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Whoever suffers alone suffers the most,
and loses his carefree nature and happy memories.

But when grief is shared with friends and companions,
the mind can rise above suffering.

Shakespeare, King Lear, Act 3 Scene 6
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Abstract

Switched systems are essential in modern engineering due to their ability
to model complex systems with transitions between different modes of op-
eration. Their stability poses significant challenges because of the interplay
between discrete switching and dynamics, requiring advanced mathemat-
ical tools for analysis. While Lyapunov theory is widely used to prove
stability, classical methods often struggle with the added complexity of
switched systems. This has led to research on extending Lyapunov theory
to better address these challenges.

The introduction of path-complete Lyapunov functions brought a new
perspective by incorporating combinatorial structures to encode the switch-
ing signals of the switched system. This thesis extends the study of path-
complete Lyapunov functions by addressing the template-dependent or-
dering of graphs, i.e., comparing stability certificates while considering
specific classes of Lyapunov functions. We introduce template-dependent
lifts. These are combinatorial operations on graphs, that characterize the
ordering of graphs concerning templates that share a common closure prop-
erty, such as addition or minimum. This novel approach enhances the un-
derstanding of conservatism in stability conditions and guides the selec-
tion of graph-template pairs for stability analysis.

Additionally, we explore neural Lyapunov functions as a modern ap-
proach to approximating the joint spectral radius (JSR) of linear switched
systems. We present a framework that fine-tunes neural networks to ap-
proximate the JSR with theoretical and empirical guarantees of effective-
ness. We leverage machine learning techniques and the CEGIS approach
to provide formal correctness in neural Lyapunov functions, demonstrat-
ing promising results against classical methods.
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Introduction

IN recent years, due to the outbreak of computerized devices of all kinds,
the complexity of dynamical systems has dramatically increased, which
has pushed researchers to improve and refine the modeling of numer-

ous phenomena. One of the natural consequences of this evolution is that
one can no longer apply classical methods to analyse these new classes of
systems. This calls for the development of new appropriate tools and/or
the extension of well-established methods for classical systems.

More specifically, hybrid and switched dynamical systems appeared and
became essential in the engineering landscape. Hybrid systems involve the
interaction of flows and discrete jumps, described by both continuous and
discrete behaviours. In particular, switched systems are hybrid systems for
which the discrete behaviour corresponds to a switch, i.e. a modification
of the (discrete or continuous) dynamics. The switching signal determines
properly these variations by defining at each time step the mode, i.e. the
active dynamics, of the system. These systems have attracted massive re-
search efforts in Systems and Control, because they provide a relatively
simple framework for representing many complex engineering applica-
tions [SWM+07, DHvdWH11]. As a few examples, they have been used
in bipedal robotics [HGB04], image processing [Jun09, Chapter 5], multi-
hop control networks [ADJ+11], viral mutation models [HVCMB11] and
communication networks [JHK16].

Stability of dynamical systems has probably been one of the major is-
sues in system theory for ages. In order to tackle this problem, one of the
most used solutions involves the Lyapunov theory. In practice, this ap-
proach consists in looking for a continuous positive-definite function that
decreases along the system trajectories. This constraint results in a set of
inequalities, said Lyapunov inequalities, that the function has to satisfy. The
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⋆ | Introduction

Lyapunov approach is widely used in practice among others because for
many classes of systems and functions, it boils down to solving a convex
optimization problem. Their popularity also stems from the fact that the
existence of such a function is widely known as a necessary and sufficient
guarantee of the asymptotic stability of a dynamical system.

Recent advances have shown that the Lyapunov approach can be gen-
eralized to better capture the hybrid behaviour of switched systems. In
order to adapt Lyapunov theory to switched systems, the most intuitive
and simplest idea was first to use a single Lyapunov function, so-called a
common Lyapunov function, that decreases along every dynamics of the sys-
tem. It has been demonstrated that a switched system is stable if and only
if there exists a common Lyapunov function, see [KT04]. In case of lin-
ear sub-dynamics, this result can be strengthened: stability is equivalent
to the existence of a convex Lyapunov function homogeneous of degree 1
(i.e. a Lyapunov norm), see [BM99, Jun09]. Despite these appealing con-
verse results, the nature of these “theoretical” Lyapunov functions/norms
and, in particular, the complexity of approximating them are often pro-
hibitive [BT97], even in the linear case. For that reason, several alternative
approaches have been proposed, most of them [Bra98, Lib03, GHT06] re-
lying on the concept of multiple Lyapunov functions. Instead of looking for
a single Lyapunov function, this method consists in searching for a set of
Lyapunov pieces whose joint decreasing behaviour implies stability.

It became even clearer in 2014 that multiple Lyapunov functions could
be the key for the stability analysis of switched systems when the path-
complete Lyapunov functions were introduced. This theory generalizes the
one of multiple Lyapunov functions since path-complete Lyapunov func-
tions can be seen as multiple Lyapunov functions whose decrease prop-
erties are regulated by an automaton that abstracts the discrete behaviour
(the switches) of the system. More precisely, a path-complete Lyapunov
function is made of two components, namely a combinatorial and an al-
gebraic component. The combinatorial component is an automaton (i.e. a
graph) G = (S, E) that regulates the switching signals of the system, while
the second component is a set of Lyapunov pieces, one per node of the
graph, whose decreasing properties are regulated by the graph edges. The
graph has to be expressive enough to capture the discrete behaviour of
the system. Two scenarios have been introduced in the literature: either
any sequence of switching modes can be generated by the graph, in which
case the graph is called path-complete, or the language of the graph is con-
strained, allowing to study the stability of the corresponding constrained
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switched systems. In both cases, the existence of a path-complete Lyapunov
function is a sufficient condition for stability.

The introduction of the path-complete Lyapunov function theory brings
about important open questions. Most of them derive from the fact that
the stability of a switched dynamical system can be proved with different
graphs and with functions belonging to different templates, i.e. sets of func-
tions in which the Lyapunov functions are sought. This flexibility is illus-
trated in Figure 1. Indeed, this formalism allows to activate two levers to
add complexity and therefore reduce the conservatism of a class of stabil-
ity certificates: either by improving the graph or considering more complex
templates. However, this usually goes with an increase of the computation
time. On the contrary, enlarging the graph sometimes allows to use simpler
templates. The aim is then to leverage the flexibility of this framework to
identify which graphs and templates to use. In recent years, an increasing
attention has been devoted to the comparison of path-complete graphs.
In this context, a graph G2 is said better than another graph G1 when G2
is less conservative than G1, regardless of the template. Despite a decade
of research on the question, the problem of comparing two path-complete
Lyapunov functions has remained open. This question has eventually been
partially answered in [PJ19] where the authors show that the general graph
ordering relation can be characterized by intrinsic combinatorial properties
of both graphs, such as the simulation.

In this thesis, we tackle the same question for finer ordering relations,
i.e. when we restrict the solution to belong to a specific template (e.g.,
quadratic functions) or classes of templates (e.g., sum-closed templates).
In particular, we address the characterization of template-dependent order-
ing of graphs for the family of templates which all share a common closure
property. As we show in the thesis, it turns out that the template-dependent
ordering of graphs with respect to such templates can be completely char-
acterized by means of combinatorial operations on the graphs. These oper-
ations, called template-dependent lifts, leverage the inequalities encoded by a
graph with respect to an operation, such as the addition, the minimum and
the maximum. These lifts, with the simulation, turn out to be the key tools
to characterize the template-dependent ordering of graphs. This complete
characterization provides a better and completely novel understanding on
the conservatism level of different multiple stability certificates, by taking
into account the properties of the template we are using. This is an im-
portant step forward in guiding our choice of path-complete Lyapunov
function structure.

| 3



⋆ | Introduction

TEMPLATES
i.e. functional space to which the
candidate Lyapunov functions belong

PATH-COMPLETE GRAPHS

i.e. combinatorial structure which
encodes the Lyapunov inequalities

to get a stability certificate

V1 G1

V2 G2

i.e. quadratic norms
Q := {x⊤Qx | Q ≻ 0},
�

i.e. SOS polynomials
SOS2d := {(x[d])⊤Qx[d] | Q ≻ 0},�

P := {v⊤x | v >c 0},
i.e. primal copositive norms

�

D = P∗,
i.e. dual copositive norms

�

N (θ) := {W(h) ◦ σ ◦ · · · ◦W(1)},
i.e. ReLU neural networks

�
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Fig. 1 Illustration of the path-complete Lyapunov formalism, parametrized by
two components: the template and the path-complete graph. We measure and
compare the conservatism of each pair template-graph by computing an index of
performance, defined as the approximation of the decay rate of switched systems.
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In particular, we consider linear switched systems and the approximation
of the joint spectral radius as index of performance of a pair graph-template.
This quantity, introduced in [RS60], is the maximum rate of growth of a lin-
ear switched system, and has been proved to be really hard to compute in
practice, see [Koz90, BT97, BC08]. Despite these numerical obstacles, sev-
eral approximation techniques have been developed and they often prove
effective in practice. In our setting, a better graph is less conservative and
therefore provides a finer JSR approximation. This will be used throughout
this thesis to illustrate our theoretical results on the template-dependent
comparison of path-complete graphs.

In addition, we take advantage of recent advances in theoretical and
computational Machine Learning and consider the template of neural Lya-
punov functions. Indeed, in recent years, neural networks have received an
increasing amount of attention [Pro94, Ser05, CRG19, AAE+21, DQGF21,
FLYL22, ZXQF23] to compute Lyapunov functions. However, several ques-
tions remain open such as the soundness of the training procedure, or the
capabilities to provide good Lyapunov functions as a function of the net-
work structure (e.g., width, depth, activation function). In this thesis, we
fine-tune the loss function to provide an approximation of the JSR of the
corresponding set of matrices. Moreover, we are able to link the network’s
approximation capabilities to its structure. In this setting, we provide both
theoretical and empirical evidence for the effectiveness of the neural ap-
proximation of the JSR. Among others, we consider different approaches
to train neural Lyapunov functions for switched systems that come with
formal guarantees of correctness. In particular, we leverage the CEGIS ap-
proach [AAE+21, EPA24] that has already proved useful in various fields
of system verification and control.

We review the outline of the thesis below, and briefly summarize each
section.

⋆ Outline

Part I: Background

We review classical notions which will prove useful in the rest of this
thesis.

| 5
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Chapter 1: Preliminaries

In this section, we introduce and provide a brief summary on several
topics which will be used throughout this thesis. Namely, we introduce
the reader to switched systems which will be the heart of our study, and we
provide different key notions to tackle their stability analysis, such as Lya-
punov theory and convex theory.

Chapter 2: Joint spectral radius

To illustrate and experimentally validate our theoretical results through-
out this thesis, we use the well-known, but still difficult, example of linear
switched systems. In particular, the stability of these systems is characterized
by the joint spectral radius whose computation is NP-hard. This chapter
introduces this notion and summarizes classical approximation methods
which we will later compare with the methods that we introduce in this
thesis.

Part II: Neural Lyapunov functions
Motivated by the approximation capabilities and the numerical effi-

ciency of neural networks, we use them to synthesize common Lyapunov
functions. In particular, we train them to provide the best data-driven JSR
approximation.

Chapter 3: Approximation of the JSR using polytopic norms

As an introduction, we study the template of polytopic norms. We re-
view the classical properties of these objects, such as their complexity in-
dex, and motivate their use to approximate the joint spectral radius. We
summarize the classical methods for calculating polytopic Lyapunov func-
tions and show that this amounts to solving a bilinear program. In addi-
tion, we derive theoretical guarantees on the polytopic approximation of
the JSR, as a function of the polytope complexity.

Chapter 4: Neural networks and their representation power

At first, we investigate the representation power of neural networks, that
is the class of functions that they can represent. In particular, we relate
their representation capabilities to their structural components, namely
their width, depth, and the choice of the activation function. We focus
especially on polynomial and Rectified Linear Units activation functions.

6 |
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Chapter 5: Approximation of the JSR using ReLU neural networks

In this chapter, we use neural Lyapunov functions to learn a common
Lyapunov function which provides the best JSR approximation. We merge
the approximation guarantees on polytopic approximations with the repre-
sentation power of ReLU neural networks to yield bounds on the structure
of such a network to achieve a given precision on the JSR approximation.
Then, we identify, based on numerical examples, some limitations of the
neural approach, and propose various methods to overcome them. More-
over, a variety of numerical examples is provided in this chapter. Part of
the results of this chapter have been published in [DEJA24], and the rest
comes from unpublished work in collaboration with Alec Edwards and
Alessandro Abate.

Part III: Template-dependent comparison of Path-Complete
Lyapunov functions

Restrained by the computational complexity of finding common Lya-
punov functions, multiple Lyapunov functions have emerged as a promising
tool for balancing the complexity of inequalities and the template of Lya-
punov functions. Due to the wide range of possibilities, we compare mul-
tiple Lyapunov stability criteria with respect to their conservatism within
specific classes of templates. This is made possible by the path-complete
Lyapunov formalism which encodes multiple Lyapunov inequalities with
directed and labeled graphs. This part is partly based on a collaboration
with Matteo Della Rossa.

Chapter 6: Path-complete Lyapunov functions and their comparison

This chapter introduces path-complete Lyapunov functions and for-
mally defines the comparison of path-complete graphs with respect to their
conservatism. In particular, we recall the characterization of the general or-
dering of graphs by the simulation, which relates the nodes of the graphs
while preserving the edges. Moreover, we show its limitations.

Chapter 7: Template-dependent lifts and closure properties

We focus on the template-dependent ordering of graphs, i.e. when we
restrict the comparison to specific templates. To this aim, we introduce
combinatorial operations on path-complete graphs which leverage the clo-
sure properties of templates, such as the addition, the pointwise minimum
and maximum and the composition. The simulation by these so-called

| 7



⋆ | Introduction

template-dependent lifts turns out to be a sufficient condition for the com-
parison of graphs with respect to the class of templates which share a com-
mon closure property. This chapter gathers the results that have been pub-
lished in [DJ20, DDJ21, DDJ22a].

Chapter 8: Characterization of the template-dependent ordering of graphs with
lifts

We finally demonstrate that the simulation relations which involve the
lifted graphs are a necessary and sufficient condition for the graph order-
ing with respect to the family of templates closed under the correspond-
ing closure operation. However, all these theorems require ad-hoc auxil-
iary results. Therefore, we provide this characterization for the addition,
and the pointwise minimum and maximum. We published the research
for these results in [DDJ22b, DDJ23]. Moreover, we take a step back to
provide a comparison of the different proofs and propose an harmonized
proof method.
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PART I
Background





1
Preliminaries

THIS chapter gives an introduction on switched systems and sum-
marizes auxiliary key tools required for their stability analysis. In
particular, Section 1.1 deals with the stability of switched systems

over a language and presents Lyapunov theory, while Section 1.2 focuses
on norms and summarizes convex and duality theory.

1.1 Switched systems, language theory and stability

In this thesis, we study discrete-time switched dynamical systems, a particular
case of Cyber-Physical systems, which have been intensely studied [Lib03]
in past decades. Switched systems are commonly used to model various
physical or engineering phenomena [SWM+07, DHvdWH11], in which the
state is possibly driven by several dynamic laws. To cite a few examples,
they have been used in bipedal robotics [HGB04], in image processing
[Jun09, Chapter 5], and multihop control networks [ADJ+11]. Closer to AI,
switched systems have been used to model Q-learning algorithms [LH20],
and classification techniques have been used in switched system identi-
fication [LB08]. In addition, switched systems bring several challenging
problems from a theoretic point of view, see [LM99, Jun09].

Let us formally define discrete-time switched dynamical systems.
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Definition 1.1 (Discrete-time switched system). A discrete-time switched dy-
namical system with M dynamics of dimension n ∈ N is a dynamical sys-
tem of the form

x(k + 1) := fσ(k)(x(k)), (1.1)

where

- k ∈N represents the discrete time;

- x(k) ∈ Rn is the state of the system at time k ∈N;

- the switching signal σ : N → ⟨M⟩ determines the mode σ(k) of the
system at each time k ∈N;

- fσ(k) ∈ F := { fi : i ∈ ⟨M⟩} is called the dynamics of the system at
time k ∈N.

Given a point x0 ∈ Rn and a switching signal σ : N → ⟨M⟩, we de-
note with x(k, x0, σ) the trajectory starting at x0, following the dynamics
in Equation (1.1) with respect to σ and evaluated at instant k ∈N.

Here, the switching signal can be interpreted as an exogenous pertur-
bation: one can think of an operator who may switch the operating mode
of a system, or any other situation where the law of dynamics may switch
from time to time e.g. due to external disturbance, or change of speci-
fication. The most general case is the so-called arbitrarily switched systems,
which exhibit arbitrary switching sequences among a finite set of modes. If
some switching sequences are forbidden, we speak of constrained switched
systems.

In many instances, we will use a special case of switched systems to
illustrate our results, namely linear switched systems.

Definition 1.2 (Linear switched system). A linear switched system is a switched
system F := { fi : i ∈ ⟨M⟩} for which each dynamics is linear, i.e.

∀i ∈ ⟨M⟩, ∀x ∈ Rn : fi(x) := Aix,

where Ai ∈ Rn×n for each mode i ∈ ⟨M⟩.

Linear switched systems are used to model engineering applications in
several fields, such as viral mutation models [HVCMB11] and communi-
cation networks [JHK16].

The subject of this thesis concerns the stability analysis of switched sys-
tems under arbitrary switching. In particular, we aim at analyzing and
comparing different Lyapunov stability certificates with respect to their
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conservatism. For the sake of generality, we first need to introduce a few
preliminaries about language theory before formally defining different no-
tions of stability for switched systems.

1.1.1 Language theory

We start by viewing the different modes of a switched dynamical system
as the symbols of an alphabet, and the admissible switching sequences as
a language on this alphabet. The purpose of this chapter, mainly inspired
by [CL10, Chapter 2], is to provide a brief summary of language theory.

An alphabet is defined as a finite set of symbols. In this manuscript, we
will consider integers as symbols, i.e. we consider an alphabet of the form

⟨M⟩ := {1, . . . , M}.

A word w := w(1)w(2) . . . w(k) on this alphabet is a finite sequence of sym-
bols from this alphabet. The length |w| of a word w is the number of sym-
bols it contains, including the multiple occurrences of the same symbol. In
particular, we denote by ⟨M⟩k the set of words of fixed length k ∈ N on
the alphabet ⟨M⟩, and ϵ denotes the empty word. The reverse of a word
w = w(1) . . . w(k) is a word of same length with the symbols in the reverse
order, i.e. w⊤ := w(k) . . . w(1).

The main operation on words involved in the language theory is the
concatenation.

Definition 1.3 (Concatenation). Given an alphabet ⟨M⟩, the concatenation
of two words u and v, denoted by uv, is the word consisting of the symbols
of u directly followed by the symbols of v.

One can define the smallest set which contains an alphabet and closed un-
der concatenation.

Definition 1.4 (Kleene closure). Given an alphabet ⟨M⟩, the Kleene closure
of ⟨M⟩, denoted by ⟨M⟩+, is the infinite set of all possible words of all
possible lengths over ⟨M⟩, excluding the empty word, i.e.

⟨M⟩+ :=
⋃

k∈N

⟨M⟩k.

We say that y is a subword of ω if there exist u, v ∈ ⟨M⟩∗ := ⟨M⟩+ ∪ {ϵ}
such that w = uyv.
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Then, we can define a language on an alphabet ⟨M⟩ as a set of finite
words on ⟨M⟩.

Definition 1.5 (Language). Given an alphabet ⟨M⟩, a language L over ⟨M⟩
is a (finite or infinite) subset of ⟨M⟩+, i.e.

L ⊆ ⟨M⟩+. (1.2)

The language is said strict if the inclusion in Equation (1.2) is strict.

In our setting, the different modes ⟨M⟩ of a switched system defines an
alphabet and any word on this alphabet corresponds to a finite switching
sequence. In particular, the language of arbitrarily switched systems corre-
sponds to the Kleene closure, while the language of constrained switched
systems is a strict language on ⟨M⟩.

1.1.2 Stability and Lyapunov functions

We start by defining a few properties on functions.

Definition 1.6. Consider a function f : Rn → R.

- The function f is homogeneous of degree d if for all x ∈ Rn and α ∈ R0,
f (αx) = αd f (x).

- The function f is positively homogeneous of degree d if for all x ∈ Rn

and α ∈ R>0, f (αx) = αd f (x).

- The function f is absolutely homogeneous if for all x ∈ Rn and α ∈ R,
f (αx) = |α| f (x).

- The function f is positive semi-definite if for all x ∈ Rn, f (x) ≥ 0 and
f (0) = 0.

- The function f is positive definite if it is positive semi-definite and
f (x) = 0⇔ x = 0.

- The function f is radially unbounded if f (x)→ ∞ when ∥x∥ → ∞.

- The function f is idempotent if for all x ∈ Rn, f ( f (x)) = f (x).

- The functions f is involutory if for all x ∈ Rn, f ( f (x)) = x.

- The function f is symmetric if for all x ∈ Rn, f (x) = f (−x).

We define the stability of switched systems using functions of class K and
K∞, defined as follows.
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Definition 1.7. A scalar function α : R≥0 → R≥0 is of classK if it is continu-
ous, positive definite and strictly increasing. Moreover, the scalar function
α is of class K∞ if it is of class K and unbounded.

For the sake of generality, we define the notion of stability of switched sys-
tems over a given language. This formalism encompasses both the stabil-
ity under arbitrary switching and constrained switching sequences. We make
this choice because the path-complete Lyapunov formalism introduced in
Chapter 6 allows to deal with both cases.

From this point onwards, ∥·∥ denotes the euclidean norm.

Definition 1.8 (Stability over a language). Consider a switched system
F := { fi : i ∈ ⟨M⟩} of the form (1.1) and a language L over ⟨M⟩.

1. The system F is stable over L if there exists a function α of class K∞

such that

∀w ∈ L, ∀x0 ∈ Rn, ∀k ∈N : ∥x(k, x0, w)∥ ≤ α (∥x0∥) ; (1.3)

2. The system F is asymptotically stable over L if it is stable over L and

∀w ∈ L, ∀x0 ∈ Rn : lim
k→∞
∥x(k, x0, w)∥ = 0 ; (1.4)

3. The system is exponentially stable over L if there exist ρ < 1 and K ≥ 1
such that

∀w ∈ L, ∀x0 ∈ Rn : ∥x(k, x0, w)∥ ≤ Kρk ∥x0∥ . (1.5)

If the language is the Kleene closure, we say that the switched system is
stable over arbitrary switching.

Remark 1.9. If the dynamics are homogeneous of degree 1, the stability
in Equation (1.3) is equivalent to the following expression:

∃K ≥ 1, ∀w ∈ L, ∀x0 ∈ Rn, ∀k ∈N : ∥x(k, x0, w)∥ ≤ K ∥x0∥ . (1.6)

Indeed, by homogeneity of the trajectory x(k, x0, w) with respect to the ini-
tial condition x0,

∥x(k, x0, w)∥
∥x0∥

=

∥∥∥∥x
(

k,
x0

∥x0∥
, w
)∥∥∥∥ ≤ α(1)

and then Equation (1.6) holds with K := α(1). △
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One of the possible ways to assess the stability of switched systems
is to use the Lyapunov theory, and the common Lyapunov functions (CLFs)
in particular. This approach consists in finding a single positive definite
function that decreases along any dynamics of the system.

Let us formally define the candidate Lyapunov functions.

Definition 1.10 (Candidate Lyapunov function). A function V : Rn →
R≥0 is a candidate Lyapunov function if it is continuous, positive definite
and radially unbounded. The set of candidate Lyapunov functions on Rn

is denoted by C0
+(R

n, R).

Norms, which will be further studied in Section 1.2, are candidate Lya-
punov functions for instance. However, candidate Lyapunov functions do
not need to be convex nor subadditive.

The following lemma provides a complete characterization of candi-
date Lyapunov functions.

Lemma 1.11 (Annex A.3 in [Lib03]). A function V : Rn → R is a candidate
Lyapunov function if and only if there exist two functions α, β of class K∞ such
that

∀x ∈ Rn : α(∥x∥) ≤ V(x) ≤ β(∥x∥). (1.7)

The following theorem demonstrates that the existence of a common Lya-
punov functions is a necessary and sufficient condition for stability (see for
example [Jun09] and [KT04] for the nonlinear case).

Theorem 1.12 ([KT04]). A switched system F := { fi : i ∈ ⟨M⟩} is stable
under arbitrary switching (i.e. over ⟨M⟩+) if and only if there exists a candidate
Lyapunov function V : Rn → R such that

∀i ∈ ⟨M⟩, ∀x ∈ Rn : V( fi(x)) ≤ V(x). (1.8)

Such a function is called a common Lyapunov function (CLF for short).

The case of asymptotic stability can be studied within the same framework,
simply considering strict inequalities on the edges, i.e. in Equation (1.8).

Remark 1.13. Note that the radially unboundedness is implied by the pos-
itivity and the homogeneity. Moreover, in the context of homogeneous
switched systems such as linear switched systems for instance, there is no
conservatism in requiring the candidate Lyapunov functions to be homo-
geneous, see [Ros92]. In this case, Lemma 1.11 and in particular the ex-
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pression (1.7) can be replaced by

∃α, β ∈ R s.t 0 < α ≤ β, ∀x ∈ Rn : α ∥x∥d ≤ V(x) ≤ α ∥x∥d ,

where d is the degree of homogeneity of V. △
Although Theorem 1.12 provides a complete characterization of the sta-
bility of switched systems, it is largely offset by the computing complex-
ity required by the “search” of this Lyapunov function. In particular, this
drawback will be the focus of this thesis.

1.2 Norms, convex set and duality

In this short section, we provide a comprehensive and detailed summary
of the convex duality results. These classic statements are useful when
studying the particular case of (primal and dual) copositive linear norms as
template of candidate Lyapunov functions for positive linear systems. The
notation and terminology of this summary are introduced in [Roc70, Part
III], in which the readers wishing to learn more about this topic can find
the corresponding formal proofs. For notational simplicity we develop the
theory on Rn; the corresponding statements for the self-dual cone Rn

≥0 (as
in Section 2.2.3) are straightforwardly obtained, mutatis mutandis.

Norms satisfy the definition of candidate Lyapunov functions by defi-
nition.

Definition 1.14 (Norm). Given a vector space X, a (semi-)norm is a scalar
function ∥·∥ : X → R that is

(1) absolutely homogeneous of order 1, i.e.

∀λ ∈ R, ∀x ∈ X : ∥λx∥ = |λ| ∥x∥ ,

(2) subbaditive, i.e.

∀x, y ∈ X : ∥x + y∥ ≤ ∥x∥+ ∥y∥ ,

(3) positive (semi-)definite.

We denote by V(X), the set of norms on X. If X = Rn, ∥·∥ is a vector norm
while it is called a matrix norm if X = Rn×n.
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Definition 1.15 (Submultiplicativity). A matrix norm ∥·∥ : Rn×n → R is
submultiplicative if for all A, B ∈ Rn×n,

∥AB∥ ≤ ∥A∥ ∥B∥ .

Definition 1.16 (Matrix norm induced by a vector norm). Given a vector
norm ∥·∥ : Rn → R, the induced matrix norm of a matrix A ∈ Rn×n is
defined as

∥A∥ := max
x∈Rn

∥Ax∥
∥x∥ = max

∥x∥=1
∥Ax∥ .

We consider five operations which preserve the properties of norms, namely
the sum, the pointwise maximum, the infimal convolution, the inverse summa-
tion and the linear transform.

Property 1.17. Given f1, f2 ∈ V(Rn), and A ∈ Rn×n invertible, we have

1. (Sum): f1 + f2 ∈ V(Rn),

2. (Pointwise maximum): max{ f1, f2} ∈ V(Rn),

3. (Infimal Convolution): Defining f1 □ f2 : Rn → R by

f1 □ f2(x) := inf
x=x1+x2

{ f1(x1) + f2(x2)},

if f1 and f2 ∈ V(Rn), it holds that f1 □ f2 ∈ V(Rn). (Note that f1 □ f2 =

conv{min{ f1, f2}}, where conv( f ) denotes the largest convex function ma-
jorized by f ),

4. (Inverse Summation): Defining f1 ♯ f2 : Rn → R by

f1 ♯ f2(x) := inf
x=x1+x2

{max{ f1(x1), f2(x2)},

we have f1 ♯ f2 ∈ V(Rn),

5. (Linear Transform): f1 ◦ A ∈ V(Rn).

Let us now consider convex sets, i.e. sets which are closed under convex
combination.

Definition 1.18. Given n ∈ N, K(Rn) denotes the family of sets C ⊂ Rn

such that C is closed, bounded, convex, symmetric (x ∈ C if and only if
−x ∈ C) and 0 ∈ int(C).
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Similarly to Property 1.17, we introduce five operations that preserve the
convexity, which are the sum, the intersection, the convex hull of the union,
the inverse sum and the linear transform.

Property 1.19. Consider C1, C2 ∈ K(Rn), A ∈ Rn×n invertible. Then:

1. (Sum): C1 + C2 ∈ K(Rn),

2. (Intersection): C1 ∩ C2 ∈ K(Rn),

3. (Convex Hull of Union): C1 □ C2 := conv{C1 ∪ C2} ∈ K(Rn),

4. (Inverse Sum): C1 ♯C2 :=
⋃

λ∈[0,1] λC1 ∩ (1− λ)C2 ∈ K(Rn),

5. (Linear Transform): AC1 ∈ K(Rn).

There is a 1-to-1 correspondence between sets in K(Rn) and norms on Rn.
This correspondence is induced by the unit-sublevel sets of norms and by
the Gauge or Minkowski functions of sets (respectively) in K(Rn), as ex-
plained here below.

Definition 1.20. Given a set C ∈ K(Rn), we define the Gauge or Minkowski
function associated to C, g( · |C) : Rn → R by

g(x|C) := inf {γ ∈ R | x ∈ γC, γ ≥ 0}.

The following lemma provides the correspondence between norms and
convex sets. Note that, given f ∈ V(Rn), we denote with B f := {x ∈
Rn | f (x) ≤ 1}, the unit ball of the norm f .

Lemma 1.21 (Correspondence between norms and convex sets). If f ∈
V(Rn) then B f ∈ K(Rn), and moreover

f (x) = g(x|B f ), ∀ x ∈ Rn.

Conversely, for any C ∈ K(Rn), g(· |C) ∈ V(Rn). More explicitly, V(Rn) =

{g( · |C) : Rn → R | C ∈ K(Rn)} and K(Rn) =
{

B f ⊂ Rn | f ∈ V(Rn)
}

.

In other words, a set is the 1-sublevel set of the Minkowski function to
which it is associated and the Minkowki function is the unique homoge-
neous function for which this property is satisfied.

Remark 1.22. Note that the symmetry of the gauge function g(·, | C) is
equivalent to the symmetry of the convex set C. Moreover, the one-to-one
correspondence between gauge functions and compact convex sets includ-
ing the origin as an interior point holds. Therefore, the notion of gauge
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function generalizes the notion of norm to functions with similar proper-
ties (positivity, positively homogeneity, sub-additivity and convexity) but
allows to consider non-symmetric unit balls.

In addition, the notion of Minkowski function in Definition 1.20 can
also be defined for a closed convex (but not necessarily bounded) set in-
cluding the origin in its interior. In this case, the Minkowski function is
convex and positive semi-definite and for symmetric set, the Minkowski
function is a semi-norm. △

Every operation on norms in Property 1.17 can be associated to an op-
eration in Property 1.19 on their 1-sublevel sets.

Lemma 1.23 (Correspondence with Unit Balls). Given f1, f2 ∈ V(Rn) and
A ∈ Rn×n invertible, it holds that

1. For every γ > 0, Bγ f1 = 1
γ B f1

2. B f1+ f2 = B f1 ♯B f2 ,

3. B f1 ♯ f2 = B f1 + B f2 ,

4. Bmax{ f1, f2} = B f1 ∩B f2 ,

5. B f1 □ f2 = B f1 □ B f2

6. B f1◦A = A−1B f1

7. B f1 ⊆ B f2 ⇔ ∀x ∈ Rn, f2(x) ≤ f1(x)

We now introduce the duality of convex sets and the duality of norms,
and we make the link between both of them.

Definition 1.24 (Polar Sets). Given C ⊂ Rn convex, closed and such that
0 ∈ C, we define the polar of C, denoted by C◦, by

C◦ :=

{
x ∈ Rn | sup

y∈C
⟨y, x⟩ ≤ 1

}
.

It can be proved that C◦ is closed, convex and 0 ∈ C◦ and moreover,
(C◦)◦ = C.

Then, for any subset C of Rn, C ∈ K(Rn) if and only if C◦ ∈ K(Rn).
Moreover we have the following relations.

Lemma 1.25. Consider C1, C2 ∈ K(Rn), and A ∈ Rn×n. Then

1. C1 ⊂ C2 ⇔ C◦2 ⊂ C◦1 ,
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2. For every γ > 0, (γC1)
◦ = 1

γ C◦1 ,

3. (C1 + C2)
◦ = C◦1 ♯C◦2 ,

4. (C1 ♯C2)
◦ = C◦1 + C◦2 ,

5. (C1 ∩ C2)
◦ = C◦1 □ C◦2 ,

6. (C1 □ C2)
◦ = C◦1 ∩ C◦2 ,

7. (AC1)
◦ = A−⊤ C◦1 .

Definition 1.26 (Dual Norm). Given f ∈ V(Rn), we define the dual norm
of f , denoted by f ⋆ : Rn → R, as

f ⋆(x) := sup
y∈Rn\{0}

⟨y, x⟩
f (y)

= sup
y∈Rn , f (y)=1

⟨y, x⟩.

It can be proved that f ⋆ = g(· |B◦f ) (and thus B f ⋆ = B◦f ) and ( f ⋆)⋆ = f .

The following statement results from the consecutive application of Lem-
mas 1.23 and 1.25.

Lemma 1.27. Given f1, f2 ∈ V(Rn) and A ∈ Rn×n invertible, it holds that

1. ∀x ∈ Rn, f1(x) ≤ f2(x) ⇔ ∀x ∈ Rn, f ⋆2 (x) ≤ f ⋆1 (x),

2. For every γ > 0, (γ f1)
⋆ = 1

γ f ⋆1
3. ( f1 + f2)

⋆ = f ⋆1 ♯ f ⋆2 ,

4. ( f1 ♯ f2)
⋆ = f ⋆1 + f ⋆2 ,

5. (max{ f1, f2})⋆ = f ⋆1 □ f ⋆2 ,

6. ( f1 □ f2)
⋆ = max{ f ⋆1 , f ⋆2 },

7. ( f1 ◦ A)⋆ = f ⋆1 ◦ A−⊤.

These results can be generalized for finite numbers of norms as summa-
rized in the following Table 1.1.

Finally, we will see that the following result is particularly helpful for
the Lyapunov formalism since it provides a characterization of a Lyapunov
inequality in terms of the dual Lyapunov functions and the transpose ma-
trix.

Lemma 1.28. Consider f1, f2 ∈ V(Rn) and A ∈ Rn×n, then

(∀ x ∈ Rn, f2(Ax) ≤ f1(x)) ⇔
(
∀ x ∈ Rn, f ⋆1 (A⊤x) ≤ f ⋆2 (x)

)
.
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Operation Unit Ball Dual Dual Unit Ball

Op({ fk}) BOp({ fk}) (Op({ fk}))⋆ B(Op({ fk}))⋆

γ f 1
γ B f

1
γ f ⋆ γB◦

⊕k fk := f1 + · · ·+ fK ♯kB fk
♯k f ⋆k ⊕kB◦fk

♯k fk := f1 ♯ . . . ♯ fK ⊕kB fk
⊕k f ⋆k ♯kB◦fk

maxk{ fk}
⋂

k B fk
□k f ⋆k □kB◦fk

□k fk := f1 □ . . . □ fK □kB fk
maxk{ f ⋆k }

⋂
k B◦fk

f ◦ A A−1B f f ⋆ ◦ A−⊤ A⊤B◦f ⋆

Table 1.1 Generalization of the correspondence between operations on
norms and unit balls (and duality) for a finite number K of norms
{ fk}k=1,...,K ⊂ V(Rn).

Proof. Recalling the definitions we have f2(Ax) ≤ f1(x), ∀x ∈ Rn, if and
only if

x ∈ B f1 ⇒ Ax ∈ B f2 . (1.9)

We show that Equation (1.9) is true if and only if x ∈ B◦f2
⇒ A⊤x ∈ B◦f1

,

which is equivalent to f ⋆1 (A⊤x) ≤ f ⋆2 (x), ∀x ∈ Rn. Suppose Equation (1.9)
is true. Consider x ∈ B◦f2

, applying the definitions we have

x ∈ B◦f2
⇔ ∀ y ∈ B f2 , ⟨x, y⟩ ≤ 1,

⇒ ∀z ∈ B f1 , ⟨x, Az⟩ ≤ 1,

⇔ ∀z ∈ B f1 , ⟨A⊤x, z⟩ ≤ 1,

⇔ A⊤x ∈ B◦f1
.

The other direction is equivalent, once recalled that (B◦fi
)◦ = B fi

.

It is well known that the pointwise minimum operation does not preserve
the convexity property. However, we have defined the notion of infimal
convolution in Property 1.17 which can be interpreted as the “convexifica-
tion” of the minimum operation. The following lemma discusses the link
between these operations in the Lyapunov framework.
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Lemma 1.29. Consider f1, f2, g1, g2 ∈ V(Rn) four norms, and a matrix A ∈
Rn×n. Then

min{ f2(Ax), g2(Ax)} ≤ min{ f1(x), g1(x)}, ∀x ∈ Rn (1.10)

implies that
( f2 □ g2) (Ax) ≤ ( f1 □ g1) (x), ∀x ∈ Rn

≥0.

Proof. Without loss of generality, consider x ∈ Rn such that x ∈ B f1 □ g1 ,
i.e. f1 □ g1(x) ≤ 1. By Lemma 1.23 and by definition of the infimal convo-
lution in Property 1.17,

x ∈ B f1 □ g1 = B f1 □ Bg1 = conv
{

B f1 ∪Bg1

}
.

Using the same arguments, we have to prove that Ax ∈ co{B f2 ∪Bg2}. Let
us write x := λx1 + (1− λ)x2 with x1, x2 ∈ B f1 ∪Bg1 . By Equation (1.10),
we know that Ax1, Ax2 ∈ B f2 ∪Bg2 . Then

Ax = A(λx1 + (1− λ)x2) = λAx1 + (1− λ)Ax2 ∈ conv
{

B f2 ∪Bg2

}
,

which concludes the proof.

This result essentially indicates that, in the context of a linear switched
system, if we have an inequality involving minima, we can derive a cor-
responding inequality involving their convex hull, i.e. the infimal convo-
lution. For that reason, in this setting, for a family closed under infimal
convolution, we can use all we know for the minimum. While this result
holds true in the context of linear switched systems, they do not generalize
to the generic nonlinear setting.

1.3 Templates and closure properties

So far, we have introduced Lyapunov theory to synthesize stability cer-
tificates for switched systems. In practice, we usually restrict our search
to subclasses of candidate Lyapunov functions, called templates, such as
quadratic norms or sum-of-squares polynomials, see Section 2.2. However
the conservatism of the corresponding stability certificate depends on the
template that we use. In particular, this thesis will highlight the importance
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of the template and especially its closure properties in the conservatism-
based comparison of stability certificates.

In order to further introduce path-complete Lyapunov functions and prop-
erly define their comparison in Chapter 6, we need to formally define the
notion of template (independent of the dimension).

Definition 1.30 (Template of Lyapunov functions). A template of candidate
Lyapunov functions is defined as a family of countably many sets of Lya-
punov functions of fixed dimension, i.e.

V :=
⋃

n∈N

Vn,

where Vn ⊆ C0
+(R

n, R).

Remark 1.31. In Definition 1.30, we define a template as a countable infi-
nite union of fixed dimensional templates Vn ⊆ C0

+(R
n, R). This choice

is partly motivated by our interest in the closure properties of these tem-
plates, as properly defined in Definition 1.33, which do not generally de-
pend on the dimension. However, given a n-dimensional switched system,
the practical search for a candidate Lyapunov function within such a tem-
plate is performed in Vn. △
This definition allows us to consider classical Lyapunov functions for in-
stance, such as the quadratic ones. In this case, the set Vn for n ∈ N will
contain all the quadratic functions V(x) = x⊤Px with P ∈ Rn×n positive
definite.

In the linear case, we can consider a template of norms without loss of
conservatism (see Theorem 2.9), i.e. a template whose elements are norms.
Using duality theory introduced in Section 1.2, we can define the dual of a
given template of norms.

Definition 1.32 (Dual template). Given a template V of norms, the dual
template, denoted by V∗, is defined as the set of the dual norms, i.e.

V∗ := {g∗ | g ∈ V}.

It is well known that the template influences the conservatism of a sta-
bility certificate. Moreover, we will demonstrate in Part III with theoretical
results and through numerous examples that the closure properties of this
template play a key role in the comparison of the corresponding stability
certificates with respect to their conservatism.
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Similarly to Property 1.17 where we introduce operations which pre-
serve convesity, we need to define families of binary operations which preserve
the template.

Definition 1.33 (Closure properties of a template). Consider a template
V = ∪n∈NVn of candidate Lyapunov functions and a family of binary op-
erations {⋆n : C0

+(R
n, R)× C0

+(R
n, R)→ C0

+(R
n, R)}n∈N.

(a) For a fixed dimension n ∈ N, we say that the set of functions Vn is
closed under the binary operation ⋆n if

∀ f1, f2 ∈ Vn : f1 ⋆n f2 ∈ Vn.

(b) We say that the template V is closed under the family of binary operations
{⋆n}n∈N if for all n ∈N, the set Vn is closed under ⋆n.

Moreover, we say that an operation preserves the Lyapunov properties if the
template of candidate Lyapunov functions, i.e. Vn := C0

+(R
n, R), is closed

under this operation.

In Chapter 7, we will investigate the operations of addition, pointwise min-
imum and maximum, and finally the composition with the dynamics.
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Joint spectral radius

IN classical linear systems theory, a typical question is whether a discrete-
time linear system xk+1 := A xk is asymptotically stable, that is, whether all
the trajectories asymptotically tend to zero. A necessary and sufficient

condition for this is that the spectral radius of the square matrix A ∈ Rn×n

with n ∈N defined by

ρ(A) := lim
k→∞

∥∥∥Ak
∥∥∥1/k

is less than one. The spectral radius expresses the maximal rate of growth
of the system, and has been proved to be equal to the maximal modulus of
the eigenvalues of the matrix A.

However, when we consider a linear switched system (1.2), the dynam-
ical system is defined by several matrices A := {A1, . . . , AM} rather than a
single one, as is the case for classical linear systems. As a consequence, the
stability problem becomes far more complex since for instance, each matrix
can be stable without the switched system being stable. This has motivated
the generalization of the spectral radius to the finite set of square matrices
A by the introduction of the joint spectral radius (JSR for short) denoted by
ρ(A) and introduced in [RS60]. Similarly to the linear case above, the JSR
expresses the maximal asymptotic behaviour of a switched linear system.
The joint spectral radius of A can be related to the stability of (1.2) by the
following statement: the linear switched systemA is asymptotically stable
(under arbitrary switching) if and only if ρ(A) < 1.
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Unfortunately, the JSR does not share the same nice algebraic properties
as the spectral radius and is extremely hard to compute in practice. Indeed,
approximating the JSR is NP-hard [BT97], whereas deciding whether the
JSR is smaller than one or not is Turing-indecidable [BC08]. Moreover,
there does not exist any algebraic criterion to decide the stability (non-
algebraicity) of switched systems [Koz90]. Despite these theoretical lim-
itations, the approximation of the JSR has been investigated by many re-
searchers. In particular, Lyapunov methods have been exploited. In prac-
tice, one usually looks through a particular Lyapunov function for which
the computation can be performed more easily. This is for instance the case
for the ellipsoidal approximation of the JSR, as studied in [BNT05]. A simi-
lar approach using SOS polynomials instead of quadratic functions has been
developed in [PJ08].

In this section, we summarize the most popular Lyapunov techniques,
the corresponding computation methods and the approximation guaran-
tees using these templates.

2.1 Definition and properties

Given a linear switched system

x(k + 1) = Aσ(k)x(k), (2.1)

with A := {A1, . . . , AM} ⊂ Rn×n, let us define the joint spectral radius of
A as the maximum rate of growth of the corresponding linear switched
system. Note that in the rest of this section, we assume that the norms are
submultiplicative.

Definition 2.1 (Joint spectral radius). Given a finite set of M square matri-
ces A := {A1, . . . , AM} ⊂ Rn×n, the joint spectral radius (i.e. JSR for short),
denoted by ρ(A), is defined as

ρ(A) := lim
k→∞

max
A∈Ak

∥A∥1/k ,

where Ak := {Ai1 . . . Aik | Aij ∈ A, j = 1, . . . , k} for any k ∈N.

This quantity does not provably depend on the norm by equivalence of the
norms in finite dimension.
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Let us recall some basic properties of the JSR.

Proposition 2.2 (Proposition 1.2 in [Jun09]). For any finite setA ⊂ Rn×n and
for any real number λ,

ρ(λA) = |λ| ρ(A).

The following proposition provides both upper and lower bound on the
JSR. This result is often used to compute the JSR of a given set of matrices.

Proposition 2.3 (Three members inequalities, Proposition 1.6 in [Jun09]).
For any finite set of A ⊂ Rn×n and for any t ∈N,

ρt(A) ≤ ρ(A) ≤ ρ̂t(A, ∥·∥),

where ρt(A) := maxA∈At ρ(A)1/t and ρ̂t(A, ∥·∥) := maxA∈At ∥A∥1/t.

Example 2.4 (Example 1.1 in [Jun09]). Consider the set of two matrices

A :=

{[
1 1
0 0

]
,

[
1 0
1 0

]}
.

One can prove that ρ(A) =
√

2 using Proposition 2.3. Indeed, by multiply-
ing the two matrices, one obtains the matrix[

1 1
0 0

] [
1 0
1 0

]
=

[
2 0
0 0

]
.

The square root of the spectral radius of this matrix, that is
√

2, is a lower
bound on the JSR of A. Moreover, ρ̂2(A, ∥·∥1) =

√
2. Then, one can con-

clude by Proposition 2.3 that ρ(A) =
√

2. △
The following result characterizes the JSR in terms of the matrices inA,

without any product of these matrices.

Proposition 2.5 (Proposition 1.4 in [Jun09]). For any finite set A ⊂ Rn×n

such that ρ(A) ̸= 0, the joint spectral radius can be defined as

ρ(A) = inf
∥·∥

max
A∈A
{∥A∥}.

This result is useful because one can bound the JSR by finding a good norm
to obtain an estimate of the JSR, since for any matrix norm ∥·∥,

ρ(A) ≤ max
A∈A
∥A∥ .

If the latter inequality is tight, the norm is called extremal.
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Definition 2.6 (Extremal matrix norm). A matrix norm ∥·∥ on Rn×n is ex-
tremal for a finite set of matrices A ⊂ Rn×n if for all A ∈ A,

∥A∥ ≤ ρ(A).

By Proposition 2.5, this implies that ρ(A) = supA∈A ∥A∥. However, such
a norm does not always exist, see [Jun09, Chapter 2.1] for a complete dis-
cussion on this topic.

Definition 2.7 (Extremal vector norm). A vector norm ∥·∥ on Rn is extremal
for a finite set of matrices A ⊂ Rn×n if for all x ∈ Rn and for all A ∈ A,

∥Ax∥ ≤ ρ(A) ∥x∥ .

Then, the matrix norm induced by an extremal vector norm is an extremal
matrix norm. As with the extremal matrix norm, there does not always
exist an extremal vector norm. However, the following proposition states
that there exists a vector norm which provides an ε-close approximation of
the JSR, for any precision ε > 0.

Proposition 2.8 (Theorem 2.1 in [PJ08]). Consider a finite set of matricesA :=
{A1, . . . , AM} ⊂ Rn×n. For any ε > 0, there exists a (vector) norm ∥·∥ε on Rn

such that
∥Aix∥ε ≤ (ρ(A) + ε) ∥x∥ε , ∀x ∈ Rn, ∀i ∈ ⟨M⟩.

The following theorem presents the main property of the JSR since it
characterizes the stability of a linear switched system.

Theorem 2.9 (Corollary 1.1 in [Jun09]). For any finite set of matrices A ⊂
Rn×n, the corresponding linear switched system is stable (under arbitrary switch-
ing) if and only if ρ(A) < 1.

A similar characterization for constrained linear switched systems can be
stated using the corresponding constrained joint spectral radius. See [Dai12,
Phi17] for further details on this topic.

Example 2.10 (Example from [Jun09]). Consider the set of matrices A :=
{A1, A2} ⊂ R2×2 defined by

A1 :=
2
3

 cos(1.5) sin(1.5)

−2 sin(1.5) 2 cos(1.5)

 and A2 :=
2
3

2 cos(1.5) 2 sin(1.5)

− sin(1.5) 2 cos(1.5)

 .
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Both matrices are stable since ρ(A1) = ρ(A2) = 0.9428 but if we com-
bine the two matrices alternatively, then it becomes unstable. In particular,√

ρ(A1 A2) =
√

1.751 = 1.323 > 1. Then, by Proposition 2.3, ρ(A) ≥ 1 and
the corresponding switched system is unstable by Theorem 2.9.

Although Theorem 2.9 might be appealing, the following results show
that the numerical computation/approximation of the JSR can be difficult
in practice. In particular, it is NP-hard to approximate, as close as desired,
the joint spectral radius.

Theorem 2.11 (NP-hardness, Theorem 2.4 in [Jun09]). Unless P = NP, there
is no algorithm that, given a set of matrices A and a relative accuracy ε, returns
an estimate ρ̃(A) of ρ(A) such that |ρ̃(A) − ρ(A)| ≤ ερ(A) in a number of
steps that is polynomial in the size of A and ε.

In addition, it has been proved that it is not possible to construct an al-
gorithm that always leads to a correct answer to the question of deciding
whether the joint spectral radius of a finite set of matrices is smaller than 1.

Theorem 2.12 (Undecidability, Theorem 2.6 in [Jun09]). The problem of de-
termining, given a set of matrices A, if ρ(A) ≤ 1 is Turing-undecidable.

2.2 Classical Lyapunov computation techniques

Even though Theorems 2.11 and 2.12 suggest that the computation of the
JSR might be laborious, these statements have not prevented researchers
from developing several approximation techniques. For instance, the JSR
toolbox [VHJ14] compiles several recent computation and approximation
methods, by selecting the most appropriate methods based on an auto-
matic study of the matrix set provided. In particular, two different types of
approximation methods can be distinguished.

The first class of methods takes advantage of the three members in-
equalities in Proposition 2.3 with recursively longer and longer products
of matrices. See Branch and bound methods summarized in [Jun09, Sec-
tion 2.3.3].

The second class of methods of the JSR approximation relies on the
Lyapunov theory, previously introduced in Section 1.1.2. Without loss of
generality, Theorem 2.9 and Proposition 2.5 ensure that we can look for
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norms as candidate Lyapunov functions. However, this common contrac-
tive norm (when it exists) is usually hard to find and not finitely con-
structible. The following result relaxes the convexity property, and states
that any continuous, positive and homogeneous function provides an ap-
proximation on the JSR.

Theorem 2.13. Consider a finite set of matrices A := {A1, . . . , AM} ⊂ Rn. If
there exists a positive, continuous and homogeneous function V : Rn → R such
that

∀i ∈ ⟨M⟩, ∀x ∈ Rn : V
(

Ai
γ

x
)
≤ V(x) (2.2)

then ρ(A) ≤ γ.

