider
the breathing motion in case of a mobile tumor.

p1

p2

p3

p4

p5

p6

p1

p2

p3

p4

p5

p6

(a) (b) (c)

mid-position CT

Fig. 3.5 (a) Schematic representation of the tumor motion represented by a hys-
teresis shape created by the positions of the tumor at the different breathing phases
of the 4DCT. (b) Deformation fields (grey vectors) are computed using non-rigid
registration between the first phase (p1) and all other phases. (c) All phases are de-
formed to the average motion position, called the mid-position (midp) 3DCT image
(green circle).
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ROI contours
The radiation therapy treatment workflow requires the target and organs
at risk to be contoured on the planning 3DCT by the radiotherapist. The
different contours defined by the physician are saved in the standard file
format, DICOM RTstruct. This file contains, for each contour, the name of
the organ and the list of the 3D points forming the mesh of the 3D contour
in the coordinate system of the 3DCT image on which they are drawn.

In this thesis, only the contours of the GTV, heart, both lungs and body
are considered. Figure 3.6 shows the contours of interest on different slices
and views of a CT image for one patient studied in this thesis.

Fig. 3.6 Example of contours of different regions of interest: the right lung in
blue, the left lung in yellow, the heart in red and the CTV in purple. These contours
are displayed on transversal (left), sagittal (top right) and coronal (bottom right)
CT slices.

3.2.3 Data augmentation tool

The ALARA principle has been defined to ensure that human exposure to
radiation remains "as low as reasonably achievable" [HB05]. It is therefore
not permitted to acquire a large number of 3DCT images of the same pa-
tient. This is a major problem for this thesis as all artificial intelligence
algorithms require a large number of datasets to train and validate the
neural network. One goal of this thesis was therefore to develop a data
augmentation tool able to create a database of sufficient size for training
and validating neural networks. This data augmentation tool requires the
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acquisition of a 4DCT and generates new 3DCT images of a patient. This
data augmentation tool is implemented in an open-source treatment plan-
ning system for research in proton therapy, OpenTPS1.

OpenTPS is an open-source treatment planning system designed for re-
search. The software is organised into two packages: the core package and
the gui package. The core package is a library that defines data classes, data
processing methods and in/out methods. The gui package offers a graphi-
cal user interface for viewing and interacting with the data. The core pack-
age of OpenTPS is the main software library and includes a range of fea-
tures that are essential for proton therapy treatment planning. Some of the
key features available in the core package of OpenTPS include: data man-
agement and processing, dose computation, treatment planning, treatment
evaluation and data augmentation. In this section, the data augmentation
tool developed and implemented in OpenTPS is described. For further in-
formation of the other features available in the software, the reader may
refer to [WDSJ+23].

The data augmentation tool is based on the acquisition of a 4DCT. De-
formations fields are computed from every breathing phase of the 4DCT to
a reference phase using non-rigid registration in order to obtain the mid-
position. Every breathing phase is then deformed to the mid-position,
where the median is computed to create the midpCT image. The mid-
pCT image coupled with the deformation fields from the mid-position to
each breathing phase forms a motion model. Depending on the non-rigid
registration algorithm used, the deformation fields are either displacement
fields or velocity fields. The motion model is then given as input to the
data augmentation algorithm. This algorithm aims to create new synthetic
and realistic 3DCT images of the patient by deforming the midpCT im-
age. The deformations are divided into two categories: inter-fraction defor-
mations and intra-fraction deformations. Inter-fraction deformations rep-
resent setup errors and anatomical changes related to weight loss, while
intra-fraction deformations represent internal organ motion.

Inter-fraction deformations
Figure 3.7 displays a schematic representation of the four inter-fraction de-
formations implemented in OpenTPS. The inter-fraction deformations are
implemented as operations on the displacement fields. The displacement

1http://www.opentps.org/
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is automatically computed from the velocity field when the deformation
is applied using a field exponentiation operation. Figure 3.8 shows the re-
sults of applying the four types of inter-fraction deformation to a midpCT
image, either independently or together. It is important to note that large
deformation values have been expressly chosen here so that the deforma-
tions are perceptible in the figure. The deformation values chosen in the
rest of this work are smaller and are inspired by the values actually ob-
served in the treatment room. This will be explained in more detail in each
contribution chapter.
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Fig. 3.7 Schematic representation of the four inter-fraction deformations imple-
mented in OpenTPS: organ baseline shift, organ shrinkage, image rotation and im-
age translation.
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Fig. 3.8 Application of the four inter-fraction deformations available in the data
augmentation tool on a midpCT image, either separately or together. For each
plane, the slice shown is that of the centre of mass of the GTV in the initial image.
In this example, the deformation values are 5 mm (left-right), 8 mm (cranio-caudal)
and 10 mm (anterior-posterior) for the translation and the GTV baseline shift, 4°, 7°
and 9° for the rotation and 2 mm, 1 mm and 3 mm for the GTV shrinkage.

Baseline shifts can be applied on a motion model using the ROI mask of
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the target or of the organ to be translated. The baseline shift is constructed
as a diffeomorphic displacement vector field modeling a local shift of the
ROI mask while preserving the surrounding structures. The user selects
the baseline shift value to be applied and the organ affected by this defor-
mation. The value chosen is expressed in millimeters and it is possible not
to give the same value in the three motion directions.

Shrinkages can be applied on a motion model using the ROI of the target
or of the organ to be shrink. The shrinkage is constructed as an expansion
of one voxel and an erosion of N voxels depending on the user input in
millimeters. The dilated and eroded bands corresponding to the difference
with the original mask are computed using these two masks. Every voxel
of the eroded band is then replaced by a random sample picked from a
normal distribution N (µ, σ2), where µ is the average value of the ten vox-
els from the dilated band closest to the voxel. The user selects the shrink
value to be applied and the organ affected by this deformation. The value
chosen is expressed in millimeters and it is possible not to give the same
value in the three motion directions.

Rotations around the three main axes can be applied on a motion model.
The rotation is applied around an axis at the center of the image and not
around the image origin. In case of multiple rotations, the order is determi-
nant as rotations are not commutative. The user chooses the three angles
of rotation in each direction, which are expressed in degrees.

Translations in the three main axes can be applied on a motion model by
translating the whole image by N voxels depending on the user input in
millimeters. The user decides on the three translation values in each direc-
tion, which are expressed in mm.

Intra-fraction deformations
A breathing motion signal is generated to create a sequence of 3DCT im-
ages following this specific respiratory pattern. An ideal breathing signal
is a sinusoidal wave oscillating at a specific frequency. However, over the
image acquisition period, the patient does not always remain still, which
may result in a shift of the sinusoidal wave. In addition, random events
such as coughing, stress or apnea have a real impact on the simulation
of breathing. Noise is also present in the data acquisition. Because of all
these non-idealities, respiration must be modelled by a complex sine wave
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whose amplitude and frequency vary with time. Therefore, a breathing
signal is simulated using:

y(t) = A(t) sin(2π f (t)) + s(t)

where A(t) is the amplitude of the signal, f (t) is the frequency of the signal
and s(t) is the shift. A(t), f (t) and s(t) are random step functions where
the intervals are random variables. A Gaussian noise is also added to each
signal. The user can choose the breathing period and mean amplitude of
the signal, as well as the standard deviation of the noise present in it. He
can also choose to add or not irregularities. Figure 3.9 displays two syn-
thetic breathing signals: a regular one in blue and an irregular signal in
orange.
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Fig. 3.9 Example of two synthetic breathing signals, a regular signal in blue and
an irregular in orange.

The user can chose in this signal one or multiple points at which new
images are created. Each point determines the phase and the amplitude
of the new image. A polar coordinate system (r, n) related to the motion
model is defined, where the origin is the midpCT image and n are the
periodic breathing phases. One example is represented in figure 3.10. In
this system, the deformation fields associated to the 10 breathing phases
of the 4DCT are known and are F(1, N), with N ∈ 0, 0.1, ..., 0.9. Then, to
create the new image at breathing phase n and at a normalised distance r
of the midpCT image, the deformation field F(r, n) is computed using a
linear interpolation between the two closest discrete breathing phases plus

70 |



Data management | 3.2

a scaling :

F(r, n) =
[
F(1, N)+

(
F (1, N+0.1)− F (1, N)

)
· 10 · (n − N)

]
· r (3.4)

where N ≤ n ≤ N+0.1. Using this method, it is possible to generate
slightly different 3DCT images, spread around the ten original breathing
phases of the 4DCT. Moreover, the user can chose to apply the breathing
signal to one or multiple points of the image. If multiple points and signals
are used, for example to partially decorrelate the tumor motion from the
skin motion, they are combined using weight maps and linear interpola-
tions.
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Fig. 3.10 Representation of the polar coordinate system used to reconstruct the
new 3DCT images. The breathing phase and amplitude at which the new image is
created are selected by the user on the synthetic breathing signal.

Figure 3.11 shows five synthetic 3DCT images created using random
intra-fraction deformations implemented in the data augmentation tool.
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Fig. 3.11 Example of five 3DCT images created using random intra-fraction de-
formations of the midpCT image.

3.3 Neural network

The neural network used in this thesis was developed and published by
Henzler et al. in [HRRR17]. This research group applied deep learning
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in the form of a convolutional neural network to the challenge of invert-
ing x-rays imaging. Although CNNs have had success in generating depth
from opaque observations [EPF14] and inferring 3D volumes [WSK+15,
REM+16], they were the first team to attempt to invert single x-rays im-
ages using this type of neural networks. The special feature of the neural
network developed by Henzler et al. is that it takes as input a 2D image of
size 256 × 256 and outputs a volume of size 128 × 128 × 128, whereas typ-
ical neural networks generally have input and output of the same spatial
resolution.

3.3.1 Architecture

The overall structure of the neural network is an encoder-decoder with
skip connections and residual learning. An overview of the network is
shown in figure 3.12. The rest of this section describes the architecture of
the neural network.
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Fig. 3.12 Neural network used in this thesis to reconstruct a 3DCT image from
a single x-rays projection. The network takes as input a digitally reconstructed
radiograph of size 256× 256 and outputs the corresponding 3DCT scan, with a size
of 128 × 128 × 128. This figure is adapted from [HRRR17].

Two basic blocks compose the first layers of the network. Each one con-
sists of a convolution operation accompanied by a batch normalisation and
a ReLU activation function. The convolution of the first basic block is de-
fined by 64 kernels of size 7 and a stride of 2, allowing to pass to a tensor
of size 128 × 128 × 64. The convolution of the second basic block uses 128
kernels of size 1 and a stride of 1, giving a tensor of size 128 × 128 × 128.

Two residual blocks are used after the basic blocks to increase the learn-
ability. Instead of learning the convolutions directly, the network learns the
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additive residual. This does not change the network expressiveness, but it
significantly helps the training, making it easier, and improves generali-
sation. The residual blocks are made up of three successive basic blocks,
where the sizes of the three convolution kernels are 1, 3 and 1 with unit
strides. The number of filters are 64, 64 and 128 for the first block, giving a
tensor of size 128 × 128 × 128. For the second block, the number of filters
are 128, 128 and 256, creating a tensor of size 128 × 128 × 256.

Encoder starts at this point. The aim of an encoder is to convert an image
into an internal representation that represents the information contained
in the training data. To this end, the encoder reduces the spatial resolution
of its input. In this network, a down block is composed of three residual
blocks and a pooling operation. The pooling operation takes place after the
first residual block with a filter size of 2 and a stride of 2, reducing spatial
resolution by half. The filters of the three convolution operations are iden-
tical in the three residual blocks, with sizes of 1, 3 and 1 and a number of
filters of 128, 128 and 256.

Decoder starts when the spatial resolution is reduced to 8. The aim of a
decoder is to apply the internal representation of the encoder to a specific
instance. The decoder increases the spatial resolution again, without re-
ducing the number of feature channels. This is performed using an up
block composed of a deconvolution operation and a residual block. The
transposed convolution is composed of 256 kernels of size 4, using a stride
of 2 and a zero-padding, meaning that the output spatial resolution is the
input resolution multiplied by 2. The residual block has the same parame-
ters than those used in the encoder step.

Skip connections are used to share the spatial details of a certain reso-
lution at some level on the encoder part with the same resolution on the
decoder part. These convert fine details of the input 2D image into details
of the output 3D volume. Skip connections allow the high-resolution spa-
tial layout to be used to locate features, for example on edges.

A last convolution with 128 kernels is used to reduce the number of fea-
ture channels to 128. The design of the network increases the number of
feature channels from 1 to 256 using the first basic and residual blocks. The
network retains this number of feature channels until this last step where
it is reduced to the output resolution of 128. This ensures that the neural
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network does not produce the same result for every slice in that direction.

Fusion is used to increase the resolution of the output to a desired spatial
resolution, while maintaining the overall transparency (α) of the original
2D radiograph. This step distributes the density error µi − µ̄i of a slice i
to obtain a new density value (µ̂i) for each voxel, so that the voxels still
form the correct value of the transparency, defined as the fraction of x-rays
arriving at the sensor after traveling a volume with extinction coefficient.
The extinction coefficient is defined as the sum of absorption and scatter-
ing. During the training step, the loss function encourages the inferred
densities (µ̄i) to be as close as possible to the true densities (µi), but it has
no influence in ensuring that the fraction of x-rays arriving at the detector
is correct. This is achieved, as a post-processing step, by setting:

µ̂i = µ̄i − ∆
µ̄2

i

∑n
1 µ̄2

i
(3.5)

where ∆ = log(1 − (ᾱ − α)) and ᾱ − α is the transparency error.

3.3.2 Learning

In this work, the mean squared error is the loss function used to train
the network in a supervised way. The mean squared error computes the
squared difference between actual and predicted values. It is defined by:

MSE =
1
N ∑(y − ŷ)2 (3.6)

This loss function is generally used for a regression task as is the case in
this problem. Stochastic gradient descent is employed to reduce the cost
of computing the gradient, as well as an adaptive learning rate algorithm
to dynamically adjust the learning rate during the training process. This is
performed using the common extension Adam which involves combining
gradient estimation with lower moments of the gradient. The values of the
other hyper-parameters of the neural network used in the rest of this work
are task-specific. This will be explained in more detail in each contribution
chapter. For each contribution, the model was trained on NVIDIA RTX 600.

It is essential to note that, for each contribution, the training of the
neural network is patient-specific. This means that the neural network is
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trained independently for each patient. The training and test sets only con-
tain images of the same patient. However, it is also important to point out
that the hyper-parameters are optimised for a task and not for a patient.
This implies that the training performed for the different contributions do
not have the same hyper-parameter values (for example, the number of im-
ages and the number of epochs required for the training are not the same),
but within a same contribution, all patient-specific networks are trained
with the same values of hyper-parameters.

3.4 Treatment plan optimisation

RayStation v.12B is used to create and optimise all treatment plans required
in this thesis. RayStation is a treatment planning system (TPS) for external
beam radiation therapy developed, sold and maintained by the Swedish
software company RaySearch Laboratories A.B. [RSL]. This software plays
a very important role in clinical routine, but the version used is dedicated
solely to research. This software has several tabs. In this work, five of them
are used.

Patient data management tab is used firstly to import the data of the pa-
tient to be planned. This tab enables to import in the software all images
and contours of the patient. This tab is also important because it enables
the calibration of the CT scanner to ensure that the Hounsfield Units and
the tissue densities match.

Patient modeling tab is used to visualise the different cross-sections of the
patient and display the contours of the target and organs at risk. This tab
also includes various tools for creating new volumes or modifying and
combining existing volumes. These tools are not needed for this thesis as
the contours defined by the physicians are used.

Plan design tab is used to create the treatment plan. This step is important
because it allows to define a certain number of parameters characterising
the plan. These are listed in table 3.1 and differ according to the type of
cancer of the patient, either lung cancer or liver cancer.

This tab also enables to add beams to the treatment plan. In this work,
three beams are always defined. The parameters used to characterise the
treatment beams are given in table 3.2. These are identical for lung and

76 |



Treatment plan optimisation | 3.4

liver cancers.

Table 3.1 Parameters set in RayStation when creating a treatment plan.

Treatment plan parameter Lung cancer Liver cancer
Planning image set planning midpCT planning midpCT
Patient treatment position Head First Supine Head First Supine
Modality Protons Protons
Treatment technique Pencil Beam Scanning Pencil Beam Scanning
Treatment machine IBA ProteusONE IBA ProteusONE
Treatment site GTV GTV
Prescription type Median dose (D50%) Median dose (D50%)
Prescribed dose 60 Gy 52 Gy
Number of fractions 30 6

Table 3.2 Parameters set in RayStation when adding a beam to the plan.

Beam parameter Value
Isocenter Center of the GTV
Gantry angle see table 3.3
Couch angle 0°
Dose specification point Isocenter
Spot tune ID 3.0
Snout None
Range shifter None

The gantry angle of each beam is specifically chosen according to the
position of the target within the body. The gantry angle values used for the
different patients studied in this thesis are given in table 3.3.

Table 3.3 Gantry angles used for the different patients studied in this thesis.

Patient ID Cancer site Beam 1 Beam 2 Beam 3
Patient 0 liver 0° 180° 270°
Patient 1 lung 10° 250° 310°
Patient 2 lung 30° 100° 320°
Patient 3 lung 210° 260° 320°
Patient 4 lung 0° 270° 315°
Patient 5 lung 20° 200° 290°
Patient 6 lung 30° 75° 120°
Patient 7 lung 27° 200° 290°
Patient 8 lung 25° 205° 295°
Patient 9 lung 15° 105° 195°
Patient 10 lung 15° 105° 195°
Patient 11 lung 190° 255° 320°
Patient 12 lung 215° 270° 325°
Patient 16 liver 0° 180° 270°
Patient 19 liver 0° 180° 270°
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Plan optimisation tab is used to define all parameters required for the
treatment plan optimisation, as well as to set clinical objectives and op-
timisation constraints.

The dose-based optimisation of a treatment plan, also known as in-
verse planning, is a technique that achieves the clinical objectives of a plan
through iterative adjustments of the plan parameters using a numerical
optimisation method. The optimisation process continues until one of the
following three criteria is met: the variation in the value of the optimisa-
tion objective function is less than the optimisation tolerance (set to 10−6)
for 3 consecutive iterations, the maximum number of iterations has been
reach (set to 150), or no direction of improvement can be found.

In proton therapy, the Monte Carlo algorithm is regularly used to com-
pute the dose. This algorithm is recognised for its high accuracy and pro-
vides a good estimate of the dose distribution inside the patient. This al-
gorithm models and simulates the particles electromagnetic and nuclear
interactions in matter to predict their range and local dose deposition. Two
parameters are used in the Monte Carlo algorithm: the number of ions per
spot and the dose uncertainty. These are set to 5000 and 1%, respectively.

The optimisation constraints and clinical objectives depend on the type
of cancer of the patient. The optimisation constraints and clinical objectives
used for lung cancer patients are presented in table 3.4, while those used
for liver cancer patients are presented in table 3.5.

Table 3.4 Optimisation constraints and clinical objectives used for the optimi-
sation of proton therapy treatment planning in case of lung cancer patients.

ROI Optimisation constraints Clinical objectives
GTV Min dose 58 Gy At least 98% volume at 57 Gy

Max dose 63 Gy
Heart Max EUD 20 Gy At most 20 Gy average dose

Max dose 22.5 Gy At most 63 Gy dose at 0.04 cm3 volume
Lungs−GTV Max dose 63 Gy At most 20 % volume at 30 Gy

Max EUD 20 Gy At most 20 Gy average dose

Plan evaluation tab is used to check that the clinical objectives set by the
physician are met with the treatment plan proposed using the optimisation
algorithm. This tab includes two tools for analysing the resulting plan.
The first one displays the DVH, which indicates the proportion of each
organ volume receiving a specific dose. The second one displays isodose
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curves, which indicate the areas of over- and under-dosage. If, after this
evaluation, the treatment plan is not validated, the optimisation must be
repeated with relaxed optimisation constraints. On the other hand, if the
treatment plan is validated, it is saved in the appropriate DICOM format.

Table 3.5 Optimisation constraints and clinical objectives used for the optimi-
sation of proton therapy treatment planning in case of liver cancer patients.

