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Abstract Using the concepts of the Constituent-oriented Age and Residence time
Theory (CART, www.climate.be/cart), we compute timescales related to the water
renewal in semi-enclosed domains. The modelling system is based on an Eulerian
approach and consists of two coupled model components: (i) the shallow-water
equations for the hydrodynamical model and (ii) a transport equation for the passive
tracer. The full system is incorporated into a high order finite volume solver on
unstructured meshes. Advection is approximated by a Non-Homogeneous Riemann
Solver (SRNH) which can handle topography variations. Our objective is to study
recirculation problems in the Nador lagoon (Morocco) and in particular measure
the residence time of water inside the lagoon. An adequate numerical study would
determine the necessity and indeed the eventual location of other passes between
the lagoon and the Mediterranean permitting to reduce the residence time of a given
tracer.
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1 Introduction

Coastal lagoons, especially those poorly connected to the neighboring sea, may
retain contaminants for a long time, leading to detrimental consequences for the
water quality and ecosystems. Therefore, it is crucial to understand and quantify
in detail the processes by which the water of such domains is renewed. The first
building block usually consists in estimating the time needed for water particles to
leave the lagoon and enter the sea, which is usually referred to as the residence time
of a water particle [1, 2].
Water is treated as a continuous medium in the majority of environmental studies.

In addition, it is also possible to identify water types or masses by tagging relevant
water particles. The associated concentrations are governed by advection-diffusion
equations. In a water renewal study, it is generally appropriate to distinguish the
original water from the replacement water. The former consists of the water particles
that are present in the domain at the initial instant, whilst the latter refers to the
water originating from the environment of the domain of interest that progressively
replaces the original water. The present work focuses on the original water, which
will be dealt with using depth-integrated equations.
The modeling system is composed of two coupled model components : (i) the

shallow-water equations for the hydrodynamical model and (ii) a transport equation
for the passive tracer. These coupled models provide a hyperbolic system of conser-
vation laws with source terms. The full system is incorporated into a finite volume
solver on unstructured meshes. A Non Homogeneous Riemann Solver (SRNH) that
can handle the topography variations is used to approximate the advection process.
The method is decomposed into two stages, which can be interpreted as a predictor-
corrector procedure. In the first stage, the scheme uses the projected system of the
coupled equations and incorporates the sign matrix of the flux Jacobian, which re-
sults in an upwind discretization of the characteristic variables. In the second stage,
the solution is updated using the conservative form of the equations and a particular
treatment of the bed bottom to achieve a well-balanced discretization of the flux
gradients and the bed source terms [3].
As a real application, we focus on the Nador lagoon which is located in the North-

East of Morocco (see Fig. 1). The Nador lagoon is an ecosystem of great biological,
ecological and economic interest. It covers an area that exceeds 120𝐾𝑚2 with a
maximum depth of 8𝑚, and is fed by the water of The Mediterranean through a
pass known as ‘Bokhana’, the freshwater waterways, the rejections of the untreated
human activities (agriculture and urban water industry: metallurgy, textile, ...), and
by the water of a waste water treatment plant.
Our objective is to studywater circulations in theNador lagoon and in particular to

evaluate the residence time of water inside the lagoon. The impact of the location of
the pass on the residence time of the water will be discussed. Increasing the intensity
of the exchanges with the Mediterranean is likely to lead to a smaller residence time,
though the difference should depend on the subdomain considered. An adequate
numerical study would determine the necessity and indeed the eventual location of
other passes between the lagoon and the Mediterranean permitting to reduce the
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residence time of a given tracer. Consequently, this may provide numerical tools to
study the physical environment of the lagoon and assess the development strategy
reducing pollution risks in the lagoon.

Fig. 1 Location of the Nador lagoon or "Marchica" with zoom on its old and new entrance passes
to the lagoon. The old entry pass is currently closed (Image©2021 Google Maps).

2 Mathematical model

2.1 The shallow water equations

Shallow water equations are frequently used to simulate free surface flows that are
affected by gravity. These equations which can be derived from the depth-averaged
incompressibleNavier-Stokes equations, are based on the assumption that the vertical
scale is considerably smaller than any typical horizontal scale. For two-dimensional
flow problems, the system equations can be written as

𝜕ℎ

𝜕𝑡
+ 𝜕 (ℎ𝑢)

𝜕𝑥
+ 𝜕 (ℎ𝑣)

𝜕𝑦
= 0

𝜕

𝜕𝑡
(ℎ𝑢) + 𝜕

𝜕𝑥

(
ℎ𝑢2 + 𝑔ℎ

2

2

)
+ 𝜕

𝜕𝑦
(ℎ𝑢𝑣) = −𝑔ℎ 𝜕𝑍

𝜕𝑥
− 𝜏𝑏𝑥

𝜌𝑤
+ 𝜏𝑤𝑥
𝜌𝑤

+Ωℎ𝑣 + D𝑥𝑥 (ℎ, 𝑢, 𝑣)

