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Nothing is impossible, the word itself says “I’m possible”! — Audrey Hepburn



Abstract

The rapid development of artificial intelligence (AI) in medicine promises to trans-
form diagnosis, treatment, research, and medical education. AI-powered sys-
tems have demonstrated remarkable capabilities in image recognition, natural
language processing, and predictive analytics, improving the accuracy and effi-
ciency of various applications. However, deploying AI models in medicine faces
significant challenges, including the need for more model transparency and high-
quality annotated datasets .

Explainability: To address the “black-box” nature of AI models, we devel-
oped explainability methods to improve transparency and trust in AI diagnoses.
We made Poly-CAM, a method for generating high-resolution class activation
maps (CAMs) for Convolutional Neural Networks (CNNs) without relying on
gradient backpropagation. We demonstrated Poly-CAM on bone radiographs to
identify potential biases in model predictions. Additionally, we introduced Trans-
former Input Sampling (TIS), enhancing explainability for vision transformers by
sampling tokens.

Self-Supervision and Vision-Language Models: Given the scarcity of anno-
tated medical data, we decided to explore self-supervised learning techniques to
reduce the need for manual annotation while maintaining robust model perfor-
mance. Due to the lack of available datasets, we also created a dataset from raw
bone radiographic images and French reports at Cliniques Universitaires Saint
Luc, which enabled us to explore self-supervised multimodal techniques. We
demonstrated the effectiveness of self-supervised techniques and pseudo-labels
for enhancing downstream tasks. Additionally, we preprocessed the dataset to
produce training data for future vision-language models aimed at automating
medical report generation and visual question answering (VQA).

Overall, this research contributes to a more transparent and reliable health-
care system where AI supports medical professionals, and opens doors for future
research.

| i





Foreword

While the segmentation of science into disciplines is practically useful (it would
be unnecessary for every doctor to be trained in astrophysics), I envision the bor-
ders between disciplines more like the Schengen Area than the Korean Demili-
tarized Zone. Therefore, I was not content with just a "Tourist visa" in artificial
intelligence; I aimed for full residency. Consequently, this thesis is likely atypical
for a medical doctor, more technical than medical, but I hope it is no less valuable.

My initial interest was in predicting pseudarthrosis, but limited data avail-
ability led me to pivot. Instead, I created a novel dataset of bone X-ray images
and their corresponding French-language radiology reports, which I then used to
develop and apply self-supervised learning (SSL) techniques. In doing so, I laid
the groundwork for future research, creating the resource I had initially wished I
had at the beginning of my thesis.

The objective of this thesis evolved multiple times, reflecting both my growing
knowledge and rapid advancements in the field. The fast-paced developments
often made the work feel like it was built on quicksand. For instance, the state
of the art in self-supervision shifted from auto-encoders to Generative adversar-
ial networks, and then to contrastive methods. If I were to start over, I would
approach it very differently, knowing that in another six months, the landscape
would shift again. Even large language models like GPT4 or Llama 3.1, which
are now unavoidable, seemed almost impossible at the time.

This journey has underscored the importance of adaptability and the continu-
ous integration of emerging technologies. Each pivot in focus not only challenged
my understanding but also deepened my appreciation for the fluidity and inter-
connectedness of modern scientific disciplines. Through this dynamic process,
I aimed to create a thesis that reduce the gap between technical innovation and
medical application, providing a foundation for future explorations at this inter-
disciplinary frontier.

| iii





Remerciements

Alors que ce travail touche à sa fin, il est pour moi temps d’exprimer toute la
gratitude que je ressens envers ceux qui m’ont accompagné et soutenu dans cette
aventure.

Je précise que la liste des personnes mentionnées ici n’est pas exhaustive, et
ma plus grande crainte est d’en oublier. Si c’est le cas, je leur adresse mes remer-
ciements les plus sincères.

Mes premiers remerciements vont naturellement à mes deux (co-)promoteurs,
les Professeurs Christophe De Vleeschouwer et Olivier Cornu. J’ai rencontré
Olivier Cornu il y a plus de dix ans, lors de mes premiers pas en tant qu’étudiant-
chercheur au laboratoire CARS (Computer Assisted and Robotic Surgery). Depuis,
il a toujours pris le temps de répondre à mes questions et de partager ses conseils,
malgré un emploi du temps chargé. Il a soutenu mon projet de thèse, a joué un
rôle clé dans mon parcours et a toujours cru en moi, même lorsque moi-même
doutais. Pour cela, et pour bien d’autres raisons, un immense merci.

Ce travail aurait été bien différent sans Christophe. Je suis arrivé dans son
bureau en tant que médecin, déterminé à m’investir dans un projet touchant au
domaine des ingénieurs, une ambition bien utopiste. Pourtant, il ne s’est pas
découragé : il m’a non seulement donné une chance, mais aussi accueilli dans
son équipe, avec la même attention que pour n’importe quel autre doctorant en
ingénierie. Nos discussions du lundi matin, où j’arrivais avec mes problèmes du
moment et repartais avec des idées nouvelles, m’ont énormément appris. Je n’ai
pas assez de mots pour lui exprimer ma gratitude, alors je dirai simplement :
merci.

Je tiens également à remercier les membres de mon jury. Tout d’abord, mes
membres externes, le Docteur Maxime Taquet et le Professeur Jean-Philippe Thi-
ran, qui, malgré l’absence de lien préalable, ont accepté de consacrer un temps
précieux à mon travail et m’ont fait des retours des plus pertinents. Un immense
merci également au Professeur Frédéric Lecouvet, pour sa bienveillance en tant
que président du jury, et au Professeur Thomas Kirchgesner, dont l’expertise ra-
diologique était indispensable pour une thèse portant sur l’analyse de radiogra-
phies. Merci également au Professeur Benoit Macq, toujours débordant de pro-

| v



⋆ |

jets et d’un optimisme communicatif, au Professeur John Lee, pour nos échanges
aussi plaisants que variés, et au Professeur Thomas Schubert, avec qui je partage
de nombreux centres d’intérêt, de l’impression 3D aux canons rayés. Merci à tous
pour votre contribution et votre soutien.

Mes remerciements s’étendent également à mes collègues, car j’ai eu la chance
d’avoir de nombreux collègues formidables, ayant travaillé dans divers labora-
toires et avec des personnes exceptionnelles.

À Louvain-la-Neuve, où j’ai passé le plus de temps, mes collègues du labora-
toire ELEN m’ont toujours accueilli avec bienveillance, même avec mes excentric-
ités : Antoine 1 et 2 (ou l’inverse), Anne-Sophie, Niels, Victor, Gabriel, Abolfalz,
Baptiste, Vladimir, Benoît, Gilles, Dany, Eleonor, Simon, Sarah, Clément, Isabelle,
Patricia et tant d’autres. Vous avez illuminé mes journées, et j’ai été heureux de
partager ce parcours avec vous. Pardonnez mes blagues douteuses, même si je
n’en regrette pas une seule. . . sauf peut-être celle où j’ai failli avoir des ennuis
avec la boîte d’Antoine pour un prétendu "piratage" (en y repensant, je ne re-
grette pas vraiment non plus, mais sur le moment, je n’en menais pas large !).

Au département INGI, merci aussi à Amaury pour toutes nos discussions sur
le NLP, ainsi qu’à son promoteur, le Professeur Sébastien Jodoigne.

Merci également à l’équipe du CISM, qui a rendu possibles mes expériences
en gérant le cluster que j’ai souvent mis à contribution.

Sur Woluwe, je tiens à remercier tout particulièrement Julie et Robin, qui ont
été comme une sœur et un frère d’armes dans ce parcours. J’ai été très heureux
de collaborer sur vos thèses et de partager du temps précieux avec vous, autant
professionnellement qu’en dehors. Et merci d’avoir soutenu vos thèses avant
moi, ce qui m’a permis de profiter de toutes vos astuces pratiques pour préparer
ma propre défense.

Dans les laboratoires NMSK et CHEX, je remercie Nicolas, "Pong", Julien,
Hervé, Jean-Louis, Louise, Alexandre, Tim, Alain, Randy, Marine, Christine, Philippe,
Lise, Daela, Julia, Gwen, Pascale, et bien d’autres que j’ai peut-être moins croisés
mais qui ont tout autant compté.

Merci à Sedick à l’UMons, avec qui j’ai eu beaucoup de plaisir à collaborer,
notamment sur les projets TRAIL et TIS, ainsi qu’à Otman, qui a rejoint l’équipe.

Je remercie également Olivier Cartiaux, mon promoteur de mémoire, qui a
accompagné mes premiers pas dans le monde de la recherche.

Un merci spécial à l’équipe de Sciense, avec qui de beaux projets sont encore
en gestation : Sami, Alexandre, Salim, Mejdi.

Ce travail n’aurait pas été possible sans le soutien financier du Fonds de la
Recherche Scientifique de Belgique (F.R.S.-FNRS) et du FRIA (Fonds pour la for-
mation à la Recherche dans l’Industrie et dans l’Agriculture). Merci sincèrement
pour votre confiance.

Enfin, je tiens à remercier ceux qui m’ont soutenu au-delà du cadre profes-
sionnel.

vi |



| ⋆

À mes amis, qui m’ont aidé à garder un équilibre : les soirées, les vacances
partagées, et ces moments où je pouvais vous confier mes craintes, mes doutes et
mes joies. Merci d’être toujours présents dans ma vie.

À ma famille élargie, un immense merci pour votre soutien, et un clin d’œil
spécial à Ghislain, dont les conseils et l’expérience de thèse m’ont aidé à prendre
la décision de me lancer dans cette aventure.

Peut-être plus atypique, mais je souhaite également remercier mes deux chiens,
Rox et Rocky. Leur présence a été d’un réconfort inestimable, et c’est avec eux,
couchés à mes côtés, que j’écris ces derniers mots.

Pour conclure, il est de coutume dans les publications scientifiques de re-
connaître le premier auteur comme principal contributeur et le dernier auteur
comme superviseur principal. Dans cet esprit, la dernière personne que je tiens
à remercier est Sarah, ma fiancée, qui partage ma vie depuis plus de dix ans. Si
une personne mérite tout particulièrement ma gratitude, c’est bien toi. Pour ton
soutien, tes encouragements, et pour m’avoir poussé lorsque cela était nécessaire.
Merci, ma chérie, je t’aime.

| vii





Author’s publication list

Peer-Reviewed Publications

Englebert, A., Cornu, O. & De Vleeschouwer, C. (2022, August). Backward re-
cursive class activation map refinement for high resolution saliency map. In 2022
26th International Conference on Pattern Recognition (ICPR) (pp. 2444-2450). IEEE.

Englebert, A., Stassin, S., Nanfack, G., Mahmoudi, S. A., Siebert, X., Cornu, O. &
De Vleeschouwer, C. (2023). Explaining through Transformer Input Sampling. In
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop
(pp. 806-815).

Stassin, S., Englebert, A., Albert, J., Nanfack, G., Versbraegen, N., Frénay, B., Peif-
fer G., Doh M., Riche N. & De Vleeschouwer, C. (2023). An Experimental Inves-
tigation into the Evaluation of Explainability Methods for Computer Vision. In
Proceedings of Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases Workshop (ECML PKDD).

Englebert, A., Cornu, O. & De Vleeschouwer, C. (2024). Poly-CAM: High resolu-
tion class activation map for convolutional neural networks. Machine Vision and
Applications, 35(4), 89.

Manon, J., Englebert, A. (Joint first authors), Evrard, R., Schubert, T. & Cornu, O.
(2024). FixThePig: a custom 3D printed femoral intramedullary nailing for pre-
clinical research applications. Frontiers in Bioengineering and Biotechnology, 12,
1478676.

Correspondence

Niset, A., El Hadwe, S., Englebert, A., Barrit, S. (2024). AI in emergency medicine:
Building literacy or castles in the air. The American Journal of Emergency Medicine.

| ix



⋆ |

Manuscripts Under Review

Englebert, A., Collin A.-S., Cornu, O. & De Vleeschouwer, C. (2024). Using vision-
language self-supervision to turn raw local hospital data into image analysis
models: a bone radiographs case study. Under review

Englebert, A., De Vleeschouwer, C., Lecouvet, F. & Cornu, O. (2024). Bone radio-
graphy analysis and Deep learning biases. Under review

Englebert, A., Evrard, R. (Joint first authors), Cornu, O. & Schubert, T. (2024). 3D
Printed Design of a Custom Bioreactor for Large Bone Graft Recellularization.
Under review

Lambricht, N., Englebert, A., Nguyen, A. P., Pitance, L., Fisette, P., Detrembleur,
C. (2024). Accuracy and clothing effects in smartphone-based 2D joint kinematics
assessment during running using OpenPifPaf. Under review

x |



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The AI revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 AI and medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Self-Supervision and Vision-Language . . . . . . . . . . . . . . . . . 5

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Deep learning background . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 What is deep learning? . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Backpropagation and Loss Functions . . . . . . . . . . . . . . . . . . 12

2.4.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Particular Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . . 17
2.5.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I Explainable AI (XAI):
Dealing with the black box

3 Fundamentals of XAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

| xi



⋆ | Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Explainability in Computer Vision . . . . . . . . . . . . . . . . . . . 26
3.2.2 Explainability of Vision Transformers . . . . . . . . . . . . . . . . . 27

3.3 Evaluation Metrics for XAI . . . . . . . . . . . . . . . . . . . . . . . . 28

4 PolyCAM for CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Overview of PolyCAM . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Methodology and Implementation . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Activation Maps in previous work . . . . . . . . . . . . . . . . . . . 34
4.2.3 Our proposed Poly-CAM . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Input perturbation for weight definition . . . . . . . . . . . . . . . . 36
4.2.5 Channel perturbation for weight definition . . . . . . . . . . . . . . . 37

4.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Experimental set-up and saliency map baselines . . . . . . . . . . . . 39
4.3.2 Visual qualitative assessment . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Faithfulness Quantitative Assessment . . . . . . . . . . . . . . . . . 43
4.3.4 Sanity check and robustness . . . . . . . . . . . . . . . . . . . . . . 45
4.3.5 Ablation study on LNorm . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.6 Speed of execution . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Transformer Input Sampling (TIS) . . . . . . . . . . . . . . . . . . . . . 53
5.1 Overview of TIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Methodology and Implementation . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3 Mask Generation and Token Sampling . . . . . . . . . . . . . . . . . 55
5.2.4 Mask Scoring and Saliency Map . . . . . . . . . . . . . . . . . . . . 56

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Transformer Models . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 Assessment Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Qualitative Assessment . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Quantitative Assessment . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Practical use case of PolyCAM: Bone radiography analysis and Deep
learning biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xii |



Contents | ⋆

6.2.1 Dataset and model training . . . . . . . . . . . . . . . . . . . . . . 65
6.2.2 Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.3 Bias correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.4 Performances Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.1 Classical dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.2 Modified dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

II Vision Language Self-Supervion:
Using existing reports as supervision

7 Fundamentals of Self-Supervised Learning and Vision-language . . . . 73
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Unimodal self-supervision . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Multimodal self-supervision . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Medical applications of self-supervised Vision-Language Pretraining . 79

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2.2 Vision-Language Pretraining . . . . . . . . . . . . . . . . . . . . . . 84
8.2.3 Downstream tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2.4 Pseudo-label training . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3.1 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3.2 Vision-language pretraining on Bone X-Rays and French Reports . . . 90
8.3.3 Evaluation on downstream tasks . . . . . . . . . . . . . . . . . . . . 91
8.3.4 Pseudo-label training . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3.5 Latent space exploration . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Vision-language model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 104
9.2.2 Model Training and Fine-Tuning . . . . . . . . . . . . . . . . . . . . 104

9.3 Preliminary assessments . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

| xiii



⋆ | Contents

Conclusion
10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.1.1 Addressing Research Questions . . . . . . . . . . . . . . . . . . . . 111
10.1.2 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 112

10.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
10.3 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xiv |



List of Figures

1.1 Test scores of AI systems on various capabilities relative to human
performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Life expectancy at different ages, Belgium . . . . . . . . . . . . . . . . 3

2.1 From Artificial Intelligence to Deep Learning: nomenclature. . . . . . . 8
2.2 Logical neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Multilayer perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Sigmoid function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Tanh function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 ReLU function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Leaky ReLU function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Sobel Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 CAM vs Poly-CAM on bone XRay . . . . . . . . . . . . . . . . . . . . 32
4.2 Poly-CAM process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Layer refinement of PolyCAM . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Class specificity for Poly-CAM . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Visual comparison of XAI methods on CNNs . . . . . . . . . . . . . . . 42
4.6 Correct stone tile classifications explanations . . . . . . . . . . . . . . . 43
4.7 False positive images of stone tiles . . . . . . . . . . . . . . . . . . . . 44
4.8 Cascading randomization of VGG16 . . . . . . . . . . . . . . . . . . . . 46
4.9 Poly-CAM with and without LNorm . . . . . . . . . . . . . . . . . . . 47

5.1 Illustration of the Transformer Input Sampling (TIS) process . . . . . . 54
5.2 Visual comparison of XAI methods on ViT . . . . . . . . . . . . . . . . 59
5.3 Class mismatch between target and predicted class . . . . . . . . . . . 60
5.4 TIS vs Integrated Gradients pixel masking . . . . . . . . . . . . . . . . 63

6.1 Illustration of the cropping operation . . . . . . . . . . . . . . . . . . . 67
6.2 Illustration of the most frequently identified elements in saliency maps 68
6.3 Debiased Model Attention and Reduced Bias . . . . . . . . . . . . . . 69

| xv



⋆ | List of Figures

6.4 Failure cases and incomplete debiasing . . . . . . . . . . . . . . . . . . 70

7.1 Contrastive loss for image self-supervision . . . . . . . . . . . . . . . . 75
7.2 Masked Image Modeling Process. . . . . . . . . . . . . . . . . . . . . . 76
7.3 Vision-Language Pretraining with contrastive learning . . . . . . . . . . 77
7.4 Vision-language model architecture for caption generation . . . . . . . 78

8.1 Vision-language pretraining and fine-tuning using EHR data. . . . . . . 83
8.2 Vision-Language Pretraining (VLP) on X-Ray and French Report. . . . 85
8.3 Classification performance of vision encoder trained on varying numbers

of images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4 t-SNE of MURA embeddings for ImageNet and VLP models. . . . . . 102

9.1 Process from pseudonymized reports to structured reports and VQA . 105
9.2 Vision-Language Model Analysis of Wrist Radiograph - Correct fracture 107
9.3 Vision-Language Model Analysis of Knee Arthroplasty - Incorrect In-

terpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.4 Vision-Language Model Analysis of Hand Radiograph - Incorrect fracture109

xvi |



1
Introduction

1.1 The AI revolution

The Fourth Industrial Revolution, as coined by Klaus Schwab, founder and ex-
ecutive chairman of the World Economic Forum, is transforming many aspects
of our lives, including healthcare [138]. This revolution, characterized by the
widespread adoption of artificial intelligence (AI), 3D printing, and the internet
of things, is happening at an unprecedented pace, the fastest change humanity
has ever seen. At the heart of this revolution is AI, which has been dubbed the
"new electricity" by Andrew Ng [115]. Just as electricity transformed industries
and revolutionized the way we live and work, AI is poised to have a similar im-
pact on many sectors, including healthcare. According to a 2023 report by the
McKinsey Global Institute, about 30% of hours currently worked across the US
economy could be automated [39].

As illustrated in Figure 1.1, AI systems have already demonstrated impres-
sive capabilities relative to human performance in various areas, highlighting the
potential for significant impact across industries.

Healthcare is no exception, and the impact of AI is also likely to be significant,
building on the progress of previous industrial revolutions. It’s probably impos-
sible to draw up an exhaustive list of the practical impacts that technology has
already had, and continues to have, on human life. But a simple figure that can
represent the importance of this impact is life expectancy, which has increased for
almost two decades as never before in history, as shown in figure 1.2. Today, AI
is driving the next wave of innovation in healthcare. Just as modern surgery is
unimaginable without respirators, monitoring systems, electric scalpels, and ad-
vanced lighting, future healthcare will be transformed by AI-powered technolo-
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1 | Introduction

Fig. 1.1 Test scores of AI systems on various capabilities rela-
tive to human performance. source: https://ourworldindata.org/grapher/
test-scores-ai-capabilities-relative-human-performance.

gies that improve patient outcomes, streamline clinical workflows, and enhance
the overall quality of care.

1.2 AI and medicine

The rapid development of artificial intelligence (AI) in medicine has already af-
fected the healthcare landscape [98], promising to transform not only diagno-
sis [54, 133, 140] and treatment [175, 151], but also in research [72], drug dis-
covery [13, 16] and medical education [74]. In recent years, AI-powered sys-
tems have demonstrated remarkable capabilities in image recognition, natural
language processing and predictive analytics, improving the accuracy and effi-
ciency of a variety of applications. However, the development and deployment
of AI models in medicine is often hampered by significant challenges, including
the need for high-quality annotated datasets and in-depth domain expertise.

Unlike the development of AI in other fields, which has been facilitated by
the availability of large, publicly accessible datasets such as ImageNet [136] or
COCO [94] for image analysis, or web crawl based datasets [169] for large lan-
guage models, medical data is often sparse, fragmented and protected by confi-
dentiality rules [109, 154]. This disparity highlights the need to find innovative
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Fig. 1.2 Life expectancy at different ages, Belgium. source: https://ourworldindata.
org/grapher/life-expectancy-at-different-ages?country=~BEL.

solutions to the unique challenges of AI development in medicine.
Furthermore, the increasing complexity of AI models has raised concerns about

their transparency and interpretability [3, 111], making it difficult for healthcare
professionals to understand the decision-making processes behind AI-driven di-
agnoses and recommendations [160, 66]. In contrast, classical statistical models,
such as linear regression and decision trees, have traditionally been more trans-
parent and interpretable, allowing healthcare professionals to understand the re-
lationships between variables and the underlying assumptions of the models.
Nevertheless, these classical models are unable to perform the full range of tasks
that more advanced models can, and cannot learn the complex relationships that
these newer models can grasp.

Uncertainty estimation techniques, such as test-time augmentation, Monte
Carlo (MC) dropout, and ensembling, have been proposed to address this is-
sue. Test-time augmentation applies transformations to the input data, helping
reflect prediction robustness [164]. MC dropout approximates Bayesian inference
by dropping units at inference, generating multiple predictions to estimate un-
certainty [46]. Ensemble methods produce multiple model outputs, using the
variance among them as an uncertainty measure [78]. These techniques provide
healthcare professionals with a sense of confidence in model outputs, which can
improve decision-making. However, they fall short of fully addressing the need
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for interpretability.
A lack of interpretability can hinder the identification and correction of biases

in AI models [79]. This is particularly problematic in healthcare, where biased or
poorly understood models can lead to serious consequences, such as misdiagno-
sis or delayed treatment. Explainable AI (XAI) approaches are thus essential for
bridging these gaps, enabling clinicians to better understand AI-driven insights
and fostering a collaborative relationship between human expertise and machine
intelligence. By enhancing interpretability alongside uncertainty estimation, AI
can support more accurate, transparent, and efficient medical decision-making.

In the context of bone radiography, the challenges are even more pronounced.
The availability of large annotated datasets for bone radiography is limited com-
pared to other radiographic modalities, such as chest X-rays [127, 1, 62, 70]. This
data scarcity hinders the development of accurate and robust AI models.

In addition, developing AI models capable of accurately analyzing reports
written in languages other than English is a major challenge [30]. While most AI
models are trained on English datasets, they may not generalize well to other lan-
guages, including French, which is the language used in hospitals in the Walloon
region, where this thesis takes place. The development of AI models capable of
accurately analyzing reports written in French is essential for widespread adop-
tion in French-speaking countries.

To address these challenges, there is a growing need for innovative solutions
that can facilitate the development and deployment of transparent, trustworthy,
and robust AI models in medicine. This thesis aims to contribute to this effort by
exploring two critical axes: explainability and vison-language self-supervision.
By developing novel explainability methods and adapting self-supervision tech-
niques to bone radiographic data coupled with French reports, this research seeks
to improve the transparency and robustness of AI models in medicine, ultimately
reducing the gap between technical innovation and medical application.

1.3 Research objectives

This thesis is guided by two main lines of research, which attempt to address the
constraints of the medical world.

1.3.1 Explainability

Explainability refers to the ability of an artificial intelligence (AI) model to make
its decision-making process transparent and understandable to humans, who
may be patients, doctors or the people developing the AI.

This research line aims to improve the transparency and trustworthiness of
AI models in medicine, enabling a medical doctor to understand and adapt to
the evidence-based decisions made by these models.
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Research Question #1

How can we develop explainability methods that provide insights into the
decision-making processes of artificial intelligence models ?