Sketch of the proof. Assume that the candidate Lyapunov function V is ho-
mogeneous of degree d. Then, by Lemma 1.11 and Remark 1.13, there exist
α, β with 0 < α ≤ β such that

∀x ∈ Rn : α ∥x∥d ≤ V(x) ≤ β ∥x∥d .

Consider any arbitrary finite product Aw(k) . . . Aw(1) of length k ∈N of
the matrices in A. The consecutive application of the Lyapunov inequali-
ties in Equation (2.2) implies that

∀x ∈ Rn : V
(Aw(k) . . . Aw(1)x

γk

)
≤ V(x).

By homogeneity and after rearrangement, we have

∀x ∈ Rn :

(
V(Aw(k) . . . Aw(1)x)

V(x)

)1/d

≤ γk.

Therefore, one can bound the norm of the product Aw(k) . . . Aw(1) as fol-
lows:

∥∥∥Aw(k) . . . Aw(1)

∥∥∥ ≤ max
x

∥∥∥Aw(k) . . . Aw(1)x
∥∥∥

∥x∥ ,

≤
(

β

α

)1/d
max

x

V(Aw(k) . . . Aw(1)x)1/d

V(x)1/d ,

≤
(

β

α

)1/d
γk.
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Then, by Definition 2.1 and after taking the k-th root and the limit when
k→ ∞, we can conclude that ρ(A) ≤ γ .

In the rest of this section, we summarize classical Lyapunov JSR approxi-
mation methods using three different templates, namely the quadratic Lya-
punov functions, the sum-of-squares polynomials and the linear copositive
norms. For each template, we provide both approximation guarantees and
practical computation techniques.

2.2.1 Quadratic functions

In this section, we consider the approximation of the JSR using a common
quadratic Lyapunov norm whose computation can be expressed as a convex
optimization problem. This method has been studied in details in [BNT05],
and summarized in [Jun09, Section 2.3.7].

Let us first formally define a quadratic norm, also called ellipsoidal
norm.

Definition 2.14 (Quadratic/ellipsoidal form). Let Q be a square positive
definite matrix, then

∥x∥Q :=
√

x⊤Qx, (2.3)

is called the quadratic or the ellipsoidal (vector) norm associated to Q. The
induced matrix norm

∥A∥Q := max
∥x∥Q=1

∥Ax∥Q

is called the quadratic or ellipsoidal (matrix) norm associated to Q.

Note that this denomination stems from the shape of the unit ball B∥·∥Q
of

this norm.

Remark 2.15. The matrix representation p(x) = xTQx is not unique since
several positive definite matrices lead to the same quadratic polynomial.
However, it is possible to define a unique symmetric positive definite matrix
by defining (Q + Q⊤)/2. Then, in the rest of this manuscript, we will
assume without loss of generality that the matrix Q in Definition 2.14 is
symmetric. △
One can show that the quadratic template is self-dual in the sense of Defi-
nition 1.26.
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Proposition 2.16 (Self-duality). The quadratic template is self-dual, i.e. the dual
norm of a quadratic norm is a quadratic norm.

Sketch of the proof: Given a quadratic norm ∥·∥Q on Rn with Q ∈ Rn×n a
symmetric positive definite matrix, one can prove that the dual norm is the
quadratic norm ∥·∥Q−1 .

The following proposition characterizes the quadratic matrix norm, and
provides a method to compute it.

Proposition 2.17 (Proposition 2.7 in [Jun09]). Given a symmetric positive def-
inite matrix Q, the quadratic matrix norm ∥A∥Q of a matrix A is the smallest
γ ∈ R+ such that the following equation has a solution:

A⊤QA ⪯ γ2Q.

Then, the computation of this minimal γ can be efficiently done since it
amounts to compute the spectral radius of the following matrix

γ2 := ρ(L−1 A⊤QAL−1⊤),

where Q = LL⊤ is the Cholesky factorisation of Q.

We define the quadratic approximation of the JSR as the best JSR approxi-
mation using the template of quadratic norms.

Definition 2.18 (Quadratic/ellipsoidal approximation of the JSR). Given a
finite set of matrices A := {A1, . . . , AM} ⊂ Rn×n, the (common) quadratic
or ellipsoidal approximation of the JSR, denoted by ρQ(A) is defined by

ρQ(A) := inf
Q≻0

max
A∈A

∥A∥Q .

From a computational point of view, the ellipsoidal approximation ρQ(A)
can be computed efficiently thanks to SDP, see [BNT05] for details.

Proposition 2.19 (Proposition 2.8 in [Jun09]). For any finite set of matrices
A := {A1, . . . , AM} and positive value γ > 0, if there is a solution Q to the
following SDP program:

Ai
⊤QAi ⪯ γ2Q, ∀Ai ∈ A,

Q ≻ 0,
(2.4)

then ρ(A) ≤ γ.
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The quality of the quadratic approximation of the JSR can be measured.
These guarantees mainly rely on the approximation capabilities of convex
sets by ellipsoids, stated in the following lemma.

Lemma 2.20 (John’s ellipsoid theorem, [Joh48]). Let K ∈ Rn be a compact
convex set with nonempty interior. Then there is an ellipsoid E with center c such
that the inclusions E ⊂ K ⊂ n(E − c) + c hold. If K is symmetric about the
origin (K = −K), the constant n can be changed into

√
n.

It is finally possible to derive the following approximation guarantees us-
ing quadratic norms as Lyapunov functions.

Theorem 2.21 (Theorem 14 in [BNT05]). Let ρ(A) be the joint spectral radius
of a finite set of matrices A of dimension n ∈N. Then

1
τQ

ρQ(A) ≤ ρ(A) ≤ ρQ(A), (2.5)

where τQ :=
√

n.

Sketch of the proof. By Proposition 2.8, for any ε > 0, there exists a vector
norm ∥·∥ε for which

∀i ∈ ⟨M⟩, ∀x ∈ Rn : ∥Aix∥ε ≤ (ρ(A) + ε) ∥x∥ε .

The sublevel sets of this (symmetric) norm can be approximated using el-
lipsoids and Lemma 2.20 measures the approximation quality, i.e. there
exists a quadratic norm ∥·∥P := x⊤Px with P ≻ 0 such that

∀x ∈ Rn : ∥x∥P ≤ ∥x∥ε ≤
√

n ∥x∥P .

Therefore, for every mode i ∈ ⟨M⟩:

∀x ∈ Rn : ∥Aix∥P ≤ ∥Aix∥ε ≤ q ∥x∥ε ≤ q
√

n ∥x∥P ,

which is equivalent to requiring

Ai
⊤PAi − q2nP ⪯ 0.

Then, the ellipsoidal approximation of A is smaller than q
√

n for any q >

ρ(A). Then, at worst, we have that

ρQ(A) ≤ ρ(A)
√

n.
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2.2.2 Sum of squares polynomials

Unfortunately, it can be proved that the quadratic template is not universal,
meaning that there does not exist a quadratic Lyapunov function for any
stable switched system. In particular, [PJ08, Example 2.8] provides an ex-
ample of a finite set of matrices which are stable but there does not exist a
common quadratic Lyapunov function.

In this section, we investigate the idea of considering homogeneous
polynomials of higher degree as candidate Lyapunov functions to approx-
imate the JSR. This has been extensively introduced in [PJ08] and summa-
rized in [Jun09, Section 2.3.7].

Theorem 2.22 (Theorem 2.2 in [PJ08]). Consider a finite set of matrices A :=
{A1, . . . , AM} ⊂ Rn×n and γ > 0. Let p(x) be a strictly positive homogeneous
polynomial of degree 2d that satisfies

p(Aix) ≤ γ2d p(x), ∀x ∈ Rn, ∀i ∈ ⟨M⟩.

Then, ρ(A) ≤ γ.

However, it is computationally hard to characterize positive polynomials.
Then, we consider the sum-of-squares (SOS for short) relaxation which re-
quires that the polynomial must admit a sum of squares decomposition, as
defined below.

Definition 2.23 (Sum-of-squares polynomial). A polynomial p of degree
2d is a sum-of-squares (SOS for short) if there exist some polynomials q1,
. . . , qM (not all zero) of degree d such that

p(x) :=
M

∑
i=1

qi(x)2.

It follows directly that every SOS polynomial is positive semi-definite. How-
ever, the converse is not always true. One of the most common counterex-
ample is probably the Motzkin polynomial, i.e. p(x, y) = x2y4 + x4y2 + 1−
3x2y2, which is positive semi-definite but it is not a sum of squares.

In fact, it has been proved in [Hil88] that the characterization of posi-
tivity by SOS polynomials is only valid in three particular cases.
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Theorem 2.24 (Characterization of positive polynomials by SOS polynomi-
als [Hil88]). The equivalence between the nonnegativity of the polynomials of n
variables and degree 2d and the existence of a sum of squares decomposition holds
in the three following cases:

(a) n = 1 (univariate polynomials);

(b) 2d = 2 (quadratic polynomials);

(c) n = 2 et 2d = 4 (bivariate quartics).

However, one of the advantages of SOS polynomial is that it is easy to
check (as opposed to check if a polynomial is positive definite, which is
NP-hard). Indeed, consider a polynomial f (x) of degree 2d in dimension n
with d, n ∈ N and z the vector which encodes all the monomials of degree
d in dimension n of dimension N := (n+d−1)!

d!(n−1)! . Then, f is a SOS-polynomial
if and only if

∃Q ≻ 0 : f (x) = z⊤Qz,

which can be solved by an SDP. Then, by the Cholesky decomposition the-
orem, we can find a triangular matrix L such that Q = L⊤L. Therefore,

f (x) = z⊤L⊤Lz = ∑
i
(Lz)i

2,

where (Lz)i is a polynomial of degree d. Then, each SOS-polynomial of
degree 2d can be written as the sum of (at most) N squared polynomials of
degree d, and the number of squares in the SOS-decomposition is equal to
the rank of the matrix Q.

Theorem 2.25 (Theorem 2.3 in [PJ08]). A homogeneous multivariate polyno-
mial p(x) of degree 2d is a sum of squares if and only if

p(x) :=
(

x[d]
)⊤

Qx[d],

where x[d] is a vector whose entries are (possibly scaled) monomials of degree d in
the variables xi, and Q is a symmetric positive semidefinite matrix.

We can now define the JSR approximation using SOS polynomial by
requiring that the polynomials p(x) and γ2d p(x)− p(Aix) are SOS in The-
orem 2.22. Then we look for the infimum γ for which there exists p(x) such
that this condition is satisfied.
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Definition 2.26 (SOS approximation of the JSR). Given a finite set of ma-
trices A := {A1, . . . , AM}, the SOS approximation of the JSR of degree 2d,
denoted by ρSOS,2d(A), is defined by

ρSOS,2d(A) := inf
p∈R2d [x],γ>0

γ s.t.

{
p(x) is SOS,

γ2d p(x)− p(Aix) is SOS,
(2.6)

where R2d[x] refers to the set of homogeneous polynomials of degree 2d.

Remark 2.27. Theorem 2.22 initially requires a positive definite polynomial,
while strict positivity is not required in Equation (2.6). However, since cur-
rent algorithms to solve SDPs, such as the interior-point methods, always
produce solutions in the relative interior of the SOS cone, this is automati-
cally satisfied if the problem is feasible. See [PJ08, Remark 2.5] for further
details. △
Therefore, the SOS relaxation yileds to an upper-bound on the JSR, i.e.
ρ(A) ≤ ρSOS,2d(A). The following lemma quantifies the quality of this
approximation.

Lemma 2.28 (Theorem 2.6 in [PJ08]). Let ∥·∥ be a norm on Rn. For any integer
d ≥ 1, there exists a homogeneous polynomial p(x) in n variables of degree 2d
such that

(1) The polynomial p(x) is SOS,

(2) For all x ∈ Rn,

p(x)1/2d ≤ ∥x∥ ≤ k(n, d) p(x)1/2d,

where k(n, d) :=
(

n + d− 1
d

)1/2d
.

It is now possible to derive approximation guarantees with the template of
SOS polynomials.

Theorem 2.29 (Theorem 3.4 in [PJ08]). The SOS approximation of degree 2d,
d ∈N of the JSR denoted by ρSOS,2d(A) satisfies the following inequalities

1
τSOS(n, d)1/2d ρSOS,2d(A) ≤ ρ(A) ≤ ρSOS,2d(A), (2.7)

where τSOS(n, d) = k(n, d) in Lemma 2.28.
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Sketch of the proof: The proof follows the same path of ideas as in the proof
of Theorem 2.21. In particular, it relies on the consecutive application of
Proposition 2.8 and Lemma 2.28 which discusses the precision of the ap-
proximation of a norm by a SOS polynomial. Additional results are needed
to formally end the proof, see [PJ08] for further details.

2.2.3 Linear copositive norms

In this section, we consider and develop two particular functions tem-
plates, the primal/dual linear copositive norms to study the stability of positive
linear switched systems of the form

x(k + 1) = Aσ(k)x(k) (2.8)

where σ : N→ ⟨M⟩, and A := {A1, . . . , AM} ⊂ Rn×n is a set of nonnega-
tive matrices. Positive switched systems (2.8) are popular for modeling the
dynamics of phenomena constrained in the positive cone Rn

≥0, and from
our point of view, they provide a simple “practical” setting in order to
illustrate the developments of the following sections. In the context of pos-
itive switched systems, primal norms as in Equation (2.9) were considered
in [MS07, FV12, JZHZH13].

Definition 2.30 (Primal and dual copositive norms). Given v ∈ Rn
>0, we

define the primal and dual linear copositive norms induced by v on Rn
≥0 by

gv(x) := v⊤x, (2.9)

and g⋆v(x) := max
i

{
xi
vi

}
, (2.10)

for all x ∈ Rn
≥0. We denote with P and D the set of all primal and dual

copositive norms, respectively.

One can show that the norms defined in Equation (2.10) are exactly the dual
of the ones in Equation (2.9), in the sense of Definition 1.26 (see Figure 2.1
for a graphical interpretation of this class of functions). It follows from Def-
inition 2.30 that, given any v ∈ Rn

>0, the functions g(·)v, g(·)⋆v : Rn
≥0 → R

are positive definite and radially unbounded, and thus P and D represent
legitimate templates when studying stability of (2.8).
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(a) The unit balls Bv1 and Bv2 are repre-
sented in red and blue, respectively. In
orange, the ball Bv1∨v2 = Bv1□ Bv2 .

x2

x1

w1

w2
w1 ∨ w2

B⋆
w2

B⋆
w1

(b) The unit balls B⋆
w1

and B⋆
w2

are rep-
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B⋆
w1
∩B⋆

w2
.

Fig. 2.1 Examples of primal and dual copositive norms on R2
≥0, with the

corresponding unit balls.

In order to highlight the useful properties of these templates, we adopt
the following notation.

Definition 2.31. Given v, w ∈ Rn
>0, we define v ∨ w ∈ Rn

>0 as

v ∨ w := ∑
i

min{vi, wi} ei, (2.11)

i.e. the componentwise minimum between v and w.

We introduce the following useful properties.

Proposition 2.32. Given any vectors v, w ∈ Rn
>0, any matrix A ∈ Rn×n

≥0 and
any λ > 0, we have

(1) gv+w = gv + gw;

(2) gλv = λgv;

(3) gv∨w = gv □ gw (infimal convolution of primal norms is a primal norm);

(4)
(
∀x ∈ Rn

≥0, gv(Ax) ≤ gw(x)
)
⇔ A⊤v ≤c w.

Proof. Items (1), (2) and (4) follow directly from Definition 2.30 and 2.31.
For Item (3), we need to prove that

Bgv∨w = Bgv □ gw ,
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using the correspondence between norms and unit balls in Lemma 1.21. By
Lemma 1.23, we know that Bgv □ gw = Bgv □ Bgw . We thus need to prove
that

Bgv∨w = conv{Bgv ∪Bgw},

then the result follows from the correspondence between norms and their
unit balls, see Lemma 1.21.

(⊂): Without loss of generality, consider x ∈ Bgv∨w such that gv∨w(x) =
1, i.e. ∑i min{vi, wi}xi = 1. Define the index sets

Iv := {i ∈ {1, . . . , n} | vi < wi},
and Iw := {i ∈ {1, . . . , n} | wi ≤ vi},

and the states

x1 :=
∑i∈Iv xiei

∑i∈Iv xivi
and x2 :=

∑i∈Iw xiei

∑i∈Iw xiwi
.

Note that, by definition, gv(x1) = 1 and gw(x2) = 1. Consider the positive
scalar λ = ∑i∈Iv xivi, we have that 1− λ = ∑i∈Iw xiwi, since

∑
i∈Iv

xivi + ∑
i∈Iw

xiwi = ∑
i

xi min{vi, wi} = 1.

Now, computing, we have λx1 +(1−λ)x2 = x, proving that x ∈ conv{Bgv ∪
Bgw}.

(⊃): The inclusions Bgv ⊂ Bgv∨w and Bgw ⊂ Bgv∨w are trivial. Consider
thus y ∈ Bgv , z ∈ Bgw (i.e. ∑i viyi ≤ 1 and ∑i wizi ≤ 1) and any λ ∈ [0, 1].
Computing

∑
i

min{vi, wi}(λyi + (1− λ)zi) ≤ ∑
i

viλyi + wi(1− λ)zi),

= λ ∑
i

viyi + (1− λ)∑
i

wizi,

≤ 1,

concluding the proof.

In the next proposition, we provide the corresponding properties for dual
copositive norms, and moreover we show how, thanks to the convex-duality
theory summarized in Section 1.2, we can derive them from Proposition 2.32
for primal norms.
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Proposition 2.33. Given any v, w ∈ Rn
>0, any A ∈ Rn×n

≥0 , any λ > 0 we have

(1d) g⋆v+w = g⋆v ♯ g⋆w (inverse summation of dual norms is a dual norm) ;

(2d) g⋆λv = 1
λ g⋆v ;

(3d) g⋆v∨w = max{g⋆v , g⋆w} (max of dual norms is a dual norm);

(4d)
(
∀x ∈ Rn

≥0, g⋆v(Ax) ≤ g⋆w(x)
)
⇔ Aw ≤c v.

Proof. Combining Proposition 2.32 and Lemma 1.27, we can directly prove
Items (1d), (2d) and (3d). For Item (4d), we combine Proposition 2.32 and
Lemma 1.28, which concludes the proof.

In estimating the JSR of a set of non-negative matricesA = {A1, . . . AM} ⊂
Rn×n
≥0 , we define the JSR approximations using both linear copositive tem-

plates P and D, already introduced in [PJB10].

Definition 2.34 (Primal/dual linear copositive JSR approximation). Given
a finite set of matrices A := {A1, . . . , AM} ⊂ Rn×n, the (common) primal
linear copositive approximation of the JSR, denoted by ρP (A) is defined as

ρP (A) := inf
v∈Rn

>0,γ≥0
γ

A⊤i v− γv ≤ 0, ∀i ∈ ⟨M⟩.
(2.12)

Similarly, the (common) dual linear copositive approximation of the JSR, de-
noted by ρD(A), is defined as

ρD(A) := inf
v∈Rn

>0,γ≥0
γ

Aiv− γv ≤ 0, ∀i ∈ ⟨M⟩.
(2.13)

Intuitively, ρP (A) represents the best estimate of the joint spectral radius
of A one can obtain considering common copositive primal Lyapunov norms,
recall Item (4) of Proposition 2.32. Again, ρD(A) represents the best bound
on the JSR of A considering common dual copositive Lyapunov norms, recall
Item (4d) of Proposition 2.33.

We provide approximation guarantees on the JSR approximations pro-
vided by the linear copositive templates.

Theorem 2.35 ([PJB10]). Consider A := {A1, . . . , AM} ⊂ Rn×n
≥0 . We have

1. 1
n ρP (A) ≤ ρ(A) ≤ ρP (A),
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2. 1
n ρD(A) ≤ ρ(A) ≤ ρD(A),

3. ρP (A) = ρD(A⊤).

Proof. For Item 1. see [PJB10, Theorem 2.6]. Item 3. follows by definition,
and finally Item 2. follows by Items 1. and 3. recalling that transposition
of matrices does not modify the JSR, i.e. ρ(A) = ρ(A⊤).

Finally, the following lemma is a particular case of Lemma 1.29 for the
template of primal linear copositive norms.

Corollary 2.36. If v1, w1, v2, w2 ∈ Rn
>0 and A ∈ Rn×n

≥0 . Then

(∀ x ∈ Rn
≥0, min{gv2(Ax), gw2(Ax)} ≤ min{gv1(x), gw1(x)})

⇓
( ∀ x ∈ Rn

≥0, gv2∨w2(Ax) ≤ gv1∨w1(x) ).

Proof. We recall that level sets of a pointwise-minimum function f := min{ fa, fb}
are union of levels sets of fa and fb. We thus need to prove that x ∈
Bgv1

∪Bgw1
⇒ Ax ∈ Bgv2

∪Bgw2
implies x ∈ Bgv1∨w1

⇒ Ax ∈ Bgv2∨w2
.

Consider x ∈ Bgv1∨w1
, recalling proof of Item ((3)) in Proposition 2.32,

we know that x ∈ conv{Bgv1
∪Bgw1

} i.e. there exist x1, x2 ∈ Bgv1
∪Bgw1

,
and λ ∈ [0, 1] such that x = λx1 + (1− λ)x2. Computing

Ax = Aλx1 + A(1− λ)x2 = λAx1 + (1− λ)Ax2.

Since Ax1, Ax2 ∈ Bgv2
∪ Bgw2

, we have proved that Ax ∈ conv(Bgv2
∪

Bgw2
) = Bgv2∨w2

, concluding the proof.

This result will be used to prove Theorem 7.43.
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3
Approximation of the JSR

using polytopic norms

INSPIRED by the theoretical guarantees on the JSR approximation in The-
orems 2.21 and 2.29 using respectively quadratic norms and SOS poly-
nomials, we aim at exploiting Proposition 2.5 for the particular case of

polytopic norms. This template has already been widely used to compute
Lyapunov functions, such as in [AJ19, WJ20, BS23] for instance. In partic-
ular, the polytopic template has been investigated to approximate the joint
spectral radius in [GWZ05, GZ08, JCG14].

The use of this template is motivated and justified by its flexibility since
it is well known that any convex body can be approximated arbitrarily
closely by a polytope. Unfortunately, this flexibility comes at the price of a
greater complexity than the templates we have discussed in Section 2.2, as
summarized in Sections 3.1 and 3.2 . In particular, the representation com-
plexity of polyhedra and polytopes does not only depend on the dimen-
sion, as it is the case for quadratic norms, but it depends on the number of
faces/vertices. Moreover, finding a (common) polytopic Lyapunov func-
tion involves solving a bilinear program, which is generally hard to solve
computationally.

In this chapter, we derive approximation guarantees similar to Theo-
rems 2.21, 2.29 and 2.35 for the template of polytopic norms as a function
of the number of faces/vertices of the corresponding polytope. To the best
of our knowledge, such approximation guarantees have not been derived
so far for the specific template of polytopic norms.
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3.1 Polytopes and continuous piecewise linear functions

In this section, we introduce and summarize classical results on polyhe-
dral and polytopic subsets, and their dual hyperplane and vertex repre-
sentations. This section is mainly based on [BM07, Chapters 3 and 4] and
[Roc70, Section 19].

Definition 3.1 (H-representation of a polyhedral set). A convex polyhedral
set S ⊆ Rn is defined as the intersection of finitely many halfspaces, i.e.

S := P(F, g) = {x ∈ Rn | Fx ≤c g} ,

=
s⋂

i=1
{x ∈ Rn | Fix ≤ gi} , (3.1)

where g ∈ Rs and Fi denotes the i-th row of the matrix F ∈ Rs×n. Equa-
tion (3.1) is referred as the hyperplane or H-representation of a polyhedral
set.

A polyhedral set contains the origin if and only if g ≥c 0, and contains
the origin in its interior if and only if g >c 0. In this case, we can assume
without loss of generality that g = 1, where 1 denotes the vector with all
components equal to 1. In this case, the polytope P(F, 1) is denoted by
P(F). Moreover, a symmetric polyhedral set P(F, g) can be represented in
the form

P(F, g) := {x ∈ Rn | |Fx| ≤ g} . (3.2)

Similarly, a symmetric polyhedral set P(F, 1) is denoted by P(F).

In Definition 3.1, a polyhedral set is defined by its H-representation, i.e.
as a intersection of a finite collection of halfspaces. Equivalently, one can
define the dual V-representation of a polyhedral set.

Definition 3.2 (V-representation of a polyhedral set). A convex polyhedral
set S ⊆ Rn admits a vertex or V-representation of the form

S := V(Xw, Xy) =

{
x = Xww + Xyy

∣∣∣ q

∑
i=1

wi = 1, w, y ≥c 0

}
, (3.3)

where the columns of the matrix Xw ∈ Rn×q represent the set of finite
vertices while those of the matrix Xy ∈ Rn×p represent the set of infinite
directions or rays.
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In the symmetric case, the following representation holds

V(Xw, Xy) :=

{
x = Xww + Xyy |

p

∑
i=1
|wi| = 1, y arbitrary

}
,

where the vertices are given by the columns of Xw and their opposite, as
for the infinite directions and Xy.

Polyhedral sets are closed and convex by definition, but they might not
be bounded. This observation motivates the introduction of polytopes.

Definition 3.3 (Polytope). A polytope is the convex hull of a finite set of
points.

Thanks to Weyl–Minkowski’s theorem, there is an equivalence between
polytope and bounded polyhedron.

Theorem 3.4 (Weyl–Minkowski’s theorem). Every polytope is a polyhedron.
Every bounded polyhedron is a polytope.

In particular, a necessary and sufficient condition for the V-representation
in Equation (3.3) to represent a polytope is that Xy = 0. Similarly, the
H-representation in Equation (3.2) represents a polytope if and only if the
matrix F has full column rank. Without loss of generality, the vertex rep-
resentation of a polytope which contains the origin in its interior can be
written in the form

V(X, c) :=
{

x = Xw | c⊤w ≤ 1, w ≥c 0
}

where X ∈ Rn×q, q ≥ n + 1, rank(X) = n and c >c 0. Polytopes of the
form V(X, 1) will be denoted by V(X), while symmetric polytopes are de-
noted by V(X, c) and V(X).

The class of polyhedral sets is closed under basic operations already
considered in Section 1.2.

Proposition 3.5. If A and B are (symmetric) polyhedra, λ ≥ 0, and f is an linear
map then:

1. The image f (A) is a (symmetric) polyhedron;

2. The scaled set λA is a (symmetric) polyhedron;

3. A ∩ B is a (symmetric) polyhedron;
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4. The sum A + B is a (symmetric) polyhedron;

5. The convex hull of the union, i.e. conv(A∪ B), is a (symmetric) polyhedron.

The same properties hold for polytopes.

Proof. Items 1. and 2. directly follow from the H and V representations of
polyhedral sets.

3. This property directly follows from the H-representation of poly-
hedral sets, since the intersection of two polyhedra is the set of points in
Rn which satisfy all inequalities associated to both polyhedra. Indeed, if
A = P(FA, gA) and B = P(FB, gB), then

A ∩ B = P

[FA

FB

]
,

gA

gB

 .

4. For brevity, we assume that A := V(XA) and B = V(XB) are poly-
topes. In this case, the sum is the polytope defined as

A + B := V(XAB)

where XAB is obtained by adding a vertex of A and a vertex of B in pairs
in all possible ways. In particular, a vector x ∈ A + B if it is of the form

x := XAwA + XBwB = ∑
i

XA
i wA

i + ∑
j

XB
j wB

j ,

where
∑

i
wA

i = 1, ∑
j

wB
j = 1, and wA

i , wB
j ≥ 0.

Then,
x = ∑

ij
XA

i wA
i wB

j + ∑
ij

XB
j wA

i wB
j ,

= ∑
ij

wA
i wB

j (XA
i + XB

j ),

:= XABwAB,

where the vectors wAB are of the form wA
i + wB

j ≥c 0, and ∑k wAB
k = 1.

Therefore A + B ⊆ V(XAB), the convex hull of all the points XA
i + XB

j . On

the other hand, all these points belong to the sum since both XA
i and XB

j

do, then conv{A + B} = V(XAB). Since A + B is a convex set, A + B =

conv{A + B} which ends the proof.
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5. Here again, only the case of bounded polyhedra is considered for
brevity. The convex hull of the union is the convex hull of all the vertices
of A and B. Therefore,

conv{A ∪ B} = V
([

XA XB
])

.

We claimed that there is a duality between H and V-representations of
polytopes. The following proposition formally explains their dual relation.

Proposition 3.6. Consider a polytope P = P(F) = V(X) including the origin
as an interior point and its polar set P◦. Then the following properties hold:

P(F)◦ = V(F⊤) and V(X)◦ = P(X⊤).

Proposition 3.6 implies in particular that, for any polytope which includes
the origin in its interior with np planes and nv vertices, the polar P◦ has
exactly n◦p = nv planes and n◦v = np vertices. However, passing from
a representation to the other, namely determining the vertices from the
planes and vice-versa, cannot be done easily, especially in high dimension.
Moreover, the algorithms which involve polyhedra computations are usu-
ally very demanding in terms of computational complexity. Therefore, it is
often recommended to work with minimal representations to keep the com-
plexity as low as possible.

Definition 3.7 (Minimal representation). A plane or vertex representation
is minimal if and only if there is no other representation of the same set
involving a smaller (with respect to dimensions) F or X.

Minimal representation of a set can be achieved by removing all the “re-
dundant” planes (vertices) from the plane (vertex) representation, which
requires the resolution of a linear programming problem. Therefore, com-
puting a minimal representation also turns out to be a computational de-
manding task.

Therefore, we define the H-complexity index of a polyhedral set as the num-
ber of rows of the matrix F in the H-representation in Equation (3.1), or sim-
ilarly the V-complexity index as the number of vertices in the V-representation
in Equation (3.3). By duality, none of these representations can be consid-
ered as more convenient than the other in general. When the two complex-
ity indices can be used interchangeably, we speak of the complexity of the
polytope.
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In what follows, we consider polytopes which contains the origin in
their interior, of the form

S := {x ∈ Rn | Gx ≤ w},

with G ∈ Rm×n, m ≥ n + 1, rank(G) = n and w > 0. The dual equivalent
representation of S is

S := {Vy | c⊤y ≤ 1, y ≥c 0},

where V ∈ Rn×q, q ≥ n + 1, rank(V) = n and c > 0. Using the Minkowk-
si/gauge function in Definition 1.20, these polytopic sets can be written as
the 1-sublevel set of the function

V(x) := max
i=1,...,m

{
(Gx)i

wi

}
, (3.4)

or, equivalently,
V(x) := min

y≥0

{
c⊤y | x = Vy

}
. (3.5)

These functions are called convex continuous piecewise linear functions.

Definition 3.8 (Convex continuous piecewise linear function). Given a poly-
tope S which contains the origin in its interior, a convex continuous piecewise
linear function is defined as the Minkowski function of the form of Equa-
tion (3.4) or equivalently Equation (3.5). The number of pieces of a convex
continuous piecewise linear functions is defined as the H-complexity of
the underlying polytope.

In practice, these functions admit an underlying polyhedral covering of
the state space and the functions differ over each region while guarantee-
ing the continuity on the boundary. We can therefore define continuous
piecewise linear functions by relaxing the convexity property.

Definition 3.9 (Continuous piecewise linear function). A function f : Rn →
R is continuous piecewise linear (CPWL for short) if there exists a finite set of
d ∈N polyhedra whose union is Rn, and f is linear over each polyhedron.
The number of pieces of f is the smallest d ∈ N for which such a covering
exists.

A continuous piecewise linear function can be proved to be written as the
difference of two convex continuous piecewise linear functions, as stated
below.
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Proposition 3.10 (Proposition 4.3. in [HBDSS21]). Let f : Rn → R be a
CPWL function with p linear pieces. Then, f can be written as f = g− h where
both g and h are convex CPWL functions with at most p2n+1 pieces.

Note that the notion of CPWL function in Definition 3.9 can be generalized
to the notion of continuous piecewise affine (CPWA for short) functions
for which the function is affine over each cell of the polyhedral covering.
Moreover, Proposition 3.10 holds for CPWA functions and convex CPWA
functions respectively.

3.2 Computation technique

In this section, we explain how to compute numerically a (common) poly-
topic Lyapunov norm by translating Lyapunov inequalities in bilinear ma-
trix inequalities. Due to their computational complexity, we derive similar
results for the particular case of symmetric polyhedra, which only require
the resolution of a linear program. This section summarizes the results in
[BM07, Chapters 3 and 4] and [AJ19].

First, the following result provides an interesting condition to check the
inclusion between two polyhedra.

Lemma 3.11. The inclusion

P(F(1), g(1)) ⊆ P(F(2), g(2)) (3.6)

holds if and only if there exists a nonnegative matrix H such that

HF(1) = F(2),
Hg(1) ≤ g(2).

(3.7)

Proof. Let us assume first that the inclusion in Equation (3.6) holds. In
this case, if we denote F(k)

i the i-th row of matrix F(k), the solution of the
following linear program

µi := max
x

F(2)
i x

s.t. F(1)x ≤ g(1)

satisfies that µi ≤ g(2)i . We consider the dual of this program, i.e.
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µi := min
h

hg(1)

s.t. hF(1) = F(2)
i ,

h ≥ 0

and we denote h(i) the nonnegative row vector which is solution of the
dual. Then, the square matrix H whose i-th row is h(i) satisfies the condi-
tions in Equation (3.7).

Conversely, let us assume that a nonnegative matrix H satisfies the con-
ditions in Equation (3.7). For all x ∈ Rn such that F(1)x ≤ g(1),

F(2)x = HF(1)x,

≤ Hg(1),

≤ g(2),

which ends the proof.

Lemma 3.11 admits “a dual version” which involves the vertex represen-
tation of polytopes.

Corollary 3.12. The inclusion

V(X(1), c(1)) ⊆ V(X(2), c(2))

holds if and only if there exists a nonnegative matrix P such that

X(2)P = X(1),

c(2)
⊤

P ≤ c(1)
⊤

.

The two previous results can be used to characterize Lyapunov inequalities
when the Lyapunov function is defined as the Minkowski function of a
polytope. This leads to the following theorem.

Theorem 3.13. Consider two polytopes which admit the origin in their interior,
denoted by Sd,Ss ⊂ Rn with matrices Gd ∈ Rmd×n and Gs ∈ Rms×n, and
Xd ∈ Rn×qd and Xs ∈ Rn×qs and vectors wd, ws, cd, cs. Consider λ > 0,
a matrix set A := {A1, . . . , AM} ⊂ Rn×n, and i ∈ ⟨M⟩. The following are
equivalent:

(i) Vd(Aix) ≤ λVs(x);

(ii) There exists a nonnegative matrix H ∈ Rmd×ms , such that Gd Aσ = HGs
and Hws ≤ λwd;
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(iii) There exists a nonnegative matrix P ∈ Rqd×qs such that AσXs = XdP and
cd
⊤P ≤ λcs

⊤.

Unfortunately, the matrix inequalities involved in Theorem 3.13 are diffi-
cult to solve numerically since bilinear matrix equations appear in both H
and V representations. However, it turns out that these inequalities are
simplified when symmetric polytopes are considered.

Corollary 3.14. Consider two symmetric polytopes which admit the origin in
their interior, denoted by Sd,Ss ⊂ Rn with matrices Gd ∈ Rn×n and Gs ∈
Rn×n, and Xd ∈ Rn×n and Xs ∈ Rn×n and vectors wd, ws, cd, cs. Consider
λ > 0, a matrix set A := {A1, . . . , AM} ⊂ Rn×n, and i ∈ ⟨M⟩. The following
are equivalent:

(i) Vd(Aix) ≤ λVs(x);

(ii) |Gd AiGs
−1| ≤ λwd;

(iii) cd
⊤|Xd

−1 AiXs| ≤ λcs
⊤.

In this case, the conditions in Corollary 3.14 can be verified by solving a
linear program for a given choice of the matrices G and V.

3.3 Approximation guarantees on the JSR

In the previous sections, we have emphasized that the representation com-
plexity of polyhedral sets, contrary to ellipsoidal sets, does not only de-
pend on the space dimension, but may be arbitrarily high. The counterpart
of the computational burden of polyhedral sets, summarized in Section 3.1,
is their flexibility. Indeed, any convex and compact set can be approxi-
mated arbitrarily closely by a polyhedron, see [Lay44]. In particular, if S is
a convex compact set with the origin in its interior, then for all 0 < ε < 1
there exists a polytope P such that

(1− ε) P ⊆ C ⊆ P.

In this section, we aim to provide approximation guarantees on the poly-
topic approximation of the JSR as a function of the complexity of the poly-
tope, i.e. the number of planes/vertices.
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First, let us define formally the polytopic approximation of the joint
spectral radius of H-complexity (resp. V-complexity) d.

Definition 3.15 (Polytopic approximation of the JSR). Given a finite set of
matrices A := {A1, . . . , AM} ⊂ Rn×n, the (common) polytopic approxima-
tion of the JSR of H-complexity d, denoted by ρPOLH ,d(A) is defined by

ρPOLH ,d(A) := inf
P∈POLH(n,d)

max
A∈A

∥A∥P , (3.8)

where POLH(n, d) refers to the set of polytopes P ⊆ Rn of H-complexity
d at most, and ∥·∥P denotes the corresponding polytopic norm in Equa-
tion (3.4). Similarly, ρPOLV ,d(A) denotes the (common) polytopic approxi-
mation of the JSR of V-complexity d.

Similarly to Lemma 2.20 for the quadratic and SOS template respec-
tively, the following result (Theorem 1.1 in [Bar13]) discusses the approxi-
mation power of a convex set by a polytope as a function of the dimension
and the number of vertices of the polytope. Using duality, we can prove
the similar result to get a bound on the required number of faces for the
approximating polytope, rather than the vertices.

Lemma 3.16. Let n and k be two positive integers and τ > 1 be a real number
such that (

τ −
√

τ2 − 1
)k

+
(

τ +
√

τ2 − 1
)k
≥ 6 D(n, k)1/2, (3.9)

where

D(n, k) :=
⌊k/2⌋

∑
m=0

(
n + k− 1− 2m

k− 2m

)
. (3.10)

Then, for any symmetric, compact and convex set C ⊆ Rn with non-empty
interior (and therefore containing the origin), there exists a symmetric polytope
P ⊆ Rn with complexity at most 8D(n, k) such that

P ⊂ C ⊂ τP. (3.11)

Proof. The theorem is initially stated in [Bar13, Theorem 1.1] with a bound
on the number of vertices of the polytope. We derive below the same result
with a bound on the number of facets using duality, which ends the proof.

Consider a symmetric, compact and convex set K with non empty inte-
rior in dimension n ∈ N, a precision τ > 1 and an integer k ∈ N which
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satisfies Equation (3.9). The polar of C, denoted by C◦, retains its origi-
nal properties. By Lemma 3.16, there exists P̃ ⊂ Rn with at most 8D(n, k)
vertices such that

P̃ ⊆ C◦ ⊆ τP̃.

By Lemma 1.25, we have

(τP̃)◦ ⊆ C◦◦ ⊆ P̃◦,

⇔ 1
τ

P̃◦ ⊆ C ⊆ P̃◦,

where P̃◦ has as many facets as P̃ has vertices, recalling Proposition 3.6.
Posing P := 1

τ P̃◦ ends the proof.

In [Bar13, Corollary 1.2], the authors provide a corollary of Lemma 3.16
where they take τ arbitrarily close to 1; This result is recalled below.

Corollary 3.17. For any n ∈ N any symmetric, compact and convex set C ⊆
Rn with non-empty interior, there exists a symmetric polytope P ⊆ Rn with at
most γ(n)ε−(n−1)/2 vertices (resp. faces) which approximates C within a factor
of 1 + ε, i.e.

(1 + ε) P ⊆ C ⊆ P,

where γ(n) is of the order nn/4.

Using Lemma 3.16, we can now derive theoretical approximation guar-
antees on the polytopic approximation of the JSR, as a function of the com-
plexity of the polytope.

Theorem 3.18. Let ρ(A) be the joint spectral radius of a finite set of matrices
A of dimension n ∈ N. For any τ > 1 and kτ ∈ N such that relation (3.9) is
satisfied, the following relation holds:

1
τ

ρPOLH ,d(A) ≤ ρ(A) ≤ ρPOLH ,d(A). (3.12)

where d := 8D(n, kτ) as defined in Equation (3.10). The same result holds for
ρPOLV ,d(A).

Proof. Consider a finite set of m matrices A := {A1, . . . , AM} ⊂ Rn×n of
dimension n ∈ N, and ρ(A) its joint spectral radius. By Proposition 2.8,
for any value ε > 0, there exists an ε-norm ∥·∥ε such that ∀i = 1, . . . , m

∀x ∈ Rn, ∥Aix∥ε ≤ (ρ(A) + ε) ∥x∥ε .
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This norm defines a convex set K ⊂ Rn (which contains the origin) that
can be approximated by a polytope. By Lemma 3.16, for any positive in-
teger d and any real number τ > 1 satifying Equation (3.9), there exists a
symmetric polytope P ⊂ Rn with at most 8D(n, k) vertices such that

P ⊆ K ⊆ τP.

Therefore, the norm ∥·∥τP whose 1-level set is τP, satisfies that for all x ∈
Rn,

∥x∥τP ≤ ∥x∥ε ≤ τ ∥x∥τP ,

and then for any i = 1, . . . , M and any x ∈ Rn:

∥Aix∥τP ≤ ∥Aix∥ε ,

≤ (ρ(A) + ε) ∥x∥ε ,

≤ (ρ(A) + ε) τ ∥x∥τP .

Then, ∥Ai∥τP ≤ (ρ(A) + ε)τ for all i = 1, . . . , m and for any ε > 0. There-
fore, at worst, we have that

1
τ

ρPOL,8D(n,kτ)(A) ≤ ρ(A) ≤ ρPOL,8D(n,kτ)(A),

where the second inequality follows directly from Proposition 2.5.

Therefore, by merging Theorem 3.18 and Corollary 3.17, this means that we
can approximate as close as possible the JSR using polytopic norms with
increasing number of vertices.

Using this theorem, we can compute an upper bound on the number
of program variables required to achieve a given precision τ as the number
of vertices multiplied by the dimension of the state space. In Figure 3.1,
we show the evolution, as a function of the dimension, of this number of
variables, for different values of τ. For the sake of comparing with the
performance of the SOS approximations of degree 3 and 4, we selected
τ = τSOS(n, d) in Equation (2.7) for d = 3 and d = 4, i.e. the approx-
imation guarantee using SOS polynomials of degree 6 and 8 recalled in
Theorem 2.29. These results show that for small dimensions, the poly-
topic approach requires slightly more variables than the SDP approach.
Conversely, when we consider higher dimensions, the trend is reversed.
These observations motivate the polytopic approach rather than the poly-
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Fig. 3.1 Evolution, as a function of the dimension (n), of the number of
variables required to achieve precision values τ on the JSR approximation
with the polytopic approach (dashed line) and with the SOS approach (con-
tinuous line). In blue, τ = τSOS(n, 3), in red, τ = τSOS(n, 4). These values
are the minimal required accuracy to outperform the guarantee in Equa-
tion (2.7) for, respectively, degree-3 and -4 SOS polynomials. One can see
that for large values of n, the polytopic approximation needs far fewer vari-
ables, for any given precision.

nomial approach since we need less variables in high dimension. However,
computation methods rapidly suffer from the curse of dimensionality: the
complexity is polynomial for SDPs while it is exponential for the poly-
topic norms, which necessitates solving a bilinear program as previously
explained. For this reason, we will investigate in the following Chapters 4
and 5 generating polytopic approximations provided by ReLU neural net-
works.
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3.4 Summary

This section introduces a new template for candidate Lyapunov functions,
namely the polytopic norms.

Summary of Chapter 3

This chapter tackles the design of Lyapunov functions and in
particular the approximation of the joint spectral radius using
polytopic norms.

Section 3.1: Polytopes and continuous piecewise linear functions
In this section, we provide a summary of polyhedral and

polytopic sets, their closure properties and the polar duality be-
tween their H and V-representations. Based on this, we define the
complexity index of a polytope as the number of its faces/vertices.

Section 3.2: Computation technique
We show in this section that finding a common polytopic norm

amounts to the resolution of a bilinear program which is usually
computationally expensive. This cost is greatly reduced when
symmetrical polytopes are considered.

Section 3.3: Approximation guarantees on the JSR
We tackle the approximation of the JSR using polytopic norms.

In this setting, we have provided guarantees on this approximation,
which demonstrate that it is possible to approximate as closely as
possible the JSR by increasing the number of vertices of the poly-
tope. These guarantees are competitive with classical SDP-based
Lyapunov approaches in terms of number of decision variables.

Although this template is highly flexible and therefore very powerful, its
use is generally limited by its computational cost. The following two chap-
ters try to overcome this drawback, and focus on the synthesis of Lyapunov
functions using neural networks. In particular, polytopic Lyapunov func-
tions can be represented by ReLU-activated neural networks. Moreover,
Theorem 3.18 will prove useful to derive a bound on the network’s size
(width and detph) to achieve a given precision on the joint spectral radius
approximation.
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FOR several decades now, it has been known that neural networks pro-
vide a powerful framework for achieving a wide range of different
tasks, such as classification [Zha00], facial recognition [GZ19], lan-

guage processing [OMK21], etc. Therefore, their empirical effectiveness
made them popular. However, although they have proved their worth in
practice, our deep understanding of neural networks remains limited, and
some theoretical explanation is still missing. These applications stem from
approximating [Cyb89, Hor91, AB99, LS17] an unknown function from
data observations. Then, their success on challenging tasks must rely on
their ability to produce complex functions. The representation power of
neural networks [LPW+17, ABMM18, HBDSS21, DK22], which is the sub-
ject of this chapter, emerges as a central element that helps us understand
them better.

We begin with a formal introduction of feedforward neural networks. Then,
we consider two sorts of activation functions. We first introduce the polyno-
mial activation functions which allow us to represent polynomials. Secondly,
we review recent results about the representation power of ReLU neural net-
works which encode continuous piecewise linear functions. In particular, we
investigate the set of functions which are representable by a neural network
with respect to their structure, i.e. the number of layers and neurons in
each of them.
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4.1 Introduction to neural networks

A neural network involves several components, that are layers of neurons,
weights, biases, activation function and a learning rule. In particular, a neuron,
that is the fundamental unit of a neural network, receives input which are
multiplied by the adjacent weights, adds them up and this sum is finally
passed through the activation function.

Definition 4.1 (Feedforward neural network). A (L + 1)-layer feedforward
neural network with L ∈ N hidden layers is defined by L affine transfor-
mations T(j) : Rnj−1 → Rnj , x 7→ W(j)x + b(j) for j ∈ ⟨L⟩, and a linear
transformation T(L+1) : RnL → RnL+1 , x 7→ W(L+1)x. The network repre-
sents the function NN : Rn0 → RnL+1 given by

NN(·) := T(L+1) ◦ σ ◦ · · · ◦ T(2) ◦ σ ◦ T(1)(·), (4.1)

where

(a) the function σ(·) is called the activation function and is applied com-
ponentwise;

(b) the matrices W(l) and the vectors b(l) are respectively called the weights
and the biases of the l-th layer ;

(c) nl is the width of the l-th layer, and the maximum width of all the
hidden layers is called the width of the neural network;

(d) the depth of the network is the number of hidden layers, that is L + 1.

Figure 4.1 provides an illustration of a neural network. Note that we as-
sume by definition that the last layer of a neural network is activation-free
and without biases.

Inspired by [HBDSS21, Definition 2.2], we define the notion of homoge-
nized neural network.

Definition 4.2. For a neural network given by affine transformations T(l)(x) =
W(l)x + b(l), we define the corresponding homogenized neural network given
by T̃(l)(x) = W(l)x with all biases set to zero.

This notion will prove useful later in this chapter, in particular for demon-
strating that there is no loss of generality in considering bias-free neural
networks to represent candidate Lyapunov functions.
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Fig. 4.1 Illustration of a (L + 1)-layer neural network. The input layer
admits 3 neurons, the output layer 2 neurons and all the other layers admit
4 neurons. The depth of this network is L + 1 while the width is 4.

A neural network can be seen as a multivariate function which depends
on its weights and biases. And therefore, determining these parameters
amounts to determining the function represented by the network. Various
methods can be used, but this is generally done iteratively, with an objec-
tive to reach; we usually speak of the training of the network. Although
there are several training methods (see [SP24] for instance), the most clas-
sical of them, which we will use in this thesis, exploits gradient descent.

We first need to quantify how good this function is performing a given
task with respect to a given set of data points. This is done by defining a
loss function whose minimization is the objective of the learning or training
process. In practice, the gradient descent is used to reduce this loss function
by adjusting all the variables based on the corresponding partial derivative
of the loss function. Two basic learning approaches can be identified from
their loss function.

- In supervised learning, the training is guided by a supervisor which
has access to the pairs input-output. The loss function usually com-
pares the neural prediction with the correct answer and is interpreted
as the error. Then, we iteratively update the parameters of the net-
work and we stop the training when the precision threshold is reached.
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- When the training is unsupervised, no supervisor is provided so that
we do not know the correct output. Therefore the objective of the un-
supervised learning is to identify patterns, underlying structure from
the data without explicit guidance.

In a nutshell, the training involves three steps, namely the forward prop-
agation, the loss calculation and the backpropagation using gradient descent.
The forward propagation refers to the calculation and storage of intermediate
variables (including outputs) for a neural network in order from the input
layer to the output layer. Input data is fed into the network and passed
through various layers: each neuron in these layers processes the input and
iteratively passes it to the next layer, ultimately leading to the output layer.
Backpropagation, on the other hand, is the learning phase. Once the forward
propagation is complete and an output is produced, one can compute the
loss function which is then used to adjust the network’s weights and bi-
ases. This process is iterative and involves moving backward through the
network to compute the gradient of neural network parameters. In short,
the method traverses the network in reverse order, from the output to the
input layer, according to the chain rule from calculus.

Note that several variants of gradient descent have been introduced
in recent years, such as the stochastic gradient descent which computes a
stochastic approximation of the gradient based on a randomly subset of
the sample points. Adam, introduced in [KB15], and all its variants [LH17],
are currently the most efficient algorithms.

4.2 Representation power of neural networks

The approximation capabilities of neural networks have been studied for
years in the literature. Previous works focused on the network’s architec-
ture, meaning the ability for a neural network to approximate as close as
desired a given function according to its depth and its width. It is well
established [Cyb89, Hor91, AB99, LS17] that single layer networks can ap-
proximate arbitrarily well any continuous functions. But it does not pro-
vide insights into the class of functions which can be exactly represented.

In this section, we discuss the representation power of neural networks, as
we aim to establish an exact representation of a function. In other words, we
study the relation between the architecture of a network and its represen-
tation capabilities. We focus in particular on the representation of Lyapunov
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functions, i.e. continuous, positive definite and homogeneous functions by
Definition 1.10. In this section, we consider two types of activation func-
tions, namely the polynomial and Rectified Linear Units activation functions.
Even though recent research has focused on the representation power of
these networks, it remains a challenging question.

4.2.1 Polynomial activation function

We begin by considering the simplest case of polynomial activation func-
tions, that is the square activation function.

Definition 4.3 (Square activation function). The square activation function is
the component-wise square function, i.e.

σ2(x) :=
(

x1
2, . . . , xn

2
)

.

Then, a neural network with square activation functions, so-called a square
neural network, is a consecutive composition of affine maps and component-
wise square functions. Any function represented by such a network is
therefore a polynomial whose degree d directly depends on the number
of hidden layers L through the relation d = 2L.

