
Feedback with BERT: When Detecting Students’
Misconceptions Becomes Automatic

Guillaume Steveny1,2, Julien Lienard1, Kim Mens1, and Siegfried Nijssen1

1 ICTEAM institute, Université catholique de Louvain (UCLouvain), Belgium
{firstname}.{lastname}@uclouvain.be

2 Former student, new email: gsteveny.research@gmail.com

Abstract. When learning a new programming language, students can
benefit from feedback on their work, to get a better overview of their
level, strengths and shortcomings. However, giving personalised feed-
back on misconceptions is complex due to a lack of means or resources;
the design of automated tests and feedback is cumbersome and time-
consuming. Our work aims to overcome some of these limitations by
enabling automatic feedback thanks to a machine learning model. We de-
veloped a multi-label classification architecture following latest advances
in natural language processing. By using code embeddings, i.e. generated
vectors on students’ code submissions, our system allows to detect spe-
cific misconceptions occurring in code snippets, and provide predefined
feedback based on these classes. To control the classes and enable the
training of our deep neural network, we developed an approach inspired
by DeepBugs. The training instances are mutants of original students’
submissions, where the injected modifications are representative of a set
of 14 misconceptions we selected. Our model obtained f1-score values up
to 72.9% when predicting an evaluation dataset of students’ mistakes.
We also highlight limits of our current mutation labelling technique and
improvements to be conducted as further work.

Keywords: Machine learning · Feedback · Programming language ·
Python · Embeddings · Mutation · Programming Misconceptions.

1 Introduction

Context. Numerous universities offer programming language courses. Our uni-
versity does not depart from this practice by integrating, in the first Bachelor
years of both engineering and computer science, an introductory programming
course using the Python language. Students following it have to execute differ-
ent tasks to certify their knowledge. They read a syllabus teaching the basics
of programming, attend theory lessons covering a reference book, participate in
tutored exercise sessions, and produce weekly coding assignments where they
solve more abstract problems based on the material taught during the week.

In this teaching process, two mechanisms enable students to receive feedback
on their work: via their tutor or via the course’s autograding platform. Tutors

2 G. Steveny et al.

meet their students two hours per week and can provide brief global comments
on their code submissions. The online grading platform plays the role of an online
teaching assistant that provides instantaneous feedback on coding assignments.
It enables deploying environments that test student submissions automatically.

Problem. Each of these feedback mechanisms has its flaws. Tutors can only
devote a limited amount of time to students. Their follow-up does not always
match the students’ needs and expectations. The autograding platform, on the
other hand, offers unit tests that check the correct behaviour of code or, to a
lesser extent, the structure of student-produced code, but does not offer help
in understanding misconceptions. While manual coding of additional feedback
in an autograding platform is possible in principle, writing tests that highlight
mistakes or possible misconceptions is difficult and time-consuming. Inaccurate
feedback could be detrimental to the students’ learning process, making it even
harder to implement such tests and limiting their deployment on most exercises.

Objective. The approach that we study in this paper is how we can use Ma-
chine Learning techniques (ML), and Natural Language Processing (NLP) tools
in particular, to provide feedback to students with respect to programming mis-
conceptions present in their code. We wish to do so in a responsible manner.

Approach. Our work targets the creation of a code classification system based on
classical programming misconceptions students exhibit, like for example using
a print statement where instead they should have used a return. Hence, we
strictly restrict the type of misconceptions identified by the system. Every pro-
gram written by a student, once processed by the model, will obtain a prediction
associated with a confidence level, triggering meaningful, predefined feedback to
the students to help them identify their potential misconceptions.

In this paper we treat the problem of identifying programming misconcep-
tions as a multi-label classification problem. Most architectures recently deployed
to generate text summaries [17] or for information retrieval tasks [1] rely on
embeddings capturing the semantic essence of a language [16,18,22]. We rely
on the BERT architecture [7], building on code embeddings generated by the
GraphCodeBERT model [11], developed by Microsoft Research. An important
challenge that we tackle in this work is that the amount of data available in
this application context is too limited for training a language model. To train a
classifier to recognise the desired misconceptions, we propose a process in which
a large number of labelled code mutations are generated from students’ code
submissions. By using such a data-oriented approach, we aim to train models
that show predictable behaviour. Finally, we argue for the use of explainable AI
techniques to help students understand the prediction of the ML model.

As future work we envision integrating the output of our model inside an
autograder, allowing a continuous learning approach where the students and
teaching staff’s feedback is accounted for to improve the model performance.

Feedback on Programming Misconceptions with BERT 3

2 Related Work

Automated feedback generation. Multiple systems have been deployed previ-
ously to generate feedback for students automatically. The review by Paiva et
al. [20] highlights that most tools rely on output comparison [6,8,29] or unit
testing [2,4,27]. Other approaches are based on static analysis to identify bad
coding practices of students and remedy these [3,31,32]. Each of these systems
require additional work to be deployed for each exercise.