To answer this question, a literature review is first carried out in Chapter 3,
followed by the exploration and development of the Poly-CAM method for con-
volutional neural networks in Chapter 4 and the Transformer Input Sampling
method in Chapter 5.

Research Question #2

Can explainable methods effectively uncover and help to mitigate biases
in artificial intelligence model training ?

This question is explored in Chapter 6 by applying the Poly-CAM methods
developed in this thesis to a public bone radiograph dataset to gain more insight
into the inner workings of the models and explore the existing biases and poten-
tial spurious correlations acquired during training.

1.3.2 Self-Supervision and Vision-Language

This research line seeks to explore the potential of self-supervision in addressing
the scarcity of annotated medical data, particularly in the context of bone radio-
graphic examinations and French radiologic reports.

Research Question #3

Can self-supervision techniques be adapted to utilize the inherent super-
vision within bone radiographic data and associated French reports ?

A literature review is first performed in Chapter 7, followed by the exploration
in Chapter 8 of vision-language pretraining using various text encoders more
adapted to French than classical models used in the literature for English-based
medical reports.

Research Question #4

How can these methods be optimized to reduce the need for costly anno-
tations in medical imaging ?

Chapter 8 not only explores vision-language pretraining, but also investi-
gates the automatic generation of pseudo-labels to reduce the need for anno-
tations. Chapter 9 further develops this idea by generating standardized re-
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port and question-answer pairs, laying the groundwork for training a vision-
language model for reports generation and visual question answering on bone
radiographs.

1.4 Outline

This thesis is organized as follows. Chapter 2 introduces the deep learning back-
ground. The remaining of the work is split in two main parts for explainability
and vision-language self-supervised learning.

The first part focuses on explainability and is composed of the following chap-
ters: Chapter 3, which introduces the fundamentals of explainable AI, Chap-
ter 4, which proposes our Poly-CAM method to explain convolutional neural
networks, Chapter 5, which provides the Transformer Input Sampling method
for transformer models, and Chapter 6, which explores the usage of explainable
methods on bone radiographs.

The second part explores self-supervised vision-language learning, with Chap-
ter 7 introducing the fundamentals, Chapter 8 explaining the construction of our
dataset and the vision-language pretraining, while Chapter 9 introduces prelimi-
nary explorations to continue this work on report generation and visual question
answering.

Research Question #4

How can these methods be optimized to reduce the need for costly anno-
tations in medical imaging ?

Chapter 8 not only explores vision-language pretraining, but also investi-
gates the automatic generation of pseudo-labels to reduce the need for anno-
tations. Chapter 9 further develops this idea by generating standardized re-
port and question-answer pairs, laying the groundwork for training a vision-
language model for reports generation and visual question answering on bone
radiographs.

1.5 Outline

Finally, Chapter 10 concludes this work.
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2
Deep learning background

This section will introduce the general concepts necessary for a thorough under-
standing of the remaining manuscript. Concepts specific to explainable AI and
self-supervision will be introduced in their respective chapters.

2.1 What is deep learning?

This thesis will make extensive use of deep learning, so it is essential to start by
introducing what deep learning is. We can begin by stating that deep learning
is a machine learning method. And that machine learning is a type of artificial
intelligence, so deep learning is also a type of artificial intelligence, as shown in
Figure 2.1. As the reader may feel confused, let’s describe this further.

Definition 2.1. Artificial Intelligence
The science of making computers do things that human beings can do1.

This definition is quite vague and does not explain how this is achieved or
what the "things" are that human beings can do. Artificial intelligence therefore
encompasses a very broad field: a system based on predefined rules can easily
be implemented in a form that qualifies as artificial intelligence. The Logic Theo-
rist [114], a program designed in 1956 to mimic human problem-solving, is often
considered the first artificial intelligence program. A more concrete example for
the reader could be the old GPS navigation system left lying in your basement,
since even the first rule-based GPS navigation system introduced by Honda in
1990 [55] is already an example of artificial intelligence, although far from the
kind of AI used in this thesis.

1https://dictionary.cambridge.org/dictionary/english-french/artificial-intelligence
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Fig. 2.1 From Artificial Intelligence to Deep Learning: nomenclature.

Definition 2.2. Machine Learning
The process of computers improving their own ability to carry out tasks by ana-
lyzing new data, without a human needing to give instructions in the form of a
program, or the study of creating and using computer systems that can do this.2

This takes us a step further, as we don’t need to manually plan rules for all
the possible cases the software would encounter, but rather design an algorithm
to learn these rules based on data. These methods are often based on statistics,
and a classical linear regression can be seen as a kind of simple machine learn-
ing algorithm. Many methods have been developed, such as Bayesian inference,
Support-vector machines (SVMs), Random forest, k-NN, and of course, neural
networks. We will not develop all available machine learning methods, other-
wise, this work would require a painkiller prescription. We will instead focus
on neural networks, and more specifically on deep neural networks, which will
bring us to our next definition.

Definition 2.3. Deep Learning
a type of machine learning (= the process of computers improving their own abil-
ity to perform tasks by analyzing new data) that uses many layers of data pro-
cessing.3

Many methods have been developed in the field of machine learning, and
deep learning is one of them. It is often used for tasks such as image recogni-
tion, speech recognition, and natural language processing. Deep learning typi-
cally involves the use of neural networks, which are composed of multiple layers

2https://dictionary.cambridge.org/dictionary/english/machine-learning
3https://dictionary.cambridge.org/dictionary/english/deep-learning
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Fig. 2.2 Logical neuron.

of interconnected nodes (neurons) that process and transmit information. These
neural networks are designed to recognize patterns in data and learn from it, al-
lowing them to perform complex tasks such as image recognition and natural
language processing.

The term "deep" in deep learning refers to the use of multiple layers in these
neural networks. The more layers, the deeper the network. This allows the net-
work to learn more abstract and sophisticated representations of the data, en-
abling it to perform tasks such as image recognition, natural language processing,
and speech recognition.

The following section will delve deeper into the workings of neural networks
and deep learning, providing the reader with a more detailed understanding of
how these complex systems operate.

2.2 Neural Networks

Neural networks are a fundamental component of deep learning. They are com-
posed of multiple layers of interconnected nodes, or neurons, that process and
transmit information. Each neuron receives one or more inputs, performs a com-
putation on those inputs, and then sends the output to other neurons. This pro-
cess allows the network to learn and represent complex patterns in data.

The concept of neural networks dates back to the 1940s, when Warren Mc-
Culloch and Walter Pitts introduced the first artificial neural network model, lay-
ing the foundation for the development of neural networks [106]. Building on
this work, the perceptron, a single-layer neural network, was first introduced by
Frank Rosenblatt in the 1950s [134], illustrated in Figure 2.2. However, it was not
until the 1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald Williams
that the concept of multi-layer perceptron (MLP), illustrated in Figure 2.3, and
the backpropagation algorithm for training them were introduced [135]. This
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Fig. 2.3 Multilayer perceptron.

breakthrough enabled the training of deeper and more complex neural networks,
which has since become a cornerstone of modern deep learning techniques.

Over the years, the development of neural networks has been marked by
significant milestones, including the introduction of convolutional neural net-
works (CNNs) [45], recurrent neural networks (RNNs) [58] and Long short-term
memory networks (LSTMs) [56], and lately, transformers [161], among many oth-
ers architectures. These advancements, combined with the availability of large
amounts of data and advances in computing power, have enabled the training
of increasingly complex and powerful neural networks. Today, neural networks
are a fundamental component of many state-of-the-art machine learning systems,
with applications in computer vision, natural language processing, speech recog-
nition, and more.

The next sections will dive into the details of deep learning models. To allow
less technical readers to skip the details while still grasping the big picture, a sim-
plified summary will be provided in boxes called In Simple Terms at the beginning
of each section.

2.3 Activation Functions

In Simple Terms

An activation function in deep learning is like a decision-making tool for
a neuron that helps it decide whether to "fire" or stay inactive, similar to
how our brain decides to act on certain signals. It enables the model to
learn and understand complex patterns by adding non-linearity, making
it capable of solving difficult tasks.

Activation functions introduce non-linearity into the model, allowing it to
learn more complex patterns. Without activation functions, a neural network,
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regardless of the number of layers, would behave like a single-layer perceptron.

For illustration purpose, some common activation functions include:

Sigmoid Maps any real-valued number into the range (0, 1), useful for binary
classification tasks.

σ(x) =
1

1 + e−x

4 2 0 2 40.0

0.2

0.4

0.6

0.8

1.0

Fig. 2.4 Sigmoid function.

Tanh Maps any real-valued number into the range (-1, 1). It is a scaled version
of the sigmoid function.

tanh(x) =
2

1 + e−2x − 1
4 2 0 2 4

1.0

0.5

0.0

0.5

1.0

Fig. 2.5 Tanh function.

ReLU (Rectified Linear Unit) [44] One of the most commonly used activation
functions in deep learning because of its effectiveness and simplicity, defined as:
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ReLU(x) = max(0, x)

4 2 0 2 40

1

2

3

4

5

Fig. 2.6 ReLU function.

Leaky ReLU [103] An extension of ReLU that allows a small gradient when the
input is negative:

Leaky ReLU(x) =

{
x if x > 0

αx otherwise

where α is a small constant. 4 2 0 2 40

1

2

3

4

5

Fig. 2.7 Leaky ReLU function.

Other variations exist, such as GELU [53], ELU [28] or SILU [38], but develop-
ing them in greater detail would be of little benefit to the rest of this work.

2.4 Backpropagation and Loss Functions

In this section, we will explore the mechanisms that enable neural networks to
learn from data: backpropagation and loss functions. Understanding these con-
cepts is essential to grasp how deep learning models are trained and optimized.
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2.4.1 Backpropagation

In Simple Terms

Backpropagation is a learning process where a deep learning model ad-
justs its internal settings (weights) to improve its accuracy. It works by
comparing the model’s prediction to the actual answer, calculating the dif-
ference (error) using the loss function, and then tweaking the settings to
reduce this error for better future predictions through an optimization al-
gorithm.

Backpropagation, short for "backward propagation of errors", is a fundamen-
tal algorithm for training neural networks [135]. Backpropagation efficiently com-
putes gradients that are used to update the model parameters during the training
process.

The primary goal of backpropagation is to minimize a loss function, which
quantifies the difference between the network’s predictions and the actual target
values. The algorithm works by propagating the error backward through the
layers of the network, allowing the computation of gradients for each parameter.

The backpropagation algorithm consists of four main steps:

1. Forward Pass: Compute the output of the network for a given input by
passing the input through each layer. This involves applying weights, bi-
ases, and activation functions at each layer to obtain the final output.

2. Compute Loss: Evaluate the loss function by comparing the predicted out-
put with the actual target value. This step quantifies how well the network
is performing.

3. Backward Pass: Compute the gradient of the loss function with respect to
each parameter in the network. This is done by applying the chain rule
of calculus, which involves calculating the partial derivatives of the loss
function with respect to each parameter and propagating these gradients
backward through the network.

4. Update Parameters: Adjust the network parameters (weights and biases)
using the computed gradients and an optimization algorithm (e.g., stochas-
tic gradient descent). The goal is to reduce the loss function by moving the
parameters in the direction that decreases the loss.

The backpropagation algorithm iteratively repeats these steps for multiple
epochs (passes through the entire training dataset) until the loss converges to
a minimum value.

To make it simple, backpropagation fine-tunes the model’s parameters step
by step, helping it learn from mistakes and make more accurate predictions.
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2.4.2 Loss Functions

In Simple Terms

The loss function measures how far off the model’s predictions are from
the correct answers. It’s like a scorecard that tells the model how well it’s
doing, and the goal is to minimize this score by making more accurate
predictions over time.

A loss function, also known as a cost function or objective function, measures
the difference between the predicted output of a neural network and the true
target values. The choice of loss function depends on the type of task, such as re-
gression or classification. A crucial requirement for a loss function in deep learn-
ing is that it be differentiable. This differentiability makes it possible to calculate
the gradients essential for the backpropagation algorithm to update the model
parameters. Here are some common loss functions used in deep learning:

Mean Squared Error (MSE) / L2 Loss Used primarily for regression tasks, the
MSE loss function measures the average squared difference between predicted
and actual values.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2

where yi is the true value, ŷi is the predicted value, and N is the number of sam-
ples.

Mean Absolute Error (MAE) / L1 Loss Another common loss function for re-
gression tasks, MAE measures the average absolute difference between predicted
and actual values.

MAE =
1
N

N

∑
i=1

|yi − ŷi|

where yi is the true value, ŷi is the predicted value, and N is the number of sam-
ples.

Cross-Entropy Loss Commonly used for classification tasks, cross-entropy loss
measures the difference between the true probability distribution and the pre-
dicted probability distribution. This concept is rooted in information theory [142].

Cross-Entropy Loss = − 1
N

N

∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

where yi is the true binary label and ŷi is the predicted probability.
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There are many other loss functions, each tailored to specific use cases and
data types. Choosing the appropriate loss function is crucial for the successful
training of a neural network, as it directly impacts the optimization process and
the model’s ability to generalize to new data.

In other words, loss functions help the neural network understand how close
its predictions are to the actual results. By measuring the error, the loss function
guide the model to adjust and improve its predictions.

2.4.3 Optimization Algorithms

In Simple Terms

An optimization algorithm is a method that helps the model find the best
settings (weights) to reduce errors and make more accurate predictions. It
works by repeatedly adjusting the model’s settings in small steps, guided
by the loss function, until the model performs as well as possible.

Optimization algorithms are methods used to adjust the weights and biases
in neural networks to minimize the loss function. Here, we’ll cover some of the
most commonly used optimization techniques in a straightforward manner.

Stochastic Gradient Descent (SGD) [132] SGD is a simple and widely used
method. It updates network parameters step by step for each training example:

θ = θ − η · ∂L
∂θ

Here, θ represents the model parameters (weights and biases), η is the learn-
ing rate (a small number that controls how big the steps are), and L is the loss
function. Instead of computing the gradient over the entire dataset, SGD updates
the parameters after looking at each individual data point, making it faster but
potentially noisier.

Mini-Batch Gradient Descent Mini-Batch Gradient Descent is a middle ground
between using all data points (batch gradient descent) and one data point at a
time (SGD). It splits the dataset into small batches and updates the parameters
using each batch. This approach balances speed and noise. However, in the lit-
erature, the term SGD is often used interchangeably with mini-batch gradient
descent.

Momentum [121] Momentum improves SGD by keeping track of past updates
and adding a fraction of the previous update to the current update. This helps
accelerate learning and dampen oscillations:
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vt = γvt−1 + η · ∂L
∂θ

θ = θ − vt

Where vt is the momentum term at time t, and γ is a parameter that controls
how much of the previous update is used.

Adaptive Learning Rate Methods These methods adjust the learning rate for
each parameter independently, helping the network to converge faster and more
efficiently.

1. AdaGrad [37]: This method adjusts the learning rate for each parameter
based on how frequently it is updated. Parameters that are updated often
get smaller learning rates.

θ = θ − η√
Gt + ϵ

· ∂L
∂θ

Where Gt is the sum of the squares of past gradients, and ϵ is a small num-
ber to prevent division by zero.

2. RMSprop [155]: Similar to AdaGrad, but it uses a moving average of squared
gradients to adjust the learning rate, making adjustments more stable over
time.

Gt = βGt−1 + (1 − β)

(
∂L
∂θ

)2

θ = θ − η√
Gt + ϵ

· ∂L
∂θ

Where β controls the moving average.

3. Adam (Adaptive Moment Estimation) [73]: Adam combines the benefits
of both AdaGrad and Momentum. It calculates adaptive learning rates for
each parameter and takes an average of past gradients and squared gradi-
ents.

mt = β1mt−1 + (1 − β1)
∂L
∂θ

vt = β2vt−1 + (1 − β2)

(
∂L
∂θ

)2

m̂t =
mt

1 − βt
1

, v̂t =
vt

1 − βt
2
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θ = θ − η√
v̂t + ϵ

· m̂t

Where β1 and β2 control the decay rates of the moving averages.

LION (Layer-wise Optimizer for Neural Networks) [26] LION is a recent
optimizer that builds on the Evolved Sign Momentum (ESM) approach, de-
signed to be efficient and scalable for large models. Instead of relying di-
rectly on gradient values, LION updates parameters using the sign of the
moving average of past gradients, which helps reduce noise and stabilize
updates. This method is particularly useful for deep learning tasks where
traditional gradient-based methods might struggle with oscillations or in-
stability.

mt = β1mt−1 + (1 − β1) ·
∂L
∂θ

θt = θt−1 − η · sign(mt)

Where mt is the moving average of past gradients, η is the learning rate,
and β1 controls the momentum. The use of sign(mt) allows the optimizer
to make consistent updates while mitigating oscillations, contributing to
faster and more stable convergence.

Choosing the right optimization algorithm is essential for efficiently training
a neural network. The right optimizer can help the network learn faster and
perform better on new, unseen data.

2.5 Particular Architectures

Several specialized neural network architectures have been developed to tackle
specific types of data and tasks more effectively. In this section, we’ll cover some
of the architectures that are relevant to this thesis.

2.5.1 Convolutional Neural Networks (CNNs)

In Simple Terms

A Convolutional Neural Network (CNN) is a type of deep learning model
designed to process and recognize patterns in visual data, like images. It
uses special layers called convolutional layers to automatically detect im-
portant features, such as edges or textures, and gradually builds up a more
complex understanding of the image, allowing it to accurately classify or
identify objects within it.
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Fig. 2.8 Illustration of a convolution with a Sobel filter.

Convolutional Neural Networks (CNNs) are a class of deep neural networks
particularly well-suited for processing grid-like data, such as images [82]. They
are designed to automatically and adaptively learn spatial hierarchies of features
from input images through the use of convolutional layers, pooling layers, and
fully connected layers.

Convolutional Layers

The convolutional layer is the core building block of a CNN. It consists of a set
of learnable filters (or kernels) that are applied across the width and height of the
input image to produce feature maps. Each filter can be thought of as a sliding
window that captures specific local patterns in the input image.

To illustrate this, consider the Sobel filter, a well-known edge detection filter
used in image processing [150]. The Sobel filter applies convolution to compute
the gradient of the image intensity, helping to identify edges. The following ma-
trices show the Sobel filters for detecting horizontal and vertical edges:

Horizontal Sobel Filter =

−1 0 1
−2 0 2
−1 0 1



Vertical Sobel Filter =

−1 −2 −1
0 0 0
1 2 1


When these filters are convolved with an input image, they highlight the

edges by emphasizing regions of high spatial gradient. A convolutional layer
inside of a CNN works similarly, except that the matrices are learnable parame-
ters.
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Pooling Layers

Pooling layers are used to reduce the spatial dimensions (width and height) of
the feature maps, thereby decreasing the number of parameters and computation
in the network. Common types of pooling include max pooling and average
pooling.

• Max Pooling: Selects the maximum value within a specified window (e.g.,
2x2) and discards the rest.

• Average Pooling: Computes the average value within a specified window.

Fully Connected Layers

Fully connected layers are typically used towards the end of the network to per-
form high-level reasoning. These layers connect every neuron in one layer to
every neuron in the next layer, enabling the network to combine features learned
at different levels. A fully connected layer is only a synonym for a single layer
perceptron.

Residual Networks (ResNets)

Residual Networks, or ResNets, introduced by He et al. [51], address the prob-
lem of vanishing gradients in deep networks by introducing skip connections (or
shortcuts). These connections allow the gradient to bypass one or more layers,
making it easier to train very deep networks.

The core idea of ResNets is to learn residual functions with reference to the
layer inputs. Instead of learning the mapping H(x), the network learns the resid-
ual mapping F(x) = H(x) − x. Thus, the original mapping becomes H(x) =

F(x) + x.

A block in a ResNet looks like this:

Output = F(x) + x

Where F(x) represents the residual mapping learned by the convolutional lay-
ers. Skip connections help mitigate the vanishing gradient problem and enable
the training of much deeper networks.
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2.5.2 Transformers

In Simple Terms

A Transformer is a deep learning model that excels at understanding and
processing sequences of data, like sentences. Its key feature is attention,
which allows it to focus on the most important parts of the input, even
if they’re far apart, helping the model capture context and meaning more
accurately. This makes Transformers particularly powerful for tasks like
language translation and text generation. Transformers have also been
adapted for image processing, where they use attention mechanisms to
analyze different parts of an image and understand complex visual pat-
terns.

Transformers, introduced by Vaswani et al. [161], have revolutionized natural
language processing (NLP) and have been increasingly applied to other domains
such as computer vision. Transformers rely on the mechanism of self-attention to
model relationships between elements in a sequence, regardless of their distance
from each other.

Self-Attention Mechanism
Consider an orthopedic report describing a patient’s condition, such as "The pa-
tient has a fracture of the distal radius". To accurately interpret the condition, a
model should understand how terms such as "fracture" and "distal radius" relate
to each other. The self-attention mechanism allows each word or token in an in-
put sequence to focus on other relevant words, capturing dependencies across
the sequence.

The self-attention mechanism allows each element of an input sequence to
focus on other elements to compute a representation. The attention function can
be described as mapping a query and a set of key-value pairs to an output, where
the query, keys, values, and output are all vectors.

The attention score for a query q and a key k is computed using the dot prod-
uct, followed by a softmax function:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V

Where Q, K, and V are the query, key, and value matrices, respectively, and dk
is the dimensionality of the keys.

Transformer Architecture
Transformers as originally described consist of an encoder-decoder structure, where
both the encoder and decoder are composed of multiple layers of self-attention
and feedforward neural networks. The encoder processes the input sequence,
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while the decoder generates the output sequence, one token at a time. In this
context, a token is a basic unit of text, such as a word, character, or subword.
Although initially designed for text, transformers have been generalized to other
modalities, where tokens represent other input units, like image patches.

Key components of the transformer architecture include:

• Multi-Head Attention: Allows the model to jointly attend to information
from different representation subspaces.

• Feedforward Neural Networks: Applied to each position separately and
identically. This is a two layer MLP.

• Positional Encoding: Adds information about the position of the tokens in
the sequence, since the model does not inherently capture this information.

Encoder and Decoder
The encoder and decoder in a Transformer have distinct roles and mechanisms.
One key difference is in the attention mechanisms they employ.

Encoder: Bidirectional Attention The encoder utilizes bidirectional self-attention,
meaning each token in the input sequence can attend to all other tokens, both be-
fore and after it. This allows the model to understand the context of each token
in relation to the entire sequence.

Decoder: Unidirectional Attention The decoder, on the other hand, uses unidi-
rectional (or causal) self-attention, where each token can only attend to previous
tokens and not future ones. This is essential for autoregressive generation tasks,
where predicting the next token should not be influenced by future tokens.

Additionally, the decoder has an extra cross-attention mechanism that allows
it to attend to the encoder’s output. This way, the decoder can generate the output
sequence conditioned on the entire input sequence, enhancing the quality of the
generated output.

Encoder-Only vs. Decoder-Only Architectures
In practice, many models use only the encoder or the decoder for specific tasks.

Encoder-Only Models (e.g., BERT) Bidirectional Encoder Representations from
Transformers (BERT), introduced by Devlin et al. [35], is an example of an encoder-
only architecture. BERT uses bidirectional self-attention to understand the con-
text of each word in a sequence, making it particularly effective for tasks that
require a deep understanding of text, such as question answering and language
inference.
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Decoder-Only Models (e.g., GPT) Generative Pre-trained Transformer (GPT),
introduced by Radford et al. [125], is an example of a decoder-only architecture.
GPT uses unidirectional self-attention, making it suitable for tasks that involve
generating text, such as language modeling and text completion. The model gen-
erates text one token at a time, with each token attending only to the previous
tokens.

2.6 Summary

In this chapter, we have provided an introduction to deep learning and its key
components, including neural networks, activation functions, backpropagation,
loss functions, optimization algorithms, and specialized architectures such as
CNNs and transformers. These foundational concepts are crucial for understand-
ing the methodologies and techniques employed in the remainder of this thesis.
We skipped many aspects that have practical importance, but may not be relevant
for the understanding of this work such as normalization or regularization.
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3
Fundamentals of XAI

This Section will introduce concepts about explainable AI (XAI) required for a
good understanding of the following chapters.

3.1 Introduction

Recent advances in deep learning create an increasing need for explanation tech-
niques to evaluate the prediction quality of neural networks. This is especially
required in areas where a black box model is not desired for ethical or security
reasons such as deciding the treatment for patient or for granting a loan. In con-
trast to techniques based on handcrafted features, deep neural networks (DNN)
often lack transparency and explainability [3].

