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Abstract 
 

This paper introduces a core concept, called the γ-core, in the primitive framework of a strategic game. 
For a certain class of strategic games, it is a weaker concept than the strong Nash equilibrium, but in 
general stronger than the conventional α- and β- cores. We argue that the coalition formation process is 
an infinitely repeated game and show that the grand coalition forms if the γ-core is nonempty. This is a 
weaker sufficient condition than the previous such condition (Maskin (2003, Theorem 4)). As an 
application of this result, it is shown that the γ- core of an oligopolistic market is nonempty and thus the 
grand coalition forms. 
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1. Introduction 

 

There are many economic environments in which the payoff of a coalition (i.e. a group of agents 

who decide to act together as one unit, relative to the rest of the agents) depends on how the 

agents not in the coalition cooperate. For example, in an oligopolistic market, the profit of a 

cartel is higher if the rest of the firms also form a cartel resulting in a duopoly than if they remain 

separate as profit maximizing oligopolists. Similarly, a free-rider’s benefit depends on the level 

of cooperation among the other agents in the production of a public good.  In such cases, what a 

coalition can achieve depends on the entire coalition structure and not just on the coalition in 

question. Thus, there can be many definitions of the characteristic function and therefore of the 

core as the payoff of the deviating coalition depends on what coalitions form in the complement 

after the deviation. Suppose 𝑁 denotes the grand coalition of 𝑛 agents. Then, we obtain one 

definition of core if each deviating coalition 𝑆 presumes the resulting coalition structure after the 

deviation to be {𝑆, 𝑁\𝑆} and a different one if it presumes it to be instead  𝑆, (𝑇𝑘)𝑘=1
𝐾   (1 ≤ 𝐾 <

𝑛) where 𝑇𝑖 ∩ 𝑇𝑗 = ∅ for each 1 ≤ 𝑖 < 𝑗 ≤ 𝐾 and ∪𝑘=1
𝐾 𝑇𝑘 = 𝑁\𝑆. The question thus arises 

which definition of core we should use for games with positive externalities.  

 

     This paper introduces a core concept, called the 𝛾-core, in the primitive framework of a 

strategic game.
1
 In this concept, each deviating coalition 𝑆 presumes the resulting coalition 

structure after the deviation to be  𝑆,  𝑖 𝑖∈𝑁\𝑆 , i.e., the rest of the coalition structure consists of 

all singletons. We argue below that this is a theoretically more compelling core concept for 

games with positive externalities. 

 

     The standard approach in the traditional cooperative game theory is to convert the strategic 

game with transferable utility into a characteristic function form game, and analyze the core of 

the cooperative game so induced. We will do the same except that the conversion is not standard. 

More specifically, the worth of coalition 𝑆 is now defined as equal to its payoff in the Nash 

equilibrium between 𝑆 and the other players acting individually, in which the members of 𝑆 play 

                                                 
1
 This concept was originally introduced in Chander and Tulkens (1995, 1997) and Chander (2007), but in the 

context of a specific model of pollution. Presently, a general formulation in the framework of a strategic game is 

introduced. 
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their joint best reply strategy against the individually best reply strategies of the remaining 

players. 

 

     Using a strategic game as the primitive framework for defining the core is natural when there 

are widespread externalities across players and therefore across coalitions. However, this is not 

the only reason. Doing so also leads to additional interpretations and an even more general 

formulation of the concept.
2
 In particular, it makes possible to define the 𝛾-core both when the 

players can write binding agreements, as implicit in the definition of the strong Nash 

equilibrium, and when they cannot, as in the case of the coalition-proof Nash equilibrium. It also 

makes possible to interpret the 𝛾-core both in terms of cooperative as well as non-cooperative 

game theory. In a certain class of games, if a game has a unique strong Nash equilibrium, then 

the 𝛾-core is nonempty and consists of the unique imputation in which the payoffs of the players 

are equal to their strong Nash equilibrium payoffs. However, the 𝛾-core may exist even if the 

game has no strong Nash equilibrium. Thus, the 𝛾-core is a weaker concept than that of strong 

Nash equilibrium at least in a certain class of games. On the other hand, the 𝛾-core is a stronger 

concept than the conventional 𝛼- and 𝛽- cores,
3
 as we show that in general 𝑤𝛼(𝑆) ≤ 𝑤𝛽 (𝑆) ≤

𝑤𝛾(𝑆) for all 𝑆 ⊂ 𝑁, where 𝑤𝛼 , 𝑤𝛽 , and 𝑤𝛾  are the respective characteristic functions. 

 

     Though the 𝛾-core concept is quite appealing and is of an independent interest, a more 

important theoretical question is why this and not some other core concept (from among the 

several that are possible) is more compelling for games with positive externalities. The coalition 

theory is largely devoted to understanding how a group of agents may share the benefit of 

forming a coalition.
4
 However, there is another more recent strand of work that aims at 

understanding whether agents have incentives to form a coalition, i.e., whether they actually 

decide to form a coalition. In the presence of externalities a player can derive benefits from the 

activities of a coalition without joining it, i.e., free ride. Therefore, the grand coalition may not 

form. Several non-cooperative coalition formation games have been proposed in recent years, see 

                                                 
2
 Alternatively, as will become apparent later, the 𝛾-characteristic function can be defined through the partition 

function (due to Thrall and Lucas (1963)). 
3
 These have been studied in various externalities contexts by Scarf (1971) and Zhao (1999) and in public goods 

context by Foley (1970), Moulin (1987), and Chander (1993) among others. 
4
 See de Clippel and Serrano (2008) for a beautiful extension of the theory of Shapley value to games with 

externalities. 
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Greenberg and Weber (1993), Bloch (1996), Ray and Vohra (1999), and Yi (1997) among 

others. These studies employ a variety of rules of coalition formation and distribution of payoffs 

among coalition members. Though it is difficult to assess how the differences in the rules affect 

the equilibrium outcomes, they all lead to the conclusion that partitions finer than the grand 

coalition may form. Therefore, they can all be interpreted as providing sufficient conditions for 

the grand coalition not to form.   

 

    In a seminal paper, Maskin (2003) proposes a sufficient condition for the grand coalition to 

form (Maskin (2003, Theorem 4)).
5
  More specifically, he shows that the grand coalition must 

form if the “core” exists. However, Maskin uses a core concept that is stronger than the 𝛾-core in 

games with positive externalities. In his definition, the worth of a coalition 𝑆 is determined by 

assuming that it faces the complementary coalition 𝑁\𝑆 which implies a higher worth for each 

coalition when externalities are positive.  Restricting attention to three-player settings, Maskin 

considers a specific class of sequential bargaining procedures wherein he assumes that players 

can commit to refrain from forming coalitions with other players. However, he notes that if the 

players cannot make such commitments, the game develops into a war of attrition in which each 

player waits for the other two to form a coalition in the hope of free riding on them.  

 

     In this paper, we argue that if the 𝛾-core is nonempty then it is indeed not credible for the 

players to commit to refrain from forming coalitions with other players. Thus, each player may 

wait for the other two to form a coalition. This leads us to formulate the coalition formation 

process as an infinitely repeated game in which the players decide strategically in each period 

whether to form a coalition or not. The game is repeated if no coalitions are formed. We show 

that if the 𝛾-core is nonempty then the equilibrium strategy of the repeated game requires that if 

an individual player leaves, then as in the 𝛾-characteristic function, the other two players do not 

cooperate. Hence, in equilibrium the grand coalition must form. Since the 𝛾-core is a weaker 

concept, this implies a weaker sufficient condition for the grand coalition to form in games with 

positive externalities. 

 

                                                 
5
 Maskin (2003) introduces a comprehensive approach that covers both strategic and normative aspects of coalition 

formation. 
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     Coalition formation in an oligopolistic market is perhaps one of the oldest problems in game 

theory.
6
 As an application of our result, we show that the 𝛾-core of an oligopolistic market exists 

and therefore the industry will become a monopoly unless prevented by law. 

 

     The contents of this paper are as follows. Section 2 introduces the 𝛾-core concept in the 

framework of a strategic game and compares it with other related concepts. Section 3 introduces 

the infinitely repeated game of coalition formation and shows that the grand coalition forms if 

the 𝛾-core is nonempty. Section 4 shows that the 𝛾-core of the oligopoly game is nonempty. 

