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c LIDAM/ISBA, Université catholique de Louvain, Belgium

October 8, 2024

Abstract

We introduce asymmetric effects in the BEKK-type conditional autoregressive Wishart

model for realized covariance matrices. The asymmetry terms are specified either by

interacting the lagged realized covariances with the signs of the lagged daily returns

or by using the decomposition of the lagged realized covariance matrix into positive,

negative, and mixed semi-covariances, thus relying on the lagged intra-daily returns

and their signs. We provide a detailed comparison of models with different complexity,

for example with respect to restrictions on the parameter matrices. In an extensive

empirical study, our results suggest that the asymmetric models outperform the sym-

metric one in terms of statistical and economic criteria. The asymmetric models using

the signs of the daily returns tend to have a better in-sample fit and out-of-sample

predictive ability than the models using the signed intra-daily returns.

Keywords: High frequency data; asymmetric volatility; realized covariance; conditional

autoregressive Wishart model.



1 Introduction

Forecasts of the covariance matrix of asset returns are a central input to asset pricing,

portfolio allocation, and risk management decisions. Such forecasts can be computed using

a multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) model

(see Bauwens et al. (2006) for a survey) that specifies the unobserved covariance matrix as a

function of past (usually daily) returns. Forecasts can also be based on models for realized

covariance (RC) matrices, which are ‘observable’ measures of variances and covariances based

on high-frequency (intraday) returns; see, e.g., Andersen et al. (2003), Barndorff-Nielsen and

Shephard (2004), Barndorff-Nielsen et al. (2008, 2011). Several types of RC matrix (RCM)

models have been introduced in the literature, each facing the need to ensure the positive

definite (PD)-ness of the RCM forecasts and to avoid parameter proliferation. In particular,

the conditional autoregressive Wishart (CAW) class of models specifies a probability distri-

bution for the RCM such that its conditional expectation is a parametric function of past

RC matrices (Gouriéroux et al. (2009)). The parameterization of this function is broadly

similar to that of MGARCH models, in particular the BEKK (Baba-Engle-Kent-Kroner)-

type (Engle and Kroner (1995), Golosnoy et al. (2012)) and DCC (dynamic conditional

correlation)-type (Engle (2002), Bauwens et al. (2012)) specifications.1

RCM and MGARCH models are designed to capture the main properties of the time

series of covariance matrices of asset returns, corresponding to the clustering and persistence

of the volatilities of financial returns. Another stylized fact, specific to stock returns, is the

negative correlation between returns and volatilities, initially expounded by Black (1976)

and developed by Christie (1982). Based on the Modigliani-Miller framework, these authors

explain that an unexpected stock price drop raises the debt-to-equity ratio, i.e., leverage, of

a firm, which implies increased riskiness and higher volatility. The alternative interpretation,

commonly referred to as the volatility feedback effect, was proposed by French et al. (1987);

1Most other RCM models are multivariate generalizations of the heterogenous autoregressive (HAR)
model of Corsi (2009), such as the vech-HAR model derived from Chiriac and Voev (2011) and the HAR-
DRD model of Oh and Patton (2016).
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see also Campbell and Hentschel (1992) and Wu (2001). It is based on the evidence of a pos-

itive correlation between future volatility and market risk premium, i.e., in the occurrence of

an expected volatility increase, the risk premium increases as well, such that the risk adverse

investors sell the stock, putting downward pressure on its price. Whatever interpretation

is preferred, it implies that volatility increases more strongly after a negative unexpected

return than after a positive one of the same magnitude, what has been named ‘asymmetry’

in volatility, or (with some misuse of language) ‘leverage effect’. In this regard, while this

type of asymmetry has been diversely incorporated in the specification of GARCH models,

such as the widely used GJR-GARCH model of Glosten et al. (1993), this is less the case for

RCM models.2

Our contribution consists in developing a class of models for RC matrices based on the

BEKK-type CAW model of Golosnoy et al. (2012) to capture the asymmetric responses of

the elements of the RCM to shocks, and empirically assessing and comparing these models.

We introduce the ‘asymmetry’ effect in RC models in two ways. The first one consists

of adding terms to the benchmark symmetric specification, which are active if the daily

returns at t − 1 are negative. This is designed in such a way that the conditional variance

of an asset at date t is higher if the daily return of the asset is negative at date t − 1 than

if it is positive. Likewise, the covariance at t between two assets is higher if the returns

are both negative at date t − 1 than if at least one of them is positive. The conditional

threshold autoregressive Wishart model (CTAW) of Anatolyev and Kobotaev (2018) is of

this type. We propose a more flexible model in Section 2.1. The signs of returns to specify

an ‘asymmetry’ effect have also been used (with some noticeable differences) in MGARCH

(Kroner and Ng (1998), De Goeij and Marquering (2004), Cappiello et al. (2006), Audrino

and Trojani (2011), Francq and Zaköıan (2012), Hafner and Herwartz (2023)), HAR (Qu

and Zhang (2022)), and HEAVY models (Bauwens and Xu (2023)).

2Univariate realized variance models that include an asymmetric effect have been developed by Corsi and
Renò (2012), McAleer and Medeiros (2008), and Patton and Sheppard (2015).
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The second way to introduce the ‘asymmetry’ effect is based on the estimates of real-

ized variances and covariances via the signs of high-frequency returns, i.e., measures known

as realized semi-variances and semi-covariances proposed by Bollerslev et al. (2020a) and

subsequently used by Bollerslev et al. (2020b) to develop asymmetric MGARCH and re-

alized GARCH models. These authors show that the RCM can be decomposed into the

sum of three terms: the positive semi-covariance term, the negative one, and, relevant only

for covariances, the mixed one. Instead of assuming that the conditional variance (i.e., the

conditional mean of the RCM) of an asset at date t depends on the realized variance of the

same asset at date t− 1, we assume that it depends additively on the realized positive semi-

variance (at t−1), with a specific coefficient, and on the realized negative semi-variance, with

another coefficient. If the latter coefficient is larger than the former, an ’asymmetry‘ effect is

present, corresponding to the leverage effect described previously, whereas if the coefficients

are equal, there is no asymmetric effect. A similar specification can be used for a conditional

covariance by assuming that it depends linearly on the three semi-covariances (positive, neg-

ative, and mixed) with different coefficients instead of the realized covariance (when the three

coefficients are equal).3 The detailed definitions and specifications are provided in Section

2.2.

To perform empirical evaluations of the models, we have built time series of daily returns

and RC matrices based on a high-frequency dataset for five stocks (of the banking sector)

and an exchange traded fund (ETF) tracking the S&P500 market index. Statistical eval-

uation criteria consist of the in-sample fit and out-of-sample forecast loss functions (mean

squared error and quasi-likelihood). In order to formally determine whether the quality

of the forecasts differs significantly across the models, we apply the model confidence set

(MCS) procedure of Hansen et al. (2011), which allows us to identify the subset of models

that contains the best forecasting models given a pre-specified level of confidence. We also

3In Bollerslev et al. (2020b), this specification is used for the conditional mean of the outer product of
the daily return vector, as in a traditional MGARCH and a realized GARCH model, instead of being used
for the conditional mean of the RC matrix, as we do.
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compare the model performances from a portfolio allocation perspective, using as loss func-

tions the standard deviations of the global minimum variance portfolio (GMVP) and of the

mean-variance portfolio (MVP).

Both the in-sample and forecasting results essentially underscore that the asymmetric

models outperform the symmetric benchmark specification. Such results underline the im-

portance of accounting for the asymmetries in modelling, estimating, and forecasting RC

matrices. Furthermore, the results (perhaps surprisingly) indicate that the simple GJR-type

asymmetric specification based on daily returns is superior to both the intra-daily asym-

metric extensions and more complex models to account for the ‘asymmetry’ effect in RC

matrices.

The rest of the paper is organized as follows. Section 2 introduces the asymmetric exten-

sions of the benchmark symmetric BEKK-CAW model of Golosnoy et al. (2012). Section 3

explains the estimation method. Section 4 provides information on the data used to obtain

the empirical results presented in Section 5. Section 6 concludes.

2 Introducing ‘asymmetry’ effects in the BEKK model

Let us consider the daily RCM Ct, defined as the sum of m outer-products of the intraday

return vectors over the day t (Barndorff-Nielsen and Shephard (2004)), i.e.,

Ct =
m∑
j=1

rj,tr
′
j,t, (1)

where rj,t = (rj,t,1, rj,t,2, . . . , rj,t,n)′ is a n × 1 vector of returns for the j-th time interval of

day t.

To capture the temporal and contemporaneous dependencies of the elements in Ct, the

BEKK parameterization adopted by Golosnoy et al. (2012) and inspired by the BEKK-

MGARCH model of Engle and Kroner (1995), is used for the conditional covariance ma-

trix St, defined as the conditional expectation E(Ct|Ft−1) based on the filtration Ft−1 =
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{Ct−1, Ct−2, ...}. The BEKK equation, with one lag of St and of Ct, is

St = CC ′ + ACt−1A
′ +BSt−1B

′, (2)

where C is a n×n full rank lower-triangular matrix and A and B are n×n parameter matrices,

for a total of n(n + 1)/2 + 2n2 parameters to be estimated. Given a positive-semidefinite

(PSD) S0, the symmetry and PD-ness of St are automatically guaranteed. Following Engle

and Kroner (1995), sufficient conditions to identify the benchmark BEKK-CAW model are

positive diagonal elements of the matrix C, and that the first diagonal elements of A and of

B are positive.

The number of parameters is reduced by imposing that the matrices A and B be diagonal,

which leads to a total of n(n+1)/2+2n parameters. In this case, each conditional covariance

only depends on the corresponding lagged realized and conditional covariances. Finally, the

scalar version, i.e., A = aIn and B = bIn, requires the estimation of only n(n + 1)/2 + 2

parameters.

2.1 ‘Asymmetry’ terms based on the signs of daily returns

To introduce ‘asymmetry’ terms in the BEKK-CAW model (2) that we consider as bench-

mark, we decompose a RCM additively into several parts based on the signs of daily returns.

Accordingly, we augment the filtration to include the information about daily returns, i.e.

Ft−1 = {Ct−1, rt−1, Ct−2, rt−2, ...}

2.1.1 Decomposition of a RCM based on the signs of daily returns

We denote by rt,i the daily return of asset i on day t, by I−t = [1{rt,1≤0}, . . . , 1{rt,n≤0}]
′

the indicator vector of the negative daily returns, and by I+t = [1{rt,1>0}, . . . , 1{rt,n>0}]
′ the

indicator vector of the positive daily returns. The decomposition of Ct as defined in (1) into

positive (CP,t), negative (CN,t), and mixed (CM,t) parts based on the signs of daily returns
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is then

Ct = CP,t + CN,t + CM,t, where

CP,t = Ct � I+t I+
′

t , CN,t = Ct � I−t I−
′

t ,

CM,t = Ct � (I+t I
−′
t + I−t I

+′

t ),

(3)

with � denoting the Hadamard (element-wise) product of matrices. The decomposition

holds because the elements of the matrix I+t I
+′

t + I−t I
−′
t + I+t I

−′
t + I−t I

+′

t are all equal to 1.

The positive and negative parts, i.e., CP,t and CN,t, are PSD; the qualifier positive (negative)

is a shortcut for ‘positively (negatively) signed’. So, it does not indicate that the off-diagonal

elements of CP,t (CN,t) are positive (negative). The diagonal elements of I+t I
−′
t and I−t I

+′

t ,

and therefore of CM,t, are always equal to zero, i.e., the mixed part CM,t is necessarily

indefinite. We denote by c•,ij,t the (i, j)-th entry of C•,t (where • stands for P , N , or M).

2.1.2 Models using the decomposition based on the signs of daily returns

To include in the symmetric RCM model an ‘asymmetry’ effect based on the signs of daily

returns, we add to (2) a term that uses the negative component CN,t. The conditional mean

of the RCM dynamic equation is then

St = CC ′ + ACt−1A
′ + ÃNCN,t−1Ã

′
N +BSt−1B

′, (4)

where ÃN is a n × n parameter matrix. This specification is the same as the conditional

threshold autoregressive Wishart (CTAW) model of Anatolyev and Kobotaev (2018) and

in the context of MGARCH models, it corresponds to the multivariate version of the GJR

univariate GARCH model of Glosten et al. (1993). Using the decomposition of Ct in (3), we

parameterize the previous equation equivalently as

St = CC ′ + AP (CP,t−1 + CM,t−1)A
′
P + ANCN,t−1A

′
N +BSt−1B

′, (5)
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where AP and AN are equal to A and A+ÃN of (4), respectively. Note that if AP = AN := A

in (5), this model is equivalent to the benchmark symmetric model (2).

To illustrate this model, we consider two assets (n = 2), assuming thatAP = diag(aP11, aP22),

AN = diag(aN11, aN22), and B = C = 0, because the corresponding parameters are irrelevant

for the asymmetry terms. Then, the dynamic equations of the conditional variances s11,t,

s22,t, and of the conditional covariance s12,t are

sii,t = a2PiicP,ii,t−1 + a2NiicN,ii,t−1, for i = 1, 2; (6)

s12,t = aP11aP22(cP,12,t−1 + cM,12,t−1) + aN11aN22cN,12,t−1. (7)

The leverage effect in the variances corresponds to a2Nii > a2Pii (i = 1, 2), since this im-

plies that the conditional variance (sii,t) increases more if the lagged return (rt−1,i) is neg-

ative than if it is positive, for a given value of the lagged realized variance (cii,t−1), since

cP,ii,t−1 = cii,t−11{rt−1,i>0} and cN,ii,t−1 = cii,t−11{rt−1,i≤0}. For the covariance, the leverage

effect corresponds to aN11aN22 > aP11aP22, which is surely true if the effect holds for both

variances, but may be true also if it holds only for one variance. Indeed, for a given level

of the lagged realized covariance (c12,t−1), the conditional covariance (s12,t) increases more

if the lagged returns (rt−1,1 and rt−1,2) are negative than if they are positive or of opposite

signs.