𝜕

𝜕𝑡
(ℎ𝑣) + 𝜕

𝜕𝑥
(ℎ𝑢𝑣) + 𝜕

𝜕𝑦

(
ℎ𝑣2 + 𝑔ℎ

2

2

)
= −𝑔ℎ 𝜕𝑍

𝜕𝑦
−
𝜏𝑏𝑦

𝜌𝑤
+
𝜏𝑤𝑦

𝜌𝑤
−Ωℎ𝑢 + D𝑦𝑦 (ℎ, 𝑢, 𝑣)

(1)
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Fig. 2 Presentation of the variables of a shallow flow.

where ℎ is the water depth, 𝑔 the gravitational acceleration, 𝑢 and v are the depth-
averaged water velocities in 𝑥 and 𝑦 direction, 𝑍 is the bottom topography. An
illustration of these variables is given in Fig.2. Ω is the the Coriolis parameter
defined by Ω = 2𝜔 sin(𝜙), 𝜌𝑤 the water density, with 𝜔 is the angular velocity of
the earth and 𝜙 is the geographic latitude, 𝜏𝑏𝑥 and 𝜏𝑏𝑦 are the bed shear stress in the
𝑥 and 𝑦 direction, respectively, parameterized as follows:

𝜏𝑏𝑥 = 𝜌𝑤𝐶𝑏𝑢
√︁
𝑢2 + 𝑣2, 𝜏𝑏𝑦 = 𝜌𝑤𝐶𝑏𝑣

√︁
𝑢2 + 𝑣2 (2)

where𝐶𝑏 is the bed friction coefficient, which could be approximated as𝐶𝑏 = 𝑔/𝐶2𝑍 ,
𝐶𝑍 = ℎ1/6/𝑛𝑏 is the Chezy constant, with 𝑛𝑏 is the bed’s Manning roughness
coefficient. The surface stress 𝜏𝑤 is often caused by the shear of the wind and is
described as a quadratic function of the wind speed.

𝜏𝑤𝑥
= 𝜌𝑎𝐶𝑤𝑤𝑥

√︃
𝑤2𝑥 + 𝑤2𝑦 , 𝜏𝑤𝑦

= 𝜌𝑎𝐶𝑤𝑤𝑦

√︃
𝑤2𝑥 + 𝑤2𝑦 (3)

where 𝜌𝑎 is the air density and 𝐶𝑤 is the coefficient of wind friction and (𝑤𝑥 , 𝑤𝑦)𝑇
is the wind speed at 10 meters above the water’s surface. Usually, it is described by

𝐶𝑤 =

(
0.75 + 0.067

√︃
𝑤2𝑥 + 𝑤2𝑦

)
10−3

For the momentum diffusion terms D𝑥𝑥 and D𝑦𝑦 , we used the parameterizations of
[4]

D𝑥𝑥 (ℎ, 𝑢, 𝑣) = 2𝜈
𝜕

𝜕𝑥

(
ℎ

(
2
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦

))
+ 2𝜈 𝜕

𝜕𝑦

(
ℎ
𝜕𝑢

𝜕𝑦

)
(4)

D𝑦𝑦 (ℎ, 𝑢, 𝑣) = 2𝜈
𝜕

𝜕𝑥

(
ℎ
𝜕𝑣

𝜕𝑥

)
+ 2𝜈 𝜕

𝜕𝑦

(
ℎ

(
𝜕𝑢

𝜕𝑥
+ 2 𝜕𝑣

𝜕𝑦

))
(5)

where 𝜈 is the kinematic viscosity.
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2.2 Residence time formulation

The time that a water parcel takes to exit the region of interest for the first time is
known as the residency time 𝜃. Therefore, a water parcel’s residence time depends
on its initial time, initial position, and the region of interest.

Let Ω ⊂ R2 denotes the domain of interest which represents here the lagoon. Its
boundary Γ is split into two parts: Γ𝑐 and Γ𝑝 , with Γ = Γ𝑐 ∪Γ𝑝 . The first part of the
boundary, Γ𝑐, is impermeable and represents the lagoon-land coastlines. The second
Γ𝑝 delineates the open boundary at the "pass" separating the coastal lagoon under
study from the neighbouring sea. The outward unit normal vector to the domain
boundary is n, with |n| = 1.

To obtain 𝜃 (𝑡0), the mean residence time of the water present in a subdomain
Ω′ of Ω at time 𝑡 = 𝑡0, one must first obtain the concentration 𝐶 (𝑡, x) of the
passive tracer tagging these water particles. This concentration is the solution of the
following partial differential problem [5]

𝜕

𝜕𝑡
(ℎ𝐶) + ∇ · (ℎ𝐶u) = ∇ · (ℎK∇𝐶)

𝐶 (𝑡0, x ∈ Ω′) = 1
𝐶 (𝑡0, x ∈ Ω \Ω′) = 0

(6)

where K is the diffusivity tensor of the tracer.

The fact that the original water particles do not cross the coastline boundary leads
to the following no-flux boundary condition

[(ℎ𝐶u − ℎK∇𝐶) · n]x∈Γ𝑐 = 0

On the interface between the coastal lagoon and the sea, the original water con-
centration must be prescribed to be zero (𝐶 (𝑡, x ∈ Γ𝑝) = 0) to ensure that the water
exits the lagoon and never returns to it again.