The strategy selected for our work will limit the workload on the teaching
staff while providing a large range of detectable aspects, such as bad coding
practices. Rather than providing a list of modifications to be applied by the stu-
dents [15,24,26], the model will limit itself to the classification of such instances,
allowing the teaching staff to adapt the feedback according to the needs of the
students: syllabus references, error indications or hints for possible corrections.

Code embeddings. Different mechanisms are already using code embeddings for
bug classification. DeepBugs [23], which served as inspiration for our muta-
tion labelling process described later, uses Word2Vec [19] static embeddings
on JavaScript source code. SCELMo [14] goes a step further by using ELMo as
an embedder. Our approach differentiates from these two systems by using a
BERT-like model [7], benefiting from the transfer learning abilities of this archi-
tecture, and performing the classification on Python source code. The mutations
we could inject are also representative of students’ misconceptions rather than
bugs for code repair in a more professional context.

CuBERT [13] also relies on injected artificial bugs for classification. How-
ever, this model contains a BERT-large configuration, which could consume too
many resources to be deployed efficiently during the semester. Furthermore, this
approach trains a separate model for each type of injected bug, while our ap-
proach trains one model, thus leading to a more responsible usage of resources.
Finally, their mutations are predefined, while ours can be configured thanks to
user-defined rule sets.

Based on the Code2Vec model, Shi et al. [25] constructed a procedure to iden-
tify student misconceptions. By using code embeddings, the researchers tried to
group snippets into clusters. These constituted a basis for labelling the student
submissions afterwards. However, their approach is only ‘semi-automatic’, re-
quiring humans in the loop to identify misconceptions from the clusters and
discard non-meaningful groupings. Our current strategy could be described as
fully automatic since, once the mutations corresponding to misconceptions have
been designed and used for training, the model could predict these without fur-
ther processing by the teaching staff.

3 Background

In this section, we briefly present GraphCodeBERT since it is the central part
of the classification architecture we chose. As our approach targets multi-label
instances, we also explain the loss metric we selected to train the model.

4 G. Steveny et al.

GraphCodeBERT. A successor of CodeBERT [9], GraphCodeBERT [11] targets
creating a pre-trained model containing information about six programming
languages: Python, Java, Go, JavaScript, PHP and Ruby. It is based on the
RoBERTa-base architecture [34] and requires three components as input: token
ids, attention mask and positional ids. The positional ids sequence is
an ordered sequence of integers representing the token positions.

A model input contains three specific segments: text, code and a DataFlow
Graph (DFG). The main component the model requires is the code. One could
prepend a text segment before the code one, which corresponds to the docstrings
extracted from the code inputs. This part can be omitted when the model should
focus on code aspects rather than on text-code pairs. The DFG is a specific
addition of GraphCodeBERT. It contains information about the constants and
variables used inside the submitted code. This structure omits unassigned or
unused variables or constants. To translate it into RoBERTa inputs, the authors
created a strategy to represent the nodes and the edges inside the attention
mask: graph-guided masked attention. Further details are available in the original
paper by the Guo et al. [11].

Loss metric. Using the classical Cross-Entropy loss in the context of a multi-label
classification will push each instance towards one specific label but not all its
associated labels. Instead of using this loss, we will train our model to optimize a
multi-label soft-margin loss. Reducing this loss, as if we used cross-entropy, will
incite the model to maximize the likelihood of its predictions. The soft-margin
term refers to the fact this loss accepts an error margin. The predictions should
be as close as possible, but not especially equal, to its ground truth. This loss,
presented in Equation 1, should push the instances towards all the labels that
are associated with them.

lossi = − 1

C

C∑
c=1

ln

(
1

1 + exp(−xi,c)

)
yi,c + ln

(
exp(−xi,c)

1 + exp(−xi,c)

)
(1− yi,c) (1)

where lossi is the loss for the instance number i, C the number of classes, ln the
natural logarithm, exp(x) = ex the exponential function, xi,c the logit predicted
by the model for instance number i for class c and yi,c the ground truth one-hot
encoding of the instance number i for class c.

4 Approach

This section provides the information necessary to understand the classification
architecture we selected to work with code embeddings. We will then present our
strategy, inspired by the DeepBugs system [23], to create the training datasets.

4.1 Classification model

Figure 1 depicts a schematic representation of the architecture we configured.

Feedback on Programming Misconceptions with BERT 5

Fig. 1: Schematic representation of the components of our classification model.

Structure. The model provides a classification architecture similar to models
proposed for sentiment analysis tasks. The instances are transformed into three
parts: the token ids, the attention mask and the positional ids.

We decided to truncate each code to the maximal window length of the
embedder, i.e. 512 tokens. We prefered this strategy over splitting a code snippet
into multiple inputs, in order to ensure dependencies inside the snippet not to be
disrupted. For example, if a variable is only defined at the start of the snippet,
the other windows we could construct would miss this assignment, leading to
incorrect class predictions. This strategy led to 0.777% of tokens lost for the
training and evaluation datasets, i.e. 0.051% of the inputs are lost on average.