A more flexible model is obtained by removing the constraint of equal coefficients of

cP,12,t−1 and cM,12,t−1 in (7), resulting in the covariance equation s12,t = aP11aP22cP,12,t−1 +

aM11aM22cM,12,t−1 + aN11aN22cN,12,t−1. The corresponding more flexible version of (5) is

St = CC ′ + APCP,t−1A
′
P + ANCN,t−1A

′
N + AMCM,t−1A

′
M +BSt−1B

′, (8)

where AM = (aMij) is a n × n parameter matrix. The scalar version of this formulation is

proposed by Bollerslev et al. (2020b) in the context of realized GARCH models. If AP =

AN = AM := A in (8), this model is equivalent to the benchmark symmetric model (2).
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Since CM,t = Ct � (I+t I
−′
t + I−t I

+′

t ), one can split the term AMCM,t−1A
′
M into two terms

with different parameter matrices, A+
M and A−M , creating a more flexible model. Extending

the scalar version of Bollerslev et al. (2020b), this is done as follows:

St = CC ′ + APCP,t−1A
′
P + A′NCN,t−1A

′
N + A+

MC
+
M,t−1A

+′

M + A−MC
−
M,t−1A

−′
M +BSt−1B

′, (9)

where C+
M,t = Ct � τ(I+t I

−′
t ), C−M,t = Ct � τ(I−t I

+′

t ), and the operator τ(·) sets the lower

triangular part of the matrix argument equal to the upper triangular part.4 The τ(·) operator

is needed to obtain the symmetry of the C+
M,t and C−M,t matrices.

We refer to (5) as the tr-BEKK-CAW model (‘tr’ for ‘threshold’), to (8) as the trPNM-

BEKK-CAW model, and to (9) as the trPNτM-BEKK-CAW, omitting BEKK-CAW when

it is clear that we refer to this class of models. Diagonal and scalar versions are obtained by

restricting the parameter matrices in the same way as for the model (2).

2.2 ‘Asymmetry’ terms based on the signs of intra-daily returns

To enable refined intraday asymmetric RC dynamics (Bollerslev et al. (2020b)), we exploit

the semi-covariance decomposition of the RCM into several components.

2.2.1 Semi-covariance decomposition of a RCM

Bollerslev et al. (2020a) provide a decomposition of Ct, as defined in (1), into positive (Pt),

negative (Nt), and two mixed (M+
t , M−

t ) realized semi-covariance matrices defined by using

the signs of the underlying intraday returns, extending the idea of Barndorff-Nielsen et al.

4Following He and Teräsvirta (2002), τ(M) = ivech(vech(M ′)), where vech(·) stacks the lower triangle of
a n× n matrix into a n(n+ 1)/2× 1 vector and ivech(·) is its inverse, thus generating a symmetric matrix.
For example, for two assets, if I+t = (1 0)′ and I−t = (0 1)′ (the first return is positive, the second is negative),

I+t I
−′

t =

(
0 1
0 0

)
and τ(It

+I−
′

t ) =

(
0 1
1 0

)
.
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(2010) to the multivariate setting. The semi-covariance matrices are defined as

Pt =
m∑
j=1

r+j,tr
+′

j,t ; Nt =
m∑
j=1

r−j,tr
−′
j,t ;

M+
t =

m∑
j=1

r+j,tr
−′
j,t ; M

−
t =

m∑
j=1

r−j,tr
+′

j,t ,

(10)

where r+j,t = rj,t�I+j,t and r−j,t = rj,t�I−j,t denote the vectors of positive and negative intra-daily

returns, with I+j,t = [1{rj,t,1>0}, . . . , 1{rj,t,n>0}]
′

and I−j,t = [1{rj,t,1≤0}, . . . , 1{rj,t,n≤0}]
′

denoting

the corresponding indicator vectors of the signs of intraday returns.

The positive and negative semi-covariance matrices, i.e., Pt andNt, are PSD; the qualifiers

positive and negative do not imply that the off-diagonal elements of these matrices are

positive or negative. The mixed components M+
t and M−

t have zero diagonal elements and,

thus, are indefinite, with off-diagonal elements that are necessarily negative. Obviously,

Ct = Pt +Nt +Mt, where Mt = M+
t +M−

t , (11)

given that M+
t = M−′

t .

The corresponding positive, negative, and mixed terms of the decompositions (3) and

(11) generally differ. They may be equal under specific conditions that are unlikely to hold

in practice. For example, if rj,t > 0 ∀j, i.e., the intraday returns (of all stocks) are positive

during day t, and the daily return vector rt used to define CP,t is chosen to be the return

over the trading period, i.e.,
∑m

j=1 rj,t, then Pt = CP,t = Ct. Conversely, if the daily return

rt used to extract the positive daily return indicator vector I+t is the close-to-close return

and thus differs from
∑m

j=1 rj,t (unless the overnight return is equal to zero), then Pt may

differ from CP,t. A simple example is developed in Appendix A.
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2.2.2 Models using the semi-covariance decomposition

We exploit the realized semi-covariance decomposition of a RCM to define a semi-BEKK-

CAW model for St, the expectation of Ct conditional on the augmented filtration Ft−1 =

{Pt−τ , Nt−τ ,M
+
t−τ ,M

−
t−τ , τ ≥ 1},

St = CC ′ + APPt−1A
′
P + ANNt−1A

′
N + AMMt−1A

′
M +BSt−1B

′, (12)

where AP , AN , and AM are n × n parameter matrices, while Pt, Nt, and Mt denote the

positive, negative, and mixed semi-covariance matrices, respectively. If AP = AN = AM :=

A, the semi-CAW model is equivalent to the benchmark symmetric model (2).

To illustrate the terms of this model, we write its equations of the bivariate version,

eliminating the constant and BSt−1B
′ terms, and assuming that AP , AN , and AM are lower

triangular (LT), i.e., aP12 = aN12 = aM12 = 0. The triangularity assumption could be

relevant if the first asset is a market index and the second one is a particular stock, so that

the market may have an impact on the stock but no impact of the stock on the market is

allowed. The corresponding equations are

s11,t = a2P11p11,t−1 + a2N11n11,t−1,

s22,t = a2P22p22,t−1 + a2N22n22,t−1

+ a2P21p11,t−1 + a2N21n11,t−1

+ 2aP21aP22p12,t−1 + 2aN21aN22n12,t−1 + 2aM21aM22m12,t−1,

s12,t = aP11aP22p12,t−1 + aM11aM22m12,t−1 + aN11aN22n12,t−1

+ aP11aP21p11,t−1 + aN11aN21n11,t−1.

(13)

In each equation, the first line corresponds to the diagonal model (i.e., when both off-diagonal

elements of AP , AN , and AM are set to zero). It is clear that in the diagonal model, each

conditional variance only depends on the corresponding lagged positive and negative semi-
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variances. A larger coefficient a2N11 (a2N22) of the negative semi-variance than of the positive

one a2P11 (a2P22) for the first (second) asset corresponds to the ‘leverage’ effect. In the LT

model, several other terms appear in the particular asset conditional variance, i.e., two terms

that correspond to the effect of the market positive and negative semi-variances, with the

possibility of a cross-leverage effect (if a2N21 > a2P21), and three terms that correspond to the

impacts of the three semi-covariances, with coefficients that can be of any sign.

The conditional covariance equation has three terms that capture the effect of the lagged

positive, negative, and mixed semi-covariances (p12,t−1, n12,t−1, m12,t−1). It is possible that

the coefficient (aN11aN22 > 0) of the negative semi-covariance (n12,t−1) be larger than that

(aP11aP22 > 0) of the positive one (p12,t−1), which can be interpreted as a ‘leverage’ effect on

the conditional covariance. The coefficient aM11aM22 of the mixed semi-covariance can be of

any sign, since aM11 and aM22 do not appear squared in the variance equations. The two

additional terms of the LT version (in the third line of the covariance equation) correspond

to cross-effects of the market semi-variances, with a possibility of a ‘cross-leverage’ effect if

aN11aN21 > aP11aP21; these coefficients can be of any sign.

Like for the trPNM-BEKK-CAW model (8), the ‘semi’ model can be made more flexible

by splitting the mixed semi-covariance matrix Mt into its two components M+
t and M−

t

(the positive and negative mixed semi-covariance matrices, respectively, such that Mt =

M+
t +M−

t ) and applying the τ transformation to each component (Bollerslev et al. (2020a)),

i.e.,

St = CC ′ +BSt−1B
′ + APPt−1A

′
P + ANNt−1A

′
N

+A+
Mτ(M+

t−1)A
+′

M + A−Mτ(M−
t−1)A

−′
M ,

(14)

where A+
M and A−M are n × n are parameter matrices. We refer to this specification as

the semi-τ -BEKK-CAW model. We further discuss the use of the mixed semi-covariance

decomposition in Appendix B.
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3 Estimation

The estimation of the parameters of the models presented in Section 2 is carried out by

maximizing a log-likelihood function (LLF). As in Golosnoy et al. (2012), the latter is based

on the assumption that the probability density function of the RC matrices Ct, conditional

on the appropriate filtration Ft−1, is Wishart, i.e.,

Ct|Ft−1 ∼ Wn(v, St(θ)/v), (15)

where Wn(v, St(θ)/v) denotes the n-dimensional central Wishart distribution with v degrees

of freedom, with v ≥ n, and PD n× n scale matrix St(θ)/v, implying E(Ct|Ft−1) = St(θ); θ

is the vector of parameters appearing in the equation defining St. For example, for equation

(2), θ consists of the elements of C, A, and B. The LLF for T observations is

LLF (θ|C1, . . . , CT ) = −ν
2

T∑
t=1

{
log |St(θ)|+ trace

[
St(θ)

−1Ct
]}
. (16)

Bauwens et al. (2012) show that the parameter v can be treated as nuisance parameter,

meaning that it can be fixed to an arbitrary value (in practice, 1) to estimate θ. They also

show that the Wishart-based LLF provides a quasi-maximum likelihood (QML) estimator

for the parameters θ, under suitable conditions, so that the QML estimator is consistent.

The maximization of the LLF is typically difficult due to the dimension of θ, denoted

by dθ, which is of order n2. For example, in the case of (14), dθ = n(n + 1)/2 + 5n2(= 201

if n = 6); in the scalar version of the same model dθ = n(n + 1)/2 + 5(= 26) and in the

diagonal version, dθ = n(n + 1)/2 + 5n(= 51). To get rid of the n(n + 1)/2 parameters of

the C matrix in the maximization of the LLF, it is possible to estimate CC ′ consistently in

a first step. In a second step, the remaining parameters are estimated by QML, conditional

on the first step estimates. This procedure reduces the number of parameters by n(n+ 1)/2

in the second step. The estimation of C in the first step is called ‘covariance targeting’. It
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is based on writing the constant term (CC ′) of each dynamic equation for St as a function

of E(Ct), and replacing the latter by the sample mean of the Ct matrices. The covariance

targeting parameterizations of the models are defined in Appendix C. When targeting is

used, it is understood that θ in (16) does not include the elements of C.

4 Data construction and description

For the subsequent empirical analyses, we have constructed the time series of daily RC

matrices with the corresponding decompositions (3) and (11) into positive, negative, and

mixed matrices, based on a high-frequency data set for the SPDR S&P500 (SPY or Spyder)

– an exchange traded fund that tracks the S&P500 index – and five stocks of the banking

sector, i.e., Bank of America Corp. (BAC), Citigroup Inc. (C), Goldman Sachs Group Inc.

(GS), JPMorgan Chase & Co. (JPM), and Wells Fargo & Co. (WFC).5

To avoid the measurement drawbacks due to microstructure effects when sampling returns

at very high frequencies, we compute each daily realized (semi-)covariance matrix as the sum

of the outer products of the five-minute log-return vectors of the trading period of the day.

Given the high liquidity of all the stocks, the effect of non-synchronicity is rather negligible

at the chosen frequency; the synchronization was done globally for all the stocks, using the

closest prior price. The sample period is January 3, 2012 - December 31, 2021, resulting in

2517 observations.

Table 1 reports, for each asset, the time series means and standard deviations of the

realized variances (annualized in percentage, i.e., multiplied by 252 and by 100), and of their

‘positive’ and ‘negative’ components used in the two broad classes of asymmetric models.

The same statistics for the squared close-to-close and open-to-close log-returns of each asset

are also shown in Table 1.

5The data provider is the AlgoSeek company (30 Wall Street, New York, NY, 10005, USA). The data
provided to us by Algoseek are the prices of the assets, observed every minute during the trading period
(9:30-16), compiled from the trades that occurred in sixteen US exchanges and marketplaces.