The need to assess a posteriori the behavior of a model has led to the de-
velopment of explainable artificial intelligence (XAI) methods, ranging from the
development of more transparent model architectures [167] to post-hoc methods
(explanation, by example of black-box methods).

Saliency maps visualization has been adopted as a convenient approach to
identify the image parts justifying the network prediction. Those saliency maps
are helpful to check that the predictions of a model are grounded on relevant
information. It is indeed known that training convergence alone does not exclude
undesired DNN predictions [79], typically because the model has learned inputs
/ outputs correlations that do not correspond to the desired meaningful causal
relationship.

Alternatively, when sufficiently accurate, the localization of salient features
could convince a user that a model works properly, i.e. uses relevant cues, or
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could even help in identifying the parts of a signal that are relevant to solve a
problem, e.g. help a medical doctor in identifying the X-ray visual cues that per-
mit to anticipate the evolution of a treatment.

3.2 Related work

This section provides an overview of some common techniques used to interpret
the decisions made by complex deep learning models, focusing specifically on
post-hoc explanation methods applied to image data.

3.2.1 Explainability in Computer Vision

Gradient-based Methods
Among the first applicable methods to explain the results of deep learning models
are the gradient-based methods. They explain the prediction of a model by per-
forming a backpropagation from an output neuron (e.g., a probability obtained
for a class) to the input features [145]. This produces a so-called saliency map
(or heatmap), providing a visualization of the most important areas for the de-
cision of black-box models. Smilkov et al. introduced SmoothGrad [149] which
augments the input samples by adding Gaussian noise and calculates the aver-
age of the results obtained for each backpropagation. Integrated Gradient [153]
also computes a backpropagation average, but the result is obtained based on an
interpolation between the input image and a baseline image (e.g., black, white
image).

Perturbation-based Methods
Next to the gradient-based methods, there are also methods that perturb the in-
put image and analyze how the model response is impacted by those changes
to produce an explanation (e.g., Occlusion [179] using square patches). Those
methods are known as perturbation-based methods. RISE [120] is a popular
state-of-the-art method that produces small random binary masks, then scaled
to the size of the image. The saliency map is computed as a linear combination of
the perturbation masks and their relevance, measured based on their impact on
the prediction.

CAM-based Methods
Class Activation Maps-based methods (CAM) use the activations of the convo-
lutional layers of CNNs to obtain saliency maps. The most popular method
is Grad-CAM [139], which weights the activation maps by the gradients ob-
tained by a backpropagation from the output neuron of a class to the last con-
volutional layer. Variants aggregate the results for the input image at different
scales (CAMERAS [64]), combine the activations from different layers ( Layer-
CAM [69]), or predict the relevance of masks created from the activations (Score-
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CAM [166]). Since Vision Transformers employ the CLS token for downstream
tasks, this limits the application of CAM methods that require the use of the em-
beddings before a last pooling layer.

3.2.2 Explainability of Vision Transformers

The key difference between a CNN and a transformer lies in the calculation of
attention scores for the latter. These attention scores help in representing the re-
lationships that can appear between each of the input features. Consequently,
the first attempts to explain the results of visual attention were based on saliency
maps created through an upsampling of these attention scores [174]. However,
the use of attention scores as explainability scores has limitations [2, 123, 141]
(e.g., attention takes into account the query and key, but not the value of the
self-attention) that have led to specific explanation methods designed for trans-
formers.

Attention-based Methods

The first one came from Abnar [2] who presented the Attention Rollout method.
This approach computes the saliency map based on a combination (e.g., average;
minimum; maximum) of the attention heads with the addition of an identity ma-
trix representative of the residual connections, arguing that the latter is crucial to
compute the propagation of information through the layers. However, this ap-
proach does not take into account the fact that some attention heads may be more
relevant than others.

Gradient-based Methods

Partial LRP [162] solved this issue by calculating the importance of each atten-
tion head using the Layer-wise Relevance Propagation (LRP) [12] method. Chefer
1 [23] argued that the use of LRP by [162] provided only partial information on
the attention head relevance as the LRP rule was not utilized back to the input
features. The Chefer method computes class-specific explanations by incorpo-
rating relevance (LRP) and gradient information with specific rules designed to
handle the skip connections. Chefer 2 [22] provided a generic solution that can
be applied to any transformer-based architecture and to more than two modal-
ities. The latter takes into account the residual connections through an identity
matrix to compute attention scores (as proposed by [2]) and utilizes the gradients
to obtain the relevance of each head related with respect to a desired class out-
put. The Transition Attention Maps (TAM) [178] method takes inspiration from
the Markov process. At each block, the representations of the output tokens are
considered as states of the Markov chain, with the state transition matrix being
constructed based on the attention weights. A class discriminative explanation
is achieved by combining the states with the Integrated Gradients obtained with
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respect to the last attention module. Bidirectional Transformers (BT) [24]1 com-
pute an element-wise product between two terms to obtain a saliency map. The
first is Reasoning Feedback. It represents how the classification token (CLS) is
used for a class prediction and is calculated with the Integrated Gradients of a
chosen class back to the last attention map using a black baseline. The second
is Attention Perception. It represents the learning process of the input tokens
through the attention blocks. It approximates the relationship between the input
and output of the attention blocks and derives two attention maps from it: BT-T
(T for token) and BT-H (H for head).

Perturbation-based Methods
ViT-CX [172] adopts a different approach compared to the previous transformer
explainability methods. It no longer relies directly on attention weights and gra-
dients but on masks created from patch embeddings (such as Score-CAM [166]
using feature maps as masks for CNNs) and the relevance of each mask, com-
puted by evaluating the model with a masked image to obtain a saliency map.
This method is similar to perturbation-related methods such as RISE [120] but
provides a smaller number of more focused masks because first they are not ran-
domly generated but use transformer embeddings, and second ViT-CX adds a
clustering of the embeddings to further reduce the number of masks.

3.3 Evaluation Metrics for XAI

To evaluate and compare various XAI methods, we can employ a range of met-
rics. These metrics are categorized into four distinct families based on the aspect
of explainability they assess, as outlined in the Quantus Framework [52]. Addi-
tionally, we include the insertion and deletion metrics from the RISE paper [120],
which will be utilized later in this thesis. The following list provides an overview
of the types of metrics used, though it is not exhaustive.

Faithfulness Metrics
Faithfulness metrics assess how well the explainability method mirrors the model’s
predictive behavior. We consider seven such metrics:

• Faithfulness Correlation [15]: This metric partitions the input image into fea-
ture subsets, replaces them iteratively with a baseline value, and computes
the Pearson correlation between the drop in classification probability for a
target class and the sum of the relevance attributions for each subset.

• Faithfulness Estimation [10]: Similar to Faithfulness Correlation, it calculates
the Pearson correlation between the drop in classification probability and

1The method is not named in the paper but is referred to as “Bidirectional Transformers” in Inter-
pretDL (https://github.com/PaddlePaddle/InterpretDL).

28 |



Evaluation Metrics for XAI | 3.3

feature relevance.

• Monotonicity Metric Arya [11]: Measures the increase in model performance
(classification probability) when features of increasing importance are added.

• Monotonicity Metric Nguyen [116]: Also measures the increase in model per-
formance, but through probability estimation uncertainty.

• Pixel Flipping [12]: Involves flipping pixels with high relevance scores from
the relevance heatmap and observing the evolution of the probability score
for a target class.

• Region Perturbation [137] and Selectivity [108]: Extend the methodology of
Pixel Flipping to areas of an image.

• Insertion [120]: This metric evaluates the effect of incrementally adding the
most relevant features (according to the explainability method) back into
the input and observing the change in model output. The idea is to check
how quickly the model’s confidence recovers as important features are rein-
troduced.

• Deletion [120]: Conversely, this metric measures the impact of progressively
removing the most relevant features from the input and monitoring the de-
crease in the model’s output. This helps to assess the importance of the
features by noting how quickly the model’s confidence drops when key
features are removed.

Robustness Metrics
Robustness metrics evaluate the stability of explanations under small input per-
turbations. We consider three such metrics:

• Local Lipschitz Estimate [9]: Measures the consistency of explanations for
adjacent samples.

• Max-Sensitivity and Avg-Sensitivity [177]: Quantify the maximum and aver-
age change in explanations when inputs are infinitesimally perturbed, us-
ing a Monte Carlo sampling-based approximation.

Complexity Metrics
Complexity metrics assess the conciseness of the explainability method. We con-
sider three such metrics:

• Sparseness [20]: Uses the Gini index to determine if only highly attributed
features are predictive of the model output.

• Complexity [15]: Measures the entropy of the fractional contributions to the
total attribution.
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• Effective Complexity [116]: Evaluates how many attributions exceed a certain
threshold.

Randomization Metrics
Randomization metrics measure the model’s deterioration due to parameter ran-
domization. We consider two such metrics:

• Model Parameter Randomization [4]: Quantifies the similarity between origi-
nal explanations and those from sequential randomization of model layers.

• Random Logit Test [148]: Computes the distance between the original expla-
nation and a random class explanation.

Limitation of metrics
As part of the TRAIL project (TRusted AI Labs), I contributed to a study that in-
vestigated the various existing metrics for evaluating XAI methods. The research
revealed that the choice of hyperparameters associated with these methods has a
substantial impact on their ranking according to these metrics [152]. The resulting
paper was published in the proceedings of ECML PKDD 2023 (European Confer-
ence on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases). The study provided quantitative insights into the correlations and
redundancies among 14 commonly used XAI evaluation metrics on 9 XAI meth-
ods and 3 dummy methods (a randomly generated map, a Sobel filter, and a map
produced from a two-dimensional centered Gaussian) used as sanity checks.

The study highlighted that the faithfulness metrics, the most widely used in
the field, exhibited notable variability in their correlations and rankings depend-
ing on the choice of baseline hyperparameters. For instance, Pixel Flipping and
Monotonicity Arya correlations varied significantly between black, white, ran-
dom, and uniform baselines, underscoring the need for multiple baselines in reli-
able evaluations. Furthermore, the reliability analysis showed inconsistencies in
the rankings assigned by the different faithfulness metrics, as none consistently
assigned the lowest rankings to non-explainable dummy methods across datasets
and models, highlighting the challenges in achieving robust faithfulness assess-
ments.

Ultimately, these findings underscore a key limitation in XAI evaluation: the
lack of a clear, standardized benchmark to determine a method’s quality. Given
the diversity of metrics and their unique focus on different properties (e.g., ro-
bustness vs. complexity), practitioners are left to select metrics based on the as-
pect they prioritize. These findings suggest that future efforts in XAI evaluation
could benefit from exploring more consistent benchmarks, particularly for faith-
fulness, and considering novel metrics or hyperparameter settings to improve
reliability.
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4.1 Overview of PolyCAM

During preliminary explorations of explainable methods, the lack of precision of
the existing methods was a problem to apply to medical images where a more
precise feedback was required.

To propose a solution to this limitation, part of the thesis work was devoted
to the development of a method called Poly-CAM. The goal of this method is to
generate high-resolution class activation maps (CAMs) without relying on gradi-
ent backpropagation, thereby reducing the noisiness of the maps. This method
achieves high-resolution saliency maps by multiplexing the activation maps from
the early layers of a convolutional neural network (CNN) with oversampled class-
specific activation maps computed in the later layers.

By leveraging perturbation-based techniques, Poly-CAM can generate high-
resolution saliency maps without the erratic behavior typically associated with
gradient backpropagation. An illustration of the results with a CAM in compari-
son to our proposed method on bone x-rays is presented in Figure 4.1.

Poly-CAM was initially introduced in a conference paper presented at ICPR
and was further refined and detailed in a subsequent journal paper published in
Machine Vision and Applications.
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Fig. 4.1 Visual comparison of Class Activation Map [182] and PCAM± on a
XRay of a bone fracture from MURA dataset [127], for the pathological class label.
The bottom row is a zoom on the fracture area. Manual annotations for cortical
irregularities and bone fragments (the main signs of the presence of a fracture on
this XRay) are shown in red and green ovals. The Class Activation Map is not pre-
cise, it seems to include the bone fragment and the right cortical irregularity but
due to the low resolution, the highlighted area is very large and go far from the
fracture. In comparison, PCAM± highlight smaller structures and seems to iden-
tify correctly the cortical irregularities and the bone fragment on this image, being
probably a greater help for a physician. The model is a ResNet50 [51] initialized
on ImageNet, trained on the MURA dataset [127] for 50 epochs with Adam opti-
mizer, an initial learning rate of 6e-5 with a cosine Annealing scheduler without
restart, weight decay at 1e-5. Images are resized to 320x320 with random rotation
up to 15° during training.
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4.2 Methodology and Implementation

This section presents the core contribution of our work. Section 4.2.1 introduces
the notations and variables required in the rest of the chapter, while Section 4.2.2
reviews the formal definition of the conventional Class Activation Map method,
which serves as a baseline to our work. Section 4.2.3 then introduces our Poly-
CAM approach, which proposes to generate a high resolution class activation
map by recursively multiplexing the high-resolution activation maps available in
the early layers of the network with upsampled versions of the class-specific acti-
vation maps computed in the last layers of the network. Eventually, Section 4.2.4
introduces three different methods to associate a weight to each layer activation
channel by masking/unveiling the input based on the channel activation. Section
4.2.5 considers a channel switching strategy, meaning that the perturbation is not
performed at the input level but directly inside of the network by zeroing specific
channels.

4.2.1 Notations

Let fΘ(X) denotes the prediction of a CNN with parameters Θ when the image
X is provided as input. In the following, for conciseness and because we are in-
terested in analyzing a trained network (parameters Θ are fixed), we omit Θ, and
just use f (X) to refer to the CNN prediction associated to X. f (X) is a vector,
defined by the output of a softmax. fc(X) denotes the component of f (X) corre-
sponding to the class c.
Al denotes the activation tensor of the lth convolutional layer, 1 ≤ l ≤ L, while
Ak

l refers to the activations of the k-th channel of layer l.
sl denotes the subsampling factor of layer l compared to the input. It corresponds
to the product of stride and pooling factors encountered between the input and
layer l.
↑bi (M, s) defines a bilinear upsampling of a matrix M ∈ Rm×n by a factor s ∈ N.
↓av (M, s) denotes a 2D average pooling on any matrix M ∈ Rm×n with a stride
s ∈ N.
u(M) linearly maps the value range of the elements in matrix M to the unit inter-
val.
⊘ denotes the element-wise division operator, while ⊙ denotes the element-wise
product operator.

LNorm(M, s) is a local normalization operator. It partitions the matrix M ∈
Rm×n in a set of non overlapping blocks of size s × s, with s ∈ N, and divides
each matrix element by the mean value of its corresponding block. Formally,
using the above notations,

LNorm(M, s) = M ⊘ (↑bi (↓av (M, s), s)) . (4.1)
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ReLU denotes the rectified linear unit operator [31].

4.2.2 Activation Maps in previous work

In [182] CAMc
l , the Class Activation Map associated to a target class c and a layer

l is defined as
CAMc

l = ReLU(∑
k

wl,k(c)Ak
l ), (4.2)

with Ak
l denoting the kth activation map of the lth convolutional layer, l ∈ 1, ..., L,

and wl,k(c) being a scalar weighting factor.
Most of the CAM-based methods [139, 21, 149, 166, 165, 112, 128, 86], adopt

this formula. They differ in the way they define the weighting factors, and gen-
erally only consider it for the last convolutional layer (l = L). Alternatively,
Zoom-CAM and Layer-CAM have proposed to combine activation maps from
multiple layers, using gradients as dense weighting factors. Our work also com-
bines multiple activation maps, but does it without back-propagated gradients,
thereby managing to produce high-resolution saliency maps without inheriting
the noise from the gradient. As demonstrated by our results in Section 4.3.2 and
Figure 4.5, this has a huge impact on the visual quality of the saliency maps.

4.2.3 Our proposed Poly-CAM

Our method leverages information from multiple those multiple scale layers to
produce a high resolution Class Activation Map. Similar to other CAM-based
techniques, it builds on the linear combination of activation maps, but combines
them through a backward recursive procedure, as depicted in Figure 4.2.
Letting Pc

l denote the class-specific saliency map associated to class c in the lth

layer, the recursive process works as follows. In the initial step, the saliency map
Pc

L is defined to be equal to the conventional CAMc
L saliency map, as derived

from equation (4.2). Then, at each recursive step, an upsampled version of Pc
l+1

is tuned (or modulated) by a locally normalized version of the activation map in
the lth layer. Mathematically, we have:

Pc
l =

CAMc
l for l = L

LNorm
(

CAMc
l , sl+1

sl

)
⊙ ↑bi

(
Pc

l+1, sl+1
sl

)
for 1 ≤ l ≤ L−1

, (4.3)

with CAMc
l defined in Equation (4.2), and sl defining the subsampling factor

of layer l compared to the input. The class-specific weights wl,k(c) involved in
Equation 4.2 to define CAMc

l are defined in Section 4.2.4 and 4.2.5, based on per-
turbations related to the content of the (l, k) channel.
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Fig. 4.2 Our Poly-CAM process: the upsampled version of the saliency map in
layer l is tuned based on the class activation map of layer l − 1. Image samples
correspond to the ’cat’ class, and are computed from VGG16 [146].

Intuitively, Equation (4.3) can be understood based on the following two ob-
servations. First, the element-wise multiplication, between the upsampled (and
thus smooth) saliency map of layer l + 1 and the activation map in layer l, aims
at restricting the large saliency values in layer l + 1 to the locations that are acti-
vated in layer l. Second, the local normalization (LNorm) of the activation map
aims at preserving the spatial distribution of saliency across the layers. It ensures
that an image block with large saliency in layer l+1 has also a large saliency in
layer l, even if the level of activation in this block is small compared to the rest
of the image. This is meaningful since the backpropagated saliency should be
predominant to assign a saliency level to a spatial region in layer l, while the ac-
tivation in layer l should simply control the increase in resolution, by tuning the
smooth saliency signal inherited from coarser layers based on the local variations
of the activation map. Our ablation study in Section 4.3.5 confirms the critical
role played by the LNorm operator. This paper also extends the preliminary ver-
sion of the method by a new algorithm that uses a perturbation at the level of the
channels in combination to the aforementioned combination of layers activation
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4.2.4 Input perturbation for weight definition

This section presents different alternatives to define the weights wl,k(c), used in
Equation (4.2), by using a masking of the input image.

Channel-wise Increase of Confidence Score-CAM [166], SS-CAM [165] and IS-
CAM [112] define wl,k(c) based on the so-called Channel-wise Increase of Confi-
dence (CIC), which estimates how the spatial support of the activation map Ak

l
contributes to the softmax output fc. Formally, the channel-wise increase is de-
noted w+

l,k(c), and is defined as:

w+
l,k(c) = fc

(
X ⊙ u

(
↑bi

(
Ak

l , sl

)))
− fc (Xb) , (4.4)

with ⊙ denoting the pixel-wise product, and Xb referring to a baseline image.
Previous works have considered baselines that are uniform black, uniform gray,
or a blur version of X. In the following, fc(Xb) is set to zero in all experiments.

Our work proposes two extensions of (4.4), respectively to measure how the
softmax output decreases when masking a fraction of the input, and to sum-up
the increase and the decrease associated to the unveiling and the masking of the
input. Those new weights are defined as follows.

Channel-wise Decrease of Confidence The Channel-wise Decrease of Confi-
dence (CDC) is a dual notion compared to CIC. Instead of measuring the increase
of softmax output when the part of the input corresponding to non-zero Ak

l is
unveiled and the remaining is masked, CDC measures the decrease of softmax
output when the part of the input corresponding to Al

k is masked. The intuition
is that an important part of the input for any class c not only increase the output
when shown, but should also decrease it when hidden. Formally,

w−
l,k(c) = ReLU

(
fc(X)− fc

(
X ⊙

(
1 − u

(
↑bi

(
Ak

l , sl

)))) )
(4.5)

ReLU is applied to only keep the activation maps that decreases the output when
removed.

Channel-wise Variation of Confidence By combining the CIC with the CDC,
the Channel-wise Variation of Confidence (CVC) is defined. As,

w±
l,k(c) = ReLU

(
fc (X) + fc

(
X ⊙ u

(
↑bi

(
Ak

l , sl

)))
− fc

(
X ⊙

(
1 − u

(
↑bi

(
Ak

l , sl

)))) )
. (4.6)
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The Channel-wise Variation of Confidence is influenced by the ability of the acti-
vation map to increase the softmax output when inserted, but also by its ability
to decrease it when removed.

4.2.5 Channel perturbation for weight definition

Similarly to FD-CAM [86], we propose to define the weight wl,lk(c) by perturbing
the lth layer rather than the input. Therefore, channels of a convolutional layer
are grouped together based on their similarities. We computed the cos similarity
between an activation map Ak

l and every activation maps Ak′
l from the same layer

l, with k ̸= k′.

cos(Ak
l , Ak′

l ) =
vk

l .vk′
l

∥vk
l ∥.∥vk′

l ∥
, (4.7)

with vk
l and vk′

l as the vectors obtained after flattening Ak
l and Ak′

l . For each
channel in a layer, we identify a the predefined percentage κ of channels in the
same layer with highest cosine similarities. The subset of channels that are similar
to channel k in layer l is denoted Sk,l (for the sake of simplicity, we omit the
dependency on the input image X in the notation). We let fl,Sk,l

(X) denote the
class-specific output of the model f when all the activation maps in layer l are
dropped, i.e. all values are set to zero, except for the maps in Sk,l , which are kept
untouched. Similarly, fc,l,Sk,l

(X) denotes the model fc when the activations maps
of the layer l remain untouched, except for ones in Sk,l that are set to zero.

We use an approach similar to the one adopted in Equation 4.6 to define the
wl,k(c). This weight is denoted w∅±

l,k (c), where ∅ refers to the fact that it is ob-
tained by setting some channels to zero. Formally,

w∅±
l,k (c) = fc(X)− fc,l,Sk,l

(X) + fl,Sk,l
(X). (4.8)

4.3 Evaluation and Results

Four variants of the Poly-CAM method introduced in Section 4.2.3 and Section
4.2.5 are considered, depending on whether wl,k is defined to be equal to w+

l,k
(PCAM+), w−

l,k (PCAM−), w±
l,k (PCAM±) or w∅±

l,k (∅PCAM).
We follow the assessment method described in [21] and [120] to evaluate our

proposal. This assessment consists of evaluating a defined number of images us-
ing insertion and deletion metrics, as described in Section 4.3.1 and Section 4.3.3.
Datasets, networks, and baseline methods are presented in Section 4.3.1. Quali-
tative and visual assessment is presented in Section 4.3.2, while quantitative as-
sessment of the saliency maps is considered in Section 4.3.3. Section 4.3.4 presents
the results of the Sanity check and robustness metrics. An LNorm ablation study
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Fig. 4.3 Layer refinement of PolyCAM method for the four proposed variants.
The high frequency details appear progressively during the iterative process.

38 |



Evaluation and Results | 4.3

is carried out in the Section 4.3.5. We assessed the speed of execution in Sec-
tion 4.3.6. Section 4.3.2 explores the usage of the proposed method to an indus-
trial use case.

4.3.1 Experimental set-up and saliency map baselines

For these evaluations, 2000 images were randomly selected from the 2012 ILSVRC
validation set [136]. The images are scaled to 224x224x3 pixels and normalized
to the same mean and standard deviation as the ImageNet [136] training set
(mean vector: [0.485, 0.456, 0.406], standard deviation vector [0.229, 0.224, 0.225]).
The models used for faithfulness evaluation are VGG16 [146] and ResNet50 [51],
both pretrained from the PyTorch model zoo. The analysis considers, as refer-
ence baselines, Grad-CAM [139], Grad-CAM++ [21], Smooth Grad-CAM++ [117],
Score-CAM [166], SS-CAM [165], IS-CAM [112], Zoom-CAM [143], Layer-CAM [69],
Occlusion [179], Input X Gradient [144], FD-CAM [86], Integrated Gradient [153],
SmoothGrad [149] and RISE [120]. The implementations for these methods are
the ones from Captum [75] for Integrated Gradient, SmoothGrad and Occlusion,
from https://github.com/eclique/RISE for RISE, from https://github.com/
X-Shi/Zoom-CAM for Zoom-CAM, from https://github.com/crishhh1998/FD-CAM
for FD-CAM and from torchcam [42] for all the other CAM-based methods.

For SS-CAM, IS-CAM, FD-CAM, LayerCAM and ZoomCAM, SmoothGrad
and IntegratedGradient, the parameters recommended by the authors or set as
default in the reference implementation have been used when available. 1 For
FD-CAM, the source code was not compatible with architectures other than VGG
at the time of writing without modifications. The experiments were thus limited
to VGG16 for this method. For Occlusion, the size of occlusion patch was set to
(64, 64) with a stride of (8, 8) as used by [120]. For RISE, 6000 masks were used.