Then, the mean residence time in the subdomain Ω′ is given by [2]

𝜃 (𝑡0) =

∫ ∞
𝑡0

∫
Ω
ℎ(𝑡, x) 𝐶 (𝑡, x) 𝑑x 𝑑𝑡∫

Ω
ℎ(𝑡0, x) 𝐶 (𝑡0, x) 𝑑x

=

∫ ∞
𝑡0

∫
Ω
ℎ(𝑡, x) 𝐶 (𝑡, x) 𝑑x 𝑑𝑡∫
Ω′ ℎ(𝑡0, x) 𝑑x

(7)

One can also define the domain-averaged residence time by setting Ω′ = Ω in the
partial differential problem above. In other words, the domain-averaged residence
time is the mean residence time of a passive tracer whose concentration at the initial
time 𝑡 = 𝑡0 is equal to unity in the whole domain of interest.
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2.3 The global system of PDEs

It is convenient to rewrite (1) and (6) in a compact conservative form.

𝜕W
𝜕𝑡

+ 𝜕

𝜕𝑥

(
F(W) − F̃(W)

)
+ 𝜕

𝜕𝑦

(
G(W) − G̃(W)

)
= S1 (W) + S2 (W) (8)

whereW is the conserved variable’s vector, F and G are the advective tensor fluxes,
F̃ and G̃ are the diffusion tensor fluxes, S1 is the source term representing the slope
variation. The source term S2 accounts for coriolis forces, friction losses and wind
effects.

W =

©­­­«
ℎ

ℎ𝑢

ℎ𝑣

ℎ𝐶

ª®®®¬ , F(W) =
©­­­­«

ℎ𝑢

ℎ𝑢2 + 1
2
𝑔ℎ2

ℎ𝑢𝑣

ℎ𝑢𝐶

ª®®®®¬
, G(W) =

©­­­­«
ℎ𝑣

ℎ𝑢𝑣

ℎ𝑣2 + 1
2
𝑔ℎ2

ℎ𝑣𝐶

ª®®®®¬
,

S1 (W) =

©­­­­­­«

0

−𝑔ℎ 𝜕𝑍
𝜕𝑥

−𝑔ℎ 𝜕𝑍
𝜕𝑦
0

ª®®®®®®¬
, S2 (W) =

©­­­­­­«

0
Ωℎ𝑣 − 𝜏𝑏𝑥

𝜌𝑤
+ 𝜏𝑤𝑥
𝜌𝑤

−Ωℎ𝑢 −
𝜏𝑏𝑦

𝜌𝑤
+
𝜏𝑤𝑦

𝜌𝑤
0

ª®®®®®®¬
F̃(W) =

©­­­­«
0
0
0

ℎ𝐾𝑥

𝜕𝐶

𝜕𝑥

ª®®®®¬
, G̃(W) =

©­­­­­«
0
0
0

ℎ𝐾𝑦

𝜕𝐶

𝜕𝑦

ª®®®®®¬
,

3 Numerical methods

Let’s discretize the spatial domain into conforming triangular elements 𝑇𝑖 as Ω =

∪𝑁𝑒

𝑖=1𝑇𝑖 and divide the time interval into sub-intervals [𝑡𝑛, 𝑡𝑛+1] with step sizeΔ𝑡. 𝑁𝑒 is
the total number of elements.We consider the cell-centered finite volume formulation
forwhich each triangle represents a control volume and the state variables are situated
at the cell’s geometric center. A finite volume discretization of (8) is therefore
performed, and can be written, with an explicit Euler scheme for the time, as
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W𝑛+1
𝑖 = W𝑛

𝑖 −
Δ𝑡

|𝑇𝑖 |
∑︁

𝑗∈𝑁 (𝑖)

∫
Γ𝑖 𝑗

F ( W𝑛;n) d𝜎 + Δ𝑡

|𝑇𝑖 |
∑︁

𝑗∈𝑁 (𝑖)

∫
Γ𝑖 𝑗

F̃ ( W𝑛;n) d𝜎

+ Δ𝑡

|𝑇𝑖 |

∫
𝑇𝑖

S1 (W𝑛) d𝑉 + Δ𝑡

|𝑇𝑖 |

∫
𝑇𝑖

S2 (W𝑛) d𝑉

(9)

whereW𝑛
𝑖 is the mean value of the solutionW in the control volume 𝑇𝑖 at time 𝑡𝑛,

|𝑇𝑖 | represents the area of 𝑇𝑖 and 𝑁 (𝑖) is the set of triangles surrounding the cell 𝑇𝑖 ,

F (W;n) = F(W)𝑛𝑥 + G(W)𝑛𝑦 F̃ (W;n) = F̃(W)𝑛𝑥 + F̃(W)𝑛𝑦

W𝑛
𝑖 =

1
|𝑇𝑖 |

∫
𝑇𝑖

W𝑛 d𝑉

The (SRNH) scheme is formulated by considering only the hyperbolic part of the
system (8) and the source term S1 describing the bed slopes of the domain. The
method consists of a predictor stage and a corrector stage, and can be formulated as