13



Table 1: Time series means and standard deviations (between parentheses) of realized variances, their
positive and negative decompositions, and squared daily returns
Asset SPY BAC C GS JPM WFC
r 2cc 2.63 (11.98) 9.87 (32.75) 10.44 (40.77) 7.71 (27.07) 7.02 (28.64) 7.92 (30.00)
r 2oc 1.31 (3.75) 5.51 (13.07) 5.47 (13.66) 4.45 (10.60) 3.54 (7.91) 4.23 (11.74)
RV 4.88 (22.65) 5.45 (9.70) 5.78 (14.12) 4.62 (8.35) 3.98 (8.84) 4.63 (11.08)
P 2.41 (11.08) 2.77 (5.36) 2.89 (7.30) 2.36 (4.55) 2.04 (4.81) 2.34 (6.14)
N 2.47 (11.62) 2.68 (4.74) 2.89 (7.30) 2.26 (4.16) 1.95 (4.28) 2.29 (5.41)
CP -cc 2.15 (9.93) 2.70 (7.18) 2.68 (7.89) 2.29 (6.31) 1.93 (6.32) 2.28 (8.66)
CN -cc 2.73 (20.65) 2.75 (7.57) 3.10 (12.39) 2.33 (6.37) 2.05 (6.79) 2.35 (7.66)
CP -oc 2.42 (12.58) 2.74 (7.86) 2.73 (8.74) 2.37 (6.62) 2.00 (6.88) 2.35 (9.02)
CN -oc 2.45 (19.15) 2.71 (6.86) 3.04 (11.81) 2.24 (6.05) 1.98 (6.23) 2.28 (7.22)

r2cc: squared close-to-close daily return; r2oc: squared open-to-close daily return; RV : realized variance; P : positive
semi-variance; N : negative semi-variance; CP : RV if daily return is positive, 0 if negative; CN : RV if daily return is
negative, 0 if positive; the suffixes -cc and -oc indicate that the different terms of the decomposition (3) are based on
the signed daily close-to-close and open-to-close returns, respectively.

Regarding the statistics reported in Table 1, several comments are worth making:

1. In each row, the time series means are similar between the six assets, except for SPY

squared returns. There is more heterogeneity in the standard deviations; in particular,

due to more extreme values, those for SPY are larger than for the banks.

2. The average positive semi-variance (P ) of each asset is a bit larger than the average

positive component (CP -cc), and the average N is smaller than the corresponding CN -

cc (since P + N = CP + CN = C, as M and CM have zero diagonal elements). When

the decomposition of the realized variances is based on the open-to-close returns, the

averages are closer.

3. CP -cc is smaller than CP -oc (by 11 percent for SPY, and about 3 for the other assets),

hence CN -cc is larger than CN -oc.

4. The average standard deviations of CP -cc exceed those of P (except for SPY), and the

average standard deviations of CN -cc exceed those of N . Comparing the decomposi-

tions based on close-to-close and open-to-close returns, we find that standard deviations

are larger, on average, for CP -oc than for CP -cc, while the inverse relation holds for the

negative part: standard deviations are larger, on average, for CN -cc than for CN -oc.
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5. For the banking stocks, each average realized variance (covering the open-to-close trad-

ing period), is only a fraction of the corresponding average squared close-to-close re-

turns (between 55 and 60%), but it is much closer to the average squared open-to-close

returns. Also visible are the larger standard deviations of the time series of squared

close-to-close returns compared to those of the realized variances. For SPY, the aver-

age realized variance is larger than the average squared returns, and the same relation

holds for the standard deviations.

Figures 1-4 show the time series of the realized variances of SPY and JPM, and the

components of their decompositions defined by (3) using close-to-close returns, and (11).

They illustrate the occurrence of a few extreme values, either isolated (e.g., for JPM, in 2015

and 2018) or clustered (mainly in March 2020, corresponding to the first COVID period

in the USA). More generally, the profiles of the series on the two figures relative to the

same asset illustrate that the two decompositions differ. This is more visible on Figure 5

that shows a zoom of the realized volatility of SPY and its decompositions during the year

2020, with the very high volatility period starting around the middle of February. One can

see that in the decomposition using the signed daily returns (right graphs), the realized

volatility (in red on each graph) of each day is fully attributed either to the positively signed

component (in blue, top right graph) or to the negatively signed one (in black, bottom right

graph). In the decomposition into semi-variances, each realized volatility (in red) is split

into a part attributed to the positive semi-variance (in blue, top left graph), and the other

to the negative semi-variance (in black, bottom left graph).
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Figure 1: Annualized realized variances of SPY and the terms of their decomposition (3) using the signed
daily close-to-close returns
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Figure 2: Annualized realized variances of SPY and the terms of their decomposition (11)
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Figure 3: Annualized realized variances of JPM and the terms of their decomposition (3) using the signed
daily close-to-close returns
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Figure 4: Annualized realized variances of JPM and the terms of their decomposition (11)

17



SPY RV positive semi­variance 

2020­1 2 4 6 8 10 12

200

400

600

SPY RV positive semi­variance SPY RV positively signed component 

2020­1 2 4 6 8 10 12

200

400

600

SPY RV positively signed component 

SPY RV negative semi­variance 

2020­1 2 4 6 8 10 12

200

400

600

SPY RV negative semi­variance SPY RV negatively signed component 

2020­1 2 4 6 8 10 12

200

400

600

SPY RV negatively signed component 

Figure 5: Annualized realized variances of SPY and their decompositions: zoom on the year 2020

Appendix E provides detailed statistics for the realized covariances and the corresponding

decompositions, and graphical illustrations. On average, realized covariances are positive and

tend to be larger among the five banks than with the Spyder. The difference between the

two decompositions is quite obvious for realized covariances: while the off-diagonal elements

of M are negative by construction, those of CM are unrestricted, and their sample averages

are positive. This corresponds to P and N being larger than their counterparts, CP and CN ,

respectively.

5 Empirical application

We apply the models defined in Section 2 to the data presented in Section 4. In the following,

we first present the estimation results in Section 5.1, then provide forecast comparisons using

statistical loss functions in Section 5.2, and economic loss functions in Section 5.3.
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5.1 Estimation results

Each BEKK-CAW model is estimated in three versions, namely, scalar, diagonal, and partly

lower triangular, the latter being explained below. The models are estimated for six assets

on the dataset of 2517 observations described in Section 4, for the period from January 3,

2012, to December 31, 2021. The constant terms are estimated by covariance targeting and

the remaining parameters by maximizing the Wishart quasi-likelihood function.

The covariance targeting formulas of the models presented in their general version in

Section 2 are given in Appendix C. In the scalar versions, the parameter matrices (except

the constant terms) are restricted to be scalar multiple of the identity matrix; see Appendix

D for the covariance targeting formulas and the PD-ness conditions. In the diagonal versions,

the parameter matrices (except the constant terms) are restricted to be diagonal, so that

(like in the scalar versions), there is no impact of the SPY asset on the five banking stocks.

To include such effects, we modify each diagonal parameter matrix by adding five parameters

in the first column. For example, the matrix AP in (12) is parameterized as

AP =



aP11 0 0 0 0 0

aP21 aP22 0 0 0 0

aP31 0 aP33 0 0 0

aP41 0 0 aP44 0 0

aP51 0 0 0 aP55 0

aP61 0 0 0 0 aP66


, (17)

and thus appears as partly lower triangular (PLT). The same extensions are introduced in

the matrices A, AN , AM , A+
M , and A−M , but not B, which remains diagonal. The variance

equation of asset 1 (SPY) is then as in the first equation of (13), and the variance equation

of each other asset is as in the second equation of (13). The covariance equations between

asset 1 and the other assets are as in the third equation of (13); each of these five covariance

equations includes two terms that correspond to the impact of the semi-variances of asset 1,
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due to the introduction of the parameters a•,j1. The ten covariance equations between the

assets i and j, i, j ∈ {2, . . . , 6}, do not include these two terms and are of the form

sij,t = aPiiaPjjpij,t−1 + aMiiaMjjmij,t−1 + aNiiaNjjnij,t−1. (18)

For the other (than semi) models, the variables that multiply the coefficients of the variance

and covariance equations are adapted according to the specification of each model presented

in Section 2.

The full sets of estimates for each model are reported in Tables 15-17 of Appendix F. In

these tables, the estimates of the tr, trPNM, and trPNτM models are obtained with the

data based on the decomposition (3) of Ct that uses the close-to-close returns. The estimates

of the same models with the data based on the decomposition that uses the open-to-close

returns are reported in Tables 18-20 of Appendix G; these models are designated by troc,

trPNMoc, and trPNτMoc in the sequel.

5.1.1 In-sample fit comparisons

Table 2 reports for each model the maximized log-likelihood function (LLF), the Akaike

information criterion (AIC), and the Bayesian information criterion (BIC). The LLF values

are not always comparable, as we explain below. In view of the information criteria, several

conclusions can be drawn:

1. According to AIC, the symmetric model does not fit better than any of the asymmetric

models of the same version (scalar/diagonal/PLT). According to BIC, this is also the

case for the scalar models, while for the diagonal and PLT models, the higher penalty

for model complexity leads to a preference for the symmetric model.

2. Comparing only the asymmetric models, for each version and both information cri-

teria, the best fitting model is among the trPNM, trPNMoc, tr and troc models.
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Considering the three versions altogether, the diagonal trPNM is the best ftting one

(out of 27 models) for AIC, and the scalar trPNMoc for BIC.

3. Using the close-to-close returns, instead of the open-to-close ones, improves the AIC

in six comparisons (out of nine), and the BIC in five.

4. The extensions of trPNM to trPNτM, and of trPNMoc to trPNτMoc do not im-

prove the information criteria. The same result is observed for the extensions of semi

to semi-τ , except for AIC-PLT.

Table 2: Maximum log-likelihood function (LLF), AIC, and BIC values of estimated BEKK-CAW models
sym tr trPNM trPNτM semi semi-τ troc trPNMoc trPNτMoc

LLF-scalar -518.91 -510.94 -503.38 -503.16 -511.3 -511.24 -512.19 -501.98 -501.98
LLF-diagonal -493.04 -481.28 -471.95 -470.39 -489.07 -489.061 -479.57 -475.24 -474.45
LLF-PLT -491.88 -479.38 -466.46 -462.64 -472.03 -459.48 -478.1 -470.54 -467.52
AIC-scalar 9.949 9.944 9.938 9.939 9.945 9.945 9.945 9.937 9.938
AIC-diagonal 9.936 9.932 9.929 9.933 9.943 9.948 9.931 9.932 9.936
AIC-PLT 9.940 9.938 9.937 9.943 9.941 9.940 9.937 9.940 9.946

BIC-scalar 9.954 9.950 9.948 9.951 9.954 9.957 9.951 9.946 9.950
BIC-diagonal 9.964 9.974 9.985 10.002 9.998 10.017 9.972 9.987 10.005
BIC-PLT 9.979 10.003 10.027 10.058 10.032 10.056 10.002 10.030 10.062

LLF values have been shifted by adding 12,000. The underlined values correspond to the best model of each row. The values in bold
correspond to the best model for each criterion. The values in italics correspond to the best model in each row, when comparing only
the eight asymmetric models.

Table 3 reports the LR test statistics (assumed to be asymptotically chi-squared) and

the associated degrees of freedom of the possible nesting tests for each version of the models.

The symmetric model (sym) is rejected at the one percent level of significance in favour of

each nesting asymmetric model for each version of the latter, except in a single case (sym

vs semi, diagonal versions). Between asymmetric models, the tr model is rejected against

the trPNM one, while troc is rejected against trPNMoc only for the scalar version.
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Table 3: Likelihood ratio (LR) statistics and their degrees of freedom (between
parentheses), for hypotheses making some models restricted cases of other

model version
nested nesting H0 scalar diagonal PLT
sym tr AP = AN in (5) 15.94 (1) 23.52 (6) 25.00 (11)
sym troc AP = AN in (5) 13.44 (1) 26.94 (6) 27.56 (11)
sym trPNM AP = AN = AM in (8) 31.06 (2) 42.18 (12) 50.84 (22)
sym trPNMoc AP = AN = AM in (8) 33.86 (2) 35.6 (12) 42.68 (22)
sym semi AP = AN = AM in (12) 15.22 (2) 7.94 (12) 39.70 (22)
tr trPNM AP = AM in (8) 15.12 (1) 18.66 (6) 25.84 (11)
troc trPNMoc AP = AM in (8) 20.42 (1) 8.66 (6) 15.12 (11)

The p-value of the each LR statistic is below 0.012, except those that are underlined, which are
larger than 0.10, assuming a chi-squared distribution, with the degrees of freedom reported between
parentheses next to the corresponding statistic.

Table 4 reports the likelihood ratio (LR) statistics for testing the null hypothesis of a

simpler version against a more complex one that nests it. The scalar version is rejected

against the diagonal and the PLT ones for each of the nine models (the largest p-value is

0.012). A diagonal version is not rejected against the corresponding PLT one, except for the

two semi models.

Table 4: Likelihood ratio tests of scalar versus diagonal, diagonal versus PLT, and scalar versus PLT
sym tr trPNM trPNτM semi semi-τ troc trPNMoc trPNτMoc

LR s/d 51.74 59.32 62.86 65.54 44.46 44.36 65.24 53.48 55.06
df s/d 10 15 20 25 20 25 15 20 25
p s/d <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

LR s/plt 54.06 63.12 73.84 81.04 78.54 103.52 68.18 62.88 68.92
df s/plt 15 25 35 45 35 45 25 35 45
p s/plt <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.012

LR d/plt 2.32 3.8 10.98 15.5 34.08 59.162 2.94 9.4 13.86
df d/plt 5 10 15 20 15 20 10 15 20
p d/plt 0.80 0.96 0.75 0.27 < 0.01 < 0.01 0.98 0.86 0.84

LR s/d, df s/d, p s/d: respectively, likelihood ratio statistic, degrees of freedom, p-value for testing the scalar against the
diagonal model; s/plt (d/plt) is for testing the scalar (diagonal) model against the partly lower triangular (plt) one.

5.1.2 Interpretation of the estimates

The estimates reported in the tables of Appendices F and G are difficult to interpret because

the conditional variances and covariances are nonlinear functions of the parameters that are

estimated, as illustrated, e.g., by the equations (13) and (18) for the semi model. In Tables

5-8, we report the estimates in an interpretable way, considering the symmetric model, the
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three tr models using the close-to-close returns (cc), and the two semi models.