ROI Optimisation constraints Clinical objectives
GTV Min dose 52 Gy At least 99% volume at 52 Gy

Max dose 52 Gy
Heart Max EUD 25 Gy At most 40 Gy dose at 0.01 cm3 volume

At most 1 cm3 volume at 30 Gy
Liver Max EUD 25 Gy At most 18 Gy average dose

At most 700 cm3 volume at 21 Gy

3.5 Summary

In this chapter, we first set out the general context of this thesis. In the
second section, we discussed data management. We presented the two
medical imaging modalities used in this work and we also explained the
data augmentation tool developed to deal with the problem of lack of data.
We then looked at the neural network used in this work, and we described
its architecture and the learning strategy pursued. In the last section of this
chapter, we presented the treatment plan optimisation strategy and we also
discussed the different parameters set in RayStation.
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4
Patient-specific 3DCT

reconstruction from a single
x-rays projection using a

CNN for on-line
radiotherapy applications

This chapter covers the main method used to reconstruct a 3DCT image from a
single x-rays projection using a convolutional neural network. The beginnings
of this work were presented orally at the 4D Treatment Planning Workshop for
Particle Therapy in Delft in 2021. A more detailed version was then presented
orally at the European Society for Radiation and Oncology in Copenhagen in
2022 [LDSM22b]. Thanks to this oral presentation, the complete method was
published in the special edition "Physics highlights from ESTRO 2022" of the
journal Physics and Imaging in Radiation Oncology [LDSM23]. This chapter is
based on this journal paper, and also provides additional results.
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4.1 Context

Radiotherapy is one of the most widely used treatments in oncology and is
prescribed for more than half of all cancer patients, either alone or in com-
bination with surgery and chemotherapy [BLYY12]. In radiotherapy, ionis-
ing radiation is used to kill cancer cells. A trade-off must be made between
delivering the prescribed dose to the target and not delivering large doses
to healthy tissues, which could lead to undesirable effects and induce sec-
ondary cancer [WSS+04]. Applying radiotherapy to lung and liver cancers
is even more challenging as the treatment must consider the respiratory
motion. This requires specific strategies in the radiotherapy workflow to
ensure adequate target coverage through successive treatment fractions.
These strategies are generally classified in two categories.

The first category consists in acquiring a four-dimensional computed
tomography (4DCT) scan prior to treatment and defining security margins.
Safety margins ensure target coverage regardless of the breathing phase,
but this method irradiates more the surrounding healthy organs [RB10].
The breathing motion in the treatment room may also differ significantly
from the motion captured in the 4DCT from time to time [DVB+18].

The second category includes breathing-synchronised methods that aim
to minimise the contribution of the motion of the tumor in the compu-
tation of the safety margins by monitoring position of the tumor or re-
ducing/regularising its motion amplitude during breathing. These meth-
ods gather mechanically assisted ventilation [VODSLG19], audio coaching
[NNM+09], abdominal compression [PHNACG18] and respiratory gating
[MFD+10]. In these techniques, tumor monitoring is based on external sur-
rogates for internal motion to avoid the use of invasive procedures, given
that the placement of markers involves surgery before the treatment, but
pinpoints the tumor position with greater accuracy [HWST19]. This ap-
proach requires a stable correlation between the internal tumor motion and
its external surrogate, which is usually not the case when changes occur in
the breathing movement of the patient.

Image-guided radiation therapy (IGRT) employs imaging techniques
during each treatment session. By adding detailed images, it ensures that
the radiation is narrowly focused on the target. A broad range of IGRT
is now available [RLLL19a]. X-rays projections are commonly acquired to
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estimate the position of the tumor, but their use often requires implanted
markers to identify the tumor volume correctly and make it visible on the
x-rays projection [SVM+02]. Another disadvantage of this method is that
it does not provide 3D information.

All these methods result in a small reduction in the safety margins,
while adapting the treatment in 3D and in real-time leads to a big reduc-
tion in the motion margins thanks to precise tracking of the 3D anatomical
structures. To achieve this, the real-time positions of the target and sur-
rounding organs must be known throughout treatment delivery. Most of
the radiotherapy treatment rooms are equipped with 2D fluoroscopy to
validate the position of the patient before the treatment. This work pro-
poses to rely on this equipment to estimate the related 3D information.

Many studies that reconstruct a 3D volume from a 2D x-rays projec-
tion have already been performed. Different fields of application in the
biomedical sector have been explored: Henzler et al. investigated how to
reconstruct 3D volumes from 2D cranial x-rays by applying deep learning
[HRRR17], while Liang et al. developed a new model architecture to recon-
struct a tooth in 3D from a single panoramic radiograph [LSY+21]. Mon-
taya et al. in [MZL+21], as well as Ying et al. in [YGM+19], demonstrated
that it was possible to reconstruct a 3DCT image from biplanar x-rays pro-
jections using a neural network, and Shen et al. used a neural network to
reconstruct a 3D image from a single projection view [SZX19].

In this context, the aim of the work described in this chapter was to use
the 2D information available in the treatment rooms to obtain 3D informa-
tion. To that end, this work is based on a convolutional neural network
that reconstructs a high-quality 3DCT image based on a single x-rays pro-
jection. This image, predicted in real-time, can then be used by a real-time
segmentation method [ZXBB22] in order to know the positions of the tu-
mor and surrounding organs at the moment of acquisition. This process
would make it possible to locate the tumor and neighboring structures ac-
curately in 3D during the treatment without requiring implanted markers.

4.2 Methodology

Figure 4.1 summarises the workflow of the proposed method. The different
steps of the process are detailed in the following sub-sections.
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Fig. 4.1 Overview of the workflow of the proposed method.

4.2.1 Dataset generation

The data used in this work come from nine patients who were treated for
lung or liver cancer at Cliniques universitaires Saint-Luc in Brussels be-
tween 2010 and 2015. This retrospective study was approved by the Hos-
pital Research Ethics Committee (B403201628906). Table 4.1 shows patients
information (tumor size and location, and its motion in the different sets).
A planning 4DCT composed of 10 breathing phases evenly spread over the
respiratory cycle was acquired for each patient prior to treatment delivery.
The dimensions of each 3DCT image were 512 × 512 × 173, and the voxel
size was 1 mm2 in plane with a slice thickness of 2 mm. The mid-position
(midp) CT image, defined as the local mean position in the respiratory
cycle, was computed using the average of all velocity fields obtained by
non-rigid registration between the 4DCT phases [WSvHD08]. On the mid-
pCT image, the gross tumor volume (GTV) and surrounding organs at risk
were delineated manually by an experienced radiation oncologist.

As training a neural network requires a lot of data, it was necessary
to generate new 3DCT images. To do so, a polar coordinate system (r, n)
related to a breathing cycle is considered. Its origin is the midpCT image
and n are the periodic phases. In this system, the deformation fields asso-
ciated to the 10 breathing phases of the 4DCT are known and are F(1, N),
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Table 4.1 Patient characteristics. MR4DCT, MRTrainSet and MRTestSet stand for the
motion range in 3D of the centroid of the GTV in the 4DCT, training set and test
set, respectively. The motion range is defined as the Euclidean distance between
the two most distant positions.

Patient ID Tumor location
GTV size

[cm3]
MR4DCT

[mm]
MRTrainSet

[mm]
MRTestSet

[mm]

Patient 0 Right lobe of liver 28.62 15.1 18.7 26.4
Patient 1 Right upper lobe of lung 137.1 11.1 17.2 17.9
Patient 2 Left upper lobe of lung 17.24 9.92 9.69 12.6
Patient 3 Right middle lobe of lung 153.7 24.4 32.4 34.7
Patient 4 Right upper lobe of lung 13.78 14.5 15.2 18.5
Patient 5 Left upper lobe of lung 315.1 9.68 10.1 11.4
Patient 6 Left upper lobe of lung 67.21 11.6 15.2 16.1
Patient 16 Right lobe of liver 80.36 27.1 29.9 30.8
Patient 19 Left lobe of liver 22.53 24.1 32.3 34.8

with N ∈ {0, 0.1 . . . , 0.9}. Then, to generate the breathing phase n at a
normalised distance r of the midpCT, the deformation field F(r, n) is com-
puted using a linear interpolation between the two closest discrete breath-
ing phases plus a scaling:

F(r, n) =
[
F(1, N)+

(
F (1, N+0.1)− F (1, N)

)
· 10 · (n − N)

]
· r (4.1)

where N ≤ n ≤ N+0.1. Using this method, based on a previous work
of our team [DSASM22] and developed in [WDSJ+23], slightly different
3DCT images, spread around the ten original phases of the 4DCT, can be
generated for every patient. The training set was composed of 500 images
where n was a uniform random draw between 0 and 1, and r a random
sample from a normal distribution N (1, 0.25) truncated between 0.4 and
1.1. A digitally reconstructed radiograph was generated from each of these
images using the Beer-Lambert absorption-only model (implemented in
the TomoPy Python library [GDCXJ14]) and a projection angle of 0° along
the anterior-posterior axis. The projection geometry was a 1440 × 1440
image with a pixel size of 0.296 × 0.296 mm2. The source-to-origin and
source-to-detector distances were 1000 mm and 1550 mm. The training
dataset of each patient was made up of 500 pairs containing the created
3DCT image and the associated DRR. An independent test set composed
of 100 3DCT/DRR pairs was also created for each patient. For each image
of the test set, the masks of the GTV, lungs and heart were also generated
by deforming the 3D binary masks of the midpCT image.
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The difference between the test and training sets comes from the nor-
malised distance r used to generate the 3DCT image. In the case of the
training set, r was a random sample from a normal distribution N (1, 0.25)
truncated between 0.4 and 1.1, while r was a random sample from a normal
distribution N (1, 0.5) truncated between 0.8 and 1.5 for the test set. This
means that deeper breathing situations were present in the test set than in
the training set, as observed in table 4.1. All breathing phases were used in
both cases.

4.2.2 Network

The network used for the 3DCT reconstruction process is a convolutional
neural network (CNN) that learns the mapping between a 2D image and a
3D volume. This network was proposed by Henzler et al. in [HRRR17] and
the different hyper-parameters was tuned for this challenge. The overall
structure of this network is an encoder-decoder with skip connections. The
goal of the encoder is to condense the information contained in the training
data into a low-dimensional representation, which the decoder then takes
as input to predict the output [MBP+22]. The input of the network is a
DRR of size 256× 256, while the output consists of a 128× 128× 128 3DCT
image. The details of the training dataset, namely 3DCT/DRR pairs, are
explained in section 4.2.1.

4.2.3 Training specifications

The neural network training was patient-specific, meaning that a new net-
work was trained independently for each patient. The same training strat-
egy and hyper-parameters were used for all patients. The Adam optimiser
was used to train the network with an initial learning rate of 10−3 and mo-
mentum parameters β1 = 0.9 and β2 = 0.99. The model was trained for
a total of 300 epochs using a mini-batch size of 16 on a NVIDIA RTX 6000,
which brought the training time down to roughly 8 hours. Then, it took
around 50 µs to predict the output from a new input. This way of training
the model is called basic-training.

4.2.4 Performance evaluation

In order to evaluate the performance of the proposed method, 100 3DCT
images independent of the training set were created for each patient. These
3DCT images are called the ground-truth (GT) 3DCT images. 100 DRRs
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were generated from these images to form the test set. The trained neu-
ral network was used on these radiographs to predict the corresponding
3DCT images, called the predicted (P) 3DCT images. The predicted 3DCT
images were compared with the ground-truth 3DCT images to evaluate the
performance of the model using several metrics.

Visual analysis was carried out to qualitatively assess the performance of
both training methods. To that end, the difference was computed between
a ground-truth 3DCT image and the corresponding predicted 3DCT. The
image used in this analysis was the first image of the test set of Patient 19.

Difference was computed between all ground-truth 3DCT images and the
corresponding predicted 3DCT images of the test set. The mean and the
median of the difference were studied, as well as the percentage of the
3DCT volume having an absolute value of the difference below a certain
threshold in order to quantify the proportion of the image that was cor-
rectly reconstructed.

Dice similarity coefficient (DSC) is a common overlap-based metric used
to measure the performance of a segmentation algorithm, and is defined
by :

DSC =
2|A ∩ B|
|A|+ |B| · 100 [%] (4.2)

where A and B are the sets containing the matrix indices of both binary
masks A and B. In this work, the DSC was computed between a 3D bi-
nary mask in the ground-truth 3DCT image and the corresponding mask
in the predicted 3DCT image to evaluate the quality of the predicted 3DCT
image in terms of anatomical structure positions. The 3D binary masks
of a predicted 3DCT image were obtained by computing the Morphons
non-rigid registration [JJOdX+11], then applying the resulting deformation
fields to deform the masks on the predicted image. This was done between
this predicted image and either the ground-truth 3DCT image (GT-based),
or the midpCT image (midp-based). Using the ground-truth 3DCT image
serves as a post-training quality evaluation, to evaluate if a state-of-the-
art registration algorithm sees a difference between the ground-truth and
the prediction. Using the midpCT image simulates how the quality of the
predicted images could be evaluated after each treatment fraction as the
ground-truth 3DCT images are not available during the treatment. For
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both versions, the DSC was computed for the same 50 images of the 100
items constituting the test set, for each organ and each patient. In either
case, this metric was an evaluation tool and not part of the real-time pro-
cess as the computation time of the Morphons is about 150 s.

Euclidean distance (ED) was computed between the centroids of two 3D
binary masks. This metric was used to complement the DSC analysis by
computing the Euclidean distance between the centroids of the masks in
the ground-truth 3DCT image and in the predicted 3DCT image for the
four organs. As for the DSC analysis, the masks on the predicted 3DCT
are obtained using either the masks from the GT image (GT-based), or the
masks from the midpCT image (midp-based).

Normalised root mean squared error (NRMSE) was computed between
two images A and B, and is defined by :

NRMSE =

√
∑n

i=1(Ai−Bi)2

n
Amax − Amin

(4.3)

where Xi is the voxel i in the image X. Amax and Amin stand for the max-
imum and minimum in image A, the ground-truth 3DCT image. Two
analyses were carried out with this metric. The first analysis consisted of
computing the NRMSE between the ground-truth 3DCT image and the
corresponding predicted 3DCT image. The second analysis compared the
NRMSE obtained using our method with a baseline. The baseline was com-
puted between the ground-truth 3DCT image and the midpCT image. This
was repeated for all images in the test set.

Three quality metrics, commonly used in the literature, were calculated to
assess the quality of the reconstructed images. Two analyses were carried
out with these three metrics. The first analysis consisted in computing the
results of each metric between all ground-truth 3DCT images and the cor-
responding predicted 3DCT images in order to observe the distribution of
these metrics in relation to the entire test set. The second analysis focused
on the computation of these metrics on organs of interest. The analysis
was based on the masks in the ground-truth 3DCT, and the comparison
was voxel-wise. These three metrics are explained below.

1. Mean absolute error (MAE) was computed between two images A
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and B, and is defined by:

MAE =
∑n

i=1|Ai − Bi|
n

(4.4)

2. Peak signal-to-noise ratio (PSNR) was computed between two im-
ages A and B, and is defined by:

PSNR = 10 · log10

(
MAX2

I
MSE

)
= 10 · log10

 MAX2
I

∑n
i=1(Ai−Bi)2

n

 (4.5)

where MAXI is the largest possible pixel value in the image. If the
two images are significantly different, the PSNR is generally less than
15 dB, whereas it is greater than 30 dB when the images are almost
identical.

3. Structural similarity index measurement (SSIM) was computed be-
tween two images A and B, and is defined by:

SSIM =
(2µAµB + c1) (2σAB + c2)(

µ2
A + µ2

B + c1
) (

σ2
A + σ2

B + c2
) (4.6)

where µX and σX are respectively the pixel mean and variance of im-
age X, σAB is the covariance of A and B, and c1 and c2 are two vari-
ables to stabilise the division with weak denominators. A SSIM of 1
corresponds to an ideal match between both images, while a SSIM of
less than 1 indicates a mismatch between both images.

Reverse process of the proposed method consists in obtaining a DRR im-
age from one 3DCT image. The aim of this analysis was to evaluate the
quality of the digitally reconstructed radiograph obtained from the 3DCT
image predicted by the neural network in order to quantify the accuracy
of the predicted 3DCT image. This was done by computing the mean and
the standard deviation of the three image quality metrics (MAE, PSNR and
SSIM) between the ground-truth DRR and the one obtained from the corre-
sponding predicted image, for all images of the test set. Besides, for Patient
3, a visual analysis of the difference between the DRR generated using one
ground-truth 3DCT of the test set and the DRR obtained using the pre-
dicted 3DCT was performed.
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4.3 Results

4.3.1 Visual analysis

A representative example of Patient 19 (whose results are: DSCGT (GTV)

= 98.5%, DSCmidp (GTV) = 88.6%, NRMSE = 0.053, mean of the difference
= −1.73 HU and V<25 HU = 80.3%) obtained using the proposed method
can be seen in figure 4.2. For a human eye, the predicted 3DCT image
looks pretty close in terms of anatomical structures. The zoom shows that
a red pixel (difference ≈ 200 HU) is commonly adjacent to a blue pixel
(difference ≈ −200 HU) or surrounded by two turquoise pixels (differ-
ence ≈ −100 HU). This phenomenon is usually observed at tissue borders.
Looking at the histogram, one sees that there are only few voxels with a
significant difference and over 30% of the voxels have a difference between
−5 HU and 5 HU.
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Fig. 4.2 Visualisation of three slices of the ground-truth 3DCT image of Patient
19 compared with the corresponding slices of the predicted 3DCT image, as well as
the results of the difference analysis and a zoom of the boxed area. On the right of
the color bar is the histogram of the difference concatenated for all patients and the
100 images of the nine test sets.

4.3.2 Difference

The results of the difference analysis are summarised in figure 4.3. The
mean of the difference (orange box plots) is around 0 HU for most pa-
tients, while the median (red box plots) of this metric is rather around 0.5
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HU. Patient 16 has a difference of approximately −1 HU, which means
that the network tends to overestimate the value of the voxels intensity,
whereas for Patient 19, the difference is approximately 2 HU, which shows
an underestimation of the real values of the voxels. Besides, this figure
highlights that 25.1% to 39.8% of the image volume has an absolute value
of the difference lower than 5 HU (turquoise box plots), 69.9% to 81.9% be-
low 25 HU (purple box plots), and 88.6% to 94.6% less than 50 HU (blue
box plots). In summary, the difference between the ground-truth image
and the predicted image is very small, with about 91% of the image vol-
ume having an absolute value of the difference smaller than 50 HU, which
represents 1.25% of the range of possible values, since the scale of a 3DCT
image typically runs from −1000 HU for air to 3000 HU for dense bone
[BEP15].
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Fig. 4.3 Results of the difference analysis. The left axis is expressed in HU for
the mean and median difference analyses, while the right axis is expressed in % for
the analysis of the volume percentage with a difference below three thresholds: 5
HU, 25 HU and 50 HU. Patients are sorted by increasing motion range in the test
set.

4.3.3 Dice similarity coefficient

The results of the DSC analysis for both GT-based and midp-based ver-
sions are summarised in figure 4.4. This figure shows that all DSC values
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are above 75%, demonstrating the high quality of the reconstructed im-
ages. A more detailed analysis of this figure reveals that the two least well
reconstructed organs are the GTV and the heart. The results for these two
organs are generally between 75% and 90%, while the DSC values calcu-
lated for both lungs are mostly above 90%. For the GT-based version, the
mean of the DSC varies respectively from 93.2% to 99.8% for the GTV; from
96.3% to 99.8% for both lungs; from 93.5% to 99.8% for the heart. While, for
the midp-based version, the mean of the DSC varies from 76.7% to 90.6%
for the GTV; from 90.9% to 97.3% for both lungs; from 78.1% to 90.1% for
the heart.
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Fig. 4.4 Results of the DSC analysis on the four organs (GTV, heart, right and
left lungs) for both GT-based (on the left) and midp-based (on the right) versions.
The lungs and heart of Patient 5 were not delineated, as well as the right lung of
Patient 1. Patients are sorted by increasing motion range in the test set.