W𝑛+1
𝑖 = W𝑛

𝑖 −
Δ𝑡

|𝑇𝑖 |
∑︁

𝑗∈𝑁 (𝑖)
F

(
W𝑛

𝑖 𝑗 ;n𝑖 𝑗

)
|Γ𝑖 𝑗 | + Δ𝑡S𝑛

1𝑖

W𝑛
𝑖 𝑗 =

1
2

(
W𝑛

𝑖 + W𝑛
𝑗

)
−1
2
𝑠𝑔𝑛

[
∇F (W𝑛

𝑖 𝑗 , n𝑖 𝑗 )
] (

W𝑛
𝑗 − W𝑛

𝑖

)
+1
2
|∇F (W𝑛

𝑖 𝑗 , n𝑖 𝑗 )−1 |S𝑛
1𝑖 𝑗
(10)

S𝑛
1𝑖 =

1
|𝑇𝑖 |

∫
𝑇𝑖

S1 (W𝑛) 𝑑𝑉

where 𝑠𝑔𝑛[A] represents the sign matrix of A andW
𝑛

𝑖 𝑗 is an averaged state that can
be roughly approximated by the mean state or the Roe’s average state.

W
𝑛

𝑖 𝑗 =
1
2

(
W𝑛

𝑖 + W𝑛
𝑗

)
The stateW𝑛

𝑖 𝑗 is determined by projecting the equations (1) onto the outward normal
and tangential coordinates of the local cell, as described in the next section.

3.1 Determination of the sign matrix

We project the shallow water equations onto the local cell’s outward normal 𝜂 and
tangential 𝜏 = 𝜂⊥ to find the sign matrix in equation (10) as follows
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𝜕ℎ

𝜕𝑡
+
𝜕 (ℎ𝑢𝜂)
𝜕𝜂

= 0

𝜕 (ℎ𝑢𝜂)
𝜕𝑡

+ 𝜕

𝜕𝜂

(
ℎ𝑢2𝜂 + 𝑔

2
ℎ2

)
= −𝑔ℎ 𝜕𝑍

𝜕𝜂

𝜕 (ℎ𝑢𝜏)
𝜕𝑡

+
𝜕 (ℎ𝑢𝜂𝑢𝜏)

𝜕𝜂
= 0

𝜕 (ℎ𝐶)
𝜕𝑡

+
𝜕 (ℎ𝑢𝜂𝐶)
𝜕𝜂

= 0

(11)

where the normal and tangential velocities, respectively, are given by the expressions
𝑢𝜂 = (𝑢, 𝑣).𝜂 and 𝑢𝜏 = (𝑢, 𝑣).𝜏. In this case, the predictor step in (11) results

U𝑛
𝑖 𝑗 =

1
2

(
U𝑛
𝑖 + U𝑛

𝑗

)
− 1
2
𝑠𝑔𝑛

[
∇F𝜂 (U

𝑛

𝑖 𝑗 )
]
(U𝑛

𝑗 − U𝑛
𝑖 ) +

1
2
|∇F𝜂 (U

𝑛

𝑖 𝑗 )−1 |S𝑛
1𝑖 𝑗 (12)

where

U =

©­­­«
ℎ

ℎ𝑢𝜂
ℎ𝑢𝜏
ℎ𝐶

ª®®®¬ , F𝜂 (U) =
©­­­­«

ℎ𝑢𝜂

ℎ𝑢2𝜂 + 𝑔
2
ℎ2

ℎ𝑢𝜂𝑢𝜏
ℎ𝑢𝜂𝐶

ª®®®®¬
, S1𝑖 𝑗 = −𝑔

ℎ𝑖 + ℎ 𝑗

2
(
𝑍 𝑗 − 𝑍𝑖

) ©­­­«
0
1
0
0

ª®®®¬
U is the average state of Roe given by

U
𝑛

𝑖 𝑗 =
ℎ𝑖 + ℎ 𝑗

2

©­­­­­­­­­­­­­­­­­­«

1(
𝑢𝑖
√
ℎ𝑖 + 𝑢 𝑗

√︁
ℎ 𝑗

√
ℎ𝑖 +

√︁
ℎ 𝑗

)
𝜂𝑥 +

(
𝑣𝑖
√
ℎ𝑖 + 𝑣 𝑗

√︁
ℎ 𝑗

√
ℎ𝑖 +

√︁
ℎ 𝑗

)
𝜂𝑦

−
(
𝑢𝑖
√
ℎ𝑖 + 𝑢 𝑗

√︁
ℎ 𝑗

√
ℎ𝑖 +

√︁
ℎ 𝑗

)
𝜂𝑦 +

(
𝑣𝑖
√
ℎ𝑖 + 𝑣 𝑗

√︁
ℎ 𝑗

√
ℎ𝑖 +

√︁
ℎ 𝑗

)
𝜂𝑥

𝐶𝑖

√
ℎ𝑖 + 𝐶 𝑗

√︁
ℎ 𝑗

√
ℎ𝑖 +

√︁
ℎ 𝑗

ª®®®®®®®®®®®®®®®®®®¬
𝑠𝑔𝑛

[
∇F𝜂 (U

𝑛

𝑖 𝑗 )
]
represents the sign of the Jacobian matrix ∇F𝜂 (U

𝑛

𝑖 𝑗 ). It is defined
by

𝑠𝑔𝑛

[
∇𝐹𝜂 (U

𝑛)
]
= R(U) 𝑠𝑔𝑛

[
Λ(U)