These three tensors are given to the pre-trained GraphCodeBERT model
to generate, for each input token, a 768-dimensional vector. However, for our
classification procedure, we only need one 768-dimensional embedding to repre-
sent the entire student submission. This embedding extraction is the role of the
“pooler”. The corresponding layer applies a tanh activation on the embeddings
and picks the output for the [CLS] token.

This embedding is then given to the classification head. This block cor-
responds to a sequence of dense layers converting our 768-dimensional vector
into a smaller tensor. The output vector is the prediction logits for each class.
The classification head can contain an arbitrary number of layers, each with

6 G. Steveny et al.

its own number of hidden units. The default parameters are one additional layer
with 768 hidden units and LeakyReLU as activation.

The output layer normalises the logits to assign a score to each possible
class. Each value will represent the model confidence in predicting this label.
This computation is a sigmoid applied on the logits. Here, the scores should
not sum to one since we target multi-label tasks.

As depicted in Figure 1, the encoder corresponds to creating a single embed-
ding from a source code. The input became a machine-interpretable representa-
tion translated back into human-readable scores by the classification head, our
decoder here.

Implementation. To implement such an architecture, we used the AllenNLP [10]
and HuggingFace [33] libraries along with PyTorch [21]. We decided to use the
“GraphCodeBERT-py” pre-trained model from Enoch (Ensheng Shi, PhD stu-
dent at Xi’an Jiaotong University) [25] available on the HuggingFace’s mod-
els storage. The weights have been trained on Python source code inside the
CodeSearchNet dataset [12]. Every parameter of the model architecture, like the
classification head or the embedder, can be configured using yaml files.

4.2 Mutation labelling

To train the previously described architecture, since we placed ourselves in a su-
pervised approach, this process would require labelled instances. Using bugged
source code found online from more experienced programmers is expected to
limit the model understanding of the simpler students’ problems, like misus-
ing a print for a return. Manually labelling more than ten thousand failed
submissions from students to the course exercises would have been highly time-
consuming and required to be consistent during the entire process. We would like
to have a strict control over the situations in which misconceptions are identified.

We propose here to study an idea previously presented in the DeepBugs sys-
tem [23]. In their paper, the authors decided to inject synthetic bugs inside their
instances and then train the model to detect these. By defining the ‘bugs’ we
want to include inside our dataset, we could benefit from an automatic labelling
procedure that is consistent and controlled. Each label will be coherently asso-
ciated with the instances, and we keep control of the misconceptions we want to
predict. The underlying hypothesis is that injecting a bug inside a code supposed
correct will create an instance which could be considered incorrect.

We developed a program to execute our mutation labelling procedure. The
user can specify a set of mutation rules inside a configuration file. The program
parses these rules and applies these to the original instances to modify them as
desired. To write the rules while providing freedom to the user in their definition
and extensive modification power, the program combines Comby and RedBaron.

Feedback on Programming Misconceptions with BERT 7

Comby3 is a tool to perform modifications to source code. It allows one to
specify matching rules used for replacement. Its advantage relies on its ability
to specify “holes” containing part of the match.

RedBaron4 is a Python library relying on Baron, another module for creating
Full Syntax Trees (FSTs). Their particularity is that they are lossless and rep-
resent the input code with abstract nodes rather than “grammar” nodes like a
Concrete Syntax Tree. Transforming back the FST to the original code gives an
output strictly equivalent to the initial input. RedBaron provides all the utility
functions to manipulate these structures efficiently.

The first tool allows the user to have the freedom to write simple mutation
rules, like, for example, replacing return by print statements. The second will
enable more powerful mutations that are part of a list of 41 predefined rules we
designed, like, for example, removing the condition update of a while loop.

The mutation program we designed was used on submissions considered as
correct by our autograding platform, for 23 programming assignments taken
from the studied course during the first semester of the academic year 2023–
2024. These cover simple questions about functions, lists, dictionaries and file
handling with Python. This process resulted in 13804 submissions collected. We
ensured each submission analysed was anonymised and without any comments,
making it impossible to identify specific students. Our university allowed such
use of data. After considering the selected exercise contexts, a manual analysis
of students’ errors and a theoretical exploration [5], we designed 15 rule sets
covering 14 misconceptions or mistakes. These labels include using print instead
of return (print_return), having incoherent loops (bad_loop) or forgetting to
close a file (bad_file). Further details about the designed classes are provided
in Appendix D of the master thesis on which this paper is based [28] and the
final mutation rules can be found on the associated GitHub repository5.

This list of misconceptions has been constructed throughout multiple iter-
ations where misconceptions were added based on feedback received from the
teaching staff. The set of detectable errors could be further augmented when
new classes should be considered. However, drawbacks of doing so could include
overloading students with too much information and increasing the risk of mis-
classifying instances due to a large output space. For this reason, we kept the
number of classes limited.

