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A B S T R A C T

Context: Soil water and fertility management have been the main challenges of crop production in West Africa,
and their impacts are exacerbated by climate variability. While research has been conducted to optimize fertility
and water applications for rainfed crops production in this region, little is known about the management of these
resources for off-season cereal crops production.
Objective: This study assessed the optimal combination of irrigation and fertilizer levels for off-season maize
production in Benin, using the DSSAT CERES-Maize crop model.
Methods: Two years’ experiments (2018 and 2019) of 4 levels of deficit nutrient (DN) and two years’ experiments
(2019 and 2020) of 4 levels of deficit irrigation (DI) were conducted and data were collected on maize growth
and yield. DSSAT model was calibrated using crop data from DN experiment in 2018 (DN2018) and DI exper-
iment in 2019 (DI2019), and validated using the DN2019 and the DI2020 experimental data. Then, a long-term
scenarios analysis (40-years, 1980–2019) was performed to optimize (i) DI levels, (ii) DN rates; and (iii) com-
bined DI levels and DN rates.
Results: The model predicted the grain yield (GY) and total aboveground biomass (TB), with a relative root mean
square error and a coefficient of efficiency of 18.3 % and 0.38 for the GY and 11.7% and 0.50 for the TB during
the validation, respectively. However, the model did not account for the effects of DI or DN on the phenological
dates, which led to similar predicted values for the anthesis and maturity dates among DI and DN treatments
during calibration and validation. Moreover, the model was sensitive to periods with high values of temperature
(>45◦C) recorded during the DI period, inducing a reduction of the grain filling rate in DI treatments. DI
treatments were more sensitive to a change in DUL, SLL, SAT, RGFIL and RUE than the DN treatments; while the
DN treatments were more sensitive to the CTCNP2. Reducing maize water requirements by 40% at the vegetative
stage resulted in similar predicted grain yield as in the full irrigation treatment; while reducing the water re-
quirements by 60% resulted in similar predicted water use efficiency (WUE) as in the full irrigation treatment.
Furthermore, the inter-annual variability of grain yield was lower under the optimal DI combined with no fer-
tilizer but higher under high DI combined with higher fertilizer rates. Finally, a combination of 40–60% of deficit
irrigation at the vegetative stage and one-third to half of the recommended fertilizer rates depending on re-
sources availability was the optimum combination of DI and DN rates for off-season maize production.
Conclusions: The projected grain yield and WUE under optimal DI and DN levels were likely underestimated due
to shortcomings in the model structure to deal with effects of water and nutrient stresses on phenological dates.
For reliable assessments of the effects of water and nutrient stresses on grain yield and WUE, there is need to
update parameterization and code of the CERES crop models in DSSAT to have a sufficiently strong effect of
water and nutrient stress on phenological dates, and the contribution of phenology to LAI and yields predictions.
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1. Introduction

Africa is emerging as the continent with the highest demographic
growth rate, and a population projected to double by 2036, and to
represent 20 per cent of the world population by 2050 (United Nations,
2009). Feeding this growing population is and will continue to be a
concern, particularly in environments where high climatic uncertainties
pose an additional challenge to crop production. In Benin, the
spatio-temporal variability of rainfall limits the rainfed cereal cropping
systems, like the maize cropping systems. Rainfall uncertainties such as
dry spells, late onset of rainy season, shortening of raining season, etc.,
lead to crops yield losses (Yabi and Afouda, 2012; Agbossou et al.,
2012). Short cycle maize varieties of 60–90 days are cultivated two to
three times during the cropping season in order to adapt to erratic
rainfall seasons (Tidjani and Akponikpè, 2012; Allé et al., 2014; Yeg-
bemey et al., 2017). In addition to the adoption of short cycle varieties,
off-season maize production supported with irrigation could also be an
adaptive strategy to the erratic rainfall seasons, but this remains unex-
plored in Benin.

In Benin, likewise major cereal crops, maize is traditionally culti-
vated in the rainfed season, with a growing window spanning from April
to September. Consequently, researches have focused on the rainfed
growing season, with little investigations on the possibilities of growing
cereals crops in off-season using irrigation. Off-season crop production
involves the cultivation of crop during the dry season, where water is
supplied to crops through irrigation. The application of full irrigation
water during the dry season increased maize yield to 4.8 Tons ha− 1 in
Togo, based on a simulation approach (Gadédjisso-Tossou et al., 2018).
Furthermore, off-season production increased agricultural revenues
since farmers can harvest the crops at least twice a year (Badabaté et al.,
2012). In this study, off-season maize production is addressed as an
adaptation strategy to erratic rainfall and as a potential means of
improving food security in a context of climate variability.

Climate projections depict a decreasing trend of annual rainfall, but
an increasing trend of annual temperature ranging from 0.8◦C by 2030
to 2.3◦C by 2050 over Benin. These projections are expected to lead to
maize yield reduction in the range of 17% by 2030 and 30% by 2050
(Direction Générale de l’Environnement et du Climat, 2022). The pre-
dicted decreasing trend of rainfall suggests that off-season production of
crops should use water resources sustainably in order to increase both
crop water and irrigation water productivity. Deficit irrigation (DI) is a
strategic water management practice that supplies water below the full
crop water requirement (Geerts and Raes, 2009; Fereres and Soriano,
2007). Specifically, DI can induce insignificant yield losses, when
applied reasonably, by considering the sensitivity of crop’s growth
stages. In a review study, Allakonon and Akponikpè (2022a), reported
that a mild deficit irrigation level below 20% led to 0.5–17.45% of yield
loss in the vegetative stage of grain maize crop, compared to 46% of
yield loss in the reproductive stage. Similarly, the irrigation water use
efficiency and the crop water use efficiency under DI varies with the
crop’s growth stage. DI is also recognized as an adaptation strategy of
irrigated crop systems to improve crop water productivity in limited
water availability conditions (Allakonon et al., 2022b; Gomaa et al.,
2021). In this study we assumed that the implementation of optimized
deficit irrigation levels would enhance irrigation and crop water pro-
ductivity compared to full irrigation levels for off-season maize
production.