]
R(U)−1

|∇𝐹𝜂 (U
𝑛)−1 | = R(U) |Λ(U)−1 | R(𝑈)−1

(13)



Finite volume computation of residence time in the Nador lagoon 9

R(U) and Λ(U) are respectively the eigenvector and eigenvalue matrices of
∇F𝜂 (U

𝑛

𝑖 𝑗 ) (see [7] for the details of these matrices).

By incorporating these matrices in the predictor stage (12), the projected state U𝑛
𝑖 𝑗

on each edge Γ𝑖 𝑗 can be easily obtained. The conservative stateW𝑛
𝑖 𝑗 is then evaluated

using the transformations 𝑢 = 𝑢𝜂𝑛𝑥 − 𝑢𝜏𝑛𝑦 and 𝑣 = 𝑢𝜂𝑛𝑦 − 𝑢𝜏𝑛𝑥

3.2 Treatment of the bed source term

The approximation of the source term in the corrector stage is reconstructed in such
a way as to produce the balance between the flux gradients and the bed source term,
which is also called the C-property [9, 10]. A numerical method is said to satisfy the
C-property if it is compatible with a steady-state solution that is quiescent

ℎ𝑛𝑖 + 𝑍𝑛
𝑖 = ℎ𝑛𝑗 + 𝑍𝑛

𝑗 = 𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑢𝑛 = 𝑣𝑛 = 0 ∀𝑇𝑖 , 𝑇𝑗 ∈ Ω, 𝑛 = 1, 2, 3, ....

At the stationary state, the numerical flux in the corrector stage produces

©­­­­­­­­«

0∑︁
𝑗∈𝑁 (𝑖)

1
2
𝑔(ℎ𝑛𝑖 𝑗 )2𝑁𝑥𝑖 𝑗∑︁

𝑗∈𝑁 (𝑖)

1
2
𝑔(ℎ𝑛𝑖 𝑗 )2𝑁𝑦𝑖 𝑗

0

ª®®®®®®®®¬
=

©­­­­­­­«

0

−𝑔
∫
𝑇𝑖

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉

−𝑔
∫
𝑇𝑖

ℎ
𝜕𝑍

𝜕𝑦
𝑑𝑉

0

ª®®®®®®®¬
(14)

with 𝑁𝑥𝑖 𝑗 = 𝑛𝑥𝑖 𝑗 |Γ𝑖 𝑗 | et 𝑁𝑦𝑖 𝑗 = 𝑛𝑦𝑖 𝑗 |Γ𝑖 𝑗 |. To approximate the source terms we first
split the triangle 𝑇𝑖 into three sub-triangles as shown in Fig. 3.

Fig. 3 The decomposition of the control volume 𝑇𝑖 .
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The source term is then decomposed as∫
𝑇𝑖

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉 =

∫
𝑇1

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉 +

∫
𝑇2

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉 +

∫
𝑇3

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉 (15)

where the average values of ℎ on the three sub-triangles𝑇1,𝑇2 and𝑇3 are, respectively,
ℎ1, ℎ2 and ℎ3
Using the stationary flow condition on each sub-triangle of 𝑇𝑖 and the Gauss diver-
gence formula for the three integrals, the source term reads∫

𝑇𝑖

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉 = − ℎ1

2
ℎ𝑝𝑁𝑥1𝑝 − ℎ2

2
ℎ𝑘𝑁𝑥2𝑘 −

ℎ3
2
ℎ𝑙𝑁𝑥3𝑙

for which ℎ𝑝 , ℎ𝑘 and ℎ𝑙 represents the mean values of ℎ on the triangles 𝑇𝑝 , 𝑇𝑘 and
𝑇𝑙 as shown in Fig. 3.

For this reconstruction, the source terms in (14) results in two linear equations for
ℎ1, ℎ2 and ℎ3 as follows∑︁

𝑗∈𝑁 (𝑖)
(ℎ𝑛𝑖 𝑗 )2𝑁𝑥𝑖 𝑗 = ℎ1

(
ℎ𝑝𝑁𝑥1𝑝

)
+ ℎ2 (ℎ𝑘𝑁𝑥2𝑘) + ℎ3 (ℎ𝑙𝑁𝑥3𝑙) (16)

∑︁
𝑗∈𝑁 (𝑖)

(ℎ𝑛𝑖 𝑗 )2𝑁𝑦𝑖 𝑗 = ℎ1
(
ℎ𝑝𝑁𝑦1𝑝

)
+ ℎ2

(
ℎ𝑘𝑁𝑦2𝑘

)
+ ℎ3

(
ℎ𝑙𝑁𝑦3𝑙

)
(17)

which are completed by the following conservation equation

ℎ1 + ℎ2 + ℎ3 = 3ℎ𝑛𝑖 (18)