Section 5 draws the conclusion. 

 

2. The general set-up 

 

A strategic game with transferable utility is a triple ),,( uTN  where },,2,1{ nN   is the set of 

players, iT  is the set of strategies of player ,i  nTTTT  21  is the set of joint strategies, 

and ,, Niui   is the utility or payoff of player .i  A strategy profile of the players is 

).,,( 1 nttt  Let ),,,,,( 111 niii ttttt    and ).,,,,,,(),( 111 niiiii ttttttt    A subset of 

players or a coalition is denoted by S  and its complement by .\ SN  It will be convenient to 

denote a strategy of a coalition S  by SiiS tt  )(  and the set of all strategies of S  by 𝑇𝑆 ≡

×𝑖∈𝑆 𝑇𝑖 . Let SNjjS tt \)(    denote the strategies of the players not in S  and 

).,,(),( 1 nSS tttt  .
A strong Nash equilibrium of the strategic game ),,( uTN  is a strategy 

profile Tt   such that  𝑢𝑖(𝑡 𝑖∈𝑆 ) ≥  𝑢𝑖𝑖∈𝑆 (𝑡𝑆 , 𝑡 −𝑆) for all SS Tt   and all .NS     

 

2.1  A Nash equilibrium relative to a coalition 

 

Definition 1 A strategy Tt 
~

 is a Nash equilibrium relative to a coalition NS   if  

 𝑢𝑖(𝑡 𝑖∈𝑆 ) ≥  𝑢𝑖𝑖∈𝑆 (𝑡𝑆 , 𝑡 −𝑆) for all ,SS Tt   and )
~

,()
~

( jjjj ttutu   for all jj Tt   and 

.\ SNj  

 

                                                 
6
 d’Aspremont et al. (1983) were the first to study coalition formation in an oligopolistic market. 
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     A Nash equilibrium is a Nash equilibrium relative to each singleton coalition, and a strong 

Nash equilibrium is a Nash equilibrium relative to each coalition .NS   On the other hand, if a 

strategy 𝑡  is a Nash equilibrium relative to each coalition, then 𝑡   is a strong Nash equilibrium. 

However, a game may have a Nash equilibrium relative to each coalition, but no strong Nash 

equilibrium. This is because a Nash equilibrium relative to a given coalition may not be a Nash 

equilibrium relative to other coalitions. We summarize these observations in the following 

proposition. 

 

Proposition 1 A strategy 𝑡 ∈ 𝑇 is a strong Nash equilibrium of the game ),,( uTN if and only if it 

is a Nash equilibrium relative to each coalition 𝑆 ⊂ 𝑁. 

  

     Both in a strong Nash equilibrium and in a Nash equilibrium relative to a coalition, the 

coalition is allowed complete freedom in choosing its strategy. We can define an alternative 

concept by requiring the strategy 𝑡   in Definition 1 to be immune to deviations by subcoalitions 

of coalition 𝑆 in the same self-enforcing manner as in a coalition-proof Nash equilibrium 

(Bernheim, Peleg, and Whinston (1987a) and Moreno and Wooders (1996)) vis-à-vis a strong 

Nash equilibrium. This means that the strategy 𝑡  in Definition 1 must be such that 𝑡 𝑆 is self-

enforcing in the component game with strategies of the complement fixed at 𝑡 −𝑆  and 

  𝑢𝑖 𝑡  ≥  𝑢𝑖(𝑡𝑆𝑖∈𝑆 , 𝑡 −𝑆𝑖∈𝑆 )  for all SS Tt   that are self-enforcing in the component game. 

Such an equilibrium is not necessarily a coalition-proof equilibrium of the original game and 

makes the concept of a Nash equilibrium relative to a coalition a fully non-cooperative concept. 

All the concepts introduced below can be redefined in terms of this alternative definition. 

However, since such equilibriums rarely exist, we do not pursue this alternative concept here and 

continue to assume instead that the coalition has complete freedom in choosing its joint strategy.  

 

      For the sake of completeness, we provide sufficient conditions for the existence of a Nash 

equilibrium relative to a coalition. These conditions, though strong, are satisfied in many 

economic applications, including an oligopolistic market. 
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Proposition 2 For each 𝑆 ⊂ 𝑁, the strategic game ),,( uTN  has a Nash equilibrium relative to 𝑆, 

if (i) each iT  is a compact convex set of a Euclidean space, and (ii) each )(tu i  is continuous and  

concave in  𝑡1, … , 𝑡𝑛 .  

 

     Note that condition (ii) requires )(tu i to be concave in  𝑡1, … , 𝑡𝑛  and not in 𝑡𝑖  alone.                                                                                                                                                                                              

 

2.2 The 𝛾-core 

 

      The Nash equilibrium relative to a coalition associates a payoff with the coalition. If this 

equilibrium is not unique, we can select the one that gives the highest payoff to the coalition. 

This is clearly possible in games with transferable utilities and compact strategy sets. If the 

payoffs are equal, any randomly selected equilibrium will do. In this way, we can associate a 

unique payoff with each coalition. 

 

Definition 2 The 𝛾-characteristic function of a strategic game (𝑁, 𝑇, 𝑢) is the function defined as  

𝑤𝛾 𝑆 =  𝑢𝑖(𝑡 𝑖∈𝑆 ), 𝑆 ⊂ 𝑁, where Tt 
~

 is the Nash equilibrium relative to coalition .S That is, 

t
~

is such that  𝑢𝑖(𝑡 𝑖∈𝑆 ) ≥  𝑢𝑖𝑖∈𝑆 (𝑡𝑆 , 𝑡 −𝑆) for all ,SS Tt   and )
~

,()
~

( jjjj ttutu   for each 

jj Tt   and .\ SNj  

 

     The pair (𝑁, 𝑤𝛾) is a characteristic function form game representation of the strategic 

game(𝑁, 𝑇, 𝑢). The 𝛾-core of the strategic game (𝑁, 𝑇, 𝑢) or equivalently the core of the 

characteristic function form game (𝑁, 𝑤𝛾)  is the set of payoff vectors 𝑥 satisfying 

(i)  𝑥𝑖𝑖∈𝑁 =𝑤𝛾 𝑁  and (ii) for each 𝑆 ⊂ 𝑁,  𝑥𝑖𝑖∈𝑆 ≥ 𝑤𝛾 𝑆 . 

 

     In many applications, including an oligopolistic market (see e.g. Bernheim, Peleg, and 

Whinston (1987a)), the Nash equilibrium relative to a coalition is unique for each coalition. For 

such games the 𝛾-core is a weaker concept than the strong Nash equilibrium. This is because if 

such a game has a unique strong Nash equilibrium, then the core of the game (𝑁, 𝑤𝛾) is 

nonempty and consists of the unique imputation with payoffs equal to the strong Nash 

equilibrium payoffs. However, if the game (𝑁, 𝑇, 𝑢) has no strong Nash equilibrium, the core of 
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the game (𝑁, 𝑤𝛾) may still be nonempty. Thus, the 𝛾-core is a weaker concept than the strong 

Nash equilibrium for at least the class of games in which the Nash equilibrium relative to a 

coalition is unique for each coalition. 

 

2.3 The 𝛼- and 𝛽- cores  

      

     Let us also compare the 𝛾-core with the 𝛼- and 𝛽- cores that, as noted earlier, have been used 

for long in the traditional cooperative game theory. The first is based on the assumption that the 

players outside a coalition adopt those strategies that are least favorable to the coalition. Thus, 

the maximum payoff of a coalition 𝑆 ⊂ 𝑁 is  𝑤𝛼 𝑆 = max𝑡𝑆∈𝑇𝑆
min𝑡𝑁\𝑆∈𝑇𝑁\𝑆

 𝑢𝑖(𝑡𝑆𝑖∈𝑆 , 𝑡𝑁\𝑆). 