Beside rainfall uncertainties, cereal crop production is also limited by
soil fertility depletion in Benin. Generally, farmers are recommended to
apply a certain amount of fertilizer for maize production. However, they
hardly apply the recommended rates due to lack of resources. Recent
studies have recommended viable long-term and cost-effective nutrient
rates for maize production systems in Benin. Tovihoudji et al., (2019)
reported that one-third of the recommended fertilizer rate could be the
optimal fertilizer rate that guarantees a long-term minimum grain yield
with little inter-annual yield variability in northern Benin. Nevertheless,

recommendations of fertilizer rates for maize production have been
made essentially for rainfed maize systems, with little regards towards
off-season irrigation maize systems. In this study, we address the iden-
tification of optimal fertilizer and irrigation rates, as well as the optimal
combination rates of these inputs for a sustainable off-season maize
production in Northern Benin.

Crop models have been used to support decision making regarding
management practices (Song and Jin, 2020; Tofa et al., 2020; Dhillon
et al., 2020). They can conceptualize complex agricultural systems in a
simplest way, in a short time and require only minimum experiments
compared to results generated from long term experiments. The Deci-
sion Support System for Agrotechnology Transfer (DSSAT) crop model
has been used to simulate efficiently maize growth, soil water, and
N-balance under diverse management conditions in West Africa,
including in Benin (Dzotsi et al., 2003; McCarthy et al., 2012; Adnan
et al., 2017; Igué et al., 2013; Amouzou et al., 2018). In this study, the
DSSAT crop model is used to identify the optimal combination of deficit
irrigation and fertilizer rates for off-season maize production in Benin.

2. Material and methods

2.1. Study area

This study was conducted from 2018 to 2020 on the experimental
site of the Faculty of Agronomy, University of Parakou, Benin. The
experimental site is located at 9◦20’08.8” N latitude, and 2◦38’54” E
longitude, 347m a.s.l. in the agroecological zone III (Zone vivrière du
Sud-Borgou) (MEPN, 2008), and is representative of the dry-sub-humid
climate regime based on the UNEP classification system. The 40-years
(1979–2019) annual average rainfall of Parakou is 1105mm. The soil
of the experimental site is loamy sand in texture, acid, and rich in ni-
trogen and phosphorus in the upper 0-40 cm layers.

2.2. Field experiment

Two deficit irrigation (DI) and two nutrient deficit (DN) experiments
were carried out in a randomized complete block experimental design
(RCBD), with three replications. Both experiments types were conducted
on a 90-days cycle maize crop variety, the EVDT-97-STR-W. The DI
experiments were conducted in 2019 (DI2019) and in 2020 (DI2020),
and consisted of four DI treatments defined based on the daily crop
evapotranspiration (ETc): (i) optimal irrigation (DI0) with a daily
application of 100% ETc; (ii) DI25 with 75% ETc; (iii) DI50 with 50%
ETc; and (iv) DI75, with 25% ETc. Daily maize ETc was estimated from
CROPWAT V8.0 (FAO, 1992). The total irrigation amount for DI0, DI25,
DI50 and DI75 treatments was 472mm, 442mm, 412mm and 388mm, in
the DI2019 experiment; and 392mm, 377mm, 349mm, and 335mm in
the DI2020 experiment, respectively. Deficit irrigation was intentionally
applied from 31rst days after sowing (DAS) to 50th DAS in all DI treat-
ments. In addition, full crop water requirement was applied from sowing
to 30th DAS, and from 51th DAS to crop maturity. For both DI2019 and
DI2020 experiments, sowing occurred after a total irrigation event of
25mm for each. The DI experiments received the recommended NPK
fertilizer rates in both 2019 and 2020 growing seasons.

The DN experiments were conducted during the 2018 and 2019
rainfall seasons, and consisted in applying 4 fertilizer rates based on the
recommended fertilizer rates (RFR): (i) the control with no fertilizer
(F0), (ii), one-third of the RFR (F1), 62.5 kg NPK (15− 15− 15)+ 31.25 kg
urea (46%) ha-1, (iii) half of the RFR (F2), 100 Kg NPK+ 50 Kg urea ha-1,
and (iv) the recommended fertilizer rate (F3), 200 Kg NKP and 100 kg
urea ha-1. These rates are equivalent to: 23.8 kg of nitrogen (N) ha− 1,
4.1 kg of phosphorus (P) ha-1, and 7.8 kg of potassium (K) ha-1 for F1; 38
Kg N ha-1, 6.5 Kg P ha-1, and 12.5 Kg K ha-1 for F2; and 76Kg N ha-1, 13.1
Kg P ha-1 + 24.9 Kg K ha-1 for F3. For both DI and DN experiments, NPK
(15-15− 15) fertilizer was applied on 15th DAS and the urea was applied
on 45th DAS, after ploughing. Irrigation was applied to all DN
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experiments when rainfall was absent for three consecutive days, to
avoid water stress in DN experiments. A total irrigation amount of
39mm and 71mm was applied during the DN2018 and DN2019 ex-
periments, respectively. Plant thinning was performed manually to 2
plants hill-1 to reach a planting density of 62,500 plants ha-1 in all DI and
DN experiments, ten days after sowing

2.3. Modeling approach

2.3.1. DSSAT model description

2.3.1.1. CERES-MAIZE module. The Decision Support System for Agro-
technology Transfert (DSSAT-CSM) has been designed with the aim to (i)
simulate monocrop production systems in one or multiple seasons and in
rotations with minimum input data, (ii) provide a platform for easily
incorporating modules for other biotic and abiotic factors, (iii) provide a
platform for comparing alternative modules for model improvement,
evolution and documentation, and (iv) provide the capability to use the
crop system module into other programs in a modular way. More details
on the structure of the crop model are given in Jones et al. (2003).
DSSAT is a dynamic and predictive model that has mechanistic, and
deterministic components. Mechanistic, because it can explain the
behavior of a system at an upper integration level by considering pro-
cesses of a lower integration level and represents the system structure.
Dynamic, because it can represent a crop system with time dimension,
and deterministic, because the predicted values do not depend on
probability distribution (Jones and Kiniry, 1986).