The DSC results of the midp-based version are lower than those of the
GT-based version, but still over 75%. As the same 50 images were used for
both, the difference might be due to the approximations in the deformation
and re-binarisation of the masks, which probably have a higher impact
with deformations over multiple voxels, but this was not quantified.
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4.3.4 Euclidean distance

The results of the ED analysis for both GT-based and midp-based versions
are summarised in table 4.2. For the GT-based version, the mean, the me-
dian and the 95th percentile computed over the test set vary respectively
from 0.11 mm to 2.15 mm, from 0.03 mm to 1.64 mm, and from 0.14 mm to
2.63 mm for the GTV; from 0.15 mm to 1.29 mm, from 0.27 mm to 1.42 mm,
and from 0.39 mm to 1.92 mm for both lungs; from 0.14 mm to 1.68 mm,
from 0.13 mm to 1.44 mm, and from 0.37 mm to 2.18 mm for the heart. For
the midp-based version, the mean, the median and the 95th percentile com-
puted over the test set vary respectively from 1.08 mm to 2.45 mm, from
0.61 mm to 2.80 mm, and from 0.87 mm to 3.08 mm for the GTV; from 0.18
mm to 1.58 mm, from 0.33 mm to 1.37 mm, and from 0.58 mm to 1.77 mm
for both lungs; from 1.18 mm to 2.34 mm, from 0.87 mm to 1.73 mm, and
from 1.11 mm to 2.69 mm for the heart.

Table 4.2 Results of the ED analysis for both GT-based and midp-based ver-
sions. EDGT and EDmidp stand for the mean of the ED over the 50 images of the
test set for the GT-based version and midp-based version, respectively. The lungs
and heart of Patient 5 were not delineated, as well as the right lung of Patient 1.

Patient ID
GTV Lung R Lung L Heart

EDGT

[mm]

EDmidp

[mm]

EDGT

[mm]

EDmidp

[mm]

EDGT

[mm]

EDmidp

[mm]

EDGT

[mm]

EDmidp

[mm]

Patient 0 2.08 2.32 0.91 1.56 1.29 1.12 1.68 2.34
Patient 1 1.68 1.08 NA NA 0.86 0.51 0.25 1.72
Patient 2 2.09 1.21 0.63 1.12 0.89 0.23 0.14 1.58
Patient 3 0.11 1.83 0.52 1.21 0.18 0.18 0.48 2.07
Patient 4 2.15 1.47 0.68 0.92 0.69 0.52 0.68 1.18
Patient 5 0.95 0.74 NA NA NA NA NA NA
Patient 6 0.59 1.38 0.15 1.58 0.20 0.41 0.16 1.23
Patient 16 0.21 1.56 0.75 0.29 0.77 0.24 0.32 1.69
Patient 19 0.24 2.45 0.46 0.37 0.55 0.28 0.96 1.87

Most of the time, the distance computed between the centroids of both
3D binary masks is under 2 mm. On average, the distance is smaller for
the GT-based version, but this is not verified for every patient.

4.3.5 Normalised root mean squared error

The results of the NRMSE analysis are displayed in figure 4.5. The mean
of this metric is lower for Patients 5, 2, 6 and 1 who have smaller motions
in the test set (from 0.032 to 0.039) than the mean obtained for Patients 0,
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16, 3 and 19 (from 0.047 to 0.051) who have larger motions. This is also
observed for the median and the 95th percentile, which range respectively
from 0.032 to 0.038, and from 0.039 to 0.045 for the first batch of patients,
while they are respectively between 0.045 and 0.052, and between 0.051
and 0.059 for the second group of patients. This analysis also shows that
the breathing phases have no impact on the reconstruction process as these
are uniformly distributed along the NRMSE values range.
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Fig. 4.5 Results of the NRMSE analysis. The NRMSE was computed between
the ground-truth 3DCT image and the corresponding predicted 3DCT image for
each test set data. The color of a dot represents the breathing phase at which the
ground-truth 3DCT image was created. Patients are sorted by increasing motion
range in the test set.

The results of the second part of this analysis, in which the results are
compared with a baseline, are shown in figure 4.6. This figure shows that
the method proposed in this work significantly reduces the error between
the ground-truth image and the predicted image. In contrast, the baseline,
which consists of predicting the midpCT image of each image in the test
set, has a larger error, which is never less than 0.34 and can even be as high
as 0.69.
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Fig. 4.6 Results of the NRMSE analysis. For the baseline, the NRMSE was com-
puted between the ground-truth 3DCT image and the midpCT image. For our
method, the NRMSE was computed between the ground-truth 3DCT image and
the corresponding predicted 3DCT image. This was done for each data of the test
set. Patients are sorted by increasing motion range in the test set.

4.3.6 Image quality metrics

The results of the three metrics assessing the quality of the images pre-
dicted by the neural network are presented in figure 4.7. This figure shows
box plots of the (a) MAE, (b) PSNR and (c) SSIM for the 9 patients studied
in this work. As was already the case in the NRMSE analysis, the MAE
increases for patients with greater motion ranges in the test set. This dis-
tribution is reversed for the other two metrics because the PSNR and SSIM
metrics must be maximised, whereas the goal is to minimise the NRMSE
and MAE metrics. The MAE is lower for patients with smaller movements
in the test set. The average value of the MAE is around 17.5 HU for the
six patients with the smallest movements, while it is around 27.5 HU for
the three patients with the largest movements. The mean of the PSNR for
the six patients with the smallest movements is around 42.5 dB, whereas
it is around 37.5 dB for the three patients with the largest movements.
The mean of the SSIM for the six patients with the smallest movements
is around 0.98, whereas it is around 0.95 for the three patients with the
largest movements.
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Fig. 4.7 Box plots of (a) MAE, (b) PSNR and (c) SSIM between all GT 3DCTs and
corresponding predicted 3DCTs of the test set, for the nine patients. Patients are
sorted by increasing motion range in the test set.
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Fig. 4.8 Box plots of (a) MAE, (b) PSNR and (c) SSIM between all GT 3DCTs
and corresponding predicted 3DCTs of the test set, for the nine patients focused on
organs of interest. Patients are sorted by increasing motion range in the test set.
The lungs and heart of Patient 5 were not delineated, as the right lung of Patient 1.
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The results of the second part of this analysis, in which the metrics are
computed on the organs of interest, are shown in figure 4.8. The results
show that the GTV is generally the worst reconstructed organ. The means
of the MAE, PSNR and SSIM computed over this organ are between 20 HU
and 70 HU, 30 dB and 40 dB, and 0.70 and 0.95. In contrast, the reconstruc-
tion quality and accuracy on the other three organs appear to be similar,
as the values of the metrics are generally within the same range of magni-
tudes. In most cases, the MAE calculated on these three organs is below 40
HU, the PSNR above 40 dB and the SSIM over 0.95.

4.3.7 Reverse process

The results of the comparison between the digitally reconstructed radio-
graph generated using one ground-truth 3DCT of the test set and the dig-
itally reconstructed radiograph generated using the associated predicted
3DCT for Patient 3 are displayed in figure 4.9. Visually, the DRR generated
using the predicted 3DCT image is identical to the one obtained using the
corresponding ground-truth 3DCT image. However, the analysis of the
difference computed between these two images shows that they are not
identical, with an average difference equal to 0.055 kV. The biggest differ-
ences are located in the diaphragm area, with absolute values of around 2
kV. Generally, a red pixel is adjacent to a blue pixel, meaning that the edges
of this organ are the zones most poorly reconstructed by the method.

P DRR DifferenceGT DRR

2

1

0

-1

-2

[kV]

Fig. 4.9 Patient 3 results for the reverse process. The digitally reconstructed
radiograph generated from one image of the test set (left column) is compared
with the DRR generated using the corresponding predicted 3DCT image (centre
column). The difference between both images is displayed in the right column.

Figure 4.10 shows the values of the (a) MAE, (b) PSNR and (c) SSIM
metrics calculated between the ground-truth DRR and the predicted DRR,
for the different patients. This figure shows that six patients obtain excel-
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Fig. 4.10 Box plots of (a) MAE, (b) PSNR and (c) SSIM computed between the
ground-truth DRR and the DRR generated from the predicted 3DCT, for all images
of the test set. Patients are sorted by increasing motion range in the test set.
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lent results: the MAE is less than 0.5 kV, the PSNR is greater than 45 dB
and the SSIM is above 0.99. On the other hand, the other three patients
have slightly poorer results, with MAE around 0.8 kV, PSNR around 40 dB
and SSIM of 0.98. These three patients are in fact the three patients diag-
nosed with a liver cancer. These differences can probably be explained by
a difference in the image acquisition protocol.

4.4 Discussion

In this chapter, it has been shown that the proposed CNN-based method-
ology allows to reconstruct a high-quality 3DCT image from a single dig-
itally reconstructed radiograph. The proposed method requires a patient-
specific training and is based on a patient database created using a data
augmentation tool.

The Dice values computed between the masks of the predicted 3DCT
image and the corresponding ground-truth 3DCT are all greater than 75%,
which is reliable. The comparison of the results of the midp-based version
obtained for lungs and heart (94.6% and 83.9%, displayed in figure 4.4)
with the results of previous works [ZZQ+19, DLW+19, FQT+19], whose
goal was to segment organs at risk in lung cancer utilising deep learning
algorithms (best in [FQT+19] and equal to 97.5% and 92.5%), shows that
lungs have similar results to the literature and the heart has a higher dif-
ference. However, our results should be taken in hindsight, given that
the masks in the predicted image are defined as the manually segmented
masks on the midpCT image deformed using the deformation fields ob-
tained by the Morphons registration between both images.

The mean of the difference between the ground-truth image and the
predicted image is small for each patient, with an average value of 0.45 HU
over all patients. Comparing these results (figure 4.2) with those obtained
by [SZX19] when they use only one view, the quality of our reconstructed
image is similar to their own. Their method also performs less at tissue
borders. However, there is no scale or numerical value in their difference
analysis, so it is not clear that the difference values are similar.

The results of the reverse process show that the digitally reconstructed
radiograph generated using the predicted 3DCT image is similar to the
reference DRR. This highlights that the 3DCT reconstruction is properly
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performed and that the depth of the image is consistent, which is critical
for the dose calculation step.

One limitation of this study is that the CNN was trained using training
sets composed of 3DCT images created from deformations of a planning
4DCT acquired prior to treatment and paired DRRs generated using the
Beer-Lambert absorption-only model. This method supposes that inter-
fractional anatomical variations such as tumor shrinkage, tumor baseline
shift, and stomach and bladder fillings are not included in the training set,
but are checked prior to treatment is administered. A next step of this work
is to evaluate whether the network must be retrained for each fraction or
whether these variations are negligible in the reconstruction process. An-
other possibility to counteract this limitation is to improve the data aug-
mentation tool and incorporate inter-fraction motion in the training set.
If this works, it would mean that it is possible to generate high-quality
3DCT images at any fraction of the treatment based solely on the planning
4DCT. This means that it is possible to have a good knowledge of the pa-
tient anatomy at all times, without increasing the imaging dose given to
the patient too much. Using this method, it would be possible to gener-
ate 3DCT images based only on x-rays projections acquired to position the
patient correctly, or others acquired during the fraction. This would not
increase the time and cost of the treatment, but would drastically reduce
the motion margins and therefore the dose delivered to the surrounding
healthy tissues.

An additional potential purpose of the predicted 3DCT image would be
to use it to compute the dose delivered during the treatment (either on-line
or inter-fraction). To this end, the voxel value representing tissue density is
a crucial piece of information to have the dose delivered at the right place.
This chapter shows that, for the human eye, the predicted 3DCT image is
really close to the ground-truth 3DCT image but the results of the differ-
ence should be discussed further and it will be necessary to assess whether
the maximum of the difference is located on the trajectory of the beam or
whether the difference, no matter how small, has too great an impact on
the computed dose. Furthermore, in order to get a clinically usable dose,
the standard resolution of a 3DCT scan would be needed. Therefore, the
predicted 3DCT image should be oversampled to get the desired resolu-
tion.
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4.5 Summary

This chapter presents a method that allows the reconstruction of a 3DCT
image from a single digitally reconstructed radiograph. This method re-
lies on a data augmentation algorithm and on a patient-specific training of
a CNN. The performance of the method was evaluated according to sev-
eral metrics. For example, the Dice similarity coefficient was computed
between the masks of the ground-truth image and those of the predicted
image, as well as the PSNR between these two images or on regions of in-
terest. However, it is still necessary to integrate inter-fraction motion in
the training set and to estimate the accuracy of the images in terms of dose
delivery in order to confirm the potential clinical use of the method.
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Variants in the

patient-specific 3DCT
reconstruction

Numerous variants of the main method proposed in this thesis could have
been studied: the contribution of temporal knowledge of the anatomy by
giving a sequence of DRRs as input to the network, the added value of
spatial knowledge by combining the position of an external surrogate and
a DRR at the input of the network, the benefit of inter-patient anatomy
knowledge by including a multi-patients pre-training step, etc. Unfortu-
nately, each change involves new data generation and new training, which
require a huge amount of computational and storage resources, and, ob-
viously, of time. This work focuses on two variations that have a consid-
erable impact on the desired clinical implementation of the method. The
first variant, investigated in section 5.1, aims to determine the robustness
of the method to changes in layout. In particular, we study two training
methods for adapting to a change in the orientation and number of the pro-
jection angles. The second variant, described in section 5.2, seeks to study
the robustness of the method to changes in image acquisition time. More
specifically, we study two training methods for adapting to inter-fractional
anatomical changes.
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5.1 Robustness to changes in layout

The basis of this work was presented at the IEEE International Conference on
Image Processing in Bordeaux in 2022 [LDSM22a]. Additional analyses are pro-
vided in this thesis.

5.1.1 Context

Radiation therapy kills cancer cells by delivering radiation into the tumor,
while sparing surrounding healthy tissue and organs at risk. Thoracic and
abdominal tumors are challenging to treat with radiation therapy as the
breathing motion induces the movement of organs. In case of mobile tu-
mors, it is important to take into account the movement of the tumor dur-
ing treatment planning. The acquisition of a planning 4DCT before the
treatment allows to estimate the tumor motion, to derive safety margins,
and to apply 4D-robust optimisation to ensure target coverage. Safety
margins reduce the risk of mistreating the tumor but increase the dose
delivered inside the surrounding healthy organs [RB10]. Unfortunately,
the tumor motion in the treatment room can differ significantly from the
movement captured in the 4DCT, leading to errors in the treatment deliv-
ery [DVB+18].

Different methods have been developed to address the motion-related
issues and increase confidence in tumor localisation. Respiratory gating is
a common method and employs an external surrogate to follow the breath-
ing movement. However, this technique relies on a strong relationship be-
tween the tumor motion and the surrogate position [MFD+10]. The place-
ment of fiducial markers allows to pinpoint the tumor position with greater
accuracy, but then requires a heavy and risky surgery before the treatment
[HWST19]. Other methods have also been studied to reduce the motion
amplitude or to obtain a regular movement. These methods use abdom-
inal compression [PHNACG18], audio coaching [NNM+09] or mechani-
cally assisted ventilation [VODSLG19].

The total reduction of safety margins would be to adapt the treatment
in real-time. To achieve this, the positions of the target and surrounding
organs must be known throughout the treatment delivery. Image-guided
radiation therapy (IGRT) uses frequent imaging during the treatment to
improve the precision and accuracy of the treatment delivery. A broad
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range of IGRT modalities is now available and adopted. X-rays projections
are commonly acquired to evaluate and correct setup errors in order to cor-
rectly target the tumor with the radiation beam. However, this technique
has two major drawbacks. One is that radiographs do not provide 3D in-
formation about the tumor volume or its spatial localisation [VDRT+08].
Another is that position changes are typically restricted to simple transla-
tional adjustments as most linear accelerators are not equipped with rota-
tional adjustment systems.

Many studies that reconstruct a 3D volume from a 2D x-rays projection
have already been performed. Different fields of application have been ex-
plored. Henzler et al. in [HRRR17] investigated how to reconstruct 3D
volumes from 2D cranial x-rays by applying deep learning, while Liang et
al. in [LSY+21] developed a new model architecture to reconstruct a 3D
tooth from a single panoramic radiograph. Montaya et al. in [MZL+21]
demonstrated that it is possible to reconstruct a 3D image from two scout
views using deep learning and Shen et al. in [SZX19] used an encoder-
decoder framework to reconstruct one 3D image from a single projection.

In this context, the aim of this part of the thesis was to study the robust-
ness of the 3DCT reconstruction methodology to layout changes. In partic-
ular, the impact of the orientation and number of the projection angles is
evaluated in order to quantify whether the method performs better when
the x-rays imager is ceiling-mounted or integrated into the gantry, and to
assess if it is possible to change the projection angle during the treatment.
To this end, two training strategies were explored and compared.

5.1.2 Methodology

Dataset generation
The data used in this part of the work come from three patients treated
for liver tumors by radiotherapy. For each patient, a planning 4DCT com-
posed of 10 breathing phases was acquired before the start of treatment.
However, the training of a deep learning model requires a large amount
of data. To tackle this problem, new 3DCT images, representing intra-
fractional anatomical deformations, were created using the method previ-
ously developed by our research group and described in section 3.2.3. This
method is based on the computation of a motion model using the planning
4DCT and a random respiratory signal. The signal aims to reproduce a
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maximum of different and possible anatomies, and can also generate ex-
treme respiratory phases that are not observed in the original 4DCT. In this
work, 20 random respiratory signals with various amplitudes and periods
were simulated, from which 25 random samples were selected to create
matching images with the motion model. This results in creating 500 3DCT
images for each patient. From each created 3DCT image, 5 digitally recon-
structed radiographs were generated with different projection angles: 0°,
30°, 45°, 60°, 90°. This can be observed in figure 5.1. To simulate real-world
x-rays imaging, the Beer-Lambert absorption-only model implemented in
the TomoPy Python package was used [GDCXJ14]. The 500 3DCT images
and the associated DRRs were then divided into two distinct sets, the train-
ing set and the test set. 90% of the 500 images were used for training, and
the remaining 10% for testing.

0°
45°
60°

90°

MAT-training

30°
SAT-training

Fig. 5.1 Projection angles used to generate the DRRs from the 3DCT image, the
DRR obtained with an angle of 90° is displayed. SAT-training and MAT-training
are the two training methods studied in this work. SAT-training trains the network
with DRRs generated with a single projection angle, while MAT-training uses DRRs
generated with the 5 projection angles.

Network
To address the problem of reconstructing a 3DCT from a single 2D x-rays
image, the neural network designed by Henzler et. al. in [HRRR17] and
described in section 3.3 was used. This network is a convolutional neural
network (CNN) that learns the mapping between a 2D x-rays image and
a 3D volume. The input of this network is an image of size 256 × 256,
while the output of the network consists of a 128 × 128 × 128 volume. An
overview of the network can be seen in figure 3.12.
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Training specifications
The neural network training was patient-specific, it used patient-specific
CT data to refer to individual features. The network was trained with 500
epochs. This work studied two main methods to train the model: single-
angle training (SAT-training) and multi-angles training (MAT-training).

SAT-training method used as input of the network DRRs that were all ob-
tained with the same projection angle. Therefore, the training was per-
formed independently for each angle value.

MAT-training method used as input of the network DRRs that were ob-
tained with the 5 different projection angles. In this case, the network was
trained only once using all projection angles.

Performance evaluation
In order to evaluate the performance of the proposed method, the 50 pairs
of DRR/3DCT of the test set were used. The outputs of the trained CNN,
which are called the predicted 3DCT images, were compared with the
ground-truth 3DCT images of the test set through various analyses.

Visual analysis was carried out to qualitatively assess the performance of
both training methods. To that end, the absolute value of the difference
was computed between a ground-truth 3DCT image and the correspond-
ing predicted 3DCT. The image used in this analysis was the first image of
the test set of Patient 16.

Various quantitative analyses have been carried out to evaluate the re-
sults of the proposed training strategies. The different quantitative analy-
ses were based on four metrics commonly used in image processing: nor-
malised root mean squared error, mean absolute error, peak signal-to-noise
ratio and structural similarity index measurement. Each of these met-
rics was computed for the 50 images composing the test set, between the
ground-truth image and the corresponding predicted image. Each quanti-
tative analysis aims to answer a specific research question.

What is the impact on the predictions quality if the projection angle used
to train the network is different? This analysis looks at the variation in
NRMSE results when the projection angle used to generate the DRRs given
as input to the network trained with SAT-training is different. In this anal-
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ysis, SAT-training was performed with the five projection angles.

What is the impact on the predictions quality if several projection angles
are used to train the network? This analysis looks at the variation in image
quality metrics results between the two training methods. In this analysis,
SAT-training was performed with a projection angle of 0°.

What is the impact on the predictions quality if the projection angle used
to test the network is different from that used to train it? This analysis
looks at the variation in NRMSE results of both training methods when the
projection angle used to generate the DRR for testing the network is differ-
ent from that used for training it. This analysis was divided into two parts:
the first part consisted in studying large angle changes, while the second
part focused on small angle changes. In both cases, 13 DRRs were gener-
ated with different projection angles for the 50 ground-truth 3DCT images
of the test set. For the first part, the projection angles were all multiples of
5°, between 0° and 60°. For the second part, the projection angles were all
integers between 24° and 36°. In this analysis, SAT-training was performed
with a projection angle of 30°.