In Table 5, we show the estimated coefficients (except the constant terms) that appear

in the variance equations of all models. Since the diagonal and PLT versions of the different

models have six variance equations with different parameters, we report the estimates of

the variance equation for SPY (asset 1) and only the averages of the estimates for the five

banking assets (numbered 2 to 6). Indeed, the estimates for the banks are close to each

other but rather different from those of SPY. For the latter, the diagonal element of B is

higher than for the banking stocks, and correspondingly, the parameters of the AP and AN

matrices are smaller. These differences reflect the fact that the conditional volatility of SPY

is smoother than for the banks, while the bank conditional volatilities are more sensitive to

the lagged realized volatility values.

By definition, the symmetric (sym) model has the same parameters for the cP,ii,t−1 and

cN,ii,t−1 variables, i.e., its variance equations can be written as (6) where a2Pii = a2Nii. The

estimates reported in Table 5 show that for the asymmetric models, these coefficients differ,

with a2Nii in all cases larger than a2Pii; this is also true for each banking asset (see the tables

in Appendix F). Hence, the leverage effect is numerically present in the variance equations.

Significance tests for the scalar, diagonal and PLT tr models are reported in Appendix H,

Table 21, to illustrate that the null hypothesis a2Nii ≤ a2Pii is rejected at the 5 (and less in

some cases) percent level against the hypothesis a2Nii > a2Pii, except for asset 5.

In Table 6, we report the average estimated coefficients of the additional terms that

appear only in the variance equations of the PLT models of the five banking stocks, due

to the introduction of the off-diagonal parameters in the first column of the A matrices, as

shown in (17). For the sym, tr, trPNM, and trPNτM models, because these off-diagonal

elements are often much smaller than the diagonal ones (see the estimates in Appendix F),

the coefficients (a2Pi1 and a2Ni1) measuring the impact of the positive and negative components

of the lagged realized variance of SPY on the other asset variances are very close to zero

and not significant, as reported for the tr model in column 8 of Table 21 of Appendix H.

23



However, for the three asymmetric models of the tr-type, and especially for the trPNτM

model, the coefficients (in the last five rows of Table 6) corresponding to the impacts of

realized covariance components on the variances are not as close to zero as in the first two

rows.

Table 5: Variance equations of scalar, diagonal, and
PLT BEKK-CAW models: average coefficients of variables
present in all models

Coeff: b2ii a2Pii a2Nii
Model Version Asset sii,t−1 cP,ii,t−1 cN,ii,t−1

scalar 1-6 0.70 0.27 0.27
diagonal 1 0.80 0.18 0.18

sym diagonal 2-6 0.61 0.33 0.33
PLT 1 0.80 0.19 0.19
PLT 2-6 0.61 0.32 0.32

scalar 1-6 0.71 0.24 0.28
diagonal 1 0.80 0.14 0.22

tr diagonal 2-6 0.63 0.30 0.33
PLT 1 0.80 0.14 0.23
PLT 2-6 0.63 0.29 0.33

scalar 1-6 0.72 0.22 0.29
diagonal 1 0.79 0.15 0.25

trPNM diagonal 2-6 0.62 0.28 0.37
PLT 1 0.77 0.16 0.27
PLT 2-6 0.63 0.29 0.36

scalar 1-6 0.72 0.22 0.29
diagonal 1 0.79 0.15 0.28

trPNτM diagonal 2-6 0.62 0.27 0.41
PLT 1 0.78 0.15 0.30
PLT 2-6 0.65 0.25 0.39

sii,t−1 pii,t−1 nii,t−1
scalar 1-6 0.70 0.20 0.35

diagonal 1 0.78 0.15 0.31
semi diagonal 2-6 0.62 0.18 0.52

PLT 1 0.79 0.07 0.36
PLT 2-6 0.61 0.19 0.48

scalar 1-6 0.70 0.20 0.35
diagonal 1 0.78 0.16 0.31

semi-τ diagonal 2-6 0.61 0.21 0.53
PLT 1 0.79 0.10 0.34
PLT 2-6 0.60 0.29 0.42

Each row corresponds to the conditional variance equation of the
model identified in the first two columns. For a scalar model, the
coefficients are the same for assets 1 to 6. For the diagonal and PLT
models, the coefficients are reported for assets 2 to 6 as the means
of the coefficients for these 5 assets. The coefficients, as defined in
the first row, are computed using the estimates reported in Tables
15 for the scalar models, 16 for the diagonal models, and 17 for the
PLT models. Each coefficient multiplies the variable written in row 2
below it for the models of the first four blocks and the variable shown
above the ‘semi’ model for the last two blocks. For PLT, assets 2-6,
the additional terms of the variance equations are reported in Table
6.
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For the semi models, the coefficients measuring the impact of the lagged positive and

negative semi-variances of SPY are small but not as much as in the other models, and reveal

an asymmetric impact (a more important impact of the negative semi-variance than of the

positive one). The coefficients in the last five rows are also not close to zero, though their

values are less important than the coefficients reported in Table 5 for these models. In brief,

these additional terms are relevant in the semi models, but not in the other models.

Table 6: Variance equations of PLT BEKK-CAW models: average coefficients of additional terms
for assets 2-6
Coefficient Variable sym tr trPNM trPNτM Variable semi semi-τ
a2Pi1 cP,11,t−1 0.00000 0.00051 0.00158 0.00205 p11,t−1 0.0243 0.0588
a2Ni1 cN,11,t−1 0.00000 0.00013 0.00011 0.00005 n11,t−1 0.00241 0.0113
2aPi1aPii cP,1i,t−1 -0.00153 -0.0226 -0.0413 -0.0455 p1i,t−1 -0.119 -0.254
2aNi1aNii cN,1i,t−1, -0.00153 0.0120 0.0111 -0.00522 n1i,t−1 0.0653 0.132
2aMi1aMii cM,1I,t−1, -0.00153 -0.0215 -0.0596 - m1i,t−1 -0.314 -
2a+Mi1a

+
Mii c+M,1i,t−1 - - - 0.170 τ(m+

1i,t−1) - -0.157
2a−Mi1a

−
Mii c−M,1i,t−1 - - - -0.294 τ(m−1i,t−1) - -0.236

The coefficient values for each model are computed using the estimates reported in Table 17 and the coefficients as
defined in the first column, corresponding to the variables in the second column for the models in columns 3 to 6,
and the variables in column 7 for the last two models.

In Tables 7 and 8, we report the average estimated coefficients of the covariance equations.

For the diagonal and PLT versions, we report separately the averages for the five covariance

equations between asset 1 and the five banking stocks, and the averages for the ten equations

between the five banking stocks. The conditional covariances between the five banks are less

smooth and more reactive to lagged realized covariance terms than the covariances between

the banks and SPY. Moreover, we find a leverage (or asymmetric) effect in the covariance

equations: aNiiaNjj is always larger than aPiiaPjj and aMiiaMjj (except or the latter in the

diagonal tr model). In Appendix H, Table 22 (column 5) reports statistics that indicate

the significance of the differences aNiiaNjj − aPiiaPjj for the scalar, diagonal and PLT tr

models. The additional terms in these five covariances of the PLT model (last two columns

of Table 8) have a quasi-zero impact, except for the semi models, where we notice again

an asymmetric effect: the positive part of the lagged SPY variance has a smaller (actually

negative) impact than the negative part (which has a positive impact).
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Table 7: Covariance equations of scalar, diagonal, and PLT models, part 1
Coeff: aPiiaPjj aNiiaNjj aMiiaMjj a+Miia

+
Mjj a−Miia

−
Mjj

Model Version Asset cP,ij,t−1 cN,ij,t−1 cM,ij,t−1 c+M,ij,t−1 c−M,ij,t−1
scalar 1-6 0.27 0.27 0.27 -

diagonal 1-other 0.25 0.25 0.25 -
sym diagonal 2-6 0.33 0.33 0.33 -

PLT 1-other 0.20 0.20 0.20 -
PLT 2-6 0.32 0.32 0.32 -

scalar 1-6 0.24 0.28 0.24 -
diagonal 1-other 0.20 0.27 0.47 -

tr diagonal 2-6 0.30 0.33 0.62 -
PLT 1-other 0.20 0.27 0.15 -
PLT 2-6 0.30 0.33 0.26 -

scalar 1-6 0.22 0.29 0.25 -
diagonal 1-other 0.21 0.30 0.21 -

trPNM diagonal 2-6 0.28 0.36 0.31 -
PLT 1-other 0.22 0.31 0.21 -
PLT 2-6 0.28 0.35 0.31 -

scalar 1-6 0.22 0.29 - 0.25 0.25
diagonal 1-other 0.19 0.33 - 0.24 0.25

trPNτM diagonal 2-6 0.27 0.41 - 0.35 0.34
PLT 1-other 0.19 0.34 - 0.29 0.19
PLT 2-6 0.25 0.39 - 0.32 0.32

pij,t−1 nij,t−1 mij,t−1 τ(m+
ij,t−1) τ(m−ij,t−1)

scalar 1-6 0.20 0.35 0.23 -
diagonal 1-other 0.17 0.40 0.30 -

semi diagonal 2-6 0.18 0.52 0.35 -
PLT 1-other 0.12 0.41 0.19 -
PLT 2-6 0.19 0.48 0.37 -

scalar 1-other 0.20 0.35 - 0.22 0.25
diagonal 1-other 0.18 0.40 - 0.14 0.13

semi-τ diagonal 2-6 0.21 0.53 - 0.15 0.15
PLT 1-other 0.17 0.37 - 0.10 0.11
PLT 2-6 0.28 0.41 - 0.20 0.18

Each row corresponds to the conditional covariance equation of the model identified in the first two
columns. For a scalar model, the coefficients are the same for all covariance equations. For the diagonal
and PLT ‘1-other’ models, the reported coefficient values are the means of the coefficients of the 5
covariance equations between assets 1 and 2 to 6. For the diagonal and PLT ‘2-6’ models, the reported
coefficient values are the means of the coefficients of the 10 covariance equations between assets 2 to 6.
The coefficients, as defined in the first row, are computed using the estimates reported in Tables 15 for
the scalar models, 16 for the diagonal models, and 17 for the PLT models. Each coefficient multiplies
the variable written in row 2 below it for the models of the first four blocks and the variable shown
above the ‘semi’ model for the last two blocks.
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Table 8: Covariance equations of scalar, diagonal, and PLT
models, part 2

Coeff: biibjj aP11aPi1 aN11aNi1
Model Version Asset sij,t−1 cP,11,t−1 cN,11,t−1

scalar 1-6 0.70 - -
diagonal 1-other 0.70 - -

sym diagonal 2-6 0.61 - -
PLT 1-other 0.70 -0.0006 -0.0006
PLT 2-6 0.61 - -
scalar 1-6 0.71 - -
diagonal 1-other 0.71 - -

tr diagonal 2-6 0.63 - -
PLT 1-other 0.71 -0.0077 0.0050
PLT 2-6 0.62 - -
scalar 1-6 0.72 - -
diagonal 1-other 0.70 - -

trPNM diagonal 2-6 0.62 - -
PLT 1-other 0.70 -0.0016 0.0049
PLT 2-6 0.63 - -
scalar 1-6 0.72 - -
diagonal 1-other 0.70 - -

trPNτM diagonal 2-6 0.62 - -
PLT 1-other 0.71 -0.0174 -0.0022
PLT 2-6 0.65 - -
Variable mij,t−1 p11,t−1 n11,t−1
scalar 1-6 0.70 - -
diagonal 1-other 0.70 - -

semi diagonal 2-6 0.62 - -
PLT 1-other 0.69 -0.0383 0.0284
PLT 2-6 0.61 - -
scalar 1-6 0.70 - -
diagonal 1-other 0.69 - -

semi-τ diagonal 2-6 0.61 - -
PLT 1-other 0.69 -0.0746 0.0613
PLT 2-6 0.60 - -

See note below Table 7.

5.2 Forecast comparisons using statistical loss functions

To compare the out-of-sample forecasting accuracy of the symmetric and asymmetric BEKK-

CAW models, we use the James-Stein loss (James and Stein (1976)), which is usually referred

to as the multivariate Quasi-Likelihood (QLIK) loss function, i.e.,

QLt(S
(i)
t , Ct) = ln |S(i)

t |+ trace([S
(i)
t ]−1Ct), (19)
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where S
(i)
t is a forecast by model i of the observed RC matrix Ct that is used as a proxy

for the unobservable covariance matrix Σt. We also use the squared Frobenius norm loss,

defined as

FNt(S
(i)
t , Ct) =

n∑
j=1

n∑
k=1

(s
(i)
jk,t − cjk,t)

2 (20)

Both loss functions satisfy the conditions for producing a consistent ranking; see Hansen and

Lunde (2006) and Laurent et al. (2013).

To jointly compare the forecasts of a set of models, we apply the model confidence set

(MCS) procedure of Hansen et al. (2003, 2011), implemented for each loss function. The

procedure does not necessarily select a single best model, allowing for the possibility of

equal forecasting ability. Hence, a model is not included in the MCS only if it is significantly

inferior to other models.

Starting with a set of candidate models M0, given a loss function, the loss difference

between each pair of models in the set is computed at every time point t = 1, . . . , T , so that

for models i and j, we get dt,ij = Lt,i − Lt,j, where Lt,· = Lt(S
(·)
t , Ct) is either the QLIK

loss function in (19), or the FN loss function in (20). At each step of the procedure, the

null hypothesis of equal predictive accuracy H0 : E[dt,ij] = 0, is tested for ∀i > j ∈ M, a

subset of models M⊂M0, with M =M0 at the initial step. If H0 is rejected at a chosen

significance level α, the worst-performing model is removed. This process continues until a

set of models remains that includes no model that can be rejected at level α.