5 Experiments

We designed two experiments to assess the mutation labelling procedure as well
as our classification model. The first aims to train the model and assert its ability
to understand the mutation classes. The second explores how the trained model
performs on real students’ submissions and how it could be improved.

3 https://comby.dev/
4 https://github.com/PyCQA/redbaron
5 https://github.com/StevenGuyCap/CESReS-model/tree/main/mutation

https://comby.dev/
https://github.com/PyCQA/redbaron
https://github.com/StevenGuyCap/CESReS-model/tree/main/mutation

8 G. Steveny et al.

5.1 Training task

Dataset. From the 13804 submissions we collected from semester exercises done
by the students, we sampled 2500 programs for the mutation labelling procedure.
These original instances allowed us to create 15176 multi-label mutants by using
the mutation program. This dataset has been split into a training, a validation
and a test set containing 81%, 9% and 10% of the instances, respectively. This
split has been performed so that we could ensure that all mutants of an original
submission were part of the same set.

Task. By using a multi-label soft-margin loss, the model is trained to determine
the mutation classes we injected among the mutants. We relied on a baseline
configuration using default parameters. The classification head contains a single
additional layer, and all weights are learned using an AdamWOptimizer with a
learning rate of 10−5. We trained this configuration three times for 10 epochs
with three different random seeds: 42, 33 and 18.

1 2 3 4 5 6 7 8 9 10
Epoch [-]

0.1

0.2

0.3

0.4

0.5

0.6
Lo

ss
 [-

]

training loss
validation loss
best epoch

Fig. 2: Learning curve of the model for
the first seed on the training task.

Results. By looking at the learning
curve for the first seed (Figure 2),
we can observe that the model has
learned its task and reaches an opti-
mal point around the 9th epoch. The
other seeds obtained the same be-
haviour. On the test set, the mean
micro-average f1-score of 0.93716 with
a standard deviation of 0.00209 indi-
cates that the model extensively un-
derstood the mutations we injected
inside the test instances without over-
fitting the training examples.

If we look at the label-wise f1-scores on the test set, there is some disparity
between the classes. Table 1 summarises some cases we will highlight next.

Table 1: Average label-wise f1-scores the
model obtained on the training task.

Label Mean Std

hardcoded_arg 0.99192 0.00131

miss_try 0.46154 0.00000

miss_parenthesis 0.40153 0.05098

hardcoded_arg is the easiest class
for the model. This label relies on a
specific mutation where one function
argument is reassigned as the first in-
struction of the function’s body. By
looking at the two first lines of a
submission, the model should already
have enough information to handle
this class.

The fact that miss_try obtained
a lower score connects with this class’s representativeness. Students should put
their file-handling code sections inside try-except blocks to obtain perfect sub-
missions. But not all of them do so, and the autograding platform does not

Feedback on Programming Misconceptions with BERT 9

always check such cases. The miss_try label only appears 102 times among
the 12294 training instances; in less than 1% of the generated set. This lack of
representativeness could explain why the model is performing less for this label.

The miss_parenthesis label seems to be the most complex class to predict.
This phenomenon relates to the mutation limitations our dataset contains. This
class refers to the removal of one associative parenthesis block inside students’
submissions. However, some students appear to overuse these. For example, they
could write (a*b)*c, maybe for simplifying their reasoning or readability rea-
sons. Nonetheless, other students would write a*b*c for the same question. After
mutation, the first case becomes a*b*c, like the second, but associated with a
different label. The model receives contradictory information and should be less
confident in predicting this class.

The second experiment will come back on these labels to identify how the
model managed to detect these on real students’ submissions.

5.2 Evaluation process

Dataset. To construct the set on which the fine-tuned models will be evaluated,
we need to find students’ failed submissions. Instead of using the 23 questions we
selected for mutation, we will use (anonymised) submissions from the previous
years’ exams of the studied course. We chose this strategy for two reasons: First,
students are treated equally and objectively. They had the same preparation
time, were in the same room and had access to the same resources during the
exam. Secondly, the exam submissions do not overlap with our training set. The
model should not have seen already the examples during its training process.
This strategy will allow us to explore model generalisability.

After a random selection process, we obtained 161 submissions among the
121428 failed submissions collected from previous years. Using the 14 miscon-
ceptions classes we designed and the “failed” label to cover undecidable cases,
we manually identified 302 label occurrences among the evaluation instances.

Process. Since we saved the weights of the configuration from the first exper-
iment, we can load these and launch the evaluation process for them. Reusing
these weights would spare computing and time resources. We measured each
performance metric three times, one for each of the seeds from the previous
experiment.