As previously mentioned, we want to study the capabilities of a square
neural network to represent quadratic Lyapunov functions. Therefore the
represented function must be a scalar function defined on Rn. This means
in practice that the input layer admits n neurons and the output layer 1
single neuron.

As first example, let us consider a square neural network with 1 layer
of p neurons. In this case, there exists W(1) ∈ Rp×n, W(2) ∈ R1×p and
b(1) ∈ Rp such that

NN(x) :=
p

∑
i=1

W(2)
i

(
n

∑
j=1

W(1)
ij xj + b(1)j

)2

.

The represented function is then a quadratic form, defined as the weighted
sum of affine maps squared. In this setting, can we derive a lower bound
(probably depending on the dimension n of the system) on p (i.e. the num-
ber of neurons) such that the network is able to generate all the positive
definite quadratic forms? Using the Cholesky decomposition, we can prove
that each positive definite quadratic form in dimension n can be written as
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the sum of n squared linear combinations of x. This result is summarized
in the following theorem called Sylvester’s Theorem.

Theorem 4.4 (Sylvester’s Theorem). Any positive definite quadratic form (2.3)
can be written as

p(x1, . . . , xn) =
n

∑
k=1

(wk,k xk + wk,k+1 xk+1 + · · · + wk,n xn)
2 .

Proof. Consider p(x) := x⊤Qx with Q ∈ Rn×n is a symmetric positive
definite matrix. Using the Cholesky decomposition, there exists a lower
triangular matrix L ∈ Rn×n such that Q = LL⊤. Therefore,

p(x) = x⊤LL⊤x,

=
n

∑
k=1

(
L⊤x

)
k

2
,

=
n

∑
k=1

(Lkk xk + Lk+1,k xk+1 + . . . + Ln,k xn)
2 ,

which ends the proof.

We can deduce a few interesting facts from Theorem 4.4. In the context of
representing a quadratic Lyapunov function with a 1-layer neural network,
we can first assume without loss of generality that all the biases are set at 0.
Moreover, we can assume that all the output weights are fixed at 1 without
modifying the representative power of the square neural network. Finally,
we can provide an upper bound on the width of the network to be able to
represent any quadratic Lyapunov function. The result is summarized in
the following theorem.

Theorem 4.5. Any positive definite quadratic form in dimension n ∈ N can be
represented by a square neural network with 1 layer of width n at most.

Let us now consider a square neural network with 2 hidden layers and
a single output. In this case, the represented function is of the form

NN(x) :=
p2

∑
i=1

W(3)
i

 p1

∑
j=1

W(2)
ij

(
n

∑
k=1

W(1)
kj xj + b(1)k

)2

+ b(2)j

2

,
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where W(1) ∈ Rn×p1 , W(2) ∈ Rp1×p2 , W(3) ∈ Rp2×1, b(1) ∈ Rp1 and
b(2) ∈ Rp2 , with p1 and p2 the width of layer 1 and 2 respectively. The
represented function is therefore a polynomial of degree 4, defined by con-
struction as the sum of squared polynomials of degree 2. We will prove
that, by considering a sufficiently wide square neural network with 2 hid-
den layers, it is possible to represent any SOS polynomial of degree 4.

Following the path of ideas in the proof of Theorem 4.4 and using the
Cholesky decomposition, we know that any SOS polynomial of degree 4
can be written as the sum of N := (n+1

2 ) squared homogeneous polyno-
mial of degree 2. This suggests that the width of the second layer should
be N at most, and that the output weights can be fixed at 1. As a conse-
quence, a square neural network with 2 hidden layers can represent any
SOS polynomial of degree 4 if and only if the first hidden layer can gen-
erate any homogeneous polynomial of degree 2. In other words, can any
polynomial of degree 2 be written as a weighted sum of squared affine
form of x? The following theorem initially stated in [BBS08] answers in the
affirmative.

Theorem 4.6 (Corollary 1 in [BBS08]). Let p(x) be a homogeneous polynomial
in dimension n of degree d. There exists N linear forms L1, . . . , LN such that
p(x) can be written as

p(x) :=
N

∑
i=1

αiLi(x)d.

Moreover, the number of terms in the sum is bounded by N ≤
(

n + d− 2
d− 1

)
.

This result implies a bound on the number of neurons required to express
each polynomial of degree 2 in the Cholesky decomposition. Moreover, it
suggests to fix the biases at 0 since the forms are linear.

Therefore, we can derive a bound on the structure of a square neural
network to be able to represent any SOS polynomial of degree 4.

Theorem 4.7. Any SOS polynomial of degree 4 in dimension n ∈ N can be
represented by a square neural network with 2 hidden layers of width

n1 :=
n2(n + 1)

2
and n2 :=

n(n + 1)
2

at most and unitary output weights.
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Proof. Consider an SOS polynomial p : Rn → R of degree 4. Using the
Cholesky decomposition, p can be written as the sum of n2 homogeneous
quadratic polynomials squared. Using Theorem 4.6, each of these polyno-
mials can be written as a weighted sum of squared linear forms. Then, the
second layer needs at most n2 neurons, and each of these neurons needs at
most (n

1) = n neurons. Then, the first layer needs as many neurons as the
product of these two numbers, i.e. n1 neurons.

Using similar arguments, we can prove that any SOS polynomial can
be represented by a neural network with 2 hidden layers. To this aim, we
need to introduce the polynomial activation functions.

Definition 4.8 (Polynomial activation function). The polynomial activation
function of degree d is the component-wise power function of degree d, i.e.

σd(x) :=
(

x1
d, . . . , xn

d
)

.

The following theorem provides a bound on the width of a polynomial
neural network to represent any SOS polynomial as a function of the di-
mension and the degree.

Theorem 4.9. Any SOS polynomial of degree 2d in dimension n ∈ N can be
represented by a neural network with 2 hidden layers of width

n1 :=
(

n + d− 1
d

)(
n + d− 2

d− 1

)
and n2 :=

(
n + d− 1

d

)
at most, unitary output weights and with σd and σ2 as activation functions re-
spectively.

Proof. Consider an SOS polynomial p : Rn → R of degree 2d ∈ N defined
by p(x) = (x[d])⊤Qx[d] where Q is a positive definite matrix. Using the
Cholesky decomposition, the polynomial p can be written as the sum of
squared linear combinations of the monomials of degree d, i.e. homoge-
neous polynomials of degree d. Moreover, this sum admits as many terms
as the dimension of x[d], i.e. (n+d−1

d ). Finally, using Theorem 4.6, each term
of this sum can be expressed as a linear combination of (n+d−2

d−1 ) linear forms
raised to the power d. The whole procedure is illustrated in Figure 4.2.
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(L⊤x[d])1
2

(L⊤x[d])n2

2

x1

··
·

xn

+ σd

+ σd

··
·

+ σd

+ σd

1

1

1

+ σ2

··
·

+ σ2

+

Fig. 4.2 Illustration of the procedure to represent any SOS polynomial
p : x ∈ Rn 7→ x⊤Qx with a polynomial neural network in Theorem 4.9.
Each term of the Cholesky’s decomposition (Q = LL⊤) is associated with
one neuron in the second hidden layer and requires several neurons in the
first hidden layer, as highlighted in bold.

4.2.2 ReLU activation function

In this section, we consider Rectified Linear Units activation functions. Those
networks have been widely used because they represent a large family of
functions using relatively few parameters. We summarize results from
the literature which show how structural properties of ReLU neural net-
works (in particular their width and their depth) affect their representa-
tion power. This question has recently been the subject of numerous stud-
ies; we refer in particular to the following references [LPW+17, ABMM18,
HBDSS21, DK22].

Let us begin with the formal definition of the ReLU activation function.

Definition 4.10 (ReLU activation function). The Rectified Linear Units (ReLU
for short) activation function is the component-wise rectifier function, i.e.

σ(x) = (max{0, x1}, . . . , max{0, xn}) .
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The following theorem not only states that every function represented by
a ReLU neural network is a continuous piecewise linear function but it
also proves that the reverse is also true, i.e. every CPWL function can be
represented by a ReLU neural network and a bound of the depth of this
network is also provided.

Theorem 4.11 (Theorem 2.1 in [ABMM18]). Every ReLU neural network NN :
Rn → R represents a piecewise linear function, and every piecewise linear func-
tion on Rn can be represented by a ReLU neural network with at most ⌈log2(n +

1)⌉+ 1 depth.

Remark 4.12. Note that the demonstration of Theorem 4.11 mainly relies on
two auxiliary and complementary results.

First, [WS05, Theorem 1] states that any piecewise linear (resp. affine)
function f : Rn → R can be expressed as

f :=
p

∑
j=1

sj

(
max
i∈Sj

li

)
,

where l1, . . . , lk are linear (resp. affine) functions and S1, . . . , Sp ⊆ ⟨k⟩ of
cardinality at most n + 1.

The second result concerns the minimal representation of the maximum
of a fixed number of scalars, i.e. the function

f (x) := max{x1, . . . , xk},

using a ReLU neural network. Initially, it is possible to represent the max-
imum of two numbers x1 and x2 with a ReLU neural network of a single
hidden layer of 3 neurons. By induction and using the associativity of the
maximum operation, the maximum of k numbers can be represented by a
ReLU neural network of depth ⌈log2(n)⌉+ 1 at most. Numerous articles
have focused on the conservatism of this bound, such as [MB17, ABMM18,
HBDSS21]. It is known that max{0, x1, x2} cannot be computed with 2 lay-
ers, while [HBDSS21, Theorem 2.5] states that the function max{0, x1, x2, x3,
x4} cannot be computed by a ReLU neural network with 3 layers, although
the authors require an additional assumption. To the best of our knowl-
edge, the question remains open for more than 5 numbers. △

Let us consider an example of a ReLU neural network to see how its
structure influences the represented function and the corresponding poly-
hedral partition of the state space.
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Example 4.13. Consider a ReLU neural network with an input layer of 2
neurons, two hidden layers of 3 neurons without biases and an output
layer of a single neuron such that the network represents a CPWL function
NN : R2 → R. We assume that the weight matrices W(1), W(2) and W(3)

are given by

W(1) :=

−v1−
−v2−
−v3−

 :=

 0.7 0.5
−0.2 −0.5
−0.5 0.4

 ,

W(2) :=

−w1−
−w2−
−w3−

 :=

 0.1 0.2 −0.5
−0.2 0.5 0.6
0.4 0.3 0.5

 ,

and
W(3) :=

[
c1 c2 c3

]
=
[
0.5 0.25 0.5

]
.

Each layer plays a different role in the underlying partition of the repre-
sented function, as illustrated in Figure 4.3. Let us take a closer look at the
effect of each layer.

The first layer of the network induces a global partition of the state
space, as shown in Figure 4.3a. Indeed, each neuron defines a half-space
where the ReLU activation function is activated, i.e.

{x ∈ R2 | σ(vix) > 0},

⇔ {x ∈ R2 | vix > 0}.

Then, the global partition is the outcome of the intersections of the 3 half-
spaces. In this example, the partition consists of 6 cells, 3 of which have
only one active neuron and the 3 others admit 2 active neurons.

Each cell of the global partition is then partitioned by the second layer,
as reflected in Figure 4.3b. Indeed, each neuron of the second layer com-
putes a linear combination of the active and inactive neurons of the first
layer, and then passes it through the ReLU activation function which de-
fines half-spaces, i.e.{

x ∈ R2 | wi(1)σ(v1x) + wi(2)σ(v2x) + wi(3)σ(v3x) > 0
}

where the active neurons of the first layer depend on the cell in Figure 4.3a.
Therefore, the intersection of those half-spaces refines each cell of the global
partition. The only cells that are not modified are the ones where a single
neuron of the first layer is active.
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(a) Global partition induced by the first
hidden layer. For each neuron, we
colour the portion of the state space
where it is active, i.e. σ(vix) > 0. We
identify 6 global cells, 3 of them where
a single neuron is active and the 3 oth-
ers where 2 neurons are simultaneously
active.

(b) Local refinement of the parti-
tion induced by the second hidden
layer. For each cell of the global
partition, we colour the portion of
the cell where each neuron is active,
i.e. σ (wi [σ(v1x); σ(v2x); σ(v3x)]) > 0.
We deliberately omit the cells where a
single neuron of the first layer is active.

Fig. 4.3 Illustration of the sublevel sets of the function represented by the
ReLU neural network with 2 hidden layers of 3 neurons in Example 4.13
and the corresponding partition of the state space.

The final partition involves 10 polyhedral cells over which the function
is linear such that the sublevel sets of the function are polytopes, as illus-
trated in Figure 4.3. △

While Theorem 4.11 provides a bound on the depth, it does not pro-
vide insights on the size of the corresponding network to represent a given
piecewise linear function. For n = 1, the following result provides a tight
bound.

Theorem 4.14 (Theorem 2.2 in [ABMM18]). Given any piecewise linear func-
tion f : R→ R with p pieces, there exists a 2-layer ReLU neural network with at
most p nodes that can represent f . Moreover, any 2-layer ReLU neural network
that represents f has size at least p− 1.

The problem has been further studied in [HBDSS21] to any dimension n ∈
N. First, the authors derive a similar result for the case of convex CPWL
functions, and then use it to generalize this result to the non-convex case
using Proposition 3.10.
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Theorem 4.15 (Theorem 4.2 in [HBDSS21]). Let f : Rn → R be a convex
CPWL function with p affine pieces. Then f can be represented by a ReLU neural
network with depth ⌈log2(n + 1)⌉+ 1 and width O(pn+1).

Theorem 4.16 (Theorem 4.4 in [HBDSS21]). Let f : Rn → R be a CPWL
function with p affine pieces. Then, f can be represented by a ReLU neural net-
work with depth ⌈log2(n + 1)⌉+ 1 and width O(p2n2+3n+1).

Remark 4.17. Note that these results follow the same philosophy as the re-
sults stated in [LS17]. However, Theorems 4.11, 4.15 and 4.16 discuss the
exact representation of CPWL functions by ReLU neural networks with re-
spect to their structures, whereas [LS17] is interested in their ε-close ap-
proximation capabilities. △

In order to represent candidate Lyapunov functions, that are especially
positively homogeneous functions by Definition 1.10, the following propo-
sition ensures that we can consider bias-free ReLU neural networks with-
out affecting their representation capabilities.

Proposition 4.18 (Proposition 2.3 in [HBDSS21]). If a ReLU neural network
computes a positively homogeneous function, then the corresponding homogenized
neural network computes the same function.

This proposition mainly rests on the positive homogeneity (of degree 1) of
ReLU activation function. This implies in particular that each output of
a ReLU neural network is positively homogeneous as well. Therefore, by
Proposition 4.18, we can consider a ReLU neural network without biases
while keeping the same expressitivity power.

4.3 Summary

With the aim of using neural networks to synthesize Lyapunov functions,
we focused in this chapter on their representation power. In particular, we
have expressed the class of functions that a network can represent with re-
spect to its structure, namely its depth and width, and the activation func-
tion.
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Summary of Chapter 4

In this chapter, we have studied and summarized recent results
on the representation power of polynomial and ReLU neural
networks, i.e. their capabilities on the exact representation of
polynomials and CPWL functions respectively. In particular, we
focused on the representation of Lyapunov functions. For both
activation functions, we have demonstrated that one can assume
that all the biases are set at 0 without reducing the representative
power of the network.

Section 4.2.1: Representation power of polynomial neural networks
Bias-free square neural networks with unitary output weights

represent SOS polynomials whose degree increases with the depth
of the network while the representation power relies on the width.
Using the Cholesky decomposition, we managed to prove that a
wide enough square neural network can generate any quadratic
and quartic SOS polynomial. Moreover, any SOS polynomial can
be represented by a polynomial neural network with 2 hidden
layers.

Section 4.2.2: Representation power of ReLU neural networks
In general, ReLU neural networks represent continuous piece-

wise affine or linear functions. Their structure directly influences
the underlying polyhedral partition of the state space. In particular,
recent results prove that the depth of a ReLU neural networks only
depends on the dimension of the function, and the wider the net-
work is, the more complex the partition of the state space is. More-
over, the width depends on the number of pieces of the piecewise
affine/linear function that we want to represent.
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Approximation of the JSR

using ReLU neural networks

THE interaction between Lyapunov theory and learning has moti-
vated emerging research in recent years. For instance, [BTSK17]
or [FMP21] employ Lyapunov approaches to certify safety condi-

tions in AI-based systems. Other works (among which the present one),
motivated by the great performance of neural networks in many computa-
tional technologies, tackle the other direction and use AI techniques in or-
der to learn Lyapunov functions [Pro94, Ser05, CRG19, AAE+21, DQGF21,
FLYL22, ZXQF23]. They provide promising proofs of concept for auto-
mated, data-driven control solutions that are agnostic of the particular
properties of the considered control system. Indeed, a prime advantage
of neural networks is that they can be deployed in an unknown setting
and on complex systems, such as Cyber-Physical Systems, whereas classi-
cal control techniques would require the verification of technical properties
(such as Lipschitz continuity, linearity, or passivity) that are out of hand in
practice.

One of the main paradigms along these lines is a situation where a
neural network is constructed from observed trajectories, and its input-
output relation is interpreted as a Lyapunov function for the system. Our
work falls within this paradigm. However, a crucial limitation of neural
techniques is that they rarely come with guarantees; that is, the obtained
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network is tailored to satisfy the properties of a Lyapunov function on the
observed trajectories, but very little is known about its generalisation prop-
erties out of the sample set. In safety-critical application, one needs gen-
eralisation guarantees, where the observed performance of the Lyapunov
function is guaranteed to hold for the whole universe, not only the sam-
pled set. Even more, Lyapunov functions must have specific properties,
which might be violated by the obtained neural network (think simply of
positive definiteness).

In this work, we are primarily interested in understanding this (poten-
tial) gap between high performance on the sampled set, and behaviour on
the true system. For this purpose, our strategy is to study this approach
on switched systems, that are well-understood systems for which alter-
native computational techniques have been developed as summarized in
Section 2.2. Then one can compare the performance of neural networks,
both in terms of computational performance and in terms of accuracy.

As a first theoretical contribution, we provide similar theoretical ap-
proximation guarantees for neural network-based Lyapunov functions. For
this, we leverage results from convex geometry, and combine them with re-
cent results in Machine Learning, about the representation power of neural
networks which have not previously been tailored to Lyapunov functions
constructed as neural networks.

Our second contribution is empirical. It is well known that ReLU neural
networks compute piecewise linear functions. Such functions are another
popular technique to compute the JSR, however with less efficient com-
putational power: the computation of a piecewise linear norm cannot be
achieved efficiently since it requires to solve a bilinear program [AJ18b],
which cannot be done in polynomial time. ReLU neural networks offer
an alternative to compute this type of Lyapunov functions. We thus pro-
vide numerical experiments in order to benchmark this alternative way of
obtaining piecewise linear Lyapunov functions. We first consider a low-
dimensional switched system as proof of concept where we observe that
we are competitive in terms of approximation precision. Then we increase
the dimension to show that we compete with SDP-based techniques both
in terms of computation time and approximation precision. Then, we pro-
vide an overview of technical problems that are encountered, and investi-
gate techniques from Machine Learning to alleviate these problems.

In particular, we show through examples that we cannot trust the out-
put of the neural network. Indeed, the network provides a JSR upper
bound which is only valid on the sample points, but not necessarily over
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the whole state space. We draw inspiration from [AAE+21] which pro-
poses a CounterExample-Guided Inductive Synthesis (CEGIS) algorithm
where a neural network is trained to represent a Lyapunov function whose
validity is soundly checked by a Satisfiability Modulo Theories [BSST21]
(SMT for short) solver thereafter. This approach benefits from the flexibil-
ity and the representation power of neural networks, and it has already
shown promising results. In this chapter, we take a similar approach to
handle the approximation of the JSR. Therefore, the use of an SMT solver
is required to check the Lyapunov inequalities over the whole domain. The
neural network and the SMT solver alternate until a valid approximation
is found, or the procedure stops when the maximal number of iterations
is reached. In case of failure, we introduce a post processing step which
leverages the knowledge of the neural network on the sample points to de-
rive a valid approximation of the JSR despite the failure. Finally, we test
our new algorithm across several benchmarks.

This chapter results from a collaboration with Alec Edwards and Alessan-
dro Abate, and this work has been partially published in [DEJA24].

5.1 Bounds on the structure of the network

The computation of a polytopic norm cannot be achieved efficiently since
it amounts to solving a bilinear program, as recalled in Chapter 3. There-
fore, convinced by the numerical efficiency and the representation power
of ReLU neural networks introduced in Chapter 4, we decide to use them
to synthesize piecewise linear Lyapunov functions. Moreover, we combine
Theorems 3.18 and 4.15 derive bounds on the network structure to achieve
a given precision on the JSR approximation.

In particular, Theorem 3.18 provides a relation between the polytopic
approximation precision and the complexity of its polytopic sublevel sets
while Theorem 4.15 provides bounds on the width and depth of a ReLU
network to represent a given function with fixed complexity. Therefore, by
combining them, we are able to provide upper bounds on the network’s
structure to reach a given precision τ on the approximation of the joint
spectral radius. Then, the following theorem summarizes this result. To
the best of our knowledge, this is the first universal approximation result
tailored to neural Lyapunov functions.
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Theorem 5.1. Let ρ(A) be the joint spectral radius of a finite set of matricesA of
dimension n. For any real τ > 1 for which there exists kτ ∈ N satisfying Equa-
tion (3.9), there exists a convex CPWL function represented by a ReLU neural
network of depth

⌈log2(n + 1)⌉+ 1

and width
O
(
[8D(n, kτ)]

n+1
)

,

where D(n, kτ) is defined in Equation (3.10), which approximates ρ(A) with a
precision of τ.

Proof. The theorem results from the successive application of Theorems 3.18
and 4.15.

Recalling Corollary 3.17 where τ is taken arbitrarily close to 1, the follow-
ing corollary can be stated.

Corollary 5.2. Let ρ(A) be the joint spectral radius of a finite set of matrices A
of dimension n. For any real τ := 1 + ε > 1 for which there exists kτ ∈ N

satisfying Equation (3.9), there exists a convex CPWL function represented by a
ReLU neural network of depth

⌈log2(n + 1)⌉+ 1

and width of order

O
(

8n+1n
n(n+1)

4 ε
1−n2

2

)
which approximates ρ(A) with a precision of τ.

The contribution of Theorem 5.1 is twofold. First, it provides a proof
of concept that neural networks can approximate the JSR up to an a priori
fixed guarantee of accuracy. Moreover, Theorem 5.1 provides bounds on
the architecture of a ReLU neural network so that it can represent a specific
Lyapunov function. However, it gives no indication of how the network
should be trained to achieve this function. In addition, all these bounds
above are on the worst case; we expect to achieve a given precision with
smaller networks than the architecture recommended in Theorem 5.1. The
rest of this chapter investigates this question through several examples.
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5.2 Experimental evaluation

In this section, we provide an empirical investigation of the practical effi-
ciency of the neural approach. We first describe the configuration of the
experimental evaluation, i.e. the choice of the loss function, the sampling
method, etc. Moreover, we compare our numerical results with more clas-
sical SDP-based approaches recalled in Sections 2.2.1 and 2.2.2

First, we consider a low-dimensional switched system as proof of con-
cept where we observe that we are competitive in terms of approximation
precision. Then, we increase the dimension to show that we compete with
SDP-based techniques both in terms of computation time and approxima-
tion precision. Note that, contrary to the SDP-techniques, the neural-based
approach is data-driven, which needs to be taken into account when we
compare both methods.

5.2.1 Setup

Given a linear switched system A := {A1, . . . , AM} ⊂ Rn×n in dimen-
sion n ∈N, we consider a ReLU neural network to instantiate a candidate
Lyapunov function NN : Rn → R≥0. By training it appropriately, we aim
to achieve the best neural JSR approximation. By Theorem 2.13, we know
that any continuous, positive and homogeneous function can be used to
compute an approximation of the JSR. Indeed, given such a function V, we
can derive an approximation of the JSR by computing the smallest value
γ > 0 such that the Lyapunov inequalities in Equation (2.2) and recalled
hereunder, i.e.

∀i ∈ ⟨M⟩, ∀x ∈ Rn : V
(

Ai
γ

x
)
≤ V(x),

are satisfied by V, where Aγ := {Ai/γ : i = 1, . . . , M} denotes the scaled
system by γ.

In what follows, we detail the choices that we have made:
- Structure of the network: Let us first check that a ReLU neural net-

work satisfies these properties. By Proposition 4.18, we can assume (with-
out loss of representation power) that the network is bias-free, such that
the represented function is positively homogeneous. Thus, any function
represented by such a network is continuous, radially unbounded and pos-
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itively homogeneous by construction. Moreover, we need a (n + 1)-width
network at least to cover the whole state space, and we structurally enforce
during training the positivity of the represented function by taking the ab-
solute value of the output weights.

- Loss function: We want the learning process to improve and refine the
JSR approximation provided by the function represented by the network.
We therefore choose the loss function to correspond to the sample-based
JSR approximation, i.e.

Loss(NN,S) := max
i=1,...,M

max
x∈S

NN(Aix)
NN(x)

, (5.1)

where NN : Rn → R is the function represented by the network and S is
the training sample set. Therefore, by definition of the loss function, the
function NN(·) satisfies the Lyapunov inequalities in Equation (2.2) on the
sample points for the scaled system Aγ, where γ := Loss(NN,S). Indeed,
∀i ∈ ⟨M⟩ and ∀x ∈ S :

NN(Aix)
NN(x)

≤ γ,

⇔ NN(Aix) ≤ γNN(x),

⇔ NN
(

Ai
γ

x
)
≤ NN(x),

where the first equivalence is satisfied by positivity of the function NN(·),
and the second equivalence holds by positive homogeneity. However,
nothing guarantees that this quantity is a valid upper bound on the JSR,
i.e. Loss(NN,S) ≥ ρ(A). It would be if S was replaced by Rn, in Equa-
tion (5.1) above. This issue will be partially tackled in Section 5.3 and com-
pletely overcome in Section 5.4.

Remark 5.3. Note that, if the function represented by the network NN(·) is
convex, and therefore a norm, one can compute the matrix norm induced
by NN(·) of each matrix Ai ∈ A. Moreover, the loss function defined in
Equation (5.1) is the sample-based approximation of the maximal matrix
norm induced by NN over A. △

- Sampling: Finally, we need to define our sampling policy. By ho-
mogeneity of the NN(·) and the matrices A, it is sufficient to satisfy the
Lyapunov inequalities in Equation (2.2) on the unit ball. Therefore, we
train the network with a sample set S of data points which are uniformly
distributed on the unit sphere.
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We can now define the JSR approximation provided by a ReLU neural
network as the smallest loss value during the training period.

Definition 5.4 (Neural JSR approximation). Consider a switched linear
system A := {A1, . . . , AM} ⊂ Rn×n and a ReLU neural network with k
hidden layers of width m, which has been trained during L iterations over a
sample set S . The neural approximation of the JSR, denoted by ρNN(k,m),S (A),
is defined as the lowest value of the loss function in Equation (5.1) during
the entire training campaign, i.e.

ρNN(k,m),S (A) := min
l=1,...,L

Loss(NNl ,S),

where NNl denotes the function represented by the neural network at the
l-th training iteration.

Remark 5.5. Note that the neural JSR approximation defined in Defini-
tion 5.4 depends on the sample set S , and should be properly defined as a
random variable. Since we do not want to study the corresponding statisti-
cal properties, we will use this abuse of notation for the sake of simplicity.

The outcome of this learning procedure is twofold since it instantiates a
candidate Lyapunov function NN : Rn → R≥0 and provides a sample-
based approximation of the JSR of A, denoted by ρNN(k,m),S (A). Let us
note once again that the function NN is guaranteed to satisfy the Lyapunov
inequalities for the scaled system Aγ for γ = ρNN(k,m),S (A) only on the
sample points S . However, the Lyapunov inequalities might be violated
elsewhere.

5.2.2 Numerical results

As reference benchmarks through this chapter, we consider two switched
linear systems in dimension 2 and 8 respectively, which are challenging as
they are known to lead to poor approximation with classical techniques,
see [DDJ23, Section 5] and [AJPR14, Example 5.2]. The first one serves as
proof of concept, while the second example shows that in higher dimen-
sions, neural Lyapunov functions are competitive with SOS-based tech-
niques both in terms of precision and (as suggested earlier in Figure 3.1) in
computation time. Note that all experiments were run on an Intel i7 laptop
with 4 cores and 8GB of RAM. Moreover, the network is trained using the
stochastic gradient descent optimizer AdamW, introduced in [LH17].
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Example 5.6. We consider the switched linear system A2 := {A1, A2} ⊂
R2×2 defined by the matrices

A1 =

[
1.5519 0.4474
7.6412 7.4716

]
and A2 =

[
0.4750 9.1755
1.8955 0.1850

]
. (5.2)

Using the JSR toolbox in [VHJ14], we compute that the joint spectral radius
ofA2 is 8.6881, the ellipsoidal approximation ρQ(A2) is 9.5868 and the SOS
approximation of degree 4, i.e. ρSOS,4(A2), is 8.7203.

Let us consider a ReLU neural network with different depths and widths
that we train with 500 sample points for 20 different seeds. The best (i.e. the
smallest) approximation, the mean and the standard deviation are summa-
rized in Table 5.1. Not surprisingly, the more neurons there are, the better
the approximation. We also observe that with more neurons, there is signif-
icantly less variability with respect to the seed. In terms of approximation
precision, the neural approach is more efficient than both the ellipsoidal
and the SOS approaches, since the average approximation with 10 neurons
is smaller than ρQ(A2) and ρSOS,4(A2). Figures 5.1b and 5.1c illustrate
the partition and the sublevel sets of the Lyapunov function encoded by
the best 1-layer network with 5 and 10 neurons respectively, and one can
notice the similarity with the ellipsoidal sublevel sets. However, the com-
putation of the ellipsoidal and the SOS approximation are very fast in such
low dimension (they clock 0.2816 and 1.5156 seconds respectively), and the

Neural approximation of the JSR

ρNN(k,m),S (A2)

k m Best Mean Std.

1 layer
5 neurons 8.6977 9.0251 0.8800

10 neurons 8.6910 8.6969 0.0056

2 layers
5 neurons 8.6983 8.9312 0.4645

10 neurons 8.6944 8.7049 0.0077

3 layers
5 neurons 8.6967 9.1984 0.7293

10 neurons 8.6946 8.7130 0.0175

Table 5.1 Best and mean/std. (over 20 seeds) approximation of the JSR
of system (5.2) provided by a ReLU neural networks with different archi-
tectures.
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(a) Evolution with the computation time of the loss function of a ReLU neural
network with different widths and depths. For each configuration, only the best
seed (which provides the lowest approximation) is illustrated.

(b) Sublevel sets of the best CPWL ap-
proximation with 1 hidden layer and
5 neurons, and the partition induced
by the network. The sublevel sets
of the ellipsoidal approximation have
been added for comparison.

(c) Sublevel sets of the best CPWL ap-
proximation with 1 hidden layer and
10 neurons, and the partition induced
by the network. The sublevel sets
of the ellipsoidal approximation have
been added for comparison.

Fig. 5.1 Approximation of the JSR of system (5.2) using a ReLU neural
network with 500 sample points, alongside sublevel set of the best approx-
imation from two networks. With 5 neurons (5.1b) , the CPWL approxi-
mation appears geometrically similar to the ellipsoidal approximation. As
more neurons are added (5.1c), the geometry of the sublevel sets diverges
from the ellipsoidal approximation, corresponding to an improved approx-
imation of the JSR (Table 5.1).
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novel neural network approach cannot compete with them: for example,
Figure 5.1a shows that in the best case, we need a few seconds, but in the
worst cases, we need almost one minute. △

Let us now consider a 8-dimensional switched system, such that the
computation time of the ellipsoidal and SOS approximation are larger and
the neural approach starts to be competitive.

Example 5.7 (High dimension). We consider a switched system in dimen-
sion 8 with 8 different modes, defined by the matricesA8 := {Ai : i ∈ ⟨8⟩} ⊂
{0, 1}8×8 such that for i = 2, . . . , 8,

Ai(k, l) :=


−1 if k = l = i,

1 if l = i and k ̸= i,

0 otherwise,

(5.3)

while the matrix A1 = 1e⊤1 . One can prove that the joint spectral radius
of this finite set of matrices is 1, i.e. ρ(A8) = 1. Regarding the approxi-
mation of the JSR using classical techniques, the ellipsoidal approximation
generates ρQ(A8) = 2.4286 but the computation is relatively fast (≈ 2.5
seconds), while the SOS approximation is better since ρSOS,4(A8) = 1.0006
but it requires much more computation time (≈ 258 seconds).

Fig. 5.2 Evolution of the JSR approximation for the 8-dimensional sys-
tem (5.3) provided by a ReLU neural network with different number of
hidden layers and different numbers of neurons. The value of the JSR, the
ellipsoidal approximation and the SOS degree-4 (in black) bisection have
been added for comparison.
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For the neural approximation of the JSR, we use a ReLU neural net-
work with a single hidden layer and different numbers of neurons: 10, 15
or 30. We train it using 500 sample points. Figure 5.2 shows the evolution
of the mean and the min-max area of the JSR approximation with the com-
putation time for each configuration. One can see that in dimension 8, the
neural approach is almost as fast as the SOS (d = 2) method. However,
the network overfits the data and then provides an approximation which
is smaller than the true JSR value, except with 10 neurons where half of
the seeds provide an approximation larger than 1. One way to prevent this
behaviour is to consider more sample points. However, the computation
time increases as the sample set grows and we are no longer competitive
with SDP-based techniques. △

5.3 Improvement techniques

As we have seen, the numerical experiments suffer from classical issues
in Machine Learning such as overfitting, large number of sample points
needed, etc. In this section, we consider some methods to mitigate these
behaviours. In particular, one way to overcome this problem is the regu-
larization, which refers to a technique used to prevent overfitting and im-
prove the generalisation performance of a model. In practice, it amounts to
adding a penalty term in the loss function during the training. The objec-
tive is to discourage the network from reaching too complex functions. In
addition, we will consider the concept of incremental learning which takes
advantage of the computation speed when we consider few sample points
at the beginning and progressively add new well-chosen sample points
during the training.

5.3.1 Regularisation

As can be seen in Figure 5.2, we have shown that neural networks tend to
overfit the data resulting in an incorrect estimate of the JSR. One classical
method to prevent overfitting is regularization, i.e. for the problem at hand
we penalize the network by adding a new term in the loss function to pre-
vent it from learning overly-complex functions. Depending on the penalty
term, the goal of the regularization might be slightly different. We review
a few of the most commonly used regularization methods in this section.
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First, we introduce the L1 and L2 regularization methods. The idea is
to add a penalty term to the loss function which only depends on the com-
plexity of the network. The objective is to reduce the weights matrices by
assuming that a neural network with less weights makes simpler models.
Here we consider the two most classical methods:

- The L1-regularisation, also called Lasso regularization, adds as penalty
term the L1-norm of the weights, i.e. the sum of the absolute value
of all the coefficients of the weight matrices. In this case, the loss
function is defined as

LossL1(NN,S) := Loss(NN,S) + λ ∑ |wi|.

This method will drive some coefficients to zero, and therefore pro-
vides sparse solutions. This method is suitable for high-dimensional
datasets or when there is a need for feature selection and interpretabil-
ity.

- The L2-regularisation, also called Ridge regularization, adds as penalty
terms the L2-norm (i.e. the Euclidean norm) of the weights, i.e. the
sum of the square of the coefficients of the weight matrices. The loss
function is therefore given by

LossL2(NN,S) := Loss(NN,S) + λ ∑ wi
2.

This method will encourage smaller coefficients such that there is no
domination from one feature (it reduces the individual impact but
it allows all features to contribute to the model’s predictions), and
therefore promotes overall weight shrinkage. Then, it is effective
when dealing with strong feature correlations or when there is no
specific need for feature selection.

The Elastic Net regularization is a technique that combines both L1 and L2-
regularization to achieve a balance between feature selection and weight
shrinkage. During model training, it incorporates both the L1 and L2 reg-
ularization terms in the loss function. The values of the corresponding
regularization parameters λ1 and λ2 control the balance between sparsity
and weight shrinkage.

Let us consider an example to see how regularisation influences the ap-
proximation of the JSR provided by a ReLU neural network.
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(a) Evolution with the
training iterations of the
loss function.

(b) Evolution with the
training iterations of the
L1-norm of the weights.

(c) Evolution with the
training iterations of the
L2-norm of the weights.

Fig. 5.3 JSR approximation of system (5.3) using a ReLU neural network
with 1 layer, 10 neurons in each hidden layer trained with 100 (in blue), 500
(in red) and 1000 (in yellow) sample points.

Example 5.8. We consider the 8-dimensional switched system in (5.3). We
use a ReLU neural network with a single hidden layer of 10 neurons that
we have trained with 100, 500 or 1000 sample points. We show in Figure 5.3
the evolution with the iterations of the loss function (Figure 5.3a) and the
L1 and L2 norms (Figures 5.3b and 5.3c). In all cases, the L2-norm of the
weights increases while the L1-norm first varies and then remains more or
less constant with 500 and 1000 sample points. With 100 sample points,
the L1-norm first decreases and then increases slightly. Therefore, forcing
the L1-norm or the L2-norm to decrease by adding a regularization term
to the loss function might be useful to prevent overfitting. We regularize
the network with different values for the regularization parameter λ with
respect to the L1 and L2 norms. The results are illustrated in Figure 5.4 and
summarized in Table 5.2.

Value of the regularization parameter λ

0.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0

L1-norm 0.6502 0.7356 0.8262 0.9229 1.0462 1.1442 × ×
L2-norm 0.6502 0.6998 0.6770 0.6953 0.7366 0.8091 0.8770 0.9245

Table 5.2 Neural JSR approximation of system (5.3) provided by a ReLU
neural network with 1 hidden layer of 10 neurons using 100 sample points.
The invalid upper bounds are highlighted in color.
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(a) Evolution with the computation
time of the loss function with a L1-
regularization term.

(b) Evolution with the computation
time of the L1-regularization term.

(c) Evolution with the computation
time of the loss function with a L2-
regularization term.

(d) Evolution with the computation
time of the L2-regularization term.

Fig. 5.4 JSR approximation of system (5.3) using a ReLU neural network
with 1 hidden layer of 10 neurons trained with 100 sample points. We use
L1 and L2 regularization techniques to prevent the network from overfit-
ting with different regularization parameter values.

First, we observe that the regularisation works as expected since the L1-
norm and the L2-norm reduces as the parameter λ increases in Figures 5.4b
and 5.4d respectively. Moreover, as λ increases, the approximation of the
JSR reaches larger and larger values and then starts to stop overfitting, as
illustrated in Figures 5.4a and 5.4c. This behaviour is more pronounced
and effective with the L1-regularisation, as reflected in Table 5.2. △

The regularization techniques are used to prevent the neural network
from reaching complex functions. Then these functions might be Lipschitz
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continuous with a large Lipschitz constant, such that the function might
vary a lot and adapt to the sample points. However, the smaller the Lips-
chitz constant is, the more the function is prevented from large variations.
Therefore, we could expect that this constant increases when the network
overfits the data, and it might be useful to add it to the loss function to min-
imize it. The so-called Lipschitz or spectral regularization has already been
addressed in [YM17, GFPC18, MKKY18, VS18].

Exactly computing the Lipschitz constant of a 2-layer ReLU neural net-
work is NP-hard [VS18]. However, since the ReLU activation function is
Lipschitz continuous with constant 1, we can upperbound the Lipschitz
constant of the network by

LNN ≤
h+1

∏
l=1

∥∥∥W(l)
∥∥∥ ,

where ∥W(l)∥ is the matrix norm of Wh. By equivalence of the norms in
finite dimension, optimizing the Lipschitz bound under a particular choice
of norms will effectively optimize the bound measured by the other norms.
However, the computation cost of these norms differ; for instance the L2-
norm , where ∥W(l)∥ refers to the largest singular value of the matrix W(l),
is more expensive to compute than the other norms.

Rather than adding the product of the spectral norms to the loss func-
tion, which might be done without efficiently reducing the Lipschitz con-
stant of the network, let us consider the sum of these norms as penalty
term, i.e.

LossLip(NN,S) := Loss(NN,S) + λ
h

∑
i=1

σ(Wi). (5.4)

The objective is to minimize the spectral norm of each weight matrix, such
that the product decreases and so does the Lipschitz constant.

Example 5.9. We consider the switched system (5.3) in dimension 8 whose
JSR is 1. We use a ReLU neural network with 1 hidden layer of 10 neurons
that we train during 10000 iterations. We add the regularisation term in
equation (5.4) with different values for the regularization parameter λ, and
we train the network with 100 sample points. As reflected in Table 5.3, the
network overfits less and less as λ increases. △
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Value of the regularization parameter λ

0.0 0.1 0.2 0.5 1.0 2.0 5.0 10.0 15.0

0.6502 0.6912 0.7176 0.7691 0.7941 0.8464 1.0471 1.1266 1.1646

Table 5.3 Approximation of the JSR of system (5.3) using a ReLU neural
network with 1 layer of 10 neurons trained during 10000 iterations with 100
sample points using regularization in Equation (5.4) with different values
for the parameter λ. The invalid upper bounds are highlighted in color.

5.3.2 Incremental learning

The number of sample points is a key parameter since it determines a
trade-off between computation time and the risk of overfitting. However,
it seems that the network does not need many points at the beginning, but
progressively requires more and more points during training.

In our case, we propose to sample several new sample points, then com-
pute the ratio

max
i=1,...,M

NN(Aix)
NN(x)

for each sample points. If the maximum over all the new sample points is
below the current JSR approximation of the network, we keep on training
the network. Otherwise, we add the subset of the worst points, i.e. the
points which provide the highest JSR approximation.

Example 5.10. We consider the switched system (5.3) in dimension 8. We
use a ReLU neural network with a single hidden layer of 10 neurons that
we train with 100 sample points at the beginning. In Figure 5.5, we com-
pare two different situations. For the first one, we have trained the network
during 10000 iterations without stopping it, while for the second case, we
have stopped the network every 2000 iterations to possibly add new sam-
ple points.

We can clearly observe that without incremental learning, the network
overfits and reaches a wrong JSR approximation. When we add new sam-
ple points during the training, we stay above the true JSR value in the long
run even if sometimes the network ends up overfitting. However, at the
next step, we will probably add new points with a larger JSR approxima-
tion. Moreover, we can see that the new JSR approximation when we add
new sample points (the red circles in the figure) decreases which means
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Fig. 5.5 Evolution of the JSR approximation provided by a ReLU neural
network with 1 hidden layer of 10 neurons trained initially with 100 sample
points during 10000 iterations with an without incremental learning for
system (5.3). For the incremental learning, we possibly add the worst 100
sample points over 10000 every 2000 iterations.

that with the new well-chosen points, the network overfits less and is more
able to generalize. However, the computation time increases as long as we
add new sample points. △

5.3.3 Experimental evaluation

In this section, we apply the two techniques developed in previous sections
to avoid overfitting in high dimension, namely the regularization and the
incremental learning.

Example 5.11. We consider the 8-dimensional linear switched system in
Equation (5.3) whose JSR is 1. In comparison with Figure 5.2, Figure 5.6a
shows promising results using L1-regularization. Indeed, when the net-
work is regularized, the neural JSR approximation almost never reaches
wrong approximation but requires a few more computation time. More-
over, Figure 5.6b illustrates the evolution of the neural JSR approximation
provided by a 2-hidden-layer neural network with 15 neurons, where we
now add successively new sample points to the training sample set. In this
example, after combining the incremental learning with the regularization,
the resulting network did not reach a wrong over-approximation value. △

| 97



5 | Approximation of the JSR using ReLU neural networks

(a) Comparison of the evolution with
the computation time of the JSR ap-
proximation provided by a ReLU net-
work with 1 hidden layer and 15 neu-
rons with and without L1-regularization.

(b) Comparison of the evolution with
computation time of the JSR approxi-
mation provided by a ReLU network
with 1 hidden layer of 15 neurons with
and without incremental learning.

Fig. 5.6 Illustration of two techniques to avoid overfitting in higher di-
mensions, namely the regularization and the incremental learning.

5.4 Computation of valid neural-based JSR approximations

In our previous numerical experiments, we have seen that the network
rapidly suffers from overfitting the data, especially when the dimension
increases. Therefore, the training may end up with an invalid JSR approxi-
mation, i.e. a smaller value than the JSR. As a result, we cannot really trust
the neural JSR approximation. In this section, we are looking at two differ-
ent strategies to overcome this issue.

At first, we propose a CounterExample-Guided Inductive Synthesis
(CEGIS for short) implementation, that is an inductive loop between two
main components: the learner which seeks a candidate Lyapunov function
with an optimised sample-based estimate of the JSR, and the verifier which
checks the validity of the Lyapunov inequalities over the whole domain
for the candidate function. Section 5.4.1 describes in details this CEGIS
architecture. In addition, we introduce a post-processing step that lever-
ages the information acquired by the network over the sample points, then
generalizes it to the entire state space. It eventually generates a valid upper
approximation on the JSR, even if the CEGIS loop fails. Section 5.4.2 covers
the derivation of this valid upper bound.
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5.4.1 CEGIS approach

In this section, we introduce a new formal method to approximate the JSR
of a finite set of matrices using machine learning algorithms. We con-
sider a CEGIS architecture as implemented in the FOSSIL tool developed
in [AAE+21, EPA24]. Figure 5.7 illustrates the architecture in its entirety.

This synthesis architecture involves the alternating interaction of two
main components, namely a learner and a verifier. The learner seeks to sub-
mit a candidate Lyapunov function and a sample-based JSR approximation
to the verifier. However, the corresponding Lyapunov inequalities must be
satisfied over the whole state space to be able to derive a valid upper bound
on the JSR. Therefore, the verifier will either validate or disprove the candi-
date stability certificate - in the latter case, the training procedure is refined
at next CEGIS iteration by adding the counterexamples to the training sam-
ple set. Otherwise, the verifier confirms that there is no counterexample,
which provides a valid upper bound on the JSR. As a result, the CEGIS
loop stops. The communication between the two components is facilitated
by two other elements, namely the translator, which translates the neural
network into symbolic variables, and the consolidator, which leverages the
counterexamples provided by the verifier and augments the training set of
the learner. Let us look at each component one by one.

Learner
ReLU NNθ(·)

Verifier
SMT

Consolidator

Translator

Post processing

CEGIS loop

θ valid

candidate

cexcex+

out of the loop

no

valid

A := {Ai}

Fig. 5.7 Illustration of the CEGIS architecture of our method to provide
sound upper approximation of the JSR of a finite set of matricesA ⊂ Rn×n.
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Learner: The learning component of our CEGIS architecture is a ReLU
neural network which is trained following the procedure described in Sec-
tion 5.2.1. After a fixed number of training iterations, the training stops and
the network provides both a candidate Lyapunov function NN : Rn → R

and the corresponding sample-based JSR approximation, defined as the
loss function in Equation (5.1) at last iteration. By construction, the can-
didate Lyapunov function NN satisfies the Lyapunov inequalities with re-
spect to the scaled system by the JSR approximation on the sample points.

Verifier: We use a Satisfiability Modulo Theories [BSST21, dMB08] (SMT
for short) solver to soundly verify the Lyapunov inequalities over the whole
state space, and therefore provide a valid JSR approximation.

An SMT solver decides the satisfiability of first-order logic formulae,
by combining combinatorial and symbolic algorithms. Unlike classical nu-
merical solvers, SMT solvers are sound and provide therefore formal guar-
antees. In our case, deciding whether the network provides a valid JSR
approximation amounts to deciding the formula

∀x ∈ Rn : (x ̸= 0) ⇒ (∀i ∈ ⟨M⟩, NN(Aix) ≤ γ NN(x)) ,

where γ = Loss(NN,S) in Equation (5.1). Note that we omit the condi-
tion V(0) = 0 by selecting in advance biases, as explained in Section 4.2.2.
Moreover, by linearity of the dynamics and homogeneity of the Lyapunov
function, we must only check the Lyapunov inequalities on the unit ball.
For computational purpose, we use the unit ball of the infinity norm since
its set is described by a linear expression, which speeds up the computa-
tion time of the SMT solver with respect to the 2-norm (which requires a
nonlinear expression). If the SMT solver answers that the Lyapunov in-
equalities are not satisfied, it provides a counterexample, meaning a point
where at least one of the Lyapunov inequalities is violated. Then this point
(along with a few other points supplied by the consolidator, as we discuss
below) is added to the training sample set of the neural network for the
next CEGIS iteration.

In practice, the SMT solver Z3 [dMB08] is suitable because we only con-
sider linear switched systems and piecewise linear Lyapunov functions.
For more general systems, which involves non polynomial terms such as
trigonometric or exponential expressions for instance, the SMT solver dReal
could be used.
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Translator and consolidator: In [AAE+21], the authors provide two
additional components, namely the translator and the consolidator, which
we also benefit from.

First, the translator is a practical component which ensures the transi-
tion between the neural network and the SMT solver. In practice, it trans-
lates the numerical network values into symbolic variables.

The consolidator can be seen as an optimization of the counterexample
provided by the SMT solver. Indeed, the addition of a new lone sample
point might not be powerful enough to influence the training of the net-
work at the next CEGIS iteration. Rather than asking the SMT solver to pro-
vide another counterexample, which might be computationally expensive,
the authors in [AAE+21] propose the following heuristic approach, based
on the assumption that samples around a counterexample are equally likely to
invalidate the certificate conditions by continuity. Then, they randomly sam-
ple new points around the counterexample provided by the verifier, and
aggregate them with the training sample set for the next CEGIS round.

5.4.2 Post-processing

The verification step described in the previous section can be quite chal-
lenging for different reasons. First, we usually consider a small training
sample set to hasten the computation time of the neural network. The
drawback of this, however, is that the network tends to overfit such that
the Lyapunov inequalities are only satisfied for the scaled system on the
sample points while they are strongly violated elsewhere. Moreover, we
are constrained by the practical limitations of the SMT solvers, as they suf-
fer poor scalability. As a result, in some cases, the SMT solver might return
a counterexample at each iteration and the CEGIS loop might end up with-
out valid approximation on the JSR.

These limitations have motivated the design of a norm induced by NN(·)
for which we can easily compute the corresponding JSR approximation.

Definition 5.12 (Polytopic norm induced by a ReLU neural network). Let
NN : Rn → R≥0 denote the function represented by a ReLU neural net-
work trained on the sample set S := {xk}. We define the norm induced by
NN as the unique homogeneous function V : Rn → R≥0 whose 1-sublevel
set is given by

BV(·) := conv
({

vi :=
xi

NN(xi)

∣∣∣ xi ∈ S
})

.
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In this manner, the functions NN(·) and V(·) coincide on the sample points,
i.e. NN(xk) = V(xk) for any point xk in the sample set S . Elsewhere,
computing the norm V(x) of any point x ∈ Rn amounts to solving the
following Linear Program:

λ∗ = max λ

s.t. λx ∈ BV(·)

and V(x) = 1/λ∗. In turn, the JSR approximation provided by V can be
computed as the maximum induced matrix norm

ρ̂V(A) := max
A∈A

V(A),

where V(A) is the maximal norm of Avk over all the vertices vk of the unit
ball BV(·).

The training not only optimizes the values NN(xk), but also the image
of the samples points, i.e. NN(Aixk) for i = 1, . . . , M. Thus, it seems mean-
ingful to also include these points in the definition of the convex hull. We
suggest an alternative to the post-processed norm in Definition 3.15, which
is expected to lead to better JSR approximations but potentially at the cost
of longer computing times.