5.1.3 Results

Visual analysis
The results of the visual analysis are represented in figure 5.2.
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Fig. 5.2 Visualisation of two transverse slices of the (c) GT 3DCT, (b) predicted
3DCT using SAT-training and (d) predicted 3DCT using MAT-training. (a) and (e)
display the absolute value of the difference (in HU) for the same slices using SAT-
training and MAT-training, respectively.
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A first observation is that the contours of the anatomical structures are
sharper in the image predicted by the multi-angles training method (figure
5.2(d)) than by single-angle training (figure 5.2(b)). The maximum absolute
value of the difference between the ground-truth 3DCT and the predicted
3DCT is greater than 1400 Hounsfield Units (HU) using single-angle train-
ing (figure 5.2(a)), while it is significantly reduced to around 600 HU using
multi-angles training (figure 5.2(e)). The median of the difference using
single-angle training is equal to 4.47 HU and is reduced to 1.77 HU using
multi-angles training. Using the single-angle training method, 16.5% of
the volume has a difference greater than 30 HU, which is decreased to only
8.9% using the multi-angles training method. Most of the large errors are
located on the skin of the patient, on the table or on the belt.

Impact of the value of the projection angle used for training

The results of the first quantitative analysis are represented in figure 5.3.
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Fig. 5.3 Box plots of the NRMSE computed between the GT 3DCT and the pre-
dicted 3DCT, for all images of the test set. For each patient, the results are shown
as a function of the projection angle used to train the network using SAT-training.

Figure 5.3 shows the distribution of the NRMSE for each patient, and
each projection angle. The mean of the five medians is 0.045 for Patient
0, 0.047 for Patient 16 and 0.051 for Patient 19. The training of Patient
16 is more variable as the results show a larger standard deviation equal
to 0.0029. Nevertheless, the analysis highlights that the performance of
the network is similar whatever the value of the projection angle used to
generate the DRRs given as input to the network.
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Impact of the number of projection angles used for training
The results of this analysis are shown in figure 5.4 and table 5.1. Figure
5.4 displays the distribution of the NRMSE, while table 5.1 lists the means
and standard deviations of the MAE, PSNR and SSIM metrics for the three
patients studied in this part of the work.
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Fig. 5.4 Box plots of the NRMSE computed between the GT 3DCT and the pre-
dicted 3DCT, for all images of the test set. For each patient, the results are shown
for SAT-training on the left and for MAT-training on the right.

Table 5.1 Results of the MAE, PSNR and SSIM metrics over the whole 3DCT
image. Each value in the table stands for the average ± standard deviation of the
metric over the 50 images in the test set.

Patient ID
SAT-training MAT-training

MAE
[HU]

PSNR
[dB]

SSIM
[/]

MAE
[HU]

PSNR
[dB]

SSIM
[/]

Patient 0 24.80 ± 1.01 37.20 ± 0.32 0.955 ± 0.01 15.44 ± 0.92 41.58 ± 0.61 0.982 ± 0.01
Patient 16 24.39 ± 1.54 37.12 ± 0.61 0.966 ± 0.01 15.86 ± 1.33 41.96 ± 0.66 0.981 ± 0.01
Patient 19 18.08 ± 0.84 39.39 ± 0.35 0.969 ± 0.01 9.216 ± 1.05 45.42 ± 1.13 0.990 ± 0.01
Mean 22.42 ± 1.13 37.90 ± 0.43 0.963 ± 0.01 13.51 ± 1.10 42.99 ± 0.80 0.984 ± 0.01

An overall analysis shows that both training methods give a robust
neural network, with very low standard deviations. The NRMSE metric
has standard deviations ranging from 0.0018 for Patient 0 to 0.0033 for Pa-
tient 16 using SAT-training, and from 0.0019 for Patient 0 to 0.0034 for Pa-
tient 19 using MAT-training. The MAE metric has standard deviations,
ranging from 0.84 HU for Patient 19 to 1.54 HU for Patient 16 using SAT-
training, and from 0.92 HU for Patient 0 to 1.33 HU for Patient 16 using
MAT-training. The standard deviations of the PSNR are between 0.32 dB
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and 0.61 dB using the single-angle training method, whereas they are be-
tween 0.61 dB and 1.13 dB using the multi-angles training method. Al-
though both training methods produce robust methods, the MAT-training
method gives better results. For the three patients, the multi-angles train-
ing method obtains lower NRMSE and MAE, as well as higher PSNR and
SSIM. In the order NRMSE, MAE, PSNR and SSIM, the average computed
over the three patients is equal to 0.047, 22.42 HU, 37.90 dB and 0.963 using
the SAT-training method, whereas it is 0.027, 13.51 HU, 42.99 dB and 0.984
using MAT-training.

Impact of a projection angle different from that used for training

The results of the third analysis are displayed in figure 5.5.
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Fig. 5.5 NRMSE between the GT 3DCTs and the predicted 3DCTs of the test set.
In both analyses, the predictions are made with DRRs obtained at the 13 projection
angles. The results are shown for the three patients and for both training methods.

| 111



5 | Variants in the patient-specific 3DCT reconstruction

The analysis differs with the training method chosen. Using the single-
angle training method, the NRMSE is minimal when the projection angle
used for the prediction on the test image is the same as the training pro-
jection angle (30°). The NRMSE value rises rapidly and linearly when the
angle varies. For example, using a projection angle of 25°, the mean of the
NRMSE is between 0.275 and 0.310, and using a projection angle of 35°, the
mean of the NRMSE is between 0.201 and 0.273, depending on the patient.
Moreover, the figure shows that the behaviour of the error is not the same
for angles below or above 30°. Depending on the patient, the mean of the
NRMSE is between 0.715 and 0.789 for a projection angle of 0°, while it is
between 0.328 and 0.376 for a projection angle of 60°. One reason might be
that the DRRs generated with angles between 30° and 60° are more similar
to each other, whereas DRRs generated with smaller angles are more dif-
ferent. Using the multi-angles training method, the mean of the NRMSE
is maximum with a projection angle of 15° and is between 0.043 and 0.120.
The results demonstrate that the multi-angles training method is more ro-
bust to a change of the projection angle, and an interval of 15° between two
successive projection angles in the training set allows to reduce the error
between the GT 3DCT and the predicted 3DCT.

5.1.4 Discussion

This work shows that the performance of the neural network trained with
SAT-training is similar regardless of the projection angle used to generate
the DRRs given as input to the network. Any configuration of the treat-
ment room can then be used to obtain a 3DCT image from the x-rays pro-
jection. This means that the fluoroscopy acquisition device can either be
placed on the gantry or fixed in the treatment room.

The results also show that the neural network performs better when it
receives as input five digitally reconstructed radiographs for a given 3DCT.
The main limitations of MAT-training are the difficulty to acquire five x-ray
projections simultaneously in the treatment room as there are rarely mul-
tiple imagers, and the related increase in patient irradiation. On the other
hand, the main advantage of this method is that it is able to reconstruct
high-quality 3DCT images using DRRs generated with projection angles
that are not used to generate the DRRs of the training set. This means that
this method is robust to errors in the projection angle. If the x-rays imager
is integrated into the gantry and moves during patient treatment, thereby
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altering the projection angle, the MAT-training method is still able to ob-
tain a high quality 3DCT image from fluoroscopy.

However, some limitations of this work still need to be investigated be-
fore considering a reliable clinical application.

The method proposed by this work requires a patient-specific training
of a convolutional neural network, which is performed using synthetic
3DCT images created from deformations of a planning 4DCT. This sup-
poses that inter-fractional anatomical variations such as tumor shrinkage,
tumor baseline shift, or even stomach/bladder filling are not included in
the training set. It would be interesting to assess whether a re-training is
required for each treatment fraction or whether these variations are neg-
ligible in the reconstruction of a 3DCT as they are hardly visible on the
x-rays projections.

The results presented in this section are generated from a test set com-
posed of 50 random 3DCT images. It could be possible that images in the
test set are similar to each other and to those of the training set. It would
be interesting to generate a test set composed of 3DCT images depicting
several extreme breathing states, e.g. deep inspiration and deep expira-
tion, to evaluate the robustness of the neural network to situations not ob-
served during training. This would confirm that the method is reliable for
all breathing patterns, from regular breathing to irregular breathing with
periods of stress, apnea or coughing.

The results presented in this section are computed on cropped images
but that still leave a wide border around the patient. This border could
bias the results as there is no material to reconstruct at this place. This
could also explain the difference in the results between patients. A thicker
patient with a narrower edge would have a higher error value, while the
reconstruction within the body of this patient might be better.

The results presented in this section are based on only three patients,
and the method should first be tested on a large number of patients to
ensure that it works well with different anatomies.
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5.2 Robustness to changes in image acquisition time

This part of the work is inspired on the journal paper submitted to Medical Physics,
currently under peer review. Additional analyses are provided in this thesis.

5.2.1 Context

Radiation therapy has an important role in the treatment of lung cancer.
This technique involves the precise delivery of ionising radiation to the
tumor, with the aim to minimise the dose to healthy tissues and hence re-
duce treatment side effects. Accurate delineation of the treatment area is
one of the most important steps in radiation therapy. Margins are usu-
ally added around the gross tumor volume to account for microscopic dis-
ease and setup errors. Larger safety margins are employed for lung cancer
to consider the movement of the tumor as a result of breathing motion
[MBvH21].

Radiation therapy is typically delivered in 30 fractions over 6 weeks
for lung cancer. The movements of the patient and of its internal organs
during these fractions can be divided into two categories [PLWM16]: intra-
fractional anatomical variations and inter-fractional anatomical variations.
Intra-fraction motion indicates changes when the patient is undergoing
radiation therapy, while inter-fraction motion is the variations observed
between different treatment sessions. Intra-fraction motion considers de-
formations related to respiratory and cardiac cycles occurring on a time
scale of seconds to minutes. Inter-fraction motion covers baseline shifts
and weight gain or loss, which occurs on a time scale of hours or days. It
also includes changes in the position of the patient.

Image-guided radiation therapy has therefore a crucial role in iden-
tifying the anatomical changes during treatment. During the course of
fractional treatments, two-dimensional x-rays projections are acquired and
compared with the planning image [RLLL19b]. The projection radiogra-
phy is acquired after patient positioning to determine the position error
and the error of the radiation field, which are immediately corrected to ob-
tain the appropriate position of the target area. However, this technique
has two major drawbacks. One is that radiographs do not provide 3D in-
formation about the tumor volume or its spatial localisation [VDRT+08].
Another is that it requires implanted fiducial markers to visualise the tar-
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get on the x-rays projections, which involves a major surgery.

Numerous studies have already been carried out on the reconstruction
of a 3D volume from a 2D projection radiography. Various fields of ap-
plication have been explored. Henzler et al. in [HRRR17] studied how
to reconstruct 3D volumes from 2D cranial radiographs by applying deep
learning, while Liang et al. in [LSY+21] developed a new model architec-
ture to reconstruct 3D teeth from a single panoramic radiograph. Shen et
al. in [SZX19] used an encoder-decoder framework to reconstruct a 3D im-
age from a single projection view, and Montaya et al. in [MZL+21] demon-
strated that is was possible to reconstruct a 3D image from two scout views
with deep learning.

In this context, the aim of this part of the thesis was to study the ro-
bustness of the three-dimensional computed tomography (3DCT) recon-
struction methodology to image acquisition time changes. In particular,
the impact of the introduction of inter-fractional anatomical deformations
in the training set is evaluated, as well as a change in the day of acquisition
between training images and testing images to simulate different treatment
fractions. To this end, two training strategies were explored and compared.

5.2.2 Methodology

Dataset generation
The dataset includes ten patients who received radiotherapy for lung can-
cer. A planning 4DCT composed of ten breathing phases evenly spread
over the respiratory cycle was acquired prior to treatment. For each pa-
tient, a second 4DCT was acquired after several fractions of the treatment.
For seven patients out of ten, a third 4DCT was acquired usually one week
after the second. All 3DCT images have the same dimensions, which are
512 × 512 × 173 with a voxel size of 1.172 mm × 1.172 mm × 2 mm. The
mid-position (midp) CT image, defined as the local mean position in the
breathing cycle [WSvHD08], was calculated using the mean of all veloc-
ity fields obtained by non-rigid registration between all 4DCT phases for
all three 4DCTs, creating the planning midpCT, the T2 midpCT and the
T3 midpCT. Figure 5.6 shows the coronal view at the center of mass of
the target for the two or three midpCTs of each patient, and it also high-
lights the number of days between the acquisitions of the various 4DCTs.
The gross tumor volume (GTV) and other surrounding organs at risk (left
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and right lungs, and heart) were manually delineated by an experienced
radiation oncologist on each midpCT. A binary body mask was used to
exclude unnecessary background from each 3DCT image, and all images
were cropped by the outer cube of the body masks in the planning midpCT
with a margin of 15 mm. All images were then resized to 128 × 128 × 128,
and the contrast of the images was pre-processed to emphasise the differ-
ent types of tissue and make the training process easier.
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Fig. 5.6 Coronal views of pre-processed midpCT images at the center of mass of
the GTV, and time gap between each acquisition. All midpCT images of the same
patient are cropped with the same box to exclude unnecessary background.

An open-source data augmentation tool was implemented in OpenTPS
to generate a multitude of 3DCTs of a patient, resulting from deformations
of a midpCT image [WDSJ+23]. This data augmentation tool is composed
of two main classes of deformations: intra-fractional changes and inter-
fractional changes. The method used to create new 3DCTs including only
intra-fractional changes was explained in chapter 4, it involves generating
any breathing phase at a certain normalised distance from the midpCT us-
ing a linear interpolation between the two closest breathing phases and a
scaling. To meet the needs of this study, the method was made more com-
plex to take into account the inter-fractional anatomical changes that may
occur between two sessions of the treatment, not just same-day variations.
For example, it is possible to apply a translation and/or a rotation on the
motion model to represent an error in the treatment position of the patient.
It is also possible to apply shrinkage of an organ mask to represent phe-
nomena such as tumor shrinkage, or to apply a baseline shift to the tumor
mask to move it inside the lung [WDSJ+23].
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The planning midpCT was used to generate 355 new inter-fractional
anatomies. To best represent the changes that can truly occur during treat-
ment, specific values for the inter-fractional changes were defined. The
angle used for the rotation was a random sample from a uniform distri-
bution U (−3, 3) around the axes cranio-caudal and anterior-posterior, and
U (−1, 1) around the axis left-right. The value of the angle is expressed
in degrees. The distance used for the translation was a random sample
from a uniform distribution U (−6, 6) in the directions cranio-caudal and
left-right, and U (−1, 1) along the direction anterior-posterior, while the
distance used for the baseline shift was a random sample from a uniform
distribution U (−5, 5) in the three directions. The values of the distances
are expressed in millimeters. Then, the width used for the shrinkage was a
random sample from a uniform distribution U (0, 3) in the three directions.
This value is expressed in millimeters, and is then compared with the pixel
spacing to determine how many voxels need to be removed from the mask.

The 355 new anatomical variations were divided into three groups of
sizes 250, 65 and 40 to create intra-fractional changes. The 250, 65 and 40
anatomical models in each group were used to generate sequences of 25,
75 and 150 intra-fractional variations. In total, 25 · 250+ 75 · 65+ 150 · 40 =

17.125 3DCTs were created. A DRR was derived from each of them using
a projection angle of 0° along the anterior-posterior axis and the TomoPy
library [GDCXJ14]. All pairs of DRR/3DCT formed the training and vali-
dation sets, with 80% for the training set and 20% for the validation set.

The performance of the network was studied on the basis of four dis-
tinct test sets: Test Set planning (TSTp), Test Set T2 (TST2), Test Set Translated
T2 (TSTT2) and Test Set Translated T3 (TSTT3) as illustrated in figure 5.7. To
create these four test sets, 50 breathing amplitudes and phases were ran-
domly selected from a normal distribution N (1, 0.5) truncated between 0.8
and 1.5, and from a uniform distribution U (0, 1), respectively. Each pair of
amplitude and phase was given to the intra-fractional data augmentation
tool to create 50 3DCTs. Each test set has its own particularities.

Test Set planning consists of 50 3DCT images derived from intra-fractional
deformations of the planning midpCT.

Test Set T2 consists of 50 3DCT images derived from intra-fractional de-
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5 | Variants in the patient-specific 3DCT reconstruction

formations of the T2 midpCT.

Test Set Translated T2 consists of 50 3DCT images derived from intra-
fractional deformations of the T2 midpCT, which has been translated. The
translation used was the result of the rigid registration between the plan-
ning midpCT and the T2 midpCT, slightly noisy. The noise was a random
sample from the normal distribution N (0, 1).

Test Set Translated T3 consists of 50 3DCT images derived from intra-
fractional deformations of the T3 midpCT, which has been translated. The
translation used was the result of the rigid registration between the plan-
ning midpCT and the T3 midpCT, slightly noisy. The noise was a random
sample from the normal distribution N (0, 1).
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Fig. 5.7 Illustration of data partitioning and network training. The training
3DCTs are created by deforming the planning midpCT. From these 3DCT images,
DRRs are generated and given as input to the convolutional neural network. The
synthetic 3DCTs produced using the validation set are compared with the ground-
truth 3DCTs to optimise the network hyper-parameters. Using inter-training, the
DRR goes trough the trained network to obtain the corresponding predicted 3DCT
(P 3DCT), whereas with T2-training a fine-tuning step on a T2 image is added. Four
test sets are used: Test Set planning, Test Set T2, Test Set Translated T2 and Test Set
Translated T3.
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Network
The network used for the 3DCT reconstruction based on a single projec-
tion radiography is a convolutional neural network (CNN) that learns the
correspondence between a 2D image and a 3D volume. This network was
first proposed by Henzler et al. in [HRRR17], and we tuned the different
hyper-parameters for the adaptive proton therapy application. The overall
structure of the network is an encoder-decoder with skip connections. The
objective of the encoder is to convert the information contained in the train-
ing data into an internal representation, which is then applied to a specific
instance by the decoder. The aim of the skip connections is to share spatial
details of a certain resolution at a certain level in the encoder part with the
same resolution in the decoder part, converting fine details of the input
2D image into details of the output 3D volume. One special feature of this
network is that it takes as input a 2D image of size 256 × 256 and produces
as output a volume of size 128 × 128 × 128, whereas encoder-decoder net-
works generally have input and output of the same spatial resolution.

The network implementation is based on TensorFlow, and the codes ran
on a server with an NVIDIA RTX 6000 GPU. The Adam optimiser was used
with an initial learning rate of 0.001 and momentum parameters β1 = 0.9
and β2 = 0.99. The loss function used to train the network was the mean
squared error (MSE). The batch size and the number of epochs were set to
16 and 250, respectively. The training of the network was patient-specific,
meaning that a new network was trained independently for each patient.
The same training strategies and hyper-parameters were nevertheless used
for all patients.

Training specifications
The neural network training was patient-specific, it used patient-specific
CT data to refer to individual features. This work studied two main meth-
ods to train the model: inter-fractional deformations training (inter-training)
and fine-tuning with one T2 image training (T2-training).

Inter-training method used as input of the network DRRs that were all
generated from 3DCTs obtained using inter-fractional and intra-fractional
anatomical deformations of the planning midpCT.

T2-training method was an extension of the inter-training method. It used
the weights obtained at the end of inter-training as initial weights before
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being fine-tuned to one image from the second acquisition time. Indeed,
one pair of 3DCT/DRR generated from the T2 midpCT, called the T2-pair,
was given as input to the network. The number of deformations, which
only consider rotations and translations of the T2-pair, as well as the num-
ber of epochs have been optimised.

(a) Influence of the number of deformations

(b) Influence of the number of epochs
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Fig. 5.8 Error in various T2-training configurations normalised by the error ob-
tained using the inter-training method. (a) The three T2-training configurations de-
pend on the number of deformations of the T2-pair given as input to the network,
(b) the three T2-training configurations depend on the number of epochs used to
train the network.
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Figure 5.8(a) shows the error normalised by the median of the error ob-
tained with inter-training for three configurations of T2-training: training
with 1, 5 or 10 deformations of the T2-pair. T2-training is performed with
5 deformations as figure 5.8(a) shows that this number gives a smaller er-
ror. Figure 5.8(b) shows the error normalised by the median of the error
obtained with inter-training for three configurations of T2-training: train-
ing with 10, 20 or 40 epochs. T2-training is performed with 40 epochs as
the error decreases when the number of epochs increases. This number
of epochs is also the maximum ensuring a training time of less than 90 s,
enabling the method to be used in real clinical situations.