The CERES-Maize (Crop Environment Resource Synthesis-Maize)
crop module (Jones et al., 2003) in DSSAT model version 4.7.5 was
used for the simulation (Hoogenboom et al., 2019). We used the
Priestley and Taylor/Ritchie (Priestley and Taylor, 1972) method to
compute the potential evapotranspiration, which requires only the daily
solar radiation and temperature as input, compared with the
Penman-FAO and the Penman-Montheit methods. The potential evapo-
transpiration is computed in the soil-plant-atmosphere module of the
model. The USDA-Soil Conservation Services method (USDA-Soil Con-
servation Service, 1972) was chosen to simulate soil water infiltration,
and the Ritchie soil water balance model was used for computing
drainage, based on a ‘tipping bucket’ approach. These processes are
computed daily in the soil water module. Furthermore, the daily canopy
photosynthesis method (Jones et al., 1989) was selected to simulate
daily photosynthesis and the CENTURY method for soil Organic Carbon
and nitrogen dynamics (Gijsman et al., 2002). The daily canopy
photosynthesis predicts daily gross photosynthesis as a function of daily
radiance for a full canopy, which is then multiplied by factors 0 or 1 for
light interception, temperature, leaf nitrogen status, and water deficit.
More details on all methods used are given in Jones and Thornton
(2003).

2.3.1.2. Conceptualization of water stress in DSSAT crop model. Water
stress acts on transpiration and radiation use efficiency, leaf expansion
that determines above ground growth, and leaf senescence. The funda-
mental principle for estimating water stress in DSSAT is the comparison
between potential transpiration (demand) and potential root water up-
take (plant extractable soil water, being the offer) (Anapalli et al., 2008).
DSSAT accounts for the effect of water stress by computing two water
stress factors, the TURFAC (Eq. (1)) and SWFAC (Eq. (2)). Under
non-limiting water conditions, the maximum root water uptake is higher
than the potential transpiration. As the soil water content decreases due
to uptake, the maximum root water uptake decreases. When this
decrease reaches a critical stage, TURFAC is activated. TURFAC is
calculated using the formula (Anapalli et al., 2008):

TURFAC = TRWUP / (RWUEP1* EP0) (1)

where TRWUP is the potential root water uptake and RWUEP1 is a

species-specific parameter which is given the value of 1.5 for all crops
included in DSSAT, version 4.7.5 and EP0 is the potential transpiration.
When the RWUEP1 is less than 1, TURFAC is activated. TURFAC mainly
affects the expansive crop growth details such as the internode elonga-
tion and the spread of the crop’s leaves. The second stress factor called
SWFAC affects crop phenology, growth and biomass-related processes. It
is activated when potential transpiration demand equals or exceeds
potential root water uptake, and it is defined as:

SWFAC = TRWUP / EP0 (2)

The value of both stress factors ranges from zero to one, where zero
represents maximum stress and one represents no stress. The TRWUP
(Eq. (3)) is defined as a function of soil water, soil properties, and root
length density as follows:

TRWUP =
SWCON1 ∗ exp(MIN((SWCON2(SWi − LLi), 40.)

SWCON3 − lnLVi
× Zi

× LVi (3)

Where LVi is the root length density (cm cm-3), Zi the thickness (cm),
SWi the soil water content (cm3 cm-3) and LLi the lower limit of plant
available water in soil layer i (cm3cm-3). SWCON1, SWCON2, and
SWCON3 are soil water conductivity coefficients. SWCON1 is equal to
0.00132, SWCON2 = 120 − 250LLi, and SWCON3 is equal to 7.01 in
DSSAT version 4.6 (Song and Jin, 2020).

The DSSAT model has been calibrated under limited crop water
conditions in different ways: (i) through the calibration of the crop ge-
netic coefficients (Geng et al., 2017); (ii) the adjustment of the RWUEP1
coefficient (in the CANEGRO Model, Kapetch et al., 2016); (iii) the
adjustment of the radiation use efficiency, RUE (Ma et al., 2011; Song
and Jin, 2020); (iv) the calibration of soil hydraulic parameters such as
the soil drained upper limit (SDUL), the soil lower limit (SLL), the soil
water content at saturation (SAT), the soil drainage coefficient or soil
water conductivity factor (SDRL or SWCON) and the soil saturated hy-
draulic conductivity (SSKS) (DeJonge et al., 2012; Ma et al., 2009).
Here, only parameters to which the grain yield and LAImax. were sensi-
tive, have been presented for the calibration in the results section
(Fig. 6)

2.3.1.3. Conceptualization of nitrogen stress in DSSAT crop model. In the
CERES-Maize model, a critical N concentration (TCNP) is defined as the
lowest concentration at whichmaximum growth occurs, and aminimum
N concentration (TMNC) is defined as the minimum concentration
below which all growth ceases (Godwin and Singh, 1998). TCNP (Eq.
(4)) is calculated as:

TCNP = 0,0.1*EXP (CTCNP1-(CTCNP2* Gstage)) (4)

Where CTCNP1 is the maximum N concentration, CTCNP2 a coeffi-
cient for change in concentration as a function of growth stage, and
Gstage, a non - integer growth stage indicator.