For the Poly-CAM methods (PCAM+, PCAM−, PCAM±, ∅PCAM), the lay-
ers corresponding to a change in resolution were considered to recursively com-
pute the saliency map as depicted in Figure 4.2. It corresponds to [block1_conv2,
block2_conv2, block3_conv3, block4_conv3, block5_conv3] for VGG16, and [conv1_1,
conv2_3, conv3_4, conv4_6, conv5_3] for ResNet50. For ∅PCAM, κ was set to
0.05, following previous works [86].

4.3.2 Visual qualitative assessment

This section assesses our method visually. Saliency maps were generated for all
the baseline methods (see Section 4.3.1) on the 2000 selected images using VGG16
model. For the Poly-CAM methods, saliency maps were also generated for each

1It means 35 input perturbations (Gaussian noise with a σ = 2) for SS-CAM, 50 input perturbations
(with a σ = 1 Gaussian noise) for SmoothGrad, 10 interpolation steps for IS-CAM, threshold at 0.95
for FD-CAM and 50 for IntegratedGradient. For Layer-CAM, the layers corresponding to a change in
resolution were used, and recommended scaling has been applied to the first two layers. For Zoom-
CAM, all the layers/blocks were fused for VGG16 and ResNet50.
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Fig. 4.4 Class specificity for Poly-CAM. The different classes as correctly de-
termined by the four variants. We can note that PCAM− is less specific than the
other methods (part of the mountain is attributed to the barn), while PCAM+ is
the most specific. In general, the different PolyCAM methods perform similarly.

target layer. An interactive interface is provided with the source code as a jupyter
notebook, in addition to the source code, to allow an easy visualization of any
of the saliency maps generated in our experiments. Section 4.3.2 compares the
three Poly-CAM variants, as a function of the layer index and targeted class. A
comparison with previous works is shown in Section 4.3.2.

PCAM variants

PCAM produces saliency maps at various resolutions. Figure 4.2 and Figure 4.3
show how Poly-CAM progressively refines the last layer saliency map through a
backward recursive strategy. We observe that the structures are coarse at block5_conv3,
to gain in accuracy when accounting for earlier network layers, doubling the res-
olution at each step. The elements highlighted by the three variants are sim-
ilar on the majority of images. However, variations appear on some images,
PCAM− highlighting more frequently contextual elements compared to PCAM+

(and PCAM± sitting between the two). baseline image (without the core object
being classified) does not aid in accurate classification, while removing these fea-
tures from the original image impedes classification. ∅PCAM produces similar
results but with sharper and more refined highlights. For example, imagine an
image of a cow with grass in the background. Replacing the grass could lower the
class probability of “cow” and increase the likelihood of other classifications such
as “Dalmatian” and “carpet”. Conversely, adding only the grass background
while masking the cow would be too generic to significantly increase the proba-
bility of the “cow” class.

All Poly-CAM variants are class specific as displayed in Figure 4.4, where
the saliency maps associated to the the Barn, Alps and the Ox classes are clearly
distinct, with a level of accuracy close to segmentation. It is worth noting that
PCAM+ is more specific in highlighting the part of the image related to the class
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of interest. This is in line with the above observation that PCAM−, and a bit less
PCAM±, are stronger in highlighting contextual information.

Comparison with previous works
Saliency maps have been produced for all baseline methods listed in Section 4.3.1.
A sample of this comparison is presented in Figure 4.5. We can see that Poly-CAM
methods accurately identify quite relevant elements in the image like a spider net
or the pipes of an organ. CAM and perturbation methods cannot achieve this
level of precision, gradient base methods highlight elements of the image that are
not related to the class, while Zoom-CAM and Layer-CAM increase the resolution
but are more noisy, halfway between gradient and more classical CAM-based
methods. The spotted salamander is highlighted by all methods but the Poly-
CAM methods are the only ones to identify the spots. The oranges are identified
by Poly-CAM methods while the smile sketched on them is correctly excluded.
This is in contrast with other methods that are either too low resolution, or do
not exclude the smile, while SmoothGrad seems to give more importance to the
smile than to the texture of the orange.

Industrial defect localization
To illustrate the importance of fine details identification in the industry, we also
performed an experiment involving defect detection on stone tiles. The used
dataset is the Stone Tiles dataset2, which consists of 605 labeled images of stone
tiles. The labels are either “Good”, “Broken”, “Damaged” or “Glued”. We split
the dataset randomly into a validation set (10% of the images) and a training set
(90% of the images). We fine tuned a VGG16 model on this dataset, pretrained
on ImageNet from the PyTorch model zoo. The model was trained for 50 epochs
with a fixed learning rate of 0.001, without early stopping, achieving an accuracy
of 89.7%. Score-CAM and PCAM± were performed on the validation set images
for the classes predicted by the models. We compared the saliency maps pro-
duced by ScoreCAM and the proposed method for images that are classified as
other than “Good”, either correctly or wrongly, to assess if the explanations given
by the two methods allow to better grasp the reasons of the classification.

Figure 4.6 show explanation for correct classifications of stone tiles. Both
ScoreCAM and PolyCAM allow to understand the pixels related to a ’Broken’
stone tile in the image but PolyCAM is more precise. For ’Damaged’ and ’Glued’
labels, the area highlighted by Score-CAM are generally very wide since the de-
fects can be distributed on the whole image. ScoreCAM maps thus bring little
information about what the model learned to detect theses labels. On the other
hand, Poly-CAM show more fine details for those classes and allow to identify
that the model use the scratches on the surface of the ’Damaged’ tile and the small
traces of glue on the ’Glued’ tile to make a classification. Figure 4.7 shows the two

2Downloaded from the Euresys website: https://www.euresys.com
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Fig. 4.5 Visual comparison of methods. The compared methods are the Poly-
CAM variants proposed in this paper, Zoom-CAM [143], Layer-CAM [69], Grad-
CAM [139], Grad-CAM++ [21], Smooth Grad-CAM++ [117], Score-CAM [166],
SS-CAM [165], IS-CAM [112], Input X Gradient [144], IntegratedGradient [153],
SmoothGrad [149], Occlusion [179], RISE [120].
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Fig. 4.6 Correct stone tile classifications explanations. The figure show repre-
sentative Poly-CAM and Score-CAM explanations of correctly classified images
of stone tiles using VGG16. Poly-CAM show a more precise identification of the
causal elements of the classification for the three classes, in particular for Dam-
aged and Glued tiles where the structures of the scratches and the glue are more
clearly identified.

samples that are erroneously classified as defectives. For both images, Poly-CAM
help to identify more precisely than Score-CAM elements in the images that can
be interpreted by the model as ’Broken’ or ’Damaged’

4.3.3 Faithfulness Quantitative Assessment

In evaluating saliency maps as introduced in Chapter 3, there remains no con-
sensus on optimal metrics for assessing their relevance [122]. Saliency maps,
which highlight critical regions tied to model predictions, are often evaluated
by their capacity to localize relevant semantic objects [139]. However, as dis-
cussed in [120], segmentation masks alone may not fully capture the discrimi-
native features supporting a class label. To address this, we utilize metrics that
examine changes in model predictions as pixels are added or removed based on
their saliency scores.
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Fig. 4.7 False positive images of stone tiles. This figure show explanations
of images labeled as good but falsely labeled as broken or damaged. Poly-CAM
supports, i.e. explains, the wrong decision. We can identify using Poly-CAM
that the dark veins are interpreted as fracture lines for the left image, while the
lighter areas are shown as scratches for the right images. In comparison, Score-
CAM also highlight roughly the veins on the left image, but the explanation on
the right image is much less clear.

Specifically, we evaluate how the model’s softmax output varies when salient
pixels are either inserted or deleted from a baseline image. The insertion met-
ric assesses the increase in the softmax score as salient pixels are progressively
added to a blurred baseline image, indicating how quickly the model’s confidence
grows. In contrast, the deletion metric measures the decrease in the softmax score
as these pixels are sequentially removed, providing insight into how critical the
identified features are for maintaining the model’s prediction.

A combined score derived from both metrics, calculated by subtracting the
deletion score from the insertion score, offers a balanced measure of the saliency
map’s effectiveness.

While these metrics provide valuable quantifiable insights, they have notable
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limitations. Specifically, modifying pixel composition can yield out-of-distribution
images, potentially misleading the model. To mitigate this risk, we use a blurred
baseline (Gaussian kernel, 11x11, sigma=5), which aligns with common practices
in recent studies. Furthermore, although high scores in these metrics suggest a
strong influence of salient pixels on predictions, they do not guarantee that all
critical features have been identified. Therefore, we complement these metrics
with qualitative visual assessments, which remain the gold standard for evaluat-
ing saliency map fidelity.

Experiments were conducted with 224 steps, adjusting 224 pixels per step, to
provide fine-grained fidelity measurements for each assessment.

Quantitative assessment
Table 4.1 compares the faithfulness metrics for all methods. Among the Poly-
CAM variants, PCAM± gives the best results compared to PCAM+, PCAM− and
∅PCAM for all metrics on VGG16. On ResNet50, The results are very close for
all the variants, PCAM± gives a insertion metric similar to PCAM+ and slightly
superior to PCAM− and ∅PCAM, while PCAM− and ∅PCAM give a better dele-
tion metric compared to PCAM+ and PCAM±. For insertion-deletion on ResNet50,
PCAM±, ∅PCAM and PCAM− are on par.
Interestingly, the insertion metrics of PCAM± is systematically better than all
other CAM-based approaches. Compared to the non-CAM methods, the PCAM±

method gives similar or better insertion results than perturbation or gradient
methods, respectively.
In terms of deletion, PCAM± tends to perform better than most other CAM-based
methods, but appears to be weaker than gradient-based methods. InputXGrad
and IntegratedGradient achieve at the same time very poor results on the inser-
tion metric and thus have a poor insertion-deletion. This is not surprising since
gradient-based methods give lots of importance to the parts of the input that
largely impact the loss and thus the output. As a consequence, the deletion met-
ric is (trivially) good for those methods since this metric measures the decrease
of output when important parts are removed from the input. The poor insertion
metric however reveal that the parts that are considered as being important by
gradient methods are not sufficient to explain the network prediction. This ob-
servation reveals the limits of the metrics when applied to dissimilar kinds of
techniques.

4.3.4 Sanity check and robustness

We followed the method in [5] to implement a sanity check of our method. It con-
sists in progressive, iterative, layer-wise randomization of the network parame-
ters while regenerating an explanation after the randomization of each additional
layer to evaluate the influence of the model’s parameters on the explanation. So,
the PCAM saliency maps have been visualized at each step of a cascading ran-
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domization of a VGG16 network, from last to first layer. The purpose of this san-
ity check is to verify that the PCAM methods do not work as edge detectors, and
effectively derives class-specific saliency maps. All PCAM variants successfully
passed the test, as shown in Figure 4.8.

To evaluate the robustness of our explanation method, a sensitivity analysis
has also been run, following the methodology introduced in [47] and [177]. The
approach consists in assessing the extent of change in the saliency map produced
when small perturbations are introduced into the input image. Essentially, we
assess the maximum difference in the explanation that occurs due to these tiny
input changes. A method with a higher sensitivity is more prone to adversarial
attacks. Results are presented in Table 4.2. They reveal that PCAM has a small ex-
planation sensitivity , similar to the ones obtained by other CAM-based methods,
and one or two orders of magnitude below the sensitivities obtained by gradient-
based and perturbation methods.

Fig. 4.8 Cascading randomization of VGG16. Sanity check on Poly-CAM
methods [5]. Progression from left to right corresponds to a progressive, layer-
wise randomization of the network parameters. It show how the saliency map
changes with increasing up to complete randomization of the VGG16 model,
starting by the last layer up to the first layer. The methods are sensible to model
randomization, which mean they pass this sanity check. It is interesting to note
that the class specificity is lost rapidly after randomising the first classifier layer,
then more and more features are lost while randomization progress up to the first
layer of the network.

4.3.5 Ablation study on LNorm

The importance of including the LNorm operator in Equation 4.3 is challenged in
this section. We produced saliency maps using both the complete method and a
variant where LNorm has been ablated. Formally, the saliency map of the LNorm
ablated method becomes

Pc
l =

CAMc
l for l = L(

CAMc
l , sl+1

sl

)
⊙ ↑bi

(
Pc

l+1, sl+1
sl

)
for 1 ≤ l ≤ L−1

, (4.9)
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Representative examples are presented in Figure 4.9 to compare the conven-
tional and ablated PCAM. We clearly observe that the ablated method tends to
ignore some of the class-relevant features, and to focus on a limited set of highly
contrasted features (such as eye, mouth, or beak).

Fig. 4.9 Visual comparison of PCAM± with and without LNorm. Without
LNorm the visualization tends to concentrate on very focal elements of the im-
ages like eyes or mouth. Sometime some elements of the image that are not in
object of the target class become also highlighted, like an object behind the ele-
phant, or the diver next to the shark.

4.3.6 Speed of execution

Using the same experimental setup described in the previous sections, we mea-
sured the average average execution time per image over the first 100 images of
the ILSVRC2012 validation set for both the perturbation-based methods and the
subset of CAM-based methods relying on perturbations. Measurements were re-
peated for batch sizes of 32, 64, and 128 images on an 8Gb NVIDIA RTX3070M
and reported in Table 4.3.

The results show that the different PolyCAM variants fall between RISE and
ScoreCAM in terms of computation time. FDCAM is the fastest method using
perturbations, this is understandable since the perturbations only need to be per-
formed for the head of the network and don’t require to recompute the whole
backbone, but is also limited to the resolution of the last convolutional layer. It
is interesting to note that the ∅PCAM method, that compute scores similarly to
FDCAM, is the fastest of or four variant, with a similar execution speed to Score-
CAM. ∅PCAM seems to be the most appropriate compromise in terms of high
resolution saliency maps quality and execution time.
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4.4 Discussion

Our Poly-CAM method produces high resolution saliency maps without rely-
ing on gradient backpropagation. Two variants of our Poly-CAM framework are
investigated. In the first variant, the values weighting the activation maps are
obtained by masking or unveiling image pixels, or both. In the second variant, an
approach using perturbations inside of the network by switching off and on con-
volution channels is implemented. Our experiments reveal that a strategy com-
bining masking and unveiling, either in the pixel space or at the level of channels,
provides the more versatile solution. It achieves state of the art performances in
term of faithfulness insertion-deletion metrics and outperforms current available
methods in term of precision of visualization. As a main original contribution,
our method allows for the high-resolution visualization of image regions that
contribute to the network prediction. The channel switching strategy having the
advantage of being quicker to compute. Despite our work being a valuable step
towards a more explainable AI, there is still plenty of room for improvement in
this domain. One of the questions raised by this work is related to the way the
importance of a pixel should be quantified. Indeed, the importance of a group
of pixels appears to be different when this group is removed or when it is in-
serted (for example the importance of contextual information is more important
when removing it than when inserting it), which can not be properly reflected by
a single saliency map.

A practical usage of PolyCAM on bone radiographs is presented in Chapter 6
to explore spurious correlations and bias in the data.
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Table 4.1 Faithfulness metrics for all methods: CAM-based, gradient and per-
turbation methods.

Methods VGG16 ResNet50
Ins Del Ins-Del Ins Del Ins-Del

PCAM+ (ours) 0.58 0.17 0.41 0.67 0.29 0.38
PCAM− (ours) 0.60 0.16 0.45 0.66 0.27 0.39
PCAM± (ours) 0.61 0.15 0.46 0.67 0.28 0.39
∅PCAM (ours) 0.60 0.17 0.43 0.66 0.27 0.39
GradCAM 0.58 0.18 0.40 0.65 0.31 0.35
GradCAM++ 0.57 0.19 0.38 0.65 0.31 0.34
SmoothGradCAM++ 0.54 0.21 0.33 0.63 0.32 0.30
ScoreCAM 0.59 0.19 0.40 0.65 0.31 0.34
SSCAM 0.50 0.23 0.27 0.59 0.36 0.24
ISCAM 0.59 0.19 0.40 0.65 0.32 0.33
FDCAM 0.60 0.20 0.40 - - -
ZoomCAM 0.60 0.14 0.46 0.66 0.29 0.37
LayerCAM 0.58 0.14 0.44 0.65 0.30 0.35
IntegratedGradient 0.41 0.10 0.31 0.52 0.16 0.36
InputXGrad 0.37 0.12 0.26 0.47 0.18 0.28
SmoothGrad 0.54 0.20 0.34 0.62 0.29 0.33
RISE 0.62 0.18 0.44 0.67 0.28 0.39
Occlusion 0.62 0.23 0.39 0.66 0.33 0.33

Insertion (higher is better), deletion (lower is better) and Insertion-Deletion
(higher is better) with VGG16 and ResNet50 on the 2012 ILSVRC validation
set. Boldface and underline indicate the best result and the best result amongst
CAM-based methods respectively. Comparison of our Poly-CAM methods with
gradient methods: Input X Gradient [144], Integrated Gradient [153], Smooth-
Grad [149], perturbation methods: Occlusion [179] and RISE [120], and CAM
methods: Grad-CAM [139], Grad-CAM++ [21], Score-CAM [166], SS-CAM [165],
IS-CAM [112], Smooth Grad-CAM++ [117], FD-CAM [86], Zoom-CAM [143] and
Layer-CAM [69]. FD-CAM source code was only compatible with VGG16 at the
time of writing.
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Table 4.2 Sensitivity max table.

Method Sensitivity max
VGG16 ResNet50

IntegratedGradient 0.3576 0.5299
InputXGrad 0.6132 0.7225
SmoothGrad 5.6824 7.7777
RISE 0.7864 0.7841
Occlusion 2.5176 3.4378
GradCAM 0.0625 0.0212
GradCAM++ 0.0525 0.0199
SmoothGradCAM++ 0.5451 0.1594
ScoreCAM 0.0466 0.0193
ISCAM 0.0433 0.0334
FDCAM 0.0433 -
ZoomCAM 0.0987 0.0485
LayerCAM 0.0937 0.0590
PCAM+ (Ours) 0.0650 0.0262
PCAM− (Ours) 0.0837 0.0578
PCAM± (Ours) 0.0659 0.0659
∅PCAM (ours) 0.0783 0.0419

Sensitivity max metric measures maximum sensitivity of an explanation using
Monte Carlo sampling-base approximation [177]. A method with a higher sen-
sitivity is more prone to adversarial attacks. Captum implementation was used
with 10 perturbations per input and a epsilon radius of a L-Infinity ball set to
0.02 for sampling (defaults parameters from the implementation) [75]. The com-
pared methods are the three Poly-CAM variants proposed in this paper (PCAM+,
PCAM−, PCAM±), Zoom-CAM [143], Layer-CAM [69], Grad-CAM [139], Grad-
CAM++ [21], Smooth Grad-CAM++ [117], Score-CAM [166], SS-CAM [165], IS-
CAM [112], FD-CAM [86], Input X Gradient [144], IntegratedGradient [153],
SmoothGrad [149], Occlusion [179], RISE [120].
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Table 4.3 Execution time per image.

Batch size 128 64 32
PCAM+ (ours) 4.32 4.38 4.67
PCAM− (ours) 4.38 4.68 4.71
PCAM± (ours) 8.48 8.92 9.60
∅PCAM (ours) 1.51 1.61 2.01
ScoreCAM 1.48 1.52 1.64
ISCAM 12.85 13.29 14.18
SSCAM 47.13 48.01 52.12
FDCAM 0.17 0.17 0.17
RISE OOM* OOM* 18.50
Occlusion 2.62 2.62 2.62

Execution speed to compute the saliency maps for a VGG16, expressed in second
per image. Mean over 100 computations.
*OOM: Out of Memory
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Transformer Input Sampling

(TIS)

5.1 Overview of TIS

Lately, the rise of the transformer architecture [161] in multiple modalities pro-
vides a new challenge in terms of explainability. Especially in the field of com-
puter vision, where the convolutional neural network (CNN) has been the domi-
nant architecture type since AlexNet in 2012 [76], with many explainability meth-
ods targeting these CNN architectures [139, 166, 40]. The switch from CNN to
transformer in the other area of this thesis leads to the necessity to explore XAI
techniques adapted to transformer architecture.

The proposed Transformer input sampling (TIS) method is a perturbation-
based methods, with a main contribution of defining perturbations as a sampling
of the tokens before the first transformer layer, but after the linear projection and
position encoding of the patches inside a Vision Transformer (ViT) [36]. This def-
inition avoids the generation of outlier inputs, thereby limiting the risk of mis-
leading the interpretation of the transformer predictions. Another advantage is
that the reduction of the number of tokens at the transformer input also increases
the inference speed for each perturbation, enabling more samples to be evaluated
with the same computing power. This also renders the method more versatile
in comparison to perturbations at the pixel level as proposed by ViT-CX [172].
Since the method sample tokens that are the building blocks of transformers in
any modality, the method can potentially be extended to other modalities and to
multimodal transformers.

| 53



5 | Transformer Input Sampling (TIS)

Fig. 5.1 Illustration of the Transformer Input Sampling (TIS) process. The
columns M.j of the matrix M are the masks used to produce each sampled se-
quences Fj. The scores wj,c are the scores for each sequences Fj for a target class c.

The method was published in a paper in the proceedings of the IEEE/CVF
International Conference on Computer Vision Workshop.

5.2 Methodology and Implementation

Section 5.2.1 introduces useful notations. Section 5.2.2 gives a general overview
of our proposed method. Section 5.2.3 details the generation of masks, and its
corresponding token sampling process. Section 5.2.4 explains the mask scoring
process, leveraging the variable input length property of transformers, and the
saliency map computation as a score-based weighted sum of masks.

5.2.1 Notations

Let f (X) denote a vision transformer model [36, 157] applied to an image X. This
model is composed of an embedding computation module (patch and positional
embedding) denoted embedding(X), whose result is a matrix T ∈ RNt×D com-
posed of Nt tokens of dimension D, and a transformer encoder [161] with a task-
focused head denoted transformer(X), such as f (X) = transformer(embedding(X)).
In the following, the result of f (X) is a vector of dimension C, defined as the out-
put of a softmax function, and fc(X) corresponds to the score given by the model
to a particular class c for the image X. Let Ai. be the i-th row of a given matrix
A, and A.j the j-th column of a given matrix A. Consider ⊘ as the element-wise
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division operator, and ⊙ as the element-wise product operator. Let topk(A, n) be
the set of n largest elements in a given set A.

5.2.2 General Overview

The proposed method computes class-specific saliency maps. It relies on the out-
put score associated with the class of interest when inputting different subsets of
the input tokens in the transformer part of the model. A schematic illustration
of the process is depicted in Figure 5.1. The tokens are sampled before the trans-
former encoder. This is similar in principle to the Masked Autoencoders [50],
with masks being generated based on the activations of the transformer model.
Previous works have shown that, even if the multi-head attention modules of a
vision transformer are position invariant, the tokens keep the localization infor-
mation from the beginning up to the end of the model thanks to the multiple
residual connections [126]. This location-preserving property in the embedding
space enables the use of the embedding to guide the masking process, similarly to
what is done by Score-CAM for a convolutional neural network [166]. It is worth
noting that unlike perturbations methods in the input space that modify the pix-
els values such as RISE [120], Score-CAM [166] or ViT-CX [172], our method lever-
ages the ability of the transformer to accept a sequence of tokens with variable
length to completely remove a portion of the tokens (i.e., the patches) in a way
that the model can only perform computations on the remaining tokens. Since
this is done just after the positional embedding and before any self-attention, the
non-sampled tokens do not have any influence on the output. This is in contrast
with the generation of outlier images that can be produced when corrupting the
input.

5.2.3 Mask Generation and Token Sampling

The first step when generating a mask to control the sampling of a token sequence
T ∈ RNt×D, composed of Nt tokens (excluding the CLS classification token) with
dimension D, is to concatenate the activation/embeddings from every layer in
the transformer into a matrix A ∈ RNt×L.D with L being the number of layers of
encoders in the transformer. Since the computational requirements increase with
the forward passes computed for each mask and many maps are redundant, we
use a clustering process to reduce the number of masks, similarly to ViT-CX [172].
A K-Means clustering is used on the columns of A to produce a smaller matrix
K ∈ RNt×Nm with Nm being the number of masks. The number of centroids of
K-Means Nm is a parameter of our method. The choice of Nm is evaluated in the
Supplementary material and set to 1024 in the remaining of the paper.

K = KMeans(A, Nm) (5.1)
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Unlike previous works based on masks generated from the activation maps
with continuous values [172, 166, 40], we propose to binarize the masks so that
each value in the matrix means whether we will keep the corresponding token
or not when computing the class score. We thus produce a binary matrix M ∈
{0, 1}Nt×Nm .