Performance evaluation
In order to evaluate the performance of the proposed method, the 50 pairs
of DRR/3DCT of the four test sets were used. The outputs of the trained
convolutional neural network, which are called the predicted 3DCT im-
ages, were compared with the ground-truth 3DCT images of the test sets
through various analyses.

Visual analysis was carried out to qualitatively assess the performance of
the proposed method. To that end, the predicted image was displayed next
to the corresponding ground-truth 3DCT, for the four test sets studied in
this part of the work. The image used in this analysis was the first image
of each test set of Patient 10.

Various quantitative analyses have been carried out to evaluate the re-
sults of the proposed training strategies. The quantitative analyses were
based on four metrics commonly used in image processing: normalised
root mean squared error, mean absolute error, peak signal-to-noise ratio
and structural similarity index measurement. Each of these metrics was
computed for the 50 images composing the test sets concerned by the anal-
ysis, between the ground-truth image and the corresponding predicted im-
age. The predicted image is given either by inter-training or by T2-training.
Each quantitative analysis aims to answer a specific research question.

What is the impact on the predictions quality if inter-fractional defor-
mations are added to the training set? This analysis looks at the varia-
tion in image quality metrics results when the test and training images are
both generated from the planning midpCT, but inter-fraction motion is in-
cluded in the training set. In this analysis, the results on TSTp obtained
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with inter-training were compared to the results achieved with the basic-
training method (explored in chapter 4).

What is the impact on the predictions quality if the x-rays projections
used to test the network are acquired at a different time from the im-
ages used to train it? This analysis looks at the variation in image quality
metrics results when the test images are acquired on a different treatment
fraction. In this analysis, two test sets were studied: TSTp and TST2.

What is the impact on the predictions quality if setup errors are reduced
between two treatment fractions? This analysis looks at the variation in
image quality metrics results when a rigid registration is performed to min-
imise errors in the position of the patient. In this analysis, two test sets were
studied: TST2 and TSTT2.

What is the impact on the predictions quality if the x-rays projections
used to test the network are acquired throughout the treatment of the
patient? This analysis looks at the variation in image quality metrics when
the test images are acquired on a subsequent treatment fraction. In this
analysis, two test sets were studied: TSTT2 and TSTT3.

5.2.3 Results

Visual analysis
The results of the visual analysis are represented in figure 5.9. For each test
set, this figure shows a ground-truth 3DCT compared with the predicted
3DCT given by inter-training and the predicted 3DCT given by T2-training.
In the case of TSTp, the predicted 3DCT is only obtained with the inter-
training method. This figure shows that the 3DCT images reconstructed
using the methodology proposed in this part of the thesis appears to be
of lower quality than those reconstructed using the methodologies devel-
oped in the previous contributions. Indeed, the predicted 3DCT images are
noisier and the edges between the different soft tissues are less perceptible.
Besides, the vertebrae of the spine appear less sharp and are not precise.
This figure also suggests that the 3DCTs generated using T2-training are
of better quality for all three test sets. For example, the patient is correctly
positioned in the predicted 3DCT generated with T2-training, whereas the
position of the patient is slightly rotated in the predicted 3DCT generated
with inter-training.
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Fig. 5.9 Qualitative comparison of the 3DCT images reconstructed by the
method proposed in this paper. For each test set, the GT 3DCT is compared to
the predicted 3DCT using inter-training and the predicted 3DCT using T2-training.
These are the results for Patient 10.

Impact of adding inter-fractional deformations in the training set

The results of the first research question are displayed in figure 5.10 and
table 5.2. Figure 5.10 highlights the normalised root mean squared error
computed between the ground-truth images and the predicted images us-
ing either basic-training and inter-training for the four patients common
to both studies. Table 5.2 lists the results of the mean absolute error, peak
signal-to-noise ratio and structural similarity index measurement metrics
computed between corresponding images.
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Fig. 5.10 Box plots of the NRMSE computed between the ground-truth 3DCTs
and the predicted 3DCTs from the TSTp, for each patient. The predicted 3DCTs are
generated using basic-training and inter-training.

Table 5.2 Results of the MAE, PSNR and SSIM metrics computed between the
ground-truth 3DCTs and the predicted 3DCTs from the TSTp, for each patient. The
predicted 3DCTs are generated using basic-training and inter-training. Each value
in the table stands for the average ± standard deviation of the metric over the 50
images in the test set.

Patient ID
TSTp - basic-training TSTp - inter-training

MAE
[HU]

PSNR
[dB]

SSIM
[/]

MAE
[HU]

PSNR
[dB]

SSIM
[/]

Patient 2 15.86 ± 0.71 43.78 ± 0.43 0.98 ± 0.00 69.69 ± 0.69 29.03 ± 0.23 0.81 ± 0.00
Patient 3 27.05 ± 2.46 36.50 ± 0.83 0.95 ± 0.01 89.20 ± 0.34 26.65 ± 0.08 0.73 ± 0.00
Patient 4 19.21 ± 1.16 41.81 ± 0.59 0.97 ± 0.00 82.16 ± 0.31 26.81 ± 0.03 0.77 ± 0.01
Patient 6 15.16 ± 1.27 43.58 ± 0.77 0.99 ± 0.00 70.00 ± 0.63 28.83 ± 0.17 0.79 ± 0.00
Patient 7 NA NA NA 80.22 ± 3.17 27.59 ± 0.20 0.76 ± 0.01
Patient 8 NA NA NA 80.61 ± 0.39 27.43 ± 0.09 0.76 ± 0.00
Patient 9 NA NA NA 63.29 ± 2.04 29.54 ± 0.25 0.82 ± 0.01
Patient 10 NA NA NA 85.42 ± 0.92 27.37 ± 0.12 0.75 ± 0.00
Patient 11 NA NA NA 73.31 ± 0.51 28.25 ± 0.06 0.79 ± 0.00
Patient 12 NA NA NA 65.23 ± 1.94 29.36 ± 0.41 0.82 ± 0.01
Mean 19.32 ± 1.4 41.42 ± 0.66 0.97 ± 0.00 75.91 ± 1.09 28.09 ± 0.16 0.78 ± 0.00

This analysis shows that for all patients, the error between the GT 3DCT
and the predicted 3DCT is greater when the predicted 3DCT is gener-
ated with inter-training. Using basic-training, the mean of the NRMSE
computed over the four patients is 0.047, whereas it is 0.223 using inter-
training. This is also reflected in the other metrics. Using basic-training, the
mean of MAE is 19.32 HU, of PSNR is 41.42 dB and of SSIM is 0.97, while
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they are respectively 75.91 HU, 28.09 dB and 0.78 using inter-training.

Impact of an acquisition time different from that mainly used for training
The results of the second research question are displayed in figure 5.11 and
table 5.3. Figure 5.11 highlights the normalised root mean squared error
computed between the ground-truth images and the predicted images of
both test sets TSTp and TST2. Table 5.3 lists the results of the mean abso-
lute error, peak signal-to-noise ratio and structural similarity index mea-
surement metrics computed between the same images.
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Fig. 5.11 Box plots of the NRMSE computed between the ground-truth 3DCTs
and the predicted 3DCTs from TST2 and TSTp, for each patient. The predicted
3DCTs from TSTp are generated using inter-training, whereas the predicted 3DCTs
from TST2 are generated using inter-training and T2-training.

The analysis differs with the training method chosen. Using the inter-
training strategy, the error between the GT images and the predicted im-
ages increases when testing images come from TST2, whatever the patient.
In this case, the mean of the MAE is 133.76 HU, of PSNR is 21.75 dB and of
SSIM is 0.62. On the other hand, using the T2-training method, the mean of
the MAE is 47.85 HU, of PSNR is 33.00 dB and of SSIM is 0.84. The quality
of the predicted 3DCT images generated with the network trained using
T2-training on the TST2 images is better than the quality of the predicted
3DCT images generated with the network trained using inter-training on
the TSTp images, with a NRMSE reduced by more than 50%. However, this
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quality is still poorer than that obtained with the basic-training method.

Table 5.3 Results of the MAE, PSNR and SSIM metrics computed between the
ground-truth 3DCTs and the predicted 3DCTs from the TST2, for each patient. The
predicted 3DCTs are generated using inter-training and T2-training. Each value
in the table stands for the average ± standard deviation of the metric over the 50
images in the test set.

Patient ID
TST2 - inter-training TST2 - T2-training

MAE
[HU]

PSNR
[dB]

SSIM
[/]

MAE
[HU]

PSNR
[dB]

SSIM
[/]

Patient 2 265.78 ± 1.37 19.87 ± 0.03 0.48 ± 0.00 46.86 ± 0.98 32.70 ± 0.20 0.83 ± 0.00
Patient 3 135.60 ± 1.10 23.55 ± 0.04 0.59 ± 0.00 54.08 ± 0.47 31.72 ± 0.11 0.82 ± 0.00
Patient 4 114.14 ± 1.77 24.53 ± 0.08 0.67 ± 0.01 56.60 ± 0.92 31.46 ± 0.17 0.77 ± 0.00
Patient 6 122.46 ± 0.96 24.59 ± 0.05 0.61 ± 0.00 47.02 ± 0.56 33.85 ± 0.15 0.85 ± 0.00
Patient 7 137.13 ± 4.34 23.61 ± 0.24 0.58 ± 0.01 47.64 ± 4.14 32.88 ± 0.86 0.84 ± 0.02
Patient 8 168.70 ± 5.29 22.29 ± 0.21 0.50 ± 0.00 57.63 ± 0.60 32.06 ± 0.12 0.79 ± 0.00
Patient 9 107.90 ± 2.05 25.20 ± 0.19 0.68 ± 0.00 38.13 ± 1.48 34.22 ± 0.49 0.90 ± 0.00
Patient 10 98.481 ± 1.26 25.93 ± 0.12 0.70 ± 0.00 45.42 ± 0.65 33.30 ± 0.14 0.88 ± 0.00
Patient 11 94.843 ± 0.85 26.29 ± 0.08 0.69 ± 0.00 42.22 ± 1.24 33.93 ± 0.25 0.87 ± 0.01
Patient 12 92.537 ± 0.76 26.21 ± 0.09 0.71 ± 0.00 42.87 ± 0.93 33.84 ± 0.12 0.88 ± 0.01
Mean 133.76 ± 1.98 21.75 ± 0.11 0.62 ± 0.00 47.85 ± 1.20 33.00 ± 0.26 0.84 ± 0.00

Impact of reduced setup errors
The results of the third research question are displayed in figure 5.12 and
table 5.4. Figure 5.12 highlights the normalised root mean squared error
computed between the ground-truth images and the predicted images of
both test sets TST2 and TSTT2. Table 5.4 lists the results of the mean ab-
solute error, peak signal-to-noise ratio and structural similarity index mea-
surement metrics computed between the same images.

The analysis is not similar depending on the training method studied.
Using the inter-training method, performing a rigid registration between
the planning midpCT and the T2 midpCT to position the patient correctly
positively affects the results and generally improves the quality of the re-
constructed 3DCT images. Only Patient 10 and Patient 11 show an increase
in error. On the other hand, all predictions on TSTT2 images using T2-
training show an increase in error when the patient is returned to a position
similar to the planning position. The mean over the 10 patients of MAE
is 101.26 HU for inter-training and 88.09 HU for T2-training, the mean of
PSNR is 25.92 dB for inter-training and 27.62 dB for T2-training, and the
mean of SSIM is 0.67 for inter-training and 0.72 for T2-training. These re-
sults show that, despite an increase in error, the T2-training method still
performs better than the inter-training method.
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Fig. 5.12 Box plots of the NRMSE computed between the ground-truth 3DCTs
and the predicted 3DCTs from TST2 and TSTT2, for each patient. The predicted
3DCTs are generated using inter-training and T2-training.

Table 5.4 Results of the MAE, PSNR and SSIM metrics computed between the
ground-truth 3DCTs and the predicted 3DCTs from the TSTT2, for each patient. The
predicted 3DCTs are generated using inter-training and T2-training. Each value in
the table stands for the average ± standard deviation of the metric over the 50
images in the test set.

Patient ID
TSTT2 - inter-training TSTT2 - T2-training

MAE
[HU]

PSNR
[dB]

SSIM
[/]

MAE
[HU]

PSNR
[dB]

SSIM
[/]

Patient 2 55.872 ± 0.60 30.69 ± 0.09 0.84 ± 0.00 180.7 ± 0.97 23.24 ± 0.08 0.63 ± 0.00
Patient 3 118.42 ± 0.60 24.38 ± 0.04 0.63 ± 0.00 79.84 ± 0.36 28.06 ± 0.03 0.72 ± 0.00
Patient 4 105.74 ± 2.04 25.34 ± 0.14 0.67 ± 0.01 80.05 ± 2.12 27.90 ± 0.22 0.72 ± 0.00
Patient 6 117.07 ± 1.59 24.82 ± 0.08 0.62 ± 0.00 84.55 ± 0.83 27.58 ± 0.07 0.70 ± 0.00
Patient 7 104.48 ± 1.87 25.63 ± 0.13 0.67 ± 0.01 78.06 ± 0.86 27.89 ± 0.11 0.74 ± 0.00
Patient 8 125.92 ± 0.97 24.57 ± 0.04 0.56 ± 0.00 102.6 ± 0.70 26.35 ± 0.11 0.62 ± 0.00
Patient 9 97.384 ± 0.84 26.18 ± 0.11 0.70 ± 0.00 66.50 ± 0.32 28.75 ± 0.08 0.79 ± 0.00
Patient 10 104.32 ± 1.03 25.62 ± 0.10 0.66 ± 0.00 77.39 ± 0.75 28.07 ± 0.10 0.73 ± 0.00
Patient 11 97.692 ± 0.93 26.00 ± 0.07 0.67 ± 0.00 70.81 ± 1.59 28.52 ± 0.15 0.77 ± 0.01
Patient 12 85.710 ± 0.65 26.00 ± 0.07 0.72 ± 0.00 60.43 ± 0.90 29.86 ± 0.15 0.82 ± 0.00
Mean 101.26 ± 1.11 25.92 ± 0.09 0.67 ± 0.00 88.09 ± 0.94 27.62 ± 0.11 0.72 ± 0.00

Impact of different acquisition times throughout the treatment
The results of the last research question are displayed in figure 5.13 and
table 5.5. Figure 5.13 highlights the normalised root mean squared error
computed between the ground-truth images and the predicted images of
both test sets TSTT2 and TSTT3. Table 5.5 lists the results of the mean ab-
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solute error, peak signal-to-noise ratio and structural similarity index mea-
surement metrics computed between the same images.
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Fig. 5.13 Box plots of the NRMSE computed between the ground-truth 3DCTs
and the predicted 3DCTs from TSTT2 and TSTT3, for each patient. The predicted
3DCTs are generated using inter-training and T2-training.

Table 5.5 Results of the MAE, PSNR and SSIM metrics computed between the
ground-truth 3DCTs and the predicted 3DCTs from the TSTT3, for each patient. The
predicted 3DCTs are generated using inter-training and T2-training. Each value in
the table stands for the average ± standard deviation of the metric over the 50
images in the test set.

Patient ID
TSTT3 - inter-training TSTT3 - T2-training

MAE
[HU]

PSNR
[dB]

SSIM
[/]

MAE
[HU]

PSNR
[dB]

SSIM
[/]

Patient 2 108.64 ± 1.12 25.07 ± 0.09 0.64 ± 0.00 81.70 ± 1.11 27.67 ± 0.14 0.70 ± 0.00
Patient 3 105.02 ± 0.88 25.26 ± 0.09 0.68 ± 0.00 91.80 ± 0.95 26.61 ± 0.10 0.69 ± 0.00
Patient 4 210.92 ± 5.42 20.71 ± 0.16 0.54 ± 0.01 164.9 ± 8.13 22.15 ± 0.36 0.57 ± 0.01
Patient 7 119.46 ± 0.72 24.56 ± 0.06 0.64 ± 0.00 89.69 ± 1.24 26.77 ± 0.14 0.71 ± 0.01
Patient 8 126.66 ± 2.77 24.32 ± 0.13 0.58 ± 0.01 102.6 ± 0.85 26.36 ± 0.05 0.61 ± 0.00
Patient 10 104.34 ± 1.96 25.56 ± 0.17 0.67 ± 0.00 81.30 ± 0.50 27.95 ± 0.06 0.72 ± 0.00
Patient 11 88.103 ± 1.87 26.69 ± 0.19 0.71 ± 0.01 70.24 ± 1.58 28.42 ± 0.19 0.78 ± 0.01
Mean 123.31 ± 2.11 24.60 ± 0.13 0.64 ± 0.00 97.03 ± 2.05 25.56 ± 0.10 0.68 ± 0.00

Regardless of the training method used to obtain the predicted images
of the set TSTT3, the error obtained is within the same range of values as
the error on the set TSTT2. The performance of the network is not degraded
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when the images are acquired at a later stage of the treatment process. The
mean over the 10 patients of MAE is 123.31 HU for inter-training and 97.03
HU for T2-training, the mean of PSNR is 24.60 dB for inter-training and
25.56 dB for T2-training, and the mean of SSIM is 0.64 for inter-training
and 0.68 for T2-training.

5.2.4 Discussion

This work assesses the robustness of the method when evaluated on im-
ages of the patient acquired at different times during treatment. In order to
take into account the inter-fractional anatomical deformations that can oc-
cur between two treatment sessions, the data augmentation algorithm has
been made more complex, allowing to modify the size and the position of
all organs. However, introducing such deformations in the training set de-
grades the quality of the predicted 3DCT images. The results show greater
errors using the inter-training method compared with the results obtained
with the basic-training method. Moreover, with the inter-training method,
the error also increases when the image is acquired during another treat-
ment session, and can reach a MAE of more than 250 HU. Future work
would be to evaluate the impact of these differences on the simulation of
a treatment plan delivery to validate whether the method could be used
to control the dose delivered to the patient during the different treatment
sessions.

The second training method studied in this work, T2-training, consider-
ably improves the quality of the results, with MAE values generally below
100 HU. However, the main disadvantage of this training strategy is that
it requires a short training on a new daily image. The number of epochs
has been set to guarantee a training time of less than 90 seconds, thereby
ensuring that the anatomy does not differ between daily image acquisition
and treatment administration. However, acquiring a new 3DCT image in-
creases the imaging dose delivered to the patient. To overcome this prob-
lem, unsupervised learning methods should be considered to avoid acquir-
ing a new 3DCT image every treatment fraction. Besides, the optimal time
between two 3DCT image acquisitions, and therefore between two fine-
tuning of the network, should also be studied in depth. The results show
that the T2-training method outperforms the inter-training method on the
test set TSTT3. These results may be due to the fact that the delay between
T2 and T3 images is around one week, whereas it is more than three weeks
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between planning and T3 images.

One of the limitations of this work is that it is based solely on digi-
tally reconstructed radiographs. This means that it is necessary to assess
the reality gap between a x-rays projection actually acquired in the treat-
ment room and the DRR image obtained with the TomoPy algorithm. A
large difference between the two images could lead to a reduction in the
quality of the results. With this in mind, future work could consider in-
corporating x-rays projections of the patient into the training set to ensure
that the network learns to distinguish between the two types of image. It is
also essential to notice that the field-of-view and the position of the patient
within the image have an impact on the results. The results of Patient 2
and Patient 8 on the test set TSTT2, and the results of Patient 3 on the test
set TSTT3 are poorer because of the significant differences in the position
of the patient compared with the planning image.

Another limitation of this work is that it uses a fixed number of training
images. Indeed, 355 inter-fractional anatomical deformations were created
and used to generate sequences of 3DCT images representative of intra-
fraction motion. These data present several limitations that must be con-
sidered in future work. Firstly, the realism of the 355 anatomies needs to
be assessed, as the implementation of the shrinkage and baseline shift in
the data augmentation tool does not reflect what actually happens over
time. Secondly, different sizes of sequences were used in this work, but
this choice is based on a personal idea and not on a quantitative result.
Future work would involve assessing the ideal distribution between inter-
fractional and intra-fractional deformations. Moreover, it is possible that
the performance of the network improves if the number of training images
increases. In this work, a compromise was made between the performance
of the neural network, the training time needed, and the storage resources
required.