Results. Table 2 shows the performance of the model for each seed on the
evaluation dataset. By considering the label-wise f1-scores of the model, we can
highlight three groups. The first contains the four labels for which the mean f1-
scores is above 80% (Figure 3a), corresponding to classes more easily understood
by the model, like bad_assign where the associated mutation replaces a single
= by a == and vice-versa. These labels are well represented inside the training
task and precise enough for the model to classify correctly these cases inside real
student submissions.

10 G. Steveny et al. Table 2: Class micro-average scores on the
evaluation dataset of the three initilizations.

Score Run 1 Run 2 Run 3

Precision 0.82667 0.77459 0.79134

Recall 0.61589 0.62583 0.66556

F1-score 0.70588 0.69231 0.72302

The second group (Figure 3b)
gathers labels for which the model
obtained poor results. Within
this subset, we can find the
miss_parenthesis and miss_
try classes we previously high-
lighted during the first experi-
ment. This observation confirms
that the contradictory examples during training could mislead the model when
used for real instances. The limited representativeness of these cases during train-
ing could also be a cause of bad results obtained by the model. As part of our
future work we envision that teachers can modify these mutations to overcome
the bad behaviour of this group.

bad_assign miss_return print_return bad_loop
0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 v
al

ue
 [-

]

1
0.947

0.904

0.867

(a) Best performing group

miss_try bad_file miss_parenthesis overwrite
0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 v
al

ue
 [-

]

0.286

0.269

0 0

(b) Lowest performing group

bad_list bad_range miss_loop bad_variable bad_division hardcoded_arg
0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 v
al

ue
 [-

] 0.735 0.703
0.642

0.548 0.515 0.489

(c) Medium performing group

Fig. 3: Average label-wise f1-scores of the models on the evaluation dataset over
the three selected seeds.

Feedback on Programming Misconceptions with BERT 11

The last group contains labels with scores between 40% and 80% (Figure 3c).
Among these classes, some cases can be identified as suffering from a muta-
tion overfitting phenomenon from the model. Instead of learning the training
instances, it started learning the mutation injections. For example, the mutation
associated with the label bad_range adds a +1 inside a call to the range func-
tion. However, some exercises do require to include an upper bound which may
require the need of a +1. An example is depicted in Listing 1.1 and the model
predictions in Table 3. The model wrongly assumes that the +1 is discriminant
to predict this label.

def produ i t s (n) :
out = []
for i in range (n+1):

for j in range (n+1):
i f i ∗ j == n :

out . append ((i , j))
return out

Listing 1.1: Correct example requiring
the use of +1 inside the call to range.

Label Prediction

bad_range 0.952

miss_parenthesis 0.129

failed 0.087

correct 0.067

Table 3: Top-4 labels’ scores predicted
by the model for the instance shown in
Listing 1.1.

Such behaviour is also observed for the class hardcoded_arg handling assign-
ment of a function argument as the first instruction of its body. The associated
mutation assigns this argument to an integer between 0 and 20. Every case that
is too far apart from this mutation is not correctly predicted, as depicted in
Listing 1.2 and Table 4.

def combien (n) :
n=input (int ())
i f n>0:

n=n
print (n)

i f n>O and i<=n :
k=range (0 , n+1)
i+k=n
print (i+k=n)

Listing 1.2: Instance number 141 of
the evaluation dataset. The argument is
hardcoded by the student.

Label Prediction

miss_return 1.000

print_return 0.997

bad_assign 0.840

hardcoded_arg 0.001

Table 4: Top-4 labels’ scores predicted
by the model for the instance shown in
Listing 1.2.

We explored two ways to reduce the mutation overfitting based on training
process changes without modifying the mutations we inject:

12 G. Steveny et al.

Adding more mutants. A first solution is to add more instances inside the training
task. The model could focus on other aspects and mutations inside a more varied
set of source codes. To explore this aspect, we created four additional datasets.
Table 5 presents the dataset sizes, the average training time and the average
evaluation performance for each dataset. The training time goes up to 7 times
the one of the baseline for an incremental gain of less than one per cent. The high
resource cost of this approach compared to its low gain proves it to be unsuited
to counter the mutation overfitting.

Table 5: Results on the evaluation dataset and training time (TT) when adding
instances with the same mutations inside the training task.

Metrics baseline dataset 1 dataset 2 dataset 3 dataset 4

Size 15176 27977 29624 95274 100272

Avg TT 1h 11m 56 2h 16m 00 2h 38m 37 7h 49m 13 8h 34m 08

Avg f1-score 0.707 0.705 0.713 0.715 0.709

baseline gain +0.00% −0.28% +0.85% +1.11% +0.28%

Limiting training. An alternative solution to limit mutation overfitting is to train
the model for fewer epochs. Looking at the f1-scores on the evaluation dataset
(Table 6), only the “5 epochs” configuration managed to outperform slightly the
baseline (10 epochs). Nonetheless, the marginal gain this configuration obtained
does not imply it managed to suppress the mutation overfitting phenomenon we
previously highlighted.