In words, )(Sw  represents the highest payoff that coalition S  can guarantee itself no matter 

what strategies are adopted by the players outside the coalition. In this concept, coalition 𝑆 

moves first and chooses a strategy that maximizes its payoff and takes into account that coalition 

𝑁\𝑆 will move next and choose a strategy that minimizes its (i.e. 𝑆’s) payoff. In the second 

concept, the maximum payoff of a coalition 𝑆 is defined as 

𝑤𝛽 𝑆 = min𝑡𝑁\𝑆∈𝑇𝑁\𝑆
max𝑡𝑆∈𝑇𝑆

 𝑢𝑖(𝑡𝑆𝑖∈𝑆 , 𝑡𝑁\𝑆). In words, )(Sw
 represents the maximum 

payoff that coalition S  can be held down to no matter what strategies are adopted by its 

members. In this concept, 𝑁\𝑆 moves first and chooses a strategy that minimizes 𝑆’s payoff and 

takes into account that 𝑆 will move next and choose a strategy that maximizes it’s (i.e.𝑆’s) 

payoff.   

 

     In the 𝛼- and 𝛽- concepts, the players outside coalition 𝑆 form a coalition and either coalition 

𝑆 moves first and coalition 𝑁\𝑆 next after seeing the strategies of 𝑆 or 𝑁\𝑆 moves first and 𝑆 

next after seeing the strategies of 𝑁\𝑆. In the 𝛾- concept, the players outside 𝑆 do not form a 

coalition and remain separate as singletons. Furthermore, 𝑆 and the outside players move 

simultaneously. It is like coalition 𝑆 and the remaining individual players deciding to go their 

separate ways pursuing their own goals. If coalition 𝑆 suffers any loss in its payoff due to the 

actions of players not in 𝑆, it is incidental and not the intention. Such behavior amounts to 

noncooperation, but not to war on 𝑆 by the players in 𝑁\𝑆 as in the 𝛼- and 𝛽- concepts. 
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     It is well-known that the 𝛼- and 𝛽- concepts imply large cores. In fact, they often imply cores 

that are “too large”. The easiest way to see this is to consider a duopoly. Here the 𝛼- and 𝛽- cores 

consist of all allocations that maximize the profit of the duopoly and give each firm at least zero 

payoff. This is because each firm can be pushed by the other firm to the point where it is not 

possible for it to earn any profit. Because of these limitations of the 𝛼- and 𝛽-cores, the need for 

an alternative concept which is based on more plausible behavioral assumptions has been often 

expressed in the literature. In Harsanyi (1977) words: “… in a variable-sum game one would 

rather expect that each side would try to find a suitable compromise between trying to maximize 

the costs of a conflict to the other side and trying to minimize the costs of a conflict to itself – in 

other words, between trying to minimize the joint payoff of the opposing coalition and trying to 

maximize the joint payoff of their own coalition.”  

 

     The 𝛾-core seems to fulfill the need for such an alternative concept. We formally show that 

the 𝛾- concept implies in general a smaller core. 

 

Proposition 3 The 𝛼-, 𝛽-, and 𝛾- characteristic functions satisfy 𝑤𝛼(S)  ≤ 𝑤𝛽 (𝑆) ≤ 𝑤𝛾(𝑆)  for 

all 𝑆 ⊂ 𝑁. 7 

 

Proof:  We only need to show that 𝑤𝛽 𝑆 ≤ 𝑤𝛾 𝑆 , since the inequality 𝑤𝛼(S)  ≤ 𝑤𝛽 (𝑆) is 

well-known. Let (𝑡 𝑆 , 𝑡 −𝑆) and  𝑡 𝑆 , 𝑡 −𝑆  be such that 𝑤𝛾 𝑆 =  𝑢𝑖(𝑡 𝑆 , 𝑡 −𝑆)𝑖∈𝑆   and 𝑤𝛽 𝑆 =

 𝑢𝑖 𝑡 𝑆 , 𝑡 −𝑆 .𝑖∈𝑆  Let 𝑡𝑆
∗ 𝑡−𝑆 = arg max𝑡𝑆∈𝑇𝑆

 𝑢𝑖𝑖∈𝑆 (𝑡𝑆 , 𝑡−𝑆) , 𝑡−𝑆 ∈ 𝑇−𝑆 . Then, by definition,  

𝑤𝛽 𝑆 =  𝑢𝑖(𝑡𝑆
∗(𝑖∈𝑆 𝑡 −𝑆), 𝑡 −𝑆) ≤  𝑢𝑖(𝑡𝑆

∗ 𝑡−𝑆 , 𝑡−𝑆)𝑖∈𝑆  for all 𝑡−𝑆 ∈ 𝑇−𝑆 . In particular, 

 𝑢𝑖(𝑡𝑆
∗(𝑖∈𝑆 𝑡 −𝑆), 𝑡 −𝑆) ≤  𝑢𝑖(𝑡𝑆

∗(𝑖∈𝑆 𝑡 −𝑆), 𝑡 −𝑆) = 𝑤𝛾 𝑆 . Therefore, 𝑤𝛽 𝑆 ≤ 𝑤𝛾 𝑆 .    ∎ 

 

     Examples are easily constructed in which the inequality is strict (see e.g. Chander (2007)). 

Finally, note that the grand coalition is an efficient coalition structure, since the coalition of all 

players can choose at least the same strategies as the players in any coalition structure.  

 

3. The coalition formation game 

                                                 
7
 This also implies a consistency property of the 𝛾-core in the sense that the 𝛾- core solutions are not inconsistent 

with the 𝛼- and 𝛽- core solutions. 
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The earliest attempt to generalize characteristic functions to the case of externalities among 

coalitions is the introduction of partition function form games by Thrall and Lucas (1963). A 

partition function defines the worth of a coalition for each possible coalition structure that may 

be formed by the rest of the players.
8
 It does not rule out a priori any coalition structure and is a 

complete list of what payoffs a coalition can ever get. However, not all payoffs of a coalition 

may be relevant as the players in the complement may not have incentives to form all coalition 

structures.
9
  

  

     Maskin (2003) uses an example of a three player partition function to develop his ideas. It 

represents a simple free rider problem created by a public good that can be produced by each 

coalition of two players.
10

  

 

Example 1 The set of agents is 𝑁 =  𝑎, 𝑏, 𝑐 , and the partition function is: 

 

    𝑣 𝑁 = 24; 

    𝑣( 𝑎, 𝑏 ; { 𝑎, 𝑏 ,  𝑐 } = 12, 𝑣  𝑎, 𝑐 ;    𝑎, 𝑐 ,  𝑏   = 13, 𝑣  𝑏, 𝑐 ;   𝑏, 𝑐 ,  𝑎   = 14, 

    𝑣  𝑖 ,   𝑖 ;  𝑗, 𝑘   = 9  for all 𝑖, 𝑗, 𝑘 ∈ 𝑁, 

    𝑣( 𝑖 ,   𝑖 ;  𝑗 ,  𝑘 } = 0 for all 𝑖, 𝑗, 𝑘 ∈ 𝑁. 

  

     Maskin shows that if the ordering of the players is 𝑖, 𝑗, and 𝑘, then the coalition structure 

{ 𝑖 ,  𝑗, 𝑘 } is a subgame perfect equilibrium outcome of a sequential bargaining game. Let us see 

why.  

 

3.1 The sequential bargaining game 

 

                                                 
8
 A strategic game can be converted into a partition function form game by defining a Nash equilibrium across 

coalitions in the same way as in Section 2 except that now the complement may not consist of all singletons.  
9
 See Wooders and Page (2008) for a discussion along these lines. 

10
 This example also features in de Clippel and Serrano (2008). A similar example was first used by Ray and Vohra 

(1999, Example 1.2). 
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     Consider, e.g., the natural order 𝑎, 𝑏, and 𝑐. There are two possibilities. If 𝑎 does not form a 

coalition with 𝑏, then he has to compete with him to induce 𝑐 to form a coalition with one of 

them.  Player 𝑎 may reason that if he lets 𝑐 join 𝑏 then his payoff will be 9. Therefore, he will be 

willing to pay 𝑐 no more than 4 =13-9. But 𝑏 is happy to pay (a little more than) 4 and form a 

coalition with 𝑐 resulting in a payoff of 10 =14-4 for him which is more than the payoff of 9 that 

he would get if he were to let 𝑐 join 𝑎 instead. On the other hand, if 𝑎 forms a coalition with 𝑏, 

then by similar reasoning he will have to pay 10 to 𝑏  and 9 to 𝑐 resulting in a payoff of only 5 

=24-10-9 for him. Hence, the coalition structure { 𝑎 ,  𝑏, 𝑐 } is a subgame perfect equilibrium 

outcome of the sequential bargaining game with payoffs of (9, 10, 4). As Maskin notes, this 

result depends on the implicit assumption that 𝑎’s decision not to form a coalition with 𝑏 is 

irreversible.
11

 By his commitment not to merge with 𝑏, 𝑎 is able to force 𝑏 and 𝑐 to form a 

coalition and thus give himself the opportunity to free-ride.
12

 If 𝑐 is not convinced of 𝑎’s 

commitment, then he may not form a coalition with 𝑏 in the hope that it will force 𝑎 and 𝑏 to 

form a coalition instead and he will get the free-riding payoff of 9. Thus, if players cannot 

commit to refrain from forming coalitions with other players, the game develops into a war of 

attrition in which each player waits for the other two to form a coalition in the hope of free–

riding. 