Formally,

Mij =

{
1 if Kij ∈ topk(K.j, Nk)

0 otherwise
, (5.2)

with Nk being the number of tokens to sample.
We obtain Nm sequences of sampled tokens. The jth sequence Fj ∈ RNk×D, is

associated to the mask M.j in M, and is defined as follows,

Fj = {Ti|Mij = 1} (5.3)

5.2.4 Mask Scoring and Saliency Map

The class-specific relevance score wj,c of each mask M.j is obtained by passing its
corresponding set of tokens Fj in the transformer and retrieving the model output
for the target class c. Formally,

wj,c = trans f ormerc(Fj), for 1 ≤ j ≤ Nm (5.4)

Since each token is related to a patch in the input image, the more a particular
token is relevant for a given model output, the more the corresponding patch is
also relevant. Therefore, it becomes relevant to compute a saliency map as the
sum of the masks weighted by the score obtained by the corresponding sampled
tokens. This sum can be improved by dividing by the sum of the masks to account
for possible token frequency bias, similar to the pixel coverage bias addressed in
ViT-CX [172]. Hence,

TISc =
Nm

∑
j=1

wj,c M.j ⊘
Nm

∑
j=1

M.j (5.5)

In the following, the resulting saliency maps are bilinearly upsampled to the
resolution of the input image.

5.3 Experimental Setup

This section describes the experimental setup used to benchmark the proposed
method in comparison to previous works. For our proposed TIS method, we em-
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ploy a token masking ratio of 0.5, translating to 98 tokens over 196 (formally, nk =

98 in Equation 5.2.3) and 1024 masks (Nm = 1024 in Equation 5.2.3). This set of pa-
rameters is discussed in supplementary material. Good results are obtained with
values ranging from 128 to 1024 masks, with little gain beyond 1024. The methods
used for comparison are ViT-CX [172], Transition Attention Maps (TAM) [178],
the two methods from Chefer [22, 23], Attention Rollout [2], the token (BT-T) and
head (BT-H) methods from Bidirectional Transformers [24], RISE [120], Integrated
Gradient [153] and SmoothGrad [149]. The parameters used are 20 steps for TAM,
4000 masks for RISE, 50 interpolations for Integrated Gradient, and 50 perturba-
tions for SmoothGrad. We used the released codes from the authors for ViT-CX1,
RISE2, Chefer3, TAM4 and Bidirectional Transformers5. We applied Captum [75]
implementations for SmoothGrad and Integrated Gradient.

5.3.1 Transformer Models

The two models used in the experiments are ViT and DeiT, typically used to
solve computer vision tasks such as image classification. The Vision Transformer
(ViT) [36] is an encoder-only transformer architecture. In particular, each im-
age is divided into N non-overlapping patches which are then projected into the
embedding space as a sequence of tokens that serve as input to the transformer
backbone. In addition, a learned classification token (CLS token) is prepended
to this sequence. After the final encoder layer, the representation of the CLS to-
ken depicts a global embedding of the image and is classically used as input to
a head trained for downstream tasks such as classification. DeiT [157] derives
from ViT, but in addition to the CLS token it also has a distillation token that
is combined with a second classification head dedicated to learning by distilla-
tion from the predictions of a teacher network. In the following experiments, the
ViT model denotes the ViT-Base variant [36], and the DeiT denotes the DeiT-Base
variant [157]. We utilized the implementations from the timm library [170] using
ImageNet 21k pretraining with ImageNet 1k finetuning weights for both models.

5.3.2 Metrics

In the domain of explainable AI (XAI), explainability metrics provide a way to
evaluate the performance of explanation methods, minimizing the subjectivity of
human judgment as discussed in Chapter 3.

Given the absence of ground-truth explanations, these metrics evaluate XAI
methods across diverse properties, allowing for a more objective comparison. To
cover the range of evaluated properties in state-of-the-art explainability metrics,

1https://github.com/vaynexie/CausalX-ViT
2https://github.com/eclique/RISE
3https://github.com/hila-chefer/Transformer-Explainability
4https://github.com/XianrenYty/Transition_Attention_Maps
5https://github.com/jiaminchen-1031/transformerinterp
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we report results based on four selected metrics: Insertion and Deletion[120] (a
faithfulness metric), Pointing Game[180] (a localization metric), Max-Sensitivity[177]
(a robustness metric), and Sparseness [20] (a complexity metric). These metrics
were chosen based on two criteria: their frequent use in evaluating state-of-the-
art XAI methods (e.g., Insertion, Deletion, Pointing Game), and the range of prop-
erties they represent (e.g., Sparseness for conciseness, Max-Sensitivity for robust-
ness).

For the Insertion and Deletion metrics, 224 steps were used in the iterative
computation and each metric was computed using four baselines (blur, random,
black, and mean). Regarding the Pointing Game metric, we excluded images
where the bounding box covered more than 50% of the image, thereby follow-
ing the recommendations in [166, 172]. This results in 2892 images excluded and
2108 images included for this metric. For Max sensitivity, we used Captum’s im-
plementation with a number of perturbed samples set to 10 and a perturbation
radius set to 0.02. For Sparseness, in the case of negative values, we shifted the
minimum value to zero before applying the metric6. Since this metric serves as
an additional indicator (concise explanations) rather than a ranking, the corre-
sponding results are presented in the Supplementary material.

5.3.3 Assessment Protocol

Given the evaluation metrics, the assessment adopts the protocol used in previ-
ous works [120, 22, 23, 172, 2] on explainable AI applied to convolutional neural
networks and vision transformers. It consists in evaluating the saliency maps
generated with the different methods on a random subset of the ImageNet vali-
dation set [136]. We set the size of this subset to 5000 images [172, 24].

5.4 Experimental Results

This section analyzes the results obtained by our method and compares them to
previous works from a qualitative and quantitative point of view.

5.4.1 Qualitative Assessment

General Comparison
In the field of explainable AI, metrics primarily represent approximations of iso-
lated properties, unable to fully quantify the relevance and quality of saliency
maps. Consequently, visualizing the generated maps is also crucial. In Figure 5.2
we observe that maps generated by our TIS method are generally more expres-
sive, often highlighting the whole object with a variable range of intensity, for
example with the Maltese dog where the head of the dog is the most highlighted,
followed by the dog’s body with intermediate intensity, and then the background

6https://github.com/oliviaguest/gini
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Fig. 5.2 Comparison of the explainability methods for the ViT-Base model [36]
on four random images from the ImageNet Validation set [136].

with low intensity. In general, other methods tend to be more categorical with a
generally very localized high signal and most of the remaining of the map being
low signal. ViT-CX and TAM are the only methods that seem to also display this
behavior, while ViT-CX often highlight more background information and TAM
is sparser. In contrast, the Integrated Gradient and the SmoothGrad methods
produce maps with a lot of isolated peaky points, related to the importance of the
gradient at the input. They are not always class specific and tend to be noisy and
hard to interpret.

Class Disagreement

When generating the saliency maps for both the target class from the ImageNet
Dataset and the model predicted class, we noticed that major disagreements be-
tween the ground truth and the model can lead to bad saliency maps for the
target class, and good saliency maps for the model predicted class. An example
is provided in Figure 5.3 where a bird with a target class of “Kite” is present,
the model top prediction is “Bald Eagle” with a confidence level of 0.998, while
the confidence of the target class is 0.0004. The saliency map for “Bald Eagle”,
the predicted class, clearly highlights the bird, while the saliency map for “Kite”,
the target class, highlights the background. We observed this behavior for multi-
ple images, the stronger the disagreement between the model and the target, the
stronger this phenomenon. Through our experiments, we discovered that high-
lighting the target class can be forced by removing the softmax at the end of the
model. However, this comes at the price of class specificity. This behavior is thus
strongly related to the class specificity of the method, leading us to interpret it as
proof of our method’s strong class specificity.
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(a) Original image (b) Kite (c) Bald Eagle

(d) TIS for “Kite” (e) TIS for “Bald Eagle”

Fig. 5.3 Class mismatch between the target and predicted class. 5.3a is the orig-
inal image. The dataset target class is “Kite” while the model predicts “Bald Ea-
gle”. For illustration purposes, 5.3b and 5.3c display other images of a Kite and
a Bald Eagle, respectively. 5.3d is the saliency map produced by TIS for class
“Kite” (dataset target) and 5.3e is the TIS saliency map for the model predicted
class “Bald Eagle”.
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Table 5.1 Results of the Insertion and Deletion metrics and their difference (In-
sertion - Deletion) for ViT-Base [36]. 7

Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Method Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand
TIS 0.52 0.66 0.50 0.47 0.10 0.39 0.10 0.09 0.42 0.28 0.40 0.38
ViT-CX 0.51 0.61 0.41 0.39 0.20 0.42 0.14 0.18 0.28 0.20 0.31 0.35
TAM 0.43 0.61 0.41 0.39 0.14 0.43 0.14 0.13 0.28 0.18 0.27 0.26
Chefer1 0.42 0.61 0.41 0.39 0.15 0.44 0.14 0.13 0.28 0.17 0.27 0.26
Chefer2 0.43 0.61 0.41 0.39 0.15 0.44 0.14 0.13 0.28 0.17 0.27 0.26
Att. Rollout 0.31 0.55 0.30 0.29 0.29 0.52 0.28 0.27 0.02 0.03 0.02 0.02
BT H 0.45 0.63 0.43 0.41 0.12 0.41 0.12 0.11 0.33 0.21 0.32 0.30
BT T 0.46 0.62 0.44 0.42 0.13 0.42 0.12 0.11 0.33 0.21 0.32 0.30
RISE 0.46 0.62 0.45 0.42 0.16 0.45 0.16 0.15 0.30 0.17 0.29 0.27
IntegratedGrad 0.19 0.69 0.16 0.15 0.08 0.31 0.06 0.06 0.11 0.38 0.10 0.08
SmoothGrad 0.37 0.59 0.36 0.35 0.10 0.45 0.10 0.09 0.27 0.14 0.26 0.26

Table 5.2 Results of the Insertion and Deletion metrics and their difference (In-
sertion - Deletion) for DeiT-Base [157]. 7

Insertion ↑ Deletion ↓ Insertion - Deletion ↑
Method Mean Blur Black Rand Mean Blur Black Rand Mean Blur Black Rand
TIS 0.57 0.65 0.57 0.54 0.15 0.40 0.15 0.14 0.42 0.25 0.42 0.41
ViT-CX 0.51 0.61 0.51 0.48 0.20 0.42 0.20 0.18 0.31 0.19 0.31 0.30
TAM 0.50 0.59 0.50 0.46 0.23 0.45 0.23 0.19 0.27 0.14 0.26 0.26
Chefer1 0.51 0.60 0.51 0.48 0.22 0.45 0.22 0.18 0.29 0.15 0.29 0.29
Chefer2 0.50 0.60 0.50 0.47 0.23 0.45 0.23 0.19 0.28 0.14 0.27 0.28
Att. Rollout 0.37 0.54 0.37 0.34 0.41 0.53 0.41 0.37 -0.04 0.01 -0.05 -0.03
BT H 0.52 0.60 0.52 0.49 0.19 0.43 0.19 0.16 0.33 0.18 0.33 0.33
BT T 0.52 0.60 0.51 0.48 0.19 0.43 0.19 0.16 0.33 0.17 0.32 0.32
RISE 0.55 0.61 0.55 0.52 0.25 0.46 0.25 0.21 0.30 0.15 0.30 0.31
IntegratedGrad 0.32 0.68 0.30 0.28 0.14 0.38 0.12 0.13 0.18 0.30 0.18 0.15
SmoothGrad 0.45 0.62 0.43 0.43 0.14 0.44 0.14 0.13 0.31 0.18 0.30 0.31

5.4.2 Quantitative Assessment

Faithfulness Results for Insertion and Deletion metrics are provided in Table
5.1 and Table 5.2 for ViT and DeiT, respectively. Our proposed method performed
best on the Insertion for all baselines, except the blur baseline where it finished
second behind Integrated Gradient by a thin margin. Interestingly, it’s worth
noting that Integrated Gradient had the worst performance among all methods
for the other Insertion baselines. Concerning the Deletion metric, our method
performed second, just behind Integrated Gradient. This is not surprising since
the gradient on which Integrated Gradient is based corresponds to the pixels with
the highest influences on the output. When balancing the two metrics by the
subtraction of the Deletion metric from the Insertion metric, our method appears
to surpass other methods by a wide margin for all baselines, except for the blur
baseline where it finishes second.

Localization The results for the Pointing Game metric can be found in Table
5.3. Our method performed best in comparison to the other methods for DeiT on
this metric and fell just behind the BT methods for ViT. Furthermore, TIS is the
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only method that achieves a score over 0.8 on both models (0.825 and 0.823). Our
proposed method is thus competitive in terms of the localization property.

Robustness In Table 5.4, we show the results related to the Max Sensitivity met-
ric. Two groups emerge from these results. The first group contains RISE, TAM,
BT-H, Chefer2 Rollout, TIS and ViT-CX (ranked by lowest sensitivity score re-
spectively) and has good robustness when small perturbations are inputted to an
image (Max Sensitivity ≤ 0.2). On the contrary, Integrated Gradients and Chefer1
in the second group are at the other end of the range (Max Sensitivity ≥ 0.8), be-
ing very sensitive to perturbations. TIS has appropriate scores with respect to the
metric (not being too sensitive) but is not the best method in terms of robustness.

Deletion for TiS and Integrated Gradients
Based on the results indicating that Integrated Gradients may outperform TIS in
terms of the Deletion metric, we explored the results obtained by both methods
when applying the deletion metric to an image (Figure 5.4). Integrated Gradients
exhibit a faster drop in the metric and achieve a better overall result. However,
upon examining the perturbed image at intermediate steps, it became apparent
that Integrated Gradient significantly affects the model by removing target pixels
everywhere in the image, while the overall shape of the bird remains distinguish-
able to a human observer. In contrast, TIS effectively masks the object.

Table 5.3 Results of the Pointing Game metric [180] for the ViT [36] and DeiT
model [157]. 7

Method DeiT ViT
TIS 0.825 0.823
ViT-CX 0.700 0.700
TAM 0.635 0.737
Chefer1 0.748 0.768
Chefer2 0.654 0.727
Attention Rollout 0.118 0.127
BT H 0.775 0.855
BT T 0.755 0.846
RISE 0.766 0.753
Integrated Gradient 0.297 0.633
SmoothGrad 0.742 0.499

5.5 Discussion

In this chapter, we introduced a method to explain vision transformers using to-
ken sampling guided by the model embeddings. This is an alternative to methods

7The best result is in bold, and the second best result is underlined
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Fig. 5.4 Comparison of TIS and Integrated Gradients results after 50 steps of the
deletion metric. The target class is a jacamar (bird). Integrated Gradient perturbs
the image diffusely, resulting in a better metric while still keeping the bird visible.
On the other hand, TIS masks the bird itself, even though it may take more steps
to reduce the target score.
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Table 5.4 Results of the Max Sensitivity metric [177] for the ViT [36] and DeiT
model [157]. 7

Method DeiT ViT
TIS 0.162 0.156
ViT-CX 0.173 0.172
TAM 0.085 0.060
Chefer1 1.017 0.752
Chefer2 0.087 0.082
Attention Rollout 0.143 0.144
BT H 0.088 0.620
BT T 0.086 0.062
RISE 0.011 0.009
Integrated Gradient 0.827 0.891
SmoothGrad 0.218 0.412

based on attention and gradients to explain transformers. The main contribu-
tion of our method in comparison to other perturbation methods, such as RISE
or VIT-CX, is to provide a more versatile and complete ablation of masked in-
put information instead of masking in input space. Even if the absence of a real
ground truth metric in the explainability field makes the evaluation difficult, we
showed the competitiveness of our method amongst all metrics with current ex-
plainability method. A common downside of perturbation-based methods is the
requirement for more computing power, as multiple forward passes must be per-
formed.This limits the application in use cases such as low-power or embedded
devices. TIS shows good performances with as few as 128 samples and half of
the tokens, significantly reducing the inference time. Although this work has
only explored vision transformers, our method also has the advantage of being
potentially applicable to any type of transformer using conventional encoding
and/or decoding layers. Although, on the other hand, it is not directly appli-
cable to modified transformers with hierarchical mechanisms such as a Swim
transformer [100]. Since TIS is not limited by design to vision transformers, fu-
ture works should explore the adaptation of the token sampling to transformers
working with other modalities and/or multi-modal transformers.

In practice, in the context of this thesis, the work was limited to the develop-
ment of the vision method and did not continue beyond that point, in order to
focus on the other thesis objectives concerning multimodal self-supervised train-
ing. The UMons team, with whom I collaborate, has since taken the lead in con-
tinuing the development of a multimodal adaptation.
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6.1 Introduction

The main idea of using explainability methods in this thesis is to get an insight
into elements used by the model to produce a results, for example a diagnosis.

The objective of this chapter is to explore the application of the PolyCAM
method introduced in previous chapter to identify if radiographic features used
by the algorithm align with the actual pathology or if the model relies on irrel-
evant correlations, indicating potential biases. The hypothesis is that the deep
learning model may rely on spurious features, rather than true pathological indi-
cators.

6.2 Materials and Methods

6.2.1 Dataset and model training

The MURA (Musculoskeletal Radiographs) dataset, which is a retrospective col-
lection publicly available through Stanford University, was used [127]. It com-
prises approximately 40,005 bone radiographs of the upper extremity, organized
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into 14,656 studies with normal or abnormal classifications. For this study, we
employed the original validation set containing 1,199 studies and 3,197 images
as a test set and randomly divided the remaining images at the study level into
five folds (subsets of the data used for cross-validation). The employed model
was a ResNet50 convolutional neural network, which was initialized using the
pre-trained weights from IMAGENET1K_V1 in torchvision 0.15 [51]. The train-
ing process utilized PyTorch 2.0 [118] on an Nvidia RTX 3070 with a batch size of
16 for 20 epochs, following a 5-fold cross-validation approach (where each fold
served as the validation set and the remaining four folds were used for training).
The Adam optimizer was employed with an initial learning rate of 6e-5, cosine
annealing scheduling without restart, and a weight decay of 1e-5. A weighted
binary cross-entropy loss function was utilized in conjunction with random rota-
tion between -15° and +15° and resizing to 320x320 pixels as data augmentation
techniques. The selection of the learning rate and weight decay was guided by
the use of Optuna framework [6] incorporating a multivariate Tree-structured
Parzen Estimator [41].

6.2.2 Explanation

To visualize the relative importance of pixels in radiograph images for deep learn-
ing model predictions, saliency maps were generated using the PolyCAM algo-
rithm [40] for each image from the first 200 wrist studies in the test set. This algo-
rithm combines CAM-like properties with pixel perturbations to produce high-
resolution saliency maps.

These heatmaps were visually examined to identify the specific image ele-
ments used by the neural network for prediction and diagnosis, as well as whether
they corresponded to actual pathological areas or were influenced by other image
elements.

6.2.3 Bias correction

Based on the findings presented in the Results Section (i.e. that the presence of
casts considerably interfered with the model’s ability to correctly identify bone
pathology), we implemented an additional debiasing step. The primary objective
of this step was to address the issue where casts were being utilized as decisive
factors by the model, frequently exceeding the importance of the actual pathology
itself.

It can be theorized that presenting additional radiograph images featuring
casts that are not considered pathological could alter the model’s erroneous be-
havior towards casts by disrupting the correlation between the presence of a cast
and actual pathology. To verify this hypothesis, we reviewed 8,760 radiographs
from the training set to identify those containing casts. These images were then
cropped using GIMP (GNU Image Manipulation Program) v2.10.34 to create new
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images where only the cast is visible, without any accompanying pathology. A
visual example is illustrated at Figure 6.1. These cropped images were subse-
quently added back into their original folds (to prevent potential contamination
between folds and thus between the training set and validation set), with a label
updated to "not pathological". Each cropped cast image was duplicated 20 times
to amplify the debiasing effect.

Fig. 6.1 Illustration of the cropping operation. A new image is produced by
keeping an area of the radiograph without the bone pathology and with a cast.

The training procedure previously described was re-executed using the re-
vised dataset and new saliency maps were generated for the debiased models.

An examination of the cast’s utilization as primary pathological element was
conducted for both the original and modified models. This entailed counting the
number of saliency maps where most high-salience values are situated on the cast
among images classified as pathological by each model.

6.2.4 Performances Evaluation

To evaluate the performance of the models, we employed bootstrapping with
1,000 resamples with replacement from the test set. We computed the Area Under
the Receiver Operating Characteristic (ROC) curve, the Area Under the Precision-
Recall curve, accuracy, and F1 score on the ensemble of models across the five
folds using average output aggregation for each resample, thereby generating a
confidence interval for each metric. This analysis was performed utilizing scikit-
learn 1.3.0.

6.3 Results

The results are divided in two parts, the first part presents the results using the
MURA dataset as provided by Stanford without any modification, while the sec-
ond part presents the results for the modified dataset to reduce the bias related to
the presence of a cast on the input radiograph.
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Metric Original Modified
AUROC 0.896 (0.876, 0.914) 0.895 (0.876, 0.913)
AUPRC 0.886 (0.859, 0.912) 0.886 (0.857, 0.908)

Accuracy 0.840 (0.816, 0.861) 0.839 (0.820, 0.861)
F1 score 0.805 (0.777, 0.833) 0.806 (0.780, 0.833)

Table 6.1 Performances of the ensemble of models form the 5-fold on the test-
set, with a training on the original and the modified datasets. Results are shown
as the median of a 1000 resample with replacement of the test-set with the 95%
confidence interval between parenthesis. AUROC = Area Under the Receiver Op-
erating Characteristic Curve, AUPRC = Area Under the Precision-Recall Curve.

6.3.1 Classical dataset

Pathology detection performances of the base models

The Area under the ROC curve on the test set for the 5-folds ensemble was 0.896
(IC95: 0.876-0.914), the AUPRC was 0.886 (IC95: 0.859-0.912), the accuracy was
0.840 (IC95: 0.816-0.861) and the F1-score was 0.805 (IC95: 0.777-0.833). Table 6.1
present those results and a comparison with results for the modified dataset.

Saliency maps of base models

The 200 studies analyzed with PolyCAM corresponded to 549 radiographs and
an equal number of saliency maps. The elements most often highlighted as patho-
logical were fractures, articular joint disorders, osteosynthesis material, but also
the presence of a cast and sometime the annotations (e.g. side indicated with a
letter L or R), see Figure 6.2 for an overview.

Concerning the casts, 46 dense/plaster-like casts and 13 lighter/synthetic-like
casts were manually identified on the images, a total of 59 images containing
casts. In the 200 images, the cast was the most prominent element in 31 images
(30 plaster and 1 synthetic cast).

Fig. 6.2 Illustration of the most frequently identified elements in saliency
maps, from left to right: Articular joints/osteoarthritis, fractures, osteosynthesis
material, annotations (e.g., side indicators), and casts.
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6.3.2 Modified dataset

From the review of 8,760 radiograph images, 1,021 instances featuring casts were
identified (247 elbow, 27 finger, 186 forearm, 96 hand, 77 humerus, and 388 wrist).
This led to the generation of 587 cropped images (168 elbows, 20 fingers, 169
forearms, 89 hands, 58 humeri, and 83 wrists) from which casts were isolated.
Cropped images were only obtained from suitable base images—those where it
was possible to isolate a large enough area with the cast but without pathology to
produce a suitable cropped image. Each cropped image was duplicated 20 times
within its original fold as part of the modified dataset.

Pathology detection performances of the modified models
The results are shown in Table 6.1. The metrics do not differ statistically from the
results of the models trained on the untouched dataset.

Saliency maps of the modified models
The number of casts triggering a pathological label prediction on the 200 visu-
alized images decreased from 31 with models trained on the original dataset
to 12 with models trained on the modified dataset. Compared to the saliency
maps produced by the base model, the modified models exhibited reduced cor-
relation between cast presence and pathology detection, either due to increased
emphasis on other image elements (e.g., fractures) as depicted in Figure 6.3 or
because predictions were no longer systematically pathological when alternative
features were not identified. While this process significantly mitigated artifacts,
some casts still remained highlighted after debiasing, as illustrated in Figure 6.4.

Fig. 6.3 Debiased Model Attention and Reduced Bias. Comparison of saliency
maps from ResNet50 trained with and without additional cast images. The
model’s attention is redirected towards the bone, rather than the cast, after ad-
dition of cast images into the dataset.
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Fig. 6.4 Failure cases and incomplete debiasing. Saliency map of ResNet50
trained with and without additional cast images. Even if the cast bias is reduced
by the process, some level of bias persist in certain radiographs.