Table 6: Class micro-average f1-scores obtained by the models when limiting the
number of training epochs.

Model 1 epoch 3 epochs 5 epochs 10 epochs

Run 1 0.400 0.627 0.726 0.706

Run 2 0.429 0.616 0.745 0.692

Run 3 0.398 0.638 0.718 0.723

Mean 0.409 0.627 0.729 0.707

Based on these experiments, modifying the training process is not the optimal
solution to overcome the overfitting problem. Integrating human feedback to
modify the designed mutations or improve the model’s predictions with a contin-
uous learning approach seems to be a more promising strategy to be investigated
in more detail as future work.

Feedback on Programming Misconceptions with BERT 13

6 Conclusion

This work provided two main technical contributions: a classification neural net-
work using code embeddings generated on students’ submissions and a muta-
tion labelling program. This second process, inspired by DeepBugs [23], can
use teacher-defined mutation rules to automatically label instances according to
specific injections, hence allowing controlled forms of programming misconcep-
tion detection. Trained to classify the mutants according to their injections, the
model obtained f1-scores above 0.7 on real students’ submissions. This result
could be considered as an important first step towards automatic feedback gen-
eration. The prototype is ready to be deployed on a server and integrated into
our autograder to serve classification requests. Each label could be associated
with a message to specify what the students should take care of to improve their
submissions. The confidence levels predicted for the classes would allow them to
gauge the required trust level in the system output. This tool could also be use-
ful for the teaching staff to establish points that should be explained during the
tutoring sessions based on statistical information from the model’s predictions.
All the code produced for this work [28] can be found on GitHub6.

We identified some limits that could threaten the validity of the results and
analyses performed in this work. First, the evaluation dataset contains instances
we labelled manually. For some instances one could criticise the validity of the
associated classes. Some instances could have been omitted unintentionally by
the labeller or could have been considered differently by another annotator.

Secondly, we cannot always ensure that the injections lead to incorrect mu-
tants. For example, removing an except clause that is unused, or removing a
return in an unreachable part of the code would not change how the submission
behaves. It could, on the other hand, create contradictory examples the model
could misclassify, or overfit the mutations predicting thus more false alarms, each
at the risk of misleading the student afterwards.

Once our prototype is integrated into our university’s autograder, it will be-
come possible to take students’ judgements into account to improve the model’s
decisions. A member of the teaching staff could monitor the predictions and use
these to adapt the model, rework specific mutations or add misconceptions cur-
rently ignored. Such an approach could help to limit the mutation overfitting,
and would put the human in the loop.

Another aspect to explore is how we could interpret the model’s predictions.
Currently, when predicting a label, the model can highlight the most contribut-
ing parts of the input based on the Integrated Gradients computation [30]. This
process is only enabled on demand since it requires multiple time-consuming
estimation steps and gradient computations. Furthermore, even if it could pro-
vide insights about the model decisions, these may not be useful for students
each time. Exploring faster or more concrete interpretability techniques could
be tackled next.

6 https://github.com/StevenGuyCap/CESReS-model/tree/main

https://github.com/StevenGuyCap/CESReS-model/tree/main

14 G. Steveny et al.

Acknowledgments. Computational resources have been provided by the supercom-
puting facilities of the Université catholique de Louvain (CISM/UCL) and the Con-
sortium des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CÉCI)
funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under
convention 2.5020.11 and by the Walloon Region.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Akkalyoncu Yilmaz, Z., Wang, S., Yang, W., et al.: Applying BERT to Document
Retrieval with Birch. In: Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP): System Demonstrations. pp. 19–
24. Association for Computational Linguistics, Hong Kong, China (2019). https:
//doi.org/10.18653/v1/D19-3004

2. Benetti, G., Roveda, G., Giuffrida, D., Facchinetti, T.: Coderiu: a cloud plat-
form for computer programming e-learning. In: 2019 IEEE 17th International
Conference on Industrial Informatics (INDIN). vol. 1, pp. 1126–1132 (Jul 2019).
https://doi.org/10.1109/INDIN41052.2019.8972058, iSSN: 2378-363X

3. Boe, B., Hill, C., Len, M., Dreschler, G., Conrad, P., Franklin, D.: Hairball:
lint-inspired static analysis of scratch projects. In: Proceeding of the 44th ACM
technical symposium on Computer science education. pp. 215–220. SIGCSE ’13,
Association for Computing Machinery, New York, NY, USA (Mar 2013). https:
//doi.org/10.1145/2445196.2445265

4. Brito, M., Gonçalves, C.: Codeflex: A Web-based Platform for Competitive Pro-
gramming. In: 2019 14th Iberian Conference on Information Systems and Technolo-
gies (CISTI). pp. 1–6 (Jun 2019). https://doi.org/10.23919/CISTI.2019.8760776,
iSSN: 2166-0727