 

     Such a war of attrition is clearly a repeated game without discounting as each player decides 

at each moment of time whether to cooperate or not and, by assumption, there is no cost of 

waiting.
13

 A fixed finite number of repetitions are, however, arbitrary and no different from a 

single play game. This is because no player will then have incentive to cooperate until the very 

last and the game degenerates into a single play game. It is thus natural to model the coalition 

formation process as an infinitely repeated game.  

 

3.2 The infinitely repeated game  

 

                                                 
11

 If not, coalition {𝑏, 𝑐} can sign up player 𝑎 and achieve payoffs, say (9.5, 10.25, 4.25), which are higher for 

everyone. But if 𝑎’s decision is reversible, then 𝑐 may refuse to form a coalition with 𝑏 in the first place. 
12

 Since each player is a first mover in some order of play, this actually amounts to assuming implicitly that each 

player can commit not to form a coalition with other players. 
13

 This is true in many real life externality problems. For example, the negotiations on climate change or on world 

trade are repeated games, though not without cost of waiting. 
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     For the sake of a clear exposition, we shall continue to focus on the case of three players and 

then briefly describe the generalization to more than three players. We consider games in 

partition function form. 

 

     The set of players is 𝑁 =  1,2,3 . A set 𝑃 = {𝑆1, … , 𝑆𝑚} is a partition of 𝑁 if 𝑆𝑖 ∩ 𝑆𝑗 = ∅ for 

all 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗,  and ∪𝑖=1
𝑚 𝑆𝑖 = 𝑁. For each partition 𝑃 and each coalition 𝑆𝑖 ∈ 𝑃 the partition 

function 𝑣(; )  associates a real number 𝑣 𝑆𝑖; 𝑃 . We assume that a coalition can achieve at least 

as much as the sum of what its parts can, i.e., the partition function 𝑣 ;   is superadditive. More 

formally, for each partition 𝑃 = {𝑆1, … , 𝑆𝑚} and each 𝐾 ⊂  1, … , 𝑚 , 𝑣 𝑆; 𝑃′ ≥  𝑣(𝑆𝑘 ; 𝑃)𝑘∈𝐾  

where 𝑆 =  𝑆𝑘𝑘∈𝐾  and  𝑃′ = 𝑃\{(𝑆𝑘)𝑘∈𝐾} ∪  𝑆 . In particular,  𝑣 𝑆𝑖 ; 𝑃 ≤ 𝑣 𝑁;  𝑁   𝑚
𝑖=1 for 

every partition 𝑃 =  𝑆1, … , 𝑆𝑚  of 𝑁, i.e., the grand coalition is an efficient coalition structure. 

The partition function 𝑣(; ) represents a game with positive externalities if 𝑣( 𝑖 ; { 𝑖 ,  𝑗, 𝑘 } ≥

𝑣  𝑖 ;   𝑖 ,  𝑗 ,  𝑘   ,  𝑖, 𝑗, 𝑘 = 𝑁.  

 

    If the members of a coalition {𝑖, 𝑗} in the coalition structure { 𝑖, 𝑗 ,  𝑘 } decide to dissolve the 

coalition, i.e., to not give effect to the coalition, then that is equivalent to forming the coalition 

structure   𝑖 ,  𝑗 ,  𝑘   and the payoffs of the three players are 𝑣( 𝑖 ;   𝑖 ,  𝑗 ,  𝑘  ), 𝑖, 𝑗, 𝑘 ∈ 𝑁. 

Note that only a non-singleton coalition can be dissolved. The act of dissolving a coalition 

captures the idea that a coalition can do whatever its members can do individually. For instance, 

if the members of coalition {𝑏, 𝑐} in Example 1 decide not to produce the public good, then that 

is equivalent to dissolving the coalition and forming the coalition structure   𝑎 ,  𝑏 ,  𝑐  . 

 

     The 𝛾-core of the partition function form game (𝑁, 𝑣) is nonempty if there exists an allocation 

(𝑥1, 𝑥2, 𝑥3) such that 𝑥1 + 𝑥2 + 𝑥3 = 𝑣 𝑁;  𝑁  , 𝑥𝑖 ≥ 𝑣  𝑖 ;   𝑖 ,  𝑗 ,  𝑘    for each 𝑖 ∈ 𝑁, and 

𝑥𝑖 + 𝑥𝑗 ≥ 𝑣  𝑖, 𝑗 ;   𝑖, 𝑗 ,  𝑘   (≥ 0) for each 𝑖, 𝑗, 𝑘 ∈ 𝑁. Note that this definition does not 

require 𝑥𝑖 ≥ 𝑣  𝑖 ;   𝑖 ,  𝑗, 𝑘   . 14
  

 

     Each play of our infinitely repeated game starts from the finest coalition structure 

{ 1 ,  2 ,  3 } as the status quo and has two stages. In Stage 1, each player decides (non-

                                                 
14

 It is worth noting that the 𝛾-core of the partition function form game in Example 1 is nonempty. 
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cooperatively) whether to cooperate (announce 𝐶) or to not cooperate (announce 𝑁𝐶). In Stage 2, 

all those players who announce 𝐶 in the first stage form a coalition and decide (cooperatively) 

whether to give effect to the coalition or to dissolve it. All those players who announce 𝑁𝐶 in 

Stage 1 form singleton coalitions.  

 

    Note that the finest coalition structure { 1 ,  2 ,  3 } is an outcome of Stage 2 if either two or 

more players announce 𝑁𝐶 in Stage 1 or two or more players announce 𝐶 at Stage 1, but decide 

to dissolve the coalition at Stage 2.
15

 The game is repeated if the outcome of Stage 2 is the finest 

coalition structure as everyone stands to gain from it. 

 

     Depending on the outcome of Stage 2, the payoffs  of the players are as follows: if the 

outcome is the grand coalition, then the payoff of player 𝑖 is 𝑥𝑖
∗, 𝑖 ∈ 𝑁, such that 𝑥1

∗ + 𝑥2
∗ + 𝑥3

∗ =

𝑣 𝑁,  𝑁  , if the outcome is a coalition   𝑖, 𝑗 ,  𝑘  , then the payoffs of players 𝑖, 𝑗, and 𝑘 are 𝑦𝑖𝑗
∗ , 

𝑦𝑗𝑖
∗ ,  and 𝑣  𝑘 ;   𝑘 ,  𝑖, 𝑗   , respectively, such that 𝑦𝑖𝑗

∗ + 𝑦𝑗𝑖
∗ = 𝑣  𝑖, 𝑗 ;   𝑖, 𝑗 ,  𝑘   , and if the 

outcome is the finest coalition structure   𝑖 ,  𝑗 ,  𝑘  , then the payoffs are 

𝑣  𝑖 ;   𝑖 ,  𝑗 ,  𝑘   , 𝑖, 𝑗, 𝑘 ∈ 𝑁.   

 

     The payoffs of the players are according to a γ-core allocation if (𝑥1
∗, 𝑥2

∗, 𝑥3
∗) is a 𝛾-core 

allocation and 𝑦𝑖𝑗
∗ ≤ 𝑥𝑖

∗ for all 𝑖, 𝑗 ∈ 𝑁. The latter inequalities are possible, since (𝑥1
∗, 𝑥2

∗, 𝑥3
∗)  is a 

𝛾-core allocation and therefore 𝑥𝑖
∗ + 𝑥𝑗

∗ ≥ 𝑣  𝑖, 𝑗 ;   𝑖, 𝑗 ,  𝑘   = 𝑦𝑖𝑗
∗ + 𝑦𝑗𝑖

∗ .     