We adopt the range statistic of Hansen et al. (2011) to test H0, i.e.,

TR(M) = max
i,j∈M

| dij |√
v̂ar(dij)

, (21)

where dij = 1
T

∑T
t=1 dt,ij, and v̂ar(dij) is obtained by a circular block bootstrap approach

(Hansen et al. (2003)), which we implement with 10,000 replications and varying block

length to verify the robustness of the results.

To compute the forecasts, we estimate each model five times using a rolling window
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scheme. Starting with the fitting period from January 3, 2012, to June 30, 2020 (T = 2137),

we compute 76 one-step-ahead forecasts after the last in-sample date. Then, we re-estimate

the parameters using the next window of 2137 observations obtained by removing the first

76 observations of the previous window and adding 76 new observations to it, and forecast

again the next 76 observations following the end of the estimation sample. This procedure

is continued until the end of the sample, resulting in 380 out-of-sample forecasts.

Table 9: Model confidence sets at 90% level of BEKK-CAW
models, with QLIK and FN loss functions

QLIK FN
Version Model Loss MCS Loss MCS

sym 12.518 0.154 13.916 0.000
tr 12.506 1.000 13.828 0.001
trPNM 12.522 0.154 13.969 0.000
trPNτM 12.521 0.154 14.029 0.000

Scalar troc 12.519 0.154 13.860 0.000
trPNMoc 12.522 0.154 13.969 0.000
trPNτMoc 12.515 0.921 14.043 0.000
semi 12.509 0.921 14.364 0.000
semi-τ 12.509 0.921 14.412 0.000
sym 12.556 0.154 13.903 0.000
tr 12.560 0.009 13.728 0.001
trPNM 12.546 0.154 14.874 0.000
trPNτM 12.544 0.154 14.105 0.000

Diagonal troc 12.561 0.009 13.761 0.001
trPNMoc 12.542 0.154 14.781 0.000
trPNτMoc 12.549 0.154 13.952 0.000
semi 12.542 0.154 14.448 0.000
semi-τ 12.558 0.154 14.814 0.000
sym 12.557 0.154 13.896 0.000
tr 12.554 0.154 13.703 1.000
trPNM 12.664 0.009 14.884 0.000
trPNτM 12.614 0.009 14.884 0.000

PLT troc 12.560 0.009 13.748 0.001
trPNMoc 12.720 0.009 14.782 0.000
trPNτMoc 12.624 0.009 13.890 0.000
semi 12.632 0.009 14.585 0.000
semi-τ 12.679 0.009 14.720 0.000

Column 3 (5) : average value, over the forecast period, of QLIK (FN)
losses defined in (19) and (20); bold values identify the minimum loss
over the twenty-seven models.
MCS’ : p-values of the tests of the MCS procedure when the starting set
consists of the twenty-seven models; Column 5 for QLIK loss function
and column 7 for FN; bold values identify the models included in the
MCS at the 90% confidence level (i.e., p-values larger than 0.10).

Table 9 reports the main results of the MCS procedures obtained using the QLIK and

FN loss functions, when the starting set of each MCS procedure consists of the twenty-seven
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models. For the QLIK loss (see columns 3 and 4 of Table 9), the MCS (at the 90% confidence

level) consists of eighteen models: the nine scalar models, seven diagonal models (only tr

and troc are out), and two PLT models (sym and tr). The smallest loss is attained by

the scalar tr model. In brief, the QLIK criterion does not discriminate clearly between the

asymmetric and symmetric models, and between the two categories of asymmetric models

(daily and intradaily); it penalizes the PLT models that are heavily parameterized.

The last column of Table 9 reports the model confidence set (at the 90% confidence level)

using the FN loss function. The MCS consists only of the PLT-tr model, which has of course

the smallest loss. Clearly, the FN criterion penalizes the symmetric model and the semi

models, and favours a parsimonious asymmetric daily model.

A common feature of the results for the statistical loss functions is that the smallest loss

value is obtained by a tr model (scalar for QLIK, PLT for FN). Moreover, the simple tr

model has the smallest FN loss within each parametrization category (scalar, diagonal and

PLT). Thus, the statistical forecasting criteria clearly favour a simple asymmetric model

compared to its more generous competitors. The asymmetric version that relies on the signs

of daily close-to-close returns tends to outperform the approach based on semi-covariances.

5.3 Forecast comparisons using economic loss functions

Given that the statistical superiority of a model does not automatically translate into supe-

rior investment decisions (Fleming et al. (2003)), we evaluate the out-of-sample forecasting

performance of all considered models from an economic perspective. We consider two loss

functions: the standard deviation of the out-of-sample global minimum variance portfo-

lio (GMVP) and the standard deviation of the out-of-sample minimum variance portfolio

(MVP) with a fixed return.

We start by performing a global minimum variance portfolio (GMVP) optimization,

where the investor focuses exclusively on reducing the portfolio volatility and ignores the

expected returns. Hence, the optimal portfolio weights are independent of the forecasts
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of mean returns, which tend to be very noisy, and only depend on the covariance matrix

forecasts; see, e.g., Chan et al. (2015). We impose short-selling constraints, as advocated

by Jagannathan and Ma (2003), which may be beneficial to reduce the risk of estimated

optimal portfolios even when the constraints are not necessary. The resulting constrained

GMVP optimization problem can be expressed as:

min
wt

w′tΣtwt s. t. w′t1 = 1, wt ≥ 0, (22)

where Σt is the unobservable covariance matrix of returns for time t, 1 is a (n x 1) vector

of ones, and wt represents a vector of non-negative portfolio weights, i.e., short-selling is

not allowed. In practice, Σt is replaced by the forecast S
(i)
t of model i. Given that the

short-selling restrictions prevent an analytical solution for the optimal weights, numerical

optimization is used, for which we rely on the MATLAB Financial Toolbox.

The computed weights are applied to the observed returns of the forecasting period, re-

sulting in 380 portfolio returns. The standard deviation of these returns is computed and

serves as GMVP loss function. The best model minimizes the portfolio standard deviation.

The results of the MCS procedure are presented in columns 3 and 4 of Table 10: the MCS

of the twenty-seven models consists only of the scalar tr model, i.e. it is the most parsimo-

nious asymmetric model, which has the smallest loss. The symmetric and semi models are

excluded from the MCS. Again, within each category (scalar, diaonal, PLT), the tr model

takes the smallest loss value. This preference for the simple asymmetric tr model confirms

the results using statistical loss functions.

The second loss function is based on the classical mean-variance portfolio (MVP) op-

timization, which adds to the GMVP optimization problem a constraint that the targeted

portfolio return is larger than a pre-set threshold that we set at 3.5% per year. Once the

optimal weights are computed, the procedure is the same as for the GMVP loss function.

Table 10 provides the results in columns 5 and 6. With this loss criterion, the MCS consists
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of the PLT semi model and seven scalar models: sym, tr, the three oc models, and the

two semi models. The smallest loss is attained by the scalar trPNτMoc model, though the

losses of the scalar tr and PLT semi models are only slightly larger.

Table 10: Model confidence sets at 90% level of BEKK-
CAW models, with GMVP and MVP loss functions

GMVP MVP
Version Model Loss MCS Loss MCS

sym 1.536 0.036 1.705 0.147
tr 1.534 1.000 1.704 0.956
trPNM 1.535 0.036 1.707 0.027
trPNτM 1.535 0.036 1.707 0.053

Scalar troc 1.535 0.036 1.705 0.750
trPNMoc 1.537 0.036 1.705 0.767
trPNτMoc 1.537 0.036 1.704 1.000
semi 1.537 0.002 1.706 0.109
semi-τ 1.537 0.002 1.706 0.109
sym 1.553 0.000 1.718 0.000
tr 1.547 0.000 1.717 0.000
trPNM 1.551 0.000 1.720 0.000
trPNτM 1.556 0.000 1.720 0.000

Diagonal troc 1.549 0.000 1.717 0.000
trPNMoc 1.554 0.000 1.720 0.000
trPNτMoc 1.562 0.000 1.719 0.000
semi 1.558 0.000 1.719 0.000
semi-τ 1.559 0.000 1.721 0.000
sym 1.554 0.000 1.719 0.000
tr 1.548 0.000 1.719 0.000
trPNM 1.565 0.000 1.717 0.000
trPNτM 1.563 0.000 1.714 0.000

PLT troc 1.551 0.000 1.718 0.000
trPNMoc 1.573 0.000 1.708 0.027
trPNτMoc 1.570 0.000 1.707 0.027
semi 1.643 0.000 1.704 0.956
semi-τ 1.560 0.000 1.711 0.027

Column 3 (5) : average value, over the forecast period, of GMVP
(MVP) losses defined in Section 5.3; bold values identify the minimum
loss over the twenty-seven models.
MCS’ : p-values of the tests of the MCS procedure when the starting
set consists of the twenty-seven models; Column 5 for GMVP loss
function and column 7 for MVP; bold values identify the models
included in the MCS at the 90% confidence level (i.e., p-values larger
than 0.10).

Both economic criteria favour mainly model simplicity (i.e. scalar models). There is no

consensus between the economic criteria regarding the systematic inclusion or exclusion of

the symmetric model, and between the systematic inclusion or exclusion of one category of

models; the same conclusions hold for the statistical criteria. Nevertheless, it is clear that

the asymmetric models can be valuable in forecasting, with the tr model included in the
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MCS of the four loss functions, and even in two of them as the unique ‘best’ forecasting

model.

6 Conclusions

This paper introduces and compares empirically BEKK-CAW models that account for asym-

metric dynamics in realized covariance matrices, based on a high-frequency dataset for the

S&P500 ETF and five large US banks. While several RC models have revealed that high-

frequency data provides important additional information for modelling and forecasting RC

matrices, our study is one of the first to document the importance of capturing distinct

responses of the conditional variances and covariances to lagged realized (co)variances de-

composed additively into components weighted either by signed daily returns or by the signed

intra-daily returns.

We summarize our findings in the following:

1. The proposed asymmetric BEKK-CAW models show better in-sample fit and out-of-

sample forecasting performance than the benchmark symmetric model.

2. Forecasts of the asymmetric models based on signed daily close-to-close returns dom-

inate the forecasts of the models built upon intraday returns when statistical loss

functions or a global minimum variance portfolio loss are used.

3. Extending the simplest asymmetric model based on signed daily close-to-close returns,

i.e. the tr model, to allow for different coefficient matrices of the positive and mixed

components improves the in-sample fit, but not the forecasts.

4. For the construction of asymmetry terms in the tr model, it is preferable to use close-

to-close returns rather than open-to-close returns.

5. While the scalar restrictions of the parameter matrices are rejected in-sample against
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the diagonal alternatives, they show good forecasting performances, in particular the

simple scalar tr model.

Our second conclusion differs from that of Bollerslev et al. (2020b), who conclude in favour

of the models using the decomposition based on the intra-daily returns. There are several

explanations for this difference: i) the data sets are different, in terms of asset number,

composition, and sample period; ii) Bollerslev et al. (2020b) model the daily covariance

matrix, i.e., the covariance matrix of the daily returns, as a function of the decomposed

realized covariance matrix of the trading period, whereas we model the realized covariance

matrix of the trading period. For forecasting the volatility of crude oil futures, Sévi (2014)

concludes that the univariate HAR model of Corsi (2009) does not perform significantly worse

than more sophisticated versions that use the components of realized variance as predictors.

Several research tracks are open: i) to develop asymmetric dynamic conditional correla-

tion (DCC)-type models based on the decompositions of the RC matrix; ii) to add HAR-type

dynamics to asymmetric BEKK-CAW models to explicitly account for the possible long mem-

ory feature of volatility and see how this impacts the forecasting performance; iii) to use the

maximum likelihood estimation of the asymmetric models assuming a Matrix-F conditional

distribution instead of a Wishart (e.g., Opschoor et al. (2018), Zhou et al. (2022)).
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Appendices

A Impact of daily return definition on decompositions of Ct

Let n = 2, rj,t = (x, y)′/
√
m, ∀j = 1, 2, . . . ,m, with x > 0, y > 0.

Then, r+j,t = (x, y)′/
√
m, r−j,t = (0, 0)′, and

Ct =
m∑
j=1

rj,tr
′
j,t =

x2 xy

xy y2

 , Pt = Ct, Nt = Mt =

0 0

0 0

 .

If the daily return rt is the open-to-close return
∑m

j=1 rj,t =
√
m(x, y)′, then

I+t = (1, 1)′, I−t = (0, 0)′, and

CP,t = Pt, CN,t = Nt, CM,t = Mt.

If the daily close-to-close return rt is different from the open-to-close one, e.g., rt = (z, 0)′

with z > 0, then I+t = (1, 0)′, I−t = (0, 1)′, and

CP,t =

x2 0

0 0

 6= Pt, CN,t =

0 0

0 y2

 6= Nt, CM,t =

 0 xy

xy 0

 6= Mt.

B Relevance of the decomposition of Mt

The adoption of the semi-covariance decomposition in the modelling framework with or

without separating the components of the mixed matrix Mt depends on the application

context. In a bivariate model of the volatility of a specific asset and of a market index,

separating the effect of the two realized semi-covariance matrices M+
t and M−

t might be

relevant. The off-diagonal elements of the M+
t and M−

t matrices are necessarily negative.