5. Chiodini, L., Moreno Santos, I., Gallidabino, A., Tafliovich, A., Santos, A.L.,
Hauswirth, M.: A Curated Inventory of Programming Language Misconceptions.
In: Proceedings of the 26th ACM Conference on Innovation and Technology in
Computer Science Education V. 1. pp. 380–386. ITiCSE ’21, Association for
Computing Machinery, New York, NY, USA (Jun 2021). https://doi.org/10.1145/
3430665.3456343

6. Croft, D., England, M.: Computing with CodeRunner at Coventry University:
Automated summative assessment of Python and C++ code. In: Proceedings of
the 4th Conference on Computing Education Practice 2020. pp. 1–4 (Jan 2020).
https://doi.org/10.1145/3372356.3372357, arXiv:1911.11085 [cs]

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1. pp. 4171–4186.
Association for Computational Linguistics, Minneapolis, Minnesota (2019). https:
//doi.org/10.18653/v1/N19-1423

8. Edwards, S.H., Perez-Quinones, M.A.: Web-CAT: automatically grading program-
ming assignments. In: Proceedings of the 13th annual conference on Innovation
and technology in computer science education. p. 328. ITiCSE ’08, Association for

https://doi.org/10.18653/v1/D19-3004
https://doi.org/10.18653/v1/D19-3004
https://doi.org/10.18653/v1/D19-3004
https://doi.org/10.18653/v1/D19-3004
https://doi.org/10.1109/INDIN41052.2019.8972058
https://doi.org/10.1109/INDIN41052.2019.8972058
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.1145/2445196.2445265
https://doi.org/10.23919/CISTI.2019.8760776
https://doi.org/10.23919/CISTI.2019.8760776
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3430665.3456343
https://doi.org/10.1145/3372356.3372357
https://doi.org/10.1145/3372356.3372357
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Feedback on Programming Misconceptions with BERT 15

Computing Machinery, New York, NY, USA (Jun 2008). https://doi.org/10.1145/
1384271.1384371

9. Feng, Z., Guo, D., Tang, D., Duan, N., et al.: CodeBERT: A Pre-Trained Model for
Programming and Natural Languages. In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2020. pp. 1536–1547. Association for Computational
Linguistics, Online (Nov 2020). https://doi.org/10.18653/v1/2020.findings-emnlp.
139

10. Gardner, M., Grus, J., Neumann, M., et al.: AllenNLP: A deep semantic natural
language processing platform (2017)

11. Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., Liu, S., et al.: GraphCodeBERT:
Pre-training Code Representations with Data Flow (Sep 2020). https://doi.org/
10.48550/arXiv.2009.08366

12. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: CodeSearchNet
challenge: Evaluating the state of semantic code search. arXiv:1909.09436 (2019)

13. Kanade, A., Maniatis, P., Balakrishnan, G., Shi, K.: Learning and evaluating con-
textual embedding of source code. In: Proceedings of the 37th International Con-
ference on Machine Learning. ICML’20, vol. 119, pp. 5110–5121. JMLR.org (Jul
2020)

14. Karampatsis, R.M., Sutton, C.: SCELMo: Source Code Embeddings from
Language Models (Apr 2020). https://doi.org/10.48550/arXiv.2004.13214,
arXiv:2004.13214 [cs]

15. Keuning, H., Heeren, B., Jeuring, J.: Strategy-based feedback in a programming
tutor. In: Proceedings of the Computer Science Education Research Conference.
pp. 43–54. CSERC ’14, Association for Computing Machinery, New York, NY,
USA (Nov 2014). https://doi.org/10.1145/2691352.2691356

16. Liu, Q., Kusner, M.J., Blunsom, P.: A Survey on Contextual Embeddings (Mar
2020). https://doi.org/10.48550/arXiv.2003.07278

17. Liu, Y., Lapata, M.: Text Summarization with Pretrained Encoders. In: Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). pp. 3730–3740. Association for Computational Linguistics,
Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1387

18. Miaschi, A., Dell’Orletta, F.: Contextual and Non-Contextual Word Embeddings:
an in-depth Linguistic Investigation. In: Proceedings of the 5th Workshop on Rep-
resentation Learning for NLP. pp. 110–119. Association for Computational Lin-
guistics (2020). https://doi.org/10.18653/v1/2020.repl4nlp-1.15

19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Repre-
sentations in Vector Space (Jan 2013). https://doi.org/10.48550/arXiv.1301.3781

20. Paiva, J.C., Leal, J.P., Figueira, A.: Automated Assessment in Computer Science
Education: A State-of-the-Art Review. ACM Transactions on Computing Educa-
tion 22(3), 34:1–34:40 (Jun 2022). https://doi.org/10.1145/3513140

21. Paszke, A., Gross, S., Massa, F., et al.: PyTorch: an imperative style, high-
performance deep learning library. Curran Associates Inc., Red Hook, NY, USA
(2019)