 

      This completes the description of the repeated game. It is worth noting that allowing 

repetitions of the game may actually reduce players’ incentives to form coalitions. This is 

because each player may think that any miscalculation about others forming a coalition in the 

current game period can be corrected in future periods.   

  

Theorem 4 If the 𝛾-core of the partition function form game (𝑁, 𝑣) is nonempty and the payoffs 

of the players are according to a 𝛾-core allocation (𝑥1
∗, 𝑥2

∗, 𝑥3
∗), then the grand coalition 𝑁 is the 

unique equilibrium outcome of the repeated game. 

                                                 
15

 As will be seen below, it may be sometimes optimal for the members of a coalition to dissolve the coalition.   
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Proof: In order to obtain a sharper proof, we restrict to the case in which  𝑥𝑖
∗ + 𝑥𝑗

∗ >

𝑣  𝑖, 𝑗 ;   𝑖, 𝑗 ,  𝑘    and 𝑦𝑖𝑗
∗ < 𝑥𝑖

∗ for all 𝑖, 𝑗, 𝑘 ∈ 𝑁. It will be clear to the reader that the proof 

holds also if the inequalities are not strict. We show that in the repeated game 

 

(i) each player can credibly commit to dissolve a coalition if it does not include all 

players, 

(ii) the grand coalition is the unique equilibrium outcome and the payoffs of the players 

are the 𝛾-core allocation  𝑥1
∗, 𝑥2

∗, 𝑥3
∗ ,    

(iii) if the players do not commit to dissolve coalitions that do not include all players, then 

the equilibrium payoff of each player 𝑖 is lower than 𝑥𝑖
∗.  

 

    It is convenient to first prove (ii) assuming (i) and then prove (i) and (iii). Let 𝑤𝑖  be the value 

of the repeated game to player 𝑖, 𝑖 ∈ 𝑁. Given the players commitments as in (i) and their 

responses to it, we derive a reduced form of the repeated game as follows. 

 

      Remember that each play of the repeated game has two stages. If in some period, all players 

announce 𝐶 in Stage 1, then the outcome of Stage 2 is the grand coalition and the payoffs are 

 𝑥1
∗, 𝑥2

∗, 𝑥3
∗ . On the other hand, if some player announces 𝑁𝐶 in Stage 1, then as per players’ 

commitments any non-singleton coalition is dissolved and the outcome of Stage 2 is the coalition 

structure   1 ,  2 ,  3  . Thus, the game is repeated next period and the payoff from that for each 

player 𝑖 is 𝑤𝑖  one period later. The payoff matrix of the so-defined reduced form of the repeated 

game is as below. 
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                 Player 3 

                                     ---------------------------------------------------------------------- 
                                                      C                                                         NC                         

                                       ---------------------                              ----------------------        

                                                Player 2                                                       Player 2 

                                                  --------------------                                           ----------------------       

                                      C                  NC                                    C               NC                      

                   

            

                    C 

  Player 1 

                   NC 

 

 

 

 

 

 

     To find a solution of the reduced form game, let us consider first mixed strategy Nash 

equilibriums. Let 𝑝1, 𝑝2, 𝑝3 be the probabilities assigned by the three players to the 𝐶 strategy. 

Then in equilibrium each player, say 1, should be indifferent between strategies 𝑁𝐶 and 𝐶. Thus, 

𝑤1 = 𝑝2𝑝3𝑤1 +  1 − 𝑝2𝑝3 𝑤1 = 𝑝2𝑝3𝑥1
∗ + (1 − 𝑝2𝑝3)𝑤1. If 𝑥1

∗ ≥ 𝑤1, then 𝐶 is the dominant 

strategy and the resulting payoff is 𝑤1 = 𝑥1
∗,  confirming the requirement for dominance.

16
  Thus, 

𝐶 is a dominant strategy of each player and the equilibrium payoffs are 𝑤𝑖 = 𝑥𝑖
∗, 𝑖 ∈ 𝑁.  

 

     We now prove (i). Suppose in Stage 1 of the two-stage game in some period of the repeated 

game, two players, say 2 and 3, announce 𝐶, but player 1 announces 𝑁𝐶. Suppose further that in 

Stage 2, players 2 and 3 form coalition {2,3} and do not dissolve it. Such a deviation from their 

commitment would lead to payoffs of 𝑦23
∗ < 𝑥2

∗ and 𝑦32
∗ < 𝑥3

∗ for 2 and 3, respectively. However, 

if they adhere to their commitment and dissolve the coalition, the game will be repeated next 

period. Their payoffs from that will be 𝑥2
∗ and 𝑥3

∗,  which are higher than 𝑦23
∗  and 𝑦32

∗ , 

                                                 
16

 We can get strict dominance by assuming that the players value the same payoff a bit less if it occurs one period 

later. The equalities then become 𝑤1 = 𝑝2𝑝3𝑤1
′  +  1 − 𝑝2𝑝3 𝑤1

′ = 𝑝2𝑝3𝑥1
∗ +  1 − 𝑝2𝑝3 𝑤𝑖

′  where 𝑤1
′ < 𝑤1 , and  

𝐶 is clearly strictly dominant. That it is dominant follows from lim 𝑤1
′ → 𝑤1 .   

  𝑥1
∗, 𝑥2

∗, 𝑥3
∗ 

 

𝑤1, 𝑤2, 𝑤3 

 

𝑤1, 𝑤2, 𝑤3 

 

𝑤1, 𝑤2, 𝑤3 

 

𝑤1, 𝑤2, 𝑤3 

 

𝑤1, 𝑤2, 𝑤3 

 

𝑤1, 𝑤2, 𝑤3 

 

𝑤1, 𝑤2, 𝑤3 
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respectively. Thus, it is ex post optimal for players 2 and 3 to dissolve the coalition which player 

1 must take into account when deciding his strategy at Stage 1. 17 This proves (i). 

 

     We now prove (iii). Let 𝑝1, 𝑝2, 𝑝3 be the probabilities assigned by the players to the 𝐶 strategy 

when they are not committed to dissolve coalitions that do not include all players. Then, in the 

equilibrium of the corresponding reduced form of the repeated game the players should be 

indifferent between strategies 𝐶 and 𝑁𝐶. Thus, for each player, say 1,  

 

      𝑤1 = 𝑝2𝑝3𝑥1
∗ + 𝑝2 1 − 𝑝3 𝑦12

∗ + 𝑝3 1 − 𝑝2 𝑦13
∗ +  1 − 𝑝2 (1 − 𝑝3)𝑤1 

      𝑤1 = 𝑝2𝑝3𝑣  1 ;   1 ,  2,3   + [𝑝2 1 − 𝑝3 + 𝑝3 1 − 𝑝2 +  1 − 𝑝2  1 − 𝑝3 ]𝑤1. 

 

 These equalities imply 

       

𝑤1 =
[𝑝2 1 − 𝑝3 𝑦12

∗ + 𝑝3 1 − 𝑝2 𝑦13
∗ ] − 𝑝2𝑝3[𝑣  1 ;   1 ,  2,3   − 𝑥1

∗]

𝑝2 1 − 𝑝3 + 𝑝3 1 − 𝑝2 
 

                                      

< 𝑥1
∗ − 

𝑝2𝑝3 𝑣  1 ;   1 ,  2,3   − 𝑥1
∗ 

𝑝2 1 − 𝑝3 + 𝑝3 1 − 𝑝2 
.                                              

 