6.4 Discussion

In summary, addressing sources of bias in deep learning models, especially in
medical imaging, is essential for ensuring accurate and fair diagnoses. Our Poly-
CAM method demonstrates that it’s possible to identify such biases, particularly
those arising from irrelevant features like casts. By incorporating additional non-
pathological images containing casts, we can reduce the model’s reliance on these
elements without compromising its ability to detect pathologies.

Moving forward, it is important to acknowledge the limitations of the MURA
dataset used, which only provides binary labels (normal/abnormal). While this
dataset is the largest publicly available for bone radiographs, the lack of more
detailed labels restricts the depth of analysis and model training.

To overcome these limitations, the next part of the thesis will explore the use
of self-supervision techniques coupled with the creation of a larger dataset from
our hospital, allowing us to leverage the data’s scale and complexity without
requiring manual annotation.
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7.1 Introduction

As the field of artificial intelligence continues to evolve, self-supervised learning
(SSL) has emerged as a transformative approach, particularly in environments
where annotated data is limited or costly to acquire. By exploiting the inherent
patterns in data, SSL enables the development of robust representations with-
out the extensive need for labeled datasets, making it particularly promising for
applications in medical imaging and natural language processing.

The role of self-supervision is to learn effective representations by capturing
inherent patterns in data rather than relying on human-based annotations. Var-
ious techniques are available and tailored to specific modalities. In the context
of this thesis, the pertinent modalities are imagery and text, which will be the
primary focus.

In medical imaging, annotated datasets are sparse, expensive, and often pro-
tected by confidentiality agreements. Traditional supervised learning approaches
struggle under these conditions, as demonstrated in the previous chapter using
the MURA dataset, creating a significant barrier to the advancement of AI in
healthcare. SSL and Vision-Language Pretraining (VLP) offer a compelling al-
ternative by leveraging unannotated data, opening new avenues for innovation
in medical AI.
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This chapter aims to provide a comprehensive background that sets the stage
for the methods explored in this thesis to utilize raw data from the Cliniques
Universitaires Saint Luc without extensive manual annotation.

7.2 Unimodal self-supervision

Unimodal self-supervised learning focuses on developing models using single
types of data, such as text or images. These methods are crucial as they form the
foundation upon which multimodal models are built.

Text Self-Supervision In the field of natural language processing, two self-
supervised methodologies stand out: Masked language modeling and causal lan-
guage modeling.

Masked text modeling involves masking a certain percentage of words in a
sentence and training a model to predict these masked words based on the con-
text provided by the surrounding words. For example, in the sentence “The pa-
tient underwent a total ____ arthroplasty surgery”, the model should predict that
the masked word is likely to be a type of joint, such as “knee” or “hip”. BERT
(Bidirectional Encoder Representations from Transformers) is a well-known model
that uses this technique [35]. Some newer models such as RoBERTa (Robustly op-
timized BERT approach) are similar to BERT but include optimizations such as
more extensive training data and larger batch sizes [99].

Causal language modeling (also called generative pretraining), on the other
hand, involves training a model to predict the next word in a sentence, thereby
building a coherent sequence of text. Given a sentence fragment such as “The
surgeon inserted a nail in the ____”, the model is trained to predict what comes
next, such as “femur”. GPT (Generative Pre-trained Transformer) is central to this
approach [125, 17]. Successive versions, such as GPT-2, GPT-3, or GPT-4, include
larger datasets and more complex architectures, which improve their language
generation capabilities. Several open-source basic models exist as alternatives
to closed models, such as the LLaMA models [158] or Mistral/Mixtral [67, 68],
which offer similar capabilities with different architectures and training datasets.

Image Self-Supervision In computer vision, self-supervised learning techniques
are designed to capture the visual structure inherent in images. Contrastive learn-
ing involves training the model to distinguish between different representations
of the same image and those of different images. By applying enhancements
such as cropping, color jittering, and rotation to an image, multiple versions or
“views” of that image are created. The model then learns to bring the representa-
tions of these views closer together while pushing the representations of different
images apart, as shown in Figure 7.1. SimCLR (Simple framework for Contrastive
Learning of visual Representations) uses this method [25].
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Encoder Encoder Encoder

Pull together Push appart
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Fig. 7.1 Contrastive loss for image self-supervision. An image is transformed
through various augmentations, producing different views. The model aims to
“pull together” (encode similarly) augmented versions of the same image while
“pushing apart” (encode dissimilarly) augmented versions of different images.
This method helps the model recognize the underlying features of images for
better self-supervised learning.

Self-distillation Siamese networks, such as DINO (Self-DISTILlation with NO
labels), involve two neural networks where one serves as a “teacher” and the
other as a “student.” The teacher network, often a moving average of the student,
provides pseudo-labels to guide the student network [18]. The student learns to
match the teacher’s output for different augmented views of the same image.

Masked image modeling techniques, such as Masked Autoencoder (MAE)
and SimMIM, involve predicting the missing parts of an image from the visible
portions, inspired by the principles behind masked text modeling [50, 173]. For
instance, given an occluded radiographic image, the model learns to reconstruct
the masked or missing parts accurately.

These unimodal methods not only advance individual fields of natural lan-
guage processing and computer vision but also form the basis for more complex,
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Encoder Decoder

Fig. 7.2 Masked Image Modeling Process. The model predicts the masked parts
of an image based on the visible context.

integrated vision-language models.

7.3 Multimodal self-supervision

Vision-Language Pretraining (VLP) is a specialized form of self-supervised learn-
ing that simultaneously trains image and text representations by leveraging the
relationship between a given image and its related text. This synergy is essen-
tial for tasks such as medical report generation, where understanding both visual
and textual data is crucial.

One common approach to VLP is contrastive learning, where models like
CLIP [124], ALIGN [65], DeCLIP [92], and GLIP [91] are trained to align images
with their corresponding descriptions. This involves creating pairs of images and
texts that should be pulled closer in the embedding space while pushing non-
matching pairs apart. The contrastive learning framework thus learns meaning-
ful cross-modal representations by contrasting positive (matching) and negative
(non-matching) pairs, as illustrated in Figure 7.3.

In addition to contrastive learning, other methods employ pseudo-tasks such
as alignment prediction and masked multi-modal modeling. Models like Vil-
BERT [102] and VisualBERT [90] use these techniques to predict whether a given
image and text pair are aligned or to fill in missing elements in either modality.

Some advanced models combine multiple unimodal and multimodal self-
supervision techniques to enhance their performance. For instance, Flava [147]
incorporates various self-supervised tasks to create robust joint representations
of images and texts. The fusion between modalities can be performed at dif-
ferent stages of the model architecture. For example, early fusion models like
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Fig. 7.3 Process of Vision-Language Pretraining with contrastive learning. Two
images and their corresponding textual descriptions are encoded through respec-
tive image and text encoders. The model then aims to align the matching image-
text pairs (I1, T1 and I2, T2) while distinguishing non-matching pairs (I1, T2 and
I2, T1) by bringing matching pairs closer and pushing non-matching pairs apart
in the embedding space.

VilBERT [102] and VisualBERT [90] use a common encoder capable of handling
both text and images, while late fusion models like CLIP [124] employ separate
encoders for each modality, which are then integrated at a later stage. Intermedi-
ate fusion strategies also exist, where partial integration occurs at different levels
within the model [88, 147].

Training these models usually requires large-scale datasets of images and their
corresponding captions or descriptions. ALIGN [65], for instance, is trained on
1.8 billion image-text pairs, showcasing the extensive data requirements for ef-
fective VLP.

Image captioning is another tactic for VLP, where models such as SimVLM [168]
and Virtex [32] are designed to generate textual descriptions for images. These
models learn to capture the semantics of both images and texts by training on
large-scale datasets containing image-caption pairs. This is achieved through an
image encoder that embeds images as tokens, which can then be processed by a
transformer, all trained on a causal language modeling task.

Building on this approach, other models leverage pre-trained large language
models, initially trained on text-only causal language models, and learn to inte-
grate images that align with the language model’s existing representation. This
enables the exploitation of vast text datasets and the high performance of pre-
trained large language models, as well as the specificity of smaller text-image
datasets. A schematic representation of a classical vision-language model pipeline
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is presented in Figure 7.4.

Image
Encoder

Language model

(Adapter) surgeonsThree<s> performing

surgeonsThree performing surgery

Fig. 7.4 A schematic representation of a vision-language model architecture for
caption generation. The image showcases the integration of an image encoder
and a language model using an intermediate adaptive layer. Tokens generated
from the image using the image encoder are passed through the adapter before
being fed into the language model in addition to previously generated text to-
kens, if any, or a special beginning of sentence token. The language model then
iteratively predicts the next token of the caption.

This can be achieved while keeping the language model frozen using methods
such as Frozen [159], or by keeping both the image encoder and text decoder
frozen and training an intermediate adaptive layer to transfer information from
the image to the text model using methods like BLIP2 [87] or Flamingo [7].

Some models, such as Llava [97, 96], take a more flexible approach by unfreez-
ing the language model and proposing a method to preprocess image-caption
pairs to produce a synthetic visual question answering dataset using a pre-trained
large language model. Other models, like idefics2 [81], focus on improving im-
age captioning and visual question answering performance by incorporating ad-
ditional training objectives and techniques, this particular model is trained on the
Obelics dataset [80], a large-scale dataset of object-centric image captions.
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More recent models, such as Florence 2 [171], have explored the use of VLP for
a broader range of tasks, including image-text retrieval, visual question answer-
ing, object detection, segmentation, dense captioning, phrase grounding, and re-
ferring expression comprehension.

7.4 Medical applications of self-supervised Vision-Language Pre-
training

Multiple adaptations of VLP methods to clinical datasets have been envisioned.
ConVIRT [181] is a precursor in the application of contrastive VLP. Recent ad-
vancements have extended beyond global contrastive alignment between image
and text by the incorporation of local alignment as exemplified by GLORIA [60],
LoVT [110], MGCA [163] or PRIOR [27].

Most previous works on medical VLP have been validated on chest radio-
graphs, using (Bio)ClinicalBERT [8] as a text encoder. (Bio)ClinicalBERT has
been trained on medical reports from the MIMIC III dataset [71] and shows su-
perior performance in comparison to a biomedical model, trained on biomed-
ical domain corpora such as PubMed abstract and PMC full-text articles, like
BioBERT [83]. Both ClinicalBERT and BioBERT are trained on English texts.

In contrast, our work considers French documents and bone radiography.
This poses multiple challenges since, at the time of writing, many useful tools
are English-only (e.g. CheXpert labeler [62], RadGraph [63], negBIO [119]).

To exploit French medical documents in the frame of a vision-language pre-
training, we considers two alternatives in the next chapter, corresponding to
French-only models and multi-lingual models.

On the one hand, French-only models, such as CamemBERT [105], have been
adapted to the biomedical domain with models like Dr BERT [77] or CamemBERT-
BIO [156]. However, the amount of data used for training these models is smaller
to their English counterparts (e.g., 4.5B + 13.5B words for BioBERT, 3.1B words
for PubMedBERT [48], versus 1B for NACHOS used by DrBERT, and 413M for
CamemBERT-bio).

On the other hand, multimodal languages such as mBERT [35], XLM-Roberta
(XLMR) [29], or MLUKE [131] benefit from having more data for pretraining than
French-only models. Moreover, they enable cross-lingual transfer of knowledge.
Methods like Self-alignment pretraining (Sap) [95] have been applied to multi-
lingual general models such as XLMR [29], showing promising performance on
tasks such as Biomedical Entity Linking. This pretraining involves aligning the
embeddings of synonyms of concepts from the Unified Medical Language System
(UMLS), a compendium that integrates and harmonizes various medical termi-
nologies and classifications. Models of this kind become particularly valuable
when biomedical resources for a specific language are scarce.
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In the medical domain, particularly in radiography, large-scale datasets are gen-
erally limited to English reports and to specific body areas. To the best of our
knowledge, the only large publicly available radiography-report dataset is MIMIC-
CXR[70], containing 377,110 Chest Xray images and their corresponding free-text
reports in English. This raises a significant challenge when applying the models
derived from those data to images other than Chest Xrays.

Moreover, privacy regulations such as the General Data Protection Regulation
(GDPR)[130] impose strict limitations on the distribution and sharing of medical
databases containing sensitive patient information. To address this limitation,
one viable approach would be to utilize local data available within a given hos-
pital or healthcare institution. Hospitals typically maintain their own databases
of medical images and associated reports, which are collected as part of routine
clinical practice. While these local datasets may not be as extensive as publicly
available datasets, they still contain valuable information that can be leveraged
for training and evaluating machine learning models.

Therefore, in this chapter, we propose to exploit bone X-Rays paired with re-
ports sourced from the Saint Luc University Hospital. This is achieved in two
steps. First, the latent spaces associated with deep vision and language encoders
are aligned using 219,675 paired studies from our hospital (corresponding to
789,397 individual X-ray images), resulting in a pretrained vision and language
model that is shown to outperform alternative baselines when fine-tuned on a
downstream task benchmark. Second, pseudo-labels are extracted from the tex-
tual reports, using a generative large language model, to learn how to solve a
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specific visual task based on the features computed by the pretrained vision en-
coder, without any manual annotation. Additionally, our work demonstrate the
feasibility of the approach with another language than English. Therefore, it de-
velops a novel open source method for pseudonymizing French medical reports.

The main contributions in this chapter are:

• We provide a comprehensive guide on leveraging medical data from a sin-
gle hospital, outlining our step-by-step approach from raw data to a trained
model, with a particular focus on the anonymization process, and demon-
strating how self-supervised learning can be effectively applied to this data.
In particular, a French adaptation of the DEDUCE [107] method was devel-
oped and is made available1 to facilitate the pseudonymization of medical
reports in French.

• We leveraged bone radiographs and their associated French reports to pre-
train a versatile vision-language model, to be used as a backbone for a vari-
ety of tasks trained with limited supervision. The obtained representation,
when fine-tuned to address a downstream task, is shown to result in perfor-
mance that are competitive with models trained with a significantly larger
amount of human supervision.

• To bring the vision-language self-supervision beyond pretraining, we trained
a bone fracture detection without any manual annotation using pseudo-
labels extracted from the local radiology reports by a large language model.

This work is submitted for review as a journal paper.

8.2 Methodology

This section first presents data preprocessing in Section 8.2.1, followed by Vision-
Language pretraining in Section 8.2.2, and pseudo-label training in Section 8.2.4.

A general graphical overview is presented in Figure 8.1.

8.2.1 Data preparation

This section describes the steps envisioned to create datasets that are relevant for
vision language pretraining, and bone fracture pseudo-label generation, respec-
tively.

In order to protect the privacy of patients, following the GDPR[130], anonymiza-
tion techniques are employed when possible, and we resort to pseudonymization
when complete anonymization is not feasible.

1https://github.com/aenglebert/deduced
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Fig. 8.1 General overview: The Electronic health records (EHR) data is lever-
aged to generate a pretraining dataset (Block 1), enabling self-supervised vision-
language pretraining of generic backbone models (Block 2). Subsequently, these
backbones can be fine-tuned using external datasets (not depicted in the figure),
as demonstrated in Section 8.3.3. To further develop the self-supervision capabil-
ities, a large language model is used to derive task-specific pseudo-labels (Block
3) that are used to train the head of the pretrained vision model backbone to solve
the task of interest (Block 4).

Images preprocessing
Images from a hospital are typically stored in a PACS (Picture Archiving and
Communication System). To address situations where imaging devices embed
text containing sensitive information within images, such as patient names in
dose reports, the EasyOCR2 framework is utilized to detect and extract text from
images, with the goal of identifying potentially problematic images.

Subsequent manual inspection of the extracted texts revealed that images con-
taining private patient information exhibited significantly more text than conven-
tional X-ray images, which typically include simple indications such as laterality
or patient position. As a consequence, applying a simple threshold to the amount
of text found in the image appeared to be sufficient to filter out images raising
privacy issues.

Reports preprocessing
The radiology reports were filtered to only include those that describe the specific
images we have previously obtained.

2https://github.com/jaidedai/easyocr
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Given that the reports are stored in PDF format, the Pdfminer Python module
was employed to extract text while simultaneously filtering out headers and foot-
ers containing administrative information based on the hospital’s specific tem-
plates.

Despite these precautions, protected health information (PHI) can still be con-
tained in the text, such as the patient’s name and date of birth. Manual elimina-
tion of this information from the large volume of documents would be imprac-
tical. Consequently, the decision was made to create surrogates documents [19]
that keep the useful information from the originals but with fictitious PHIs. DE-
DUCE [107], a rule-based tool designed for identifying PHIs in Dutch medical
texts, was adapted to work with French3.

To ensure authenticity in the surrogate data, last names and first names were
sourced from the Belgian Direction générale Statistique (StatBel)4 and the French
Institut national de la statistique et des études économiques (INSEE). For health in-
stitution names, lists of nursing homes and hospitals from the Belgian Institut
national d’assurance maladie invalidité (INAMI) were used. A list of all cities in Bel-
gium provided addresses. To further protect privacy, a random shift (between
-1000 and +1000 days) was applied to dates, while phone numbers, URLs, and
email addresses were simply removed.

Pseudo-labels creation

In order to train a model on a specific task, a labeled dataset is needed. To gener-
ate such dataset without manual annotations, we have considered using a large
language model (Lama 3 70B [158]) to create pseudo-labels from the textual re-
ports associated with images in the train set. Since Llama 3 has been released as
open source, data can be processed locally without sending GDPR protected data
to third party. The Llama 3 model was prompted to identify the presence of bone
fracture for each radiology report and output the result as 0 or 1, respectively for
the absence or presence of bone fracture. To filter out ambiguous results, a simple
sampling-and-voting method [89] was used by repeating the process three times
with a stochastic nucleus sampling [57]. Only unambiguous reports (i.e. reports
with identical labels for the three extractions) were kept. The resulting labels can
then be assigned to the images described in each report.

8.2.2 Vision-Language Pretraining

This section describes how the representation of medical images can be adapted
to fit the representation of (French) clinical reports.

Figure 8.2 illustrates the VLP and downstream tasks evaluations.

3available at https://github.com/aenglebert/deduced
4https://statbel.fgov.be/fr/themes/population/noms-et-prenoms
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Fig. 8.2 Vision-Language Pretraining (VLP) consists in the alignment of the em-
beddings for both X-Rays and French Reports. Once pretrained, the encoders can
be adapted to different downstream tasks.

Vision-language pretraining (VLP)

In this work, we employed a traditional bi-encoder global contrastive framework,
analogous to that proposed by ConVIRT [181]. Previous works such as Con-
VIRT [181], GLORIA [60], MGCA [163] or PRIOR [27] utilized a (Bio)ClinicalBERT [8]
as the text encoder and ResNet50 [51] pretrained on ImageNet [136] as initializa-
tion for the image encoder. However, this text encoder is designed for English
language and is consequently not ideally suited to the reports of our hospital.
Therefore, we explored French and multilingual alternatives to define our text en-
coder. For the image encoder component, we opted for the more recent ViT [36]
model instead of a ResNet. More details about the explored text and image en-
coders are provided in Section 8.2.2 and Section 8.2.2, respectively. The output
CLS (classification token) of the image and text encoders serves as a global rep-
resentation of the image and text, respectively, and are each linearly projected as
a 512-dimensional vector. The objective of the Vision-Language Pretraining is to
bring closer the representation of images to the representation of the correspond-
ing report by fine-tuning both image and text encoders. In practice, a CLIP loss,
as described by Radford et al [124], is employed to minimize the cosine distance
between image and text vectors from the same study, while simultaneously re-
ducing the distance between text and image vectors from different studies. In
our work, a study denotes the outcomes of a radiological examination. Hence, it
is specific to one patient and to one visit to the hospital, and includes one report
and potentially multiple X-ray images.

In preliminary experiments, we evaluated the effectiveness of using one ran-
dom image from each study compared to utilizing all images from the study and
pooling the results (either by averaging the CLS tokens or using attention pool-
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ing). It revealed that, the benefits of using multiple images pretraining were not
clearly evident, while the complexity of the framework increased. Consequently,
we opted to randomly select one image for each study in a batch.

The source code for the vision-language pretraining is available at https://
github.com/aenglebert/multimodal_bone.

Text encoder and self-alignment pretraining (Sap)
We selected three candidate text encoders:

• XLM-Roberta (XLMR) [29], which is a multi-lingual text encoder based on
Roberta [99] and trained using Masked Language Modeling using texts in
100 languages.

• MLUKE [131], a multi-lingual version of LUKE [176] trained with Masked
Language Modeling and Masked Entity Prediction on 24 languages.

• Dr BERT [77], a french encoder based on CamemBERT [105] and trained
using Masked Language Modeling on a French biomedical corpus.

We also augmented the comparison with the self-alignment pretraining method
(Sap) [95]. In this method, a pretraining consists in the alignment of the em-
beddings of synonyms of concepts from the Unified Medical Language System
(UMLS), a compendium that integrates and harmonizes diverse medical termi-
nology and classifications. For XLMR, the original XLMR SapBERT model was
used, and we pretrained MLUKE and Dr BERT using the source code of the au-
thors with the parameters described in their paper and UMLS 2020AA, as imple-
mented in the original code.

Image Encoder
The image encoder was initialized from a ViT B16 224x224 pretrained on Ima-
geNet [36]. Multiple resolutions have been explored, 224x224 as the native resolu-
tion of the model, and resolutions increased to 336x336 and 448x448. To increase
the resolution of the image encoder, the 224x224 image encoder is first pretrained
with Vision-Language pretraining as explained in Section 8.2.2 and then modified
in two possible ways:

• Interpolation of the position embeddings [36] (named ViT B16 336 and ViT
B16 448 in the following). This technique involves the interpolation of the
trained position embeddings to enable the input of a greater number of to-
kens to the vision transformer, thereby accommodating images with higher
resolutions, all while preserving their semantic significance.

• Increasing of the patch size using the pseudoinverse resizing methods de-
scribed in FlexiVit [14]. This approach ensures the retention of the original
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number of tokens, while each token covers a larger number of input pix-
els. Unlike FlexiVit, the resizing is performed once to initialize a ViT B24
336 and a ViT B32 448 models. This method requires less computation in
comparison to interpolating the position embeddings.

The vision-language pretraining is then continued with images of increased
resolution.

8.2.3 Downstream tasks

This section introduces the different downstream tasks considered to evaluate the
performance of the pretraining using external datasets.

The source code for the different downstream tasks is available at https://
github.com/aenglebert/ortho_vlp_eval.

Trained tasks
For trained task, we adopted an evaluation strategy similar to previous stud-
ies [60, 110, 163, 27], with two settings: linear classification on a frozen image en-
coder, and full fine-tuning. Two tasks are performed depending on the datasets,
classification or regression. To assess data efficiency, we compared training using
either the entire training set or a smaller part of the training set (from 1 to 10%).

The objective was to evaluate performance in relation to pretraining and not
to obtain maximal performance on the downstream tasks per se. For the linear
evaluation, a single linear layer was appended to the CLS token of the image
encoder to facilitate classification.

Zero-Shot Tasks
For the zero-shot tasks, the vision-language pretrained models are utilized with-
out additional fine-tuning. Two tasks are investigated: zero-shot classification
and zero-shot retrieval. In zero-shot classification, a text prompt is classically as-
sociated to each class, and images are assigned to the class whose text prompt
embedding is the closest (in cosine distance) to the image embedding. In zero-
shot retrieval, a fixed number of images with the closest embedding from a class
text prompt embedding are retrieved. In practice, this is achieved by leverag-
ing a measurement of distance between the projected CLS (classification token)
from both encoders in the multi-modal space, specifically, for the image under
consideration and for the reference prompt associated with a given class.

Four prompting strategies were kept for the evaluation:

• Text binary: A simple prompt with the name of the target class is used. The
negative being a "normal" prompt.

• Text enumeration: The class prompt is constructed as a comma separated
list of sub-classes of the target class.
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• Latent minimum: The same sub-classes are encoded as separate prompts
by the text encoder. Multiple embedding thus exists that belongs to the
same target class.

• Latent mean: The same sub-classes are encoded separately by the text en-
coder. The target class embedding is produced by averaging the sub-classes
embedding.

For the classification task, the predicted class is assigned based on the distance
in the multi-modal space between the image and a reference prompt (cfr. zero-
shot downstream tasks in Figure 8.2).

For the retrieval task, the top k images with the lowest distance from the text
query in the multi-modal space are retrieved. Precision is computed across var-
ious values of k. This evaluation is closer to zero-shot experiments presented in
previous works on the CheXpert 8x200 dataset [181].