The covariance equation of the model (14) for 2 assets (asset 1 is the market portfolio,
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asset 2 is a stock), assuming that all the A matrices are lower triangular, e.g.,

A−M =

a−M11 0

a−M21 a−M22


is

s12,t = aP11aP22p12,t−1 + aN11aN22n12,t−1

+ a+M11a
+
M22[τ(M+

t−1)]12 + a−M11a
−
M22[τ(M−

t−1)]12

+ aP11aP21p11,t−1 + aN11aN21n11,t−1,

where [τ(M+
t )]12 is the (1,2) element of the matrix τ(M+

t ).

Given the mixed matrix τ(M−) implied by a negative market return and a positive stock

return, a negative value of the coefficient a−M11a
−
M22 implies that the covariance between the

asset and the market increases, which is consistent with the stylized fact that in a ‘bear’

market period, the covariances tend to increase. The opposite holds for a ‘bull’ period, i.e.,

given the mixed matrix τ(M+) implied by a positive market return and a negative stock

return, a positive a+M11a
+
M22 coefficient implies that the covariance declines.

The above arguments readily extend to a partially lower triangular model of higher

dimension, such as estimated in the empirical application (see Section 5.1).

C Covariance targeting parameterizations of BEKK-CAW models

To define their targeting parameterizations, the models presented in Section 2 are trans-

formed in vector form, i.e., for st = vech(St), where vech(·) is the operator that stacks the

lower triangular part of a symmetric n × n matrix argument into a n(n + 1)/2 × 1 vector.

Matrices appearing in the equations specifying St, such as Ct, Ci,t for i = P,N,M, ..., and

Pt, Nt, Mt, ..., are transformed in the same way and the corresponding vectors are denoted

by lower-case letters (e.g., ct, cN,t, pt, ...). Adjustment matrices Ki, of order n(n+ 1)/2, for
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i = P,N,M, ..., as above, are introduced in the targeting terms to account for the difference

between the unconditional levels of ct and the vectors corresponding to the covariances of

(signed) daily/intraday returns. In each adjustment matrix, the matrix C̄ =
∑T

t=1Ct/T

appears.

The parameter matrices of the vectorized models are obtained as M̃ = Ln(M ⊗M)Dn,

where M is a parameter square matrix of order n (e.g., A, AN , AP , ...) of the model in

matrix format, and Ln and Dn denote the n(n+ 1)/2× n2 elimination and n2 × n(n+ 1)/2

duplication matrices, respectively.6 Hence M̃ is in each case square and of order n(n+ 1)/2.

We refer to Noureldin et al. (2012) for details. Each targeting term below is the product of

a matrix of order n(n+ 1)/2 and the vector vech(C̄).

Symmetric model (sym):

st = (In(n+1)/2−Ã− B̃)c+ Ãct−1 + B̃st−1. (C1)

Noureldin et al. (2012) prove that the unconditional mean of ct exists, corresponding to the

condition derived in Engle and Kroner (1995), if the eigenvalues of the matrix Ã+ B̃ are less

than one in modulus.

As a result, E(ct) = (In(n+1)/2−(Ã+ B̃))−1c, and c can be estimated by c̄.

Threshold model (tr):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃP (cP,t−1 + cM,t−1) + ÃNcN,t−1 + B̃st−1, (C2)

where cP,t = vech(Ct�I+t I+
′

t ), cN,t = vech(Ct�I−t I−
′

t ), and cM,t = vech(Ct�(I+t I
−′
t +I−t I

+′

t ));

Ã∗ =
∑2

i=1 ÃiKi, with Ãi = Ln(Ai ⊗ Ai)Dn, for i = P,N ,

KP = Ln[
(
CP

)1/2
C
−1/2 ⊗

(
CP

)1/2
C
−1/2

+
(
CM

)1/2
C
−1/2 ⊗

(
CM

)1/2
C
−1/2

]Dn,

with CP = 1/T
∑T

t=1Ct � I
+
t I

+′

t , CM = 1/T
∑T

t=1Ct � (I+t I
−′
t + I−t I

+′

t ), and

6Ln is defined such that for any n×n matrix Q, vech(Q) = Ln vec(Q), and Dn such that for any symmetric
matrix R, vec(R) = Dn vech(R) (see e.g., Lütkepohl (1996)), with vec(·) denoting the operator that stacks
the columns of a n× n matrix into a n2 × 1 vector.
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KN = Ln[
(
CN

)1/2
C
−1/2 ⊗

(
CN

)1/2
C
−1/2

]Dn, with CN = 1/T
∑T

t=1Ct � I
−
t I
−′
t .

Threshold model with PNM terms (trPNM):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃP cP,t−1 + ÃNcN,t−1 + ÃMcM,t−1 + B̃st−1, (C3)

where cP,t, cN,t, and cM,t are defined under (C2); Ã∗ =
∑3

i=1 ÃiKi, with Ãi = Ln(Ai⊗Ai)Dn

and Ki = Ln[
(
Ci

)1/2
C
−1/2 ⊗

(
Ci

)1/2
C
−1/2

]Dn, with Ci as under (C2), for i = P,N,M .

Threshold model with PNτ(M) terms (trPNτM):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃP cP,t−1 + ÃNcN,t−1 + Ã+
Mc

+
M,t−1 + Ã−Mc

−
M,t−1 + B̃st−1, (C4)

where c+M,t = vech(C+
M,t) with C+

M,t = Ct � τ(I+t I
−′
t ), and c−M,t = vech(C−M,t) with C−M,t =

Ct � τ(I−t I
+′

t ); Ã∗ =
∑2

i=1 ÃiKi + Ã+
MK

+
M + Ã−MK

−
M , with Ãi = Ln(Ai ⊗ Ai)Dn and Ki =

Ln[
(
Ci

)1/2
C
−1/2 ⊗

(
Ci

)1/2
C
−1/2

]Dn, for i = P,N ,

Ã+
M = Ln(A+

M ⊗ A
+
M)Dn, K+

M = Ln[
(
C

+

M

)1/2
C
−1/2 ⊗

(
C

+

M

)1/2
C
−1/2

]Dn,

Ã−M = Ln(A−M ⊗ A
−
M)Dn, K−M = Ln[

(
C
−
M

)1/2
C
−1/2 ⊗

(
C
−
M

)1/2
C
−1/2

]Dn, with

C
+

M = 1/T
∑T

t=1C
+
M,t and C

−
M = 1/T

∑T
t=1C

−
M,t.

Semi-covariance model (semi):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃPpt−1 + ÃNnt−1 + ÃMmt−1 + B̃st−1, (C5)

where pt = vech(Pt), nt = vech(Nt), and mt = vech(Mt); Ã
∗ =

∑3
i=1 ÃiKi, with Ãi =

Ln(Ai ⊗ Ai)Dn and Ki = Ln[
(
i
)1/2

C
−1/2 ⊗

(
i
)1/2

C
−1/2

]Dn, for i = P,N,M , with P =

1/T
∑T

t=1 Pt, N = 1/T
∑T

t=1Nt, and M = 1/T
∑T

t=1Mt.

Semi-covariance model (semi-τ):

st = (In(n+1)/2−Ã∗ − B̃)c+ ÃPpt−1 + ÃNnt−1 + Ã+
Mm

+
t−1 + Ã−Mm

−
t−1 + B̃st−1, (C6)
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where m+
t = vech(τ(M+

t )) and m−t = vech(τ(M−
t ));

Ã∗ =
∑2

i=1 ÃiKi + Ã+
MK

+
M + Ã−MK

−
M , Ki is defined as under (C5), for i = P,N ,

K+
M = Ln[

(
M

+)1/2
C
−1/2 ⊗

(
M

+)1/2
C
−1/2

]Dn, with M
+

= 1/T
∑T

t=1 τ(M+
t ), and K−M =

Ln[
(
M
−)1/2

C
−1/2 ⊗

(
M
−)1/2

C
−1/2

]Dn, with M
−

= 1/T
∑T

t=1 τ(M−
t ).

D Scalar BEKK-CAW models with covariance targeting

With scalar parameter matrices, it is convenient to write the equations using the matrix

format. The equations below are obtained as particular cases of the corresponding equations

of Appendix C, when the parameter matrices A, AN , ..., are scalar, i.e., A = aIn, AN = aNIn,

.... The largest eigenvalue of a matrix M is denoted by ρ(M); ρ(M) < 1 means that the

largest eigenvalue is smaller than 1 in modulus.

Symmetric model (sym):

St = (1− a2 − b2)C + a2Ct−1 + b2St−1, (D1)

C = (1/T )
∑T

t=1Ct (PD); a2 + b2 < 1 (covariance stationarity of St and PD target).

Threshold model (tr):

St = (1−b2)C−A∗C+a2P (I+t−1I
+′

t−1+I+t−1I
−′
t−1+I−t−1I

+′

t−1)�Ct−1+a2N(I−t−1I
−′
t−1)�Ct−1+b2St−1,

(D2)

A∗ = [a2P (CP + CM) + a2NCN ]C
−1

; CP = (1/T )
∑T

t=1Ct � I
+
t I

+′

t (PSD);

CN = (1/T )
∑T

t=1Ct � I
−
t I
−′
t (PSD); CM = (1/T )

∑T
t=1Ct � (I+t−1I

−′
t−1 + I−t−1I

+′

t−1);

ρ(A∗ + b2 In) < 1 (covariance stationarity of St and PD target).

For the models listed below, it seems impossible to derive sufficient conditions to guaran-

tee the PD-ness of St. Consequently, we impose no a priori restrictions on the parameters.

However, during the estimation, we require that the coefficients jointly behave in such a way

that St is PD ∀t.
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Threshold model with PNM terms (trPNM):

St =(1− b2)C − A∗C + (a2P I
+
t−1I

+′

t−1 + a2NI
−
t−1I

−′
t−1

+ a2M(I+t−1I
−′
t−1 + I−t−1I

+′

t−1))� Ct−1 + b2St−1,

(D3)

A∗ = (a2PCP + a2NCN + a2MCM)× C−1; ρ(A∗ + b2 In) < 1 (covariance stationarity of St).

Threshold model with PNτ(M) terms (trPNτM):

St =(1− b2)C − A∗C + (a2P I
+
t−1I

+′

t−1 + a2NI
−
t−1I

−′
t−1

+ (a+M)2τ(I+t−1I
−′
t−1) + (a−M)2τ(I−t−1I

+′

t−1))� Ct−1 + b2St−1,

(D4)

A∗ = (a2PCP + a2NCN + (a+M)2C
+

M + (a−M)2C
−
M)× C−1; C+

M = (1/T )
∑T

t=1Ct � τ(I+t I
−′
t ) (in-

definite), with C
−
M (indefinite) defined analogously; ρ(A∗+b2 In) < 1 (covariance stationarity

of St).

Semi-covariance model (semi):

St = (1− b2)C − A∗C + a2PPt−1 + a2NNt−1 + a2MMt−1 + b2St−1, (D5)

A∗ = (a2PP + a2NN + a2MM) × C
−1

; P = (1/T )
∑T

t=1 Pt (PSD), with N (PSD) and M

(indefinite) defined analogously; ρ(A∗ + b2 In) < 1 (covariance stationarity of St).

Semi-covariance model (semi-τ):

St =(1− b2)C − A∗C + a2PPt−1 + a2NNt−1

+ (a+M)2τ(M+
t−1) + (a−M)2τ(M−

t−1) + b2St−1,

(D6)

A∗ = (a2PP + a2NN + (a+M)2M
+

+ (a−M)2M
−

)× C−1; M+
= (1/T )

∑T
t=1 τ(M+

t ) and

M
−

= (1/T )
∑T

t=1 τ(M−
t ); ρ(A∗ + b2 In) < 1 (covariance stationarity of St).
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E Statistics and graphs of covariance decompositions

Table 11 shows the time series means and standard deviations of the realized covariances

between the six assets and their decomposition into semi-covariances; Table 12 shows the

analogous statistics with respect to the decomposition using the signed daily close-to-close

returns, and Table 13 the same information when the signed open-to-close returns are used.

Several comments can be made:

1. The average realized covariances including SPY show a relative homogeneity, but are

smaller than those of the fifteen pairs involving two banks.

2. A noticeable difference is the opposite signs of M and CM . Each average mixed co-

variance (M) is negative because the mixed covariances of each day are negative by

construction. The fact that each average mixed covariance term (CM) is positive is

not a necessity, but a feature of the data: the sample correlations (and covariances)

between the assets are positive, which is not a surprise since five assets are in the

same sector and the first one is tracking a market index. Thus, we observe that the

inequalities Mij < 0 < CM,ij are confirmed for each asset pair (i, j). Hence, (P +N)ij,

which is positive, must be larger than (CP +CN)ij, which is also positive. This is even

holding term by term, as stated below.

3. Each average positive semi-covariance (P ) is larger than the corresponding average

positive component (CP ), and each average N is larger than the corresponding CN .

4. The two parts M+ and M− of M are close; likewise for the two parts C+
M and C−M of

CM .