Definition 5.13 (Extension of the polytopic norm induced by a ReLU neu-
ral network). Let NN : Rn → R≥0 denote the function represented by
a ReLU neural network trained on the sample set S := {xk}. We define
the extension of norm induced by NN as the unique homogeneous function
W : Rn → R≥0 whose 1-sublevel set is given by

BW(·) := conv

({
wi,j :=

Ajxi

NN(Ajxi)

∣∣∣ xi ∈ S , j = 1, . . . , M

}
∪ BV(·)

)
.

In this case, the functions NN(·) and W(·) have equal value on the sample
points and on the images of the sample points. The computation of the
norm W(x) of x ∈ Rn and W(A) where A ∈ Rn×n is similar to the previous
case. We expect that the function W provides better upper approximations
of the JSR than V, but it requires in return more computation time since it
involves more vertices.

Example 5.14. We consider the linear switched system A2 := {A1, A2} ⊂
R2×2 defined in (5.2). As a reminder, ρ(A) = 8.6881, the ellipsoidal ap-
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(a) 20 sample points. (b) 50 sample points. (c) 100 sample points.

Fig. 5.8 Comparison of the sublevel sets of NN(·), V(·) (in black) and
W(·) (in red) obtained from a ReLU neural network with 2 layers, 5 neu-
rons and different sample sizes in Example 5.14.

proximation ρQ(A2) is 9.5868 and the SOS approximation of degree 4,
i.e. ρSOS,4(A2), is 8.7203. We consider different sizes for the sample set: 20,
50 or 100 sample points. For each sample, we keep the last approximation
of the network NN, and the polytopic norms induced V(·) and W(·).

We consider a ReLU neural network with 2 hidden layers of 5 or 10 neu-
rons which is trained during 2000 iterations. The results are summarized in
Table 5.4 and Figure 5.8. One can easily notice that when we consider few
sample points (20 for instance), the network ends up overfitting and there-
fore provides an invalid upper approximation of the JSR. The V and W-

2 layers of 5 neurons 2 layers of 10 neurons

Number of sample points Number of sample points

20 50 100 20 50 100

NN(·) 8.2240 8.9546 8.7347 4.5380 8.6441 8.7200

V(·)
10.0729 9.1380 9.0226 25.3548 11.4275 9.0827

(0.04 sec.) (0.09 sec.) (0.19 sec.) (0.02 sec.) (0.06 sec.) (0.12 sec.)

W(·)
10.0038 9.5777 8.7584 82.0506 10.7237 8.8562

(0.08 sec.) (0.25 sec.) (0.95 sec.) (0.07 sec.) (0.21 sec.) (0.58 sec.)

Table 5.4 Approximation of the JSR of system (8.23) using a ReLU neural
network with 2 layers, 5 or 10 neurons and different sample sizes and the
polytopic norms induced V(·) and W(·). The invalid upper bounds are
highlighted in color.
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approximations provide valid results, but much larger. See for instance the
experiment with 2 hidden layers of 10 neurons and only 20 sample points.
The network provides an invalid upper approximation of 4.5380, while the
true JSR is 8.6881. Accordingly, the V(·) and W(·) approximations both ex-
plode. This can also be observed in Figure 5.8; with only 20 sample points,
the network overfits and encodes a function with sublevel sets which are
not convex, but not surprisingly, when we increase the number of sample
points, the network overfits less and the sublevel sets of NN(·), V(·) and
W(·) are becoming increasingly similar. While with only 20 sample points,
one can clearly see that they differ from each other. △

Note that in these experiments, the W-approximation is almost always bet-
ter (i.e. smaller but still valid) than the V-approximation, at the cost of more
computation time.

Now, let us consider a switched system in higher dimension for which
the computation of the JSR approximation provided by the induced poly-
topic norms will take more time.

Example 5.15. We consider the switched system A8 in dimension 8 with
8 different modes, defined by the matrices (5.3). As a reminder, one can
prove that ρ(A8) = 1, the ellipsoidal approximation is 2.4286 (in 2.5 sec-
onds), while the SOS approximation is 1.0006 provided in 258 seconds.

We use a ReLU neural network with a single layer of 10 or 15 neurons
that we train during 2000 iterations. We use different sample sizes, and for

1 layer of 10 neurons 1 layer of 15 neurons

Number of sample points Number of sample points

100 250 500 100 250 500

NN(·) 0.9354 1.2016 1.3682 0.8385 0.9829 1.1283

V(·)
6.0421 4.3086 3.5660 8.2080 4.4535 3.1007

(0.96 sec.) (3.96 sec.) (14.1 sec.) (1.02 sec.) (4.12 sec.) (14.6 sec.)

W(·)
2.1311 1.8909 1.5960 2.3200 2.3965 1.2176

(31.8 sec.) (179 sec.) (809 sec.) (35.5 sec.) (199 sec.) (1083 sec.)

Table 5.5 Approximation of the JSR of system (5.3) using a ReLU neural
network with 1 layer, 10 or 15 neurons and different sample sizes and the
polytopic norms induced V(·) and W(·). The invalid upper bounds are
highlighted in color.
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each configuration, we keep the last approximations of the network NN(·)
and we compute both approximations provided by the induced polytopic
norms V(·) and W(·). The results are summarized in Table 5.5. The obser-
vations are similar to Example 5.14 in dimension 2, but the computation
time is much larger. △

According to the results in Tables 5.4 and 5.5, it seems that the approx-
imations provided by the induced polytopic norms increase when the net-
work overfits. This observation leads us to ask the following question: can
we use those post-processed approximations to detect overfitting? The fol-
lowing example investigates this question.

Example 5.16. In order to answer this question, we first consider a ReLU
neural network with 2 layers of 10 neurons in each layer, 20 or 100 sam-
ple points, that we train during 2000 iterations to estimate the JSR of sys-
tem (5.2). Figure 5.9 illustrates the evolution of the JSR approximations
provided by the network and the polytopic norm induced V. One can
clearly observe two distinct behaviours: with 100 sample points, the net-
work does not overfit, and both approximations follow the same trend (the
maximal difference between the two approximations is around 0.4) while

Fig. 5.9 Evolution through the learning iterations of the JSR approxima-
tion of system (5.2) provided by a ReLU neural network NN(·) (in blue)
with 2 hidden layers and 10 neurons in each layer and 20 (the dashed line)
or 100 (the full line) sample points. For comparison, after every 100 it-
erations, the post-processed approximation provided by V(·) (in black) is
computed.
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Fig. 5.10 Evolution through the learning iterations of the JSR approxima-
tion of system (5.3) provided by a ReLU neural network NN(·) (in blue)
with 1 layer and 10 neurons in each layer and 100 (the dashed line) or 500
(the full line) sample points. For comparison, after every 100 iterations, the
post-processed approximations provided by V(·) (in black) and W(·) (in
red) are computed.

with only 20 sample points, both approximations start to differ after 20
iterations, and they will almost never get closer.

Similarly, we consider a ReLU neural network with 1 layer of 10 neu-
rons with 100 or 500 sample points to provide JSR approximations of sys-
tem (5.3). After every 100 iterations, we keep the last value of the loss
function, and we compute the approximations provided by the induced
polytopic norms V(·) and W(·) (only for 100 sample points). Figure 5.10
shows the evolution of these quantities. In this case, the “elbow shape”
is not so obvious as in Figure 5.9. However, one can still observe that for
100 sample points, both curves for V and W start to decrease, then become
almost constant and then increase, which would indicate that the network
overfits. The same situation occurs for 500 sample points. △
Although the computation of these induced polytopic norms might help
detect overfitting, this would require too much computation time, espe-
cially in high dimensions.

Crucially, the computation of the induced norms V and W allows us
to provide correct upper bounds on the JSR without the usage of SMT-
solving. SMT-problems are in general NP-hard, so we provide a fail-safe
in case of a timeout failure in the verification step.
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5.4.3 Experimental evaluation

In this section, we test and compare both methods introduced in Sections 5.4.1
and 5.4.2 on a variety of switched systems of varying complexity, by in-
creasing the dimension and the number of matrices.

We consider the switched system defined in Equation (5.2) and de-
noted hereafter by A1, the systems A2 introduced in [DJ22b, Example 3],
A3 in [GWZ05, Example 6.4] A4 in [AJ19, Example 2] and A5 in [GZ08,
Section 7]. For each of them, we use the CEGIS architecture described
in Section 5.4.1 and we compute the post-processed approximations de-
veloped in Section 5.4.2. The numerical experiments are summarized in
Table 5.6. For each switched system, we provide two different results:
the first line outlines the scheme with the most accurate approximation of
the JSR, while the second line provides the sample execution with a good
precision-computation time trade off.

Various trends can be identified from this numerical experience, in line
with theoretical results. Overall, the results show that for nearly all ex-
amples, our neural approach finds a better approximation than the usual
quadratic approach. However, the structure of the network and the pa-
rameters differ for each system. For instance, the structure of the network
grows with the dimension to achieve a similar precision. In particular, the
higher the dimension of the system, the wider the neural network, as ex-
pected by Theorem 5.1. Moreover, the sampling size increases with the
dimension and the number of dynamics as well. As a result, the computa-
tion time also increases as reflected in Table 5.6.

In practice, we have noticed that, as the dimension increases, the CEGIS
loop never ends with a valid JSR approximation. We expect this to be ex-
plained by the number of points required to cover the unit sphere with
a fixed percentage. We therefore believe that, as the dimension increases,
more and more areas of the state space escape the network. Then, the Lya-
punov inequalities are not satisfied over the whole state space, and the
verifier fails. To circumvent this problem, we have “relaxed” the Lyapunov
inequalities by increasing and/or rounding up the JSR approximation pro-
vided by the network. In this case, the CEGIS loop is more likely to stop
on a valid JSR approximation.

Regarding the approximations provided by the post-processed norms,
W almost always provides a slightly better approximation than V although
one must bear in mind that W is more computational demanding than V.
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However, both approximations are similar to the approximation provided
by the network. This promotes the use of post processing in case of failure
of the CEGIS loop.

5.5 Summary and further research directions

Motivated by recent developments in neural Lyapunov techniques, we
have introduced for it a benchmark application and a theoretical frame-
work, for the particular case of switched systems.

Summary of Chapter 5

This chapter introduces an automatic and sound algorithm to study
the stability of linear switched systems by approximating the joint
spectral radius of the corresponding set of matrices.

Section 5.1: Bounds on the width and depth of the neural network
We have shown that one can determine theoretical bounds for

the accuracy of neural Lyapunov functions as a function of the
parameters of the network. The depth of the network only depends
on the dimension, while the width is a function of the dimension
and the precision.

Section 5.2: Experimental evaluation
From the empirical point of view, we have shown that in

practice as well, the approach is competitive with SDP-based tech-
niques while our neural networks were trained on simple personal
computers, which leaves an important room for improvement.

Section 5.3: Improvement techniques
We have emphasized the problem of overfitting, and proposed

avenues for mitigating it. Namely, we have considered the regular-
ization and the incremental learning.

Section 5.4: Computation of valid neural-based JSR approximations
The CEGIS architecture relies on two elements: a ReLU neural

network, and an SMT solver. We therefore benefit from the advan-
tages of these two components: notably the flexibility of neural
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5 | Approximation of the JSR using ReLU neural networks

networks and the soundness of SMT solvers. We also suffer from
their disadvantages, like the poor scalability of SMT solvers. How-
ever, we introduce post-processed norms V and W to address this
problem, and ensure a valid approximation of the JSR. Our algo-
rithm has shown promising results on several examples, nearly al-
ways beating the usual quadratic approximation, but further com-
parison is required with more advanced methods, and in higher
dimensions.

We see much possible further work, among which confirming the ex-
periments at a more general level (different network architectures, differ-
ent benchmark examples), potentially improving the learning algorithm
(in particular, the loss function), and pushing further the approaches for
mitigating overfitting.

In Section 5.4, we address in particular the problems of verification of the
output of the neural network. So far, we have followed the method which
was initially used in FOSSIL, that is the use of SMT solvers. Nevertheless,
they suffer poor scalability and many alternative methods could be used.
[BBLJ23] provides a comparison of the state-of-the-art neural network ver-
ifications tools. According to this competition, the current best methods
are linear bound propagation methods, and in particular the α, β-CROWN al-
gorithms used in [WIZ+24, YDS+24].
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Path-complete Lyapunov

functions and their
comparison

ONE of the possible ways to assess the stability of switched systems
is to use Lyapunov theory, and common Lyapunov functions (CLFs) in
particular, as developed in previous sections. This approach con-

sists in finding a single positive definite function that decreases along any
dynamics of the system. The template, i.e. the set in which the candidate
CLF is searched, has evolved over time and became more and more com-
plex. One popular approach considering quadratic functions has been gen-
eralized, for example, by considering sum-of-square polynomials [AJ18a],
polyhedral Lyapunov functions [BM99] and then the max-min of quadrat-
ics [GTHL06]. Although the existence of a CLF is a necessary and suffi-
cient condition for stability (as recalled in Theorem 1.12), it is largely offset
by the computing complexity required by the “search” for this Lyapunov
function. See for instance, the discussions provided in [AJ18a].

Therefore, the Multiple Lyapunov functions approach stands out as a promis-
ing alternative, as introduced in [Bra98], [GHT06] and [Lib03] for instance.
This approach aims to find (rather than a single function) a set of Lya-
punov functions whose joint decrease behaviour provides a stability certifi-
cate. More recently (for example in [AJPR14, PAAJ19, Pep19, AGMG22,
DPA22, CGPS21]), multiple Lyapunov framework has been extended to
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6 | Path-complete Lyapunov functions and their comparison

the case in which inequalities involving the candidate Lyapunov functions
are encoded in labeled and directed graphs. For studying stability in the
arbitrary switching signals case, the graph defining the structure of the in-
equalities has to recognize (in an automata theory sense) every possible
switching sequence, in which case it is usually called a path-complete graph.
A connection between this graph framework (also called path-complete Lya-
punov functions (PCLF) setting) and the general multiple Lyapunov func-
tions approach is provided in [JAPR17]: a set of inequalities involving
multiple Lyapunov functions is a valid certificate for stability if and only
if the corresponding graph describing the inequalities is path-complete.
Formally, the PCLF framework involves both combinatorial and algebraic
components: first, a path-complete graph that describes the set of Lya-
punov inequalities, and then a set of candidate Lyapunov functions, called
a template, among which a solution is sought. More recently, path-complete
techniques have been proven to be effective not only for the stability prob-
lem for switched systems, but also in different settings, as for example con-
strained switched systems in [PEDJ15], stabilization of switched systems
in [LDH20], and continuous-time switched systems in [DPA22].

The path-complete Lyapunov functions framework provides new guide-
lines for constructing stability certificates but it opens new questions and
challenges, both from a theoretical and computational point of view. In-
deed, the theory allows to use different graphs and different templates of
functions, and thus provides a wide range of possibilities. However, it is
not well understood yet why one of these algorithms provides less conser-
vative stability certificates than another, which has led to the problem of
comparing different path-complete graphs. More precisely, a graph is said
to be “better” than another one when its decay rate approximation capa-
bilities surpass those of the other graph (in a sense that we will clarify in
Definition 6.21 below).

After a brief introduction on multiple Lyapunov functions, we review
and summarize in this chapter current knowledge on the path-complete
Lyapunov formalism and the comparison of complete-path graphs. In par-
ticular, we formally define three levels of of ordering of graphs, namely the
template and dynamics-dependent ordering relation, the template-dependent or-
dering relation, and the general ordering relation which holds regardless of
the dynamics and the template. For the latter ordering relation, we recall
the simulation-based characterization in [PJ19], as well as its proof that
will serve as the basis for the template-dependent order characterizations
in Chapter 8.
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6.1 Introduction to multiple Lyapunov functions

It is clear from Section 1.1.2 that Lyapunov theory is a powerful method-
ology to provide stability certificates for switched systems. In particular
Theorem 1.12 states that the existence of a common Lyapunov function is
a necessary and sufficient condition for stability. Nevertheless, the search
for such a function in practice is limited to specific templates for which
numerical algorithms have been developed, as illustrated in Section 2.2.
Whatever the template used, it provides conservative Lyapunov stability
certificates. The template of quadratic Lyapunov functions is a good illus-
tration. Indeed, there exist several examples [LM99, LA09] of stable linear
switched systems for which there does not exist a common quadratic Lya-
punov function. This has forced researchers to consider more and more
complex candidate Lyapunov functions. As example, [PJ08, Example 2.8]
has motivated the introduction of SOS polynomials as template. However,
no matter how complex the template, it is often possible to build a sta-
ble switched system which does not admit a common Lyapunov function
within this template. For instance, [AJ14, Theorem 1] reveals that, for any
d ∈ N, there exists a switched system which does not admit a polynomial
Lyapunov function of degree d, or a polytopic Lyapunov function with d
facets, or a piecewise quadratic Lyapunov function with d pieces.

In order to alleviate this conservativeness, researchers have started to
rely on more structured sets of Lyapunov inequalities which involve sev-
eral candidate Lyapunov pieces [Bra98, GHT06, Lib03], rather than looking
for a single, increasingly complex Lyapunov function. In this case, the de-
crease along trajectories with respect to any switching signal is guaranteed
by the joint behaviour of the Lyapunov pieces and not by their individual
behaviour. Therefore, the so-called multiple Lyapunov functions (MLFs for
short) turned out to be a promising alternative to increasingly complex
template. Moreover, with the multiple Lyapunov formalism, we hope to
be able to moderate the numerical cost by searching for more functions but
in simpler templates, i.e. templates that require less numerical effort.

To start with, let us consider the example of a multiple Lyapunov func-
tion for a switched system with 2 modes which has been first introduced
in [DB01], and further studied in [PAAJ19]. The authors provide a spe-
cific switched system for which the quadratic template fails to produce a
common Lyapunov function, but provides a multiple Lyapunov function.
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Example 6.1. Consider any n-dimensional linear switched system A :=
{A1, A2} ⊆ Rn×n with n ∈ N. The multiple Lyapunov stability certifi-
cate proposed in [DB01] involves two candidate quadratic Lyapunov func-
tions Va, Vb : Rn → R≥0 such that the following Lyapunov inequalities are
satisfied, namely ∀x ∈ Rn:

Va(A1x) ≤ Va(x),

Vb(A1x) ≤ Va(x),

Va(A2x) ≤ Vb(x),

Vb(A2x) ≤ Vb(x).

(6.1a)

(6.1b)

(6.1c)

(6.1d)

In this case, the multiple Lyapunov function is time-dependent and can be
defined as

V(x, k) :=

{
Va(x) if σ(k) = 1,

Vb(x) if σ(k) = 2.
(6.2)

Moreover, [PAAJ19, Example III.4] provides the linear switched system
in dimension 2 defined by the matrices

A1 := α

[
1.3 0
1 0.3

]
and A2 := α

[
−0.3 1

0 −1.3

]
, (6.3)

with α = (1.4)−1. This system does not admit a common quadratic Lya-
punov function but there exist two quadratic Lyapunov functions Va and
Vb satisfying the multiple Lyapunov stability criterion defined by Equa-
tion (6.1). In particular,{

Va(x1, x2) := 5x1
2 + x2

2,

Vb(x1, x2) := x1
2 + 5x2

2,
(6.4)

satisfy the Lyapunov inequalities. Figure 6.1 shows the evolution of each
piece Va and Vb along the trajectory starting at x(0) := [4,−1/2]⊤ and
following the switching sequence σ := 122221212. As expected, one can
observe that the functions Va and Vb do not decrease at each time step.
However, the joint behaviour defined by the multiple Lyapunov function
in Equation (6.2) decreases at each time along the trajectory, as illustrated
in Figure 6.1a. We can formally verify that the function decreases along the
trajectory. Indeed,
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(a) Evolution with time k of the switch-
ing signal σ (on the right axis), Lya-
punov pieces Va and Vb in (6.4), and the
multiple Lyapunov function in (6.2) (on
the left axis) along the trajectory start-
ing at x(0) = [4,−1/2]⊤ and following
the switching sequence σ := 122221212.

(b) Illustration of the 1-sublevel sets
of Va and Vb respectively denoted by
X1 and X2, and the images A1X1 and
A2X2. Equation (6.1a) implies that
A1X1 ⊆ X1. Similarly, Equation (6.1d)
implies that A2X2 ⊆ X2.

Fig. 6.1 Illustration of the multiple Lyapunov function in (6.4) for sys-
tem (6.3) in Example 6.1.

V(x(8), 8)
(6.2)
:= Vb(x(8))

σ(7)=1
= Vb(A1x(7)),

(6.1b)
≤ Va(x(7))

(6.2)
:= V(x(7), 7)

σ(6)=2
= Va(A2x(6)),

(6.1c)
≤ Vb(x(6))

(6.2)
:= V(x(6), 6)

σ(5)=1
= Vb(A1x(5)),

(6.1b)
≤ Va(x(5))

(6.2)
:= V(x(5), 5)

σ(4)=2
= Va(A2x(4)),

(6.1c)
≤ Vb(x(4))

(6.2)
:= V(x(4), 4)

σ(3)=2
= Vb(A2x(3)),

(6.1d)
≤ Vb(x(3))

(6.2)
:= V(x(3), 3)

σ(2)=2
= Vb(A2x(2)),

(6.1d)
≤ Vb(x(2))

(6.2)
:= V(x(2), 2)

σ(1)=2
= Vb(A2x(1)),

(6.1d)
≤ Vb(x(1))

(6.2)
:= V(x(1), 1)

σ(0)=1
= Vb(A1x(0)),

(6.1b)
≤ Va(x(0))

(6.2)
:= V(x(0), 0),

where the definition of the MLF in Equation (6.1) and the Lyapunov in-
equalities in Equation (6.1) are used when appropriate. △
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Just as for common Lyapunov functions (see Section 2.2), the choice
of the template for multiple Lyapunov functions is crucial and partially
affects the conservatism of the corresponding stability certificate. In par-
ticular, we will see in the following chapters that the closure properties of
a template, i.e. the operations which preserve the template regardless of
the dimension, play a key role in the conservatism-based comparison of
graph-based stability certificates.

6.2 Graph-based Lyapunov functions

In this section, we formally introduce the notion of path-complete Lyapunov
function which generalizes the multiple Lyapunov framework by encoding
the Lyapunov inequalities with specific directed and labeled graphs. This
new formalism relies on two structural components, namely the template
already introduced in Section 1.3 and the path-complete graph. The next sec-
tion addresses the path-completeness while the second one gathers both
parameters and formally defines the concept of path-complete Lyapunov
function. Although this formalism is equally suitable for linear or nonlin-
ear switched systems, the last section focuses on switched linear systems.
We consider in particular the JSR approximation using the path-complete
Lyapunov formalism.

6.2.1 Path-complete graphs

The path-complete Lyapunov framework mainly relies on the notion of
path-completeness of a graph. The principle of this framework is to use a
finite graph to encode all the possible switching sequences. A convenient
way to do it is to consider a directed and labeled graph.

Definition 6.2 (Directed and labeled graph). Given M ∈ N, a directed and
labeled graph on the alphabet ⟨M⟩ is a couple G = (S, E) where

- S is the finite set of nodes of the graph, and

- E ⊆ S× S× ⟨M⟩+ is the set of directed and labeled edges.

A directed and labeled edge is a tuple (s, d, w) ∈ E where s is called the source
or the starting node, d is the destination or the ending node and the word
w := i1 . . . ik is the label of the edge.
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Definition 6.3 (Dual graph). Given a directed and labeled graph G =

(S, E) on the alphabet ⟨M⟩, the dual graph of G, denoted by G⊤ = (S, E⊤) is
obtained by reversing the direction of each edge and the order of the word,
i.e. (s, d, w) ∈ E⊤ if and only if (d, s, w⊤) ∈ E.

Given a directed and labeled graph G = (S, E), we can define a path in
G as a sequence of consecutive edges, i.e.

p := {(si, si+1, wi) ∈ E | i = 1, 2, . . . } .

The length of the path p is defined as the number of edges that it contains.
Given an integer k ∈ N, we denote by Pk(G) the set of all the paths in G
of length k. By extension, we define P(G) as the set of all the paths in G,
i.e.

P(G) :=
∞⋃

k=1

Pk(G).

Any path p also generates a word, denoted by w(p), which is the concate-
nation of the labels on its edges, i.e. w(p) = w1w2 · · · ∈ ⟨M⟩+.

Definition 6.4 (Path-complete graph). Given a directed and labeled graph
G = (S, E) on the alphabet ⟨M⟩, with M ∈ N, the graph G is path-complete
if for any finite word ω := i1i2 . . . ik ∈ ⟨M⟩+ of any length k ∈ N, there
exists a directed path p ∈ Pk(G) in the graph whose word w(p) contains
ω as a subword.

Note that the notion of path-completeness is known as universality in au-
tomata theory. Some existing algorithms can check whether an automata
can generate any finite word but this problem is known to be PSPACE-
complete, see [JAPR17].

The most trivial path-complete graph is probably the common Lyapunov
function graph, denoted by G0 , with one node and as many loops as the
number of modes M, i.e. G0 := ({a}, {(a, a, i) | i ∈ ⟨M⟩}). There exist
many other possible graphs, as illustrated in the following example.

Example 6.5 (Example of path-complete graphs). Consider the alphabet ⟨2⟩
and the two graphs G1 = (S1, E1) and G2 = (S2, E2) in Figure 6.2. One can
prove that G1 is path-complete over the alphabet while G2 is not.

Since the graph G1 admits a single node, the reasoning is quite intuitive.
Given any finite word ω := i1 . . . ik on the alphabet ⟨2⟩, we proceed in
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a122 21

1

(a) G1 = (S1, E1), an example of a
path-complete graph on the alphabet
⟨2⟩ with labels of different lengths.

a2 b2

11

21

2

1

(b) G2 = (S2, E2), an example of a graph
which is not path-complete on the alphabet
⟨2⟩.

Fig. 6.2 Examples of two graphs G1 ans G2, one which is path-complete
and one which is not.

an iterative way: if the first character i1 is 1, we take the loop (a1, a1, 1).
Otherwise, if i1 is 2, we either take (a1, a1, 22) or (a1, a1, 21) according to
the second following symbol. Following this procedure, we will always be
able to generate any finite word with G1.

Regarding G2, let us consider the word ω := 221122. Indeed, one
can easily see that the first sequence of 2’s can only be achieved by the
loop (b2, b2, 2). From there, we can only leave the node through the edge
(b2, a2, 1). However, none of the outgoing edges from a2 can be used to
complete the sequence w. This argumentation can be generalized to any
sequence with an even number of consecutive 2’s followed by an even
number consecutive of 1’s, itself followed by an even number of consec-
utive 2’s and so forth. △
Moreover, it is easy to see [AJPR14, Theorem 3.2] that the duality preserves
the path-completeness.

Proposition 6.6. Consider a directed and labeled graph G = (S, E) on the al-
phabet ⟨M⟩. The graph G is path-complete if and only if the dual graph G⊤ is
path-complete.

Proof. Consider a path-complete graph G = (S, E) on the alphabet ⟨M⟩
with M ∈ N. We consider a finite word w := w1 . . . wk ∈ ⟨M⟩k of length
k ∈N. By definition of the path-completeness, there exists a path

p := {(si, si+1, wk+1−i) ∈ E | i = 1, . . . , k}

in G whose word is the reverse of w, i.e w⊤ := wk . . . w1. By duality in
Definition 6.3, the reversed path p′ := {(si+1, si, wi) ∈ E | i = 1, . . . , k} ⊆
E⊤ and w(p′) = w. This completes the proof.
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In Definition 6.2 and in Definition 6.4 consequently, we assume that
the labels belong to the Kleene closure of the alphabet and can therefore
have different lengths. However, it is always possible to derive a directed
and labeled graph with labels of length 1 via the expanded graph introduced
in [AJPR14, Definition 2.1].

Definition 6.7 (Expanded graph). Given a directed and labeled graph G =

(S, E) on the alphabet ⟨M⟩ with label of length larger than 1, the expanded
graph, denoted by Ge = (Se, Ee) is defined as the outcome of the following
procedure. For every edge e = (s, d, w) ∈ E such that the label w :=
i1i2 . . . ik is of length k > 1, we add k − 1 intermediate nodes s1, . . . , sk−1.
We replace the initial edge with label of multiple length with k new edges
(sj, sj+1, ij+1) of label of length 1, where s0 := s.

As example, Figure 6.3 illustrates the expanded form of G1 in Figure 6.2a.
Using the expanded graph, we assume that we will only consider path-
complete graphs with labels of length one in the rest of this report. The
conservatism of this assumption will be discussed in Chapter 7. Indeed,
Proposition 7.70 provides sufficient conditions for one graph to be equiva-
lent to its expanded form. For instance, a graph and its expanded form are
equivalent for linear switched systems and Lyapunov norms.

Assumption 6.8. The path-complete graphs considered herein only have labels of
length one.

Let us now introduce a property of graphs which implies the path-
completeness.

Definition 6.9 (Complete and co-complete graphs). A directed and labeled
graph G = (S, E) on the alphabet ⟨M⟩ is complete if for all a ∈ S, for all
i ∈ ⟨M⟩, there exists at least one node b ∈ S such that the edge (a, b, i) ∈ E.
The graph is co-complete if for all b ∈ S, for all i ∈ ⟨M⟩, there exists at least
one node a ∈ S such that the edge (a, b, i) ∈ E.

a11 a1 a12

1

1

2 2

2

Fig. 6.3 G1
e = (S1

e, E1
e), the path-complete graph G1 in expanded form.
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It follows that the dual of a complete graph is co-complete and reversely.
Moreover, any complete or co-complete graph is path-complete, see [AJPR14,
Proposition 3.3].

Regarding complete graphs, the class of De Bruijn graphs is a notable
example. They were introduced in [de 46] and were initially used to repre-
sent common past of finite words of an alphabet. Nowadays they are used
in various fields, such as grid network or bioinformatics [CLJ+15, CLM16].
Let us formally define them.

Definition 6.10 (De Bruijn Graphs). Given M, K ∈N, the (primal) De Bruijn
graph of order K− 1 (on the alphabet ⟨M⟩) denoted by GK

db = (S, E) is defined
as follows: S := ⟨M⟩K−1 and, given any node a = (i1, . . . , iK−1) ∈ S,
we have (a, b, j) ∈ E for every b of the form b = (i2, . . . , iK−1, j), for any
j ∈ ⟨M⟩. The dual De Bruijn graph of order K− 1 (on the alphabet ⟨M⟩) is the
dual of GK

db.

Figure 6.4 provides two examples of De Bruijn graphs of different orders.
Recently, the notion of De Bruijn graph has been generalized in [DJ23,

Jun24] by mixing common past and future of finite words. Even if they
are not complete anymore, those graphs have been proved [DJ23, Proposi-
tion 4] to be path-complete.

a3 b3

c3

2

3

1

3

1 2

3

1

2

(a) The De Bruijn graph G2
db of order

1 on the alphabet ⟨3⟩.

a4

c4

d4

b42

1

2

1

2

2

1 1

(b) The De Bruijn graph G3
db of order 2 on

the alphabet ⟨2⟩.

Fig. 6.4 Examples of De Bruijn graphs.
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a5

c5

d5

b52

2

2

1

1

1

2 1

(a) G3,1
db , the generalized De Bruijn

graph of order 2 and memory 1.

a6

c6

d6

b62

2

1

2

2

1

1 1

(b) G3,0
db , the generalized De Bruijn

graph of order 2 and memory 0.

Fig. 6.5 Examples of generalized De Bruijn graphs of order 2 on the alpha-
bet ⟨2⟩.

Definition 6.11 (Generalized De Bruijn graphs). Given M, K and k ∈ N

such that 0 ≤ k ≤ K, the generalized (primal) De Bruijn graph of order K − 1
and memory k (on the alpahbet ⟨M⟩), denoted by GK,k

db := (S, E) is defined as
follows: S := ⟨M⟩K−1 and

(a, b, h) ∈ E ⇔
{

a2:K−1 = b1:K−2 ∧ bK−1 = h, if k = K− 1,

a2:K−1 = b1:K−2 ∧ ak+1 = h, otherwise.

Note that the generalized De Bruijn graph of order K − 1 of full memory,
i.e. k = K − 1, coincides with the classical De Bruijn graph of order K −
1. Figure 6.5 illustrates the generalized De Bruijn graphs of order 2 and
memory 1 and 0.

6.2.2 Path-complete Lyapunov functions

As already mentioned, several multiple Lyapunov certificates have been
introduced over the years. For the purposes of unification and general-
ization, Ahmadi et al. introduced in [AJPR14] the path-complete Lyapunov
framework. In short, the main idea consists in using a path-complete graph
to encode the Lyapunov constraints on a set of Lyapunov functions. For-
mally, the nodes of the graph represent the Lyapunov pieces while the
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edges describe Lyapunov inequalities. Then, the path-completeness of the
graph is required to guarantee that the corresponding set of Lyapunov in-
equalities is a stability certificate.

Definition 6.12 (Path-complete Lyapunov function). Given a switched sys-
tem F = { fi : i ∈ ⟨M⟩} ⊂ C0(Rn, Rn) of dimension n ∈ N and a tem-
plate V of candidate Lyapunov functions, a path-complete Lyapunov function
(PCLF in short) for F in V is a pair (G = (S, E), VS) where G is a path-
complete graph on ⟨M⟩, and VS := {Vs : s ∈ S} ∈ VS is a set of candidate
Lyapunov functions in the template such that the following inequalities are
satisfied:

∀ (a, b, i) ∈ E, ∀x ∈ Rn : Vb( fi(x)) ≤ Va(x). (6.5)

If this is the case, we say that VS is admissible for G and F, and we denote it
by VS ∈ PCLF(G, F).

Remark 6.13. Note that if we consider a graph with an edge e := (s, d, w) of
label w := i1 . . . ik of length k > 1, the corresponding Lyapunov inequality
is given by

Vd( fik ◦ · · · ◦ fi1(x)) ≤ Vs(x),

for all x ∈ Rn. △
The following theorem states that a path-complete Lyapunov function

is a sufficient condition for stability.

Theorem 6.14 ([AJPR14, Phi17]). Consider a switched system F := { fi : i ∈
⟨M⟩} with M ∈ N continuous dynamics on Rn. If there exists a path-complete
Lyapunov function (G = (S, E), VS := {Vs : s ∈ S}) for F, then the switched
system is stable under arbitrary switching.

Not only the path-completeness is a sufficient condition for stability, but it
has been proved that it is also necessary. Therefore, the path-complete Lya-
punov framework fully characterizes the Lyapunov certificates for switched
systems.

Theorem 6.15 (Theorem 3 in [JAPR17]). A set of Lyapunov inequalities is a sta-
bility certificate under arbitrary switching if and only if the corresponding graph
is path-complete.

Remark 6.16. On the one hand, the path-completeness characterizes the
Lyapunov certificates for the stability under arbitrary switching, as stated
in Theorem 6.15. On the other hand, we can use the graph to encode con-
straints on the switching sequences such as dwell-time restrictions [AJ18b].
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In general, this formalism allows to prove the stability on the language of
the graph, i.e. on the set of possible finite sequences that we can generate
with the graph. This has been extensively studied in [Phi17]. △

6.2.3 Approximation of the JSR using PCLFs

Let us consider in particular a linear switched system of the form

x(k + 1) = Aσ(k)x(k) (6.6)

where Aσ(k) ∈ A := {A1, . . . , AM} ⊂ Rn×n for every time step k ∈ N.
We have seen that we can prove the stability of this kind of systems using
the path-complete Lyapunov framework, but we can also use it to derive
upper bounds on the JSR of A. Due to the homogeneity of the JSR (see
Proposition 2.2), if we manage to find an admissible set of Lyapunov func-
tions in the given template for a path-complete graph G and the scaled set
of matrices

Aγ := {Ai/γ : i = 1, . . . , M}

with γ > 0, then ρ(A) ≤ γ. Therefore, we can define the approximation of
the JSR provided by a path-complete graph and a template as the smallest
value γ⋆ which satisfies this inequality.

Definition 6.17 (JSR approximation provided by a path-complete graph
and a template). Given a linear switched system with dynamics A :=
{A1, . . . , AM} ⊂ Rn×n, a path-complete graph G on ⟨M⟩ and a template
of candidate Lyapunov functions V . The approximation of the JSR of A pro-
vided by G and V , denoted by ρG,V (A), is defined as the smallest value γ > 0
such that the lifted system Aγ admits a path-complete Lyapunov function
(G, Vγ) in the template, i.e.

ρG,V (A) := min
γ>0

{
∃Vγ ∈ VS | Vγ ∈ PCLF(G,Aγ)

}
. (6.7)

Let us take a few examples.

Example 6.18. We consider a linear switched system with two modesA1 :=
{A1, A2} ⊂ R2×2 in dimension 2, where the matrices are defined by

A1 :=

[
0.9 0.3
0.9 0.7

]
and A2 :=

[
0.6 0.9
0.6 0.3

]
.
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a7 b72 1
2

1

(a) G7 = (S7, E7), a path-complete
graph on ⟨2⟩ with 2 nodes and 4 edges.

b8 c8

a8

1

1

2

2

2 1

(b) G8 = (S8, E8), a path-complete
graph on ⟨2⟩ with 3 nodes and 6 edges.

Fig. 6.6 Comparison of the approximation of the JSR provided by the
two path-complete graphs G7 and G8 with different templates of candidate
Lyapunov functions.

We use two different path-complete graphs G7 and G8, illustrated in Fig-
ure 6.6, in addition to the common Lyapunov function graph G0 and the
different (generalized) De Bruijn graphs G3

db, G3,1
db and G3,1

db . Moreover, we
use different templates of Lyapunov functions, namely the primal copos-
itive norms which have been formally introduced in Section 2.2.3 and the
quadratic Lyapunov functions. For each possible graph-template couple,
we compute the corresponding approximation of the JSR. The results are
summarized in Table 6.1.

We can see that the approximation varies according to the graph and
the template. In general, the template of primal copositive norms provides
poorer results while the quadratic template reaches the JSR value, that is
1.3534 (computed using the JSR toolbox [VHJ14]), with four graphs. How-
ever, the graph G[0,2] allows to reach an approximation of 1.3545 using the

Path-complete graph

Template G0 G3
db G[1,1] G[0,2] G7 G8

Copositive norms 1.5487 1.5487 1.3807 1.3545 1.3807 1.5487

Quadratics 1.3736 1.3534 1.3534 1.3534 1.3534 1.3638

Table 6.1 ρG,V (A1), the approximation of the JSR of system A1 in Exam-
ple 6.18 with different path-complete graphs G and different templates V .
The JSR of A1, i.e. 1.3534, is achieved by the quadratic template with dif-
ferent graphs.
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primal copositive norms. Therefore, this example shows that a graph can
generate both “good” and “bad” results, depending on the template, and
some templates which may seem less effective, sometimes turn out to be
really effective with particular graphs. The next chapters will partially ex-
plain these fluctuations. △
As illustrated by this example, this quantity depends both on the graph
and on the template that we consider. In fact, we will use it as a perfor-
mance index to compare path-complete graphs in the next section.

In addition, some hierarchies of graphs are known to converge to the
JSR value. For instance, [AJPR14] proved that the class of De Bruijn graphs
with increasing order leads to the JSR if we use the quadratic template.

Theorem 6.19 (Theorem 6.1 in [AJPR14]). GivenA ⊂ Rn×n a linear switched
system of M matrices of dimension n ∈ N and any integer l ∈ N, we consider
the dual De Bruijn graph of order l− 1 on the alphabet ⟨M⟩ denoted by G l

db⊤ , and
the quadratic template denoted by Q. The following inequalities are satisfied:

1
2l
√

n
ρG l

db⊤
,Q(A) ≤ ρ(A) ≤ ρG l

db⊤
,Q(A). (6.8)

This theorem leads to a hierarchy of semidefinite programs to approximate
the JSR with a given precision.
Example 6.20. Let us consider the linear switched system of 3 modesA2 :=
{A1, A2, A3} ⊂ R3×3 of dimension 3 defined by

A1 :=

−4.6740 1.6918 −0.3927
0.6120 −3.0957 4.8164
3.8187 −1.3108 −3.4360

 , A2 :=

 3.5552 −3.0908 −3.7939
1.4476 −0.7175 0.8951
−1.2373 −0.1798 −2.7381



and A3 :=

−1.1538 −2.0956 3.2438
0.8299 1.1709 4.8266
−2.4819 −2.3472 2.3025

 .

Using the JSR toolbox [VHJ14], we find that the JSR of A2 is 5.8353.
For comparison, we use the quadratic De Bruijn hierarchy in Theo-

rem 6.19 to approximate the JSR of system A2. Table 6.2 summarizes the
JSR approximations and the computation time of the first iterations of this
hierarchy. One can observe that the JSR approximation provided by GK+1

db
decreases as the order K increases. After 8 iterations, the JSR is approx-
imated with an error order of 10−3. In parallel, the computation time in-
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De Bruijn graph GK+1
db of order K

2 3 4 5 6 7 8 9

ρG,Q(A2) 5.9345 5.8477 5.8466 5.8445 5.8425 5.8419 5.8402 5.8360

Time (sec.) 0.5797 1.3560 2.8771 8.9788 26.659 95.981 378.72 2044.5

Table 6.2 Approximation of the JSR of systemA2 using the quadratic De
Bruijn hierarchy in Theorem 6.19. For comparison, ρ(A2) = 5.8353. The
computation time (in seconds) of each iteration is also included.

creases as well since the number of nodes (i.e. SDP variables) ⟨M⟩K and the
number of edges (i.e. SDP constraints) ⟨M⟩K+1 both grow exponentially
with respect to the order K. △

6.3 Comparison of PCLFs

The path-complete Lyapunov function framework generates a wide range
of Lyapunov stability certificates since it provides two degrees of freedom:
the path-complete graph G and the template V . Example 6.18 has high-
lighted that the conservatism of these stability certificates differs accord-
ing to the template and the path-complete graph used, i.e. all certificates
do not provide the same JSR approximation.

6.3.1 Definition of the comparison

Similarly to Definition 1.30, we define a family of systems F as a family of
countably many sets of systems of fixed dimension, i.e.

F :=
⋃

n∈N

Fn,

where Fn ⊆ C0(Rn, Rn). In what follows, we introduce ordering rela-
tions among the set of path-complete graphs, formalizing the idea that one
graph “produces less conservative stability conditions” with respect to an-
other. This notion has been initially introduced in [AJPR14, Section 4.2]
and further developed in [Phi17, PJ19].
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Definition 6.21 (Ordering relations between graphs). Consider two path-
complete graphs G = (S, E) and G̃ = (S̃, Ẽ) on the alphabet ⟨M⟩, a tem-
plate of candidate Lyapunov functions V and a family F of systems.

(a) We say that G̃ is better than G with respect to the template V and the family
F , denoted by

G ≤V ,F G̃, (6.9)

if, for any F ∈ F ⟨M⟩,[
∃V ∈ VS s.t. V ∈ PCLF(G, F)

]
⇒
[
∃W ∈ V S̃ s.t. W ∈ PCLF(G̃, F)

]
.

(6.10)

(b) We say that G̃ is better than G with respect to the template V , denoted by

G ≤V G̃, (6.11)

if the inequality in Equation (6.9) is satisfied forF =
⋃

n∈N C0(Rn, Rn).

(c) We say that G̃ is better than G, denoted by

G ≤ G̃, (6.12)

if for any template V , the inequality in Equation (6.11) is satisfied.

Figure 6.7 provides an illustration of the ordering in Definition 6.21.

The following lemma proves that these ordering relations are well-defined
in particular in the context of linear switched systems since they can be
translated in terms of comparison of the JSR approximations.

Proposition 6.22. Consider two path-complete graphs G and G̃ on the same al-
phabet, a template of candidate Lyapunov functions V and the family L of linear
switched systems. If G ≤V ,F G̃, then

ρG,V (A) ≥ ρG̃,V (A) (6.13)

for any system A ∈ L⟨M⟩.

Proof. Consider an arbitrary linear switched system A := {A1, . . . , AM}
with M modes of dimension n ∈ N, and a template V of candidate Lya-
punov functions. Take any γ > 0, and assume that there exists a PCLF
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Family FM of switched systems with M modes

SolF (G,V)

SolF (G̃,V)

Fig. 6.7 Illustration of ordering of graphs in Definition 6.21. Given a
template V , a path-complete graph G = (S, E) and a family F of sys-
tems, SolF (G,V) denotes the set of switched systems with dynamics in
F for which there exists an admissible solution in the template V , i.e.
SolF (G,V) := {F = { f1, . . . , fM} ∈ F ⟨M⟩ | ∃V ∈ VS : V ∈ PCLF(G, F)}.
Then, G ≤V ,F G̃ if and only if SolF (G,V) ⊆ SolF (G̃,V).

(G, VS) with VS ∈ VS, admissible for Aγ, i.e.

∀(s, d, σ) ∈ E, ∀x ∈ Rn : Vd

(
Aσ

γ
x
)
≤ Vs(x). (6.14)

By assumption, G ≤V ,F G̃, therefore there exists a PCLF (G̃, WS̃) with WS̃ ∈
V S̃ admissible for Aγ, i.e.

∀(s̃, d̃, σ) ∈ Ẽ, ∀x ∈ Rn : Vd̃

(
Aσ

γ
x
)
≤ Vs̃(x). (6.15)

By Definition 6.17 and since Equation (6.15) holds for any γ such that Equa-
tion (6.14) holds, we can conclude that for any linear switched system A,
the inequality in Equation (6.13) holds.

Note that the relations in Equations (6.9), (6.11) and (6.12) are actually
preorder relations and not order relations because these relations are not an-
tisymmetric. However, they satisfy the transitivity property: for any path-
complete graphs G, G ′ and G ′′,[(

G ≤ G ′
)
∧
(
G ′ ≤ G ′′

)]
⇒

(
G ≤ G ′′

)
, (6.16)
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and the same property remains true considering the relations≤V and≤V ,F ,
for any template V and any family of systems F . Moreover, since Equa-
tion (6.12) implies Equations (6.9) and (6.11) for any template V and any
family F , the following implications hold:[(

G ≤ G ′
)
∧
(
G ′ ≤V G ′′

)]
⇒

(
G ≤V G ′′

)
, (6.17)

and [(
G ≤ G ′

)
∧
(
G ′ ≤V ,F G ′′

)]
⇒

(
G ≤V ,F G ′′

)
. (6.18)

Moreover, the three relations in Equations (6.9), (6.11) and (6.12) satisfy the
two following properties.

Proposition 6.23. Consider two path-complete graphs G and G̃ on the same al-
phabet, a template of candidate Lyapunov functions V and a family of switched
systems F such that G ≤V ,F G̃. Then, for any path-complete component G ′ of
G̃,

G ≤V ,F G ′.

The same result holds for the relations in Equations (6.11) and (6.12).

The proof of Proposition 6.23 is straightforward, since by definition the set
of inequalities encoded by G ′ is a subset of the inequalities encoded by G̃.
A second property follows directly from Definition 6.21 and involves the
common Lyapunov function graph G0.

Proposition 6.24. Consider a path-complete graph G and the common Lyapunov
function graph G0 on the same alphabet. Then, for any template of candidate
Lyapunov functions V and any family of switched systems F ,

G0 ≤V ,F G.

The same result holds for the relations in Equations (6.11) and (6.12).

In other words, this means that, for any switched system, if there exists a
common Lyapunov function in a given template then there exists an ad-
missible solution for any multiple Lyapunov stability certificate.

6.3.2 Comparison and duality

In this section, we leverage the duality of norms described in Section 1.2
to build a duality theory for the template-dependent ordering of path-
complete graphs in the context of linear switched systems.
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First, we prove that the dual norms of a given solution V ∈ PCLF(G,A)
is admissible for the transposed matrices A⊤ and the dual graph G⊤.

Lemma 6.25. Given a path-complete graph G = (S, E), a linear switched system
A and a template V of norms, the following equivalence holds:

V := {Vs ∈ V : s ∈ S} ∈ PCLF(G,A)

⇔ V∗ := {Vs
∗ ∈ V∗ : s ∈ S} ∈ PCLF(G⊤,A⊤).

Proof. Consider V := {Vs : s ∈ S} ∈ VS an admissible solution for G and
A. By definition, it means that all the Lyapunov inequalities encoded by
the edges of G are satisfied, i.e.

∀(s, d, i) ∈ E : ∀x ∈ Rn, Vd(Aix) ≤ Vs(x).

By Lemma 1.28, this is equivalent to

∀(s, d, i) ∈ E : ∀x ∈ Rn, Vs
∗(A⊤i x) ≤ Vd

∗(x),

⇔ ∀(d, s, i) ∈ E⊤ : ∀x ∈ Rn, Vs
∗(A⊤i x) ≤ Vd

∗(x),

which means that V∗ := {Vs
∗ : s ∈ S} ∈ V∗S is admissible for the dual

graph G⊤ and the transpose modes A⊤.

We can directly derive from Lemma 6.25 the following result in terms of
JSR approximation.

Lemma 6.26. Consider a path-complete graph G on the alphabet ⟨M⟩, a template
V of norms and a linear switched system A ⊂ Rn×n. Then,

ρG,V (A) = ρG⊤ ,V∗(A
⊤).

If a template V is self-dual, Lemma 6.26 states that transposing the ma-
trices has the same effect as dualizing the graph. In particular, this result
generalizes [AJPR14, Theorem 5.1] which claims the same statement for
the quadratic template in particular.

Finally, the following proposition formally demonstrates that the order-
ing in Definition 6.21 can as easily be studied in a template as in its dual,
by simply transposing the graphs.
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Proposition 6.27. Consider two path-complete graphs G and G̃ on the same al-
phabet, and a template V of norms. The following equivalence holds:

G ≤V ,L G̃ ⇔ G⊤ ≤V∗ ,L G̃⊤

where L denotes the family of linear systems.

Proof. Assume that G ≤V ,L G̃. By Definition 6.21 of the graph ordering, the
following implication holds for any linear switched system A ∈ L⟨M⟩:[
∃V ∈ VS s.t. V ∈ PCLF(G,A)

]
⇒
[
∃W ∈ V S̃ s.t. W ∈ PCLF(G̃,A)

]
.

We can use Lemma 6.25 for both members of this implication. Then,[
∃V ∈ V∗S s.t. V ∈ PCLF(G⊤,A⊤)

]
⇒
[
∃W ∈ V∗ S̃ s.t. W ∈ PCLF(G̃⊤,A⊤)

]
holds for any linear switched system A, which ends the proof.

6.3.3 Characterization by the simulation

So far, ad-hoc techniques were used to establish the ordering relations be-
tween graphs. In particular, most of these techniques provide sufficient
conditions for ordering. In this section, we summarize the first necessary
and sufficient condition for the general ordering relation in Equation (6.12)
between graphs developed in [PJ19], which relies on a combinatorial rela-
tion between graphs called the simulation defined in [PJ19, Definition 3.1].

Definition 6.28 (Simulation). Consider two graphs G = (S, E) and G̃ =

(S̃, Ẽ) on the same alphabet ⟨M⟩. The graph G simulates G̃ if and only if
there exists a function R : S̃→ S such that

∀(a, b, i) ∈ Ẽ : (R(a), R(b), i) ∈ E. (6.19)

Remark 6.29. Although this notion has been introduced in [PJ19] for the
path-complete Lyapunov formalism, it recalls basic notions in automata
and graph theory.

In graph theory, the simulation is a generalization of a graph homomor-
phism [HT97, HN04] for directed and labeled graphs. A graph homomor-
phism is a mapping between the nodes of two graphs which preserves
the edges, and generalizes graph colouring problems. From a computa-
tional complexity point of view, the problem of deciding whether there

| 133



6 | Path-complete Lyapunov functions and their comparison

exists a homomorphism from a graph to another has been proved to be
NP-complete. However, several particular cases can be solved in polyno-
mial time, see [HN08] for a survey on this topic.