Finally, the results in section 5.1 show that the patient-specific 3DCT
reconstruction performs better when the neural network receives as input
five digitally reconstructed radiographs for a given 3DCT. In this variant,
the results are obtained by giving only one projection radiography as input
to the network. Future work would involve combining the use of several
angles and inter-fractional anatomical variations in the training set to try
and improve the results on new treatment fractions.
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5.3 Summary

This chapter studies the performance of the patient-specific 3DCT recon-
struction methodology proposed in this thesis in the face of changes that
may occur in the treatment room. In the first part of the chapter, these
changes are caused by a new configuration of the treatment room. In par-
ticular, we study the robustness of the method to a change in the number
of x-rays imaging systems available in the treatment room or to a change
in the orientation of the projection angle used to obtain the digitally recon-
structed radiograph, which can be caused by an incorrect alignment of the
beam on the gantry. In the second part of the chapter, these changes are
caused by a new treatment fraction. In particular, we study the robustness
of the method to a change in the anatomy of the patient or to a change in
the position of the patient. In each of these two parts, two training strate-
gies are studied and their performances are compared according to several
research questions.
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Dosimetric evaluation of the

synthetic 3DCTs

This chapter covers the assessment of the validity of the synthetic 3DCT images re-
constructed by the methodology developed in this thesis for dose calculation. This
chapter is inspired on the journal paper submitted to Medical Physics, currently
under peer review. Additional analyses are provided in this thesis.

6.1 Context

The unique depth-dose characteristics of protons can improve tumor con-
trol while reducing toxicity. This represents a physical advantage of proton
therapy over conventional radiotherapy in terms of dose compliance and
sparing of normal tissue. However, this precision comes at the price of
being highly vulnerable to uncertainties. Thoracic tumors are particularly
concerned as the tumor motion induced by breathing can lead to density
variation in the beam trajectory. This results in missing the target or shift-
ing the expected proton range, thereby worsening the overall dose distri-
bution. Further dose deterioration can occur due to the inference between
the scanning motion of the beam and the anatomical motion, leading to
hot and cold spots in the target. This phenomenon is known as interplay
[SRTP09].
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4D (3D + time) robust optimisation is the current state-of-the-art treat-
ment planning approach for dealing with intra-fraction motion. It is de-
signed to be robust against small changes in the anatomy by optimising
for the worst-case scenario. In addition to the usual 3D robustness scenar-
ios, such as range and setup errors, 4D robust optimisation is intended to
withstand the multiple anatomical variations present in the planning 4D
computed tomography (CT). This approach is effective and is the current
best practice for the treatment of thoracic cancer [CZK+17]. However, the
treatment plans obtained using 4D robust optimisation are designed to be
robust only against the movements observed in the planning 4DCT and
deliver a higher dose to the surrounding organs at risk (OARs). A few
clinics have implemented off-line adaptive proton therapy protocols based
on additional three-dimensional computed tomography (3DCT) scans ac-
quired during treatment to better mitigate potentially adverse effects on
dose distributions caused by inter-fractional changes [CLZ+14]. Although
this approach can improve target coverage and OARs sparing, the adapta-
tion process is slow and anatomical or physiological changes occurring on
time scales of minutes or hours cannot be considered [PBL+17].

On-line adaptive proton therapy is seen as a promising method for
minimising treatment uncertainties caused by inter-fractional changes. It
consists in adapting and re-optimising the treatment plan on the basis of
the daily anatomy observed in the treatment position. On-line adaptive
proton therapy requires daily volumetric imaging data of the patient in
the treatment position. However, this technique is not yet used clinically
[AMN+20, PBSW21]. Several technological and methodological advances
are required for the clinical implementation of on-line adaptive proton
therapy. Over the last decade, numerous studies have investigated meth-
ods for rapid dose calculation and re-optimisation [PSP22], tools for daily
segmentation of in-room images [KPL+22], concepts for on-line quality as-
surance [AMN+20, PBSW21] and also algorithms for synthetic CT genera-
tion [SMZS21].

The generation of a synthetic CT from an image of another modality
using deep learning methods is the subject of numerous studies. In-room
cone-beam CT (CBCT) is used on a daily or weekly basis during treatment
for accurate patient positioning in radiation therapy, but its limited con-
trast resolution prevents it from performing advanced tasks. Some stud-
ies focused on improving CBCT image quality for better image-guided ra-
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diation therapy [ZLD+23, CLS+20], and other studies assessed the valid-
ity of the synthetic CT for dose calculation [LCN+19, LLW+20]. The use
of magnetic resonance imaging (MRI) in radiation therapy has proven its
added value in delineating tumors and organs at risk thanks to its excellent
soft-tissue contrast. Various methods have been proposed to convert MRI
into CT-equivalent representations using deep learning [BNC+21, Han17,
EDNDGH18]. However, these two imaging modalities are rarely used clin-
ically as part of a proton therapy treatment. Only a few in-room CBCT
scanners are already installed in proton therapy centers, while the clini-
cal implementation of MR-integrated proton therapy is still in the research
phase as many open questions need to be addressed beforehand, e.g. the
mutual electromagnetic interactions between the MRI and proton therapy
system that may degrade the quality of the MR image and the proton beam
[HOM+20].

Currently, in-room image guidance in proton therapy is mainly based
on 2D orthogonal x-rays imaging. This work has therefore focused on gen-
erating a synthetic 3DCT image from a single projection radiograph. In
the field of radiation therapy, only a few studies have tackled this chal-
lenge. Several studies demonstrated that it was possible to reconstruct
a 3DCT image from biplanar x-rays projections using a neural network
[MZL+21, YGM+19], and another one used a neural network to recon-
struct a 3D image from a single projection view [SZX19].

In this context, the aim of this part of the thesis was to study the va-
lidity of the 3DCT images reconstructed by our methodology for dose cal-
culation. In particular, the impact on the estimate of the proton energy is
evaluated, as well as the simulation of the delivery of one treatment plan.
To this end, the different training methods and scenarios studied in the
previous contributions were analysed.

6.2 Methodology

The methodology followed in this chapter is shown in figure 6.1. It high-
lights the two types of sequence generated, the training strategies consid-
ered, and the metrics used to assess the validity of the images for dose
calculation. All this is explained in more detail in this section.
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Fig. 6.1 Overview of the methodology developed in this chapter.

6.2.1 Sequences generation

The data used in this chapter come from 15 patients who were treated for
lung or liver cancer by radiotherapy. For each patient, a planning 4DCT
composed of 10 breathing phases was acquired before the start of treat-
ment. For ten patients out of fifteen, a second 4DCT was acquired after sev-
eral fractions of the treatment. For seven patients out of ten, a third 4DCT
was acquired usually one week after the second. The mid-position (midp)
CT image was calculated for all 4DCTs, creating the planning midpCT, the
T2 midpCT and the T3 midpCT. A data augmentation tool, explained in
detail in section 3.2.3, was used to generate two types of sequence for each
patient, and each midpCT.

Random sequences

For each patient and each midpCT, a random sequence (RS) was gener-
ated. The random sequences are composed of 50 images created from ran-
dom intra-fractional anatomical deformations of the midpCT image. To
generate these 50 3DCT images, the normalised distances r were random
samples of a normal distribution N (1, 0.5) truncated between 0.8 and 1.5,
and the breathing phases n were random samples of a uniform distribu-
tion U (0, 1). The use of a normalised distance r and a breathing phase n in
order to create a new 3DCT image is explained in equation 3.4.
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Continuous sequences
For each patient and each midpCT, a continuous sequence (CS) was gener-
ated. The continuous sequences are composed of 120 images created from
intra-fractional anatomical deformations of the midpCT image. To gener-
ate these 120 3DCT images, a 60 s synthetic respiratory signal was gener-
ated and sampled at a frequency of 2 Hz, resulting in the definition of 120
points. For each point, the two closest breathing phases of the 4DCT and
the amplitude of the synthetic respiratory signal were computed and given
to the intra-fractional data augmentation tool.

6.2.2 Trained neural networks

The neural network used throughout this thesis was first proposed by Hen-
zler et al. in [HRRR17] with the aim to learn the correspondence between
a 2D image and a 3D volume. This network was used in this work to ob-
tain a 3DCT image from one or more x-rays projections. Different training
strategies have been explored in the previous chapters and were analysed
again in this chapter.

Basic-training strategy
The first training strategy, basic-training, was based on 500 3DCT images
created from intra-fractional deformations of the planning midpCT. For
each 3DCT, a digitally reconstructed radiograph was generated using a
projection angle of 0°. In this training strategy, the patient-specific neu-
ral networks were trained for a total of 300 epochs. Basic-training was
developed and explained in detail in chapter 4. For this training strategy,
a random sequence, RS-basic, and a continuous sequence, CS-basic, were
created from intra-fractional deformations of the planning midpCT.

SAT- and MAT-training strategies
The second and third training strategies, SAT-training and MAT-training,
were based on 500 3DCT images created from intra-fractional deforma-
tions of the planning midpCT. For each 3DCT, five digitally reconstructed
radiographs were generated using projection angles of 0°, 30°, 45°, 60° and
90°. In the SAT-training strategy, the network was trained independently
for each angle value, whereas it was trained only once using all projection
angles in the MAT-training strategy. The patient-specific neural networks
were trained for a total of 500 epochs. These strategies were developed and
explained in detail in section 5.1. For both of these training strategies, the
same random sequence, RS-AT, and the same continuous sequence, CS-AT,
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were created from intra-fractional deformations of the planning midpCT.

Inter- and T2-training strategies
The fourth and fifth strategies, inter-training and T2-training, were based on
17.125 3DCT images created from intra- and inter-fractional deformations
of the planning midpCT. For each 3DCT, a digitally reconstructed radio-
graph was generated using a projection angle of 0°. In the inter-training
strategy, the patient-specific neural networks were trained for a total of
250 epochs. In the T2-training strategy, a fine-tuning step on one intra-
fractional anatomical deformation from the T2 midpCT is added. These
strategies were developed and explained in detail in section 5.2. For these
training strategies, four random sequences and four continuous sequences
were created. RS-Tp and CS-Tp were created from intra-fractional deforma-
tions of the planning midpCT. RS-T2 and CS-T2 were created from intra-
fractional deformations of the T2 midpCT. RS-TT2 and CS-TT2 were cre-
ated from intra-fractional deformations of the T2 midpCT translated using
the translation given by the rigid registration between planning midpCT
and T2 midpCT. RS-TT3 and CS-TT3 were created from intra-fractional de-
formations of the T3 midpCT translated using the translation given by the
rigid registration between planning midpCT and T3 midpCT.

6.2.3 Performance evaluation

In order to quantify the accuracy of the predicted 3DCT images in terms
of dose calculation, the random and continuous sequences were used. The
outputs of the convolutional neural networks trained using the different
training strategies, the predicted 3DCT images, were compared with the
ground-truth 3DCT images using several metrics.

Stopping power ratio (SPR) is used, in proton therapy treatment plan-
ning, for calculating the energy loss rate of protons. In this work, the SPR
map was computed using the CT calibration implemented in OpenTPS
[WDSJ+23]. The overall accuracy of SPR maps generated by our method
was quantified by the mean absolute error (MAE), which measures the
arithmetic average of the absolute errors. The MAE calculated between
the ground-truth SPR map and the predicted SPR map was related to the
MAE computed between the ground-truth 3DCT image and the predicted
3DCT image. This analysis was performed on the whole image and on the
target volume only. In this analysis, the results were obtained using the
random sequences.
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Water equivalent path length (WEPL) is used, in proton therapy treatment
planning, to calculate the proton energy required along the beam axis. The
WEPL map is determined by the cumulative sum of the stopping power
ratios in a particular orientation. Three orientations per patient were stud-
ied and correspond to the gantry angles used in the optimised treatment
plan, which are listed in table 3.3. The beams were then divided into four
groups according to the value of their gantry angle. For each group, the
MAE was computed between the WEPL maps and related to the MAE cal-
culated between the 3DCT images. This analysis was performed on the
whole image and on a rectangular box around the GTV, determined by the
size of the organ in the plane orthogonal to the direction of the beam and
ranging from the first slice of the image to the furthest slice of the organ
in the beam direction. In this analysis, the results were obtained using the
random sequences.

Treatment plan simulation is used to verify that the treatment plan is
safely delivered as prescribed. For each patient, a treatment plan was com-
puted using 4D robust optimisation on the planning midpCT. These treat-
ment plans were designed using RayStation v.12B [RSL, Bod18] according
to the protocol used in Cliniques universitaires Saint-Luc for the treatment
of lung and liver cancers. The main steps and the parameters used are de-
scribed in section 3.4. The simulation of the treatment plan delivery was
carried out with OpenTPS. The calculation of spot delivery times was per-
formed with the IBA ScanAlgo simulation tool emulating delivery times
on an IBA C230 cyclotron, while the simulation of dose deposition was
performed with the Monte Carlo dose engine MCsquare [SGK+16]. The
dose distribution on a 3DCT image was then accumulated on the midpCT
using deformable image registration. The accumulated dose delivered on
the ground-truth sequence was compared to the accumulated dose deliv-
ered on the predicted sequence. A visual analysis was performed to visu-
alise where the major differences lie and a dose-volume histogram (DVH)
was computed to give an indication of how the dose profiles differ be-
tween treatment plan delivery on the ground-truth sequence and on the
predicted sequence. Besides, the difference between various dose quality
metrics, such as Dmin, Dmax or Dmean was studied, as well as the percentage
of volume of many regions of interest with an absolute difference between
both doses smaller than or equal to 1 Gy and 5 Gy. In this analysis, the
results were obtained using the continuous sequences.
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6.3 Results

6.3.1 Stopping power ratio

Figure 6.2 shows the results of the stopping power ratio error as a function
of the error between the two 3DCT images. Figure 6.2(a) shows the results
calculated on the complete 3DCT image and figure 6.2(b) shows the results
calculated on the tumor volume. These results show that there is a linear
relationship between the error computed between the two 3DCT images
and the error computed between both SPR maps. For the strategy basic-
training, the coefficient of this linear regression is 0.818 · 10−3 ± 0.04 · 10−3

when the calculation is performed on the whole volume of the image, and
0.851 · 10−3 ± 0.22 · 10−3 when only the GTV is considered.
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Fig. 6.2 Results of the stopping power ratio analysis for basic-training. The MAE
of the SPR maps is compared with the MAE of the 3DCT images. It is computed
over (a) the whole image volume and (b) the GTV volume. For ease of reading,
only 10 images from the random sequence RS-basic of the nine patients are shown.

The same analysis is carried out for the different training methods. Ta-
ble 6.1 shows the mean and standard deviation of the regression coefficient
obtained for each training strategy. This table shows that for the different
random sequences, with the exception of RS-AT, the coefficient obtained
on the GTV is higher than the one computed on the whole 3DCT image.
This means that for the same MAE computed between two 3DCT images,
a larger SPR error is observed on the tumor level. Besides, the values of the
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regression coefficients are larger when using inter-training or T2-training.
This means that for the same MAE computed between two 3DCT images,
the inter-training and T2-training methods always produce an image ex-
pressing a greater difference between the SPR. It can also be noted that the
T2-training method used on the random sequence RS-T2 obtains results
comparable to those of the other training strategies, but this is not verified
on the volume of the tumor.

Table 6.1 Coefficients of the linear regression computed between the MAE of
the SPR maps and the MAE of the 3DCT images for the different training strategies
on the various random sequences.

Random sequence / training strategy
Coefficient of linear regression ·10−3

on 3DCT on GTV
RS-basic / basic-training 0.818 ± 0.04 0.851 ± 0.22
RS-AT / SAT-training 0.755 ± 0.03 0.661 ± 0.09
RS-AT / MAT-training 0.772 ± 0.02 0.712 ± 0.11
RS-Tp / inter-training 0.919 ± 0.04 1.012 ± 0.02
RS-T2 / inter-training 0.941 ± 0.05 1.017 ± 0.09
RS-T2 / T2-training 0.872 ± 0.03 1.011 ± 0.02
RS-TT2 / inter-training 0.938 ± 0.05 0.981 ± 0.11
RS-TT2 / T2-training 0.934 ± 0.03 1.022 ± 0.02
RS-TT3 / inter-training 0.955 ± 0.02 1.019 ± 0.01
RS-TT3 / T2-training 0.936 ± 0.02 1.015 ± 0.01

6.3.2 Water equivalent path length

Figure 6.3 shows the results of the water equivalent path length error as a
function of the error between the two 3DCT images. Figure 6.3(a) shows
the results calculated on the complete 3DCT image and figure 6.3(b) shows
the results calculated on the tumor volume. Besides, these two figures dif-
ferentiate the results according to the orientation of the beam used to com-
pute the WEPL, either the beam angle is between 0° and 90°, between 90°
and 180°, between 180° and 270°, or between 270° and 360°. It can be seen
that, for the basic-training method, the orientation of the beam used has
almost no influence on the results of the WEPL, whereas the linear regres-
sion coefficient is generally greater when the entire volume of the image is
considered. In addition, the results for the same patient are relatively simi-
lar when calculated on the whole 3DCT image, whereas they show greater
variability when computed around the GTV.
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Fig. 6.3 Results of the water equivalent path length analysis for the strategy
basic-training. For each patient, 3 beam angles are studied (those used in the opti-
mised treatment plan) and the beams are then classified into 4 groups according to
their gantry angle. The MAE of the WEPL maps is compared with the MAE of the
3DCT images. It is computed over (a) the whole image volume and (b) the GTV
volume. For ease of reading, only 10 images from the random sequence RS-basic of
the nine patients are shown.
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The same analysis is carried out for the different training methods. Ta-
ble 6.2 shows the mean and standard deviation of the regression coefficient
obtained for each training strategy. For SAT-training and MAT-training,
the coefficient values are within the same range of values regardless of the
orientation of the beam, although it is observed that beams between 0°
and 90° have a lower slope value, and beams between 270° and 360° have
a higher slope value. The MAT-training method appears to reconstruct
the images with greater confidence, since the standard deviation of this
method is zero. The linear regression coefficients computed using inter-
training and T2-training are higher than those obtained with the other
training strategies. For these two methods, the error along a beam with
a gantry angle between 0° and 90° is smaller, whereas it is higher along
a beam with a gantry angle between 90° and 180°. Moreover, T2-training
produces smaller coefficients than inter-training.

Table 6.2 Coefficients of the linear regression computed between the MAE of
the WEPL maps and the MAE of the 3DCT images for the different training strate-
gies on the various random sequences.