5. Comparing the averages of the terms of the decompositions using the close-to-close and

open-to-close returns reveals that CM is larger for open-to-close than for close-to-close,

and correspondingly, CP + CN , but mainly CN , is smaller. This holds for all pairs, as

can be seen in the tables of this Appendix.
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Table 11: Time series means and standard deviations (between parentheses) of realized covari-
ances and their decomposition into semi-covariances
Asset Pair C P N M M+ M−

SPY-BAC 1.58 (4.29) 1.00 (2.91) 0.98 (2.51) -0.41 (1.77) -0.20 (0.82) -0.21 (0.99)
SPY-C 1.64 (4.85) 1.03 (3.21) 1.03 (2.92) -0.42 (1.99) -0.21 (1.06) -0.22 (1.00)
SPY-GS 1.48 (4.08) 0.94 (2.75) 0.91 (2.35) -0.37 (1.65) -0.18 (0.70) -0.20 (0.99)
SPY-JPM 1.42 (4.22) 0.90 (2.94) 0.87 (2.32) -0.35 (1.59) -0.17 (0.79) -0.18 (0.86)
SPY-WFC 1.35 (4.16) 0.89 (2.93) 0.88 (2.59) -0.42 (1.85) -0.20 (0.81) -0.22 (1.08)
BAC-C 4.10 (8.38) 2.18 (4.96) 2.14 (4.59) -0.22 (0.61) -0.10 (0.25) -0.11 (0.38)
BAC-GS 3.20 (6.35) 1.78 (3.64) 1.72 (3.40) -0.31 (0.53) -0.15 (0.27) -0.15 (0.37)
BAC-JPM 3.44 (7.27) 1.84 (4.05) 1.78 (3.73) -0.18 (0.36) -0.09 (0.21) -0.09 (0.18)
BAC-WFC 3.19 (7.05) 1.76 (3.97) 1.71 (3.76) -0.27 (0.51) -0.13 (0.25) -0.14 (0.33)
C-BS 3.37 (7.74) 1.84 (4.27) 1.82 (4.14) -0.29 (0.51) -0.15 (0.27) -0.14 (0.29)
C-JPM 3.54 (8.28) 1.88 (4.63) 1.84 (4.33) -0.18 (0.49) -0.09 (0.33) -0.09 (0.22)
C-WFC 3.30 (8.07) 1.81 (4.51) 1.80 (4.53) -0.30 (0.91) -0.14 (0.34) -0.16 (0.63)
GS-JPM 2.88 (6.47) 1.58 (3.65) 1.53 (3.37) -0.23 (0.42) -0.12 (0.26) -0.12 (0.24)
GS-WFC 2.62 (6.35) 1.51 (3.80) 1.47 (3.36) -0.35 (0.65) -0.17 (0.34) -0.18 (0.42)
JPM-WFC 2.83 (6.55) 1.56 (3.93) 1.50 (3.38) -0.23 (0.64) -0.11 (0.27) -0.12 (0.44)

C: realized covariance; P : positive semi-covariance; N : negative semi-covariance; M : total mixed semi-
covariance; M+ and M−: positive and negative mixed semi-covariances. See Section 2.2.1 for definitions.

Figures 6 and 7 show the time series of the realized covariances between SPY and JPM,

and the components of their decompositions (3) using the close-to-close daily returns and

(11). The peaks of the covariances occur at the same periods as those of the variances. The

covariances are almost always positive, but a close look at the (identical) top left graphs

reveals a few isolated and slightly negative covariances. In the decomposition based on the

signed daily returns (Figure 6), these negative values are attributed to one of the three

components (as is the case of any positive value). In the decomposition based on the intra-

daily returns (Figure 7), positive and negative semi-covariances are positive, and the mixed

one is negative (by definition). The two figures illustrate the differences between the two

decompositions, in particular in their mixed components.
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Table 12: Time series means and standard deviations (between parentheses) of realized co-
variances and their decomposition into parts signed by the daily close-to-close returns
Asset Pair C CP CN CM C+

M C−M
SPY-BAC 1.58 (4.29) 0.60 (3.21) 0.69 (3.00) 0.29 (0.83) 0.14 (0.56) 0.15 (0.65)
SPY-C 1.64 (4.85) 0.59 (2.90) 0.74 (3.63) 0.31 (1.90) 0.13 (0.54) 0.19 (1.84)
SPY-GS 1.48 (4.08) 0.57 (2.86) 0.68 (3.05) 0.23 (0.70) 0.11 (0.46) 0.13 (0.55)
SPY-JPM 1.42 (4.22) 0.55 (3.08) 0.64 (3.01) 0.24 (0.71) 0.11 (0.47) 0.13 (0.55)
SPY-WFC 1.35 (4.16) 0.52 (3.05) 0.60 (2.93) 0.23 (0.77) 0.10 (0.48) 0.13 (0.63)
BAC-C 4.10 (8.38) 1.70 (5.02) 1.91 (6.82) 0.49 (2.94) 0.20 (0.97) 0.29 (2.79)
BAC-GS 3.20 (6.35) 1.30 (4.52) 1.41 (4.93) 0.49 (1.36) 0.23 (0.99) 0.26 (1.00)
BAC-JPM 3.44 (7.27) 1.45 (5.07) 1.57 (5.70) 0.42 (1.30) 0.19 (0.91) 0.22 (0.97)
BAC-WFC 3.19 (7.05) 1.34 (5.35) 1.39 (5.03) 0.47 (1.40) 0.22 (0.92) 0.25 (1.11)
C-BS 3.37 (7.74) 1.34 (4.57) 1.54 (6.24) 0.49 (2.64) 0.27 (2.50) 0.22 (0.93)
C-JPM 3.54 (8.28) 1.40 (4.67) 1.63 (6.35) 0.50 (2.96) 0.28 (2.81) 0.23 (1.01)
C-WFC 3.30 (8.07) 1.30 (4.70) 1.47 (6.24) 0.53 (3.28) 0.29 (3.09) 0.24 (1.17)
GS-JPM 2.88 (6.47) 1.18 (4.42) 1.31 (5.11) 0.39 (1.08) 0.19 (0.79) 0.19 (0.79)
GS-WFC 2.62 (6.35) 1.05 (4.89) 1.11 (4.36) 0.46 (1.30) 0.22 (0.86) 0.24 (1.03)
JPM-WFC 2.83 (6.55) 1.14 (4.68) 1.23 (4.91) 0.45 (1.37) 0.22 (0.90) 0.23 (1.09)

C: realized covariance; CP : positive part; CN : negative part; CM : total mixed part; C+
M and C−M : positive

and negative mixed parts.. See Section 2.1.1 for definitions.

Table 13: Time series means and standard deviations (between parentheses) of realized co-
variances and their decomposition into parts signed by the daily open-to-close returns
Asset Pair C CP CN CM C+

M C−M
SPY-BAC 1.58 (4.29) 0.61 (3.41) 0.63 (2.49) 0.34 (1.46) 0.16 (0.82) 0.18 (1.24)
SPY-C 1.64 (4.85) 0.58 (2.79) 0.67 (3.21) 0.39 (2.67) 0.15 (0.85) 0.24 (1.24)
SPY-GS 1.48 (4.08) 0.57 (2.84) 0.57 (2.47) 0.34 (1.97) 0.16 (0.86) 0.18 (1.79)
SPY-JPM 1.42 (4.22) 0.56 (3.24) 0.56 (2.55) 0.30 (1.44) 0.14 (1.00) 0.16 (1.06)
SPY-WFC 1.35 (4.16) 0.50 (2.87) 0.52 (2.49) 0.33 (2.01) 0.15 (1.10) 0.18 (1.70)
BAC-C 4.10 (8.38) 1.67 (5.23) 1.81 (6.29) 0.62 (3.69) 0.28 (1.34) 0.34 (3.47)
BAC-GS 3.20 (6.35) 1.29 (4.79) 1.30 (4.39) 0.61 (2.13) 0.31 (1.32) 0.30 (1.72)
BAC-JPM 3.44 (7.27) 1.42 (5.35) 1.45 (5.00) 0.57 (2.59) 0.28 (1.71) 0.29 (1.99)
BAC-WFC 3.19 (7.05) 1.29 (5.44) 1.27 (4.67) 0.63 (2.18) 0.31 (1.27) 0.32 (1.83)
C-GS 3.37 (7.74) 1.33 (5.03) 1.42 (5.84) 0.62 (2.76) 0.35 (2.59) 0.27 (1.05)
C-JPM 3.54 (8.28) 1.39 (5.03) 1.51 (6.22) 0.64 (3.53) 0.35 (3.22) 0.29 (1.51)
C-WFC 3.30 (8.07) 1.24 (4.71) 1.37 (6.14) 0.69 (3.50) 0.37 (3.18) 0.32 (1.54)
GS-JPM 2.88 (6.47) 1.15 (4.70) 1.17 (4.53) 0.56 (2.13) 0.27 (1.68) 0.29 (1.36)
GS-WFC 2.62 (6.35) 1.07 (4.99) 1.04 (4.17) 0.51 (1.53) 0.24 (0.92) 0.27 (1.27)
JPM-WFC 2.83 (6.55) 1.13 (4.79) 1.15 (4.56) 0.55 (2.07) 0.28 (1.24) 0.27 (1.70)

C: realized covariance; CP : positive part; CN : negative part; CM : total mixed part; C+
M and C−M : positive

and negative mixed parts.. See Section 2.1.1 for definitions.
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Figure 6: Annualized realized covariances of SPY and JPM and the components of their decomposition (3)
using the signed daily close-to-close returns
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Figure 7: Annualized realized covariances of SPY and JPM and the semi-covariance components of their
decomposition (11)
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Table 14 shows the means of indicators of the signed daily close-to-close and open-to-close

returns; the corresponding statistics of the two types of returns are close. The daily close-

to-close returns of SPY are positive for 56% of the days of the sample period, and 51 or 52%

for the other stocks (column 2); negative returns occur in the corresponding complementary

percentages (column 3). In column 4, the value 0.406 for SPY is indicating that in 40.6% of

the days, both SPY and at least one of the five other stocks have positive returns; the other

values in the same columns are close to 41%. In column 5, the values fluctuate between

0.333 and 0.38; the latter (for stock C) means that returns of C and at least one of the other

assets were simultaneously negative. The values in the last column are the proportions of

days when the return of the stock (in the first column) has a different sign than at least one

of the other stocks.

Table 14: Time series means of indicators of signed daily returns

Ticker diag. I+I+
′

diag. I−I−
′

off-diag. I+I+
′

off-diag. I−I−
′

I+I−
′
+ I−I+

′

Close-to-close returns
SPY 0.557 0.443 0.406 0.333 0.261
BAC 0.521 0.479 0.418 0.373 0.209

C 0.512 0.488 0.418 0.380 0.202
GS 0.521 0.479 0.412 0.368 0.220

JPM 0.515 0.485 0.416 0.376 0.208
WFC 0.512 0.488 0.402 0.365 0.233

Open-to-close returns
SPY 0.548 0.452 0.384 0.319 0.297
BAC 0.510 0.490 0.397 0.364 0.239

C 0.514 0.486 0.399 0.362 0.239
GS 0.519 0.481 0.393 0.352 0.255

JPM 0.522 0.478 0.403 0.359 0.238
WFC 0.514 0.486 0.385 0.348 0.267

diag. I+I+
′
: indicator of positive returns; diag. I−I−

′
: indicator of negative returns; off-diag.

I+I+
′

and off-diag. I−I−
′
:: for the asset indicated in the table row, the average of the five time

series means of the off-diagonal elements the indicated matrix. See comments in the text.
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F Estimation results of BEKK-CAW models based on the daily

close-to-close returns

Table 15: Scalar BEKK-CAW model QML estimates
sym tr trPNM trPNτM semi semi-τ
(D1) (D2) (D3) (D4) (D5) (D6)

a 0.521
aP 0.492* 0.466* 0.466* 0.448* 0.448*
aN 0.529* 0.538* 0.537* 0.594* 0.594*
aM 0.500* 0.483*
aM+ 0.497* 0.465*
aM− 0.503* 0.499*
b 0.836* 0.841* 0.846* 0.846* 0.834* 0.834*

LLF -12518.91 -12510.94 -12503.38 -12503.16 -12511.30 -12511.24
AIC 9.949 9.944 9.938 9.939 9.945 9.945
BIC 9.954 9.951 9.948 9.951 9.954 9.957

* denotes statistical significance at the 5% level. Each column corresponds to a model; the
models are defined in Appendix D, corresponding to the headers in row 1; row 2 refers to the
equation numbers in the appendix. The last lines report the obtained maximum value of the
log-likelihood function (LLF), and the corresponding Akaike (AIC) and Bayesian information
criteria (BIC) values. The models are estimated using the dataset of 2517 observations
described in Section 4.
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Table 16: Diagonal BEKK-CAW model QML estimates
sym tr trPNM trPNτM semi semi-τ
(C1) (C2) (C3) (C4) (C5) (C6)

A

0.429*
0.568*
0.558*
0.540*
0.581*
0.611*

AP

0.374*
0.539*
0.529*
0.518*
0.563*
0.572*

0.393*
0.514*
0.498*
0.501*
0.553*
0.589*

0.382*
0.498*
0.494*
0.462*
0.528*
0.614*

0.390*
0.438*
0.394*
0.404*
0.439*
0.443*

0.399*
0.474*
0.434*
0.423*
0.481*
0.460*

AN

0.472*
0.570*
0.557*
0.541*
0.575*
0.623*

0.501*
0.593*
0.576*
0.557*
0.610*
0.666*

0.524*
0.623*
0.620*
0.575*
0.647*
0.726*

0.553*
0.696*
0.689*
0.671*
0.755*
0.798*

0.554*
0.708*
0.691*
0.686*
0.751*
0.809*

AM

0.372*
0.561*
0.545*
0.527*
0.577*
0.589*

-0.505*
-0.616*
-0.578*
-0.590*
-0.570*
-0.589*

AM+

0.409*
0.574*
0.560*
0.538*
0.580*
0.694*

0.351*
0.339*
0.392*
0.391*
0.456*
0.388*

AM−

0.434*
0.583*
0.583*
0.535*
0.590*
0.622*

0.346*
0.466*
0.407*
0.385*
0.287*
0.383*

B

0.895*
0.780*
0.799*
0.802*
0.773*
0.751*

0.892*
0.790*
0.809*
0.810*
0.782*
0.763*

0.887*
0.791*
0.816*
0.814*
0.778*
0.748*

0.892*
0.806*
0.822*
0.835*
0.797*
0.738*

0.885*
0.790*
0.812*
0.809*
0.769*
0.752*

0.884*
0.784*
0.808*
0.804*
0.768*
0.745*

LLF -12493.04 -12481.28 -12471.95 -12470.39 -12489.070 -12489.061
AIC 9.937 9.932 9.929 9.933 9.943 9.948
BIC 9.964 9.974 9.985 10.002 9.998 10.017