8.2.4 Pseudo-label training

To demonstrate that a task-specific model can be trained solely from available
clinical data, without resorting to dedicated manual annotation, we have consid-
ered the generation of pseudo-labels using a LLM. We focused on the common
and clinically significant task of bone fracture detection, which is one of the pri-
mary reasons for bone radiography. Images from the same hospital as the one
considered during the VLP process (but not used during VLP) have been consid-
ered to define a training and test set for this task. The label of the test images have
been manually corrected and validated. For the training set. Labels were auto-
matically generated by processing reports using a Llama3 70B model [158] (see
Section 8.2.1 for details). Regarding the task-specific model architecture, a single
linear classification layer was trained on top of the frozen encoder. The training
was conducted using random subsets of the training data of various sizes, re-
peated 8 times per model for a given number of training images, allowing for the
computation of a confidence interval.

8.3 Experimental validation

This section provides an overview of our experimental procedures and results.
In Section 8.3.1, we detail the data processing steps, including the creation of the
pretraining dataset and pseudo-labeled dataset. In Section 8.3.2, we outline the
Vision-Language Pretraining (VLP) process, followed by evaluations on down-
stream tasks in Section 8.3.3. Section 8.3.4 describes the training on pseudo-labels.
Finally, Section 8.3.5 explores the latent space of the models to gain insights into
their performance.
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Table 8.1 PHI identification metrics

Count Precision Recall F1-score

Patient names 132.0 0.96 1.00 0.98
Person names 100.0 0.66 0.94 0.78
Locations 52.0 0.98 0.86 0.92
Institutions 23.0 0.76 0.83 0.79
Dates 427.0 0.99 0.98 0.98
Ages 39.0 0.86 0.97 0.91
ID numbers 19.0 0.95 1.00 0.97
Phone numbers 47.0 0.98 0.93 0.96
URL/e-mails 13.0 1.00 1.00 1.00

8.3.1 Data processing

Dataset for vision-language pretraining (VLP)
We obtained approval from the Hospital Ethics Committees (Belgian registration
number B403201523492) to conduct this study, which involves the retrospective
analysis of data from patients treated in the orthopedics department at Cliniques
Universitaires Saint Luc in Brussels.

Our initial step involved identifying relevant patients by filtering the PACS
(Picture Archiving and Communication System) to maintain patients who un-
derwent imaging studies prescribed by the Orthopedic surgeons of the hospital,
and related to osteoarticular conditions. This process was performed for imag-
ing studies from February 2002 to the 31 of December 2021. To ensure data
anonymization, privacy related metadata were systematically removed and a
new unique random identifier was assigned to each individual patient and to
each study. Following the use of the EasyOCR framework for OCR detection and
the removal of images containing more than 35 characters, a manual review of the
remaining text extracts did not reveal any Protected Health Information (PHI).

The documents were restricted to radiology reports and aligned with X-ray
studies based on their dates (before pseudonymization). In cases where multiple
studies and X-ray reports exist for a specific date, we align them in chronolog-
ical order while disregarding ambiguous instances that necessitate manual ex-
amination. After parsing from pdf and pseudonymization using our modified
DEDUCE described in Section 8.2.1, 100 reports were randomly selected in the
dataset and manually annotated for patient names, person names, locations, in-
stitutions, dates, ages, id numbers, phone numbers and url/e-mails. The pro-
posed method was then compared with the annotations, the precision, recall and
F1-score were computed for each PHI with results available in Table 8.1.

The process effectively removes sensitive information from pseudonymized
documents, with high recall scores for critical data points like patient names (1.0)
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and ID numbers (1.0). Recall scores for institutions (0.83) and locations (0.86) are
slightly lower due to partial annotation. Precision is generally lower, with person
names having the lowest precision (0.66) due to misannotation as locations, and
institutions having a precision of 0.76 due to the opposite issue.

Surrogate documents were generated by inserting fictional, yet realistic, pro-
tected health information (PHI) into the pseudonymized documents, which were
then included in the dataset.

The resulting number of paired studies amounts to 219,675, corresponding to
789,397 individual X-ray images in total.

A set of 4096 studies was excluded from any self-supervised training, and
used to test for pseudo-label training in the next section.

Pseudo-labeled dataset for task-specific supervision
This dataset was constructed using images not seen during VLP. For this purpose,
4096 reports with their related X-Rays were left out.

To produce a supervision, the reports were processed using a Llama 3 70B
model [158], with GPTQ 4bits quantization [43]. A simple sampling-and-voting
method [89] with a self-ensemble of size 3 was used using a nucleus sampling [57]
with a top p sampling with probability set to 0.95 and a softmax temperature of
0.8. We then keep only the labeled reports with consistent results for the three
runs, resulting in 3802 labels. We then randomly sampled to keep only one la-
beled report per patient, resulting in 1351 labeled studies.

A test set was reserved, containing 256 labeled studies. The remaining 1095
studies were used for the validation and train set.

8.3.2 Vision-language pretraining on Bone X-Rays and French Reports

The Vision-Language pretraining (VLP) described in Section 8.2.2 was performed
on the pretraining dataset described in Section 8.3.1.

A validation set composed of 4096 studies was excluded from the training set
and used to adapt the learning rate and stop training on plateau. The training set
was then composed of 215,579 studies.

The training was executed on a single NVIDIA A100 80GB GPU using Py-
Torch 2 with fp16 mixed precision. A batch size of 96 was employed for the initial
224x224 resolution, alongside a LION [26] optimizer quantized in 8bits [33] with
a learning rate of 1e−5, which was reduced by a factor of 2 following a plateau
of 3 epochs of validation loss. Additionally, a weight decay of 1e−5 was applied.
Training ceased after 10 epochs without any improvement in validation loss, and
the model exhibiting the best validation loss was retained. The training with the
336x336 and 448x448 resolutions was restarted from the training described above
with a batch size kept as 96 for the ViT B24 336 and B32 448, but was reduced
to 64 for the ViT B16 336 and to 48 for the ViT B16 448 models due to increased
memory requirements. A learning rate of 1e−6 was used for this second training
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Table 8.2 Downstream tasks datasets

Zero-shot Trained
Retrieval Classif. Classif. Regression

Datasets

MURA[127] ✓ ✓ ✓ -
FracAtlas[1] ✓ ✓ ✓ -
OAI KL[113] - - ✓ -
OAI HKA[113] - - - ✓
RSNA Bone Age[49] - - - ✓

phase with the same learning rate scheduling and stopping strategy as the first
phase.

Data augmentations included a random resized crop to 512x512 followed by a
normalization (mean 0.5, std 0.25), an horizontal flip (p = 0.5), an affine transfor-
mation (random rotation from −20 to +20◦ and translation from −10 to +10%),
brightness and contrast adjustment (random from 0.8 to 1.2 for both), Gaussian
blur (random sigma from 0.1 to 3.0), and final resizing to 224x224, 336x336 or
448x448 depending on the image encoder resolution.

Performance evaluations were carried out on the downstream tasks specified
in Section 8.3.3.

8.3.3 Evaluation on downstream tasks

It is crucial to note that our objective is not to reach state of the art performance
for each dataset but rather to assess the effectiveness of the pretraining process.
With this objective in mind, no data augmentation was conducted beyond nor-
malization and resizing to the target resolution. In addition to an evaluation on
the validation dataset used in Section 8.3.4, 5 more datasets are used for these
evaluations, they are summarized in Table 8.2.

Trained classification
A linear layer has been added to the pre-trained image encoder, to be trained with
a binary cross-entropy loss function, weighted by the ratio between positives and
negatives in the training set. The initial learning rate was set to 1e-4 and halved
after 3 epochs without a decrease in validation loss. Training ceased after 10
epochs without improvement in validation loss, with the best-performing model
retained for evaluation on the test set.

Two training scenarios are considered. In the first one, the vision encoder is
frozen, and only the linear projection layer is updated during training. In the
second one, after having been frozen for 200 steps, the image encoder is unfrozen
and fine tuned with a learning rate reduced to 1e-6 to mitigate rapid overfitting
of the Vision Transformer (ViT) model.

The results for the trained classification task are shown in Table 8.3 for the lin-
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Table 8.3 Classification results obtained with linear projection of a frozen vi-
sion encoder

FracAtlas MURA OAI KL
(AUROC) (AUROC) (AUROC) Avg ∆

Train set ratio 10% all 1% 10% all 10% all

A. General initialization methods (ViT B16 224)
ImageNet Init. 78.6 86.8 70.1 81.1 83.0 58.6 67.8 0
Random Init. 62.6 66.2 56.7 57.4 58.7 51.9 53.8 - 15.7

B. English based VLP (ResNet50, results from the paper [181])
ConVirt - - 81.2 85.1 87.6 - - -

C. Our French based VLP - Text encoder (+ ViT B16 224)
Dr BERT 87.3 89.8 81.2 84.4 86.2 68.7 71.7 + 6.2
Dr BERT+Sap 89.3 90.8 82.2 84.9 86.6 70.5 73.0 + 7.3
MLUKE 88.8 91.8 80.3 84.7 86.4 67.1 70.5 + 6.2
MLUKE+Sap 90.5 92.8 82.2 84.8 86.9 68.7 71.6 + 7.4
XLMR 88.7 91.5 80.5 84.3 86.0 68.1 71.5 + 6.4
XLMR+Sap 88.2 91.0 83.2 85.7 87.0 69.8 72.4 + 7.3

D. ViT resolution increases to 336x336 from C.
B16 XLMR+Sap 92.2 94.4 85.1 87.1 88.3 74.3 76.2 + 10.2
B16 mluke 90.2 93.1 84.9 86.4 87.8 71.9 74.5 + 9.0
B24 XLMR+Sap 89.7 92.3 83.9 86.1 87.5 70.3 72.8 + 8.1
B24 mluke 89.4 92.6 83.0 85.5 87.2 69.2 72.1 + 7.5

D. ViT resolution increases to 448x448 from C.
B16 XLMR+Sap 91.2 94.2 85.6 86.7 88.4 74.5 76.2 + 10.1
B16 mluke 89.8 93.0 84.7 86.9 88.3 73.0 75.2 + 9.3
B32 XLMR+Sap 89.2 92.5 83.6 86.0 87.4 70.1 72.6 + 7.9
B32 mluke 89.2 92.2 83.6 85.7 87.3 69.4 72.2 + 7.7

Comparison with text encoders presented in Section 8.2.2, with our without text
synonym self-alignment (Sap). Different training set ratios are considered to eval-
uate how the amount of training samples impacts the benefit obtained from VLP
pretraining. As MURA is an order of magnitude larger than the other datasets, a
ratio of 1% has been applied in addition to the 10% ratio. Avg ∆ denotes the aver-
age difference to ImageNet model. All vision-language pretrained (VLP) models
performs better than ImageNet ViT, with less data. Our models trained with
French reports are also on par with ConVirt for MURA dataset at 224x224 resolu-
tion. Resolution increase improves the results.

ear projection appended to frozen models and Table 8.4 for fine-tuning case. Dif-
ferent training set ratios are considered to evaluate how the amount of training
samples impacts the benefit obtained from VLP pretraining. The results produced
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Table 8.4 Classification performance obtained with fine-tuning of the vision
encoder, followed by a linear projection.

FracAtlas MURA OAI KL
(AUROC) (AUROC) (AUROC) Avg ∆

Train set ratio 10% all 1% 10% all 10% all

A. General initialization methods (ViT B16 224)
ImageNet Init. 80.3 88.6 70.3 81.8 87.0 66.1 75.3 0
Random Init. 66.6 69.0 57.5 60.0 64.9 51.8 54.1 - 17.9

B. English based VLP (ResNet50, results from the paper [181])
ConVirt - - 81.3 86.5 89.0 - - -

C. Our French based VLP - Text encoder (+ ViT B16 224)
Dr BERT 88.5 91.4 81.2 85.8 89.5 71.6 77.6 + 5.2
Dr BERT+Sap 89.5 93.2 82.0 85.0 88.9 72.4 78.1 + 5.7
MLUKE 88.9 92.4 78.4 84.3 88.8 71.2 78.1 + 4.7
MLUKE+Sap 89.3 93.2 82.0 86.0 89.6 71.5 77.0 + 5.6
XLMR 89.7 93.9 79.9 84.1 89.6 71.9 77.6 + 5.3
XLMR+Sap 89.9 92.4 82.7 85.9 89.3 71.6 78.1 + 5.8

D. ViT resolution increases to 336x336 from C.
B16 XLMR+Sap 93.3 96.1 84.3 88.0 90.8 74.7 82.0 + 8.5
B16 MLUKE 90.5 93.3 82.3 86.7 90.2 74.5 80.2 + 6.9
B24 XLMR+Sap 90.3 93.3 82.5 86.3 89.5 72.0 78.5 + 6.1
B24 MLUKE 89.6 93.5 80.3 85.6 89.5 71.6 77.5 + 5.4

D. ViT resolution increases to 448x448 from C.
B16 XLMR+Sap 91.3 95.3 84.4 87.6 90.5 75.3 82.3 + 8.2
B16 mluke 90.6 94.1 82.2 86.8 90.5 74.7 80.2 + 7.1
B32 XLMR+Sap 91.2 93.0 82.7 85.9 89.4 71.8 78.7 + 6.2
B32 mluke 89.3 93.3 80.8 85.6 89.3 71.6 77.7 + 5.4

Comparison with the text encoders presented in Section 8.2.2, with our without
text synonym self-alignment (Sap). Different training set ratios are considered
to evaluate how the amount of training samples impacts the benefit obtained
from VLP pretraining. As MURA is an order of magnitude larger than the other
datasets, a ratio of 1% has been applied in addition to the 10% ratio. Avg ∆ de-
notes the average difference to ImageNet model. All VLP models performs better
than ImageNet ViT with less data. Our models trained with French reports are
also on part with ConVirt for MURA dataset at 224x224 resolution. Resolution
increase improves the results.

by our models always show superior performances in comparison to models ini-
tialized from ImageNet or from scratch, both in linear evaluation and fine-tuning.
At a resolution of 224x224, our results are comparable or better than results from
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the ConVirt paper, where an English-based dataset of bone X-Rays was used. The
comparison is limited since, although the settings are similar, they are not iden-
tical. Notably, the architecture of the image encoder and the pretraining datasets
are different.

The Sap process tends to improve the classification results of the three en-
coders. Among the different text encoders used as initialization, all are perform-
ing similarly well on average when coupled with Sap for the 224x224 resolution
comparison, with small variations on the individual datasets.

The increase of resolution during the vision-language pretraining from 224x224
to 336x336 has a positive impact on the performances. Keeping the patch size of
16x16 while increasing the resolution by interpolating the position embedding
requires more computations but shows better performances in comparison to in-
creasing the patch size to 24x24, allowing to keep a complexity similar to a ViT
B16 on 224x224 images.

Further increasing the resolution to 448x448 does not improve significantly
the results, and is often detrimental in comparison to a 336x336 resolution. A
possible explanation for this phenomenon could be related to the reduction of
the batch size during vision-language pretraining for the ViT B16 448 models.

Regression
In the regression context, a single linear layer is appended to the CLS token of
the image encoder, with additional scale and bias parameters initialized using
the mean and standard deviation of the training set for each dataset. To train the
resulting model, a smooth L1 loss function [61] is used, and the mean absolute
deviation (MAD) serves as the test prediction evaluation metric.

In practice, as for the classification case, two training scenarios are considered.
The first one keeps the encoder frozen, while the second fine tunes it.

For the RSNA Pediatric Bone Age dataset, the linear layer takes as an addi-
tional input the sex of the patient. We compare the effectiveness of training with
either the entire training set or 10% of both the RSNA Pediatric Bone Age and
OAI HKA Angles datasets. As with the classification task, data augmentation
is minimized, involving only resizing to the target resolution and normalization
with a mean of 0.5 and a standard deviation of 0.25. For the OAI HKA mea-
surement exclusively, resizing was conducted while preserving the aspect ratio
by padding the image. This approach aimed to prevent distortion of the angles
within the image.

The results of the regression task can be seen in Table 8.5.
For the RNSA bone age estimation, our pretraining is beneficial in all fine-

tuning cases in comparison to an ImageNet or random initialization, and with all
or 10% of the training set. The increase of resolution is also beneficial, but only
when we scale the number of token by interpolating the position embeddings and
keeping the 16x16 patch size. Increasing the resolution by changing the patch size
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Table 8.5 Comparison of VLP models to ImageNet for regression tasks.

dataset OAI HKA RSNA bone age
(Mean error in °) (Mean error in months)

eval lin. ft lin lin ft ft
Train ratio all all 10% all 10% all

A. General initialization methods (ViT B16 224)
ImageNet Init. 2.04 1.68 16.20 14.99 15.56 12.08
Random Init. 2.66 2.61 32.08 31.35 32.37 22.71

C. Our French based VLP - Text encoder (+ ViT B16 224)
Dr BERT 2.33 1.64 16.43 15.37 14.91 11.45
Dr BERT+Sap 2.24 1.63 15.85 14.54 15.16 11.39
MLUKE 2.37 1.58 16.56 15.51 14.99 11.34
MLUKE+Sap 2.26 1.69 15.86 14.71 15.00 11.55
XLMR 2.26 1.62 16.34 15.29 15.32 11.59
XLMR+Sap 2.40 1.56 15.50 14.46 14.78 11.41

D. ViT resolution increases to 336x336 from XLMR+Sap in C.
ViT B16 2.27 1.56 14.73 13.77 14.23 10.88
ViT B24 2.31 1.60 15.51 14.65 14.98 11.15

D. ViT resolution increases to 448x448 from XLMR+Sap in C.
ViT B16 2.31 1.54 14.43 13.41 13.51 10.15
ViT B32 2.36 1.58 15.41 14.49 15.04 11.26

Two training scenarios are envisioned: linear layer training with frozen encoder
(lin.), and entire network fine-tuning (ft). Our VLP models do not perform better
than ImageNet for angle measurement, probably due to scale invariant pretrain-
ing. The Bone age estimation resulting from the linear projection is improved by
the VLP pretraining when the full model is fine-tuned, but not with fixed encoder.
Resolution increases performances for most scenarios.

does not yield better results.

Concerning the OAI HKA measurement, the error rate is higher than the basic
ImageNet model in linear evaluation, and only a full fine-tuning allows to pro-
duce similar performances on 224x224 images. The increase of resolution has no
effect for the linear evaluation, and slightly increases the performances for the
fine-tuned models. These results are not surprising given that the aspect ratio of
the images is modified during the data augmentation of our vision-language pre-
training. This makes our models invariant to this kind of deformations but also
impedes the ability to measure angles.
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Table 8.6 Zero-Shot classification on MURA with different image and text en-
coders.

Text Text Latent Latent
Binary Enumeration Minimum Mean

A. VLP pretraining - Text encoder (+ ViT B16 224)
Dr BERT 67.4 66.8 64.8 65.6
Dr BERT+Sap 69.2 76.9 68.8 76.8
MLUKE 73.9 74.7 72.3 74.6
MLUKE+Sap 68.0 72.5 67.0 68.9
XLMR 60.3 72.6 69.4 68.1
XLMR+Sap 65.4 78.4 73.1 72.9

B. VLP pretraining - 336x336 Image encoder & Text encoder
B16 & XLMR+Sap 64.0 79.2 74.4 74.2
B24 & XLMR+Sap 64.0 78.1 72.7 73.0
B16 & MLUKE 75.9 75.9 74.7 77.4
B24 & MLUKE 74.4 74.3 73.7 75.0

C. VLP pretraining - 448x448 Image encoder & Text encoder
B16 & XLMR+Sap 62.7 79.2 73.4 74.0
B32 & XLMR+Sap 65.5 78.5 72.2 72.4
B16 & MLUKE 74.6 74.5 73.5 77.0
B32 & MLUKE 73.9 74.1 73.5 75.0

Sap denotes the use of textual synonyms self-alignment. Four strategies have
been considered to localize normal/abnormal classes in the embedding space,
from text prompts. ’Text binary’ simply uses the name of the classes (normal/ab-
normal) as text prompts. ’Text enumeration’ uses a prompt consisting of a list
of pathologies (see text for details) separated by commas for the abnormal class.
’Latent minimum’ uses individual embeddings for each sub-classes. Eventually,
’latent mean’ averages, in the embedding space, the prompts derived from each
pathology associated to the abnormal class. Best overall in Bold, best for each
strategy in underline. MLUKE performs best with latent mean strategy while
XLMR + Sap is best with text enumeration. Performances increase with the
336x336 resolution, the 448x448 resolution does not improve.

Zero-Shot Classification
This task was explored using MURA and FracAtlas datasets. We chose not to
pursue exploration on the OAI KL dataset for this task. This is because, un-
like distinctive classes such as the presence or absence of bone fractures, the
semi-quantitative KL scale poses a bigger challenges in being accurately reflected
through text prompts.

Regarding the MURA dataset, the class prediction associated to a study is gen-
erated by averaging the results for all images within a given study. This dataset
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Table 8.7 Zero-Shot classification on FracAtlas with different image and text
encoders.

Text Text Latent Latent
Binary Enumeration Minimum Mean

A. VLP pretraining - Text encoder (+ ViT B16 224)
Dr BERT 56.3 49.3 51.6 47.2
Dr BERT+Sap 72.7 56.1 47.8 56.6
MLUKE 72.8 62.0 67.3 66.9
MLUKE+Sap 61.1 55.2 41.3 52.4
XLMR 70.7 62.5 58.3 60.4
XLMR+Sap 61.3 57.0 57.7 59.0

B. VLP pretraining - 336x336 Image encoder & Text encoder
B16 & XLMR+Sap 71.0 66.2 65.8 68.6
B24 & XLMR+Sap 62.6 59.1 60.8 61.1
B16 & MLUKE 77.3 56.6 63.9 70.0
B24 & MLUKE 72.4 58.2 66.3 67.4

C. VLP pretraining - 448x448 Image encoder & Text encoder
B16 & XLMR+Sap 69.2 63.6 64.5 66.5
B32 & XLMR+Sap 61.0 57.8 57.5 58.4
B16 & MLUKE 73.5 57.9 66.7 69.9
B32 & MLUKE 71.5 58.1 63.6 64.3

Sap denotes the use of textual synonyms self-alignment. Four strategies have
been considered to localize normal/abnormal classes in the embedding space,
from text prompts. ’Text binary’ simply uses the name of the classes as text
prompts. ’Text enumeration’ uses a prompt consisting of a list of pathologies
separated by commas for the abnormal class. ’Latent minimum’ uses individ-
ual embeddings for each sub-classes. Eventually, ’latent mean’ averages, in the
embedding space, the prompts derived from each pathology associated to the ab-
normal class. Best overall in Bold, best for each strategy in underline. Similarly
to Table 8.6, the couples MLUKE with binary strategy and XLMR + Sap with text
enumeration are the best performers. The 336x336 resolution shows superior per-
formance with no benefits to further increase to 448x448.

poses a challenge for zero-shot binary classification between normal and abnor-
mal due to contextual variability in defining abnormality. For instance, the pres-
ence of osteoarthritis in a radiograph taken for an elderly individual following
trauma to rule out a bone fracture or dislocation could be noted, yet the overall
radiograph might still be treated as normal within the trauma context.

Therefore, we explored several strategies, as described in Section 8.2.3, to lo-
calize the normal and abnormal classes in the shared embedding space.

The methodology described in Section 8.2.3 was evaluated and reported on
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the test set of both datasets. Evaluation of this task is conducted using the Area
under the ROC curve (AUROC).

Results are presented in Table 8.6 and Table 8.7 for MURA and FracAtlas,
respectively.

These results exhibit significant variations in performance depending on the
prompting strategy and on the chosen models. This is not surprising since we em-
ploy a straightforward distance measurement between image embeddings and
anchor points that differ substantially from conventional radiology reports.

Depending on the models, a text enumerating various pathologies considered
as abnormal or the average of the embeddings of these pathologies performs best
on MURA, while a simpler text query performs better for the binary bone frac-
ture classification of FracAtlas. For both datasets, encoders based on MLUKE
and XLMR + Sap performs best. The overall effect of the Sap pretraining is not
clearly demonstrated as beneficial in this experiment. For MLUKE, this degrades
systematically the performances.

Increasing the resolution from 224x224 to 336x336 improves results for both
setups explored, while further increase to 448x448 does not improve results.

Our analysis reveals that the models exhibit significant sensitivity to the prompt
employed, raising the possibility that alternative prompting strategies may yield
improved outcomes for one model or another. Consequently, it remains challeng-
ing to definitively determine which encoder is optimal on this task.

Zero-shot Text-Image Retrieval
In this experiment, the MURA and FracAtlas datasets were also used. Instead
of evaluating only using the test set, as decided for the classifications tasks (to
allow comparison with previous works from ConVirt), we split each dataset in
5 folds and performed the retrieval task on each fold. The retrieval precision
was computed on the top k retrieved images with k=10 and 50 and without any
training on theses datasets.