If 𝑣  1 ;   1 ,  2,3   ≥ 𝑥1
∗, then clearly 𝑤1 < 𝑥1

∗. On the other hand, if 𝑣  1 ;   1 ,  2,3   <

𝑥1
∗, then  

(a) if 𝑝2 1 − 𝑝3 𝑦12
∗ + 𝑝3 1 − 𝑝2 𝑦13

∗ ≥  𝑝2 1 − 𝑝3 + 𝑝3 1 − 𝑝2  𝑤1, 

𝐶 is a dominant strategy for player 1 and 𝑤1 = [𝑝2𝑝3𝑥1
∗ + 𝑝2 1 − 𝑝3 𝑦12

∗ +

𝑝3 1 − 𝑝2 𝑦13
∗ ] +  1 − 𝑝2  1 − 𝑝3 𝑤1 <  1 −  1 − 𝑝2  1 − 𝑝3  𝑥1

∗ +  1 − 𝑝2  1 −

𝑝3𝑤1 which implies 𝑤1<𝑥1∗,  

                                                 
17

 Note that the argument here is not that players 2 and 3 can force player 1 to join them by threatening to dissolve 

the coalition (and thereby deny him the opportunity to free ride), but rather that given their commitment as in (i) and 

the players’ responses to it, such an action is ex post optimal for players 2 and 3, i.e., a subgame perfect equilibrium 

strategy of the reduced game. Hence this is a credible commitment that player 1 should take into account when 

choosing his strategy in Stage 1 of the two-stage game.  
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(b) if 𝑝2 1 − 𝑝3 𝑦12
∗ + 𝑝3 1 − 𝑝2 𝑦13

∗ <  𝑝2 1 − 𝑝3 + 𝑝3 1 − 𝑝2  𝑤1 and 𝐶 is not a 

dominant strategy,
18

 𝑤1 = 𝑝2𝑝3𝑣  1 ;   1 ,  2,3   +  𝑝2 1 − 𝑝3 + 𝑝3 1 − 𝑝2 +

 1 − 𝑝2  1 − 𝑝3  𝑤1 < 𝑝2𝑝3𝑥1
∗ + (1 − 𝑝2𝑝3)𝑤1 which implies 𝑤1 < 𝑥1

∗.  

 

This proves (iii), since as shown, 𝑤𝑖 < 𝑥𝑖
∗ for each 𝑖 ∈ 𝑁 if the players do not commit to dissolve 

coalitions that do not include all players. Thus, committing to dissolve any coalition that does not 

include all players is not only a credible, but also an optimal strategy and the players will 

themselves choose to commit to not form coalitions that do not include all players. Hence, the 

grand coalition is the unique equilibrium of the repeated game.     ∎                                                                          

       

     An intuitive explanation for this result is as follows: since the partition function is 

superadditive and the 𝛾-core is nonempty,  𝑥𝑖
∗ + 𝑥𝑗

∗ ≥ 𝑣  𝑖, 𝑗 ;   𝑖, 𝑗 ,  𝑘   ≥  

𝑣  𝑖 ;   𝑖 ,  𝑗 ,  𝑘   + 𝑣  𝑗 ;   𝑖 ,  𝑗 ,  𝑘    for all 𝑖, 𝑗, 𝑘 ∈ 𝑁. This means that though the players 

𝑖 and 𝑗 can benefit by forming the coalition  𝑖, 𝑗 , they can benefit even more if instead the grand 

coalition is formed. Therefore, it is ex post optimal for players 𝑖 and 𝑗 to not form a coalition 

without the third player as the game would be then repeated until the grand coalition is formed. 

 

     A generalization of this result to partition functions with  𝑛 > 3 follows from the fact that if 

the 𝛾-core is nonempty, then superadditivity implies that every coalition structure that does not 

consist of all singletons has at least one non-singleton coalition whose payoff is lower. More 

formally, let 𝑆1, … , 𝑆𝐾  be the non-singleton coalitions in the coalition structure 𝑃 =  𝑆1, … , 𝑆𝑚  . 

Let 𝑆 =  𝑆𝑘 
𝐾
𝑘=1  and 𝑃′  = 𝑃\{𝑆1, … , 𝑆𝐾} ∪ {𝑆}. Then,  𝑣(𝑆𝑘 ; 𝑃) ≤ 𝑣(𝑆; 𝑃′) ≤𝐾

𝑘=1

𝑖∈𝑆𝑥𝑖∗ (=𝑘=1𝐾𝑖∈𝑆𝑘𝑥𝑖∗), since 𝑣(;) is superadditive and the 𝛾-core is nonempty. This implies 

𝑣(𝑆𝑘 ; 𝑃) ≤  𝑥𝑖
∗

𝑖∈𝑆𝑘
 for at least some non-singleton coalition 𝑆𝑘  of partition 𝑃. If the members of 

such a non-singleton coalition dissolve the coalition, then another coalition among the remaining 

non-singleton coalitions will have a lower payoff, and so on … . It is therefore ex post optimal 

for the members of all non-singleton coalitions to dissolve their coalitions so that the game is 

repeated until the grand coalition is formed. 

                                                 
18

 If 𝐶 is still a dominant strategy, then as in (a) 𝑤1 < 𝑥1
∗. 
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     This argument also suggests that for games with non-empty 𝛾-cores the assumption of 

superadditivity can be replaced by the weaker assumption that the grand coalition is an efficient 

coalition structure and every coalition structure that does not consist of all singletons has at least 

one non-singleton coalition whose payoff is lower.   

 

4. The 𝜸-core of an oligopolistic market 

 

 In this Section we demonstrate the applicability of Theorem 4 to the much studied model of an 

oligopolistic market in that it is shown that the 𝛾-core of an oligopolistic market in nonempty. 

Such a result is of interest for a number of reasons. First, it implies that the oligopolists will act 

together as a monopolist unless prevented by law. Second, Zhao (1999) and Radner (2001) show 

that the 𝛼- and 𝛽- cores of an oligopolistic market are nonempty.
19

 Since the 𝛾-core, as shown, is 

in general smaller than the 𝛼- and 𝛽- cores, proving its existence is an alternative proof for the 

existence of the 𝛼- and 𝛽- cores. Third, as is well-known, the oligopoly game does not have a 

strong Nash equilibrium. Thus, the existence of 𝛾-core illustrates the point made earlier that it is 

a weaker concept than the strong Nash equilibrium, at least for a certain class of games.   

 

4.1 The model 

 

     The set of oligopolistic firms is 𝑁 =  1, … , 𝑛 .  Let 𝑝(𝑞) denote the inverse demand function 

faced by these firms, where 𝑞 is the total demand. We assume that the inverse demand function 

is strictly decreasing, i.e., 𝑝′ 𝑞 < 0. Let 𝑐𝑖(𝑞𝑖) denote the cost function of firm 𝑖. We assume 

that the cost function of each firm is increasing and strictly convex, i.e., 𝑐𝑖
′ 𝑞𝑖 > 0,   and 

𝑐𝑖
′′  𝑞𝑖 > 0, 𝑞𝑖 > 0. Assuming strict convexity of the cost functions enables us to avoid the 

problem of multiple solutions, but it should be clear to the reader that the results below also hold 

if the cost function is linear. The profit function of each firm 𝑖 is  

                                 

                                   𝜋𝑖 𝑞1, … , 𝑞𝑛 = 𝑝 𝑞 𝑞𝑖 − 𝑐𝑖 𝑞𝑖 , 

 

                                                 
19

 The 𝛼- and 𝛽- cores of an oligopolistic market actually coincide and, as noted in Section 2.3, are usually very 

large. 
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where 𝑞 =  𝑞𝑗𝑗 ∈𝑁 .  In order to avoid corner solutions, we assume that there exists a 𝑞0 such that 

𝑐𝑖
′ 𝑞0 > 𝑝 𝑞0  and 𝑐𝑖

′ 0 = 0 < 𝑝 𝑛𝑞0 , 𝑖 ∈ 𝑁. This assumption implies that a profit 

maximizing firm will never produce an output larger than 𝑞0 even if it has the capacity to do so 

and will always produce a positive amount.
20

 Many quadratic cost functions and linear demand 

functions satisfy these assumptions. We assume further that the revenue function 𝑝 𝑞 𝑞𝑖 of each 

firm 𝑖 is concave, in 𝑞1, … , 𝑞𝑛 . Thus, the marginal revenue 𝑝 𝑞 + 𝑝′(𝑞)𝑞𝑖  of each firm 𝑖 is non-

increasing with total demand 𝑞, i.e., 𝑝′ 𝑞 + 𝑝′′  𝑞 𝑞𝑖 ≤ 0 for each fixed 𝑞𝑖 ≥ 0. Note that this 

condition is satisfied, if the inverse demand function 𝑝 𝑞  is decreasing and concave. 