After obtaining the average values ℎ1, ℎ2 and ℎ3, the bottom values 𝑍1, 𝑍2 and 𝑍3
are reconstructed in such a way that

𝑍𝑖 + ℎ𝑛𝑖 = 𝑍 𝑗 + ℎ𝑛𝑗 for 𝑗 = 1, 2, 3

Finally, the bed slope source term in 𝑥-direction is approximated as∫
𝑇𝑖

ℎ
𝜕𝑍

𝜕𝑥
𝑑𝑉 =

ℎ1
2

(
𝑍𝑝𝑁𝑥1𝑝 + 𝑍2𝑁𝑥12 + 𝑍3𝑁𝑥13

)
+ ℎ2
2

(𝑍𝑘𝑁𝑥2𝑘 + 𝑍1𝑁𝑥21 + 𝑍3𝑁𝑥23)

+ ℎ3
2

(𝑍𝑙𝑁𝑥3𝑙 + 𝑍1𝑁𝑥31 + 𝑍2𝑁𝑥32)

(19)

And a similar equation is obtained for the approximation of the source term in the
𝑦-direction.

With this reconstruction, it is clear that the SRNH scheme is well balanced and
preserves the steady state at rest [7].
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3.3 Treatment of the friction terms

A fractional semi-implicit approach is used to discretize the friction terms. For
example, the momentum equation in the 𝑥-direction in the system (1) is divided into
two equations as follows 

𝜕ℎ𝑢

𝜕𝑡
= −𝑛2

𝑏
𝑔𝑢

√
𝑢2 + 𝑣2

ℎ
1
3

𝜕ℎ𝑢

𝜕𝑡
+ 𝑅𝑒𝑠(𝑊) = −𝑔ℎ 𝜕𝑍

𝜕𝑥

(20)

where 𝑛𝑏 is the Manning coefficient and 𝑅𝑒𝑠(W) denotes the convection terms.

First, the upper equation in (20) is integrated using a semi-implicitmethod, producing

(ℎ𝑢)∗
𝑖
− (ℎ𝑢)𝑛

𝑖

Δ𝑡
= −𝑛2𝑏 𝑔(ℎ𝑢)

∗
𝑖

√︃
(𝑢𝑛

𝑖
)2 + (𝑣𝑛

𝑖
)2

(ℎ𝑛
𝑖
) 43

(21)

The value (ℎ𝑢)∗ is then used as the initial condition in the second stepwhile resolving
the second equation in (20) by the (SRNH) method.

3.4 Discretization of diffusion terms

To approximate the diffusion fluxes in the discrete system we used a Green-Gauss
diamond reconstruction. This approach was chosen because it is second-order accu-
rate and can be used on general unstructured grids without severe restriction on the
regularity of the mesh, and it can be easily incorporated in our finite volume scheme.
A co-volume 𝐷 is first constructed by connecting the barycenters of the elements
that share the edge Γ𝑖 𝑗 and its endpoints as shown in Fig. 4.

Fig. 4 Diamond shaped co-volume..
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Diffusion fluxes in the concentration equation are then evaluated at an inner edge
Γ𝑖 𝑗 as ∫

Γ𝑖 𝑗

ℎ𝐾𝑥

𝜕𝐶

𝜕𝑥
𝑛𝑥 𝑑𝜎 = 𝐾𝑥ℎ |Γ𝑖 𝑗𝑁𝑥𝑖 𝑗

𝜕𝐶

𝜕𝑥
|Γ𝑖 𝑗

= 𝐾𝑥ℎ |Γ𝑖 𝑗𝑁𝑥𝑖 𝑗

1
|𝐷 |

∑︁
𝜀∈𝜕𝐷

1
2
(𝐶𝑁1 + 𝐶𝑁2 )

∫
𝜀

𝑛𝑥 𝑑𝜎 (22)

where 𝑁𝑥𝑖 𝑗 = 𝑛𝑥𝑖 𝑗 |Γ𝑖 𝑗 |. 𝑁1 and 𝑁2 are the nodes of the edge 𝜀 of co-volume 𝐷, 𝐶𝑁1

and 𝐶𝑁2 the values of the tracer concentrations at the nodes 𝑁1 and 𝑁2 respectively.

The values 𝐶𝐸 and 𝐶𝑊 at the barycenters E and W are known and are the cell-
centered values, which is not the case for the values at the nodes 𝑁 and 𝑆. To obtain
the values at a node N of the mesh, a specific linear interpolation based on the set
of cells sharing the vertex 𝑁 is employed, ensuring weak consistency of the scheme
(see [6]).

4 Mesh generation and bed topography

The unstructured meshes in this work are made up of triangles. The mesh of the
Nador lagoon created by Gmsh software [8] is displayed in Fig. 5. The computational
domain in this study has been restricted to the pass between the lagoon and Mediter-
ranean sea. This will enforce the tidal boundary conditions at this pass. The lagoon’s
geometry and bed surface topography are irregular and several regions of various
depths coexist. In our simulations, the bathymetry was rebuilt using topographical
information. This bathymetry is shown in Fig. 6.