In contrast, Definition 6.28 is inspired by the notion of simulation in
automata theory [CL10, Section 2.3.5], and is a particular case of [Phi17,
Definition 6.4]. In this case, the authors say that a graph G1 simulates a
graph G2 if there exists a function R : S2 → P(S1) which associates every
node of S2 to a subset of nodes of S1 such that for every edge (s, d, σ) ∈ E2,
there exists a bijection between R(s) and R(d) using the edges in E1 of label
σ. Then, Definition 6.28 is the special case when R(s) is a singleton. △

This notion defines a relation between the nodes of the two graphs, where
the nodes of the simulated graph are sent to one node of the simulating
graph. We can translate this relation in terms of candidate Lyapunov func-
tions: we define the function associated to a node s̃ ∈ S̃, denoted by Ws̃, as
equal to the function associated to the corresponding node R(s) in S, itself
referred as VR(s). To summarize,

∀s̃ ∈ S̃, ∀x ∈ Rn : Ws̃(x) := VR(s̃)(x).

One can prove that under this assumption, for any system F and any tem-
plate V , the set of candidate Lyapunov functions {Ws̃}s̃∈S̃ in V S̃ is admis-
sible for G̃ and F if the corresponding set {Vs}s∈S in VS is admissible for
G and F. The following theorem shows that the simulation relation is not
only a sufficient condition for ordering, but also a necessary condition.

Theorem 6.30 (Theorem 3.5 in [PJ19]). Consider two path-complete graphs
G = (S, E) and G̃ = (S̃, Ẽ) on the same alphabet. The following statements are
equivalent:

(1) G simulates G̃.

(2) G ≤ G̃ in the sense of Definition 6.21(c).

This theorem provides a combinatorial characterization of the general or-
dering relation in Equation (6.12) between path-complete graphs. This im-
plies that the conservatism of a path-complete graph mainly relies on its
structure. Therefore, the conservatism-based comparison of path-complete
graphs can be achieved by comparing their structures and relate them
through a simulation relation. Moreover, this relation can be checked in
practice.
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In the following chapters, we will derive similar theorems for weaker
ordering relations whose proof is widely inspired by the proof of Theo-
rem 6.30. To make the proofs of the theorems in Chapter 8 easier to under-
stand, we recall and explain the proof of Theorem 6.30 in detail. The proof
mainly relies on the following technical result which states that given any
graph, it is possible to build a linear switched system and a set of candi-
date Lyapunov functions such that a Lyapunov inequality is satisfied if and
only if it is encoded by one of the edges of the graph.

Lemma 6.31 (Theorem 3.6 in [PJ19]). For any graph G = (S, E) on the alphabet
⟨M⟩, there exists an integer n ∈ N, a system F := { fi : i ∈ ⟨M⟩} in dimension
n and |S| candidate Lyapunov functions {Vs : s ∈ S} such that

∀e = (s, d, i) ∈ E, ∀x ∈ Rn : Vd ( fi(x)) ≤ Vs(x), (6.20)

∀e = (s, d, i) ∈ E, ∃x̃ ∈ Rn : Vd ( fi(x̃)) > Vs(x̃), (6.21)

where E := S× S× ⟨M⟩ \ E.

Proof. The proof of this theorem is constructive. We first build the system
F := { fi : i ∈ ⟨M⟩} and the set of candidate Lyapunov functions {Vs : s ∈
S}, and then, we prove that the inequalities are satisfied.

We build a linear switched system F := {Ai ∈ Rn×n : i ∈ ⟨M⟩} where
n = 2|E|. These matrices are defined block-wise with |E| blocks of dimen-
sion 2× 2 on the diagonal, and zero everywhere else. Since there are |E|
blocks, we will identify each of them with an edge in E, i.e. Ai[e] is the 2× 2
block associated to the edge e ∈ E. Then, we define

Ai[e] :=



[
0 0
1 0

]
if label(e) = i,[

0 0
0 0

]
otherwise.

For the template, we consider candidate diagonal quadratic Lyapunov func-
tions of the form

Vs(x) := x⊤diag(vs)x,

where the vectors vs ∈ Rn
>0 for s ∈ S are defined block-wise, where each

2-dimensional block vs[e] is indexed by an edge e ∈ E. In this context, we
have that for any edge (s, d, i) ∈ S × S × ⟨M⟩, the Lyapunov inequality

| 135



6 | Path-complete Lyapunov functions and their comparison

encoded by this edge is satisfied if and only if for all x ∈ Rn:

(Aix)⊤diag(vd)Aix ≤ x⊤diag(vs)x,

⇔ ∀ e ∈ E, x[e]⊤Ai[e]⊤diag(vd[e])Ai[e]x[e] ≤ x[e]⊤diag(vs[e]) x[e],

Then, there are two different cases.

- Either the edge e ∈ E has a label different from σ. Then, the matrix
Ai[e] is nul, and the inequality is satisfied for all x[e].

- Or, the edge e ∈ E has i as label. Then, the inequality is given by

∀ x[e] ∈ R2, x[e]⊤
[

vd[e]2 0

0 0

]
x[e] ≤ x[e]⊤

[
vs[e]1 0

0 vs[e]2

]
x[e].

(6.22)

Since it has to be satisfied for any x[e], this is equivalent to saying that
the second component of vd[e] is smaller than the first component of
vs[e]. Moreover, if this condition is not satisfied, i.e. vd[e]2 > vs[e]1,
then x[e] = (1, 0)⊤ does not satisfy the inequality, since the inequal-
ity (6.22) becomes

vd[e]2 > vs[e]1, (6.23)

and then highlights the relation between the component of vd[e] and
vs[e]. In general, any vector x[e] = (α, 0) for α ̸= 0 works, while
x[e] = (0, α)⊤ satisfy the inequality for instance. Note that these vec-
tors do not depend on anything, and could be chosen for any edge.

Then, we have that, given an edge (s, d, i) ∈ S× S× ⟨M⟩, the inequalities
associated to unexisting edges with a label different from i are always sat-
isfied and only those with a label i imply conditions on the values of the
vectors vs. So, we have that

[∀x ∈ Rn : Vd(Aix) ≤ Vs(x)]

⇔
[
∀e ∈ E s.t. label(e) = i : vd[e]2 ≤ vs[e]1

]
.

(6.24)

Regarding the negation, if there exists x̄ such that the Lyapunov inequal-
ity encoded by (s, d, i) is not satisfied, it means that there exists at least
one edge e ∈ E with label i (otherwise, the inequality is always satisfied)
such that vd[e]2 > vs[e]1. Then in particular, the vector x̄ defined such that
x̄[e] = (1, 0)⊤ (and anything everywhere else) does not satisfy the Lya-
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punov inequality since it will highlight that the equivalent condition on
vd[e] and vs[e] is not satisfied.

Finally, we just need to define the vectors vs. Given s ∈ S, the 2-
dimensional bloc vs[e2] for e2 = (s2, d2, σ) is defined by

- if s = s2 = d2, then vs[e2] = [3, 4]⊤,

- if s = s2 ̸= d2, then vs[e2] = [2, 1]⊤,

- if s = d2 ̸= s2, then vs[e2] = [4, 3]⊤,

- otherwise, vs[e2] = [4, 1]⊤.

We now have to prove that this construction satisfies (6.20) and (6.21).
We start by showing that the Lyapunov inequalities (6.20) are satisfied. Let
us consider an edge e1 = (s1, d1, i) ∈ E. We want to prove that the corre-
sponding Lyapunov inequality is satisfied, that is, recalling (6.24), for any
e2 = (s2, d2, i) ∈ E, the second entry of vd1 [e2] is smaller than the first entry
of vs1 [e2]. We need to distinguish two different cases.

- If s1 = d1, then vs1 = vd1 . From our construction, the condition is
satisfied in every situation except if s1 = s2 = d2, where vs1 [e2] =

[3, 4]⊤. However, this cannot arise since it would imply that e1 = e2
while e1 ∈ E and e2 ∈ E by assumption.

- If s1 ̸= d1, there are 6 possible scenarios that could arise. Indeed we
have to consider whether or not s1 = s2, s2 = d2 and d1 = d2. This
leads to 8 possible scenarios. However, we discard the case when
s1 = s2 = d1 = d2 since s1 ̸= d1 by assumption, and the case
s1 = s2 ̸= d2 = d1 since it implies once again that e1 = e2, which
is impossible by assumption. Table 6.3 summarizes the 6 scenarios
and shows that the inequality is satisfied for each of them.

We now focus on expression (6.21). We consider any e1 = (s1, d1, i1) ∈ E.
We have to show that there exists e2 = (s2, d2, i2) ∈ E such that vd1 [e2]2 >

vs1 [e2]1. We show that we can pick e2 := e1 to achieve this. Similarly, we
distinguish two different cases.

- If s1 = d1, then vs1 [e2] = vd1 [e2] := [3, 4]⊤ such that vd1 [e2]2 = 4 >

3 = vs1 [e2]1.

- Otherwise, if s1 ̸= d1, we have vs1 [e2] := (2, 1)⊤ and vd1 := [4, 3]⊤

such that vd1 [e2]2 = 3 > 2 = vs1 [e2]1.

This concludes the proof of Lemma 6.31.

| 137



6 | Path-complete Lyapunov functions and their comparison

Scenario Vector Vector Inequality

v⊤s1
[e2] v⊤d1

[e2] vd1 [e2]2
?
≤ vs1 [e2]1

s1 = s2 = d2 ̸= d1 [3, 4] [4, 1] 1 ≤ 3

s1 = s2 ̸= d2 ̸= d1 [2, 1] [4, 1] 1 ≤ 2

s1 ̸= s2 = d2 = d1 [4, 1] [4, 1] 1 ≤ 4

s1 ̸= s2 = d2 ̸= d1 [4, 1] [3, 4] 4 ≤ 4

s1 ̸= s2 ̸= d2 = d1 [4, 1] [4, 3] 3 ≤ 4

s1 ̸= s2 ̸= d2 ̸= d1 [4, 1] [4, 1] 1 ≤ 4

Table 6.3 The 6 possible scenarios when s1 ̸= d1 in the proof of
Lemma 6.31.

Let us take an example to show how it works in practice.

Example 6.32. Consider the path-complete graph G7 in Figure 6.6a with 4
edges, i.e. E7 = {e1 = (b7, b7, 1), e2 = (b7, a7, 1), e3 = (a7, a7, 2), e4 =

(a7, b7, 2)} and 4 unexisting edges, i.e. E7 = {e5 = (a7, a7, 1), e6 = (a7, b7, 1),
e7 = (b7, b7, 2), e8 = (b7, a7, 2)}. We can define the matrices A1 and A2:

A1 =



0 0 × × × × × ×
1 0 × × × × × ×
× × 0 0 × × × ×
× × 1 0 × × × ×
× × × × 0 0 × ×
× × × × 0 0 × ×
× × × × × × 0 0
× × × × × × 0 0



and A2 =



0 0 × × × × × ×
0 0 × × × × × ×
× × 0 0 × × × ×
× × 0 0 × × × ×
× × × × 0 0 × ×
× × × × 1 0 × ×
× × × × × × 0 0
× × × × × × 1 0


.
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Edge Edges Vector Vector Inequality

e = (s, d, i) ẽ = (s2, d2, i) vs[ẽ] vd[ẽ] vd[ẽ]2 ≤ vs[ẽ]1

e1 = (b7, b7, 1)
e5 = (a7, a7, 1) vb7 [e5] = [4, 1] vb7 [e5] = [4, 1] 1 ≤ 4

e6 = (a7, b7, 1) vb7 [e6] = [4, 3] vb7 [e6] = [4, 3] 3≤ 4

e2 = (b7, a7, 1)
e5 = (a7, a7, 1) vb7 [e5] = [4, 1] va7 [e5] = [3, 4] 4 ≤ 4

e6 = (a7, b7, 1) vb7 [e6] = [4, 3] va7 [e6] = [2, 1] 1 ≤ 4

e3 = (a7, a7, 2)
e7 = (b7, b7, 2) va7 [e7] = [4, 1] va7 [e7] = [4, 1] 1 ≤ 4

e8 = (b7, a7, 2) va7 [e8] = [4, 3] va7 [e8] = [4, 3] 3 ≤ 4

e4 = (a7, b7, 2)
e7 = (b7, b7, 2) va7 [e7] = [4, 1] vb7 [e7] = [3, 4] 4 ≤ 4

e8 = (b7, a7, 2) va7 [e8] = [4, 3] vb7 [e8] = [2, 1] 1 ≤ 4

Table 6.4 Lyapunov inequalities for the edges in the graph G for the Ex-
ample 6.32

According to the rules for the definition of the vectors vs for s ∈ S, we have
that

va7 = [va7 [e5], va7 [e6], va7 [e7], va7 [e8]]
⊤ ,

= [3, 4, 2, 1, 4, 1, 4, 3]⊤ ,

and vb7 =
[
vb7 [e5], vb7 [e6], vb7 [e7], vb7 [e8]

]⊤ ,

= [4, 1, 4, 3, 3, 4, 2, 1]⊤ .

Then, we can first check whether each Lyapunov inequalities encoded by
the edges of the graph are satisfied. We know that for an edge (s, d, σ), we
have to look at the components of vd(e2) and vs(e2) for each edge e2 ∈ E7
of label σ. So, for each edge, we have only two inequalities to check. We
can see in Table 6.4 that all these inequalities are satisfied.

Now, let’s see whether the Lyapunov inequalities encoded by the unex-
isting edges, i.e. e5, e6, e7 and e8, are violated. As shown in the proof, this
is always the edge itself that leads to the violation of the inequality. For
instance, the edge e5 is not satisfied because of the inequality associated to
e5. The same holds for e6, e7 and e8. Table 6.5 summarizes the inequalities
and shows that none of them is satisfied. △
We are now in position to prove the main result in Theorem 6.30.

Proof of Theorem 6.30. (1)⇒ (2): We have to prove that G ≤ G̃. By defini-
tion, this means that we have to prove that as soon as G admits a solution
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Edge Edges Vector Vector Inequality

e = (s, d, i) ẽ = (s2, d2, i) vs[ẽ] vd[ẽ] vd[ẽ]2 ≤ vs[ẽ]1

e5 = (a7, a7, 1)
e5 = (a7, a7, 1) va7 [e5] = [3, 4] va7 [e5] = [3, 4] 4 > 3

e6 = (a7, b7, 1) va7 [e6] = [2, 1] va7 [e6] = [2, 1] 1 ≤ 2

e6 = (a7, b7, 1)
e5 = (a7, a7, 1) va7 [e5] = [3, 4] vb7 [e5] = [4, 1] 1 ≤ 3

e6 = (a7, b7, 1) va7 [e6] = [2, 1] vb7 [e6] = [4, 3] 3 > 2

e7 = (b7, b7, 2)
e7 = (b7, b7, 2) vb7 [e7] = [3, 4] vb7 [e7] = [3, 4] 4 > 3

e8 = (b7, a7, 2) vb7 [e8] = [2, 1] vb7 [e8] = [2, 1] 1 ≤ 2

e8 = (b7, a7, 2)
e7 = (b7, b7, 2) vb7 [e7] = [3, 4] va7 [e7] = [4, 1] 1 ≤ 3

e8 = (b7, a7, 2) vb7 [e8] = [2, 1] va7 [e8] = [4, 3] 3 > 2

Table 6.5 Lyapunov inequalities for the unexisting edges in the graph G
for the Example 6.32

for a system F in a template V , then so does G̃. Consider a system F of a
family F , and a template V . Assume that there exists an admissible solu-
tion {Vs : s ∈ S} ∈ VS for F and G. Since G simulates G̃ through a function
R : S̃→ S by assumption, let us prove that

{Ws̃ := VR(s̃) : s̃ ∈ S̃}

is admissible for G̃ and F. Consider any edge (s̃, d̃, i) ∈ Ẽ and the corre-
sponding Lyapunov inequality

∀x ∈ Rn : Wd̃( fi(x)) ≤ Ws̃(x)

⇔ ∀x ∈ Rn : VR(d̃)( fi(x)) ≤ VR(s̃)(x)

by definition of the functions Ws̃. By simulation, the edge (R(s̃), R(d̃), i) ∈
E and therefore this Lyapunov inequality is satisfied by assumption.

(2) ⇒ (1) : First, let us apply Lemma 6.31 to the graph G. We obtain a
system { fi : i ∈ ⟨M⟩} and a set of candidate Lyapunov functions {Vs :
s ∈ S} such that the Lyapunov inequalities encoded by the edges of G are
satisfied and none of the non-existing edges of G are satisfied, i.e.

∀(p1, q1, i) ∈ E, ∀ x ∈ Rn : Vq1( fi(x)) ≤ Vp1(x) (6.25)

∀(p1, q1, i) ∈ E, ∃ x̄ ∈ Rn : Vq( fi(x̄)) > Vs(x̄) (6.26)
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Let us define the family with a single system F = {F} and the template
V := {Vs : s ∈ S}. Obviously, there exists a solution for G and F in V .
Then, by assumption, there exists a set of candidate Lyapunov functions
which are admissible for F and G̃ in the template V , i.e. there exist {Us̃ :
s̃ ∈ S̃} ∈ V S̃ that satisfy the Lyapunov inequalities encoded by G̃. Since
these functions belong to the template V , we can associate a node of G to
each node of G̃, i.e. we can define a function R : S̃→ S such that Us̃ = VR(s̃).
Finally, we just have to prove that this function R satisfies the definition of
simulation, i.e.

∀( p̃, q̃, i) ∈ Ẽ, (R( p̃), R(q̃), i) ∈ E.

Assume by contradiction that there exists ( p̃, q̃, i) ∈ Ẽ such that the edge
(R( p̃), R(q̃), σ) ∈ E. Using the Lemma 6.31, this means that there exists
x ∈ Rn such that

Uq̃(x) := VR(q̃)( fi(x)) > VR( p̃)(x) := Up̃(x)

i.e. the set {Us̃ : s̃ ∈ S̃} is not admissible. However the set {Vs : s ∈ S} is
admissible by construction. Here is the contradiction.

The most trivial simulation relation once again concerns the common
Lyapunov function graph G0. One can easily prove that any graph G =

(S, E) is simulated by G0 by considering the function R(s) := s0 for every
node s ∈ S. Then, G0 ≤ G for every path-complete graph G, as already
stated in Proposition 6.24. Let us now take a more complex example.

Example 6.33. We consider the path-complete graphs G4 and G⊤7 , the dual
of G7. We define the function R : S4 → S7 such that R(a4) = R(d4) := a7
and R(b4) = R(c4) := b7. We can prove that the function R satisfies the
expression (6.19) , and therefore that G⊤7 simulates G4. For instance, for
the edge e := (c4, d4, 2) ∈ E4, the corresponding edge denoted by R(e) :=
(b7, a7, 2) belongs to E⊤7 .

By Theorem 6.30, this simulation relation implies that whatever the sys-
tem and the template that we use, the JSR approximation provided by G4
is better than or equal to the JSR approximation provided by G⊤7 . For in-
stance, let us consider the switched systemA1 in Example 6.18. Numerical
results match with theoretical results since both approximations coincide
with primal copositive norms and quadratic functions, i.e. ρG4,P (A1) =

ρG⊤7 ,P (A1) := 1.5487 and ρG4,Q(A1) = ρG⊤7 ,Q(A1) := 1.3534. △
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6.3.4 Limitations of the characterization

As discussed in [PJ19], Theorem 6.30 states that the general ordering re-
lation (6.12) in Definition 6.21 is associated to a combinatorial property,
notably the simulation. However, when it is not possible to establish a
simulation relation, i.e. when there exist at least one template V and one
family F such that the inequality (6.9) is not satisfied, it might still be pos-
sible to compare graphs with the relations in Equations (6.9) and (6.11). In
practice, this can result in wiser choices of template for the stability analy-
sis in the sense of Definition 6.21.

Example 6.34. Consider the graphs G9 = (S9, E9) and G7 = (S7, E7) in Fig-
ures 6.6a and 6.8 respectively.

One can easily verify that G9 does not simulate G7. Indeed, we can-
not define a relation R : S7 → S9 with R(a) ∈ S9 such that the edge
(R(a), R(a), 1) ∈ E9 since G9 does not have any loop. By Theorem 6.30,
it means that G9 ≰ G7 in the sense of Definition 6.21.

However, one can easily prove that for any template V closed under
addition (as formally defined in Definition 1.33), the inequality

G9 ≤V G7

holds. Indeed, let {Vp9 , Vq9 , Vr9} ∈ VS9 be admissible for G9 and a given
switched system F := { fi : i ∈ ⟨2⟩}. Define the Lyapunov functions
Wa7 := Vq9 + Vr9 and Wb7 := Vp9 + Vq9 . One can easily prove that the set
{Wa7 , Wb7} ∈ V

S7 is admissible for G7 and F. For example, the Lyapunov
inequality

∀x ∈ Rn : Vp9( f1(x)) + Vq9( f1(x))︸ ︷︷ ︸
:= Wa7 ( f1(x))

≤ Vq9(x) + Vr9(x)︸ ︷︷ ︸
:=Wb7

(x)

,

p9 q9 r9

1

1

2

1

2

2

Fig. 6.8 The path-complete graph G9 = (S9, E9) in Example 6.34. This
graph does not simulate G7 in Figure 6.6a but satisfies that G9 ≤V G7 for
any template G closed under addition.
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encoded by the edge (b7, a7, 1) ∈ E7, holds because the Lyapunov inequal-
ities encoded by the edges (p9, q9, 1) and (q9, r9, 1) ∈ E9 are satisfied by
the functions {Vp9 , Vq9 , Vr9} by assumption. It implies in particular that the
inequality holds for the quadratic Lyapunov functions. △

6.4 Summary

The purpose of this chapter is to motivate multipe Lyapunov functions
and then introduce the Path-complete Lyapunov formalism. In particular,
we have summarized the literature on the comparison of path-complete
Lyapunov stablity certificates.

Summary of Chapter 6

This chapter introduces the path-complete Lyapunov stability
certificates and motivates their conservatism-based comparison. In
order to delve deeper into this question in the following chapters,
we summarize the state of the art.

Section 6.1: Introduction to multiple Lyapunov functions
After identifying the limitations of common Lyapunov func-

tions, we use an example to introduce the notion of multiple
Lyapunov functions, which involve a finite set of candidate
Lyapunov functions whose joint decreasing properties guarantee
stability.

Section 6.2: Graph-based Lyapunov functions
We formally introduce the path-complete Lyapunov formalism,

that is the generalization of the multiple Lyapunov approach. This
framework relies on two components: a path-complete graph and
a template.

Section 6.3: Comparison of PCLFs
This section introduces the three levels of comparison of path-

complete graphs, and recalls the simulation-based characterization
of the general ordering relation. After detailing the demonstration,
as it will be useful to us later, we identify the limitations of this
characterization result.
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The following chapters pursue similar simulation-based characterizations
of template-dependent ordering of graphs for a family of template sharing
a commun closure property, such as the addition, the pointwise minimum
or maximum.
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and closure properties

FOR the purpose of understanding the relations between different mul-
tiple Lyapunov functions structures, path-complete Lyapunov functions
have been proposed as a unifying and flexible approach. While this

framework is now mature enough to provide effective criteria to approxi-
mate the joint spectral radius in the linear subsystems case, the following
open question naturally arises: How to systematically compare different path-
complete graph structures? More precisely, given a template V ⊆ C(Rn, R)

and any path-complete graphs G1 and G2, we want to provide a condition
ensuring whether or not the conditions arising from G1 are less/more con-
servative than the ones given by G2 if we restrict our search for a solution
in V . Such a result is a crucial challenge in the path-complete stability crite-
ria framework, since it would provide, as side product, formal confidence
intervals for the decay rate and, in practice, could guide the user, given a
particular system setting, to choose the path-complete structure in a proper
and smart way, see [Phi17].

A partial result is provided in Theorem 6.30 stated in [PJ19], without
any hypothesis on the candidate Lyapunov functions template V , relying
on the notion of simulation of graphs. On the other hand it has been ob-
served, since the introduction of this framework [AJPR14], that the order
relations between path-complete stability criteria strongly depend on the
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chosen set of candidate Lyapunov functions. Although it may be counter-
intuitive, some examples have shown that increasing the size of the graph
does not improve the stability certificate if we consider a particular fam-
ily of Lyapunov functions. On another note, sufficient conditions [PEDJ15]
have already been provided in the context of constrained switched systems,
and they rely on combinatorial operations on graphs called lifts that main-
tain the path-completeness. While these previous abstract lifts were intro-
duced in order to reduce the conservatism of the arising stability condi-
tion, in this chapter instead we understand how these tools can be used
to induce the comparison of path-complete graphs in the sense that all
the known comparison relations can be expressed in terms of lift. In this
chapter, we introduce formal transformations of graphs, called template-
dependent lifts, in order to improve the performance of a path-complete
criterion (by enlarging the underlying graph) following particular rules
which rely on closure properties of V .

Note that this work has been done in collaboration with Matteo Della
Rossa, and gathers the results which have been published in [DJ20, DDJ21,
DDJ22a].

First, we make the following assumption on path-complete graphs for
this chapter.

Assumption 7.1. The path-complete graphs considered herein have one strongly
connected component and are such that if we remove any edge, the graph is not
path-complete.

This in particular implies that all nodes admit at least one incoming edge
and one outgoing edge. This assumption is not restrictive since our aim
is to compare stability conditions: we suppose that the inequalities of the
form (6.5) encoded in the graphs are sufficient conditions for stability (path-
completeness) without having redundant/unnecessary inequalities.

7.1 Introduction to the lifts and their validity

We develop in this section several expansions of graphs, called lifts. The
goal of a (valid) lift is to generate a better graph, in the sense of Defini-
tion 6.21.

146 |



Introduction to the lifts and their validity | 7.1

Definition 7.2 (Lift). Given M ∈ N, we denote with GraphsM the set of di-
rected and labeled graphs on the alphabet ⟨M⟩. A function L : GraphsM →
GraphsM is a lift if for any path-complete graph G, L(G) is path-complete.

In short, we will say that a lift preserves the path-completeness of graphs.
Some examples of lifts have already been introduced [PEDJ15, Defini-

tions 2 & 3] in the path-complete Lyapunov framework with the aim of
improving the accuracy of the stability criteria but without exploiting the
particular properties of the considered candidate Lyapunov functions tem-
plate. In our case, instead, we want to use them as tools to provide further
insight about the order relations in Definition 6.21, and in particular in
Equations (6.9) and (6.11). Thus we have the following definitions.

Definition 7.3 (Valid lift). We say that a lift L : GraphsM → GraphsM is:

(a) valid with respect to a template V and a familyF if for any path-complete
graph G,

G ≤V ,F L(G).

(b) valid with respect to a template V if for any path-complete graph G,

G ≤V L(G).

(c) valid if for any path-complete graph G,

G ≤ L(G).

To be consistent with Theorem 6.30 that characterizes the general inequal-
ity (6.12), a lift is valid if and only if there exists a simulation relation
between G and L(G). This is the case for both T-product and M-path-
dependent lifts defined in [PEDJ15], for instance.

In this work, we are particularly interested in the order relations (6.9)
and (6.11) and therefore, we focus our study on lifts that are valid with
respect to a template (and a family) as in Definition 7.3(a) and (b). Indeed,
quadratic functions are closed under addition. By this, we mean that the sum
of two quadratic functions of a fixed dimension can also be expressed as
a quadratic function. It turns out that this property is key for the relation
(6.11). More generally, we will show that such a closure property allows us
to define lifts that are valid in a specific setting, even though they are not
valid in general (i.e. in the sense of Definition 6.21).
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In this chapter, we study the consequences of the closure properties of a
given template on the path-complete stability certificates. In what follows,
we introduce three template-dependent lifts, that are lifts whose validity de-
pends on the template properties.

7.2 Duality of lifts

In this section, we leverage the duality developed in Section 6.3.2 to intro-
duce the notion of dual lift. We define this dual operation such that it is
valid with respect to the dual template, as stated in Proposition 7.5.

Definition 7.4. Consider any lift L : GraphsM → GraphsM. The dual lift of
L, denoted by L⋆, is defined as

L∗(G) :=
[

L(G⊤)
]⊤

, (7.1)

for any path-complete graph G on ⟨M⟩.

The duality in Definition 7.4 is involutory, i.e. applying twice the duality
produces the original graph:

(L∗)∗ (G) =
(

L∗(G⊤)
)⊤

=
(

L(G)⊤
)⊤

= L(G).

The validity of a lift and its dual can be linked using the following result.

Proposition 7.5. Consider a lift L : GraphsM → GraphsM valid with respect to
the family of linear systems and a template V . Then, the dual lift L∗ : GraphsM →
GraphsM is valid with respect to the family of linear switched systems and the
dual template V∗, and reversely. In other words,

[∀G = (S, E), G ≤V ,L L(G)] ⇔ [∀G = (S, E), G ≤V∗ ,L L∗(G)] .

Proof. Consider a path-complete graph G on the alphabet ⟨M⟩. Since the
lift L is valid with respect to V and L, the ordering holds in particular for
G⊤, i.e.

G⊤ ≤V ,L L(G⊤).

Using Proposition 6.27, we conclude that

G ≤V⋆ ,L
[

L(G⊤)
]⊤

:= L∗(G).

The reverse implication can be derived similarly.
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In particular, Proposition 7.5 implies that if a lift L is valid with respect to
any template closed under a binary operation ⋆, the dual lift L⋆ is valid
with respect to any template closed under the corresponding dual opera-
tion of ⋆ (see Lemma 1.27).

7.3 Sum lift

As first and meaningful example of binary operation, we consider the addi-
tion under which many usual templates are closed, as quadratic functions,
convex functions or sum-of-squares polynomials for example. Therefore,
in what follows, we define the T-sum lift, which explores the existing re-
lations between sums of T functions/nodes of the initial graph. The sum
lift, defined as the union over N of all the T-sum lifts, in turn exploits the
addition property, regardless of the number of terms in the addition.

Let us first start with an example where the sum-closure is needed to
be able to compare two path-complete graphs.

Example 7.6. Consider two path-complete graphs G1 = (S1, E1) and G3,1
db in

Figures 6.5a and 7.1 respectively. We recall the graph G3,1
db = (S3,1

db , E3,1
db ) in

Figure 7.1b for simplicity.
One can prove that G1 does not simulate G3,1

db : the graph G3,1
db admits

the loop (b5, b5, 1) but G1 does not admit any loop. Therefore, it is im-
possible to associate the node b5 to a node R(b5) ∈ S1 such that the loop
(R(b5), R(b5), 1) ∈ E1.

We suppose now that the template V is closed under addition. Given
a switched system F with 2 modes and a solution VS1 := {Vs : s ∈ S1} ∈
VS1 admissible for G1 and F, one can build a solution WS3,1

db
∈ VS3,1

db admis-

sible for G3,1
db and F by defining

WS3,1
db

:=


Wa5 := Va1 + Ve1 ,

Wb5 := Va1 + Vb1 ,

Wc5 := Va1 + Vd1 ,

Wd5 := Va1 + Vc1 .

(7.2)

Let us take for instance the edge (d5, c5, 2) ∈ E3,1
db . The inequality encoded
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a1

c1b1

d1e1

1

1 1

2

2

12

2

(a) The path-complete graph G1 =
(S1, E1).

a5

c5

d5

b52

2

2

1

1

1

2 1

(b) G3,1
db , the generalized De Bruijn

graph of order 2 and memory 1.

Fig. 7.1 The path-complete graphs G1 and G3,1
db in Example 7.6. Even

though the relation G1 ≤ G3,1
db does not hold, G1 ≤V G3,1

db for any template
V closed under addition.

by this edge, i.e.

∀x ∈ Rn, Va1( f2(x)) + Vd1( f2(x))︸ ︷︷ ︸
:= Wc5 ( f2(x))

≤ Va1(x) + Vc1(x)︸ ︷︷ ︸
:= Wd5

(x)

,

is satisfied since (a1, d1, 2) and (c1, a1, 2) ∈ E1. In terms of ordering intro-
duced in Definition 6.21, this means that the graph G3,1

db is V-greater than
G1 for any template V closed under addition, i.e. G1 ≤V G3,1

db . △

In this section, we first introduce the notion of multi-set and a few oper-
ations on them in order to define the sum lift (see Section 7.3.1). Then we
provide a characterization of the edges of the sum lift in Section 7.3.3 using
the notion of perfect matching in graph theory. Similarly to Theorem 6.30,
we provide a sufficient condition based on both the simulation and the sum
lift for the ordering of graphs with respect to the class of templates closed
under addition. In Section 7.3.5, we finally discuss the possible values of
T for the T-sum lift, and characterizes the simulation by the sum lift as a
linear program. Throughout this section, we illustrate most of the results
with numerous examples.

150 |



Sum lift | 7.3

7.3.1 Definition and properties

Given a path-complete graph, we want to build the lift which encodes the
relations between a sum of a finite number of functions/nodes. To this
aim, given a set S and T ∈ N, we denote by MultiT(S) the set of multi-
sets of cardinality T with elements in S , where a multi-set is defined as a
set with possible repetitions, see [Bli88]. Note that equality of multi-sets is
independent of the ordering. The number of repetitions of an element s in
a multi-set P is called the multiplicity of this element, denoted by mP(s).

First, we define a few operations on multi-sets.

Definition 7.7 (Operations on multi-sets). Consider two multi-sets A and
B of the same universe S, and their multiplicity functions mA(·) and mB(·)
respectively. We define

(a) The inclusion: A is included in B, denoted by A ⊆ B if

∀s ∈ S, mA(s) ≤ mB(s).

(b) The union: the union of A and B, denoted by A∪ B, is the multi-set C
with the multiplicity function mC(·) defined by

∀s ∈ S, mC(s) := max {mA(s), mB(s)} .

(c) The intersection: the intersection of A and B, denoted by A ∩ B, is the
multi-set C with the multiplicity function mC(·) defined by

∀s ∈ S, mC(s, S) := min {mA(s), mB(s)} .

(d) The sum: the sum of A and B, denoted by A⊕ B, is the multi-set C
with the multiplicity function mC(·) defined by

∀s ∈ S, mC(s) := mA(s) + mB(s).

(e) The multiplication by an integer: given n ∈ N, the product of n and
A, denoted by n⊗ A, is the multi-set C with the multiplicity function
mC(·) defined as the sum of n times the multi-set A, i.e.

∀s ∈ S, mC(s) := n×mA(s).
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It is possible to state the following properties about the distributivity of the
multiplication over the addition.

Proposition 7.8. Consider two multi-set A and B of a universe S, and α, β ∈N.
The following statements hold:

(a) (α⊗ A) ⊕ (β⊗ A) = (α + β)⊗ A,

(b) α⊗ (A⊕ B) = (α⊗ A) ⊕ (α⊗ B).

Proof. (a) By definition and by the associativity of the addition in Proposi-
tion 7.8, we have

(α⊗ A) ⊕ (β⊗ A) =

A⊕ · · · ⊕ A︸ ︷︷ ︸
α times

 ⊕
A⊕ · · · ⊕ A︸ ︷︷ ︸

β times


= (α + β)⊗ A.

(b) Similarly, by the definition of the multiplication by an integer and the
associativity of the addition, we have

α⊗ (A⊕ B) = (A⊕ B) ⊕ · · · ⊕ (A⊕ B)︸ ︷︷ ︸
α times

,

=

A ⊕ · · · ⊕ A︸ ︷︷ ︸
α times

⊕
B ⊕ · · · ⊕ B︸ ︷︷ ︸

α times

 ,

= (α⊗ A) ⊕ (α⊗ B) .

Let us now define the T-sum lift for any integer value T ∈ N and the
sum lift as the union of all the T-sum lifts.

Definition 7.9. Consider T ∈ N and a graph G = (S, E) on the alphabet
⟨M⟩.

(a) The T-sum lift of G, denoted by G⊕T = (S⊕T , E⊕T), is defined as
follows :

(1) The set of nodes S⊕T is defined by

S⊕T := MultiT(S).
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(2) For each i ∈ ⟨M⟩ and each multi-set of edges of E of the form
D := {(a1, b1, i), . . . , (aT , bT , i)} such that the multi-sets A :=
{a1, . . . , aT} and B := {b1, . . . , bT} ∈ S⊕T , the edge (A, B, i) ∈
E⊕T .

(b) The sum lift of G, denoted by G⊕ = (S⊕, E⊕), is defined as the infinite
disjoint union of the T-sum lifts, i.e.

G⊕ :=
⋃

T∈N

G⊕T . (7.3)

Note that each T-sum lift is finite but the sum lift is an infinite graph,
i.e. there is an infinitely countable number of nodes and edges. More-
over, in practice we will only consider the multi-sets of cardinality T of
nodes for which we can reach and leave each node with the same label:
this ensures that all the nodes of G⊕T have at least one incoming and one
outgoing edge. On the other hand, observe that G⊕T might not satisfy As-
sumption 7.1, even if G does, i.e. G⊕T is possibly composed by more than
one strongly connected and path-complete component, as illustrated in the
subsequent Example 7.12. In practice, we will consider each of these com-
ponents independently, recall Proposition 6.23.

First, let us demonstrate that both the sum lift and the T-sum lifts satisfy
the definition of a lift. The first requirement is the preservation of the path-
completeness of graphs.

Proposition 7.10. For any T ∈ N, the sum lift and the T-sum lift preserve the
path-completeness of graphs.

Proof. Given T ∈ N, the path-completeness of G⊕T is direct since G is a
strongly connected component of G⊕T . Indeed, each node a ∈ S admits an
outgoing and an incoming edge thanks to the Assumption 7.1. This implies
that the node A := {a, . . . , a} ∈ S⊕T with mA(a) = T, and then for every
edge (a, b, i) ∈ E, the edge ({a, . . . , a}, {b, . . . , b}, i) ∈ E⊕T .

The path-completeness of G⊕ directly follows since each of the strongly
connected components is path-complete.

We now have to discuss the validity of the sum lift.

Proposition 7.11. Consider T ∈N and the family of binary operations {+n}n∈N

such that ∀n ∈ N, +n corresponds to the addition. The T-sum lift is valid in the
sense of Definition 7.3 with respect to any template closed under {+n}n∈N.
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Proof. Consider a path-complete graph G = (S, E) on the alphabet ⟨M⟩,
a template V of candidate Lyapunov functions closed under addition and
any family F := { fi : i ∈ ⟨M⟩}. Suppose that there exists a set of functions
{Vs : s ∈ S} ∈ VS admissible for G and F , and for any A = {a1, . . . , aT} ∈
S⊕T define

WA := Va1 + . . . + VaT ∈ V . (7.4)

The Lyapunov inequalities in Equation (6.5) of G⊕T are satisfied because,
for every edge (A, B, i) ∈ E⊕T , we have

WB ( fi(x)) =
(
Vb1( fi(x)) + · · ·+ VbT ( fi(x))

)
,

≤ (Va1(x) + · · ·+ VaT (x)) := WA(x)

for all x ∈ Rn since (a1, b1, i), . . . , (aT , bT , i) ∈ E by Definition 7.9 (possibly
after a re-ordering of A and B).

Example 7.12. Consider the path-complete graph G2 = (S2, E2) on the al-
phabet ⟨M⟩ := {1, 2} in Figure 7.2a, and apply the 2-sum lift in Defini-
tion 7.9 to G2. The outcome is provided in Figure 7.2b. As expected, the
lifted graph (G2)

⊕2 admits three nodes, one for each multi-set of cardinal-
ity 2 of the initial set of nodes S2 = {a2, b2}, i.e. Multi2(S2) = {{a2, a2}, {a2,
b2}, {b2, b2}}. By Proposition 7.11, we know that for any template V closed
under addition, the inequality

G2 ≤V (G2)
⊕2

holds. By Proposition 6.23, this inequality is also verified for the two path-
complete and strongly connected components of (G2)

⊕2. As reported in

a2 b22
1

1
2

(a) G2 = (S2, E2), a path-complete
graph over the alphabet ⟨2⟩.

{a2, a2} {b2, b2}

{a2, b2}

2
1

1
2

21

(b) (G2)
⊕2, the 2-sum lift of G2.

Fig. 7.2 Example of the 2-sum lifted graph of a path-complete graph.
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the proof of Proposition 7.10, one of the components induced by the nodes
{a2, a2} and {b2, b2} is isomorphic to the graph G2 itself. The second one
induced by the node {a2, b2} is isomorphic to the common Lyapunov func-
tion graph G0 since the node associated to {a2, b2} admits one loop for each
mode. So, Propositions 6.23 and 7.11 imply together that

G2 ≤V G0

for any template V closed under addition. Moreover, by Proposition 6.24,
we know that the reverse inequality holds for any template and any switched
system. In particular,

G0 ≤V G2

for any template V closed under addition. We have thus proved that the
graphs G2 and G0 are equivalent in the sense of the order relation (6.11) for
any template closed under addition. In practice, it means that given such a
template V and a switched system F, either both graphs G2 and G0 admit a
solution admissible for V and F, or none of them. That is, the inequalities
encoded in G2 are as conservative as the ones encoded in G0. △

7.3.2 Duality

Let us finally discuss the duality of the sum lift. The following proposition
states that the sum lift and each of its finite components that are the T-sum
lifts are self-dual.

Proposition 7.13. For any T ∈ N, the T-sum lift is self-dual, i.e. the dual lift
of the T-sum lift is the T-sum lift itself. Then, for any graph G,

G⊕T =

((
G⊤
)⊕T

)⊤
.

As a consequence, the sum lift is self-dual too.

Proof. Given an integer value T ∈N and a graph G, let us take an edge e =
(P, Q, j) ∈ E⊕T . By Definition 7.9, this means that there exists p1, . . . , pT
and q1, . . . , qT ∈ S such that (pk, qk, j) ∈ E for k = 1, . . . , T with j ∈
⟨M⟩. By duality, the edges (qk, pk, j)E⊤. Then, by definition of the T-sum
lift, the edge (Q, P, j) ∈

(
E⊤
)⊕T

. Equivalently, the dual edge (P, Q, j) ∈((
E⊤
)⊕T

)⊤
, which ends the proof.
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Using Proposition 7.5, this means that the same construction not only ex-
ploits the closure operation of addition by construction but also the dual
operation, that is the inverse summation.

7.3.3 Characterization of the edges of the sum lift using graph theory

The initial definition of the edges of the T-sum lift in Definition 7.9 is con-
structive and involves the existence of T edges (which might be similar or
not) in the graph. This condition might be impractical to check in practice
because it requires to verify all the possible combinations of T edges. In
this section, we provide a characterization in Proposition 7.16 for an edge
to belong to the T-sum lift using graph theory. In particular, this result
relies on the notion of perfect matching in a bipartite graph.

To begin with, let us take a formal look at these two concepts. Intu-
itively, a graph is bipartite if you are able to split the set of nodes into two
groups without internal edges.

Definition 7.14. A bipartite graph G = (S, E) is an (unlabeled and undi-
rected) graph whose nodes S can be divided into two disjoint sets U and
V such that each edge admits an extremity in U and the other in V. One
often writes G = (U, V, E) to underline the partition of the set of nodes.

Figures 7.3a and 7.3b provide two examples of bipartite graphs.

g

a b

c
f

e d

(a) Example of a bipartite graph where
the two disjoint sets U and V are respec-
tively the nodes in white and gray.

a b

h c

g d

f e

(b) Example of a perfect matching (in
bold) in a bipartite graph where the two
disjoint sets U and V are respectively in
white and gray.

Fig. 7.3 Illustration of (a) a bipartite graph and (b) a perfect matching
in a bipartite graph.
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Definition 7.15. Given a bipartite graph G = (X, Y, E), an X-perfect match-
ing is a set of edges without common vertices which covers every node of
X. A perfect matching of G is an X-perfect matching and a Y-perfect match-
ing (then |X| = |Y|).

Deciding whether there exists a perfect matching and finding it is a well-
known problem in graph theory. It is known that it can be solved in poly-
nomial time, and any maximum cardinality matching algorithm can be
used. Figure 7.3b provides an example of a perfect matching in a bipar-
tite graph.

We can now derive the characterization of an edge in the T-sum lift.

Proposition 7.16. Consider a path-complete graph G = (S, E) on the alpha-
bet ⟨M⟩, an integer T ∈ N, two multi-sets P and Q of S of cardinality T and
i ∈ ⟨M⟩. The edge (P, Q, i) is an element of E⊕T if and only if there exists a
perfect matching in the bipartite graph (P, Q, Ei(P, Q)) where Ei(P, Q) refers to
the restriction of E to the edges of label i starting in P and ending in Q.

Note that in Proposition 7.16 we are committing an abuse of notation since
P and Q are multi-sets by definition. Formally, we should consider the
bipartite graph (P̃, Q̃, Ei(P̃, Q̃)) where P̃ and Q̃ refer to the conversion of P
and Q into sets (by distinguishing the repeated elements).

Proof. Consider a path-complete graph G = (S, E) over the alphabet ⟨M⟩,
T ∈N, i ∈ ⟨M⟩ and two multi-sets P and Q of S of cardinality T. Recalling
Definition 7.9, the edge (P, Q, i) ∈ E⊕T if and only if there exists a multi-
set of edges of E, denoted by D := {(a1, b1, i), . . . , (aT , bT , i)} ⊆ E such
that P := {a1, . . . , aT} and Q := {b1, . . . , bT}. Thus, D provides a perfect
matching between P and Q composed by edges of G labeled by i.

Let us consider an example to see how Proposition 7.16 works in practice.

Example 7.17. Consider the graph G5 = (S5, E5) in Figure 7.4. One can
prove that the 8-sum lift of this graph admits a component isomorphic to
the common Lyapunov function graph with 2 modes G0. And therefore,
G5
⊕8 simulates G0. Indeed, if we consider the node

S̃ := {a5, a5, b5, c5, d5, d5, e5, e5} ∈ E5
⊕8,

we can prove that both loops (S̃, S̃, 1) ∈ E5
⊕8 and (S̃, S̃, 2) ∈ E5

⊕8. As a
result, the relation R : S0 → S5

⊕8 where R(s0) := S̃ is a simulation relation.
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e5

a5

d5

b5

c5

1

1

1

1

1

12 2 22

2

2

Fig. 7.4 G5 = (S5, E5), a path-complete graph over the alphabet ⟨2⟩
which can be compared with the common Lyapunov functions graph G0
with a multi-set of cardinality 8.

a5

a5

b5

c5

d5

d5

e5

e5

a5

a5

b5

c5

d5

d5

e5

e5

(a) Bipartite graph (S̃, S̃, (E5)1 (S̃, S̃)
and perfect matching for the edge
(S̃, S̃, 1).

a5

a5

b5

c5

d5

d5

e5

e5

a5

a5

b5

c5

d5

d5

e5

e5

(b) Bipartite graph (S̃, S̃, (E5)2 (S̃, S̃)
and perfect matching for the edge
(S̃, S̃, 2).

Fig. 7.5 Illustration of the perfect matching in Proposition 7.16 for
the edges (S̃, S̃, 1) in (a) and (S̃, S̃, 2) ∈ E5

⊕8 in (b) with S̃ :=
{a5, a5, b5, c5, d5, d5, e5, e5} in Example 7.17.
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Let us first consider the edge (S̃, S̃, 1). Using Definition 7.9, this edge be-
longs to the 8-sum lift because the multi-set of edges {(a5, b5, 1), (a5, d5, 1),
(b5, c5, 1), (c5, d5, 1), (d5, e5, 1), (d5, e5, 1), (e5, a5, 1), (e5, a5, 1)} is a subset of
E5. Using the characterization in Proposition 7.16, we can check that there
exists a perfect matching in the bipartite graph (S̃, S̃, (E5)1 (S̃, S̃)). This is
illustrated in Figure 7.5a. Similarly, we can find a multi-set of 8 edges with
label 2 of E5 to prove that the edge (S̃, S̃, 2) ∈ E⊕8. The perfect matching in
the corresponding bipartite graph is illustrated in Figure 7.5b.

This means that, given a switched system F, if one can find a set of
Lyapunov functions {Va5 , Vb5 , Vc5 , Vd5 , Ve5} admissible for G5 and F, then
the function

W0 := 2Va5 + Vb5 + Vc5 + 2Vd5 + 2Ve5

is a common Lyapunov function for F. Moreover, if we consider a linear
switched system and an addition-closed template, both graphs G5 and G0
provide the same JSR approximation, although G5 may seem more complex
and therefore better at first glance. △

This result will prove useful in Chapter 8 to characterize the ordering with
respect to addition-closed templates with the simulation.

7.3.4 Simulation-based sufficient condition for the template-dependent or-
dering of graphs

In this section, we make use of the lift approach to provide a sufficient con-
dition for the comparison of path-complete graphs, focusing on templates
closed under the binary operation of addition. We show that, similarly to
the previously mentioned general case solved in Theorem 6.30, the suffi-
cient condition is given by a simulation relation. However in this setting,
the simulation is more involved, as it considers the sum lift of the graph
G (for proving the relation G ≤V G̃ for any template V closed under ad-
dition), not the graph G itself. Note that the necessary condition will be
proved in Chapter 8.

Theorem 7.18. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the same alphabet. If G⊕ simulates G̃, then

G ≤V G̃

for any template V closed under addition.
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Proof. Consider two path-complete graphs G and G̃ on the same alphabet.
By Proposition 7.11, the inequality

G ≤V G⊕

is satisfied for any template V closed under addition. By assumption and
recalling the simulation-based characterisation Theorem 6.30 in [PJ19, The-
orem 3.5],

G⊕ ≤ G̃.

Then, by transitivity of the ordering (see Equation (6.17) in page 131 for
more details) , we have

G ≤V G̃

for this class of templates.

Remark 7.19. Theorem 7.18 recalls [Phi17, Theorem 6.6] where the solution
of G̃ is also expressed as the sum of the pieces of the solution for G. In
this case, they use the notion of simulation recalled in Remark 6.29 which
involves subsets of S1 rather than multisets. However, as it will be discussed
in Example 8.14, the use of multi-sets is crucial to be able to capture all the
comparison of graphs with respect to the class of templates closed under
addition. △

Although Theorem 7.18 provides a simulation-based sufficient condi-
tion of the template-ordering (6.11) of graphs for the family of templates
closed under addition, the simulation relation involves an infinite graph
and then cannot be checked numerically. The following lemma points out
that when a path-complete graph G̃ is simulated by the sum lift of another
path-complete graph G, as it is the case in Theorem 7.18, we can restrict
the simulation to a (finite) T-level of the sum lift for which the number of
terms in the sum is fixed at T ∈N.

Lemma 7.20. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ).
The following statements are equivalent:

(1) G⊕ simulates G̃.

(2) ∃T ∈N such that G⊕T simulates G̃.

Proof. By Assumption 7.1, we assume that G̃ is strongly connected. Other-
wise, the argument is valid for each strongly connected component of the
graph. More precisely, each strongly connected component H̃ ⊆ G̃ can be
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associated to a value of T(H̃) for which the simulation holds. Moreover,
any integer multiple of T(H̃) also satisfies the simulation for H̃. Thus, tak-
ing the least common multiple of the T(H̃), for all the strongly connected
components H̃ of G̃, we can conclude.

The implication (2) ⇒ (1) is direct since S⊕T ⊆ S⊕. For the reverse
implication (1) ⇒ (2), first we note that the sum lift, introduced in Defi-
nition 7.9, is the union of a countable number of strongly connected com-
ponents, since it is the union of all the T-sum lifts, for any T ∈ N. We
now suppose that G⊕ simulates G̃ via a function R : S̃ → S⊕, as given by
Definition 6.28. Since by hypothesis G̃ is strongly connected, by the proper-
ties of simulation, the nodes {R(s̃)}s̃∈S̃ are strongly connected in G⊕. Thus,
{R(s̃)}s̃∈S̃ lie in the same strongly connected component of G⊕ i.e. there ex-
ists a T ∈ N such that {R(s̃)}s̃∈S̃ are nodes of G⊕T . Thus, we have shown
that G⊕T simulates G̃, concluding the proof.