 

4.2 The oligopoly game 

 

      Let 𝑇𝑖 =  0, 𝑞0 , 𝑇 = 𝑇1 × ⋯ × 𝑇𝑛 , and 𝜋 =  𝜋1 .  , … , 𝜋𝑛 .   . We shall refer to the strategic 

game (𝑁, 𝑇, 𝜋) as the oligopoly game. Remember that the players are not assumed to be 

identical. 

 

Lemma 5 There exists a unique Nash equilibrium(𝑞 1, … , 𝑞 𝑛) of the oligopoly game  𝑁, 𝑇, 𝜋 . 

 

Proof: Clearly, each 𝜋𝑖 .   is concave in 𝑞1, … , 𝑞𝑛 . Proposition 3 therefore implies that there 

exists a Nash equilibrium, say (𝑞 1, … , 𝑞 𝑛). Suppose contrary to the assertion that the game has 

another Nash equilibrium, say (𝑞 1, … , 𝑞 𝑛), and (𝑞 1, … , 𝑞 𝑛) ≠ (𝑞 1, … , 𝑞 𝑛). Without loss of 

generality, let 𝑞 =  𝑞 𝑖𝑖∈𝑁 ≥  𝑞 𝑖𝑖∈𝑁 = 𝑞 . Since (𝑞 1, … , 𝑞 𝑛) ≠ (𝑞 1, … , 𝑞 𝑛), 𝑞 𝑖 > 𝑞 𝑖  for at least 

one 𝑖. Furthermore, 𝑝′ 𝑞  𝑞 𝑖 + 𝑝 𝑞  > 𝑝′ 𝑞  𝑞 𝑖 + 𝑝 𝑞  ≥ 𝑝′ 𝑞  𝑞 𝑖 + 𝑝 𝑞  , since 𝑞 ≥ 𝑞  and by 

assumption the marginal revenue of each firm is non-increasing with total demand. From the first 

order conditions for Nash equilibrium 𝑐𝑖
′ 𝑞 𝑖 = 𝑝′ 𝑞  𝑞 𝑖 + 𝑝 𝑞  > 𝑝′ 𝑞  𝑞 𝑖 + 𝑝 𝑞  = 𝑐𝑖

′(𝑞 𝑖) 

implying 𝑞 𝑖 < 𝑞 𝑖 , which is a contradiction.   ∎ 

 

     Let 𝑆 ⊂ 𝑁 be some coalition and let (𝑞1
𝑆 , … , 𝑞𝑛

𝑆) denote the Nash equilibrium relative to 𝑆.  

 

                                                 
20

 The output level 𝑞0 is not to be confused with the production capacity constraints that are often assumed in 

models of oligopolistic markets. 
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Proposition 6 For each coalition 𝑆 ⊂ 𝑁, there exists a unique Nash equilibrium relative to 𝑆, say 

(𝑞1
𝑆 , … , 𝑞𝑛

𝑆), such that (i) 𝑞𝑆 =  𝑞𝑖
𝑆

𝑖∈𝑁 ≤  𝑞 𝑖𝑖∈𝑁 = 𝑞 , and (ii) 𝑞𝑗
𝑆 ≥ 𝑞 𝑗  for each  𝑗 ∈ 𝑁\𝑆, i.e., if 

a cartel forms the total industry output is lower, but the output of each independent firm is 

higher.   

 

Proof: By Proposition 2, the game  𝑁, 𝑇, 𝜋  has a Nash equilibrium relative to each coalition 

𝑆 ⊂ 𝑁.  By similar arguments as in Lemma 5, it is also unique. We prove the rest. (i) Suppose 

contrary to the assertion that 𝑞𝑆 > 𝑞 . Then, either 𝑞𝑗
𝑆 > 𝑞 𝑗  for some 𝑗 ∈ 𝑁\𝑆 or  𝑞𝑖

𝑆
𝑖∈𝑆 >

 𝑞 𝑖𝑖∈𝑆 . In the former case, 𝑐𝑗
′ 𝑞 𝑗  = 𝑝 𝑞  + 𝑞 𝑗𝑝

′ 𝑞  > 𝑝 𝑞  + 𝑞𝑗
𝑆𝑝′ 𝑞  ≥ 𝑝 𝑞𝑆 + 𝑞𝑗

𝑆𝑝′ 𝑞𝑆 =

𝑐𝑗
′ 𝑞𝑗

𝑆 ⟹ 𝑞 𝑗 > 𝑞 𝑗
𝑆 , which is a contradiction. In the latter case, for each 𝑖 ∈ 𝑆, 𝑐𝑖

′ 𝑞𝑖
𝑆 =  𝑞𝑗

𝑆
𝑗∈𝑆  

𝑝′ 𝑞𝑆 + 𝑝 𝑞𝑆 <  𝑞 𝑖𝑖∈𝑆 𝑝′ 𝑞𝑆 + 𝑝 𝑞𝑆 ≤   𝑞 𝑖𝑖∈𝑆 𝑝′ 𝑞  + 𝑝 𝑞  ≤ 𝑞 𝑖𝑝
′ 𝑞  + 𝑝 𝑞   = 

𝑐𝑖
′ 𝑞 𝑖 ⟹ 𝑞 𝑖 > 𝑞𝑖

𝑆, which contradicts our supposition that  𝑞𝑖
𝑆

𝑖∈𝑆 >  𝑞 𝑖𝑖∈𝑆 . Therefore, 𝑞𝑆 ≤ 𝑞.   

 

     (ii) Suppose contrary to the assertion that 𝑞𝑗
𝑆 < 𝑞 𝑗  for some 𝑗 ∈ 𝑁\𝑆. Then, since 𝑞𝑆 ≤ 𝑞  as 

shown, 𝑐𝑗
′ 𝑞 𝑗  = 𝑝 𝑞  + 𝑞 𝑗𝑝

′ 𝑞  < 𝑝 𝑞  + 𝑞𝑗
𝑆𝑝′ 𝑞  ≤ 𝑝 𝑞𝑆 + 𝑞𝑗

𝑆𝑝′ 𝑞𝑆 = 𝑐𝑗
′ 𝑞𝑗

𝑆 ⟹ 𝑞 𝑗 <

𝑞 𝑗
𝑆 , which contradicts our supposition that 𝑞𝑗

𝑆 < 𝑞 𝑗  for each 𝑗 ∈ 𝑁\𝑆. Therefore, 𝑞𝑗
𝑆 ≥ 𝑞 𝑗  for all 

𝑗 ∈ 𝑁\𝑆.   ∎                                                   

 

      A standard method to prove the existence of core of a TU game (see e.g. Helm (2001)) 

comes from the well-known Bondareva-Shapley theorem, which specifies conditions that are 

both necessary and sufficient for a non-empty core. It uses the following concept of a balanced 

collection of coalitions. 

 

     Given the set of players 𝑁, let ℂ denote the set of all coalitions that can be formed and for 

each 𝑖 ∈ 𝑁, let ℂ𝑖 = {𝑆 ∈ ℂ: 𝑖 ∈ 𝑆} denote the subset of all coalitions of which 𝑖 is a member. 

Then, ℂ is a balanced collection of coalitions, if for each coalition 𝑆 ∈ ℂ, there exists a 𝛿𝑆 ∈ [0,1] 

such that  𝛿𝑆 = 1𝑆∈ℂ𝑖
 for every 𝑖 ∈ 𝑁.  
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Proposition (Bondareva (1963); Shapley (1967)) A characteristic function form game (𝑁, 𝑤) 

has a nonempty core if and only if  𝛿𝑆𝑤(𝑆)𝑆∈ℂ ≤ 𝑤(𝑁) for every balanced collection of 

coalitions ℂ. 

 

     Proposition 6 implies that  𝑞𝑖
𝑆

𝑖∈𝑁\𝑆 ≥  𝑞 𝑖𝑖∈𝑁\𝑆  and  𝑞𝑖
𝑆

𝑖∈𝑆 ≤  𝑞 𝑖𝑖∈𝑆  for each 𝑆 ⊂ 𝑁. This 

leads to an important inequality for any balanced collection of coalitions. Before establishing that 

inequality, however, we note a useful accounting identity: for each 𝑖 ∈ 𝑁,  𝛿𝑆  𝑞 𝑗𝑗∉𝑆𝑆∈ℂ𝑖
=

 𝛿𝑆( 𝑞 𝑗𝑗∈𝑁𝑆∈ℂ𝑖
−  𝑞 𝑗𝑗 ∈𝑆 ) =  𝑞 𝑗𝑗∈𝑁 −  𝛿𝑆𝑆∈ℂ𝑖

 𝑞 𝑗𝑗 ∈𝑆  =  𝛿𝑆  𝑞 𝑖𝑖∈𝑆𝑆∈ℂ −  𝛿𝑆𝑆∈ℂ𝑖
 𝑞 𝑗𝑗∈𝑆  

=  𝛿𝑆  𝑞 𝑗𝑗 ∈𝑆𝑆∈ℂ\ℂ𝑖
.                          