Fig. 5 Unstructured mesh of the Nador lagoon.
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Fig. 6 Bathymetry of the Nador lagoon with its new entrance pass.

5 Numerical setup and results

In this study, the initial assumption is that the flow is stationary with a constant free
surface (ℎ + 𝑍 = 𝐶𝑡𝑒). Additionally, it is important to note that the initial conditions
were generated by modeling the shallow water hydrodynamic equations for one year
in physical time until the flow was established. After that, the water height and the
velocity field are taken as initial state. At this time, the tracer in Nador lagoon is
fully released and it’s concentration is set to 1. Two types of boundary conditions are
specified respectively at the “pass” between the Mediterranean sea and the lagoon
noted Γ𝑝 , and at the Nador lagoon coastlines Γ𝑐. The resulting boundary conditions
are:

• At the Nador lagoon coastlines Γ𝑐:

– −→
𝑉 =

−→
0 with −→𝑉 = (𝑢, 𝑣) is the flow velocity (No-slip conditions) .

– ∇ℎ.𝑛 = 0 (Neumann condition on ℎ)

• At the pass between the Mediterranean sea and the lagoon Γ𝑝:

– ∇𝑢.𝑛 = 0 , ∇𝑣.𝑛 = 0 (Neumann conditions on 𝑢 and 𝑣) .
– ℎ = 𝐻 + ℎ0 + 𝐴∗ cos (𝜔∗𝑡 + 𝜑∗)

𝐻 is the depth from a fixed reference level to the bottom, ℎ0 is a given averaged
water elevation taken here equal to 3𝑚. Initially we have ℎ = 𝐻 + ℎ0, 𝐴∗ is the tidal
amplitude at the entrance of the lagoon, 𝜔∗ is the angular frequency of the tide, and
𝜑∗ is the phase of the tide.
In the Nador lagoon, given the fact that the boundary conditions for the water height
on Γ𝑝 are time-dependent, they must be updated at each time step as
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ℎ = 𝐻 + ℎ0 +
𝑁∑︁
𝑖=0

𝐴∗
𝑖 cos (𝜔∗

𝑖 𝑡 + 𝜑∗𝑖 ) (23)

For each tidal constituent, the values of the parameters 𝐴∗, 𝜔∗, and 𝜑∗ are shown in
Table. 1.

Table 1 Parameters for the reported tidal waves at the Nador lagoon pass. (reference SLIM code
https://www.tpxo.net )

Tidal Angular frequency (◦/𝑠) Amplitude (m) Phase (◦)
M2 8.0511e-03 1.2218e-01 2.8044e+01
S2 8.3334e-03 4.8923e-02 -9.4847e+01
N2 7.8999e-03 2.4840e-02 2.8850e+02
K2 8.3561e-03 1.4412e-02 9.0022e+01
K1 4.1780e-03 4.47471e-02 -1.4758e+02
O1 3.8730e-03 2.3400e-02 -7.2588e+00
P1 4.1552e-03 1.2222e-02 1.9840e+02
Q1 3.7218e-03 2.4141e-03 2.8056e+02
Mm 1.5121e-04 1.0358e-03 1.7292e+02
Mf 3.0500e-04 9.4348e-04 9.1109e+01
M4 1.6102e-02 1.2839e-02 2.8264e+01
Mn4 1.5951e-02 2.5554e-03 -2.1823e+01
Ms4 1.6384e-02 3.3437e-03 2.2460e+02

Over the studied period from January 1 to December 31, 2021, the tidal amplitude
fluctuated between 0.21𝑚 to 0.29𝑚 (see Fig. 7), which represents a low tidal range
(< 0.3 m). This low tidal range is characteristic of the Moroccan Mediterranean Sea
both in the open sea and within the lagoon [Hilmi et 𝑎𝑙., 2003]. The tide is of the
semi-diurnal type, represented by the M2 component see Table. 1, as is the case for
the Moroccan Atlantic and Mediterranean coasts and the highest tidal amplitudes
thus correspond to spring tides Fig. 7.

Fig. 7 Tide (in 𝑚) set at the entrance of the Nador lagoon pass (35.21°N-2.85°W) from January 1
to December 31, 2021. (Data source: https://www.tpxo.ne).

The wind data taken into consideration in this study are the intensity and the
direction in the open sea (35.21°N −2.85°W), established over the period from
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January 1 to December 31, 2021 (Data source: https://vortexfdc.com/). The wind
intensities vary between 0.1𝑚.𝑠−1 and 18.62𝑚.𝑠−1 with an average intensity of
4.22𝑚.𝑠−1 and highly variable directions. Fig. 8 summarizes the wind time series
from January 1 to December 31, 2021, in the form of a wind rose. It can be seen in
this figure that the prevailing winds over the studied period are from sectors blowing
in the North-East and South-West sectors (see Fig. 8).