Example 7.21. Let us consider the two path-complete graphs G1 and G3,1
db

in Example 7.6 where we have shown that G1 ≤V G3,1
db for any template

closed under addition. In fact, one can prove that the Equation (7.2) in-
duces a simulation relation between G3,1

db and (G1)
⊕2. In practice, we define

the relation R : S3,1
db → (S1)

⊕2 where R(a5) := {a1, e1}, R(b5) := {a1, b1},
R(c5) := {a1, d1} and R(d5) := {a1, c1}. We can prove that R is a simu-
lation relation. Let us consider for instance the edge (c5, d5, 1) ∈ E3,1

db . We
have to prove that the edge (R (c5) , R (d5) , 1) := ({a1, d1}, {a1, c1}, 1) be-
longs to the 2-sum lift of G1. Since the edges (a1, c1, 1) and (d1, a1, 1) ∈ E1,
the edge ({a1, d1}, {a1, c1}, 1) ∈ (E1)

⊕2. A similar argument can be used
for all the other edges of G3,2

db . △

7.3.5 Numerical characterization of the simulation

Although the simulation by the sum lift in Theorem 7.18 cannot be verified
numerically, Lemma 7.20 provides us with a semi-algorithm in order to
check the simulation by the sum lift. By iteratively checking condition (2)
in Lemma 7.20 above for increasing T ∈ N, we get a sufficient condition for
the simulation of G̃ by the sum lift. However, it remains unclear whether
the algorithm will stop since we do not have a stopping condition to upper-
bound the value of T in Lemma 7.20. Either there exists T ∈ N such that
G⊕T simulates G̃ and the algorithm stops, or G⊕ does not simulate G̃ and
the algorithm runs without stopping, increasing the value of T at each it-
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eration. In what follows, we would like to provide an algorithm which
numerically checks whether G⊕ simulates G̃ or not.

First, we would like to summarize preliminary results that will help
us determine the values of T that can be considered and the ones that
should eventually be removed. Our thinking is initially guided by the
path-completeness of the graphs: this property necessarily implies the ex-
istence of a loop or a cycle in the graph for each label. We will see how
these graph structures can influence the possible values of T where there
is a simulation relation involving the sum lift. Formally, we consider two
path-complete graphs G and G̃ on the same alphabet ⟨M⟩. We assume that
the sum lift of G simulates G̃, or equivalently that there exists T ∈ N such
that G⊕T simulates G̃ by Lemma 7.20. We denote by R : S̃ → S⊕T the cor-
responding simulation relation.

Given a label m ∈ ⟨M⟩, we start with the simplest case, i.e. when there
exists a loop (am, am, m) ∈ Ẽ of label m in the simulated graph G̃. By simu-
lation, (R(am), R(am), m) ∈ E⊕T where we denote by

R(am) := {r1, r2, . . . , rT}

the corresponding multi-set of S of cardinality T, i.e. ri ∈ S for s = 1, . . . , T.
By the characterization in Proposition 7.16, there exists a perfect matching
between R(am) and itself, which corresponds to a permutation of R(am).
Therefore if we consider r1 ∈ R(am), there exists ri1 ∈ R(am) such that
(r1, ri1 , m) ∈ E. Similarly, there exists ri2 ∈ R(am) such that (ri1 , ri2 , m) ∈ E,
and so on. At some point, we will reach back r1 (the number of rj needed is
related to the order of the permutation, and is at least smaller than T). This
means that if there exists a loop of label m in G̃, there must exist a cycle of
label m in G. So, in practice, we should look at the length of all the cycles
of label m in G to have insights about the possible values of T.

Formally, let us denote nm, the number of cycles of label m of G and
{Tm,k}k∈⟨nm⟩ the set of lengths of those cycles. Therefore, T must be either
a multiple of one of the Tm,k’s, or a multiple or a combination of them, i.e.

T ∈
{

nm

∑
k=1

αkTm,k

∣∣∣ αk ∈N, k ∈ ⟨nm⟩
}

.

Let now assume that G̃ admits more than one loop. In this case, T must
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satisfy all the constraints encoded by the loops. Therefore,

T ∈
⋂

(a,a,m)∈Ẽ

{
nm

∑
k=1

αkTm,k

∣∣∣ αk ∈N, k ∈ ⟨nm⟩
}

.

We can finally derive the following necessary condition on the possible
values of T.

Proposition 7.22. Consider two path-complete graphs G and G̃ over the same
alphabet ⟨M⟩. Assume that there exists T ∈ N such that G⊕T simulates G̃.
Then, the following expression must be satisfied:

T ∈
⋂

(a,a,m)∈Ẽ

{
T :=

nm

∑
k=1

αkTm,k

∣∣∣ αk ∈N, k ∈ ⟨nm⟩
}

, (7.5)

where nm denotes the number of cycles {Tm,k}k∈⟨nm⟩ of label m in G.

Then, the smallest possible value that we should check in practice is the
minimal value T in Equation (7.5).

Example 7.23. Consider the graphs G3 and G4 in Figures 7.6a and 7.6b re-
spectively. We know that G3

⊕2 simulates G4 by the relation R(a4) := {a3, a3}
and R(b4) := {b3, c3}. The graph G4 admits two loops, one for each label.
Let us apply Proposition 7.22 to identify the potential values of T.

b3 c3

a3

1

1

1

12

2

2

(a) G3 = (S3, E3), a path-complete
graph over the alphabet ⟨2⟩.

a4 b42 1
2

1

(b) G4 = (S4, E4), a strongly connected and
path-complete component of G3

⊕2.

Fig. 7.6 Example of two path-complete graphs G3 and G4 on the alphabet
⟨2⟩, such that G3

⊕2 simulates G4.
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(a4, a4, 2) ∈ E4

There is a single cycle of label 2 in
G3, i.e.

(a3, a3, 2) ∈ E3.

Then, T2,1 = 1, and T must be a
multiple of 1 (this does not add any
constraints on the value of T).

(b4, b4, 1) ∈ E4

There is a single cycle of label 1 in
G3, i.e.

(c3, b3, 1) ∈ E3,

(b3, c3, 1) ∈ E3.

Then, T1,1 = 2, and T can only be a
multiple of 2.

Therefore, T must be a multiple of 2, and the minimal value is 2, which is
consistent since G3

⊕2 simulates G4. △

Example 7.24. Consider the graphs G6 = (S6, E6) and G4 = (S4, E4) in Fig-
ures 7.6b and 7.7 respectively. We can prove that G6

⊕2 simulates G4 by the
relation R(b4) := {a6, b6} and R(a4) := {b6, c6}.

Let us use Proposition 7.22 to identify the potential values of T. The
graph G4 admits two loops, one for each label.

(b4, b4, 1) ∈ E4

There is a single cycle of label 2 in
G6, i.e.

(b6, a6, 1) ∈ E6,

(a6, b6, 1) ∈ E6.

Then, T1,1 = 2, and T must be a
multiple of 2.

(a4, a4, 2) ∈ E4

There is a single cycle of label 1 in
G6, i.e.

(b6, c6, 2) ∈ E8,

(c6, b6, 2) ∈ E8.

Then, T2,1 = 2, and T can only be a
multiple of 2.

Therefore, T must be a multiple of 2, and the minimal value is 2, which is
consistent since G6

⊕2 simulates G4. △

a8 b8 c8

1

1

2

1

2

2

Fig. 7.7 G6 = (S6, E6), a path-complete graph on the alphabet ⟨2⟩. This
graph is used to illustrate the constraints on the potential value of T for
simulation of G4 by G6

⊕T using Proposition 7.22.
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Let us focus in particular when the simulated graph is the common
Lyapunov function graph, i.e. G̃ := G0. This question is useful, because if it
appears to be the case, then we know that any other path-complete graph
is simulated by the T-sum lifted graph. Since there is no other edge than
the self-loops, we will be able to derive a necessary and sufficient condition
for the possible values of T.

Theorem 7.25. Given a graph G = (S, E) on the alphabet ⟨M⟩ and G0, the
common Lyapunov function graph on M modes. There exists T ∈ N such that
G⊕T simulates G0 if and only if there exist T ∈ N and S̃ ∈ MultiT(S) such that
for any label i ∈ ⟨M⟩, there exist Ni cycles of label i denoted by {C(i)k }k=1,...,Ni

such that ⊕
k = 1,··· ,Ni

{
nodes

(
C(i)k

)}
= S̃,

where Ni ∈N and nodes (C) refers to the nodes involved in a cycle C.

Proof. ⇒ Consider T ∈N such that R : {s0} → S⊕T is a simulation rela-
tion, i.e. (R(s0), R(s0), i) ∈ E⊕T for every label i ∈ ⟨M⟩. By definition of the
T-sum lift, this means that there exist as many permutations (i.e. bijection)
as the number of modes pi : R(s0) → R(s0) defined by the edges of label
i. Therefore, both permutations can be decomposed into cycles of label i in
the graph G with all the nodes of R(s0).

⇐ Consider S̃ := {i1, i2, . . . , iT} ⊆ S a subset of nodes of G which
admits a (group of) cycle(s) of label i for every label i ∈ ⟨M⟩, i.e. there
exists {j(i)1 , . . . , j(i)T } such that (i

j(i)l
, i

j(i)l+1
, 1) ∈ E for l = 1, . . . , T − 1 and

(i
j(i)T

, i
j(i)1

, 1) ∈ E. Therefore, the edges (S̃, S̃, i) ∈ E⊕T since the functions

pi : S̃→ S̃ defined by the cycles are permutations.

Let us take an example to illustrate this theorem.

Example 7.26. Consider the graph G7 = (S7, E7) on 2 modes in Figure 7.8,
where the edges of label 1 and 2 (denoted by E(1)

7 and E(2)
7 ) are illustrated

in Figures 7.8a and 7.8b respectively. Using Theorem 7.25, the structure
of G(1)7 := (S7, E(1)

7 ) implies that the admissible values of T1 for G7
⊕T1 to

admit a loop of label 1 are

T1 ∈ {α× 4 + β× 3 + γ× 3 | α, β, γ ∈N not all zero}

because G(1)7 admits 3 cycles of length 4,3 and 3. In particular the multi-set

| 165



7 | Template-dependent lifts and closure properties

a7 b7

f7 c7g7

e7 d7

1
1

11
1

1

1

1

1

(a) G(1)7 , the restriction of G7 to the
edges of label 1.

a7 b7

f7 c7g7

e7 d7

2

22
2

2

2

2

2
2

2

(b) G(2)7 , the restriction of G7 to the
edges of label 2.

Fig. 7.8 G7 = (S7, E7), a path-complete graph on ⟨2⟩ in Example 7.26. By
Theorem 7.25, we can find that G7

⊕10 simulates G0.

S̃(1) (i.e. node) associated to this loop has to be of the form

S̃(1) = (α⊗ {a7, e7, f7, g7}) ⊕ (β⊗ {d7, e7, g7})
⊕ (γ⊗ {b7, c7, g7}) ,

= (α⊗ ({a7, f7} ⊕ {e7} ⊕ {g7})) ⊕ (β⊗ ({d7} ⊕ {e7} ⊕ {g7}))
⊕ (γ⊗ ({b7, c7} ⊕ {g7})) ,

= (α⊗ {a7, f7}) ⊕ (α⊗ {e7}) ⊕ (α⊗ {g7}) ⊕ (β⊗ {d7})
⊕ (β⊗ {e7}) ⊕ (β⊗ {g7}) ⊕ (γ⊗ {b7, c7}) ⊕ (γ⊗ {g7}),

= (α⊗ {a7, f7}) ⊕ (β⊗ {d7}) ⊕ (γ⊗ {b7, c7})
⊕ ((α + β)⊗ {e7}) ⊕ ((α + β + γ)⊗ {g7}),

where the last equalities have been obtained by Proposition 7.8 and where
α, β and γ ∈ N are not all null. Similarly, the admissible values of T2 such
that G7

⊕T2 admits a loop of label 2 are

T2 ∈ {δ× 2 + ε× 3 + ζ × 2 + η × 3 | δ, ε, ζ, η ∈N not all zero} ,

and the multi-set S̃(2) has to be of the form

S̃(2) = (δ⊗ {d7, e7}) ⊕ (ε⊗ {e7, f7, g7}) ⊕ (ζ ⊗ {c7, g7})
⊕ (η ⊗ {a7, b7, g7}) ,
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S̃(2) = (δ⊗ {d7}) ⊕ (ε⊗ { f7}) ⊕ (ζ ⊗ {c7}) ⊕ (η ⊗ {a7, b7})
⊕ ((δ + ε)⊗ {e7}) ⊕ ((ε + ζ + η)⊗ {g7}) ,

where δ, ε, ζ and η ∈N are not all zero.

Therefore, there exists a value T ∈ N such that G7
⊕T simulates G0 if

and only if there exist some integer values (not all zero) for α, β, γ, δ, ε, ζ

and η such that S̃(1) = S̃(2), i.e. equivalently

S̃(1) = S̃(2) ⇔



(for a7) η = α,

(for b7) η = β,

(for c7) ζ = γ,

(for d7) δ = β,

(for e7) δ + ε = α + β,

(for f7) ε = α,

(for g7) ε + ζ + η = α + β + γ,

⇔



δ = α,

ε = α,

ζ = γ,

η = α,

α = β.

This means that for any value of (α, β, γ) such that α = β (i.e. if (α, β, γ) be-
longs to the integer-span of (1, 1, 0) and (0, 0, 1)), there exists (δ, ε, ζ, η) =

(α, α, γ, α) such that S̃(1) = S̃(2). Then, if we consider the multi-set S̃
such that S̃ = S̃(1) for (α, β, γ) = (1, 1, 1) (which corresponds to S̃(2) for
(δ, ε, ζ, η) = (1, 1, 1, 1)), we get

S̃ := {a7, b7, c7, d7, e7, e7, f7, g7, g7, g7}

of cardinality 10, and this multi-set satisfies that both (S̃, S̃, 1) and (S̃, S̃, 2) ∈
E7
⊕10. This means that the 10-sum lift of G7 simulates G0. △

Example 7.27. Let us consider the graph G8 for which the restrictions to
the edges of label 1 and 2, denoted by G8

(1) and G8
(2), are illustrated in

Figures 7.9a and 7.9b respectively. We would like to prove that for any
T ∈N, G8

⊕T does not simulate G0. To this aim, we use the characterization
in Theorem 7.25. We can find that

T1 ∈ {α× 4 + β× 3 | α, β ∈N not all zero}

because G8
(1) admits two cycles of length 4 and 3. Moreover, the multi-set
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e8

a8

d8

b8

c81

1

1

1

1

1

(a) G(1)8 , the restriction of G8 to the
edges of label 1.

e8

a8

d8

b8

c82

2

2

2

22

(b) G(1)8 , the restriction of G8 to the
edges of label 2.

Fig. 7.9 G8 = (S8, E8), a path-complete graph on ⟨2⟩. By Theorem 7.25,
we can prove that there does not exist any value of T ∈ N such that G8

⊕T

simulates G0.

S̃(1) must be of the form

S̃(1) = (α⊗ {a8, b8, d8, e8}) ⊕ (β⊗ {b8, c8, d8}) ,

= (α⊗ {a8, e8}) ⊕ (β⊗ {c8}) ⊕ ((α + β)⊗ {b8, d8}) ,

where α and β ∈N are not both null. Similarly, for label 2, we get that

T2 ∈ {γ× 3 + δ× 3 | γ, δ ∈N not all zero }

because G8
(2) admits two cycles of length 3. Moreover, the multi-set S̃(2)

must be of the form

S̃(2) = (γ⊗ {a8, d8, e8}) ⊕ (δ⊗ {a8, b8, c8}) ,

= (γ⊗ {d8, e8}) ⊕ (δ⊗ {b8, c8}) ⊕ ((γ + δ)⊗ {a8}) ,

where γ and δ ∈N are not both null. Therefore, there exists a value T ∈N

such that G8
⊕T simulates G0 if and only if there exists some integer values

(not all zero) for α, β, γ and δ such that S̃(1) = S̃(2), i.e. equivalently

S̃(1) = S̃(2) ⇔



(for a8) α = γ + δ,

(for b8) α + β = δ,

(for c8) β = δ,
(for d8) α + β = γ,

(for e8) α = γ,

⇔


α = 0,

β = 0,

γ = 0,

δ = 0,
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since b8 and c8 imply that α = 0, then γ = 0 by e8. Then, β = 0 by d8 and
δ = 0 by c8. So we have proved that no value of T exists such that G8

⊕T

simulates G0. △

So far this approach only considers the loops, so we miss some edges,
i.e. constraints on the possible value of T. We can generalize this reasoning
to the cycles of G̃. This generalization is all the more useful since there must
exist at least one cycle for each label by path-completeness of the graph.

Assume that there exists a cycle of label m ∈ ⟨M⟩ of length Lm in G̃ :

(a1, a2, m)

(a2, a3, m)

...
(aLm , a1, m)

 ∈ Ẽ −→

(R(a1), R(a2), m)

(R(a2), R(a3), m)

...
(R(aLm), R(a1), m)

 ∈ E⊕T .

Using a similar argument to the loop case, there exists a cycle of label m of
length Lm× T in G. Then, if we compute the length of all the cycles of label
m in G denoted by {Tm,k}, the possible values are{

∑
k

αk
Tm,k

Lm

∣∣∣ Tm,k

Lm
∈N, αk ∈N

}
.

Since the graph is path-complete, we know that there exists at least one
cycle of label m, but there could be several. We assume then that there
exist several cycles of label m of length {Lm,k}. For each of these cycles, we
can compute the length of the cycles of label m which are multiple of Lm in
G, denoted by {Tm,k,n}.

Proposition 7.28. Consider two path-complete graphs G and G̃ over the same
alphabet ⟨M⟩. Assume that there exists T ∈ N such that G⊕T simulates G̃.
Then, the following expression must be satisfied:

T ∈
⋂

m∈⟨M⟩

⋂
k

{
∑
n

αn
Tm,k,n

Lm,k

∣∣∣ αn ∈N

}
,

where {Lm,k}k denotes the lengths of all the cycles of label m in G̃, and for each
of them, {Tm,k,n} denotes the lengths of the cycles of label m in G which are a
multiple of Lm,k.
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Example 7.29. Let us consider the path-complete graphs G2 in Example 7.12
and recalled in Figure 7.10b, G5 = (S5, E5) in Figure 7.4 and G9 = (S9, E9)

in Figure 7.10a. We have already shown in Example 7.17 that G⊕5 simulates
G0. Let us now prove using Proposition 7.28 that (G5)

⊕3 simulates G9 and
(G5)

⊕4 simulates G2.

First, let us find for each label the length of all the different cycles in G5.

Label 1

There are 2 cycles of label 1 in G5;
one of length 3 i.e.

C1
1 := {a5, d5, e5},

and one of length 5, i.e.

C1
2 := {a5, b5, c5, d5, e5}.

Label 2

There are 3 cycles of label 2 in G5, all
of them of length 2, i.e.

C2
1 := {a5, e5},

C2
2 := {b5, d5},

and
C2

3 := {c5, d5}.

As first example, let us consider the graph G9. This graph admits one loop
of label 1 and one cycle of length 2 for the label 2. Using Proposition 7.28,
the possible values T ∈ N must satisfy that there exist c1, c2 and c3 ∈ N

such that {
1× T = 3× c1 + 5× c2,

2× T = 2× c3.
(7.6)

The first equation guarantees the existence of a perfect matching for the
self loop in G9 by combining the two cycles C1

1 and C1
2 , while the second

equation concerns the cycle of label 2 of length 2 in G9 and combines the
three cycles of length 2 in G5. Note that even if these equations admit a

a9 b91
1

2

2

(a) G9, a path-complete graph simu-
lated by (G5)

⊕3.

a2 b22
1

1
2

(b) G2, a path-complete graph simu-
lated by (G5)

⊕4.

Fig. 7.10 Examples of two path-complete graphs simulated by the T-sum
lift of G5 for (a) T = 3 and (b) T = 4.
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solution for a specific T, nothing ensures that there exists a simulation re-
lation between G5

⊕T and G9. However, if there exists a value T ∈ N such
that the simulation relation is satisfied, then Proposition 7.28 ensures that
there exists a solution to the equations in Equation (7.6). In our case, equa-
tions in (7.6) are satisfied for T = 3, c1 = 1, c2 = 0 and c3 = 3. Let us
prove that G5

⊕3 simulates G9 and let us progressively build the simulation
relation R : G9 → G5

⊕3.

The parameter values c1 = 1 and c2 = 0 forced us to define R(a9) as
the only cycle of length 3, i.e. C1

1 := {a5, d5, e5} ∈ S5
⊕3. Recalling Proposi-

tion 7.16, we can verify in Figure 7.11a that the edge (C1
1 , C1

1 , 1) ∈ E5
⊕3. Re-

garding the parameter c3, its value does not provide any insight on which
multi-set we should assign b9 to. However, since T = 3, the cycle of label
2 in G9 involves 6 nodes. Moreover, the node a9 belongs to this cycle so
R(a9) is a subset of this set of 6 nodes. Then, we are looking for 3 nodes
denoted by s1, s2, s3 ∈ S5 such that C1

1 ∪ {s1, s2, s3} is the sum (in the sense
of Definition 7.7) of three cycles of label 2 and of length 2. Then, R(b9) is
defined as {s1, s2, s3}. It turn outs that there is a single configuration such
that R is a simulation relation, i.e. (R(a9), R(b9), 1), (R(a9), R(b9), 2) and
(R(b9), R(a9), 2) ∈ E5

⊕3. In this case, R(b9) := {a5, b5, e5}. Recalling the
characterization of the edges of the sum lift in Proposition 7.16, the perfect
matchings are illustrated in Figure 7.11 for all the edges of G9.

We can follow the same logic for G2 recalled in Figure 7.10b. This graph
admits two loops of label 2 and one cycle of label 1 of length 2. Using
Proposition 7.28, this implies that the possible values of T ∈ N have to

a5

d5

e5

a5

d5

e5

(a) (a9, a9, 1).

a5

d5

e5

a5

b5

e5

(b) (a9, b9, 1).

a5

d5

e5

a5

b5

e5

(c) (a9, b9, 2).

a5

b5

e5

a5

d5

e5

(d) (b9, a9, 2).

Fig. 7.11 Illustration of the perfect matchings of the edges (R(s), R(d), i)
for the four edges in G9 with R(a9) := {a5, d5, e5} and R(b9) := {a5, b5, e5}.
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a5

b5

d5

e5

a5

b5

d5

e5

(a) (a2, a2, 2).

a5

b5

d5

e5

a5

c5

d5

e5

(b) (a2, b2, 1).

a5

c5

d5

e5

a5

b5

d5

e5

(c) (b2, a2, 1).

a5

c5

d5

e5

a5

c5

d5

e5

(d) (b2, b2, 2).

Fig. 7.12 Illustration of the perfect matchings of the edges (R(s), R(d), i)
for the four edges in G2 with R(a2) := {a5, b5, d5, e5} and R(b2) :=
{a5, b5, d5, e5}.

satisfy the following equations:{
2× T = 3× c1 + 5× c2,

1× T = 2× c3.
(7.7)

We find that a possible solution is T = 4, c1 = c2 = 1 and c3 = 2. Let us
prove that G5

⊕4 simulates G2 and build the simulation relation R : S2 →
S5
⊕4. The first equation in Equation (7.7) implies that

R(a2)⊕ R(b2) := C1
1 ⊕ C1

2 := {a5, a5, b5, c5, d5, d5, e5, e5}.

Of all the possible configurations, only one satisfies the definition of the
simulation relation. In this case, R(a2) := {a5, b5, d5, e5} and R(b2) :=
{a5, b5, d5, e5}. For each edge in G2, the corresponding perfect matching
is illustrated in Figure 7.12. △

Although Theorem 7.18 and in particular Theorem 7.25 and Proposi-
tion 7.28 highlight the strong connection between the conservatism degree
of a graph-based stability certificate and its combinatorial structure, we
have not been able to provide an a priori upper-bound on the value of T in
Lemma 7.20. However, we will prove that the simulation relation can be
checked in polynomial time.

It turns out that the T-sum lift introduced in Definition 7.9 is a general-
ization of the construction presented in [PAAJ19]. Indeed, the comparison
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(6.9) of path-complete graphs in Definition 6.21 is investigated for the par-
ticular template of quadratic functions (closed under sum) and the family
of linear switched systems. A sufficient condition to the implication (6.10)
is provided and consists in checking whether the solution (W) of the sec-
ond graph can be defined as a conic combination of the solution (V) of
the first graph regardless of the switched system. We recall the definition
hereafter (see [PAAJ19, Definition IV.2.] for the formal definition).

Definition 7.30. Consider two path-complete graphs G = (S, E) and G̃ =

(S̃, Ẽ) on the same alphabet ⟨M⟩. We write

G ≤∑ G̃ (7.8)

if there is a matrix C ∈ R
|S̃|×|S|
≥0 satisfying that

∀s̃ ∈ S̃ : ∑
s∈S

Cs̃,s > 0,

such that for any n ∈ N, any switched system F := { fi : i ∈ ⟨M⟩} ⊂
C0(Rn, Rn) and any admissible Lyapunov function VS := {Vs : s ∈ S} ∈
PCLF(G, F), the candidate Lyapunov function US̃ := {Us̃ : s̃ ∈ S̃} such
that

∀s̃ ∈ S̃, ∀x ∈ Rn : Us̃(x) := ∑
s∈S

Cs̃,sVs(x), (7.9)

satisfies US̃ ∈ PCLF(G̃, F). In this case, we say G ≤∑ G̃ through C.

Remark 7.31. Note that the relation between the Lyapunov functions VS
and US̃ in Equation (7.9) will be denoted hereafter by abuse of notation by
US̃ := C×VS. △

In [PAAJ19, Theorem IV.4.], it is shown that the existence of a matrix C
satisfying (7.8) can be checked via a linear program (LP) with integer coeffi-
cients. Thus, if the problem is feasible, there is at least one solution to this
LP with rational elements. Then, an integer-valued solution can be derived
by multiplying a rational-valued solution by the least common multiple
of the denominators and dividing by the greatest common divisor of the
products. We summarize this discussion in the following statement.

Lemma 7.32. Consider two path-complete graphs G and G̃ on the same alphabet.
If G ≤∑ G̃, then there exists an integer matrix C ∈ N|S̃|×|S| such that G ≤∑ G̃
through C.
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Before stating the main theorem in this section, let us provide a connec-
tion between the sum lift, the ordering ≤∑ and the simulation relation.

Lemma 7.33. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the same alphabet. The following holds:

(1) If G simulates G̃, then
G ≤∑ G̃

through a matrix C ∈ {0, 1}|S̃|×|S|.

(2) For any T ∈N,
G ≤∑ G⊕T

through a matrix C ∈ {0, 1, . . . , T}|S⊕T |×|S|.

Proof. (1) Consider R : S̃ → S a simulation relation. Given a switched
system F := { fi : i ∈ ⟨M⟩} and VS := {Vs : s ∈ S} an admissible Lyapunov
function for G and F, we know that the indexed set

WS̃ := {Ws := VR(s) : s ∈ S̃}

is admissible for G̃ and F. Therefore, if we define C ∈ {0, 1}|S̃|×|S| such that
for all p ∈ S̃ and q ∈ S,

Cp,q =

{
1, if q = R(s),

0, otherwise,

we have that CVS is equal to WS̃. Then, regardless of the switched system
and the solution VS admissible for G, C×VS is admissible for G̃.

(2) Consider s ∈ S and a multi-set P := {p1, · · · , pT} ∈ S⊕T of cardi-
nality T. We define the matrix C ∈ {0, 1, . . . , T}|S⊕T |×|S| by CP,s = mP(s).
Let F := { fi : i ∈ ⟨M⟩} be a switched system and an admissible Lyapunov
function VS for G and F. If we define WS̃ := C×VS,

WP := ∑
pi∈P

Vpi .

Therefore, WS̃ is admissible for G⊕T by construction of the T-sum lift (see
the proof of Proposition 7.11 for more details).

We now show that the relation ≤∑ is transitive.
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Lemma 7.34. Consider three path-complete graphs G = (S, E), G⋆ = (S⋆, E⋆)

and G̃ = (S̃, Ẽ) on the same alphabet ⟨M⟩. The following expression holds:(
G ≤∑ G⋆ ∧ G⋆ ≤∑ G̃

)
⇒

(
G ≤∑ G̃

)
.

Proof. Consider n ∈ N, a switched system F := { fi : i ∈ ⟨M⟩} on M
modes and VS a candidate Lyapunov function. We assume that the graphs
G and G⋆ and the graphs G⋆ and G̃ satisfy the inequality (7.8) through the
matrices C1 and C2 respectively. Then, the following implications hold

VS ∈ PCLF(G, F) ⇒ C1 ×VS ∈ PCLF(G⋆, F)

⇒ C1 × C2 ×VS ∈ PCLF(G̃, F).

Therefore, G ≤∑ G̃ through the matrix C := C1 × C2 by definition.

We are now able to prove the following characterization theorem be-
tween the sum lift simulation and the inequality (7.8) thanks to Theorem 8.6.

Theorem 7.35. Given two graphs G = (S, E) and G̃ = (S̃, Ẽ) on the same
alphabet ⟨M⟩, the following statements are equivalent.

(1) G⊕ simulates G̃.

(2) G ≤∑ G̃.

Proof. (2) ⇒ (1) : Suppose that G ≤∑ G̃ and consider any template V
closed under addition. By Lemma 7.32, we can assume without loss of
generality that G ≤∑ G̃ through an integer matrix C. By Definition 7.30, for
any switched system F and any admissible solution VS to G and F, the can-
didate Lyapunov function US̃ ∈ V

S̃ defined by equation (7.9) is admissible
for G̃ and F. Observe that this function is defined as the sum of functions
in V (possibly with repetitions). Thus G ≤V G̃ and by Theorem 8.6, this in
particular implies that G⊕ simulates G̃.

(1) ⇒ (2) : By Lemma 7.20, statement (1) implies that there exists
T ∈ N and R : S̃ → S⊕T a simulation relation. By Item (1) of Lemma 7.33,
G⊕T ≤∑ G̃ through a matrix C1 ∈ {0, 1}|S̃|×|S⊕T |. Moreover, by Item (2) of
Lemma 7.33, G ≤∑ G⊕T through a matrix C2 ∈ ⟨T⟩|S

⊕T |×|S|. By Lemma 7.34,
we can conclude (2).

Thanks to this result, one can use the LP characterization in [PAAJ19,
Theorem IV.4.] to check the existence of a simulation relation, and a pos-
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teriori identify the appropriate value of T ∈ N. We illustrate this result in
the following example.

Example 7.36. Consider the graphs G1 and G2 in Figure 7.1 and repeated
hereafter in Figure 7.13. On one hand, we have proven in Example 7.6 that
G1 ≤V G2 for any template closed under addition. In fact, one can prove
that the 2-sum lift of G1 simulates G2. From Lemma 7.33, we can derive the
matrices C1

sum ∈ {0, 1, 2}|S1
⊕2|×|S1| and C1

sim ∈ {0, 1}|S2|×|S1
⊕2| such that

G1 ≤∑ G1
⊕2 and G1

⊕2 ≤∑ G2

through C1
sum and C1

sim respectively. Therefore, by Lemma 7.34, G1 ≤∑ G2
through the matrix

C1 := C1
sim × C1

sum :=


1 0 1 0 0
1 1 0 0 0
1 0 0 0 1
1 0 0 1 0

 . (7.10)

On the other hand, thanks to Theorem 7.35, we can solve the LP criterion to
verify the conditions of Definition 7.30. We implemented the LP in MAT-

a1

c1b1

d1e1

1

1 1

2

2

12

2

(a) The path-complete graph G1 =
(S1, E1).

a5

c5

d5

b52

2

2

1

1

1

2 1

(b) G3,1
db , the generalized De Bruijn

graph of order 2 and memory 1.

Fig. 7.13 The path-complete graphs G1 and G3,1
db in Example 7.6. Even

though G1 ≰ G3,1
db , G1 ≤V G3,1

db for any template V closed under addition.
Moreover, G1 ≤∑ G3,1

db through C1 in Equation (7.10).
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LAB with the toolbox Yalmip [Löf04] and the solver Mosek [MOS19]. Due
to the solver, we obtain a floating number solution; to obtain a rational so-
lution, we thus round it and we check a posteriori the feasability, which is
indeed still satisfied. Eventually, we get the following matrix

C1
LP :=



1373
1408 0 1373

1408 0 0

1373
1408

1373
1408 0 0 0

1373
1408 0 0 0 1373

1408

1373
1408 0 0 1373

1408 0


which provides the same simulation relation by multiplying by

1408
1373

. △

7.4 Min and Max lifts

Even though the binary operation of the sum is natural and many tem-
plates of Lyapunov functions are closed under sum, it turns out that our
approach generalizes to less straightforward binary operations. For in-
stance, the templates of piecewise C1 functions [DGTZ21] and polyhedral
functions [AJ19], which are commonly used for stability analysis, are closed
under pointwise maximum of finitely many functions [DGTZ21, Proposi-
tion 3]. These results motivate the introduction of both min and max lifts.

Let us start with a motivating example.

Example 7.37. Consider the graphs G1 = (S1, E1) and G2 = (S2, E2) in Fig-
ures 7.14a and 7.14b, and compare them with respect to their conservatism.

First, we prove that G1 does not simulate G2. Assume by contradiction
that there exists a simulation function R : S2 → S1. Because of the self-
loops (a2, a2, 1) and (b2, b2, 1), we must have that R(a2) = R(b2) := a1. The
node c2 admits an incoming edge with label 2, then R(c2) := b1 since the
node a1 only admits incoming edges with label 1. Nevertheless, the edge
(a2, b2, 2) ∈ E2 and (R(a2), R(b2), 2) = (a1, a1, 2) /∈ E1, proving that R can-
not be a simulation function. A similar approach can be applied to prove
that G2 does not simulate G1. These two facts, recalling Theorem 6.30, are
equivalent to G1 ≰ G2 and G2 ≰ G1.
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a1 b1 2
1

2
1

(a) G1 = (S1, E1), a path-complete
graph with 2 nodes and 4 edges.

b2 c2

a2

2
2

2

1

1

1

(b) G2 = (S2, E2), a path-complete
graph with 3 nodes and 6 edges.

Fig. 7.14 Two path-complete graphs G1 and G2 over the alphabet ⟨2⟩ in
Example 7.37 such that G1 ≰ G2 and G2 ≰ G1 but G1 ≤V G2 and
G2 ≤V G1 for any template V closed under pointwise minimum.

In contrast, we can prove that both graphs are equivalent in the sense
of Equation (6.11) for any template closed under pointwise minimum. We
consider a template V which satisfies this closure property, a switched sys-
tem F with 2 modes and a solution VS1 := {Vs : s ∈ S1} ∈ VS1 admissible
for the graph G1 and the system F. We define WS2 := {Ws : s ∈ S2} by

WS2 :=


Wa2 := Va1 ,

Wb2 := min{Va1 , Vb1},
Wc2 := Vb1 .

(7.11)

We can prove that WS2 is admissible for G2 and F, meaning that G1 ≤V G2
for any template V closed under pointwise minimum. Let us consider for
instance the edge (a2, b2, 2) ∈ E2, and let us prove that the corresponding
inequality is satisfied, i.e.

∀x ∈ Rn, min{Va1( f2(x)), Vb1( f2(x))︸ ︷︷ ︸
:= Wb2

( f2(x))

≤ Va1(x)︸ ︷︷ ︸
:= Wa2 (x)

. (7.12)

Since (a1, b1, 2) ∈ E1, the corresponding Lyapunov inequality is satisfied
by the functions Va1 and Vb1 . As a result, the inequality in Equation (7.12)
is automatically satisfied.
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Conversely, assume that WS2 := {Ws : s ∈ S2} ∈ VS2 is an admissible
solution for G2 and F. We define VS1 := {Vs : s ∈ S1} by

VS1 :=

{
Va1 := min{Wa2 , Wb2},
Vb1 := min{Wb2 , Wc2}.

(7.13)

We can prove that VS1 is admissible for G1 and F. Let us take for instance
the edge (a1, b1, 2) ∈ E1. The corresponding Lyapunov inequality, i.e.

∀x ∈ Rn, min{Wb2( f2(x)), Wc2( f2(x))︸ ︷︷ ︸
:= Vb1

( f2(x))

≤ min{Wa2(x), Wb2(x)}︸ ︷︷ ︸
:= Va1 (x)

, (7.14)

is satisfied because the edges (a2, b2, 2) and (b2, c2, 2) ∈ E2. This implies
that G2 ≤V G1 for any template V closed under pointwise minimum. △

The rest of this section is organized as follows: we first define both the
min and the max lifts and formally demonstrate their validity with respect
to the templates closed under pointwise minimum and maximum respec-
tively. Then we prove the duality between the min and max lifts, and show
how it can be used to help demonstrate some results. In Section 7.4.3, we
discuss the comparison of any path-complete graph with the common Lya-
punov function graph G0 for the two class of templates of interest. Finally,
we provide a sufficient condition for the template-dependent ordering of
graphs using the simulation relation and the lifts. Moreover, all the results
in this section are illustrated with several examples.

7.4.1 Definition and properties

Let us now define the min and the max lifts, which respectively exploit the
pointwise minimum and maximum closure properties.

Definition 7.38 (Max and min lifts). Consider a graph G = (S, E) on the
alphabet ⟨M⟩.

(a) The max lift, denoted by Gmax = (Smax, Emax), is defined as follows:

(1) The set of nodes Smax is defined by

Smax := {S′ ⊆ S | S′ ̸= ∅}.
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(2) An edge (A, B, i) ∈ Emax with A, B ∈ Smax and i ∈ ⟨M⟩ if and
only if for all b ∈ B, there exists at least one a ∈ A such that
(a, b, i) ∈ E.

(b) The min lift, denoted by Gmin = (Smin, Emin), is defined as follows:

(1) The set of nodes Smin is defined by

Smin := {S′ ⊆ S | S′ ̸= ∅}.

(2) An edge (A, B, i) ∈ Emin with A, B ∈ Smin and i ∈ ⟨M⟩ if and
only if for all a ∈ A, there exists at least one b ∈ B such that
(a, b, i) ∈ E.

It is worth noting that, contrary to the addition, both the minimum and
maximum operations are idempotent (i.e. for any a ∈ R, min{a, a} = a).
This explains why we restrict the nodes to the (non empty) subsets and we
do not consider multi-sets here. Therefore, both lifted graphs admit a finite
number of nodes and a finite number of edges.

We need to prove that these lifts are well-defined. As a first step, let us
show that both operations preserve the path-completeness.

Proposition 7.39. The min and max lifts preserve the path-completeness of graphs.

Proof. Given a path-complete graph G = (S, E), let us prove that Gmin ad-
mits a component isomorphic to the initial graph G, which directly proves
the path-completeness of the min lift Gmin.

By Definition 7.38, the min lift Gmin admits a node for every singleton
{s} where s ∈ S. Moreover, for every edge (s, p, i) ∈ E of the initial graph,
the edge ({s}, {p}, i) ∈ Emin by definition of the min lift. Therefore, the
restriction of the min lift to the singleton nodes is isomorphic to the initial
graph and then path-complete.

A similar argument can be used to prove the path-completeness of the
max lift.

Let us now discuss the validity of those lifts.

Proposition 7.40. Consider the family of binary operations {∧n}n∈N such that
∀n ∈ N, ∧n corresponds to the pointwise maximum. The max lift is valid in the
sense of Definition 7.3 with respect to any template closed under {∧n}n∈N.
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Proof. Consider a template V closed under pointwise maximum and any
family of vector fields { fi : i ∈ ⟨M⟩}. Suppose that there exists a PCLF for
the initial graph G of the form {Vs : s ∈ S} ⊂ V . Given any A ∈ Smax the
corresponding Lyapunov function WA ∈ V is defined by

∀x ∈ Rn : WA(x) := max
a∈A
{Va(x)}. (7.15)

Given (A, B, i) ∈ Emax, we have

WB( fi(x)) = max
b∈B
{Vb( fi(x))} ≤ max

a∈A
{Va(x)} = WA(x),

for any x ∈ Rn, since, by Definition 7.38, for all b ∈ B there exists at least a
a ∈ A such that Vb( fi(x)) ≤ Va(x), concluding the proof.

Proposition 7.41. Respectively, consider the family of binary operations {∨n}n∈N

such that ∀n ∈ N, ∨n corresponds to the pointwise minimum. The min lift
is valid in the sense of Definition 7.3 with respect to any template closed under
{∨n}n∈N.

Proof. The proof is the same as the proof for max, but given any A ∈ Smin
the corresponding Lyapunov function WA ∈ V is defined by WA(x) :=
min
a∈A
{Va(x)}, ∀x ∈ Rn.

Example 7.42. Consider the graph G1 = (S1, E1) in Figure 7.14a, path-
complete on ⟨M⟩ := {1, 2}. If we apply the min-lift procedure as intro-
duced in Definition 7.38, we obtain (G1)min represented in Figure 7.15. We
see that (G1)min has one strongly-connected and path-complete component
isomorphic to G1 itself (the subgraph induced by {a} and {b}) as demon-
strated in the proof of Proposition 7.39.

Moreover, we can see that the graph G2 in Figure 7.14b is a sub-component
of (G1)min (in bold). Since G1 ≤V (G1)min for any template closed under
pointwise minimum by Proposition 7.40 and by Proposition 6.23, we can
derive the same results as in Example 7.37, that is

G1 ≤V G2

for any template V closed under pointwise minimum.
Finally, there is another sub-component induced by {a, b} (with dashed
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{a, b} {b}

{a}

1

2

2

1

2
1

1
2

1

1

2

2

Fig. 7.15 (G1)min, the min lift of the path-complete graph G1 in Fig-
ure 7.14a. The subgraph with bold edges is the graph G2 in Figure 7.14b,
which proves that G1 ≤V G2 for any template closed under pointwise mini-
mum. The subgraph with dashed edges is the common Lyapunov function
graph G0, which proves that G1 ≤V G0 for this kind of templates.

edges) which is isomorphic to G0. Therefore, we can derive that

G1 ≤V G0,

for any template V closed by minimum, or, in other words, the graph G1 is
as conservative as G0 (the “worst” graph) for this kind of templates. △

We can now study for which templates defined in Section 2.2.3 the min
and the max lift are valid. Using Corollary 2.36, we can prove that the
min lift is valid with respect to the template of primal copositive norms
provided that they are not properly closed under pointwise minimum. By
duality, we can derive the validity of the max lift with respect to the dual
copositive norms.

Theorem 7.43. Consider G = (S, E) a path-complete graph on ⟨M⟩, any n ∈N

and any T ∈ N. Denote by P and D the template of primal and dual norms on
Rn
≥0 respectively, and by L the set of all the positive matrices in Rn×n

≥0 . We have

(a) G ≤P ,L Gmin,

(b) G ≤D,L Gmax.
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Proof. The first relation follows from Proposition 7.40 and Corollary 2.36.
Note that the template of primal copositive norms is not closed under min-
imum, but the construction proposed in Proposition 7.40 is still possible by
Corollary 2.36, which requires the linearity of the subvector fields. We can
thus conclude G ≤P ,L Gmin, but not, in general, G ≤P Gmin.

By duality, it is possible to develop similar arguments for the template
of dual copositive norms D.

By abuse of language, we will say that the template of primal copostive
norms is closed under pointwise minimum to refer to the inequality (a) in
Theorem 7.43.

Example 7.44. Consider the path-complete graphs G1 and G2 in Figures 7.14a
and 7.14b respectively. We have already demonstrated in Example 7.37 that
G1 ≰ G2 and G2 ≰ G1 but G1 ≤V G2 and G2 ≤V G1 for any template V
closed under pointwise minimum.

Consider the positive linear switched system A := {A1, A2} with

A1 :=

[
0.9 0.3
0.9 0.7

]
, A2 :=

[
0.6 0.9
0.6 0.3

]
, (7.16)

and assume that we use the template of primal copositive norms P . Since
this template is closed under pointwise minimum, we expect that the ap-
proximations of the joint spectral radius provided by G1 and G2, denoted
by ρG1,P (A) and ρG2,P (A) respectively, are the same. Indeed, using the
YALMIP toolbox [Löf04], we get

ρG1,P (A) = ρG2,P (A) = 1.549.

If instead we consider the template of quadratic functions Q, which is not
closed under pointwise minimum, the results provided by the graphs may
be different. Indeed, for the system (7.16), we obtain

ρG1,Q(A) = 1.356 < 1.364 = ρG2,Q(A). (7.17)

This inequality proves that graphs G1 and G2 are not equivalent with re-
spect to the family of quadratic Lyapunov functions. △
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7.4.2 Duality

Recalling Corollary 2.36 and the duality theory in Section 1.2, we expect
the min and max lifts to be each other’s dual, as stated in the following
lemma.

Lemma 7.45. The min and max lifts are dual, i.e. for any path-complete graph
G = (S, E) on ⟨M⟩, it holds that[

(G⊤)max

]⊤
= Gmin, (7.18a)

[
(G⊤)min

]⊤
= Gmax. (7.18b)

Proof. We use the notation G⊤ = (S, E⊤), Gmin = (Smin, Emin), (G⊤)max =

(S⊤max, E⊤max) and [(G⊤)max]⊤ = ((S⊤max)
⊤, (E⊤max)

⊤). First of all, by Defi-
nition 6.3 and 7.38 we have Smin = (S⊤max)

⊤(= P(S) \ {∅}). Then, con-
sidering S1, S2 ∈ Smin and i ∈ ⟨M⟩, again by Definition 6.3 and 7.38 we
have

(S1, S2, i) ∈ Emin ⇔ ∀ a ∈ S1, ∃ b ∈ S2 : (a, b, i) ∈ E,

⇔ ∀ a ∈ S1, ∃ b ∈ S2 : (b, a, i) ∈ E⊤,

⇔ (S2, S1, i) ∈ E⊤max,

⇔ (S1, S2, i) ∈ (E⊤max)
⊤,

concluding the proof of (7.18a). Equation (7.18b) trivially follows with sim-
ilar arguments.

Using the duality in Lemma 7.45, it is easier to deduce the previous result.
In particular, the path-completeness of the max lift can be directly obtained.

Alternative proof of Proposition 7.39 for the max lift using duality. We have al-
ready proven that if a graph G is path-complete, then the min lift Gmin is
path-complete. We can prove using duality that the max lift preserves the
path-completeness.

Consider a path-complete graph G. By Proposition 6.6, G⊤ is path-
complete. Then, by Proposition 7.39, (G⊤)min is path-complete. By com-
bining Proposition 6.6 and Lemma 7.45, we end the proof.
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7.4.3 Comparison with the common Lyapunov function graph

The construction of the min lift reminds us of the notion of co-observer graph
[CL10, Section 2.3.4] which is in fact a sub-component of the min-lift. This
construction has already been used in [Phi17, Definition 5.29] and is re-
peated below.

Definition 7.46 (Co-observer graph). Given a graph G = (S, E) with M
labels, the co-observer graph denoted by cO(G) := (SC, EC) is a graph where
each state correponds to a subset of S, and is constructed as follows:

(1) Set SC := {S} and EC := ∅;

(2) Set X = ∅. Then, for each pair (Q, σ) ∈ SC × ⟨M⟩:

a. Compute P = ∪
q∈Q
{p | (p, q, σ) ∈ E};

b. If P ̸= ∅, set EC := EC ∪ {(P, Q, σ)} then X := X ∪ {P}.

(3) If X ⊆ SC, then the co-observer graph is given by cO(G) = (SC, EC).
Else, set SC := SC ∪ X and go to step (2).

One can show that the co-observer graph is strongly connected and co-
complete (therefore path-complete), see [Phi17] for a more detailed analy-
sis. Let us take an example, and compare this construction with the min
lift.

Example 7.47. Take the initial graph G1 = (S1, E1) in Figure 7.16a . We
compute its co-observer graph cO(G1) illustrated in Figure 7.16b. We ob-
serve that cO(G1) corresponds to the common Lyapunov function graph
G0. The min lift G1min of the initial graph is illustrated in Figure 7.16c. We
can notice that the co-observer graph is a subcomponent of the min lift. By
Propositions 6.24 and 7.40, we have that

G0 ≤ G1 ≤V G0,

where V denotes any template closed under pointwise mininimum. The
graph G1 and the common Lyapunov function graph G0 are then equivalent
from a conservatism-based point of view for this kind of templates. △
By Definition 7.38 and 7.46, it is clear that the co-observer graph of any
path-complete graph is a subset of the min lift.

Lemma 7.48. Given a path-complete graph G, the co-observer graph cO(G) is a
subcomponent of the min lift Gmin.
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a1 b1 2
1

1
2

(a) G1 = (S1, E1), path-complete
graph on ⟨2⟩.

{a1, b1} 21

(b) cO(G1) = (S1C, E1C), the co-
observer graph of G1.

{a1} {b1}

{a1, b1}

2
1

1
2

1
2 1

2

1 2

(c) G1min = (S1min, E1min), the min lift of
G1. The co-observer graph cO(G1) is one of
the subcomponents of G1min.

Fig. 7.16 Comparison between the co-observer graph and the min lift in
Example 7.47.

Proof. Consider an edge (P, Q, σ) ∈ EC. By construction, p ∈ P if and only
if there exists q ∈ Q such that (p, q, σ) ∈ E, which is exactly the condition
imposed in Definition 7.38 to add an edge to the min lift.

Similarly, the definition of the max-lift reminds us of the notion of ob-
server graph [CL10, Section 2.3.4] used in [PAAJ19, Definition III.5]. The
definition is repeated below.

Definition 7.49 (Observer graph). Given a graph G = (S, E) with M labels,
the observer graph O(G) = (SO, EO) is a graph where each state corresponds
to a subset of S, and is constructed as follows:

(1) Set SO := {S} and EO := ∅;

(2) Set X = ∅. For each pair (P, σ) ∈ SO × ⟨M⟩:

a. Compute Q = ∪
p∈ P
{q | (p, q, σ) ∈ E};

b. If Q ̸= ∅, set EO := EO ∪ {(P, Q, σ)} then X := X ∪ {Q}.

(3) If X ⊆ SO, then the observer graph is given by O(G) = (SO, EO).
Else, set SO := SO ∪ X and go to step 2.

It is well known that the observer graph is strongly connected and com-
plete by construction, see [Phi17]. Moreover, one can easily observe a du-
ality between the observer graph and the co-observer graph (see [Phi17,
Lemma 5.32], i.e.

O(G) =
(

cO(G⊤)
)⊤

.
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Lemma 7.50. Given a path-complete graph G, the observer graph O(G) is a sub-
component of the max lift Gmax.

Proof. Each edge (P, Q, σ) of the observer graph satisfies that q ∈ Q if and
only if there exists p ∈ P such that (p, q, σ) ∈ E, which is exactly the condi-
tion imposed in Definition 7.38 to add a new edge in the max lift.

Example 7.51. Let us consider the same graph as for the min lift, i.e. the
graph G1 = (S1, E1) in Figure 7.16a. Once again, if we compute the ob-
server graph O(G1) = (S1O, E1O), we find the common Lyapunov function
graph as illustrated in Figure 7.17a. If we compute the max-lift G1max =

(S1max, E1max) of the graph G1, we find the graph in Figure 7.17b. We can
observe that the observer graph is one of the subcomponents of the max
lift. This means that, in this case, we have

G0 ≤ G1 ≤V G0,

where V is a template closed under the maximum. The graph G1 and its
observer graph O(G1) are then equivalent for this sort of templates. △

Proposition 6.24 states that the common Lyapunov function graph G0 is
worse than any path-complete graph in the sense of Definition 6.21. Nev-
ertheless one can easily imagine that for some graphs and under some
assumptions, the reverse inequality holds. For example, in both Exam-
ples 7.47 and 7.51, we have shown that the graph G1 in Figure 7.16a is as

{a1, b1} 21

(a) O(G1) = (S1O, E1O), the observer
graph of G1.