* denotes statistical significance at the 5% level. In each cell, the first value is the estimate
for the market index (SPY), the next ones are for the banking stocks (ordered as BAC, C, GS,
JPM, WFC). Each column corresponds to a model; the models are defined in Appendix C,
corresponding to the headers in row 1; row 2 refers to the equation numbers in the appendix.
The last lines report the obtained maximum value of the log-likelihood function (LLF), and the
corresponding Akaike (AIC) and Bayesian information criteria (BIC) values. The models are
estimated using the dataset of 2517 observations described in Section 4.
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Table 17: Partly lower triangular BEKK-CAW model QML estimates
sym tr trPNM trPNτM semi semi-τ
(C1) (C2) (C3) (C4) (C5) (C6)

A

-0.002
-0.004
-0.004
0.003

-0.004

0.431*
0.566*
0.550*
0.531*
0.594*
0.604*

AP

-0.029
-0.031
-0.021
-0.010
-0.014

0.292*
0.530*
0.516*
0.487*
0.537*
0.482*

-0.037
-0.037
-0.037
-0.026
-0.056

0.403*
0.518*
0.496*
0.496*
0.581*
0.576*

-0.043*
-0.045*
-0.040*
-0.039
-0.057*

0.388*
0.487*
0.478*
0.439*
0.517*
0.588*

-0.132*
-0.097
-0.105*
-0.101*
-0.271*

0.271*
0.486*
0.383*
0.402*
0.498*
0.387

-0.242*
-0.248*
-0.206*
-0.204*
-0.300*

0.311*
0.583*
0.537*
0.487*
0.596*
0.459*

AN

0.017
0.015
0.008
0.015
0.005

0.475*
0.570*
0.551*
0.533*
0.590*
0.618*

0.016
0.010
0.006
0.012
0.003

0.519*
0.588*
0.564*
0.548*
0.631*
0.648*

0.001
-0.001
-0.007
0.001

-0.014

0.544*
0.615*
0.608*
0.553*
0.647*
0.702*

0.071*
0.037
0.046
0.045*
0.039

0.596*
0.653*
0.651*
0.620*
0.725*
0.809*

0.129*
0.122*
0.098*
0.096*
0.079*

0.585*
0.604*
0.587*
0.564*
0.658*
0.790*

AM

-0.082*
-0.073*
-0.049*
-0.037
-0.028

0.371*
0.562*
0.536*
0.517*
0.603*
0.574*

0.311*
0.256*
0.251
0.199
0.261*

-0.316*
-0.726*
-0.604*
-0.633*
-0.678*
-0.427*

AM+

0.109*
0.147*
0.118*
0.192*
0.171*

0.506*
0.577*
0.549*
0.513*
0.578*
0.652*

-0.217
-0.300
-0.140
-0.024
-0.165

0.212*
0.390*
0.601*
0.434*
0.489*
0.327*

AM−

-0.266*
-0.300*
-0.224*
-0.300*
-0.212*

0.335
0.567*
0.566*
0.508*
0.574*
0.610*

-0.300
-0.220
-0.283
-0.299
-0.265

0.264*
0.599*
0.353*
0.457*
0.455*
0.255*

B

0.893*
0.781*
0.806*
0.810*
0.756*
0.758*

0.892*
0.789*
0.812*
0.818*
0.765*
0.769*

0.879*
0.794*
0.825*
0.822*
0.756*
0.766*

0.883*
0.811*
0.829*
0.851*
0.792*
0.752*

0.886*
0.773*
0.820*
0.813*
0.754*
0.746*

0.888*
0.770*
0.799*
0.816*
0.757*
0.738*

LLF -12491.88 -12479.38 -12466.46 -12462.64 -12472.03 -12459.48
AIC 9.940 9.938 9.937 9.943 9.941 9.940
BIC 9.979 10.003 10.027 10.058 10.032 10.056

* denotes statistical significance at the 5% level. Each column corresponds to a model; the models are defined in Appendix C, corresponding to the
headers in row 1; row 2 refers to the equation numbers in the appendix. For each parameter matrix A, the first column of coefficients gives the impacts
of SPY on the banking stocks (ordered as BAC, C, GS, JPM, WFC), and the second column reports the diagonal parameters, with SPY first. The
last lines report the obtained maximum value of the log-likelihood function (LLF), and the corresponding Akaike (AIC) and Bayesian information
criteria (BIC) values. The models are estimated using the dataset of 2517 observations described in Section 4.
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G Estimation results of BEKK-CAW models based on the daily

open-to-close returns

Table 18: OC-based scalar BEKK-CAW
model QML estimates

tr trPNM trPNτM
(D2) (D3) (D4)

aP 0.497* 0.463* 0.463*
aN 0.527* 0.538* 0.538*
aM 0.500*
aM+ 0.500*
aM− 0.501*
b 0.841* 0.849* 0.849*

LLF -12512.19 -12501.98 -12501.98
AIC 9.945 9.937 9.938
BIC 9.952 9.947 9.950

* denotes statistical significance at the 5% level.
Each column corresponds to a model; the models
are defined in Appendix D, corresponding to the
headers in row 1, with indicator vectors in each
specification defined via OC returns; row 2 refers
to the equation numbers in the appendix. The
last lines report the obtained maximum value of
the log-likelihood function (LLF), and the corre-
sponding Akaike (AIC) and Bayesian information
criteria (BIC) values. The models are estimated
using the dataset of 2517 observations described
in Section 4.
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Table 19: OC-based diagonal BEKK-CAW
model QML estimates

tr trPNM trPNτM
(C2) (C3) (C4)

AP

0.369*
0.538*
0.530*
0.511*
0.545*
0.573*

0.369*
0.490*
0.482*
0.483*
0.505*
0.578*

0.345*
0.471*
0.484*
0.448*
0.487*
0.594*

AN

0.472*
0.567*
0.555*
0.534*
0.578*
0.611*

0.482*
0.581*
0.569*
0.549*
0.596*
0.652*

0.482*
0.607*
0.605*
0.558*
0.614*
0.701*

AM

-0.336*
-0.535*
-0.524*
-0.515*
-0.543*
-0.588*

AM+

-0.322*
-0.553*
-0.546*
-0.516*
-0.539*
-0.657*

AM−

-0.377*
-0.532*
-0.552*
-0.514*
-0.549*
-0.626*

B

0.897*
0.791*
0.809*
0.816*
0.787*
0.767*

0.899*
0.802*
0.821*
0.817*
0.793*
0.752*

0.912*
0.811*
0.821*
0.833*
0.806*
0.741*

LLF -12479.57 -12475.24 -12474.45
AIC 9.931 9.932 9.936
BIC 9.972 9.988 10.006

* denotes statistical significance at the 5% level.
In each cell, the first value is the estimate for the
market index (SPY), the next ones are for the bank-
ing stocks (ordered as BAC, C, GS, JPM, WFC).
Each column corresponds to a model; the models
are defined in Appendix C, corresponding to the
headers in row 1, with indicator vectors in each
specification defined via OC returns; row 2 refers
to the equation numbers in the appendix. The last
lines report the obtained maximum value of the
log-likelihood function (LLF), and the correspond-
ing Akaike (AIC) and Bayesian information criteria
(BIC) values. The models are estimated using the
dataset of 2517 observations described in Section 4.
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Table 20: OC-based PLT BEKK-CAW model QML estimates
tr trPNM trPNτM

(C2) (C3) (C4)

AP

-0.020
-0.018
-0.018
-0.011
-0.022

0.360*
0.541*
0.526*
0.510*
0.563*
0.575*

-0.033*
-0.032
-0.034*
-0.028
-0.048*

0.383*
0.493*
0.477*
0.479*
0.529*
0.582*

-0.049*
-0.035*
-0.036*
-0.035*
-0.056*

0.376*
0.468*
0.473*
0.426*
0.495*
0.602*

AN

0.019
0.013
0.013
0.020
0.017

0.474*
0.569*
0.551*
0.531*
0.593*
0.610*

0.013
0.006
0.006
0.011
0.017

0.502*
0.576*
0.556*
0.536*
0.613*
0.645*

0.009
-0.005
-0.006
0.001
0.004

0.514*
0.599*
0.594*
0.534*
0.619*
0.707*

AM

0.055*
0.048*
0.041*
0.025
0.051*

-0.346*
-0.534*
-0.514*
-0.506*
-0.564*
-0.589*

AM+

-0.111*
-0.081
-0.063
-0.059
-0.056

-0.425*
-0.527*
-0.534*
-0.487*
-0.546*
-0.666*

AM−

0.301*
0.207*
0.185*
0.164*
0.203*

-0.353*
-0.547*
-0.543*
-0.492*
-0.563*
-0.636*

B

0.898*
0.789*
0.812*
0.818*
0.770*
0.768*

0.893*
0.814*
0.831*
0.852*
0.776*
0.758*

0.895*
0.814*
0.829*
0.855*
0.802*
0.738*

LLF -12478.10 -12470.54 -12467.52
AIC 9.937 9.940 9.946
BIC 10.002 10.030 10.062

* denotes statistical significance at the 5% level. Each column corresponds to a
model; the models are defined in Appendix C, corresponding to the headers in
row 1, with indicator vectors in each specification defined via OC returns; row 2
refers to the equation numbers in the appendix. For each parameter matrix A,
the first column of coefficients gives the impacts of SPY on the banking stocks
(ordered as BAC, C, GS, JPM, WFC), and the second column reports the diagonal
parameters, with SPY first. The last lines report the obtained maximum value
of the log-likelihood function (LLF), and the corresponding Akaike (AIC) and
Bayesian information criteria (BIC) values. The models are estimated using the
dataset of 2517 observations described in Section 4.
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H Tests of leverage effects

Table 21: Tests of leverage effects in variance equations of scalar, diagonal and PLT tr models
Version Asset a2Pii a2Nii a2Nii ≤ a2Pii a2Pi1 a2Ni1 a2Ni1 ≤ a2Pi1 2aPi1aPii 2aNi1aNii 2aNi1aNii ≤ 2aPi1aPii
scalar 1-6 0.24 0.28 3.412+

diagonal 1 0.14 0.22 1.661*
2 0.29 0.33 2.346+

3 0.28 0.31 2.390+

4 0.27 0.29 2.219*
5 0.32 0.33 1.016
6 0.33 0.39 2.453+

PLT 1 0.13 0.23 1.646*
2 0.29 0.32 2.032* 0.0008 0.0003 -0.285 -0.031 0.020 0.849
3 0.28 0.30 2.175* 0.0010 0.0002 -0.374 -0.033 0.017 0.865
4 0.26 0.28 2.163* 0.0004 0.0001 -0.326 -0.022 0.008 0.618
5 0.34 0.35 0.948 0.0001 0.0002 0.180 -0.012 0.017 0.496
6 0.32 0.38 2.330+ 0.0002 0.0000 -0.146 -0.016 0.006 0.296

The columns 3, 4, 6, 7, 9, and 10 report the estimates of the coefficients indicated in row 1, for the tr conditional variance equations identified
in the first two columns. The columns 5, 8, and 11 provide the values of the test statistics for testing the significance of the null hypothesis
written in row 1 against the complementary alternative hypothesis. The statistics that are significant at the 5% level are denoted by * (critical
value: 1.645), at the 1% level by + (critical value: 2.326).
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Table 22: Tests of leverage effects in covariance equations of scalar, diagonal and PLT tr modelsl
Version Asset aPiiaPjj aNiiaNjj aNiiaNjj ≤ aPiiaPjj aP11aPi1 aN11aNi1 aN11aNi1 ≤ aP11aPi1
diagonal 1-2 0.20 0.27 2.188*

1-3 0.20 0.26 2.264*
1-4 0.19 0.26 2.109*
1-5 0.21 0.27 1.920*
1-6 0.21 0.29 2.278*
2-3 0.29 0.32 2.769+

2-4 0.28 0.31 2.718**
2-5 0.30 0.33 1.979*
2-6 0.31 0.35 2.838+

3-4 0.27 0.30 2.777+

3-5 0.30 0.32 1.981*
3-6 0.30 0.35 2.864+

4-5 0.29 0.31 1.825*
4-6 0.30 0.34 2.854+

5-6 0.32 0.36 2.212*
PLT 1-2 0.20 0.27 2.205* -0.011 0.008 0.811

1-3 0.19 0.26 2.277* -0.012 0.007 0.813
1-4 0.19 0.25 2.142* -0.008 0.004 0.586
1-5 0.21 0.28 2.006* -0.004 0.007 0.513
1-6 0.21 0.29 2.340+ -0.005 0.002 0.289
2-3 0.29 0.31 2.474+

2-4 0.28 0.30 2.516+

2-5 0.31 0.34 1.775*
2-6 0.31 0.35 2.619+

3-4 0.27 0.29 2.619+

3-5 0.31 0.33 1.824*
3-6 0.30 0.34 2.611*
4-5 0.30 0.31 1.823+

4-6 0.29 0.33 2.734+

5-6 0.33 0.36 2.150*

The columns 3, 4, 6, and 7 report the estimates of the coefficients indicated in row 1, for the tr conditional covariance
equation identified in the first two columns. The columns 5 and 8 provide the values of the test statistics for testing the
significance of the null hypothesis written in row 1 against the complementary alternative hypothesis. The statistics that
are significant at the 5% level are denoted by * (critical value: 1.645), at the 1% level by + (critical value: 2.326).
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