22. Peters, M.E., Neumann, M., Zettlemoyer, L., Yih, W.t.: Dissecting Contextual
Word Embeddings: Architecture and Representation. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. pp. 1499–1509.
Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.
org/10.18653/v1/D18-1179

https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2009.08366
https://doi.org/10.48550/arXiv.2004.13214
https://doi.org/10.48550/arXiv.2004.13214
https://doi.org/10.1145/2691352.2691356
https://doi.org/10.1145/2691352.2691356
https://doi.org/10.48550/arXiv.2003.07278
https://doi.org/10.48550/arXiv.2003.07278
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/2020.repl4nlp-1.15
https://doi.org/10.18653/v1/2020.repl4nlp-1.15
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179

16 G. Steveny et al.

23. Pradel, M., Sen, K.: DeepBugs: a learning approach to name-based bug detection.
Proceedings of the ACM on Programming Languages 2, 147:1–147:25 (Oct 2018).
https://doi.org/10.1145/3276517

24. Rivers, K., Koedinger, K.R.: Data-Driven Hint Generation in Vast Solution Spaces:
a Self-Improving Python Programming Tutor. International Journal of Artifi-
cial Intelligence in Education 27(1), 37–64 (Mar 2017). https://doi.org/10.1007/
s40593-015-0070-z

25. Shi, Y., Shah, K., Wang, W., Marwan, S., Penmetsa, P., Price, T.: Toward Semi-
Automatic Misconception Discovery Using Code Embeddings. In: LAK21: 11th
International Learning Analytics and Knowledge Conference. pp. 606–612. As-
sociation for Computing Machinery, New York, NY, USA (Apr 2021). https:
//doi.org/10.1145/3448139.3448205

26. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 15–26.
PLDI ’13, Association for Computing Machinery, New York, NY, USA (Jun 2013).
https://doi.org/10.1145/2491956.2462195

27. Staubitz, T., Klement, H., Teusner, R., Renz, J., Meinel, C.: CodeOcean - A versa-
tile platform for practical programming excercises in online environments. In: 2016
IEEE Global Engineering Education Conference (EDUCON). pp. 314–323 (Apr
2016). https://doi.org/10.1109/EDUCON.2016.7474573, iSSN: 2165-9567

28. Steveny, G.: CESReS: Code Embeddings for a Student Recommendation System.
Master’s thesis, Ecole polytechnique de Louvain, Université catholique de Louvain,
Advisors: Mens, Kim; Nijssen, Siegfried. (Apr 2024), http://hdl.handle.net/2078.
1/thesis:46100

29. Striewe, M.: An architecture for modular grading and feedback generation for
complex exercises. Science of Computer Programming 129, 35–47 (Nov 2016).
https://doi.org/10.1016/j.scico.2016.02.009

30. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
Proceedings of the 34th International Conference on Machine Learning - Volume
70. pp. 3319–3328. ICML’17, JMLR.org, Sydney, NSW, Australia (Aug 2017)

31. Talbot, M., Geldreich, K., Sommer, J., Hubwieser, P.: Re-use of programming
patterns or problem solving? Representation of scratch programs by TGraphs to
support static code analysis. In: Proceedings of the 15th Workshop on Primary and
Secondary Computing Education. pp. 1–10. WiPSCE ’20, Association for Comput-
ing Machinery, New York, NY, USA (Oct 2020). https://doi.org/10.1145/3421590.
3421604

32. von Wangenheim, C.G., Hauck, J.C.R., et al.: CodeMaster–Automatic Assessment
and Grading of App Inventor and Snap! Programs. Informatics in Education 17(1),
117–150 (2018)

33. Wolf, T., Debut, L., Sanh, V., et al.: Transformers: State-of-the-art natural lan-
guage processing. In: Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations. pp. 38–45. Association
for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.
emnlp-demos.6

34. Zhuang, L., Wayne, L., Ya, S., Jun, Z.: A robustly optimized BERT pre-training
approach with post-training. In: Proceedings of the 20th Chinese National Confer-
ence on Computational Linguistics. pp. 1218–1227. Chinese Information Processing
Society of China, Huhhot, China (Aug 2021)

https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1145/3448139.3448205
https://doi.org/10.1145/3448139.3448205
https://doi.org/10.1145/3448139.3448205
https://doi.org/10.1145/3448139.3448205
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1109/EDUCON.2016.7474573
https://doi.org/10.1109/EDUCON.2016.7474573
http://hdl.handle.net/2078.1/thesis:46100
http://hdl.handle.net/2078.1/thesis:46100
https://doi.org/10.1016/j.scico.2016.02.009
https://doi.org/10.1016/j.scico.2016.02.009
https://doi.org/10.1145/3421590.3421604
https://doi.org/10.1145/3421590.3421604
https://doi.org/10.1145/3421590.3421604
https://doi.org/10.1145/3421590.3421604
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

	Feedback with BERT: When Detecting Students' Misconceptions Becomes Automatic