{a1} {b1}

{a1, b1}

2
1

1
2

1
2

1
2

1 2

(b) G1max = (S1max, E1max), the max lift of
G1. The observer graph O(G1) is one of the
subcomponents of G1max.

Fig. 7.17 Comparison between the observer graph and the max lift in
Example 7.51.
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conservative as G0 for any template closed under pointwise minimum or
maximum. This result actually derives from a graph property of G1.

Proposition 7.52. Consider a path-complete graph G on the alphabet ⟨M⟩ and
the common Lyapunov function graph G0.

(a) If G is complete, G0 is a path-complete component of Gmin and thus

G ≤V G0

for any template V closed under pointwise minimum.

(b) If G is co-complete, G0 is a path-complete component of Gmax and thus

G ≤V G0

for any template V closed under pointwise maximum.

(c) The following inequalities

G ≤V (Gmax)min ≤V G0 (7.19)

and
G ≤V (Gmin)max ≤V G0 (7.20)

hold for any template V closed under pointwise minimum and maximum.

Proof. (a) Consider a complete graph G on ⟨M⟩. By assumption, for all a ∈
S and all i ∈ ⟨M⟩, there exists b ∈ S such that (a, b, i) ∈ E. By Definition of
the min lift, this means that the edge (S, S, i) ∈ Emin for every label i ∈ ⟨M⟩.
Therefore, the common Lyapunov function graph G0 is a subcomponent of
Gmin. Propositions 6.23 and 7.40 end the proof.

(b) Similarly, we can prove that the edge (S, S, i) ∈ Emax for every label
i ∈ ⟨M⟩ when the graph G is co-complete.

(c) We prove the ordering in (7.19). The ordering in (7.20) can be
proved using similar arguments. Consider a path-complete graph G, and
let us build its max lift Gmax. By Lemma 7.50, the observer graph O(G) is a
subcomponent of Gmax. However O(G) is complete by construction. Using
Proposition 7.52(a) ends the proof.

This result is similar to [PAAJ19, Theorem III.8.], which states that it is al-
ways possible to derive a common Lyapunov function from a multiple Lya-
punov function defined as the composition of the minimum and the max-
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imum. However, Proposition 7.52 transcribes this result in the template-
dependent formalism and only involves graph properties and graph or-
derings. In particular, Proposition 7.52 states that using a template closed
under pointwise minimum (resp. maximum) with a complete (resp. co-
complete) graph is not useful, since this PCLF certificate is as conservative
as the common Lyapunov function graph.

Corollary 7.53. Given M ∈ N, all the complete (resp. co-complete) graphs on
the alphabet ⟨M⟩ are as conservative as the common Lyapunov function graph G0
for any template V closed under pointwise minimum (resp. maximum), i.e.

G0 ≤ G and G ≤V G0.

Let us compare complete graphs for different templates with different
closure properties.

Example 7.54. Let us consider the path-complete graphs G2
db, G3 and G4 on

the alphabet ⟨3⟩, illustrated in Figures 6.4a and 7.18a. One can easily ob-
serve that the three graphs are complete. By Proposition 7.52, we know that

a3 b31
2
3

3

1

2

(a) G3 = (S3, E3), a path-complete
graph with 2 nodes and 6 edges.

a4 b4

c4

d4

3

1

2

1

3
2

3

1

1

2

1

3

(b) G4 = (S4, E4), a path-complete graph
with 4 nodes and 12 edges.

Fig. 7.18 Example of two complete graphs G3 and G4 on ⟨3⟩ in Exam-
ple 7.54. By Proposition 7.52, ρG3,P (A) = ρG4,P (A) for any finite set of 3
nonnegative matrices A := {A1, A2, A3} ⊂ Rn

≥0 of any dimension n ∈ N,
while their approximations differ with the quadratic template.
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all these graphs are equivalent with respect to their conservatism for any
template closed under pointwise minimum and any family of nonnega-
tive linear switched systems. By Theorem 7.43, we know that the template
of primal copositive norms is closed under pointwise minimum. Using
Proposition 6.22 and Proposition 7.52, all the graphs should provide the
same JSR approximation for any finite set of nonnegative matrices.

In order to verify this result, we simulate 500 positive linear switched
systems with 3 modes of dimension 3. For each of them, we compute the
JSR approximation provided by each graph. As expected, the three graphs
provide exactly the same JSR approximations for all the systems when we
look for primal copositive norms. For comparison, we also compute the
quadratic JSR approximation provided by each graph. Since this template
is not closed under pointwise minimum, we expect the graphs to provide
different JSR approximations. The results are illustrated in the Venn dia-

22% 1%

1%

70.5%

2%

3.5% 0%

ρG2
db ,P (A) ≤ ρG3,P (A),

ρG2
db ,P (A) ≤ ρG4,P (A)

ρG3,P (A) ≤ ρG2
db ,P (A),

ρG3,P (A) ≤ ρG4,P (A)

ρG4,P (A) ≤ ρG2
db ,P (A),

ρG4,P (A) ≤ ρG3,P (A)

Fig. 7.19 Visualisation of the outcome of the numerical experiment in
Example 7.54. As expected from the theory, the three graphs G2

db, G3 and
G4 always provide the same JSR approximation when using the template
of primal copositive norms. In constrat, the graphs sometimes provide
different JSR approximations with the quadratic template. In most cases
(70.5%), the three graphs provide the same result. However, in almost all
other cases (22%), G2

db is strictly better than G3 and G4. It appears uncom-
mon that G3 or G4 admits a solution, and not G2

db.
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gram in Figure 7.19. We observe that, for most systems (70.5%), G2
db, G3 and

G4 provide the same JSR approximation. If not, the best JSR approximation
is nearly always provided by the De Bruijn graph G2

db. This means that
there is only a small proportion of systems (2%) for which G2

db does not
provide the best approximation, which makes it the best graph in terms
of conservatism even if it does not satisfy the ordering relations in Defini-
tion 6.21.

Note that in Figure 7.19, we assume that two graphs provide the same
JSR approximation if the absolute value of their difference is smaller or
equal to 10−6; we attribute these small differences to numerical errors. Ac-
cording to our numerical experiments, it seems that the few percentages
of systems for which G4 or G3 provides the best JSR approximation still
remain, even though we increase the bisection precision. △

7.4.4 Simulation-based sufficient condition for the template-dependent or-
dering of graphs

As we did for the sum lift and the family of template closed under addition,
this section aims to provide a combinatorial sufficient condition for the
ordering of graphs in Definition 6.21 with respect to any template closed
under pointwise minimum and maximum.

Theorem 7.55. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the same alphabet. If Gmin simulates G̃, then

G ≤V G̃

for any template V closed under pointwise minimum.

Proof. Consider two path-complete graphs G and G̃ on the same alphabet.
By Proposition 7.40, the inequality

G ≤V Gmin

is satisfied for any template V closed under pointwise minimum. By as-
sumption and recalling the simulation-based characterisation Theorem 6.30
in [PJ19, Theorem 3.5],

Gmin ≤ G̃.

Then, by transitivity of the ordering (see Equation (6.17) in page 131 for
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more details) , we have
G ≤V G̃

for this class of templates.

Using Proposition 7.39, the characterization of the general ordering in The-
orem 6.30 and the transitivity, we manage to prove the same result for the
max lift.

Theorem 7.56. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the same alphabet. If Gmax simulates G̃, then

G ≤V G̃

for any template V closed under pointwise maximum.

Note that for the linear case, using Corollary 2.36 and the duality for lift in
Proposition 7.5, we obtain the same result.

Note that the necessary conditions for both Theorems 7.55 and 7.56 will
be proved in Chapter 8.

7.5 Composition lifts

In this section and in order to study the order relation (6.9) in Defini-
tion 6.21, we introduce another lift whose validity depends on both the
template and the dynamics properties. This lift sheds new light, and pro-
vides a generalization of previous results in the literature, such as [AJPR14,
Proposition 4.2], [PAAJ19, Example IV.11] and [PJ19, Example 3.9]. For in-
stance, the composition lift introduced in Definition 7.58 below was implic-
itly used in the particular case of quadratic Lyapunov functions and linear
switched systems, but it was not clear how it could be used in a general
setting. Proposition 7.60 will answer the question.

As an incentive for the composition lifts , we recall and transcribe [PJ19,
Example 3.9] in the template-dependent ordering framework.

Example 7.57. Consider the path-complete graph G1 = (S1, E1) and its dual
graph G⊤1 = (S1, E⊤1 ) in Figure 7.20.

One can first verify that there is no simulation relation between G1 and
G⊤1 . Let us show for instance that G1 does not simulate G⊤1 . Because of
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a1 b1 2
1

2
1

(a) G1 = (S1, E1), a path-complete
graph with 2 nodes and 4 edges.

a′1 b′1 2
2

1
1

(b) G⊤1 = (S1, E⊤1 ), the dual graph of
G1.

Fig. 7.20 Two path-complete graphs, namely G1 and its dual G1 over
the alphabet ⟨2⟩ in Example 7.57 such that G1 ≰ G2 and G2 ≰ G1 but
G1 ≤V G2 and G2 ≤V G1 for any template V closed under composition
with invertible matrices.

the loops (a′1, a′1, 1) and (b′1, b′1, 2) ∈ E⊤1 , a simulation relation R : S1 → S1
could only be defined as R(a′1) = a1 and R(b′1) = b1. However, (a′1, b′1, 1) ∈
E⊤1 but (R(a′1), R(b′1), 1) := (a1, b1, 1) /∈ E1. This implies that G1 does not
simulate G⊤1 . A similar argument can be used to prove that G⊤1 does not
simulate G1 either.

However it is still possible to compare both graphs using template-
dependent ordering of graphs. In particular, we will show that G1 ≤V ,F G2
for any template V closed under composition with dynamics in F , and
G⊤1 ≤V ,F G1 for any template V closed under composition with the in-
verse dynamics of F (provided that the dynamics are invertible). Given a
switched system F := { f1, f2} with 2 modes of any dimension n ∈ N, let
us assume that there exists an admissible solution {Va1 , Vb1} for G1 and F.
We define {Wa′1

, Wb′1
} by {

Wa′1
:= Va1 ◦ f1,

Wb′1
:= Vb1 ◦ f2.

(7.21)

We can prove that {Wa′1
, Wb′1

} is admissible for G⊤1 and F. Consider for

instance the edge (a′1, b′1, 1) ∈ E⊤1 that encodes the following Lyapunov
inequality:

∀x ∈ Rn, Vb1 ◦ f2 ( f1(x))︸ ︷︷ ︸
:= Wb′1

( f1(x))

≤ Va1 ( f1(x))︸ ︷︷ ︸
:= Wa′1

(x)

.

This inequality is satisfied because {Va1 , Vb1} ∈ PCLF(G1, F) and (a1, b1, 2) ∈
E1. Then, the inequality

Vb1 ( f2(x)) ≤ Va1(x)
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is satisfied for all x ∈ Rn, and in particular for the state of the form f1(x)
with x ∈ Rn. The three other edges of G⊤1 can be treated similarly.

Reversely, consider an invertible switched system F := { f1, f2} and
{Wa′1

, Wb′1
} ∈ PCLF(G⊤1 , F). We can show that {Va1 , Vb1} defined as{

Va1 := Wa′1
◦ f−1

1

Vb1 := Wb′1
◦ f−1

2
(7.22)

is admissible for G1 and F. Let us take the edge (b1, a1, 1) ∈ E1 which
encodes the following Lyapunov inequality:

∀x ∈ Rn, Wa′1
◦ f−1 ( f1(x))︸ ︷︷ ︸

:= Va1 ( f1(x))

≤ Wb′1

(
f−1
2 (x)

)
︸ ︷︷ ︸

:=Vb1
(x)

.

Since (b′1, a′1, 2) ∈ E⊤1 , this inequality is automatically satisfied.

In conclusion, both G1 ≤V ,F G⊤1 and G⊤1 ≤V ,F G1 for any template
V closed under the composition with the dynamics in F and their in-
verse. In particular, these graphs are equivalent with respect to the con-
servatism if we consider the usual template Q of quadratics and the linear
switched systems with invertible matrices. Therefore, for any such system
A, ρG1,Q(A) = ρG⊤1 ,Q(A). △

This section is structured as follows: we first define both the forward and
backward composition lifts that respectively exploit the composition op-
eration with the dynamics or their inverse. We discuss their validity and
duality, and we finally provide simulation-based condition to guarantee
the ordering of graphs for the relevant classes of templates and families
of switched systems. Using these theorems, we show how these new con-
cepts bring new perspectives and generalize results previously obtained in
the literature.

7.5.1 Definition and properties

Let us first define the forward composition lift which can be seen as a future-
based multiple Lyapunov function.

Definition 7.58 (Forward composition lifts). Consider a graph G = (S, E)
on the alphabet ⟨M⟩.
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(a) The T-forward composition lift, denoted by G◦T = (S◦T , E◦T) is defined
as follows:

(1) The set of nodes S◦T is defined by

S◦T := {(s, i1, . . . , iT) | s ∈ S, ik ∈ ⟨M⟩, k = 1, . . . , T}

(2) For every edge (a, b, i) ∈ E and each T-tuple of label (j1, . . . , jT) ∈
⟨M⟩T , the edge ((a, j1, . . . , jT), (b, i, j1, . . . , jT−1), jT) ∈ E◦T .

(b) The forward composition lift, denoted by G◦ = (S◦, E◦), is defined as
the infinite disjoint union of the T-forward composition lift, i.e.

G◦ :=
⋃

T∈N

G◦T .

Let us first show that, for any integer value T ∈ N, the T-forward compo-
sition lift of any path-complete graph remains path-complete.

Proposition 7.59. For every T ∈ N, the T-forward composition lift preserves
the path-completeness of graphs.

Proof. Consider a path-complete graph G = (S, E) on ⟨M⟩, its T-forward
composition lift G◦T = (S◦T , E◦T) for any T ∈N and a word σ := σ(1) . . . σ(k)
of length k ∈N on the alphabet ⟨M⟩. By path-completeness of G, there ex-
ist k edges

ei := (ai, ai+1, σ(i)) ∈ E

for i = 1, . . . , k. We have to build a path in E◦T whose word is σ.
Let us first observe that if a path in G◦T starts in a node (a, i1, . . . , iT) ∈

S◦T , the label of the first edge is iT by Definition 7.58. Then, the label of the
second edge is iT−1, and so forth.

Consider any j1, . . . , jT ∈ ⟨M⟩. By Definition of the forward compo-
sition lift, the edge ((a1, j1, . . . , jT), (a2, σ(1), j1, . . . , jT−1), jT) ∈ E◦T since
(a1, a2, σ(1)) ∈ E. Similarly, the edge

((a2, σ(1), j1, . . . , jT−1), (a3, σ(2), σ(1), j1, . . . , jT−2), jT−1) ∈ E◦T

since (a2, a3, σ(2)) ∈ E. By following this procedure, we can end up with
two different scenarios. If k ≤ T, we can build a path in G◦T such that we
reach the node

((ak , σ(k), σ(k− 1), . . . , σ(1), j1, . . . , jT−k), (ak+1, σ(k+ 1), . . . , σ(1), j1, . . . , jT−k−1), jT−k) ∈ E◦T .
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By Assumption 7.1, it is possible to recursively extend the path in G (what-
ever the label and the nodes) and therefore extend the path in G◦T such
that we progressively reach the edges of label σ(i), which proves the path-
completeness of G◦T .

Otherwise, if k > T, we can reach the node

((aT , σ(T), σ(T − 1), . . . , σ(1)), (aT+1, σ(T + 1), . . . , σ(2)), σ(1)) ∈ E◦T ,

which will be the starting node in G◦T of the path whose word is σ. By
Definition 7.58, we can progressively extend the path in G◦T from the path
in G and then reach the node

((ak , σ(k), σ(k− 1), . . . , σ(k− T)), (ak+1, h, σ(k), . . . , σ(k− T + 1)), σ(k− T)) ∈ E◦T ,

where h ∈ ⟨M⟩. Then, by Assumption 7.1 and following the procedure
described in the first scenario (k ≤ T), we can progressively extend the path
in G◦T such that we reach the edges of label σ(i) for i = k− T + 1, . . . , k.

We now discuss the validity of the forward composition lift. By exten-
sion of Definition 1.33, we say that a template V = ∪n∈NVn is closed under
composition with the dynamics of F if for any n ∈ N, for all V ∈ Vn and
f ∈ F ∩ C0(Rn, Rn), the composition V ◦ f ∈ Vn.

Proposition 7.60. The (T-)forward composition lift is valid in the sense of Def-
inition 7.3 with respect to any family F of systems and any template V closed
under composition with the dynamics of F .

Proof. Consider a family of systems F , a system F = { fi : i ∈ ⟨M⟩} ∈
F ⟨M⟩ and a template V closed under composition with any dynamics in
F . Suppose that there exists a PCLF for an initial path-complete graph
G = (S, E) of the form {Vs : s ∈ S} ∈ VS. Given s ∈ S and i1, . . . , iT ∈ ⟨M⟩,
the corresponding Lyapunov function W(s,i1,...,iT)

is defined by

∀x ∈ Rn : W(s,i1,...,iT)
(x) :=

(
Vs ◦ fi1 ◦ . . . ◦ fiT

)
(x). (7.23)

Given ((a, i1, . . . , iT), (b, j, i1, . . . , iT−1), iT) ∈ E◦T , we have

W(b,j,i1,...,iT−1)
( fiT (x)) := Vb

(
f j ◦ fi1 ◦ · · · ◦ fiT−1

(
fiT (x)

))
≤ Va

(
fi1 ◦ · · · ◦ fiT (x)

)
:= W(a,i1,...,iT)

(x),

for any x ∈ Rn, since, by Definition 7.61, (a, b, j) ∈ E and the Lyapunov
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inequality encoded by this edge is satisfied by the Lyapunov functions
{Vs : s ∈ S}, especially when they are evaluated at points of the form
y = fi1 ◦ · · · ◦ fiT (x).

If the dynamics are invertible, a similar lift to the forward composi-
tion lift in Definition 7.58, referred as the backward composition lift, can be
defined. In this case, the Lyapunov functions associated to the nodes of
the lifted graph are defined as the composition with the inverse dynamics.
Similarly to the forward case, the backward composition lift can be seen as
a memory-based multiple Lyapunov function.

Definition 7.61 (Backward composition lifts). Consider a graph G = (S, E)
on the alphabet ⟨M⟩.

(a) The T-backward composition lift, denoted by G−◦T = (S−◦T , E−◦T) is
defined as follows:

(1) The set of nodes S−◦T is defined by

S−◦T := {(s, i1, . . . , iT) | s ∈ S, ik ∈ ⟨M⟩, k = 1, . . . , T}

(2) For every edge (a, b, i) ∈ E and each T-tuple of label (j1, . . . , jT) ∈
⟨M⟩T , the edge ((a, i, j1, . . . , jT−1), (b, j1, . . . , jT), jT) ∈ E−◦T .

(b) The backward composition lift, denoted by G−◦ = (S−◦, E−◦), is de-
fined as the infinite disjoint union of the T-backward composition
lift, i.e.

G−◦ :=
⋃

T∈N

G−◦T .

As we did for all the previous lifts, let us first show that the lifted graph
remains path-complete.

Proposition 7.62. For every T ∈ N, the T-backward composition lift preserves
the path-completeness.

Proof. The proof follows the same ideas as the proof of Proposition 7.62 but
the path in G−◦T must be built from the end.

Let us finally discuss the validity of the backward composition lift.

Proposition 7.63. The (T-)backward composition lift is valid in the sense of Def-
inition 7.3 with respect to any family F of invertible systems and any template V
closed under composition with the inverse dynamics of F .
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Proof. Consider a family of systems F , an invertible system F ∈ F ⟨M⟩ and
a template V closed under composition with any inverse dynamics of F .
Suppose that there exists a PCLF for an initial path-complete graph G =

(S, E) of the form {Vs : s ∈ S} ∈ VS. Given s ∈ S and i1, . . . , iT ∈ ⟨M⟩, the
corresponding Lyapunov function W(s,i1,...,iT)

is defined by

∀x ∈ Rn : W(s,i1,...,iT)
(x) :=

(
Vs ◦ f−1

i1
◦ . . . ◦ f−1

iT

)
(x). (7.24)

Given ((a, j, i1, . . . , iT−1), (b, i1, . . . , iT), iT) ∈ E−◦T , we have

W(b,i1,...,iT)
( fiT (x)) := Vb

(
f−1
i1
◦ · · · ◦ f−1

iT

(
fiT (x)

))
≤ Va

(
f−1
j ◦ f−1

i1
◦ · · · ◦ f−1

iT−1
(x)
)

:= W(a,j,i1,...,iT−1)
(x),

for any x ∈ Rn, since, by Definition 7.61, (a, b, j) ∈ E and the Lyapunov
inequality encoded by this edge is satisfied by the Lyapunov functions
{Vs : s ∈ S}, especially when they are evaluated at points of the form
y = f−1

j ◦ · · · ◦ f−1
iT−1

(x).

Unlike the template-dependent lifts introduced in Sections 7.3 and 7.4, the
validity of the compositions lifts defined in Definition 7.58 and 7.61 depend
on the properties of both the systems and the templates. In particular, it re-
quires a strong interplay between template and dynamics since the closure
properties depend on the dynamics.

7.5.2 Duality

In the context of linear switched systems and a template of norms, Lemma 1.27
states that the dual operation of the composition with a matrix remains the
composition but with the inverse and transposed matrix. According to
Proposition 7.5, this is a good indicator that the forward and backward
composition lifts could be dual.

Proposition 7.64. The forward and backward composition lifts are dual, i.e. for
any T ∈N and any path-complete graph G, it holds that

G−◦T =
(
(G⊤)◦T

)⊤
.
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Proof. Consider M, T ∈ N and a path-complete graph G = (S, E) on the
alphabet ⟨M⟩. Given an edge (s, d, i) ∈ E and j1, . . . , jT ∈ ⟨M⟩, the edge

((d, j1, . . . , jT), (s, i, j1, . . . , jT−1), jT) ∈ (E⊤)◦T

by Definition 7.58. Then, the dual edge belongs to E−◦T by Definition 7.61,
which concludes the proof.

The duality in Proposition 7.64 makes it easier to prove certain results. The
demonstration of the path-completeness of the T-backward composition
lift is a tangible example.

Proof of Proposition 7.62. Consider a path-complete graph G, and its T-backward
composition lift G−◦T . By Proposition 7.64, G−◦T can be defined as the dual
of the T-forward composition lift of the dual graph G. Since the transposi-
tion and the forward lift both preserve the path-completeness (see Propo-
sitions 6.6 and 7.59), the lifted graph G−◦T is path-complete.

Similarly, the validity of the backward composition lift for the linear switched
systems can be directly derived using duality.

Alternative proof for Proposition 7.63. First, let us notice that Lemma 1.27 states
that the dual operation of the composition is the composition with the in-
verse and transpose dynamics. Then, using Propositions 7.5 and 7.60, we
directly derive the validity of the backward composition lift.

7.5.3 Simulation-based sufficient condition for the template-dependent or-
dering of graphs

Let us now derive combinatorial sufficient conditions for the ordering of
graphs (6.9) in Definition 6.21.

Theorem 7.65. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the same alphabet. If G◦ simulates G̃, then

G ≤V ,F G̃

for any template V closed under composition with the dynamics in F .
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Proof. Consider two path-complete graphs G and G̃ on the same alphabet.
By Proposition 7.60, the inequality

G ≤V ,F G◦

is satisfied for any template V closed under compositions with the dynam-
ics in F . By assumption and recalling the simulation-based characterisa-
tion Theorem 6.30 in [PJ19, Theorem 3.5],

G◦ ≤ G̃.

Then, by transitivity of the ordering (see Equation (6.17) in page 131 for
more details) , we have

G ≤V ,F G̃

for this class of templates and systems.

We can finally derive the same simulation-based result for the backward
composition lift using the same arguments.

Theorem 7.66. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the same alphabet. If G−◦ simulates G̃, then

G ≤V ,F G̃

for any template V closed under composition with the inverse dynamics in F ,
provided that they are invertible.

Example 7.67. Consider the path-complete graph G1 and its dual G⊤1 in Fig-
ure 7.20. We have already shown in Figure 7.20 that G1 ≤V ,F G⊤1 for any
template V closed under the composition with the dynamics F . It turns
out that the 1-forward composition lift of G1, illustrated in Figure 7.21a,
simulates G⊤1 .

Similarly, the comparison G⊤1 ≤ G1 for any template V closed under
composition with the inverse dynamics of F can be derived from Theo-
rem 7.66. Indeed, there exists a simulation relation between

(
G⊤1
)−◦1

, il-
lustrated in Figure 7.21b and G1. △

In the rest of this section, we will show how these simulation-based
Theorems 7.65 and 7.66 can be used to prove already established results but
in a combinatorial way and in a more general setting. As first example, we
can demonstrate, using our formalism, [Jun24, Corollary 12], which states
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(b1, 1)

(a1, 1)

(b1, 2)

(a1, 2)

1

2

1
2

2

1
2

1

(a) (G1)
◦1, the 1-forward composition

lift of G1.

(b′1, 1)

(a′1, 1)

(b′1, 2)

(a′1, 2)

1

2

1
2

2

1
2

1

(b)
(
G⊤1
)−◦1

, the 1-backward composi-

tion lift of G⊤1 .

Fig. 7.21 Example of the 1-forward and 1-backward composition lift of
G1 in Figure 7.20 and its dual G⊤1 . We can prove that (G1)

◦1 simulates G⊤1
and

(
G⊤1
)−◦1

simulates G1. Then, G1 and G⊤1 are equivalent for any tem-
plate closed under composition with the inverse of a family of dynamics.

that all the generalized De Bruijn graphs of fixed order provide the same
JSR approximation if the template is closed under composition with the
dynamics. This result aims to explain the observations that were made in
[DJ23, Section 5.2], where the authors use the template of diagonal quadratic
functions which is not closed under composition.

Example 7.68. We consider the three generalized De Bruijn graphs of order
2 on the alphabet ⟨2⟩ denoted by G3,0

db , G3,1
db and G3,2

db of memory 0, 1 and 2
respectively and recalled in Figure 7.22. We can prove that

G3,2
db ≤V ,F G3,1

db ≤V ,F G3,0
db

for any template V closed under composition with the dynamics F . More-
over, if the dynamics in F are invertible, we can prove that

G3,0
db ≤V ,F G3,2

db .
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a4

c4

d4

b42

1

2

1

2

2

1 1

(a) The generalized De Bruijn graph G3,2
db of order 2 and memory 2.

a5

c5

d5

b52

2

2

1

1

1

2 1

(b) G3,1
db , the generalized De Bruijn

graph of order 2 and memory 1.

a6

c6

d6

b62

2

1

2

2

1

1 1

(c) G3,0
db , the generalized De Bruijn

graph of order 2 and memory 0.

Fig. 7.22 Examples of generalized De Bruijn graphs of order 2 on the al-
phabet ⟨2⟩ in Example 7.68.

First, let us show that the 1-forward composition lift of G3,2
db simulates G3,1

db .

We can prove that the relation R : S3,1
db →

(
S3,2

db

)◦1
defined by R(a5) :=

(a4, 2), R(b5) := (b4, 1), R(c5) := (c4, 1) and R(d5) := (d4, 2) is a simulation
relation. Let us take for instance the edge (c5, d5, 1) ∈ E3,1

db . The correspond-

ing edge ((c4, 1), (d4, 2), 1) ∈
(

E3,2
db

)◦1
because the edge (c4, d4, 2) ∈ E3,2

db ,
recalling Definition 7.58. Using Theorem 7.65 we conclude.
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Similarly, we can prove that the 1-forward composition lift of G3,1
db simu-

lates G3,0
db using the relation R : S3,0

db →
(

S3,1
db

)◦1
defined by R(a6) := (a5, 2),

R(b6) := (b5, 1), R(c6) := (c5, 1) and R(d6) = (d5, 1). Consider for in-
stance the edge (b6, d6, 1) ∈ E3,0

db . Using R, the corresponding edge is

((b5, 1), (d5, 1), 1) and belongs to
(

E3,1
db

)◦1
because the edge (b5, d5, 1) ∈

E3,1
db . Theorem 7.65 implies the desired template and family-dependent or-

dering between the generalized De Bruijn graphs.
Finally, let us prove that the 2-backward lift of G3,0

db simulates G3,2
db . To

this aim, we define the relation R : S3,2
db →

(
S3,0

db

)−◦2
such that R(a4) :=

(a6, 2, 2), R(b4) := (b6, 1, 1), R(c4) := (c6, 2, 1) and R(d4) := (d6, 1, 2). This
relation can be proved to be a simulation relation, which ends the argu-
mentation by Theorem 7.66. Let us take for instance the edge (d4, c4, 1) ∈
E3,2

db and consider the corresponding edge ((d6, 1, 2), (c6, 2, 1), 1). (d6, c6, 1) ∈
E3,0

db . This edge belongs to the 2-backward composition lift of G3,2
db by Defi-

nition 7.61, using a := c6, b := c6 and j1 j2 := 21. △
Using similar simulation-based arguments, we can prove that all the gener-
alized De Bruijn graphs of fixed order are equivalent from a conservatism
point of view if we consider a family of invertible switched systems and a
template closed under composition with the dynamics and their inverse.

Along the same lines, we can support the De Bruijn hierarchy intro-
duced in [AJPR14, Theorem 6.1] for the quadratic template and further
investigated for the template of copositive norms in Section 7.7, using The-
orem 7.65.

Proposition 7.69. For any integer K ∈N,

GK
db ≤V ,F GK+1

db (7.25)

for any family F of invertible switched systems and any template V closed under
the composition with the inverse dynamics in F .

Proof. Using Theorem 7.66, let us prove that the 1-backward composition
lift of GK

db simulates GK+1
db for any K ∈ N. Given s := (i1, . . . , iK) ∈ SK+1

db ,
we define

R(s) := ((i1, . . . , iK−1), iK) ∈
(

SK
db

)−◦1
.

Take any edge (a, b, j) ∈ EK+1
db where the nodes a := (a1, . . . , aK) and b :=

(a2, . . . , aK, j) ∈ SK+1
db . We have to prove that the edge (R(a), R(b), j) :=
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(((a1, . . . , aK−1), aK), ((a2, . . . , aK), j), j) ∈
(
EK

db
)−◦1. By Definition 7.61, this

holds if ((a1, . . . , aK−1), (a2, . . . , aK), aK) ∈ EK
db which is satisfied by Defini-

tion 6.10. Therefore, R is a simulation relation, which ends the proof.

In particular, the ordering in (7.25) is satisfied for the quadratic template
and the family of invertible linear switched systems.

Let us finally discuss the conservatism of Assumption 6.8, where we
assume that we restrict our analysis to path-complete graphs with labels
of length 1. We make this assumption because the expanded graph in-
troduced in Definition 6.7 allows to derive a path-complete graph with
labels of length 1 from any path-complete graph with labels of multiple
lengths. In this following proposition, we understand how conservative
this assumption was.

Proposition 7.70. Consider a path-complete graph G = (S, E) and its expanded
form Ge = (Se, Ee). Then,

Ge ≤ G and G ≤V ,F Ge,

for any template V closed under composition with the dynamics F .

Proof. Consider a path-complete graph G = (S, E) on the alphabet ⟨M⟩
with at least one label of length strictly larger than 1.

First, let us prove that Ge ≤ G. Consider a switched system F and
assume that there exists V ∈ PCLF(Ge, F). We can prove that the restric-
tion to the initial nodes W := V|S = {Vs : s ∈ S ∩ Se} is admissible for
G and F. Let us consider an edge (s, d, w) ∈ E where w := i1 . . . ik. By
Definition 6.7, we denote by s1, . . . , sk the intermediate nodes added in the
expanded graph for this edge. The Lyapunov inequality associated to this
edge is satisfied because for all x ∈ Rn:

Vd
(

fik ◦ · · · ◦ fi1(x)
)
≤ Vsk

(
fik−1
◦ · · · ◦ fi1(x)

)
,

≤ Vsk−1

(
fik−2
◦ · · · ◦ fi1(x)

)
,

...

≤ Vs1 ◦ fi1(x),

≤ Vs(x),

since V ∈ PCLF(Ge, F).
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For the second inequality, assume that there exists V ∈ PCLF(G, F). We
need to prove that we can derive W := {Ws : s ∈ Se} admissible for Ge and
F. To this aim, we need to define

Vsq := Vd ◦ fik ◦ · · · ◦ fiq+1

for each node sq ∈ Se \ S added from the expansion of the edge (s, d, w)

with a label w := i1i2 . . . ik of the initial graph. For the common nodes in
S ∩ Se, we keep the same functions. Then, given an edge (sq, sq+1, iq+1) ∈
Ee \ E, the corresponding Lyapunov inequality is trivially satisfied, i.e. we
have that ∀x ∈ Rn:

Vsq+1

(
fiq+1(x)

)
:= Vd ◦ fik ◦ · · · ◦ fiq+2 ◦ fiq+1(x),

= Vsq(x),

which ends the proof.

7.6 Comparison of template-dependent lifts

In the previous sections, we have introduced different lifts that leverage
different operations. For each of them, we have formally demonstrated
that the lifted graph is better than the initial graph, in the sense of Def-
inition 6.21, while sometimes needing to restrict their validity to specific
classes of templates and switched systems. In this section, we compare the
lifts with each other and we ask the following question: is one construction
more powerful than another? We answer this question by characterizing
the edges of the sum, min and max lifts in terms of relations between sub-
sets.

Let us formally define a relation over two sets.

Definition 7.71 (Binary relation over two sets). Given two sets X and Y, a
relation over X and Y is a subset of X×Y, i.e.

R ⊆ {(x, y) | x ∈ X, y ∈ Y}.

If (x, y) ∈ R, we say that x is in relation with y, which is also denoted by
xRy.

We define some important properties of binary relations.
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Definition 7.72 (Properties of relations). Consider a relation R ⊆ X × Y
over the sets X and Y. We say that:

(a) the relation R is total if for all x ∈ X, there exists (at least one) y ∈ Y
such that xRy. In other words, the domain of R is X;

(b) the relation R is an application if for all x ∈ X, there exists one and
only one y ∈ Y such that xRy;

(c) the relation R is a function if for all x ∈ X, there exists at most one
y ∈ Y such that xRy;

(d) the relation R is surjective if ∀y ∈ Y, there exists (at least one) x ∈ X
such that xRy. In other words, the codomain of R is Y;

(e) the relation R is injective if ∀x, y ∈ X and all z ∈ Y, if xRz and yRz
then x = y;

(f) the relation R is bijective if it is both surjective and injective;

(g) a relation S ⊆ X × Y is contained in R, denoted by S ⊆ R if S is a
subset of R, i.e. ∀x ∈ X, y ∈ Y, if xSy then xRy;

(h) a relation R is finite if there exists a finite number of pairs (x, y) in R.
The relation is infinite if there exist infinitely many pairs (x, y) in R.

Remark 7.73. Note that a bijective relation is necessarily a function. More-
over, if R is a function over two finite sets of equal cardinality, the surjectiv-
ity implies the injectivity while there is equivalence if R is an application
(i.e. a total function). △

Given a path-complete graph G = (S, E) on the alphabet ⟨M⟩, the con-
ditions required to add an edge in the min and max lifts in Definition 7.38
can be expressed using binary relations.

Definition 7.74 (Relation induced by an edge). Consider a graph G =

(S, E) on the alphabet ⟨M⟩, two non-empty subsets A, B ⊆ S and a la-
bel i ∈ ⟨M⟩. We define the relation Re over A and B induced by the edge
e = (A, B, i) as follows:

∀a ∈ A, ∀b ∈ B : aReb ⇔ (a, b, i) ∈ E.

The following proposition characterizes the edges of the min and max lift
by adding some properties on the induced relation Re.

Proposition 7.75. Consider a path-complete graph G = (S, E) on the alpha-
bet ⟨M⟩. Given two non-empty subsets A, B ⊆ S and i ∈ ⟨M⟩, the following
statements hold.
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(a) The edges of the min lift satisfy that

e := (A, B, i) ∈ Emin ⇔ ∃R ⊆ Re s.t. R is an application.

(b) The edges of the max lift satisfy that

e := (A, B, i) ∈ Emax ⇔ Re is surjective.

Proof. Consider two non-empty subsets A, B ⊆ S and i ∈ ⟨M⟩. We prove
the two statements independently.

(a) Using Definition 7.38 and 7.74,

e := (A, B, i) ∈ Emin ⇔ ∀a ∈ A, ∃b ∈ B : aReb,

⇔ Re is total,

⇔ ∃R ⊆ Re s.t. R is an application,

since it is always possible to remove some pairs of a total relation such that
the corresponding contained relation is an application (i.e. one just keeps
one pair for each element in the domain).

(b) Similarly, we can characterize the definition of an edge of the max
lift using the relation in Definition 7.74, i.e.

e := (A, B, i) ∈ Emax ⇔ ∀b ∈ B, ∃a ∈ A : aReb,

⇔ Re is surjective.

This ends the proof.

In contrast to the min and max lifts, the nodes of the sum lift are associ-
ated to multi-sets rather than sets. In order to characterize the edges of the
sum lift in terms of relation, we first need to define a binary relation over
multi-sets.

Definition 7.76 (Binary relation over mutli-sets). Given two multi-sets X
and Y (possibly of different cardinality) of a universe S1 and S2 respec-
tively, a multi-set relation mR over X and Y is defined by

R ⊆ {((x, mX(x)), (y, mY(y))) | x ∈ S1, y ∈ S2}.

If ((x, mX(x)), (y, mY(y))) ∈ mR, we say that (x, mX(x)) is in multi-set rela-
tion with (y, mY(y)), which is also denoted by (x, mX(x))mR(y, mY(y)).
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Remark 7.77. Given a multi-set relation in Definition 7.76, it is possible to
induce a relation over sets as defined in Definition 7.71.

To do so, one can build a set from a multi-set by distinguishing the
recurrent elements of the multi-set, as illustrated in Figures 7.23a and 7.23b.
As a consequence, all the properties in Definition 7.72 can be defined for a
multi-set relation by requiring the same property on a contained relation
of the corresponding relation over sets. For instance, a multi-set relation
mR over the multi-sets X and Y of the universe S1 and S2 respectively is
surjective if and only if ∀y ∈ S1, ∃x1, . . . , xl ∈ S2 :

l

∑
i=1

mX(xi) ≥ mY(y) and (xi, mX(xi))mR(y, mY(y)).

Figure 7.23 provides an example of a bijective multi-set relation and the
corresponding bijective relation over sets. △

In particular, following Remark 7.77, we can extend the Definition 7.74 to
an edge with multi-sets as nodes. We are now able to characterize an edge
of the sum lift.

(x1, 2)

(x2, 1)

(x3, 2)

(y1, 1)

(y2, 2)

(y3, 1)

(y4, 1)

(a) A bijective multi-
set relation mR over
{x1, x1, x2, x3, x3} and
{y1, y2, y2, y3, y4}.

x1

x′1

x2

x3

x′3

y1

y2

y′2

y3

y4

(b) The corresponding
relation R over the sets
{x1, x′1, x2, x3, x′3} and
{y1, y2, y′2, y3, y4}.

x1

x′1

x2

x3

x′3

y1

y2

y′2

y3

y4

(c) The bijective re-
lation contained in R
over {x1, x′1, x2, x3, x′3}
and {y1, y2, y′2, y3, y4}.

Fig. 7.23 Illustration of the construction described in Remark 7.77 to de-
rive a relation R from a multi-set relation mR. In this example, the relation
is bijective.
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Proposition 7.78. Consider a graph G = (S, E) on the alphabet ⟨M⟩. Given
A, B ∈ MultiT(S) and i ∈ ⟨M⟩,

e := (A, B, i) ∈ E⊕T ⇔ ∃R ⊆ Re s.t. R is a surjective application.

Proof. By Definition 7.9 of an edge of the T-sum lift and by the characteri-
zation in Proposition 7.16,

e := (A, B, i) ∈ E⊕T ⇔ ∃R ⊆ Re s.t. R is bijective,

⇔ ∃R ⊆ Re s.t. R is a surjective application,

where we have used Remark 7.73 to end the proof.

Propositions 7.75 and 7.78 suggest that an edge (A, B, i) intuitively needs
to satisfy both constraints of the min and max lifts to be added in the T-
sum lift. The sum lift seems therefore stronger than the min and max lifts.
The following proposition formalizes this idea.

Proposition 7.79. Consider a graph G = (S, E). For any T ∈ N, Gmin and
Gmax simulate G⊕T .

Proof. Let us prove that Gmin = (Smin, Emin) simulates G⊕T = (S⊕T , E⊕T),
and define a function R : S⊕T → Smin such that any multi-set P of car-
dinality T in S⊕T is mapped by R to the corresponding set by removing
the repetitions (e.g., R ({a, a, b, e, e, e}) = {a, b, e}). Let us now prove that
the function R is a simulation relation. Consider an edge (P, Q, i) ∈ E⊕T .
Then, for any p ∈ P, there exists q ∈ Q such that (p, q, i) ∈ E. This implies
that for any p ∈ R(P), ∃q ∈ R(Q) : (p, q, i) ∈ E, i.e. (R(P), R(Q), i) ∈ Emin.

The proof that Gmax simulates G⊕T follows a similar argument.

Note that we could have proved Proposition 7.79 using Propositions 7.75
and 7.78. Thanks to this result, and the sufficient Theorems 7.55 and 7.56
for the min and the max lifts, we can derive the following result.

Corollary 7.80. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ).
If there exists T ∈ N such that G⊕T simulates G̃, then Gmin simulates G̃. The
same result holds for the max lift.

Proof. Consider G and G̃ for which there exists T ∈ N such that G⊕T sim-
ulates G̃. By Proposition 7.79, Gmin simulates G⊕T . Then, by transitivity,
Gmin simulates G̃ and Theorem 7.55 ends the proof.

The proof for the pointwise maximum follows a similar argument.
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Propositions 7.75 and 7.78 suggest that the reverse implication does not
hold. Indeed, the following example provides a counterexample.

Example 7.81. Consider the graph G7 = (S7, E7) in Figure 7.9. One can
see that this graph is complete and co-complete since each node admits
two outgoing and two incoming edges, one for each label. Therefore, by
Proposition 7.52, G7 ≤V G0 for any template V closed under pointwise
minimum or maximum. However, we have proved in Example 7.27 that
there does not exist a value T ∈N such that G7

⊕T simulates G0. △

7.7 De Bruijn hierarchy

In this section, we show how the templates of primal and dual copositive
norms, respectively denoted by P and D, can provide an estimation with
arbitrary accuracy of the JSR of a set of nonnegative matrices, using a path-
complete Lyapunov approach. As a reminder, P and D, introduced in
Section 2.2.3 and further studied in Section 7.4, are the dual templates of
candidate Lyapunov functions of the form

gv(x) := v⊤x,

and

g⋆v(x) := max
i

{
xi
vi

}
,

respectively, with v ∈ Rn
>0.

While a similar theoretic estimation was already provided in [AJPR14,
Section 6] for generic matrices and quadratic Lyapunov functions, our re-
sult will lead to a new hierarchy of linear programs (instead of semidefinite
programs), thus drastically reducing the computation complexity. We re-
call that previous hierarchies of LPs (approximating the JSR of nonnegative
matrices), as the one proposed in [PJB10, Corollary 3], require, in general,
the computation of long products of matrices in the considered set. Our
approach, instead, is not affected by this drawback. This is due to requir-
ing a more complex structure of the candidate path-complete Lyapunov
function, as we will develop in what follows. Moreover, we show how the
results concerning lifts presented in this chapter specialize in this setting,
leading to “smart” choices of graph structures for the stability analysis.
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In this section, we use the notations ρP (A) and ρD(A) defined in Equa-
tions (2.12) and (2.13) which intuitively represent the best estimate of the
joint spectral radius of a finite set of nonnegative matricesA one can obtain
considering common copositive primal and dual Lyapunov norms, respec-
tively. By Theorem 2.35, the approximation guarantees provided by ρP (A)
and ρD(A) are the same. On the other hand, for a specific set A ⊂ Rn×n

≥0 , it
is possible that one template (primal/dual copositive norms) will lead to
a better estimation of the JSR. The following simple example shows how,
for a particular set of matrices A, the choice of primal or dual copositive
norms is crucial in estimating the joint spectral radius, and in particular
how the inequalities in Items 1. and 2. of Theorem 2.35 can be tight.

Example 7.82. Fix a dimension n ∈ N and consider A := {A1, . . . , An} ⊂
Rn×n
≥0 defined by Ai = 1 e⊤i for i ∈ ⟨n⟩, i.e.

A1 =


1 . . . 0
... . . .

...
1 . . . 0

 , . . . , An =


0 . . . 1
... . . .

...
0 . . . 1

 ,

where 1 := (1 . . . , 1)⊤. From a straightforward computation, it holds that
ρ(A) = 1. Computing, we have, for all x ∈ Rn

≥0, Aix = xi1, and thus
considering the norm g⋆1 (the usual infinity norm) we have that, for all
i ∈ ⟨n⟩ and for any x ∈ Rn

≥0,

g⋆1(Aix) ≤ g⋆1(x),

proving that ρD(A) = ρ(A). In other words, dual copositive common
Lyapunov norms provide an exact estimation of the JSR. It can be seen
that ρP (A) = n, that is, by Theorem 2.35, the worst possible estimate. The
“dual case”, i.e. consideringA⊤, provides an example for which the primal
norms provides an exact estimate, and the dual ones the worst possible. △

This example shows that for specific systems, it is sometimes useful to
compute the approximations provided by both templates of primal and
dual copositive norms. We now show that, considering multiple copositive
primal/dual norms (or, more precisely, path-complete Lyapunov functions
in these templates), we can provide an estimation of the JSR with arbitrary
accuracy. Given A := {A1, . . . , AM} ⊂ Rn×n and a path-complete graph
G = (S, E) the quantities ρG,P (A) and ρG,D(A) are defined as in Defini-
tion 6.17 and therefore correspond to the optimal values of the problems
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ρG,P (A) := inf
v1,...v|S|∈Rn

>0,γ≥0
γ

A⊤i vb − γva ≤ 0, ∀ e = (a, b, i) ∈ E,
(7.26)

and
ρG,D(A) := inf

v1,...v|S|∈Rn
>0,γ≥0

γ

Aivb − γva ≤ 0, ∀ e = (a, b, i) ∈ E,
(7.27)

using Propositions 2.32 and 2.33. We can state the following “Asymptotic”
converse Lyapunov theorem.

Theorem 7.83. Let A = {A1, . . . , AM} ⊂ Rn×n
≥0 . Given any l ∈ N, con-

sidering G l
db = (S, E) the (primal) De Bruijn graph of order l − 1 on ⟨M⟩, we

have
1

l
√

n
ρD,G l

db
(A) ≤ ρ(A) ≤ ρD,G l

db
(A). (7.28)

Proof. Recalling Definition 6.10 and Proposition 2.33, G l
db = (S, E) leads to

the inequalities:

v(i1,...,il−1)
> 0, ∀(i1, . . . , il−1) ∈ ⟨M⟩l−1

Ajv(i1,...,il−1)
≤ γv(i2,...,il−1,j), ∀(i1, . . . , il−1) ∈ ⟨M⟩l−1, ∀ j ∈ ⟨M⟩.

(7.29)

We now prove that ρG l
db,P (A), that is the minimum γ for which Equa-

tion (7.29) is feasible, satisfies the inequalities in Equation (7.28). The in-
equality ρ(A) ≤ ρP ,G l

db
(A) is straightforward. Consider now Al , the set of

all the possible products of matrices in A of length l. By Theorem 2.35, we
have 1

n ρP (Al) ≤ ρ(Al) = ρ(A)l and thus

1
l
√

n
l
√

ρP (Al) ≤ ρ(A). (7.30)

We suppose thus that v ∈ Rn
>0 is such that g⋆v is a common copositive dual

Lyapunov norm for Al with decay γl > 0, i.e.

v > 0,

Ail · · · Ai1 v− γlv ≤ 0, ∀(i1, . . . , il) ∈ ⟨M⟩l .
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For any (i1, . . . , il−1) ∈ ⟨M⟩l−1, defining

v(i1,...,il−1)
:= v +

1
γ

Al−1v +
1

γ2 Ail−1
Ail−2

v + . . . +
1

γl−1 Ail−1
· · · Ai1 v,

it is easy to see that inequalities in Equation (7.29) are satisfied. We have

thus proved that ρG l
db,D(A) ≤

l
√

ρD(Al), and recalling Equation (7.30) we
conclude.

A similar proof is used in [AJPR14, Theorem 6.2] for the template of quadratic
functions, obtaining an approximation guarantee for a hierarchy of semidef-
inite programs.

Remark 7.84. We note that, since the graph G l
db is complete, recalling Propo-

sition 7.52, if the inequalities in Equation (7.29) are feasible (for a certain
γ > 0), we also have that the function defined by

VG l
db
(x) := min

(i1,...,il−1)∈⟨M⟩l−1

{
g⋆v(i1,...,il−1)

(x)
}

is a common Lyapunov function for (2.8). From Theorem 7.83 we can ob-
tain its dual result: applying again the duality relation in Proposition 6.27
we have that, for any l ∈N,

1
l
√

n
ρ(G l

db)
⊤ ,P (A) ≤ ρ(A) ≤ ρ(G l

db)
⊤ ,P (A),

where (G l
db)
⊤ denotes the dual De Bruijn graph of order l − 1. Moreover,

the conditions encoded in (G l
db)
⊤ define, again by duality, a common Lya-

punov function for (2.8), in the form of a max of primal copositive norms.
We note that (convex hull of) min of dual copositive norms and max of
primal copositive norms are special cases of polyhedral functions. In this
view, Theorem 7.83 states in particular that, if the system (2.8) is asymptot-
ically stable, then there exists a copositive polyhedral common Lyapunov
function. This is consistent with the universality of polyhedral Lyapunov
functions for switched systems proved in [BM99], see also [AJ19]. △

Given A = {A1, . . . , AM} ⊂ Rn×n
≥0 , Example 7.82 and Theorem 7.83

(and the subsequent Remark 7.84) suggest the following numerical scheme
in order to approximate ρ(A) with arbitrary precision, using the hierar-
chies of primal and dual De Bruijn graphs. This scheme is summarized in
the following pseudo-algorithm.
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Algorithm 7.85 (Numerical approximation of the JSR via De Bruijn Hierar-
chy). Given A = {A1, . . . , AM} ⊂ Rn×n

≥0 ,

(Init.): Fix a margin ε > 0, set l = 1, γ = 0, γ = +∞.

since (γ− γ ≥ ε),

(Step l): Solve the linear program in (7.27) for G l
db.

Set γ← max{γ, 1
l√n

ρG l
db,D(A)} and

γ← min{γ, ρG l
db,D(A)}.

(Step ld): Solve the linear program in (7.26) for (G l
db)
⊤.

Set γ← max{γ, 1
l√n

ρ(G l
db)
⊤ ,P (A)} and

γ← min{γ, ρ(G l
db)
⊤ ,P (A)}.

l ← l + 1.

This procedure allows us, once a confidence margin ε > 0 is chosen, to
provide tight estimations of JSR of nonnegative matrices. Other stopping
criteria can be considered, as for example the condition (γ < 1) which
ensures asymptotic stability of (2.8), or (γ > 1), which is an instability cer-
tificate for (2.8).