Nitrogen stress occurs when the actual N concentration (TANC) in
plant tissue is lower than the critical N concentration level (TCNP). This
can happen when there is N deficiency for metabolism maintenance or
when there is N deficiency for a new growth. A N factor (NFAC) is
defined, and ranges from zero when the N concentration is at TMNC, to
unity when it is at TCNP or above. NFAC is thus the factor used in the
simulation of the effect of N deficiency on growth processes (Godwin
and Singh, 1998; Liu et al., 2012). But in practice, only the CTCNP1 and
CTCNP2 coefficients are tuned to reflect the effect of nitrogen stress on
crop growth in CERES-Maize.

In the occurrence of combined abiotic stresses such as water, nitro-
gen or temperature stress, the model considers the minimum of two or
more values of a growth variable under different stresses.

M.G.B. Allakonon et al. Field Crops Research 318 (2024) 109613 

3 



2.3.2. Input files for DSSAT calibration and validation

2.3.2.1. Weather file. The Weatherman utility was used to create a
weather file based on the daily rainfall, maximum and minimum air
temperature and solar radiation over Parakou, for the period
1980–2020.

2.3.2.2. Soil file. Measured soil properties were used to create a soil file
with the Soil Data tool, Table S1. The soil profile used for this simulation
is presented in Table 1. The initial soil moisture values in 2018 were
estimated by setting the date of start of simulation on the beginning of
the year 2018 under fallow as antecedent crop. Then, the soil water
content values around 140–150 days of the year were considered as the
initial soil moisture before the start of rainfall. The initial soil moisture
values are presented in Table S2. The runoff curve number (SLRO) and
the drainage coefficients (SLDR) were set to 81 and 0.75 respectively.
DSSAT computes the runoff curve using the USDA Soil Conservation
Services curve number technique, which estimates the total runoff rate
from the total daily precipitation. SLRO ranges from 0 (no runoff), to
100 (total runoff) based on land cover and soil type. The drainage co-
efficient (mm/day) represents the fraction of water between the actual
water content and the drained upper limit that drains from a soil layer in
one day and varies between 0 (no drained soils) and 1 (excessively
drained soils). The root distribution factor (SRGF) was estimated based
on a function in DSSAT: SRGF= 1 for layers above 15 cm, and SRGF = 1
* EXP (- 0.02 * LAYER_CENTER) for soil layers below 15 cm. SRGF
ranges from 0 to 1.

Clay (%); Silt (%); Sand (%); BD: bulk density (g cm-3); SLL: Lower
limit (cm3 cm-3); DUL: drained upper limit (cm3 cm-3); SAT: saturated
soil moisture content (cm3 cm-3); SSKS: soil hydraulic conductivity (cm
h-1); SRGF: soil root growth factor; NO3

- : Nitrate (mg kg-1); NH4:
Ammonium (mg kg-1).

2.3.2.3. Cultivar coefficients files. The maize crop cultivar used was
described by three types of files in DSSAT model: (i) the cultivar file, (.
cul) that contains the values of crop genetic parameters; (ii) the ecotype
file (.eco) that contains information on the ecotype to which belong a
cultivar and (iii) the species file (.spe). Maize crop is characterized by six
genetic parameters (Table 2) that describe its potential growth and
yield.

2.3.2.4. Experiment files. The experiment file contains information
related to the management practices that occurred from planting to
harvesting in both DI and DN experiments. The calibration of DSSATwas
carried out using the data collected during the DI2019 and the DN2018
treatments, while the validation was undertaken with the data from the
DI2020 and the DN2019 treatments

2.3.2.5. Sensitivity analysis. A sensitivity analysis of soil fertility factors
(CTCNP2, SLPF), soil water parameters (DUL, SLL, SAT, SSKS, SWCON,
CN), radiation effect (RUE) and temperature effect (RGFIL) was con-
ducted. The RMSE values of grain yield and maximum leaf area index
(LAImax.) were plotted against the variation in the values of each of these
parameters.

The sensitivity to DUL, SLL and SAT was done using the DI2019 and
DI2020 treatments (Fig. 6a, b & c). The sensitivity to the nitrogen stress
factor (CTCNP2) was carried out considering the DN2018 and DN2019

treatments (Fig. 6d). Since the temperatures values recorded during the
DI experiments were higher compared to the temperature during the DN
experiments (Fig. 1C1 and 1C2), a sensitivity analysis was conducted for
the factor that controls the temperature effect on relative grain filling
rate (RGFIL), using the DI2019 and DI2020 treatments (Fig. 6e). This
coefficient was set to 45.5, to be higher than the maximum temperature
recorded in the DI experiments. The sensitivity analysis to SLPF, SSKS,
SWCON, CN and RUE was performed using both DI and DN treatments
(Fig. S1).

2.3.3. DSSAT calibration and validation
The calibration process was done in two steps. The first step con-

sisted in the calibration of the maize cultivar genetic coefficients
(Table 2), which characterize the phenology and growth of the cultivar.
Six cultivar coefficients were calibrated automatically using the DSSAT-
PEST package (Ma et al., 2020), developed to couple DSSAT and PEST
for automatic optimization of crop genetic parameters. The PEST pa-
rameters used for the calibration are presented in Table S3. In total eight
(08) measured growth variables from the DN2018 and DI2019 experi-
ments were used to calibrate the genetic variables in the DSSAT-PEST
package. These variables include: the anthesis date, the maturity date,
the maximum LAI (LAImax in m2m-2), the unit dry weight, which is the
weight per unit grain (mg), the number of grains per cob, the grain yield
at maturity (Kg ha-1), the aboveground biomass (Kg ha-1) and the har-
vest index. The second step consisted in the calibration of the nitrogen
stress factor (CTCNP2) using treatments of the DN2018 experiment.

Table 1
Soil profile used for simulation.

Soil Layers (cm) Clay Silt Sand BD SLL DUL SAT SSKS SRGF NO3
- NH4 pH

0–20 8.1 14.5 77.4 1.42 0.031 0.08 0.32 23 1 3.4 1.4 7.4
20–40 10.1 12.1 77.8 1.53 0.031 0.096 0.32 32.7 0.549 2.1 1.3 7.6
40–100 14.6 13.1 72.2 1.58 0.031 0.112 0.32 32.7 0.247 0.5 0.1 7.5

Table 2
Initial guess and adjusted valued of maize cultivar coefficients.