Random Sequence / training strategy
Coefficient of linear regression

0° ≤ beam < 90° 90° ≤ beam < 180°
on 3DCT around GTV on 3DCT around GTV

RS-basic / basic-training 0.031 ± 0.01 0.022 ± 0.01 0.034 ± 0.01 0.020 ± 0.01
RS-AT / SAT-training 0.040 ± 0.01 0.019 ± 0.01 NA NA
RS-AT / MAT-training 0.034 ± 0.00 0.015 ± 0.00 NA NA
RS-Tp / inter-training 0.068 ± 0.02 0.024 ± 0.01 0.105 ± 0.03 0.040 ± 0.02
RS-T2 / inter-training 0.085 ± 0.02 0.094 ± 0.10 0.137 ± 0.02 0.126 ± 0.11
RS-T2 / T2-training 0.046 ± 0.01 0.029 ± 0.02 0.058 ± 0.00 0.029 ± 0.02
RS-TT2 / inter-training 0.083 ± 0.02 0.082 ± 0.07 0.123 ± 0.00 0.089 ± 0.06
RS-TT2 / T2-training 0.071 ± 0.02 0.049 ± 0.03 0.099 ± 0.05 0.062 ± 0.02
RS-TT3 / inter-training 0.075 ± 0.01 0.028 ± 0.02 0.115 ± 0.01 0.021 ± 0.00
RS-TT3 / T2-training 0.061 ± 0.00 0.024 ± 0.02 0.090 ± 0.00 0.021 ± 0.00

Random Sequence / training strategy
Coefficient of linear regression

180° ≤ beam < 270° 270° ≤ beam <360°
on 3DCT around GTV on 3DCT around GTV

RS-basic / basic-training 0.034 ± 0.01 0.023 ± 0.01 0.033 ± 0.01 0.020 ± 0.01
RS-AT / SAT-training 0.045 ± 0.00 0.030 ± 0.00 0.050 ± 0.01 0.023 ± 0.01
RS-AT / MAT-training 0.039 ± 0.00 0.018 ± 0.00 0.054 ± 0.02 0.012 ± 0.00
RS-Tp / inter-training 0.078 ± 0.02 0.031 ± 0.01 0.084 ± 0.02 0.022 ± 0.01
RS-T2 / inter-training 0.099 ± 0.02 0.031 ± 0.02 0.106 ± 0.03 0.036 ± 0.01
RS-T2 / T2-training 0.054 ± 0.01 0.019 ± 0.01 0.062 ± 0.02 0.021 ± 0.01
RS-TT2 / inter-training 0.097 ± 0.01 0.032 ± 0.01 0.097 ± 0.03 0.044 ± 0.02
RS-TT2 / T2-training 0.081 ± 0.01 0.027 ± 0.02 0.086 ± 0.02 0.044 ± 0.04
RS-TT3 / inter-training 0.098 ± 0.02 0.028 ± 0.01 0.101 ± 0.03 0.048 ± 0.04
RS-TT3 / T2-training 0.080 ± 0.01 0.032 ± 0.02 0.079 ± 0.02 0.035 ± 0.02
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6.3.3 Treatment plan simulation

Basic-training strategy
Figure 6.4 shows the results of the accumulated dose after simulation of
the treatment plan delivery on the CS-basic sequence composed of ground-
truth images compared with the results of the simulation on the CS-basic
sequence made of predicted images. For a human eye, the two doses ap-
pear to be relatively equivalent. However, the analysis of the difference
shows that it is not zero. The largest differences are found around the tu-
mor, while they are very small within the target volume. The zoom shows
that the dose delivered on the predicted images is generally higher in front
of the target relatively to the origin of the beams, and lower after it. This
means that the Bragg peak on the predicted images occurs earlier in the
body of the patient, so the method tends to overestimate the value of the
voxels.
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Fig. 6.4 Visualisation of three slices of the accumulated dose on the midpCT of
Patient 6 after simulation of treatment plan delivery on CS-basic made of ground-
truth images compared with the corresponding slices of the accumulated dose after
simulation on CS-basic made of the predicted images, as well as the results of the
difference between both doses and a zoom of the boxed area.

Figure 6.5 compares the DVH results obtained on the continuous se-
quence CS-basic composed of ground-truth or predicted images. For each
patient and each organ, both the target and the organs at risk, the curve as-
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sociated with the dose accumulated on the CS-basic sequence composed of
predicted images is very close to the curve associated with the dose accu-
mulated on the CS-basic sequence composed of ground-truth images. This
observation is valid for patients suffering from lung cancer, with a pre-
scribed dose of 60 Gy in 30 fractions, and also for patients suffering from
liver cancer, with a prescribed dose of 52.5 Gy in 6 fractions.
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Fig. 6.5 DVH comparing accumulated dose on the ground-truth CS-basic (line)
and on the predicted CS-basic (dashed line). The results for patients with lung
cancer are shown at the top, those with liver cancer at the bottom. The results on
the target are displayed in color, while results on organs at risk are displayed in
shades of grey.

The visual analysis of the DVH can be supplemented by the results in
figure 6.6. It shows the difference between the accumulated dose on the
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CS-basic sequence composed of ground-truth images and the accumulated
dose on the CS-basic sequence composed of predicted images, for eight
metrics assessing the quality of the treatment plan. This figure shows that
the dose difference is very close to 0 Gy for the different metrics: D2%, D5%,
D50%, Dmean, D95% and D98%. However, for the two metrics Dmin and Dmax,
the difference is greater and can reach 5 Gy. It is normal to observe a greater
variation in these two metrics as, unlike the others, they are assessed on a
single pixel, making the results more sensitive.
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Fig. 6.6 Box plots of the difference between the dose accumulated on the mid-
pCT after simulation of dose delivery on CS-basic made of GT 3DCTs and the dose
accumulated on the same midpCT after simulation of dose delivery on CS-basic
composed of P 3DCTs, for different quality metrics of a treatment plan evaluated
on the target (GTV). GTV-Dx% stands for the dose delivered to at least x% of the
GTV mask. Each dot represents one of the nine patients studied.

Figure 6.7 shows the percentage of volume of five different regions of
interest (body, GTV, right and left lungs, and heart) with a dose difference
of less than 1 Gy or less than 5 Gy. This figure shows that the GTV is the
organ with the lowest percentage of volume with a difference of less than
1 Gy. For six patients over the nine studied with this training strategy,
the difference between the two accumulated doses is smaller than 1 Gy for
more than 75% of their target volume. However, for the other three pa-
tients, the difference between the two accumulated doses is below 1 Gy for
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only 50 to 75% of the volume of their GTV. Patient 3, with a dose difference
of less than 1 Gy for only 50% of his GTV volume, is also the patient with
the greatest discrepancies in the DVH metrics. For the other organs stud-
ied, the difference between both doses is under 1 Gy for more than 90%
of volumes, and under 5 Gy for almost all of their volumes. It should be
noted that there is not necessarily a trend for these different organs, given
that the different patients are relatively scattered in the metrics.
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Fig. 6.7 Box plots of the percentage of the volume of a region of interest whose
difference between the two accumulated doses is less than a certain threshold.
The two doses studied are the doses accumulated on the midpCT after simula-
tion of dose delivery on CS-basic made of GT 3DCTs and on CS-basic composed
of P 3DCTs. ROI-∆DxGy stands for the difference between both accumulated doses
below a certain threshold of x Gy computed over the mask of the ROI. Each dot
represents one of the nine patients studied.

SAT- and MAT-training strategies

Figure 6.8 shows the results of the visual analysis after simulation of the
treatment plan delivery on the CS-AT sequence. The results on CS-AT
made of ground-truth images are compared with the results of the simula-
tion on CS-AT made of predicted images. The predicted images are either
obtained with SAT-training or with MAT-training. This analysis shows
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that most of the significant dose differences are at the outer boundary of
the target, regardless of the training method used. Besides, the dose dif-
ferences are smaller after simulation on the CS-AT sequence composed of
predicted images using MAT-training as there are less colored voxels. Us-
ing the MAT-training method, it can be seen that the large dose differences
are mainly generated by the beam at 270°, whereas these are caused by all
three orientations using the SAT-training method.
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Fig. 6.8 Visualisation of three slices of the accumulated dose on the midpCT of
Patient 0 after simulation of treatment plan delivery on CS-AT made of ground-
truth images (middle column) compared with the corresponding slices of the ac-
cumulated dose after simulation on CS-AT made of predicted images using SAT-
training (on the left) and MAT-training (on the right), as well as the results of the
difference.

Figure 6.9 compares the DVH results obtained on the continuous se-
quence CS-AT composed of ground-truth or predicted images. The top
figure shows the results when the predicted images are created using SAT-
training and the bottom shows the results when the predicted images are
obtained with MAT-training. This figure shows that the two training strate-
gies produce DVH curves comparable to the DVH curves obtained using
the ground-truth images, although the curves associated with the MAT-
training strategy are even closer. This means that, for these two training
strategies, the significant 3DCT reconstruction errors are located outside
the beam trajectory or, at least, they do not affect dose delivery. In addi-
tion, the significant dose differences located outside the target, as shown
in figure 6.8, do not affect the dose delivered to the organs at risk, as this
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dose is also similar to that administered after treatment plan delivery on
the ground-truth images.
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Fig. 6.9 DVH comparing accumulated dose on the ground-truth CS-AT (line)
and on the predicted CS-AT (dashed line). The results for the predicted CS-AT
using SAT-training are shown at the top, those for the predicted CS-AT using MAT-
training at the bottom. The results on the target are displayed in color, while results
on organs at risk are displayed in shades of grey.

The visual analysis of the DVH can be supplemented by the results in
figure 6.10. It shows the difference between the accumulated dose on the
CS-AT sequence composed of ground-truth images and the accumulated
dose on predicted images using both training strategies, for eight metrics
assessing the quality of the treatment plan. This figure shows that, for
both training strategies, the difference is very close to 0 Gy for the differ-
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ent metrics: D2%, D5%, D50% and Dmean. However, for the four metrics
Dmin, D95%, D98% and Dmax, the difference is greater and can reach up to
5 Gy. This analysis also shows that, for the first time, MAT-training is not
more reliable than SAT-training, given that the absolute difference in cer-
tain metrics are greater using MAT-training. However, this must be treated
with caution as only three patients were studied in this part of the work.
In addition, this analysis shows that, for Patient 16, the simulation on CS-
AT made of predicted images tends to deliver more dose to the target than
the simulation on CS-AT made of ground-truth images as the difference
is always negative, whereas, for Patient 0, the opposite is observed as the
simulation on CS-AT made of predicted images tends to deliver less dose
to the GTV.
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Fig. 6.10 Box plots of the difference between the dose accumulated on the mid-
pCT after simulation of dose delivery on CS-AT made of GT 3DCTs and the dose
accumulated on the same midpCT after simulation of dose delivery on CS-AT com-
posed of P 3DCTs, for different quality metrics of a treatment plan evaluated on the
target (GTV). GTV-Dx% stands for the dose delivered to at least x% of the GTV
mask. Each dot represents one of the three patients studied. SAT-training results
are shown in green on the left, MAT-training results in purple on the right.

Figure 6.11 shows the percentage of volume of five different regions of
interest (body, GTV, right and left lungs, and heart) with a dose difference
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smaller than 1 Gy and smaller than 5 Gy. The figure shows the results of the
two training methods SAT-training and MAT-training. This figure shows
that, whatever the training method, the GTV is the organ with the lowest
percentage of volume with a difference of less than 1 Gy. However, this fig-
ure also shows that the MAT-training method considerably increases this
percentage. In fact, the percentage of GTV volume with a difference below
1 Gy is between 60% and 90% using SAT-training, whereas this percentage
is between 85% and 95% using MAT-training. For the other organs, the dif-
ference between the two doses is under 1 Gy for almost all their volumes,
regardless of the training strategy used. The right lung is the organ at risk
with the greatest variations, which is understandable since the beams pass
through it, whereas the other organs are not located on the beam trajecto-
ries.
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Fig. 6.11 Box plots of the percentage of the volume of a region of interest whose
difference between the two accumulated doses is less than a certain threshold. The
two doses studied are the doses accumulated on the midpCT after simulation of
dose delivery on CS-AT made of GT 3DCTs and on CS-AT composed of P 3DCTs.
ROI-∆DxGy stands for the difference between both accumulated doses below a cer-
tain threshold of x Gy computed over the mask of the ROI. Each dot represents one
of the three patients studied. SAT-training results are shown in green on the left,
MAT-training results in purple on the right.
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Inter- and T2-training strategies
Figure 6.12 shows the results of the visual analysis after simulation of the
treatment plan delivery on the four continuous sequences studied in these
two training strategies.
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Fig. 6.12 Visualisation of three slices of the difference between the accumulated
dose after simulation of treatment plan delivery on the continuous sequence made
of ground-truth images and after simulation on the continuous sequence made of
predicted images using either inter-training or T2-training. Four continuous se-
quences are considered: CS-Tp, CS-T2, CS-TT2 and CS-TT3.

The analysis differs according to the training method used. Using inter-
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training, the differences are smaller for CS-Tp than for the other three con-
tinuous sequences. For this continuous sequence, the large differences are
mainly located outside the target volume. For the other three sequences,
large differences can also be found inside the target volume. The figure
shows that correct patient positioning has a positive influence on the re-
sults as the errors are reduced on CS-TT2 compared with the errors on
CS-T2. On the other hand, using T2-training, the dose is delivered more
precisely on CS-T2 than on CS-TT2. In addition, the dose differences on CS-
TT3 are significant but seem mainly located outside the GTV. The two train-
ing methods appear to give similar results for this continuous sequence.

In the remainder of this section, the four continuous sequences are anal-
ysed independently and successively.

Figure 6.13 compares the DVH results obtained on the continuous se-
quence CS-Tp composed of ground-truth or predicted images. For each
patient, the curve associated with the simulation on the predicted images
is similar to that associated with the simulation on the GT images, but there
is generally a slight translation between the two indicating a small error in
the simulation of the treatment plan delivery.
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Fig. 6.13 DVH comparing accumulated dose on the ground-truth CS-Tp (line)
and on the predicted CS-Tp (dashed line). The results for the predicted CS-Tp are
obtained using inter-training. The results on the target are displayed in color, while
results on organs at risk are displayed in shades of grey.
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The visual analysis of the DVH can be supplemented by the results
in figure 6.14. It shows the difference between the accumulated dose on
the CS-Tp composed of ground-truth images and the accumulated dose
on predicted images using inter-training, for eight metrics assessing the
quality of the treatment plan. This figure shows that the accumulated dose
difference is generally between −5 Gy and 5 Gy for the eight metrics. It can
also be noted that the tumor does not tend to be over-dosed or under-dosed
with the predicted images, as half the patients have positive differences
and the other half negative differences.
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Fig. 6.14 Box plots of the difference between the dose accumulated on the mid-
pCT after simulation of dose delivery on CS-Tp made of GT 3DCTs and the dose
accumulated on the same midpCT after simulation of dose delivery on CS-Tp com-
posed of P 3DCTs, for different quality metrics of a treatment plan evaluated on
the target (GTV). GTV-Dx% stands for the dose delivered to at least x% of the GTV
mask. Each dot represents one of the ten patients studied.

Figure 6.15 shows the percentage of volume of the five different regions
of interest with a dose difference of less than 1 Gy and of less than 5 Gy. In
the case of the simulation on CS-Tp, the GTV is the organ with the lowest
percentage of volume with a difference smaller than 1 Gy, which is between
10% and 60%. The second organ with a small percentage of the volume
having a difference below 1 Gy is the lung in which the tumor is located
and is between 60% and 90%. The dose delivered in the other organs using
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the sequence made of predicted 3DCT images is generally faithful to the
dose delivered using the sequence composed of ground-truth 3DCTs as
the percentage of ROI volume with a dose difference under 1 Gy is greater
than 80%. Moreover, for all organs, a difference under 5 Gy is observed in
more than 90% of the volumes.
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Fig. 6.15 Box plots of the percentage of the volume of a region of interest whose
difference between the two accumulated doses is less than a certain threshold. The
two doses studied are the doses accumulated on the associated midpCT after sim-
ulation of dose delivery on CS-Tp made of GT 3DCTs and on CS-Tp composed of
P 3DCTs. ROI-∆DxGy stands for the difference between both accumulated doses
below a certain threshold of x Gy computed over the mask of the ROI. Each dot
represents one of the ten patients studied.

Figure 6.16 compares the DVH results obtained on the continuous se-
quence CS-T2 composed of ground-truth or predicted images. The top
figure shows the results when the predicted images are created using inter-
training and the bottom shows the results when the predicted images are
obtained with T2-training. This figure shows that, for some patients, the
anatomy of the T2 midpCT differs significantly from the planning mid-
pCT, leading to a deterioration in the delivery of the treatment plan. For
these patients, the two training strategies do not give the same results. The
inter-training method shows considerable errors between the ground-truth
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and predicted curves. In contrast, with T2-training, the curves remain very
close to each other. For patients with greater similarity between both mid-
pCTs, the two training strategies predict 3DCTs with sufficient quality so
that the curve on the predicted images matches the curve on the ground-
truth images.
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Fig. 6.16 DVH comparing accumulated dose on the ground-truth CS-T2 (line)
and on the predicted CS-T2 (dashed line). The results for the predicted CS-T2 using
inter-training are shown at the top, those for the predicted CS-T2 using T2-training
at the bottom. The results on the target are displayed in color, while results on
organs at risk are displayed in shades of grey.

The visual analysis of the DVH can be supplemented by the results in
figure 6.17. It shows the difference between the accumulated dose on the
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CS-T2 sequence composed of ground-truth images and the accumulated
dose on predicted images using both training strategies, for eight metrics
assessing the quality of the treatment plan. This figure shows that the dif-
ference between both doses assessed with the metrics D2%, D5%, D50% and
Dmean is less than 5 Gy, whatever the patient and the training method. For
the other four metrics, the difference increases and can be greater than 10
Gy using inter-training. The T2-training method counters this increase and
limits the absolute value of the difference to 5 Gy for these four metrics too.
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Fig. 6.17 Box plots of the difference between the dose accumulated on the mid-
pCT after simulation of dose delivery on CS-T2 made of GT 3DCTs and the dose
accumulated on the same midpCT after simulation of dose delivery on CS-T2 com-
posed of P 3DCTs, for different quality metrics of a treatment plan evaluated on
the target (GTV). GTV-Dx% stands for the dose delivered to at least x% of the GTV
mask. Each dot represents one of the ten patients studied. Inter-training results are
shown in brown on the left, T2-training results in grey on the right.

Figure 6.18 shows the percentage of volume of the five different regions
of interest with a dose difference of less than 1 Gy and of less than 5 Gy.
This figure shows the results of the two training methods inter-training and
T2-training. In the case of the simulation on CS-T2, the GTV is still the or-
gan with the lowest percentage of volume with a difference smaller than 1
Gy. However, the performance is not similar for the two training methods.
The volume percentage is between 10% and 50% using inter-training, while
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it is between 15% and 75% using T2-training. This percentage remains low
and is between 30% and 99% for a threshold of 5 Gy using inter-training,
whereas it is mainly over 80% using T2-training. For the other organs, the
use of T2-training makes it possible to considerably increase the percentage
of the volume with a small difference. Using this training strategy, more
than 90% of the volume of the OARs shows a dose difference below 1 Gy,
and more than 95% has a dose difference below 5 Gy.
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Fig. 6.18 Box plots of the percentage of the volume of a region of interest whose
difference between the two accumulated doses is less than a certain threshold. The
two doses studied are the doses accumulated on the associated midpCT after sim-
ulation of dose delivery on CS-T2 made of GT 3DCTs and on CS-T2 composed of P
3DCTs. ROI-∆DxGy stands for the difference between both accumulated doses be-
low a certain threshold of x Gy computed over the mask of the ROI. Each dot rep-
resents one of the ten patients studied. Inter-training results are shown in brown
on the left, T2-training results in grey on the right.

Figure 6.19 compares the DVH results obtained on the continuous se-
quence CS-TT2 composed of ground-truth or predicted images. The top
figure shows the results when the predicted images are created using inter-
training and the bottom shows the results when the predicted images are
obtained with T2-training. This figure shows that using the inter-training
method, the anatomical variations between the two treatment fractions
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may be too great and therefore cannot be corrected by translation alone.
At least, for these patients, the dose is not delivered on the predicted im-
ages as expected. For patients whose anatomy is more similar between the
two fractions, translation can improve the results. On the other hand, us-
ing the T2-training method, the results are correct on the CS-TT2 sequence,
even though the anatomy differs significantly from the planning anatomy,
but are not as good as those obtained on the CS-T2 sequence.
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Fig. 6.19 DVH comparing accumulated dose on the ground-truth CS-TT2 (line)
and on the predicted CS-TT2 (dashed line). The results for the predicted CS-TT2
using inter-training are shown at the top, those for the predicted CS-TT2 using T2-
training at the bottom. The results on the target are displayed in color, while results
on organs at risk are displayed in shades of grey.
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The visual analysis of the DVH can be supplemented by the results in
figure 6.20. It shows the difference between the accumulated dose on the
CS-TT2 sequence composed of ground-truth images and the accumulated
dose on predicted images using both training strategies, for eight metrics
assessing the quality of the treatment plan. This figure shows similar re-
sults between both training methods for the four metrics D2%, D5%, D50%
and Dmean, with differences between −5 Gy and 5 Gy for the majority of
patients. However, the increase observed on CS-T2 using inter-training is
limited on this sequence CS-TT2, particularly for the both metrics D95%
and D98%. Furthermore, the T2-training method no longer offsets this in-
crease on CS-TT2 and also shows an increase for the four metrics Dmin,
D95%, D98% and Dmax.
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Fig. 6.20 Box plots of the difference between the dose accumulated on the mid-
pCT after simulation of dose delivery on CS-TT2 made of GT 3DCTs and the dose
accumulated on the same midpCT after simulation of dose delivery on CS-TT2
composed of P 3DCTs, for different quality metrics of a treatment plan evaluated
on the target (GTV). GTV-Dx% stands for the dose delivered to at least x% of the
GTV mask. Each dot represents one of the ten patients studied. Inter-training re-
sults are shown in brown on the left, T2-training results in grey on the right.