Fig. 8 Wind rose observed over the period from January 1 to December 31, 2021, at the Nador
lagoon.

The computations are carried out with a physical time step Δ𝑡 selected in a way
that the following stability condition is met:

Δ𝑡 = 𝐶𝑟.min(Δ𝑡𝑐𝑜𝑛𝑣,Δ𝑡𝑑𝑖 𝑓 𝑓 ) (24)

with

Δ𝑡𝑐𝑜𝑛𝑣 = min
Γ𝑖 𝑗

(
|𝑇𝑖 | + |𝑇𝑗 |

2|Γ𝑖 𝑗 |max𝑝 |𝜆𝑝

𝑖 𝑗
|

)
, Δ𝑡𝑑𝑖 𝑓 𝑓 = min

𝑇𝑖

(
|𝑇𝑖 |

2max(𝐾𝑥 , 𝐾𝑦)

)
(25)

where 𝜆𝑝

𝑖 𝑗
is the eigenvalue calculated at the interface Γ𝑖 𝑗 between the two cells 𝑇𝑖

and 𝑇𝑗 , and Cr is the current number set to 0.6 to ensure stability of the numerical
scheme.

In this study, we will only present the results of the transport of the tracer and
the residence time in Nador lagoon by considering various cases of contact with the
Mediterranean Sea. Figures 9 and 10 show the results of the simulations of the tracer
transport in Nador lagoon considering respectively the new pass, which was used
from 2011, and the old pass. Notice that the tracer has been released after one year
of hydrodynamical simulations in a physical time in order to obtain situations that
are similar to reality of the hydrodynamic in the lagoon. The clear result is that the
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Fig. 9 Tracer concentration in Nador lagoon with the new pass at four different physical times
𝑡 = 1, 5, 15, 30 (day).

passive tracer leaves the lagoon towards the Mediterranean Sea which is due to the
hydrodynamic effect caused by the waves passing through the pass.
Figures 9 and 10 show also that the concentration of the tracer gradually decreases

until it completely disappears in the two cases of the connection with the Mediter-
ranean sea. We note that in the case of the new pass, the tracer takes about 48 days
to completely disappear from the lagoon, whereas it takes about 6 months in the
case of the old pass. This difference is due to the strength and volume of exchanges
between the Mediterranean sea and Nador lagoon, which will also greatly affect the
residence time in the lagoon.
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Fig. 10 Tracer concentration in Nador lagoon with the old pass at physical times 𝑡 = 2, 30, 90, 180
(day).

Table 2 The mean residence time of the water present in the Nador lagoon

Type of pass Initial tide January-March April-June July-September October-December
New pass high tides 15.58 14.67 16.82 17.36

low tides 14.16 13.89 15.02 17.14
Old pass high tides 58.43 58.10 57.21 61.37

low tides 57.22 56.73 56.61 59.06

Through the results of the residence time obtained in the Nador lagoon, it is
clear that the new pass has increased the strength of the waves entering the lagoon,
which caused an increase in the volume of water exchange between the two mediums
(Nador lagoon and Mediterranean sea), in contrast to the period when the old pass
was relied upon. The hydrodynamics in that period was weak and the water needed
a lot of time to renew. The residence time obtained decreased from about 57 days in
the case of the old pass, to 15 days in the case of the new pass (see Table. 2). These
results are in good agreement with those presented in [11]. In order to understand the
influence of the observed winds throughout the year, as well as the effect of the initial
time of release of the tracer (high tides and low tides ), we have divided the year into
4 periods (January-March, April-June, July-September and October-December). We
have then calculated the residence time for each period considering high and low
tides cases. The results are presented in Table. 2 and in Fig. 11 where the evolution
with time of the relative concentration of the tracer is plotted in the case of the old
and the new pass. When the winds blow faster in the direction of the Mediterranean
sea, the residence time becomes low, which is not the case when the wind is weak.
In addition, the residence time presents some differences in the case of high tides
and low tides. In fact, it is always higher when considering low tides (about one day
difference between the two cases).
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Fig. 11 Temporal distribution of the relative tracer in Nador lagoon with different connection to
the Mediterranean sea, new pass (left) and old pass (right).

6 Conclusion

In this work, a robust well balanced finite volume solver has been used to simulate the
residence time of the water originally in the Nador lagoon through the new and the
old entering pass. The goal is to find a way to renew often the water inside the lagoon
and then make it less polluted. Realistic conditions were used for the numerical
simulations, which include tidal, wind, bottom friction, and Coriolis forces. The
study has demonstrated how the new pass has altered the water circulation within
the lagoon, improving the water exchange through the pass and then increasing
its renewal. The concentration of the tracer has been highly reduced hroughout the
entire lagoon. Furthermore, it has been showed that the exact time at which a tracer is
released in a tidal phase affects the residence time in the Nador lagoon. If the tracer is
released at high tide, it will stay in the lagoon for a much longer time (approximately
1 day) than if released at low tide. The difference between the time of releasing the
tracer could be used to trigger countermeasures to control contaminants from staying
in the lagoon for much longer.
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