Cultivar
coefficients

Definitions Initial guessa Adjusted
Values

P1 (◦C day) Thermal time from seedlings
emergence to the end of the
juvenile phase (expressed in ◦C
day, above a base temperature of
8◦C) during which the plant is not
responsive to changes in
photoperiod

210.1
(130− 380)

187.3

P2 (days) Extent to which development
(expressed as days) is delayed for
each hour increase in photoperiod
above the longest photoperiod at
which development proceeds at a
maximum rate (which is
12.5 hours)

0.001 (0− 2) 0.500

P5 (◦C day) Thermal time from silking to
physiological maturity (expressed
in degree days above a base
temperature of 8 ◦C).

600.1
(600− 1100)

611.5

G2 (number) Maximum possible number of
kernels per plant.

520.0
(400− 1100)

600.0

G3 (mg day-
1− 1)

Kernel filling rate during the
linear grain filling stage and
under optimum conditions (mg/
day)

09.5 (4–11.5) 11.35

PHINT (◦C
day)

Phylochron interval; the interval
in thermal time (degree days)
between successive leaf tip
appearances.

60 (30− 90) 66

a : the genetic values of the initial guess were taken from a medium cultivar
DMR calibrated by Tovihoudji et al., (2019), (P1 and P2). Values in parentheses
are range of values from DSSAT/APSIM database for African cultivars and soils.
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Then the species-specific parameter RWUEP1 has been calibrated using
treatments of the DI2019 experiment.

The calibrated genetic coefficients, the CTCNP2 and the RWUEP1
have been validated using the treatments of the DI2020 and DN2019
experiments.

2.3.4. Long-term scenario analysis
A long-term experiment scenario analysis was run using the

calibrated and validated DSSAT model, over 40 years (1980–2019)
period. Three types of scenarios were considered for the long-term
experiment simulations. The first scenario comprised eight (08) deficit
irrigation levels (with 10 % increment of irrigation amount) at the
vegetative stage from 31 DAS to 50 DAS as explained under the field
experiment section. For this first type of scenario, sowing occurred
during the dry season on 19th January each year and yield was har-
vested on 20th April. The second type of scenarios consisted in four

Fig. 1. Rainfall trends during DN2018 (A1) and DN2019 (A2) experiments; cumulative irrigation and rainfall during DI2019 (B1) and DI2020 (B2) experiments;
cumulative temperature in growing degree days (C1) and cumulative solar radiation (C2) during DN and DI experiments (2-column image; Online Version only
for color).
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fertilizer rates application as described for the DN experiments under the
field experiment section. The third type of scenarios combined the eight
deficit irrigation level (scenarios 1) with the four fertilizers rates ap-
plications (scenarios 2). For each type of scenario, initial soil conditions
were reinitialized in the beginning to avoid residual long term effect of
treatments from previous years.

2.4. Model performance evaluation

The accuracy of the CERES-Maize model’s outputs was assessed with
statistical indicators including the root mean square error (RMSE), in Eq.
(5), (Willmott, 1981), the normalized or the relative root mean square
error (nRMSE) in Eq. (6), the index of agreement (d) in Eq. (7), and the
modified coefficient of efficiency (EF1), in Eq. (8) (Yang et al., 2014).

RMSE =

[
∑N

i=1

(Yi − Xi) 2

N

]1/2

(5)

nRMSE = RMSE ∗ 100/X (6)

d = 1 −
∑N

i=1(Yi − Xi)2

∑N

i=1
(|Yi − X| + |Xi − Y| )2

(7)

E1 = 1 −

∑N

i=1
|Yi − Xi|2

∑
|Xi − X|2

(8)

Where I = 1, 2, …, N, is the ith measurement, N the number of obser-
vations, Y the predicted value, X the observed value, Y is the mean of the
predicted values, and X is the mean of the observed values. When pre-
dicted values fit exactly the observed values, RMSE and nRMSE are
0 and the corresponding d-value is 1. The nRMSE is used as a relative
measure for inter comparisons of different variables or different models
(Priesack et al., 2006) and the index of agreement, d (0 ≤ d ≤ 1), a
dimensionless measure used to make cross-comparisons between simu-
lated and observed data (Yang et al., 2014).

In addition to these statistical indicators, the overall accuracy of the
predicted values was tested using the ordinary least squares analysis
between the predicted and the observed values. The regression slope
was generally significant when the p-value of the F-Test statistic was <
0.05.

3. Results

3.1. Weather conditions during the experiments

The total annual rainfall was 1236.5 mm and 1699.3 mm in 2018
and 2019 and amounted to 653 mm and 680.5 mm during the DN2018
and DN2019 experiments, respectively (Fig. 1A1, A2). No rainfall
occurred during the DI2020 experiment. However, the cumulative
rainfall ranged from 17 mm to 198 mm, with an average of 84 ± 40 mm
from sowing to harvest during the dry season between 1980 and 2019
(Fig. 1B1, B2).

The maximum daily temperature ranged from 28 ◦C to 36 ◦C, and
from 27 ◦C to 36 ◦C for the DN2018 and the DN2019 experiments,
respectively; while it ranged from 35 ◦C to 43 ◦C, and from 34 ◦C to 41
◦C for the DI2019 and DI2020 experiments, respectively. The cumula-
tive temperature in growing degree days (GDD) and the cumulative solar
radiation were both higher for the DI experiments than the DN experi-
ments (Fig. 1C1, C2).