Results are represented in Table 8.8 for both MURA and FracAtlas.
For MURA, the differences between models are smaller in comparison to zero-

shot classification. The text synonyms self-alignment pretraining (Sap) increases
performances of the Dr BERT model on FracActlas, while degrading performances
of the other models. On MURA however, the difference between models with or
without Sap is smaller and not significantly different.

8.3.4 Pseudo-label training

The pseudo-labeled dataset described in Section 8.3.1 was used in this section.
The dataset is composed of 1351 studies, of which 256 are reserved as a test set.
The remaining 1095 studies (accounting for 3657 X-Rays) are randomly sampled
as a validation set using 10% of the studies, and a train set using a subset with a
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Table 8.8 Retrieval Results on FracAtlas and MURA Datasets.

Dr BERT XLMR MLUKE
+Sap +Sap +Sap

FracAtlas
Negation P@10 64±12.9 90±6.1 85±6.1 68±10.4 95±3.5 88±7.6

Negation P@50 56.0±5.4 82.8±5.8 77.2±3.3 65.2±4.6 78.4±1.9 71.6±2.9

Text enum. P@10 51±7.4 75±15.0 89±12.4 60±6.1 77±6.7 75±8.7

Text enum. P@50 48.6±4.4 64.0±4.8 68.4±6.6 60.2±2.4 64.8±2.9 63.4±4.9

Lat. mean P@10 52±4.5 63±9.7 76±8.2 69±8.9 80±6.1 74±6.5

Lat. mean P@50 51.2±4.3 62.6±5.9 64.2±4.9 66.8±5.4 72.4±2.1 59.2±4.9

MURA
Negation P@10 86±8.2 86±4.2 85±3.5 84±6.5 89±4.2 91±5.5

Negation P@50 86.4±4.0 86.2±2.3 87.0±3.2 84.6±3.0 87.8±2.3 85.8±4.0

Text enum. P@10 93±5.7 89±4.2 80±6.1 84±2.2 89±5.5 84±9.6

Text enum. P@50 86.6±2.9 89.8±4.9 83.2±1.9 87.2±1.1 87.2±2.6 85.8±1.8

Lat. mean P@10 85±5.0 87±8.4 79±4.2 81±11.4 90±3.5 78±4.5

Lat. mean P@50 84.4±2.9 90.4±3.4 81.2±2.7 84.8±2.6 91.2±1.3 80.8±3.5

P@X denotes the retrieval precision among the top X samples. (± Standard devia-
tion, computed using a 5-fold). For the FracAtlas dataset, more variability is seen,
with performances diverging significantly among models. XLMR exhibits su-
perior performance compared to XLMR+Sap, while Dr BERT+Sap demonstrates
good performance. Consistently with previous experiments, MLUKE remains
among the top performers, while Dr BERT alone consistently ranks at the bottom.
For the MURA dataset, all models perform well on the retrieval task, showing no
significant differences in performance.

ratio of 1.0, 0.5, 0.25, 0.125, 0.0625 and 0.03 of the remaining data. The effective
train set size is thus comprised between 30 and 986 studies (≈ 99 to 3291 X-Rays).

A linear layer has been added to the frozen pre-trained image encoder, to be
trained with a binary cross-entropy loss function, weighted by the ratio between
positives and negatives in the training set. The initial learning rate was set to 1e-4
and halved after 3 epochs without a decrease in validation loss. Training ceased
after 10 epochs without improvement in validation loss, with the best-performing
model retained for evaluation on the test set.

The results are represented in Figure 8.3.

The VLP models achieved significantly better performance than a model trained
on ImageNet, even when using one order of magnitude fewer images during
training.
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Fig. 8.3 Classification AUROC achieved when training a linear projection of
a frozen vision encoder on varying numbers of images obtained from the same
hospital as the dataset used for vision language pretraining (VLP). The vertical
bars represent the 95% confidence intervals, calculated from 8 training sessions,
with different seeds used for sampling these images. The VLP models achieved
better performance than a model trained on ImageNet, even when using an order
of magnitude fewer images during training. To enhance clarity, only two of our
VLP models are displayed in the plot.

8.3.5 Latent space exploration

In this section, we will explore in more details the native latent space organization
of our models. The goal is to enhance our understanding of the results obtained
in Section 8.3.3. Particularly to get an insight for the zero-shot results variability.

Using 200 images of each anatomical region of the MURA dataset and their
associated embeddings produced by the self-supervised models, we employed a
t-SNE [104] algorithm to explore visually intrinsic data distribution in the 512-
dimensional space. The result can be seen in Figure 8.4 for ImageNet and VLP
pretrained with XLMR + Sap. Notably, while a ViT B16 model trained on Ima-
geNet has already begun to incompletely cluster the anatomical locations, a ViT
models pretrained from Section 8.2.2 on bone X-Rays and French reports exhibits
an improved ability to differentiate the different anatomical locations, with finger
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and hand being unsurprisingly the two locations with the higher overlap.
Two observations can be drawn from this analysis. Firstly, VLP models nat-

urally form dense and well-separated clusters by anatomical region, unlike Ima-
geNet. Secondly, for the VLP models, each anatomical region appears to be made
up of large well-distinct sub-clusters and other smaller sub-clusters grouped to-
gether (as observed in the first row of the figure). These grouped smaller sub-
clusters, corresponding to several anatomical regions, are drawn from patholog-
ical samples (as observed in the second row of the figure). By manually explor-
ing the images belonging to different subclusters, we observe that osteosynthesis
radiographs containing metal plates are more often grouped together and aggre-
gated on separated groups on the t-SNE, in comparison to smaller or not dis-
placed bone fractures that tend to remain closer to normal images of the same
anatomical location in the t-SNE plot.

8.4 Discussion

In this chapter, we demonstrated the possibility to leverage raw radiographic im-
ages and associated french reports from a single hospital to train deep learning
backbone without manual annotation. The whole pipeline to prepare the text
and image data is made available with a special emphasis on the anonymiza-
tion process adapted to French language. We examined various text encoders
initializations and found that a multilingual text encoder outperforms those lim-
ited to biomedical French-only texts. Pretraining the text encoder through self-
alignment using UMLS ontology has also improved performance on supervised
downstream tasks. We generated pseudo-labels for bone fracture detection with-
out relying on externally annotated datasets, allowing training of a task-specific
model without the need for manual annotation. While the ultimate goal would
not be to deploy the model without any manual data verification, pushing the
boundaries of what can be achieved without manual annotation significantly re-
duces the overall need for manual annotation, thereby streamlining the training
process and accelerating clinical implementation. In comparison to ImageNet, we
observed a notable performance enhancement across different classification tasks,
both when only training the final linear layer or when fine-tuning the whole net-
work on external datasets. There was also an improvement in regression tasks
with fine-tuning of the model. While results in zero-shot settings are promising,
they exhibit more variability, particularly in zero-shot classification, revealing the
need for a minimal amount of annotations to solve tasks properly.

Increasing the resolution from 224x224 to 336x336 yielded better results, par-
ticularly when position embedding interpolation is used. However, further reso-
lution increase to 448x448 showed limited or no additional gain, considering the
increased computational complexity.

Alternatively, a new direction for research could be to redefine the task as a
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(a) ImageNet, locations (b) ImageNet, labels

(c) VLP, locations (d) VLP, labels

Fig. 8.4 t-SNE visualizations of the embeddings of MURA images with Ima-
geNet ViT (no VLP) and VLP ViT with XLMR + Sap. Best viewed in color. The
VLP models show a better clustering in comparison to the ImageNet model for
both anatomical locations and labels. No training on MURA was conducted for
any of the models. Clusters tends to form predominantly based on the anatomical
location. However, within a specific anatomical site, various clusters frequently
emerge, notably clusters with osteosynthesis material (visualized in (d) as clus-
ters composed of only abnormal images).

report generation and visual question answering problem, shifting away from
the current approach of using contrastive loss in the embedding space. The next
chapter provide an initial exploration of this new direction.

102 |



9
Vision-language model

9.1 Introduction

In the previous chapter, we investigated the use of self-supervised vision-language
pretraining (VLP) to improve the analysis of bone X-rays using French reports.
Our results showed that models pretrained on paired image-text data from the
Cliniques Universitaires Saint Luc outperformed those initialized on ImageNet
in various downstream tasks. However, these models required fine-tuning for
each specific task to achieve optimal results.

Building on this foundation, we now explore the application of recent ad-
vancements in vision-language models to automate the generation of standard-
ized medical reports and enable visual question answering (VQA). Our goal is
to prepare the ground for the development a vision-language model capable of
interpreting bone radiographs and answering questions about specific image el-
ements. Unlike previous chapters, the research presented here is still in its early
stages, and the goal of this chapter is mainly to present our preliminary findings
and initial explorations that may set the stage for future work.

9.2 Methodology

This section outlines the steps taken to leverage vision-language models for gen-
erating standardized medical reports and performing visual question answering.
We first describe the dataset preparation and then detail the model fine-tuning
process.
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9.2.1 Dataset Preparation

We utilized the same dataset described in the previous chapter, which originally
comprised 219,675 studies from Cliniques Universitaires Saint Luc in Brussels.
Each study includes one or multiple X-ray images paired with a corresponding
French report. However, for this chapter, we applied additional filtering to re-
move a few reports with insufficient text, resulting in a final dataset of 219,650
studies. We focus on two main tasks using this dataset: generating standard-
ized reports and visual question answering. The whole process is summarised in
Figure 9.1.

Generating Standardized Reports

We utilized the Llama 3 70B model [158] (4-bit AWQ quantized [93]) to standard-
ize the French reports. The original pseudonymized reports exhibited varying
styles, ranging from verbose sentences to concise keyword-based entries, and
often included contextual information such as comparisons to previous reports
or clinical context that cannot be inferred from the images. It has been shown
that removing references to prior reports in chest radiology reports improves
performance and reduces hallucinations of models trained on these filtered re-
ports [129]. To convert these reports into a structured format, we prompted the
frozen language model to act as a radiologist who only has access to the images.
Because the model cannot actually process images directly, we provided the orig-
inal report as input, framing it as a report from a colleague that should not be
referenced as a source of information. This approach allowed the model to gen-
erate standardized reports while omitting irrelevant information.

Visual Question Answering (VQA)

Building on the LLaVA framework [97, 96], we leveraged Llama 3 to generate a
set of questions and answers based on the reports from the previous step. Al-
though this process has been adapted for the medical field in other contexts, such
as general images from biomedical papers [85] or chest x-rays [84], it had not been
applied to bone x-rays or the French language until now. We instructed the Llama
3 model to simulate a scenario where an emergency doctor, without access to the
report, asks questions to an experienced radiologist who responds based on the
images. 5 sample dialogs have been given to the model in the system prompt
to guide generation towards the desired style. The generated Q&A set was then
further processed using Llama 3 to be formatted into a standardized JSON file.

9.2.2 Model Training and Fine-Tuning

We employed the Idefics 2 model [81] as the backbone for our vision-language
tasks. The model was fine-tuned using QLoRA [34] on the standardized report
and VQA datasets.
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Rx du genou droit Salle Apelem PLATINUM dRF
Indication : Contrôle post-op.
Technique : 
Résultat : Examen comparé à celui du 14 octobre 2016. Prothèse unicompartimentale médiale du genou droit en place. 
Médiacalcinose. 
Conclusion :

Titre: Radiographie du genou droit

Observations:
La radiographie montre une prothèse unicompartimentale médiale en place au niveau du genou droit. 
On note une médiacalcinose.

Conclusion:
La prothèse est en place et une médiacalcinose est visible.

Q: "Quel est le type de prothèse visible sur cette radiographie du genou droit?"
A: "C'est une prothèse unicompartimentale médiale."

Q: "La prothèse est-elle en place?"
A: "Oui, la prothèse est en place."

Pseudonymized report

Structured report

Questions and answers

- Organizing into a standardized structure
- Removing reference to previous reports, clinical data,...

Creating question and answers.

Llama 3

Llama 3

Fig. 9.1 Process pipeline involving to convert pseudonymized original reports
into structured standardized reports and to generate a visual question answering
(VQA) set. The model is first used to create standardized reports, which are then
utilized to formulate Q&A pairs, further processed into a standardized JSON for-
mat (not shown in the figure).

Quantized Low-Rank Adaptation (QLoRA)

QLoRA is a technique that adapts large language models to specific tasks by ap-
plying quantization to the frozen model weight, while using low-rank adapta-
tions (LoRA) to injects trainable rank decomposition matrices into the model [59,
34]. This approach significantly reduces the computational requirements, allow-
ing the Idefics 2 model to be fine-tuned on our dataset using a single Nvidia A100.

Training Procedure

A single training was performed on both the reports and VQA. At each training
step, we randomly selected either report generation or VQA for each study. To
initiate report generation, we provided the model with an instruction to create a
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report, whereas for VQA, we simply input a question to the model.
For QLoRA, a rank of 128 and an alpha of 128 were used, with a dropout of 0.1

while the model weight were quantized in 4bits normalized float [34]. The fine-
tuning was performed using an AdamW optimizer [101] quantized in 8bits [33]
and a learning rate of 1e−6, with a batch size of 32 studies (each study composed
of up to 6 radiographs with a max resolution of 512x512) during 1 epoch.

9.3 Preliminary assessments

Our initial assessments of the model’s performance are qualitative in nature. We
generated a dozen reports on radiographs that were not seen during training.
The model appears to understand the two tasks of report generation and visual
question answering (VQA), and it correctly generates reports with the appropri-
ate structure. Notably, the model is able to identify the title of the study, which is
typically the anatomical location, whereas the baseline model (Idefics 2) can only
identify the images as radiographs but fail to identify the content. However, our
model tends to produce hallucinations.

The model’s performance in generating reports is stronger for more common
diagnoses, such as wrist fractures, as shown in Figure 9.2 where it accurately
identifies the fracture and displacement. However, it tends to misattribute com-
mon characteristics to less common conditions, such as mistaking a unicompart-
mental knee arthroplasty for a total arthroplasty, as seen in Figure 9.3. In some
cases, the model’s localization of fractures is also incorrect, as in Figure 9.4, where
it incorrectly identifies the 5th metacarpal as the site of the fracture instead of the
proximal phalanx of the index finger.

In visual question answering, the model exhibits a notable bias towards the
wording of the question. Specifically, when asked if a fracture is present, the
model tends to affirm the presence of a fracture, even if none exists. Conversely,
when asked about the presence of a bone lesion, the model often responds that
there is no bone lesion, even if a fracture is actually present. This suggests that the
model’s answers are influenced by the specific phrasing of the question, rather
than solely by the visual evidence. This is shown in Figure 9.2, Figure 9.3, and
Figure 9.4.

9.4 Discussion

As highlighted previously, this chapter presents preliminary explorations and
needs further refinements before producing usable vision-language models. A
possible approach to consider could be to manually review the produced datasets
to identify and address potential issue introduced in the reports during prepro-
cessing which could screw the model training. This will ensure the robustness
and reliability of our dataset. For instance, when discussing the absence of a
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Analyse les images fournies  et rédige un rapport.

Titre: Radiographie du poignet gauche

Observations:
- Fracture de l'extrémité distale du radius avec bascule postérieure.
- Tuméfaction des tissus mous en regard de la fracture.

Conclusion:
La radiographie du poignet gauche montre une fracture 
de l'extrémité distale du radius avec bascule postérieure 
et une tuméfaction des tissus mous adjacents.

Est-ce qu'il y a une fracture?

Oui, il y a une fracture de l'extrémité distale du radius.

Est-ce qu'il y a une lésion osseuse?

Non, il n'y a pas de lésion osseuse post-traumatique 
récente mis en évidence dans cet examen.

Fig. 9.2 This figure demonstrates preliminary results from our vision-language
model. The model processes a left wrist radiograph. The primary outcomes re-
veal that the model accurately identifies a fracture of the distal radius and associ-
ated tissue swelling. However, the model also produces a notable hallucination,
incorrectly stating the absence of any bone lesion post-trauma when asked. Note:
Images sourced from https://radiopaedia.org/ for illustrative purposes, to
maintain patient confidentiality and GDPR compliance on our data.
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Analyse les images fournies  et rédige un rapport.

Titre: Radiographie du genou droit

Observations:
- Présence d'une prothèse totale de genou en place.
- Aucun signe de complication visible.
- La prothèse est correctement positionnée par rapport à l'os.

Conclusion:
La radiographie montre une prothèse totale de genou en place, 
sans signe de complication.

Est-ce qu'il y a une fracture?

Oui, il y a une fracture de la rotule.

Est-ce qu'il y a une lésion osseuse?

Non, il n'y a pas de lésion osseuse visible.

Fig. 9.3 This figure demonstrates preliminary results from our vision-language
model. The model processes a knee arthroplasty radiograph. The primary out-
comes show that the model incorrectly identifies a total knee arthroplasty in-
stead of a unicompartmental knee arthroplasty. Additionally, the model in-
correctly detects a fracture when directly asked. Note: Images sourced from
https://radiopaedia.org/ for illustrative purposes, to maintain patient con-
fidentiality and GDPR compliance on our data.
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Analyse les images fournies  et rédige un rapport.

Titre: Radiographie de la main droite

Observations:
- Fracture de la base du 5ème métacarpien (M5) avec déplacement.
- Présence d'un plâtre sur la main droite.

Conclusion:
La radiographie de la main droite montre une fracture de la base 
du 5ème métacarpien avec déplacement, sous plâtre.

Est-ce qu'il y a une fracture?

Oui, il y a une fracture de la base du 5ème métacarpien

Est-ce qu'il y a une lésion osseuse?

Non, il n'y a pas de lésion osseuse post-traumatique 
récente mis en évidence dans cet examen.

Fig. 9.4 This figure demonstrates preliminary results from our vision-language
model. The model processes a right hand radiograph. The primary outcomes
reveal an erroneous detection of a fracture in the 5th metacarpal instead of the
proximal phalanx of the index finger. Additionally, the model incorrectly states
the absence of any bone lesion post-trauma when asked. Note: Images sourced
from https://radiopaedia.org/ for illustrative purposes, to maintain patient
confidentiality and GDPR compliance on our data.
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fracture, it is more conventional to use the term "bone lesion" (classically used
like “Absence de lésion osseuse post-traumatique" in French), whereas the term
“fracture" is typically more used when a fracture is present. As the Llama 3 model
tends to reuse terms from the original report to generate questions, this intro-
duces bias into the generated questions which translates into a bias in the trained
model.

Given the recent release of the Llama 3.1 model, which demonstrates supe-
rior performance, it could also be worthwhile to reprocess our dataset using this
updated model. Our initial trials showed significant improvements when transi-
tioning from Mixtral 8x7B [68] to newer Llama 3, emphasize the importance of the
performance of the model used for data preprocessing. While GPT-4 is not viable
due to GDPR constraints, exploring open-source models like Llama 3.1 remains
a promising avenue.

A critical next step is the creation of a comprehensive benchmark for our
dataset. This benchmark will enable us to quantify the model’s performance and
provide a clearer picture of its capabilities and areas needing improvement.

Additionally, we need to iterate over the training process. While QLoRA has
proven effective, it may not be sufficient on its own. Alternative strategies, such
as using different training strategies for different parts of the network could be
explored (e.g. promote a better representation of the image encoder by keeping
the text model frozen during all or part of the training session,...).

Lastly, Idefics 2, based on the outdated Llama 2, might not be the optimal
choice for our tasks. Open-source vision-language models are still catching up,
but future releases based on more advanced models could potentially change the
game.

In conclusion, while our preliminary findings are promising, there is substan-
tial work ahead to refine our approach and fully realize the potential of vision-
language models in medical imaging tasks.
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Conclusion

10.1 Main findings

This thesis set out to explore the transformative potential of artificial intelligence
(AI) in healthcare, with a specific focus on explainability and vision-language
self-supervision in the context of bone radiography. Throughout the chapters, we
have traversed from the theoretical underpinnings of deep learning and explain-
able AI (XAI) to the practical implementation and evaluation of novel vision-
language self-supervised methodologies that push the boundaries of current AI
applications in medicine.

10.1.1 Addressing Research Questions

Explainability

Research Question #1

How can we develop explainability methods that provide insights into the
decision-making processes of artificial intelligence models ?

In Chapter 4 we introduced Poly-CAM, a novel method for generating high-
resolution saliency maps for Convolutional Neural Networks (CNNs) without
relying on gradient backpropagation. Our experiments demonstrated that the
method excels in faithfulness insertion-deletion metrics and outperforms exist-
ing techniques in terms of visualization precision. Additionally, the Transformer
Input Sampling (TIS) method was developed in Chapter 5, offering an alternative
to attention- and gradient-based accounts of visual transformers. The versatility
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of TIS makes it a promising approach for future multimodal applications with
transformers.

Research Question #2

Can explainable methods uncover and help to mitigate biases in artificial
intelligence model training ?

We applied the Poly-CAM method to bone radiographs in Chapter 6, discov-
ering biases in the model’s predictions, specifically with cast images. We demon-
strated that these biases can be mitigated by incorporating additional image crops
from cast images, thereby improving the robustness of the AI models.

Self-Supervision and Vision-Language Models

Research Question #3

Can self-supervision techniques be adapted to utilize the inherent super-
vision within bone radiographic data and associated French reports ?

In Chapter 8 we demonstrated the potential of self-supervised learning to
train robust AI models for medical imaging without extensive manual annota-
tion. Using raw radiological images and associated French reports, we developed
a pipeline that significantly reduces reliance on annotated data.

Research Question #4

How can these methods be optimized to reduce the need for costly anno-
tations in medical imaging ?

Our exploration into vision-language pretraining and the automatic genera-
tion of pseudo-labels in Chapter 8 demonstrated methods to reduce the need for
costly annotations. Additionally, generating standardized report and question-
answer pairs in Chapter 9 laid the groundwork for training a vision-language
model, thereby optimizing data utilization in medical imaging.

10.1.2 Summary of contributions

Explainability
• Development of Poly-CAM for high-resolution saliency maps in CNNs.

• Introduction of Transformer Input Sampling (TIS) for visual transformers.

• Application of Poly-CAM to identify and mitigate biases in bone radio-
graphs.
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Self-Supervision and Vision-Language Models

• Development of a French adaptation of the DEDUCE [107] method for pseudonymiza-
tion of medical reports in French.

• Creation of a comprehensive pipeline to leverage medical data from a single
hospital for self-supervised learning using radiological images and French
reports.

• Exploration of vision-language pretraining and pseudo-label generation to
reduce annotation needs.

10.2 Future Directions

This thesis suggests several promising areas for future research. Some of the most
compelling ones include:

• More reliable evaluation of explainability methods: Evaluating XAI (Ex-
plainable Artificial Intelligence) methods is challenging due to the lack of
clear and universally accepted metrics. Currently, no single metric can ef-
fectively rank methods reliably, as the evaluation of XAI is often subjective
and context-dependent. Establishing more definitive ways to measure the
effectiveness of explainability methods will be crucial for future advance-
ments.

• Exploring other paradigms of explainability: Reducing explanations to 2D
saliency maps has limitations. Investigating alternative methods, such as
narrative explanations or model-driven explanations, could provide richer
and more intuitive insights.

• Advanced Vision-Language Models: The development of robust vision-
language models that seamlessly integrate visual and textual data could
lead to significant improvements in AI-assisted medical imaging analysis.
These models can enhance the understanding and integration of radiographic
images with clinical data, facilitating richer reasoning and support for treat-
ment and follow-up.

• Exploring Generative Text from Images: Future work could focus on de-
veloping systems that generate descriptive text from medical images and
answer visual questions. This would aid clinical documentation and en-
hance AI explainability by providing natural language justifications for pre-
dictions, thereby improving model interpretability and trustworthiness.
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10.3 Final Thoughts

The AI revolution is poised to redefine modern medicine, promising significant
improvements in diagnosis, treatment, and patient care. This thesis makes a mod-
est contribution to this transformation by developing and validating techniques
for explainability and self-supervision. For the future, the integration of these
methodologies with advanced vision-language models and explainability tools
holds great potential. By continuing to push the boundaries of AI research and
addressing the challenges specific to medical applications, we can pave the way
for a more transparent, reliable, and efficient healthcare system where AI sup-
ports rather than replaces medical professionals.

In conclusion, this thesis highlights the importance of interdisciplinary collab-
oration and the need to keep pace with the frenetic evolution of technology.

In the end, the most important contribution of this thesis is probably not its
scientific contribution, but the intellectual and human experience it represented
for me, a small medical doctor with a big passion for technology.
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