  

Lemma 7 For each 𝑖 ∈ 𝑁,  𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑁𝑆∈ℂ𝑖
≥   𝛿𝑆𝑞𝑖

𝑆
𝑆∈ℂ𝑖𝑖∈𝑁 , i.e., the average total output of 

all firms is not smaller than the total average output of all firms, where the average is taken over 

the coalitions containing player 𝑖.  

 

Proof:  For any arbitrary 𝑖, 

 

                    𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑁𝑆∈ℂ𝑖
=  𝛿𝑆  𝑞𝑗

𝑆
𝑗∈𝑆 +  𝛿𝑆  𝑞𝑗

𝑆
𝑗∉𝑆𝑆∈ℂ𝑖𝑆∈ℂ𝑖

 

                                              ≥  𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑆 +  𝛿𝑆  𝑞 𝑗𝑗∉𝑆𝑆∈ℂ𝑖𝑆∈ℂ𝑖
    (by Proposition 6) 

                                              =  𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑆 +  𝛿𝑆  𝑞 𝑗𝑗 ∈𝑆𝑆∈ℂ\ℂ𝑖𝑆∈ℂ𝑖
  (by the accounting identity) 

                                               ≥  𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑆 +  𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑆𝑆∈ℂ\ℂ𝑖𝑆∈ℂ𝑖
  (by Proposition6) 

                                               =  𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑆𝑆∈𝐶  =   𝛿𝑆𝑞𝑖
𝑆

𝑆∈ℂ𝑖𝑖∈𝑁 .    ∎ 

                                                                                                 

     Let 𝑤𝛾 .   denote the 𝛾-characteristic function of the oligopoly game  𝑁, 𝑇, 𝜋 , i.e., 𝑤𝛾 𝑆 =

 𝜋𝑖(𝑖∈𝑆 𝑞1
𝑆 , … , 𝑞𝑛

𝑆), 𝑆 ⊂ 𝑁, where (𝑞1
𝑆 , … , 𝑞𝑛

𝑆) is the Nash equilibrium relative to 𝑆.  

 

Theorem 8 The characteristic function form game  𝑁, 𝑤𝛾  has a nonempty core. 

 

Proof: In view of the Bondareva-Shapley theorem, we need to show that    𝛿𝑆𝑤
𝛾(𝑆)𝑆∈ℂ ≤

𝑤𝛾(𝑁) for any balanced collection of coalitions ℂ. By definition 
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         𝛿𝑆𝑤
𝛾(𝑆)𝑆∈ℂ =  𝛿𝑆   𝜋𝑖𝑖∈𝑆 (𝑞1

𝑆 , … , 𝑞𝑛
𝑆)𝑆∈ℂ  =   𝛿𝑆𝑆∈ℂ𝑖𝑖∈𝑁  𝜋𝑖(𝑞1

𝑆 , … , 𝑞𝑛
𝑆) 

                            ≤  𝜋𝑖( 𝛿𝑆 𝑞1
𝑆 , … , 𝑞𝑛

𝑆 )𝑆∈ℂ𝑖
 𝑖∈𝑁 (since  𝛿𝑆 = 1𝑆∈ℂ𝑖

 and each 𝜋𝑖 .   is concave) 

                             =  [𝑝( 𝛿𝑆  𝑞𝑗
𝑆

𝑗∈𝑁 )  𝛿𝑆𝑞𝑖
𝑆

𝑆∈ℂ𝑖
− 𝑐𝑖( 𝛿𝑆𝑞𝑖

𝑆
𝑆∈ℂ𝑖

)]𝑆∈ℂ𝑖𝑖∈𝑁  

                              ≤ 𝑝   𝛿𝑆𝑞𝑖
𝑆

𝑆∈ℂ𝑖𝑖∈𝑁    𝛿𝑆𝑞𝑖
𝑆

𝑆∈ℂ𝑖𝑖∈𝑁 −  𝑐𝑖( 𝛿𝑆𝑞𝑖
𝑆

𝑆∈ℂ𝑖
)𝑖∈𝑁    (by Lemma 7) 

                               ≤ 𝑤𝛾 𝑁 ,  

since 𝑤𝛾 𝑁 ≥  [𝑝(𝑞)𝑞𝑖𝑖∈𝑁 − 𝑐𝑖(𝑞𝑖)] for all (𝑞1, … , 𝑞𝑛) and 𝑞 =  𝑞𝑖𝑖∈𝑁 .    ∎                                                                                    

                                                                                                      

     The 𝛾-characteristic function of an oligopolistic market is in general not superadditive. But 

the grand coalition is an efficient coalition structure and in many cases including that of identical 

firms every partition of 𝑁 that does not consist of all singletons has at least one non-singleton 

coalition whose payoff is lower. 

                                                                                                                                                                                       

5. Conclusion 

 

     This paper has introduced the 𝛾-core concept in the primitive framework of a strategic game 

and presented an analysis involving both cooperative and non-cooperative ideas to argue that it is 

a compelling core concept for games with positive externalities. It was shown that in a general 

partition function form game, it is not only credible, but also optimal for the players to commit to 

not form coalitions that do not include all players. Therefore, only that payoff of a coalition is 

relevant that is obtained when the rest of the coalition structure consists of all singletons. 

 

    One natural question is whether that also applies to axiomatic analysis of games with 

externalities, i.e., whether a useful normative analysis such as the Shapley theory can be derived 

by similarly ignoring all but those payoffs of coalitions. In an important paper, de Clippel and 

Serrano (2008) extend the theory of Shapley value to games with externalities using a set of 

axioms similar to those behind the Shapley value in games without externalities. However, they 

assume that the grand coalition forms and ignore whether the players have incentives to actually 

form the grand coalition. This is a natural assumption in games without externalities, but not in 

games with externalities. As shown above, the grand coalition forms in games with positive 

externalities if the 𝛾-core is nonempty. However, assuming that the 𝛾-core is nonempty raises a 
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consistency issue. This is because the 𝛾-characteristic function, by definition, ignores all but 

those payoffs of coalitions that obtain when the rest of the coalition structure consists of all 

singletons. Consistency requires that any axiomatic analysis that begins with the assumption that 

the grand coalition forms should also ignore all but those payoffs? De Clippel and Serrano (2008, 

Proposition 3) confirm that doing so is indeed consistent with the axioms of anonymity, 

efficiency, and marginality when suitably extended to partition function form games.  In other 

words, only the same payoffs of coalitions, as in the 𝛾-characteristic function, should be taken 

into account in the determination of the Shapley value of a partition function form game. Thus, 

our strategic approach to coalition formation reinforces the normative approach in de Clippel and 

Serrano (2008).               

 

           The application of our analysis to an oligopolistic market with heterogeneous firms has 

shown that the firms have strong incentives to merge into a monopoly unless prevented by law. 

Other applications to consider in our future work include the standard model of a public good 

(see e.g. Chander (1993)). It is worth pointing out here that Theorem 4 is quite general in that it 

does not depend on the fact that the externalities are assumed to be positive. The same analysis 

can be easily extended to games with negative or mixed externalities. 

 

      Finally, the approach in this paper is in a sense similar to Aumann and Dreze (1974) and 

Shenoy (1979) in that we also assume that a coalition only gets its own worth. Thus, the total 

payoff of the coalitions in any coalition structure is less than the grand coalition payoff. On the 

other hand, Hart and Kurz (1983) assume that the grand coalition payoff is available for 

distribution among the coalitions whatever the coalition structure. In other words, the total 

payoff of the coalitions is same irrespective of what coalition structure forms.
21

   

 

 

 

 

 

 

                                                 
21

 An implication of this is that the players are indifferent between forming the grand coalition and remaining all 

separate.   
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