3.2. Calibration of DSSAT

Overall, the calibrated genetic parameters resulted in a more

accurate prediction of the anthesis dates (AD) and physiological matu-
rity dates (PMD) for the DN2018 nutrient stress treatments, (nRMSE= 4
for both AD and PMD) compared to the deficit irrigation DI2019 treat-
ments (nRMSE= 30 for AD, and 25.6 for PMD). The model predicted the
AD and PMD with a RMSE of 2.1 and 3.3 respectively, for the DN
treatments, and a RMSE of 18.4 and 24.1, respectively for the DI treat-
ments (Table 3). The LAImax. was predicted with a RMSE value of
0.38 m2m− 2 for the DN2018 and 0.23 m2m− 2 for DI2019 treatments.
The model predicted the time-series LAI with a RMSE ranging from
0.18 m2m− 2 for the DI25 treatment to 0.32 m2m− 2 for the DI75 treatment
among DI treatments, and from 0.17 m2m− 2 for the F0 treatment to
0.51 m2m− 2 for the F2 treatment among the DN treatments. The d-index
ranged from 0.84 to 0.98 during the calibration of the time-series LAI for
all DI and DN treatments (Fig. 2). The model showed a satisfactory fit
between predicted and observed values of grain yield, stover yield and
aboveground biomass at harvest with respective nRMSE of 21.4 %,
18.5 %, 16.1 %, (Fig. 3b, c, and d, respectively). Moreover, the regres-
sion slopes between the predicted andmeasured values were statistically
significant for all variables (p<0,05).

3.3. Validation of DSSAT

The predicted values of AD and PMD showed similar trend in the
validation as in the calibration, with better fits for the DN compared to
the DI treatments. The time-series LAI were validated with a RMSE
ranging from 0.20 m2m− 2 for both the DI50 and DI75treatments to
0.26 m2m− 2 for both the DI0 and DI25treatments among DI treatments,
and from 0.17 m2m− 2 for F1 treatment to 0.30 m2m− 2 for the F3 treat-
ment among DN treatments. Overall, the d-index ranged from 0.89 to
0.98 across the time-series LAI for all treatments used during the vali-
dation process (Fig. 2). The model over-estimated the predicted values
of LAImax. for all treatments during the validation with a RMSE value of
0.23 m2m− 2 (Fig. 4).

The grain yield, stover yield and aboveground biomass were vali-
dated with RMSE values of 422.5 Kg ha− 1, 147.5 Kg ha− 1 and 985.2 Kg
ha− 1 respectively. The coefficient of efficiency was higher for the
aboveground biomass (0.5) than grain yield (0.38) and stover yield
(0.30) (Fig. 5b, c and d). The linear regressions explained 97 % and 80 %
of the total variance, indicating a good agreement between simulated
and observed values of grain yield and total aboveground biomass,
respectively.

3.4. Sensitivity analysis of the model to soil water parameters, nutrient
stress factor and temperature factors

In general, a variation of the DUL, SLL and the SAT from their
measured values either increased or stabilized the RMSE of grain yield
and the LAImax., suggesting the measured values of DUL, SLL and SAT are
the best fit for the simulations (Fig. 6a, b & c). The RMSE of the grain
yield increased as the CTCNP2 increased or decreased, but the RMSE of
the LAImax. did not vary (Fig. 6d). Thus, the CTCNP2 was maintained at
0.12 after the sensitivity analysis. The sensitivity analysis to the factor
that controls the effect of temperature on relative grain filling rate
(RGFIL) was conducted using the grain yield values only, since the
RGFIL factor affects only the grain filling rate. Thus, an increase of
RGFIL from 0 % to 60 % increased the RMSE of grain yield from 576 Kg
ha− 1 to 934 Kg ha− 1. A decrease of RGFIL by 50 % induced a two-fold
increase of the RMSE of grain yield (Fig. 6e).

The RMSE of grain yield and LAImax. for both DN and DI treatments
did not vary with the variation of the SSKS and the SWCON, suggesting
the grain yield and the LAImax. were not sensitive to the SSKS (Fig. S1A)
and the SWCON (Fig. S1B). Meanwhile the RMSE of grain yield of both
DN and DI treatments increases as the runoff curve number (CN) in-
creases but was stable as CN value decreases. However, the RMSE of the
LAImax. did not vary with a variation of CN (Fig. S1C). The RMSE of grain
yield increases by 20 % in the DI treatments, as a result of increase in
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RUE value, implying that the grain yield in the DI treatments was more
sensitive to the increase of RUE values compared to the DN treatments
(Fig. S1D). Similarly, the RMSE of grain yield was two-times higher for
the DI treatments than the DN treatments when SLPF increases by 50 %.
As a result, the grain yield of DI treatments was more sensitive to an
increase in SLPF, while the opposite trend was observed as SLPF de-
creases (Fig. S1F).

3.5. Response of maize yield and water productivity to long-term scenario
analysis regarding irrigation and fertilizer management

3.5.1. Long-term scenario analysis for Irrigation management
Overall, the predicted grain and stover yields decreased with

increasing deficit irrigation amount; and ranged from 1884 Kg ha− 1 to
4006 Kg ha− 1 for the DI0 treatment and from 905 Kg ha− 1 to 3049 Kg
ha− 1 for the DI80 treatment in the 1980–2019 period (Fig. 7a). However,

the predicted average grain and stover yields were similar among DI0,
DI10, DI20, DI30 and DI40 treatments on the one side and between DI70
and DI80 treatments on the other side. Similar trends were observed for
the predicted WUE, which decreased with increasing deficit irrigation
amount. Maize WUE ranged from 4.0 Kg ha− 1 mm− 1 to 9.3 Kg ha− 1

mm− 1 for the DI0 treatment, and from 2.3 Kg ha− 1 mm− 1 to 7.5 Kg ha− 1

mm− 1 for the DI80, and was statistically identical between DI0, DI10,
DI20, DI30, DI40, DI50 and DI60 deficit irrigation treatments (Fig. 7b).