Figure 6.21 shows the percentage of volume of the five different regions
of interest with a dose difference of less than 1 Gy and of less than 5 Gy.
This figure shows the results of the two training methods inter-training
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and T2-training. In the case of the simulation on CS-TT2, the GTV remains
the organ with the lowest percentage of volume having a small difference,
whereas the four other organs show large percentages. This figure shows
that the T2-training method gives better results. However, it is important
to note that the percentages obtained using inter-training are generally 1%
to 5% higher than those obtained on CS-T2, while, using T2-training, the
percentages are generally 1% to 10% lower than those obtained on CS-T2.
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Fig. 6.21 Box plots of the percentage of the volume of a region of interest whose
difference between the two accumulated doses is less than a certain threshold. The
two doses studied are the doses accumulated on the associated midpCT after sim-
ulation of dose delivery on CS-TT2 made of GT 3DCTs and on CS-TT2 composed
of P 3DCTs. ROI-∆DxGy stands for the difference between both accumulated doses
below a certain threshold of x Gy computed over the mask of the ROI. Each dot rep-
resents one of the ten patients studied. Inter-training results are shown in brown
on the left, T2-training results in grey on the right.

Figure 6.22 compares the DVH results obtained on the continuous se-
quence CS-TT3 composed of ground-truth or predicted images. The top
figure shows the results when the predicted images are created using inter-
training and the bottom shows the results when the predicted images are
obtained with T2-training. This figure shows that the two training meth-
ods give relatively comparable results. For both training methods and the
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four patients shown, the simulation of the treatment plan delivery on the
predicted images gives similar results to the simulation of the treatment
plan delivery on the ground-truth images.
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Fig. 6.22 DVH comparing accumulated dose on the ground-truth CS-TT3 (line)
and on the predicted CS-TT3 (dashed line). The results for the predicted CS-TT3
using inter-training are shown at the top, those for the predicted CS-TT3 using T2-
training at the bottom. The results on the target are displayed in color, while results
on organs at risk are displayed in shades of grey.

The visual analysis of the DVH can be supplemented by the results in
figure 6.23. It shows the difference between the accumulated dose on the
CS-TT3 sequence composed of ground-truth images and the accumulated
dose on predicted images using both training strategies, for eight metrics
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assessing the quality of the treatment plan. This figure highlights that for
the eight metrics assessing the quality of the treatment plan, the two train-
ing methods manage to limit the difference between the two doses to 5 Gy
and both give similar results for these different metrics.
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Fig. 6.23 Box plots of the difference between the dose accumulated on the mid-
pCT after simulation of dose delivery on CS-TT3 made of GT 3DCTs and the dose
accumulated on the same midpCT after simulation of dose delivery on CS-TT3
composed of P 3DCTs, for different quality metrics of a treatment plan evaluated
on the target (GTV). GTV-Dx% stands for the dose delivered to at least x% of the
GTV mask. Each dot represents one of the ten patients studied. Inter-training re-
sults are shown in brown on the left, T2-training results in grey on the right.

Figure 6.24 shows the percentage of volume of the five different regions
of interest with a dose difference of less than 1 Gy and of less than 5 Gy.
This figure shows the results of the two training methods inter-training
and T2-training. In the case of the simulation on CS-TT3, the two training
methods give comparable results. The GTV is the organ with the lowest
percentage of volume showing a small dose difference. Between 10% and
80% of the volume of the GTV has a difference smaller than 1 Gy, and
between 20% and 99% has a difference smaller than 5 Gy. According to
these two metrics, the two methods give very different results depending
on the patient. For the other organs, the two methods give almost identical
results, with more than 60% of each volume having a dose difference below
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1 Gy, and more than 80% having a dose difference below 5 Gy.
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Fig. 6.24 Box plots of the percentage of the volume of a region of interest whose
difference between the two accumulated doses is less than a certain threshold. The
two doses studied are the doses accumulated on the associated midpCT after sim-
ulation of dose delivery on CS-TT3 made of GT 3DCTs and on CS-TT3 composed
of P 3DCTs. ROI-∆DxGy stands for the difference between both accumulated doses
below a certain threshold of x Gy computed over the mask of the ROI. Each dot rep-
resents one of the ten patients studied. Inter-training results are shown in brown
on the left, T2-training results in grey on the right.

6.4 Discussion

This work assesses the validity of the 3DCT images reconstructed using
our methodology for dose calculation. The different training strategies
developed and explored in chapter 4 and chapter 5 were evaluated. The
results of this chapter 6 are consistent with the results of the previous two
chapters. The dose is delivered more accurately on the 3DCT images recon-
structed with the basic-training, SAT-training and MAT-training methods
than with inter-training or T2-training. This is the result of a better quality
of the reconstruction and a smaller error between predicted and ground-
truth 3DCT images.
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The simulation of the treatment plan delivery on the continuous se-
quences associated with the basic-training, SAT-training and MAT-training
methods shows very similar results for the sequences composed of pre-
dicted 3DCT images compared with the sequences composed of ground-
truth 3DCT images. However, these three training methods have one ma-
jor limitation. They are specific to a single moment of image acquisition
and do not consider anatomical deformations between treatment fractions.
This means that for each treatment fraction, these methods require the ac-
quisition of a daily image and the training of the neural network on the
basis of this new image. Unfortunately, these methods require more than
eight hours of training, which makes them unsuitable for an on-line use.
Instead, these different training strategies could be used to reconstruct the
3DCT image associated with the projection radiography of the previous
treatment fraction in order to optimise a new treatment plan aimed at re-
ducing inter-fraction motion occurring on a weekly or daily time scale, or
to retrospectively accumulate the dose delivered at each treatment fraction.

The introduction of inter-fraction motion in the training set, as is the
case with the inter-training and T2-training methods, degrades the results.
Indeed, the simulation of the treatment plan delivery on the continuous se-
quence CS-Tp shows a notable variation between the dose delivered on the
sequence composed of ground-truth 3DCT images and the sequence com-
posed of 3DCT images predicted by inter-training. However, these two
training strategies have the considerable advantage of not being specific
to a single moment of image acquisition. It was then possible to simulate
the treatment plan delivery on two other treatment fractions. The treat-
ment plan delivery on both continuous sequences made of deformations
of the T2 midpCT differs according to the training method and continu-
ous sequence studied. Using the inter-training method, patient positioning
and internal anatomical variations have a significant impact on the results.
Correct patient positioning improves the quality of the reconstructed im-
age and therefore the dose delivered to the patient. However, when the
internal anatomical variations between the two fractions are too great, the
method is less able to reconstruct the image, resulting in a deterioration
in the dose delivered. Significant errors between the two doses are debat-
able here, as it is preferable to re-optimise the treatment plan in this type
of situation. Despite these major errors, this training strategy allows to
highlight the need for replanning. But, it is preferable not to use the 3DCT
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image reconstructed with this method for replanning because it does not
really reflect the daily anatomy. On the other hand, using the T2-training
method, it is more appropriate to leave the patient in the position in which
the T2 image was acquired in order to deliver the treatment plan. The re-
sults show that the fine-tuning step on the daily image makes the method-
ology robust to internal anatomical variations as the dose delivered using
the predicted images is similar to the one delivered on the ground-truth
images. This training strategy can then be used at the beginning of the
treatment fraction to obtain the 3DCT image on which to optimise a new
treatment plan, or to accumulate the dose delivered at each treatment frac-
tion. Lastly, the treatment plan delivery on the continuous sequence made
of deformations of the T3 midpCT is equivalent for both training strate-
gies. Nevertheless, T2-training seems more reliable, which suggests that a
gap of one week between two image acquisitions helps to reduce errors.
A future work would be to study the optimal time interval between the
acquisition of two images in order to provide a method that is robust to
internal anatomical variations, while reducing the imaging dose.

Although this work gives a clear idea of the potential of the 3DCT im-
ages for dose calculation, it has certain limitations.

One limitation concerns the continuous sequences. The respiratory sig-
nals used to generate these sequences are regular signals, i.e. slightly noisy
sine whose amplitude is close to that observed in the planning 4DCT. A
future step of this work would be to perform the same treatment plan de-
livery simulations on continuous sequences generated from irregular sig-
nals in order to study the performance of the method in the face of sud-
den events, such as coughing or apnea, or to perform the simulations on
continuous sequences generated from breathing signals of greater ampli-
tudes and frequencies in order to study the performance of the method in
the face of changes in breathing patterns that may occur during periods of
stress. Another limitation of these continuous sequences is that they only
represent one minute of breathing. Each sequence is looped until the entire
treatment plan is delivered. Future work would therefore involve using a
longer respiratory signal to ensure that all possible anatomical variations
are considered.

Another major limitation concerns the treatment plans. The treatment
plans are optimised with RayStation, but these are not treatment plans that
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could be administered to patients in the clinic. In fact, due to time con-
straints, the treatment plans have not been completely optimised. This
means that not all treatment plans meet all clinical objectives. One next
step of this work would be to complete the optimisation of the various
treatment plans in order to satisfy all clinical objectives and to simulate the
delivery of these new plans again. The overall trend of the results should
undoubtedly be the same, but this remains to be verified.

6.5 Summary

This chapter studies the performance of the patient-specific 3DCT recon-
struction methodology proposed in this thesis for dose calculation and
treatment plan delivery. The first part of the chapter studies the impact
on the estimate of the proton energy required, while the second part of the
chapter studies the impact on the treatment plan delivery if the simulation
is based on images predicted by the neural network. Each part of the chap-
ter studies the performance of the different training strategies described in
the previous two chapters of this work.
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Radiation therapy uses ionising radiations such as x-rays, gamma rays,
electrons or protons to destroy cancer cells. Conventional radiotherapy has
evolved significantly over the years. Adaptive radiotherapy is a modern
method that continuously adapts treatment plans to account for anatomi-
cal changes, thereby improving the precision of radiation delivery, optimis-
ing therapeutic outcomes, and minimising damage to healthy tissues. Pro-
ton therapy offers a clear dosimetric advantage over conventional radio-
therapy, which reduces the risk of side effects. However, proton therapy is
highly vulnerable to uncertainties and lags behind photon therapy in sev-
eral respects. For example, improving imaging and image-guided proton
therapy could reduce some of these uncertainties. It is therefore essential
to improve the quality of the treatment to fully exploit the physical advan-
tages of protons and allow widespread adoption. This thesis focused on a
major challenge for image-guided adaptive proton therapy, namely getting
a 3DCT image from a projection radiography in real-time in order to obtain
a three-dimensional visualisation of the anatomy of the patient and simu-
late the delivery of the treatment plan. Although this challenge applies to
both photon therapy and proton therapy, this thesis focuses exclusively on
proton therapy in order to counter its lag behind photon therapy.
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The first contribution of this thesis was to develop a data augmenta-
tion tool to overcome the lack of medical data available to train and val-
idate neural networks. The sensitive and confidential nature of medical
data, and the problems involved in retrieving it from hospitals make it dif-
ficult to share. In addition, diverse principles have been defined to limit
the imaging dose delivered to the patient, which prevents the acquisition
of a large number of images. The data augmentation tool developed in
this work can be used to simulate an infinite number of new 3DCT im-
ages. The tool can be used to modify the input 3DCT image with inter-
fractional anatomical deformations such as tumor shrinkage, organ base-
line shift, and image translation or rotation. Then, it is possible to create
intra-fractional anatomical deformations by giving the tool a phase and an
amplitude.

The second contribution of this thesis was to design a methodology for
reconstructing a 3DCT image from a projection radiography. We decided
to use a convolutional neural network and to train it independently for
each patient using 3DCT images created with the data augmentation tool
and digitally reconstructed radiographs generated from these images. We
tested different training strategies and different scenarios, and evaluated
the performance of our methods using image quality metrics. The results
show that our methods achieve performance similar to that obtained with
other current methods from the scientific literature that use other 3D imag-
ing modalities, such as MRI or CBCT, but our methods outperform current
methods that also use a projection radiography to reconstruct the 3DCT
image. Table 7.1 summarises the results of some methods presented in
the scientific literature, depending on the imaging modality used to gen-
erate the 3DCT image. This table should be treated with caution, as the
results given are the results presented in the various contributions. This
means that the data used and the network parameters have not been ho-
mogenised. It therefore does not represent a true comparison of the perfor-
mance of the different methods, but it highlights general trends.

The third contribution of this work was to evaluate the quality of the
3DCT images reconstructed with our methodology in terms of dose ac-
curacy. For example, we simulated the delivery of a treatment plan op-
timised with RayStation on continuous sequences made of ground-truth
images and continuous sequences made of images predicted by the neural
network. This analysis was carried out for the different training strategies
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and different scenarios on which the methodology was tested. In particu-
lar, this enabled to simulate the delivery of the treatment plan on different
treatment fractions. The difference between the accumulated doses was
evaluated using DVH metrics and the results show that this difference is
minimal.

Table 7.1 Quantitative analysis of the synthetic 3DCT image quality for our
methods and other methods from the literature.

Method
MAE
[HU]

PSNR
[dB]

SSIM
[/]

M
R

I-
to

-C
T

GAN [PAW+23] 80.36 ± 28.8 24.71 ± 2.97 0.800 ± 0.05
cGAN [PAW+23] 68.28 ± 19.5 26.02 ± 2.78 0.852 ± 0.04
IDDPM [PAW+23] 55.12 ± 9.41 28.71 ± 2.11 0.878 ± 0.04

C
B

C
T-

to
-C

T

pix2pix [GXW+21] 53.40 ± 9.34 26.80 ± 2.73 0.881 ± 0.07
cycleGAN [GXW+21] 47.10 ± 6.45 28.30 ± 2.04 0.932 ± 0.04
AGGAN [GXW+21] 43.50 ± 6.69 29.50 ± 2.36 0.937 ± 0.04

X
R

ay
s-

to
-C

T

NeRP [Caf23] / 22.50 ± 3.20 0.290 ± 0.07
X2CT-GAN [Caf23] / 20.70 ± 2.40 0.570 ± 0.07
X2Vision [Caf23] / 23.20 ± 2.80 0.790 ± 0.09
basic-training 21.21 ± 1.53 40.71 ± 0.64 0.968 ± 0.01
SAT-training 22.42 ± 1.13 37.90 ± 0.43 0.963 ± 0.01
MAT-training 13.51 ± 1.10 42.99 ± 0.80 0.984 ± 0.01
inter-training on TSTp 75.91 ± 1.09 28.09 ± 0.16 0.780 ± 0.00
inter-training on TST2 133.8 ± 1.98 21.75 ± 0.11 0.620 ± 0.00
T2-training on TST2 47.85 ± 1.20 33.00 ± 0.26 0.840 ± 0.00
inter-training on TSTT2 101.3 ± 1.11 25.92 ± 0.09 0.670 ± 0.00
T2-training on TSTT2 88.09 ± 0.94 27.62 ± 0.11 0.720 ± 0.00
inter-training on TSTT3 123.3 ± 2.11 24.60 ± 0.13 0.640 ± 0.00
T2-training on TSTT3 97.03 ± 2.05 25.56 ± 0.10 0.680 ± 0.00

Although the results of our methods are promising, significant research
is still needed to demonstrate the real capabilities of the whole methodol-
ogy. This research should focus in particular on its main limitations.

A major limitation of this work comes from the data used. To deal with
the lack of data, we use synthetic 3DCT images generated from deforma-
tions of the midpCT using a data augmentation tool. These data are there-
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fore not acquired in the treatment room and may represent anatomical sit-
uations that do not actually occur. Digitally reconstructed radiographs are
generated from these 3DCT images. The reality gap between a x-rays pro-
jection and the DRR generated with the TomoPy algorithm must be evalu-
ated to guarantee the accuracy of the results obtained in this thesis. In this
context, Chatzopoulos et al in [Cha22] demonstrate that it is wise to in-
clude a low-level of random noise in the training images in order to reduce
the impact of fluoroscopic imaging noise on performance. Furthermore,
it would be interesting to use the methodology developed in this thesis
on DRRs generated with other algorithms. For example, Dhont et al. in
[DVM+20] propose a novel DRR rendering framework that uses a combi-
nation of raytracing and deep learning based image-to-image translation
to render highly realistic DRRs. Also, the midpCT used to create all these
images comes from a 4DCT acquired with a scanner available at Cliniques
universitaires Saint-Luc. This means that the network, trained and val-
idated only on these images, works correctly on this type of data but is
probably not robust for images acquired with other equipment.

Another limitation of this work comes from the number of patients
used. This work uses a database composed of 15 patients, but they are
never all studied in the different training strategies and different scenar-
ios. Expanding the dataset and using a larger cohort of patients would
make it possible to obtain even more reliable statistics. Furthermore, the
patient-specific feature of the method, which is one of its strengths as it
allows only a small sample of data from a single patient to be used, can
also be seen as a limitation. In practice, this means that the neural network
has to be trained several times, and therefore requires a lot of time and
work. An interesting future work would be to evaluate the contribution of
a multi-patients pre-training step to train the neural network for the global
task of 3DCT reconstruction from a x-rays projection, and then to perfect
the network only for the patient with a shorter training period requiring
less data. In addition, it is possible that this pre-training step removes the
need for patient-specificity if it is performed with a sufficient amount of
data.

These two limitations together lead to a third limitation. Two types of
tumors were studied in this work: liver tumors and lung tumors. This is a
limitation of this work as the replicability of the method to other sites has
not been investigated. It would be interesting to evaluate its performance
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on other tumor positions and sizes.

Finally, the lack of explainability of neural networks compared with
human expertise is a major obstacle to their adoption in practice. Radia-
tion therapy and dose delivery are highly specialised subjects, and many
patients and physicians may be reticent about using artificial intelligence
in the treatment workflow. Not everyone is prepared to let an algorithm
decide their own destiny. In recent years, various studies have been con-
ducted to understand why and how a convolutional neural network makes
a prediction. These methods are based on the Grad-CAM method that
gives an activation heatmap highlighting which part of the input image
the CNN focuses on when it makes the final prediction. For an in-depth
explanation, the reader can refer to [SCD+17].

Despite these limitations, which are important to bear in mind, our
method has the considerable advantage of being based solely on equip-
ment already available in the treatment rooms and compatible with both
proton therapy and conventional radiotherapy. This major advantage sug-
gests a number of clinical applications for our method.

Off-line adaptive radiation therapy uses a 3DCT image acquired dur-
ing the previous fraction to plan the next treatment session. The adaptive
planning process is then carried out between two consecutive treatment
fractions. In this case, the method developed in this thesis can be used for
two purposes. The first one is to use the 3DCT image generated by our
method as the new planning 3DCT to optimise the treatment plan. This
has the advantage of eliminating the need to acquire a 3DCT image at ev-
ery treatment fraction and using only the projection radiography acquired
to position the patient, thus reducing the imaging dose delivered to the
patient. The second one involves calculating and accumulating the dose
delivered during each treatment fraction. This accumulated dose can then
be considered for the future treatment planning.

Online daily adaptive radiation therapy requires a 3DCT image ac-
quired at the start of the treatment fraction to optimise the new treatment
plan. In this case, the method developed in this thesis can be used to pro-
vide the 3DCT image required for the optimisation of the new treatment
plan, with the patient in the treatment position, and to retrospectively ac-
cumulate the dose delivered during this treatment fraction. In addition,
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our method presents several advantages compared to in-room CT. The pro-
posed method does not require a CT scanner, which saves a lot of space in
the treatment room and saves the time of 3DCT image acquisition. Al-
though it is foreseen that the extra imaging dose might become insignif-
icant compared to the expected reduction in the integral dose achieved
with online daily adaptive radiation therapy, our method reduces the ex-
tra imaging dose as it only requires the acquisition of a single x-rays pro-
jection.

Online real-time adaptive radiation therapy has been developed to ac-
count for intra-fraction motion during treatment delivery. In this case, the
method developed in this thesis can be used to monitor internal motions
of the patient. Using a real-time segmentation algorithm, it is possible to
track the tumor in real-time on the 3DCT image and then, to adapt the de-
livery of the treatment plan by shifting the treatment source, shifting the
beam or adjusting the patient position. A future vision for the use of our
method in on-line real-time adaptive radiation therapy is to use the 3DCT
image to verify the dose delivered during the treatment fraction, in order
to adapt or stop the delivery of the treatment plan. This technique requires
not only the acquisition of x-rays projections at optimal times during the
treatment fraction to correctly track the motion, but also the simulation of
the dose delivery in real-time using instantaneous dose calculation algo-
rithms.

All these applications are promising and full of hope for improving can-
cer treatment, which unfortunately affects more and more people around
us.
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