3.5.2. Long-term scenario analysis for fertilizer management
The long-term 40-year (1980–2019) simulations indicated that the

grain yield consistently increased with increasing fertilizer rates, with
average grain yield ranging from 2605 Kg ha− 1 in the no fertilized
treatment, F0 to 4523 Kg ha− 1 in the recommended fertilizer treatment,
F3 (Fig. 7c). Grain yield ranged from 2228 Kg ha− 1 to 3020 Kg ha− 1;
3362 Kg ha− 1 to 4409 Kg ha− 1; 3698 Kg ha− 1 to 4965 Kg ha− 1 and 3783

Table 3
Anthesis and physiological maturity dates during model calibration and validation.

Calibration Treatments Fo F1 F2 F3 DI0 DI25 DI50 DI75

Growing seasons 2018 2019

Anthesis dates Obs. 55 52 55 52 50 58 59 76
Sim. 55 55 55 55 45 45 45 45
PD 0 5.8 0 5.8 -10 -22.4 -23.7 -40.8
RMSE 2.1 18.4

nRMSE 22.9

Maturity dates Obs. 83 81 86 83 88 92 92 105
Sim. 86 86 86 86 71 71 71 71
PD 3.6 6.2 0 3.6 -19. 3–22.8 -22.8 -32.4
RMSE 3.3 24.1

nRMSE 19.4

Validation Growing seasons 2019 2020
Anthesis dates Obs. 55 54 53 52 52 57 58 75

Sim. 55 55 55 55 47 47 47 47
PD 0 1.8 3.8 5.7 − 9.6 − 17.5 − 18.9 − 37.3
RMSE 1.9 16.04
nRMSE 20.0

Maturity dates Obs. 84 81 83 80 90 96 100 109
Sim. 87 87 87 87 74 74 74 74
PD 3.6 7.4 4.8 8.7 − 17.8 − 22.9 − 26.0 − 32.1
RMSE 5.2 25.7
nRMSE 20.5

Fig. 2. Observed and simulated time-series leaf area index for maize during model calibration with the DN2018 (black curves) and the DI2019 treatments
(red curves).
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Fig. 3. Observed and simulated (a) maximum leaf area index, (b) grain yield at harvest, (c) stover yield at harvest and (d) total aboveground biomass at harvest of
maize crop during model calibration using DN2018 (black color points) and DI2019 treatments (red color points).

Fig. 4. Observed and simulated leaf area index for maize during model validation with the DN2019 treatments (black dots and curves) and the DI2020 treatments
(red dots and curves).
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Kg ha− 1 to 5282 Kg ha− 1 in F0, F1, F2 and F3 treatments, respectively.
The inter-annual standard deviation of grain yield, WUE and IWUE was
lower for the F0 treatment (Fig. 8), and higher for the F3 treatment,
specifically for DI30 to DI60 treatments.

3.5.3. Long-term scenario analysis for combined irrigation and fertilizer
management

The long-term scenario analysis on combined irrigation and fertilizer
management shows that the grain yield is similar among F3, F2 and F1
treatments, as long as 60 % of the maize crop water requirement or more
(DI40) is satisfied. Grain yield under F3 treatment decreases by 25 %
when water stress from deficit irrigation increases from DI60 to DI70, and
by 32 % when water stress increases from DI60 to DI80 (Fig. 8a). The
variability of grain yield is lower when optimal irrigation rate is applied
without fertilizer but is higher when high water stress is combined with
higher fertilizer rates (Fig. 8b).

Maize WUE and inter-annual variability of WUE followed similar
trends with grain yield. WUE increases under combination of lower to
middle DI rates (fromDI20 to DI50) and recommended fertilizer rates, but
decreases under combination of high water stress and recommended
fertilizer rates (Fig. 8c). the inter-annual variability of maize WUE is
higher under combination of recommended fertilizer rates and middle
DI levels (DI40 to DI60). The irrigation water use efficiency (IWUE) tends
to increase with increasing DI levels (from DI10 to DI30) at all fertilizer
rates. In opposite, lower fertilizer rates combined with high DI levels
(DI60 to DI80) induce a decrease in IWUE (Fig. 8e). The inter-annual

variability of IWUE increases with increasing DI levels for all fertil-
izers treatments and is higher under the combination of recommended
fertilizer rates and middle DI levels (DI40 to DI60), (Fig. 8f).

4. Discussion

4.1. Maize yield predictions of DSSAT model under water and nitrogen
stresses

The effect of water and nitrogen stresses on maize growth and yield
was predicted with the DSSAT model, considering DI treatments moni-
tored in dry seasons experiments on the one side, and DN treatments
during the rainfed season experiment on the other side. Following the
calibration of maize genetic coefficients, the model produced fair to
good agreement between the simulated and observed grain yield, stover
yield and aboveground biomass and the LAImax. The nRMSE was in the
order aboveground biomass < stover yield < grain yield < LAImax.
during the calibration and in the order stover yield < aboveground
biomass < LAImax. < grain yield during the validation, while the model
efficiency coefficient followed the order LAImax. < stover yield <

aboveground biomass < grain yield during the calibration and the order
LAImax. < grain yield < aboveground biomass < stover yield during the
validation. The correlation coefficient R2 between the simulated and
observed variables was in the order LAImax. < stover yield < above-
ground biomass< grain yield during the calibration, and in the order
aboveground biomass < LAImax. < grain yield < stover yield during the

Fig. 5. Observed and simulated maximum leaf area index (a), grain yield at harvest (b), stover yield at harvest (c) and total aboveground biomass at harvest (d) of
maize crop during model validation using DN2019 (black color points) and DI2020 treatments (red color points).
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validation process.
A CTCNP2 value of 0.12 depicted at best the nutrient stress level as

the RMSE of the grain yield and LAImax. were lowest at this point. Low
values of CTCNP2 improved model prediction of grain yield likely due to
an improved plant nitrogen uptake (Liu et al., 2012; Jiang et al., 2019),
resulting in an improved grain yield prediction. However, Tovihoudji
et al. (2019) found that the performance of DSSAT in predicting grain
yield increased with increased values of CTCNP2. This opposite trend
observed in our case study would be probably related to an additional
nitrogen stress inherent to the 2019 growing season experiment, where a
heavy rainfall event (90 mm) was recorded few days after application of
NPK (Fig. 1A2). The heavy rainfall event would have resulted in nitro-
gen leaching and lower nitrogen uptake by plant. The lower values of the
CTCNP2 would have improved overall nutrient uptake by crops, thereby

improving yield predictions.
The performance of DSSAT model in predicting crop growth and

yield under various irrigation management techniques has been widely
assessed (Malik et al., 2019; Bai et al., 2022; Jiang et al., 2016), but very
few studies were conducted in West Africa (e.g see Atiah et al., 2021). In
addition, the model performance has also been extensively assessed
under rainfed conditions in detriment of off-season cereal crop pro-
duction, because maize production is mainly rainfed in the region
(Amouzou et al., 2019). Model showed unsatisfactory predictions of
phenological stages under water- and nutrient- deficient conditions.
Moreover, the predicted grain yield was similar among DI0, DI25 and
DI50 during the calibration and between DI0 and DI25 treatments during
the validation process. The similar predicted grain yield among DI
treatments, may have resulted from the similar predicted phenological

Fig. 6. Sensitivity analysis of maize grain yield and maximum leaf area index to the variation (%) in: (a) soil drained upper limit (DUL); (b) soil lower limit (SLL); (c)
soil saturated limit (SAT); (d) soil nutrient stress factor (CTCNP2); and (e) temperature effect on relative grain filling rate (RGFIL). Sensitivity analysis to DUL, SLL,
SAT and RGFIL was done using DI2019 and DI2020 treatments; and Sensitivity analysis to CTCNP2 was done using DN2018 and DN2019 treatments.
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stages among DI treatments. In fact, evidence showed that the contri-
bution of crop cultivar coefficients to grain yield and LAI decreases
significantly under water stress conditions (Corbeels et al., 2016).

4.1.1. Model evaluation
The calibration phase of DSSAT revealed that the model is limited in

the definition of phenological stages. The predicted anthesis and
maturity dates were identical among treatments during the same
growing seasons, implying that the DSSAT model did not differentiate
these phenological dates among optimal treatments (water stress or
fertilizer) and stress treatments. Indeed, DSSAT defines crop phenolog-
ical stages based on the cumulated degree days, which was identical
among treatments during the same growing season (Table 3). In addi-
tion, the phenology of crops is solely influenced by temperature or
thermal time in DSSAT (Dhakar et al., 2018). Thus, DSSAT model does
not account for the effect of stress, being water or fertilizer during the
computation of crop phenological stages. This limitation in DSSAT, was
also pointed out by Song and Jin, (2020), who observed that the model
simulated similar phenological dates among water stress treatments.
Thus, the model needs further improvement to integrate the effect of
stresses such as water or nutrient stress on crop phenology.

4.2. Long term scenario analysis and Implications

The maize WUE increases by 2 % with the application of DI40 deficit
irrigation, relative to optimal irrigation application (Fig. 8), suggesting
that the crop WUE increases with deficit irrigation. These findings are
consistent with those of Dejonge et al., (2012) who reported that
simulated WUE of maize increased with increasing deficit irrigation.
According to Fereres and Soriano (2007), the increase of WUE with

increase of deficit irrigation is explained by the fact that crop evapo-
transpiration increases more or less linearly with small amount of irri-
gation, but this relationship becomes curvilinear at a point whereby an
additional increase of irrigation no longer increases crop evapotranspi-
ration since part of the water is lost.

The reduction of 40 % and 60 % of irrigation amount at the vege-
tative stage guarantees a minimum grain yield of 1869 Kg ha− 1 and
1500 respectively. The scenario analyses revealed that the reduction of
the irrigation amount by 40 % generates similar grain yield with the
optimal irrigation scenario, while reducing irrigation rates by 60 % in-
duces similar cropWUE as with the optimal irrigation application. These
results suggest that increase of crop WUE under deficit irrigation is not
linearly related to grain yield. In fact, a compromise must be made to
identify the irrigation rate that would simultaneously minimize yield
loss and increase crop WUE.

5. Conclusion

Off-season crop production could be beneficial for improving food
security in West Africa countries. However, there is scanty information
on optimal use of water and fertilizer resources for off-season crop
production. This study provided findings on this gap. The DSSAT crop
model was calibrated and validated to simulate the effect of deficit
irrigation on maize growth and yields under different nutrient deficit
rates during the off-season. The calibration of maize genetic coefficients
resulted in a better prediction of the dates to anthesis and to maturity in
the nutrient deficit treatments, unlike in the deficit irrigation treat-
ments; although, these phenological dates were identical among the
nutrient deficit treatments or the deficit irrigation treatments. The
model did not account for the effect of water or nitrogen stress in the

Fig. 7. Cumulative probability distribution for (a) grain yield and (b) maize water use efficiency under deficit irrigation scenarios; and for (c) grain and (b) stover
yields under deficit nutrient scenarios using historical weather dataset from 1980 to 2019 in Parakou.
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determination of phenological dates, and also demonstrated a low
contribution of the phenological dates to the prediction of LAI and grain
yield. This study showed that reducing the crop water requirements by
40–60 % at the vegetative stage and combining it with the recom-
mended fertilizer rates, half of the recommended fertilizer rates or one-
third of the recommended fertilizer rates, guarantees an optimal grain
yield and simultaneously ensures higher WUE and IWUE. These com-
bined irrigation and fertilizer rates also offer medium inter-annual sta-
bility of these variables. Findings suggest that improvements of the
model are required to adequately represent the effect of any abiotic
stress on crop phenology, and to improve the contribution of pheno-
logical dates to the prediction of crop LAI and yield.
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