Let us consider a positive switched system as in (2.8) and let us pro-
vide the following analysis: first, given a particular path-complete graph
G, we see how, when considering dual copositive norms, the estimation
of the JSR is improved considering the max lift Gmax, in line with Propo-
sition 7.41. Secondly, applying the idea of Algorithm 7.85, we provide an
accurate estimation of the joint spectral radius.

Example 7.86. We consider the positive switched system (2.8) defined by
A = {A1, A2} ⊂ R3×3

≥0 with

A1 =

0.2 0 0
0.6 0.6 0.5
0.6 0.3 0.2

 and A2 =

0.1 0.2 0.3
0.2 0 0.5
0.1 0.6 0.7

 . (7.31)

First, in order to approximate ρ(A), we solve the problem in Equation (7.27)
for G5 in Figure 7.24a, obtaining ρG5,D(A) = 1.3075. We consider the max
lift (G5)max and in particular we select a path-complete and strongly con-
nected component of (G5)max given by G6 in Figure 7.24b. We know, by
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a5 b5 c5 d5 2
1

1

1

1

1

2

2

(a) G5 = (S5, E5), a path-complete graph on ⟨2⟩ with 4 nodes and 8 edges.

{a5, c5, d5} {b5, d5}2

1

1

2

(b) (G6) = (S6, E6), a strongly connected component of (G5)max.

Fig. 7.24 The two path-complete graphs G5 and G6 in Example 7.86.

Theorem 7.43 and Proposition 6.23 that G5 ≤D,L G6 and thus we expect
that ρG6,D(A) ≤ ρG5,D(A) which is confirmed, since solving (7.27), we
obtain ρG6,D(A) = 1.2716. It is interesting to note how the graph G6, al-
though it reduces the number of decision variables and inequalities with
respect to the conditions encoded in G5, provides a better estimation of the
JSR. Given a positive system, we know that G6 will provide at worst the
same estimation as G5 and for some particular cases as (7.31), G6 will pro-
vide a strictly better approximation than G5. This highlights that, given a
particular path-complete structure and a template, the lifting approach can
provide a better estimation of the joint spectral radius while decreasing the
number of Lyapunov inequalities and decision variables.

Concluding, we provide upper and lower bounds for ρ(A) using the hi-
erarchy described in Algorithm 7.85. For simplicity, we stop at the fourth
iteration of the numerical scheme (and thus considering until the primal
and dual De Bruijn graphs of order 3) obtaining the following results in Ta-
ble 7.1. In this table, in the line denoted by ρG we reported the optimal val-
ues of the LPs described by (7.26), (7.27) for the corresponding (primal and
dual) De Bruijn graphs. We have thus proven that ρ(A) ∈ [1.065, 1.070],
having an instability certificate for the positive switched system (2.8) de-
fined by A. It is interesting to note how, in this particular case, the con-
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Steps: (1) (1)d (2) (2)d (3) (3)d (4) (4)d

ρG(A) 1.445 1.341 1.445 1.070 1.410 1.070 1.402 1.070

γ 0.482 0.482 0.834 0.834 0.978 0.978 1.065 1.065

γ 1.445 1.341 1.341 1.070 1.070 1.070 1.070 1.070

Table 7.1 Evolution with the iterations of the approximations of the JSR
of system (7.31) using the De Bruijn hiearchy in Algorithm 7.85.

ditions arising from the primal De Bruijn graphs and the template of dual
copositive norms provide better upper bounds for the JSR. △

7.8 Summary and further research directions

In this chapter, we studied the problem of establishing relations among dif-
ferent path-complete structures, with the goal of optimizing this structure,
while at the same time controlling the computational cost. We have high-
lighted the strong connections between templates of candidate Lyapunov
functions and the ordering relations between graph-based conditions.

Summary of Chapter 7

We propose a systematic way to compare different path-complete
stability certificates, based on the notion of lifts. In order to
explicitly exploit the analytical properties of the chosen template
and dynamics, we introduce new abstract lifts related with a few
properties, providing further insight for the comparison problem.

Section 7.1: Introduction to the lifts and their validity
We introduced new formal transformations of path-complete

graphs, called lifts, that allow us to establish ordering relations
between graphs. We analyzed how the effectiveness of these lifts
strongly depends on the closure properties of the chosen template.

Section 7.2: Duality of lifts
Inspired by the duality introduced in Sections 1.2 and 6.3.2, we

define the dual of a lift which leverages the properties of the dual
template.
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Sections 7.3 to 7.5: Sum, min, max and composition lifts
We introduced two classes of lifts: the template-dependent lifts

(e.g. the sum lift and the min/max lifts), and the template and
dynamics-dependent lifts whose validity depends on the template
and dynamics properties. These lifts allowed us to generalize pre-
vious results and to provide a unifying framework, which enables
for finer comparison criteria between path-complete techniques.

Section 7.6: Comparison of lifts
We have characterized the edges of the min, max and sum lifts

using properties on binary relations. This allowed us to compare
these lifts, and understand how they are related to each other.

Section 7.7: De Bruijn hierarchy
As particular case study, we thoroughly analyzed the template

of primal and dual copositive norms, which provided a handy
framework in order to provide new stability results, with applica-
tions to the stability analysis of positive switched systems. In par-
ticular, we develop a new hierarchy to approximate the JSR.

In Section 7.6, we have demonstrated that there exists a correspondence
between the edges of the min, max and sum lifts and properties on the
corresponding binary relation Re in Definition 7.74. In particular, Proposi-
tions 7.75 and 7.78 use all the properties in Definition 7.72 to characterize
the edges of the min, max and sum lifts. Since there does not exist any
other common property for binary relations, this raises the question of the
existence of another lift with nodes associates to multi-subsets.

Question 7.87. Is it possible to define another template-dependent lift for
which the nodes are associated to subset or multi-subsets of the initial set
of nodes ?

Note that the forward and backward composition lifts introduced in Sec-
tion 7.5 do not answer Question 7.87 since their nodes depend on both the
initial set of nodes and the different modes. Moreover, we did not manage
to characterize their edges using the same formalism.

So far, we have introduced different lifts, each of which exploits a differ-
ent closure property. However, a given template can admit several closure
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operations as in the case of quadratic functions for example, or polyhedral
functions. This motivates to combine and apply consecutively different
lifts such that the lifted graph fully harnesses the potential of the template.

The first concrete example of the benefits of combining different lifts
has already presented in Proposition 7.52. Indeed, the consecutive applica-
tion of both the min and max lifts leads to the common Lyapunov function
graph. This result provides two important insights. First, it is always pos-
sible to derive a common Lyapunov function from a multiple Lyapunov
function. Secondly, if a template is closed under pointwise minimum and
maximum, all the path-complete graphs are as conservative as the com-
mon Lyapunov function. In particular, this removes any interest in using
this template in practice.

The following example, inspired by [PAAJ19, Example IV.11.], provides
further motivation.

Example 7.88. Consider the path-complete graph G1 in Figure 7.25a and a
linear switched system A := {A1, A2} of any dimension n ∈ N. Assume
that there exists V ∈ PCLF(G,A). Therefore, for any pair of labels i, j ∈
⟨2⟩, the following inequality holds:

∀x ∈ Rn : Va1(Ai Ajx) ≤ Va1(x). (7.32)

We can prove that this property implies the existence of a PCLF for the

a1

c1b1

d1e1

1

1 1

2

2

12

2

(a) G1 = (S1, E1), a path-complete
graph with 5 nodes and 8 edges.

a2 b2 2
1

2
1

(b) G2 = (S2, E2), a path-complete
graph with 2 nodes and 4 edges.

Fig. 7.25 Example of two path-complete graphs G1 and G2 on ⟨2⟩ such
that G1 ≤V ,L G2 for any template V closed under addition and composition
with invertible dynamics.
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graph G2 in Figure 7.25b. Indeed, let us define W := {Wa2 , Wb2} by taking{
Wa2 := Va1 + Va1 ◦ A1

−1,

Wb2 := Va1 + Va1 ◦ A2
−1.

We can prove that W ∈ PCLF(G2,A). For example, let us consider the
edge (a2, b2, 2) ∈ E2, which corresponds to

∀x ∈ Rn : Va1(A2x) + Va1(x)︸ ︷︷ ︸
:= Wb2

(A2x)

≤ Va1(x) + Va1(A1
−1x)︸ ︷︷ ︸

:= Wa2 (x)

.

This inequality is satisfied by evaluating the inequality (7.32) at the point
A1
−1x for i = 1 and j = 2, which leads to ∀x ∈ Rn : Va1(A2x) ≤

Va1(A1
−1x). A similar argument can be used for the other edges of G2.

This proves that G1 ≤V ,L G2 for any template V closed under composi-
tion with invertible dynamics and addition. △

To conclude this chapter, we want to point out that we have assumed
from the beginning that we study the deterministic comparison of path-
complete graphs, i.e. when the expression (6.10) is satisfied for any switched

Family FM of switched systems with M modes

SolF (G,V)
SolF (G̃,V)

Fig. 7.26 Illustration, using the same notation as in Figure 6.7, of an ex-
ample of two path-complete graphs G and G̃ which cannot be compared
using deterministic ordering relations in Definition 6.21. However, for al-
most all the systems for which the graph G admits a solution in V , G̃ admits
a solution in the template as well.
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7 | Template-dependent lifts and closure properties

system (or within a specific family of switched systems), as illustrated in
Figure 7.26. However in practice, this situation does not occur in most
cases. The corresponding “statistical” approach would provide a new route
for open research: given two path-complete graphs, we would like to pro-
vide a probabilistic conservatism-based relation between them. More pre-
cisely, given two graphs, we want to compute/approximate the proba-
bility, given a random (with respect to a certain probability distribution)
switched system, that the estimation provided by the first graph is better
than the one provided by the second. This approach has already been ad-
dressed in [APAJ17] for instance and is further studied in [SJ24, Jun24]. We
believe that the notion of lift and the simulation-based sufficient condition
for the template-dependent ordering of graphs could help compute these
probabilities. Indeed we think that the template-dependent probabilistic
comparison of graphs is highly related to “how far” there exists a simu-
lation relation, i.e. how many edges must be modified to guarantee the
simulation relation.
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Characterization of the

template-dependent
ordering of graphs with lifts

INSPIRED by the complete characterization of the general ordering re-
lation (6.12) in Theorem 6.30, we investigate in this section the same
problem for the less restrictive ordering relation (6.11) for a family of

templates that all share the same closure property. However in this setting,
the characterization is more involved, as it considers a template-dependent
lift of graphs, introduced in Chapter 7. By means of these concepts we pro-
vide the following equivalence result: a graph is more conservative than
another for all the templates closed under addition (resp. min and max), if
and only if the sum lift (resp. min and max lifts) of the first graph simulates
the second graph. While the “if” part was already proved in Chapter 7, the
“only if” is more challenging, in that it amounts to proving that whichever
template is used, the algebraic closure property is completely expressed by
the lift operation, which is a purely combinatorial operation on graphs.

We first provide a characterization of the template-dependent ordering
of path-complete graphs for the specific classes of templates closed under
pointwise minimum and maximum. In particular, given a switched system
and a template, these results can help guide the search for a better stability
certificate by checking the existence of a simulation relation.
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8 | Characterization of the template-dependent ordering

We then consider another family of templates, namely the templates
closed under addition. For this latter family we show that the situation is
more complicated, essentially because the binary operation on functions
given by the sum is not idempotent, contrary to the minimum or the maxi-
mum. Indeed, the sum lift of a given graph is a graph with infinitely many
nodes. However, we manage to circumvent this difficulty, and provide a
proof that one may restrict oneself to a finite truncation of this graph with-
out loss of generality, providing a finite procedure for the decision pro-
cedure. As it turns out, this finite procedure can even be made to run in
polynomial time.

We also illustrate how our work provides a general method and proof
technique that can be used for more broader settings.

This work, which has been done in collaboration with Matteo Della
Rossa, has been published in [DDJ22b, DDJ23].

8.1 Min/max lifts and minimum/maximum-closed templates

In this section, we deal with the closure property of pointwise minimum
in Theorem 8.1 and we prove that the validity of the relation (6.11) for any
template closed under pointwise minimum is captured by the min lift.

Theorem 8.1. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ).
The following statements are equivalent:

(1) Gmin simulates G̃.

(2) G ≤V G̃ for any template V closed under pointwise minimum.

Our proof follows the same path of ideas as Theorem 6.30. However, some
modifications are needed to manage the closure property. Therefore, we
split the proof of Theorem 8.1 in two parts. We first prove a technical
lemma that will be central in the main proof.

Then, we will use duality to prove a similar theorem (see Theorem 8.5)
for the max lift.

8.1.1 Key lemma

We start by proving a technical result that states that for any graph G =

(S, E) on the alphabet ⟨M⟩, i.e. for any set of Lyapunov inequalities, it is
possible to build a switched system F on M modes and a solution V ∈
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PCLF(G, F) for which the associated pointwise minimum Lyapunov func-
tions satisfy the inequalities encoded by Gmin by construction, but none
of the non-existing edges of Gmin hold. This construction has been imple-
mented in MATLAB and can be found in [Deb22].

Lemma 8.2. For any graph G = (S, E) on the alphabet ⟨M⟩, there exist an
integer n ≥ 1, a system F := { fi : i ∈ ⟨M⟩} in dimension n and |S| candidate
Lyapunov functions Vs, s ∈ S for which

∀(p, q, i) ∈ E, ∀ x ∈ Rn : Vq( fi(x)) ≤ Vp(x), (8.1)

∀(P, Q, i) ∈ Emin, ∃ x ∈ Rn : min
q∈Q

Vq( fi(x)) > min
p∈P

Vp(x), (8.2)

where Emin = (Smin × Smin × ⟨M⟩) \ Emin refers to the set of non-existing
edges of Gmin .

Proof. Given a graph G = (S, E) on the alphabet ⟨M⟩, we define a set of M
block-diagonal {0, 1}-matrices {Aj : j ∈ ⟨M⟩} of dimension n = 2|Emin|.
Each block is associated to a non-existing edge ẽ of Gmin, and is defined by

Aj[ẽ] :=



[
0 0
1 0

]
if j = label(ẽ),[

0 0
0 0

]
otherwise,

(8.3)

so that each matrix only acts on the blocks associated to the edges of the
same label. We consider as template a finite set of weighted L1 norms, i.e. for
any s ∈ S, ∀x ∈ Rn, Vs(x) := vs

⊤|x|, where vs ∈ Rn
>0 and |x| denotes the

componentwise absolute value of x ∈ Rn. In this context, since Aj ∈ Rn×n
≥0

for any j ∈ ⟨M⟩, satisfying a Lyapunov inequality (s, d, i) ∈ E amounts to
satisfying a set of |Emin,i| scalar inequalities where Emin,i := {ẽ ∈ Emin |
label(ẽ) = i} since

∀x ∈ Rn, Vd(Aix) ≤ Vs(x),

⇔ Ai
⊤vd ≤c vs,

⇔ ∀ẽ ∈ Emin,i, vd[ẽ]2 ≤ vs[ẽ]1, (8.4)

where ≤c depicts a componentwise inequality, i.e. if a, b ∈ Rn, a ≤c b ⇔
∀i ∈ ⟨n⟩, ai ≤ bi. Given an edge ẽ = (P, Q, i) ∈ Emin, we denote by
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8 | Characterization of the template-dependent ordering

I(ẽ) := {p ∈ P | ∀q ∈ Q, (p, q, i) /∈ E}. We define the blocks vs[ẽ] for any
s ∈ S such that all the inequalities induced from Ei are satisfied but ẽ is
violated. Therefore,

vs[ẽ]1 :=

{
1 if s ∈ I(ẽ),

3 otherwise.
(8.5)

vs[ẽ]2 :=

{
1 if ∃l ∈ I(ẽ) s.t. (l, s, i) ∈ E,

2 otherwise.
(8.6)

We show now that this construction satisfies the expressions (8.1) and (8.2).
We begin with the expression (8.1) that is equivalent to (8.4) holding

for any (s, d, i) ∈ E here. Given both edges e = (s, d, i) ∈ E and ẽ =

(P, Q, i) ∈ Emin, the inequality in (8.4) would be violated only if vs[ẽ]1 = 1
and vd[ẽ]2 = 2. However, this cannot happen since it implies that (s, d, i) /∈
E. In all the other configurations, the inequality (8.4) is satisfied.

We now focus on (8.2). Consider ẽ1 = (P1, Q1, i) ∈ Emin, by the same
argument as in (8.4) and Corollary 2.36, we have to prove that

∃ẽ2 = (P2, Q2, i) ∈ Emin :
∨

q∈Q1

vq[ẽ2]2 >
∨

p∈P1

vp[ẽ2]1, (8.7)

where va ∨ vb denotes the componentwise minimum between the vectors
va and vb. We show that we can choose ẽ2 = ẽ1 to achieve this. Since
ẽ1 ∈ Emin, I(ẽ1) is not empty and the minimum of vp[ẽ1]1 over P1 is 1.
Moreover, for any q ∈ Q1, vq[ẽ1]2 = 2 because for all l ∈ I(ẽ1) and for all
q ∈ Q1, (l, q, i) /∈ E by definition of I(ẽ1). Then, the minimum of vq[ẽ1]2
over Q1 is 2. This concludes the proof of Lemma 8.2.

Note that this result is stronger than Lemma 6.31 since it requires to violate
all the non-edges of the min lift, some of which are the non-edges of the
initial graph. Therefore, Lemma 8.2 trivially implies Lemma 6.31.

Example 8.3. Consider the graph G1 = (S1, E1) in Figure 7.14a and its min
lift (G1)min in Figure 7.15.

Let us apply the construction in the proof of Lemma 8.2 to G1. Since
there are 6 non-edges in (G1)min (4 for the initial graph, and 2 for the
added nodes), the matrices in (8.3) are of dimension 12, as well as the
vectors {va1 , vb1}. These vectors are illustrated in Figure 8.1, where each
2-dimensional block is associated to one of the non-edges of (G1)min.
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e1 :=
({a1}, {a1}, 2) e3 :=

({b1}, {a1}, 2) e5 :=
({a1, b1}, {a1}, 2)

e2 :=

({a1}, {b1}, 1) e4 :=

({b1}, {b1}, 1) e6 :=

({a1, b1}, {b1}, 1)

va1 := [ 1, 2, 1, 1, 3, 2, 3, 1, 1, 2, 1, 1 ]

vb1 := [ 3, 1, 3, 2, 1, 1, 1, 2, 3, 1, 3, 2 ]

Fig. 8.1 Illustration of the procedure described in the proof of Lemma 8.2
to build the Lyaunov functions for the path-complete graph G1 := (S1, E1)
in Figure 7.14a. Each 2-dimensional block is associated to one of the non-
edges of (G1)min of label 1 in red and of label 2 in blue. By construction, the
block associated to e ∈ E1min violates the Lyapunov inequality associated
to e. The values that make this possible are highlighted in bold.

We can finally verify the statements (8.1) and (8.2) of Lemma 8.2. Re-
calling (8.4) and (8.7), we can easily check whether the vectors {va1 , vb1} in
Figure 8.1 satisfy the Lyapunov inequalities encoded by G1 and violate the
non-edges of (G1)min. Table 8.1 summarizes this verification. △

We already noted the duality relation between the max and min lifts in
Lemma 7.45. This allows us to obtain a result similar to Lemma 8.2 for the
max lift.

Lemma 8.4. For any graph G = (S, E) on the alphabet ⟨M⟩, there exist an
integer n ≥ 1, a system F := { fi : i ∈ ⟨M⟩} in dimension n and |S| candidate
Lyapunov functions Us, s ∈ S for which

∀(p, q, i) ∈ E, ∀ x ∈ Rn : Uq( fi(x)) ≤ Up(x), (8.8)

∀(P, Q, i) ∈ Emax, ∃ x ∈ Rn : max
q∈Q

Uq( fi(x)) > max
p∈P

Up(x), (8.9)

where Emax = (Smax × Smax × ⟨M⟩) \ Emax refers to the set of non-existing
edges of Gmax.
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Edge
∨

q∈Q
vq[e]2

?
≤

∨
p∈P

vp[e]1

(P, Q, i) e1 e2 e3 e4 e5 e6

(a1, a1, 1) ∈ E1 1 ≤ 1 1 ≤ 3 1 ≤ 1

(a1, b1, 2) ∈ E1 1 ≤ 1 1 ≤ 3 1 ≤ 1

(b1, b1, 2) ∈ E1 1 ≤ 3 1 ≤ 1 1 ≤ 3

(b1, a1, 1) ∈ E1 1 ≤ 3 1 ≤ 1 1 ≤ 3

({a1}, {a1}, 2) ∈ E1min 2 > 1 2 ≤ 3 2 > 1

({a1}, {b1}, 1) ∈ E1min 2 > 1 2 ≤ 3 2 > 1

({b1}, {a1}, 2) ∈ E1min 2 ≤ 3 2 > 1 2 ≤ 3

({b1}, {b1}, 1) ∈ E1min 2 ≤ 3 2 > 1 2 ≤ 3

({a1, b1}, {a1}, 2) ∈ E1min 2 > 1 2 > 1 2 > 1

({a1, b1}, {b1}, 1) ∈ E1min 2 > 1 2 > 1 2 > 1

Table 8.1 Illustration of the verification of the Lyapunov inequalities us-
ing the outcome of the proof of Lemma 8.2 for the graph G1 in Figure 7.15.
As expected, the solution in Figure 8.1 satisfies the Lyapunov inequalities
encoded by the graph but violates all the non-edges of the min lift.

Proof. Our construction is derived from the one in the proof of Lemma 8.2.
In particular, the (linear) system F given by matrices {A1, . . . , AM} and
the functions Us are obtained from the ones introduced in the proof of
Lemma 8.2, simply defining

Aj := A⊤j , j ∈ ⟨M⟩ and Us(x) := max
i∈⟨n⟩

{
|xi|
vsi

}
, s ∈ S,

with matrices Aj defined in (8.3) and vectors vs defined in (8.5) and (8.6).
Indeed, the functions Us are the conjugate functions of the Vs in proof of
Lemma 8.2, and by convex duality theory (see Lemma 1.28) we have that,
given any convex functions g1, g2 ∈ C0(Rn, Rn) and A ∈ Rn×n, the follow-
ing equivalence holds:

g2(Ax) ≤ g1(x) ∀ x ∈ Rn ⇔ g⋆1(A⊤x) ≤ g⋆2(x), ∀ x ∈ Rn,

concluding the proof.
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8.1.2 Main characterization theorem

Using Lemma 8.2, it is now possible to prove the main Theorem 8.1.

Proof of Theorem 8.1. (1)⇒ (2): This implication is proved by Theorem 7.55.
(2) ⇒ (1): Our proof follows the same path of ideas as Theorem 6.30.
Consider two graphs G, G̃ and suppose that G ≤V G̃ for any template V
closed under pointwise minimum. First, by applying Lemma 8.2 to G, we
obtain a system F := { fi : i ∈ ⟨M⟩} and a set of candidate Lyapunov
functions {Vs : s ∈ S} such that the Lyapunov inequalities encoded by
the edges of G are satisfied and none of the non-existing edges of Gmin are
satisfied, i.e.

∀(p1, q1, i) ∈ E, ∀ x ∈ Rn : Vq1( fi(x)) ≤ Vp1(x), (8.10)

∀(P1, Q1, i) /∈ Emin, ∃ x ∈ Rn : min
q∈Q1

Vq( fi(x)) > min
p∈P1

Vp(x). (8.11)

Let us define the family F = {F} and the template

V := {WP1 := min
p∈P1

Vp | P1 ∈ Smin}

where Smin = P(S) \ ∅. Then, {Vs : s ∈ S} ⊂ V and the template V
is closed under minimum such that G ≤V G̃. Obviously, there exists a
solution admissible for G and F in V . Then, by assumption, there exists a
set of Lyapunov functions in the template V which are admissible for F and
G̃, i.e. there exist {Us̃ : s̃ ∈ S̃} ⊆ V that satisfy the Lyapunov inequalities
encoded by G̃. Since these functions belong to the template V , we can
associate a subset of S to each node of G̃, i.e. we can define a function
R : S̃→ Smin such that Us̃ = WR(s̃).

Finally, we just have to prove that this function R satisfies the definition
of simulation, i.e.

∀(p2, q2, i) ∈ Ẽ, (R(p2), R(q2), i) ∈ Emin.

Assume by contradiction that there exists an edge (p2, q2, i) ∈ Ẽ such that
(R(p2), R(q2), i) /∈ Emin. Using Lemma 8.2, this means that there exists
x ∈ Rn such that

UR(q2)
(x) := min

q∈R(q2)
Vq( fσ(x)) > min

p∈R(p2)
Vp(x) := UR(p2)

(x)
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i.e. the set {Us̃ : s̃ ∈ S̃} is not admissible. However these inequalities are
satisfied by construction of the functions Us̃, here is the contradiction.

We can now obtain a result similar to Theorem 8.1 for the max lift and
the class of templates closed under pointwise maximum.

Theorem 8.5. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ).
The following statements are equivalent:

(1) Gmax simulates G̃.

(2) G ≤V G̃ for any template V closed under pointwise maximum.

Proof. We only sketch the proof, which follows the one of Theorem 8.1. We
develop here, avoiding some details, the main ideas.

Similarly to Theorem 8.1, the implication (1) ⇒ (2) has already been
proved in Theorem 7.56.

Regarding the reverse implication, we consider two path-complete graphs
G and G̃ such that G ≤V G̃ for any template V closed under pointwise max-
imum. Applying Lemma 8.4, we obtain a system F and a set of candidate
Lyapunov functions {Us : s ∈ S} such that (8.8) and (8.9) are satisfied.
Define the family F := {F} and the pointwise maximum closure template

V := {ZP1 := max
p∈P1

Up | P1 ∈ Smax}.

By construction, there exists a solution in V admissible for F and G. Then,
by assumption, we can find a solution {Ys̃ : s̃ ∈ S̃} in V admissible for F
and G̃ that implicitly defines a function R : S̃→ Smax such that Ys̃ := ZR(s̃).
We conclude following the same reasoning by contradiction as in the proof
of Theorem 8.1.

8.2 Sum lift and addition-closed templates

In this section, we continue the analysis and provide a complete character-
ization of templates closed under addition. The main technical tools in our
proofs are the notion of sum lift of graphs, already introduced in Chapter 7,
and the concept of simulation between graphs already used, for compari-
son of path-complete criteria, in [PJ19]. By means of these concepts we pro-
vide the following equivalence result: a graph is more conservative than
another for all the templates closed under addition, if and only if the sum
lift of the first simulates the second graph.
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Theorem 8.6. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ).
The following statements are equivalent:

(1) G⊕ simulates G̃.

(2) G ≤V G̃ for any template V closed under addition.

As already mentioned, the “if” part of Theorem 8.6 was already proved in
Theorem 7.18, but the “only if” part is more challenging, since it amounts
to prove that the combinatorial operation of the sum lift completely char-
acterizes the addition-closed property, regardless of the template.

As a second challenge in our proofs, the sum lift of a given graph is a
graph with infinitely many nodes, such that the simulation in Theorem 8.6
cannot be checked. However, using Theorem 7.35, we will prove that this
simulation relation can be verified in polynomial time.

8.2.1 Key lemma

Following the path of ideas of the proof of Theorem 8.1, we need to con-
sider the sum-closure template of a set of Lyapunov functions. However,
this template will contain a countable infinite number of functions whereas
both the min and max-closure templates admit a finite number of elements
due to the idempotent character of these closure properties. This major dif-
ference is reflected by the fact the the sum lift is defined on an infinite num-
ber of nodes, while the min and max lifts have exactly |P(S)| − 1 = 2|S|− 1
nodes. In order to prove Theorem 8.6, we thus need an auxiliary technical
result which provides, given a path-complete graph G, a switched system
and a candidate Lyapunov function which satisfies a finite number of Lya-
punov inequalities (encoded by the sum lift of G) but violates several Lya-
punov inequalities as well, as stated by the following lemma.

Lemma 8.7. For any path-complete graph G = (S, E) on the alphabet ⟨M⟩, there
exist an integer n ≥ 1, a switched system F := { fi : i ∈ ⟨M⟩} on M modes in
dimension n and a candidate Lyapunov function VS := {Vs : s ∈ S} for which

∀(p, q, i) ∈ E, ∀ x ∈ Rn : Vq( fi(x)) ≤ Vp(x), (8.12)

∀T ∈N, ∀(P, Q, i) ∈ E⊕T , ∃ x̃ ∈ Rn : ∑
q∈Q

Vq( fi(x̃)) > ∑
p∈P

Vp(x̃), (8.13)

where E⊕T = (S⊕T × S⊕T × ⟨M⟩) \ E⊕T refers to the set of edges of the comple-
ment graph of G⊕T .
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Note that this construction has been implemented in MATLAB and is avail-
able for consultation in [Deb23].

The proof of this lemma relies in particular on the characterization of
an edge in the sum lift by graph theory presented in Section 7.3.3. More-
over, Hall’s Marriage Theorem recalled hereafter, provides a necessary and
sufficient condition for the existence of a perfect matching.

Proposition 8.8 (Hall’s Marriage Theorem [Hal35]). Let G be a finite bipartite
graph with bipartite sets X and Y. There is an X-perfect matching, if and only if
for every subset W of X,

|W| ≤ |NG(W)|

where NG(W) denotes the neighborhood of W in G, i.e., the set of all vertices in Y
adjacent to some element of W.

Proof of Lemma 8.7. Given the graph G = (S, E) on the alphabet ⟨M⟩, we
define a set of M block-diagonal square {0, 1}-matrices {Ai : i ∈ ⟨M⟩}
of dimension n := 2× M × (2|S| − 1), where 2|S| − 1 is the cardinality of
P0(S). Each 2× 2 diagonal block is associated to a pair (W, i) ∈ P0(S)×
⟨M⟩, and is defined by

Aj[W, i] :=



[
0 0
1 0

]
if j = i,[

0 0
0 0

]
otherwise

(8.14)

so that each matrix only acts on the blocks associated to a pair of the
same label. We consider the template of primal copositive norms where
Vs(x) := vs

⊤x for s ∈ S and x ∈ Rn
≥0, and for which the vectors {vs : s ∈ S}

are defined below. In this context, satisfying the Lyapunov inequality as-
sociated to an edge (p, q, i) ∈ S × S × ⟨M⟩ amounts to satisfying a set of
2|S| − 1 scalar inequalities since

∀x ∈ Rn
≥0, Vq( fi(x)) ≤ Vp(x),

⇔ ∀x ∈ Rn
≥0, x⊤Ai

⊤vq ≤ x⊤vp

⇔ Ai
⊤vq ≤c vp,

⇔ ∀W ∈ P0(S), vq[W, i]2 ≤ vp[W, i]1, (8.15)
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where ≤c depicts the componentwise inequality. We define the blocks
vs[W, i] for s ∈ S by

vs[W, i]1 :=
{

2 if s ∈ PRE(W, i),
1 otherwise,

(8.16)

and vs[W, i]2 :=
{

2 if s ∈W,
1 otherwise,

(8.17)

where PRE(W, i) = {s ∈ S | ∃w ∈ W : (s, w, i) ∈ E}. We show now that
this construction satisfies the expressions (8.12) and (8.13).

Let us start with the expression (8.12). Consider an edge (a, b, i) ∈ E.
The condition (8.15) holds except if there exists a pair (W, i) such that
vb[W, i]2 = 2 and vp[W, i]2 = 1. This happens if and only if b ∈ W and
a /∈ PRE(W, i). However (a, b, i) ∈ E by assumption, which proves the
contradiction. In all the other configurations, the inequality holds.

Let us now consider the expression (8.13), T ∈ N and (P, Q, i) ∈ E⊕T .
By the Hall’s Marriage Theorem in Proposition 8.8, there exists a multi-set
W ⊆ Q such that |W| > |NP,i(W)|, where the multi-set NP,i(W) := {p ∈
P | ∃s ∈ W : (p, s, i) ∈ E}. Therefore, if we denote W̃ as the underlying set
of W formed from its distinct elements, we have

∑
q∈Q

vq[W̃, i]2 := ∑
q∈W

vq[W̃, i]2︸ ︷︷ ︸
:= 2|W|

+ ∑
q∈Q\W

vq[W̃, i]2︸ ︷︷ ︸
:= T−|W|

= T + |W|

since for all q ∈W, q ∈ W̃ and vq[W̃, i]2 = 2. Similarly,

∑
p∈P

vp[W̃, i]1 := ∑
p∈NP,i(W)

vp[W̃, i]1︸ ︷︷ ︸
:= 2|NP,i(W)|

+ ∑
p∈P\NP,i(W)

vp[W̃, i]1︸ ︷︷ ︸
:= T−|NP,i(W)|

= T + |NP,i(W)|.

Since |W| > |NP,i(W)|, the inequality encoded by (P, Q, i) is violated.

Similarly to Lemma 8.2 for the min lift, Lemma 8.7 is a stronger version
of Lemma 6.31 because the non-edges of the initial graph are non-edges of
any T-sum lifted graph. Then, Lemma 8.7 automatically implies Lemma 6.31.
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8 | Characterization of the template-dependent ordering

Let us take an example to see how this procedure works.

Example 8.9. Consider the path-complete graph G1 = (S1, E1) in Figure 7.14a
on the alphabet ⟨2⟩. We follow the procedure described in the proof of
Lemma 8.7 to obtain the matrices {A1, A2} ⊆ {0, 1}12×12 and the vectors
va1 and vb1 ∈ {1, 2}12 illustrated in Figure 8.2.

As expected, each 2-dimensional block of the vectors and matrices is
associated to a couple (W, i) ∈ P0(S1)× ⟨M⟩. Then we can use the char-
acterization in (8.15) to verify that the Lyapunov inequalities encoded by
G1 are satisfied, as illustrated in Table 8.2. Moreover, we have manually
checked whether the Lyapunov inequalites encoded by non-edges of G1

⊕2

were indeed violated. The result can be seen in Table 8.2. Note that we
have implemented a code in MATLAB to build the outcome and automati-
cally check the statement of Lemma 8.7 (in particular the expression (8.13)
for any given value T ∈N). Using this code, we managed to check expres-
sion (8.13) up to T = 60. △

We need an additional result, stated in the following Lemma 8.10. The
proof is provided below and follows the notation introduced in the proof
of Lemma 8.7.

(W1, 1) :=
({a1}, 1)

(W3, 1) :=
({a1, b1}, 1)

(W2, 2) :=
({b1}, 2)

(W2, 1) :=

({b1}, 1)

(W1, 2) :=

({a1}, 2)

(W3, 2) :=

({a1, b1}, 2)

va1 := [ 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2 ]

vb1 := [ 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2 ]

Fig. 8.2 Illustration of the procedure described in the proof of Lemma 8.7
to build the Lyapunov functions for the path-complete graph G1 := (S1, E1)
in Figure 7.14a. Each 2-dimensional block is associated to one of couples
(W, i) ∈ P0(S)× ⟨M⟩ of label 1 in red and of label 2 in blue.
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Edge ∑
q∈Q

vq[W, i]2
?
≤ ∑

p∈P
vp[W, i]1

(P, Q, i) (W1, 1) (W2, 1) (W3, 1) (W1, 2) (W2, 2) (W3, 2)

(a1, a1, 1) ∈ E1 2 ≤ 2 1 ≤ 1 2 ≤ 2

(a1, b1, 2) ∈ E1 1 ≤ 1 2 ≤ 2 2 ≤ 2

(b1, b1, 2) ∈ E1 1 ≤ 1 2 ≤ 2 2 ≤ 2

(b1, a1, 1) ∈ E1 2 ≤ 2 1 ≤ 1 2 ≤ 2

({a1, a1}, {a1, a1}, 2) 4 > 2 2 ≤ 4 4 ≤ 4

({b1, b1}, {a1, a1}, 2) 4 > 2 2 ≤ 4 4 ≤ 4

({a1, a1}, {b1, b1}, 1) 2 ≤ 4 4 > 2 4 ≤ 4

({b1, b1}, {b1, b1}, 1) 2 ≤ 4 4 > 2 4 ≤ 4

({a1, a1}, {a1, b1}, 1) 3 ≤ 4 3 > 2 4 ≤ 4

({a1, a1}, {a1, b1}, 2) 3 > 2 3 ≤ 4 4 ≤ 4

({b1, b1}, {a1, b1}, 1) 3 ≤ 4 3 > 2 4 ≤ 4

({b1, b1}, {a1, b1}, 2) 3 > 2 3 ≤ 4 4 ≤ 4

({a1, b1}, {a1, a1}, 2) 4 > 2 2 ≤ 4 4 ≤ 4

({a1, b1}, {b1, b1}, 1) 2 ≤ 4 4 > 2 4 ≤ 4

({a1, b1}, {a1, b1}, 1) 3 ≤ 4 3 > 2 4 ≤ 4

({a1, b1}, {a1, b1}, 2) 3 > 2 3 ≤ 4 4 ≤ 4

Table 8.2 Illustration of the verification of the Lyapunov inequalities us-
ing the outcome of the proof of Lemma 8.7 for the graph G1 in Figure 7.15.
As expected, the solution in Figure 8.2 satisfies the Lyapunov inequalities
encoded by the graph but especially violates all the non-edges of the 2-sum
lift.

Lemma 8.10. Consider two path-complete graphs G = (S, E) and G̃ = (S̃, Ẽ)
on the alphabet ⟨M⟩. Suppose also that the switched system F and the candidate
Lyapunov function VS := {Vs : s ∈ S} are constructed in the proof of Lemma 8.7
applied to G. The following statement holds:

∀WS̃ ∈
(
VS
⊕)S̃ s.t. WS̃ ∈ PCLF(G̃, F), ∃T ∈N : WS̃ ∈

(
VS
⊕T
)S̃

, (8.18)

where VS
⊕ and VS

⊕T refer to the addition closure and the T-addition closure of
VS respectively.
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8 | Characterization of the template-dependent ordering

Proof. Without loss of generality, we assume that G̃ is strongly connected.
Otherwise, the argument is valid for each strongly connected component
of the graph. More precisely, each strongly connected component H̃ ⊆
G̃ can be associated to a value of T(H̃) for which condition (8.18) holds.
Moreover, any integer multiple of T(H̃) also satisfies the statement (8.18)
for H̃. Thus, taking the least common multiple of the T(H̃), for all the
strongly connected components H̃ of G̃, we can conclude.

Consider a path-complete graph G̃ = (S̃, Ẽ) on ⟨M⟩ and WS̃ ∈ PCLF(G̃, F)
an admissible solution in the template V defined as the sum-closure of
{Vs : s ∈ S}, i.e.

V := {Vi1 + · · ·+ ViT | (i1, . . . , iT) ∈ S⊕T , T ∈N}.

Each node s̃ of S̃ is associated to a multi-set of S denoted by R(s̃). Let
us prove that for all s̃1, s̃2 ∈ S̃, |R(s̃1)| = |R(s̃2)|. Assume by contradic-
tion that there exists i ∈ ⟨M⟩, s̃1 and s̃2 ∈ S̃ such that (s̃1, s̃2, i) ∈ Ẽ and
|R(s̃2)| ̸= |R(s̃1)|, and |R(s̃2)| > |R(s̃1)| without loss of generality. Since
(s̃1, s̃2, i) ∈ Ẽ, it means that

∀x ∈ Rn
≥0, ∑

q∈R(s̃2)

Vq(Aix) ≤ ∑
p∈R(s̃1)

Vp(x), (8.19)

⇔ ∀(W, j) ∈ P0(S)× ⟨M⟩, ∑
q∈R(s̃2)

vq[W, j]2 ≤ ∑
p∈R(s̃1)

vp[W, j]1. (8.20)

Consider W as the underlying set of R(s̃2) and j = i. Then by construction,
vq[W, i]2 = 2 for all q ∈ R(s̃2). Therefore the sum over R(s̃2) is equal to
2|R(s̃2)|. By expression (8.20), we have that

∑
q∈R(s̃2)

vq[W, i]2 = 2|R(s̃2)| ≤ 2|R(s̃1)|

since for any p ∈ S1, vp[W, j]1 ≤ 2. However, we know by assumption that
|R(s̃2)| > |R(s̃1)| which contradicts the previous expression. It means that
|R(s̃2)| = |R(s̃1)|. Since the graph G̃ is strongly connected, the inequality
holds between all the nodes.

8.2.2 Main characterization theorem

We can now prove Theorem 8.6.
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Proof. (1)⇒ (2) : It is already proved in Theorem 7.18 .
(2) ⇒ (1) : Consider two graphs G = (S, E) and G̃ = (S̃, Ẽ) such that

statement (2) in Theorem 8.6 is satisfied. Let us first apply Lemma 8.7 to
G. It provides a switched system F := { fi : i ∈ ⟨M⟩} and a candidate Lya-
punov function VS := {Vs : s ∈ S} such that expressions (8.12) and (8.13)
hold. Let us define the template V as the addition-closure of VS. By con-
struction, VS ⊆ V . This implies by hypothesis that there exists WS̃ in V S̃

such that WS̃ ∈ PCLF(G̃, F). Since WS̃ ⊆ V , we can associate a multi-set of
S to each node of G̃, i.e. we can define a function R : S̃→ S⊕ such that

Ws̃ := ∑
p∈R(s̃)

Vp.

By Lemma 8.10, there exists T ∈ N such that R : S̃ → S⊕T . Suppose by
contradiction that the function R is not a simulation relation. This means
that there exists an edge (p, q, i) ∈ Ẽ such that (R(p), R(q), i) /∈ E⊕T . By
the expression (8.13) in Lemma 8.7, there exists x̃ ∈ Rn such that

Wq(x̃) := ∑
s∈R(q)

Vs( fi(x̃)) > ∑
d∈R(p)

Vd(x̃) := Wp(x̃),

i.e. the indexed set {Ws : s ∈ S̃} is not admissible. However these inequal-
ities are satisfied by construction of the functions Ws̃, here is the contradic-
tion.

Combining the results in Theorems 7.35 and 8.6, we can finally derive
the following corollary that summarizes the algorithmic contribution of
our work.

Corollary 8.11. Given two graphs G and G̃ on the same alphabet, the following
statements are equivalent:

(1) G ≤V G̃ for any template V closed under addition.

(2) G ≤∑ G̃.

Therefore, since Item (2) can be verified by solving a linear program, so is Item (1).

Example 8.12. Consider now the graph G2 = (S2, E2) in Figure 8.3. We
have already shown in Example 7.17 that 8-sum lift of G2 simulates G0 =

({s0}, {(s0, S0, 1), (s0, S0, 2)}), the common Lyapunov function graph with
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e2

a2

d2

b2

c2

1

1

1

1

1

12 2 22

2

2

Fig. 8.3 G2 = (S2, E2), a path-complete graph on ⟨2⟩ in Example 8.12. It
has already been proved in Example 7.17 that G2

⊕8 simulates G0. Moreover,
we show in Example 8.12 that G2 ≤Σ G0.

2 modes. Indeed, given a switched system F, if the indexed set VS2 := {Vs :
s ∈ S2} is admissible for G2 and F, the function

W(·) := 2Va2(·) + Vb2(·) + Vc2(·) + 2Vd2(·) + 2Ve2(·)

is a common Lyapunov function for F. By Lemma 7.33 and using the same
construction as the previous example, one can derive the following matrix

C2
sim :=

[
2 1 1 2 2

]
,

through which the graphs G2 and G0 satisfy Definition 7.30. Moreover, if
we use the LP criterion provided in [PAAJ19], we find (after rounding) the
matrix C2

LP = 1
4 × C2

sim, which provides the same simulation relation. △
The sum lift exploits the idea that the solution to a graph G̃ can be ex-

pressed as a linear combination with integer coefficients of the solution of
a graph G. So far, in all the examples that we have provided, this linear
combination only involves coefficients equal to 1. However, we have de-
liberately chosen to define the T-sum lift with multi-sets, meaning that we
allow linear combination with coefficients strictly greater than 1. There-
fore, the following question arises: can we restrict the definition of the
T-sum lift to linear combinations with coefficients equal to 1, i.e. can we
restrict S⊕ to the power set? Otherwise, do we have examples of com-
parison of graphs with addition-closed templates where we need a linear
combination with integer coefficients strictly greater than 1?
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Question 8.13. Are there two graphs G and G̃ path-complete on the same
alphabet ⟨M⟩ such that

G ≤V G̃

for any template V closed under addition, but

G⊕
∣∣
S⊕ :=P0(S)

≰ G̃

where G⊕|S⊕ :=P0(S) denotes the restriction of G⊕ to the nodes associated to
non-empty subsets of S.

The following example answers in the affirmative.

Example 8.14. Consider the graph G3 = (S3, E3) and its 2-sum lift in Fig-
ures 8.4a and 8.5 respectively. As expected, the lifted graph involves 6
nodes, one for each multi-set of S3 of cardinality 2. We can easily ob-
serve that the 2-sum lift of G3 comprises two strongly connected and path-
complete components; first, a duplicate of the initial graph, that is the com-
ponent associated to the 2-multiples of the nodes of G3, i.e. {a1, a1}, {b1, b1}
and {c1, c1}. Secondly, it includes a strongly connected and path-complete
component (in bold) isomorphic to the graph G4 = (S4, E4) in Figure 8.4b.
This implies that

G3 ≤V G4,

for any template V closed under addition, since G3 ≤V G3
⊕2, and the rela-

b3 c3

a3

1

1

1

12

2

2

(a) G3 = (S3, E3), a path-complete
graph over the alphabet ⟨2⟩.

a4 b42 1
2

1

(b) G4 = (S4, E4), a strongly connected and
path-complete component of G3

⊕2.

Fig. 8.4 Counter-example to Question 8.13. As discussed in Exam-
ple 8.14, G4 is a component of G⊕2

3 but not of its restriction to the subsets of
the nodes of G3.
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a3 ⊕ a3

b3 ⊕ c3

a3 ⊕ b3a3 ⊕ c3

c3 ⊕ c3b3 ⊕ b3

2

1

1

1 1

21

2

2

1

1

2 1

1

2

1

Fig. 8.5 G3
⊕2 = (S3

⊕2, E3
⊕2), the 2-sum lift of G3. We can observe that G4

in Figure 8.4b is a component (in bold) of G3
⊕2 which proves that G2 ≤V G4

for any template V closed under addition.

tion holds for any component of the 2-sum lift. This example demonstrates
that the restriction of the nodes of the sum lift to the non-empty subsets of
S3 (rather than multisets) cannot explain the ordering relation between the
graphs G3 and G4. △

8.2.3 Numerical experiment

In this section, we consider the path-complete graph G5 = (S5, E5) already
studied in Example 7.27, recalled in Figure 8.6, and the common Lyapunov
function graph G0 = ({s0}, {(s0, s0, 1), (s0, s0, 2)}) on two modes. The com-
plete code for this section can be found in [Deb23].

First, let us recall that by Proposition 7.52 and Theorems 8.1 and 8.5,
one can show that the graphs G5min and G5max both simulate G0. In this
sense, G5 seems to be a very inefficient graph. Indeed, despite the fact that
it defines a multiple Lyapunov function criterion with five node-functions,
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e5

a5

d5

b5

c51

1

1

1

1
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2

2
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2
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Fig. 8.6 G5 = (S5, E5), a path-complete graph on ⟨2⟩ used for the nu-
merical example in Section 8.2.3. It can be shown that G5min ≤ G0 and
G5max ≤ G0. However, there does not exist any value T ∈N such that G5

⊕

simulates G0.

it is as conservative as G0 for the class of templates closed under minimum
or maximum. Thus, one might wonder whether it is more efficient than
G0 with a template such as the quadratic Lyapunov functions, which is not
closed under minimum nor maximum while being closed under addition.

We have already shown in Example 7.27 that there does not exist any
value of T ∈ N such that G5

⊕T simulates G0. The LP characterization in
Theorem 7.35 confirms this result. By Theorem 8.6 and by Definition 6.21,
this means that there exists at least a template V closed under addition for
which

∃n ∈N, ∃F := { f1, f2} ⊂ C0(Rn, Rn) :
[
∃VS5 ∈ V

|S5| s.t.

VS5 ∈ PCLF(G5, F)
]
∧
[
∀WS0 ∈ V

|S0|, WS0 /∈ PCLF(G0, F)
]

.
(8.21)

In order to numerically verify this statement, we consider the template of
quadratic functionsQ and we sample randomly 10 000 2× 2 linear switched
systems with 2 modes of the form

x(k + 1) = Aσ(k)x(k),

where x(k) ∈ R2 for any k ∈ N, and A = {A1, A2} ⊂ R2×2
≥0 . For each sys-

tem A and for any path-complete graph G = (S, E), we can compute the
JSR approximation provided by G and the template V in Definition 6.17,
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8 | Characterization of the template-dependent ordering

denoted by ρG,V (A). Therefore, if a switched system A satisfies state-
ment (8.21) for the quadratic template, G5 will provide a strictly smaller
upper bound than G0, i.e. ρG5,Q(A) < ρG0,Q(A).

For each system Aℓ, we compute ρG0,Q(Aℓ) and ρG5,Q(Aℓ) respectively
for ℓ = 1, . . . , 10 000, and we compare them by defining the following in-
dex:

I(ℓ) := log
(

ρG0,Q(Aℓ)

ρG5,Q(Aℓ)

)
. (8.22)

The distribution of this index is illustrated in Figure 8.7. As expected, the
index I is non-negative for all the switched systems since it can be proven
that G0 ≤Q G5, see Proposition 6.24. On the other hand, the sampled sys-
tems also provide instances for proving the non-relation G5 ≰Q G0, i.e. sat-
isfying (8.21). More specifically, the difference between the output of G5
and G0 is significant (meaning that I(l) ≥ 10−6) for 1668 systems out of
10 000, and thus these systems satisfy (8.21).
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·10−2
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Fig. 8.7 Histogram of the index I(·) in Equation (8.22) for 10 000 linear
switched systems with 2 matrices of dimension 2. Note that in the first
column of the histogram, among the 9182 systems composing it, for 8332
of them, I(i) is 0: for these systems, G0 and G5 provide exactly the same
estimation of the JSR.
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On the other hand, for 8332 out of the 10 000 sampled systems, G5 and
G0 provide exactly the same approximation1 of the JSR, i.e. the graph G5
provides the same JSR estimation as the classical common quadratic ap-
proach, which can be considered as the “most conservative” one. This
numerical result is consistent with the theoretical results since we know
that both graphs G5 and G0 provide the same approximation of the JSR if
we consider a template closed under minimum or maximum. We highlight
that the goal of this example was to validate numerically the “conservatism
relations” between G0 and G5 (proven in Theorem 8.6), and not to provide
numerically appealing approximation of the JSR: in this case the hierar-
chy of De Bruijn path-complete graphs (described in Section 7.7) is more
relevant.

To further analyse the relations between path-complete graphs, we fo-
cus on the switched system for which the index I is maximal, given by the
matrices

A1 =

[
1.5519 0.4474
7.6412 7.4716

]
and A2 =

[
0.4750 9.1755
1.8955 0.1850

]
. (8.23)

The graph-based results are reflected in the approximations of the JSR of
system (8.23) in Table 8.3 provided by G0 and G5 and two different tem-
plates: first the template of linear primal copositive norms P which is
closed under minimum and addition (see Theorem 7.43 for the details) and
the template of quadratic functions Q which is closed under addition. As
expected, both G0 and G5 provide the same approximation of the JSR with
the copositive norms, i.e.

ρG0,L(A) = ρG5,L(A) := 9.2696,

while G5 provides a better approximation than G0 when we use the quadratic
template, i.e.

ρG5,Q(A) := 9.4886 < 9.5868 := ρG0,Q(A).

Note also that for both graphs, the copositive norms provide a better ap-
proximation than the quadratic ones whereas they are easier to solve nu-
merically.

1We assume that all the values of I smaller than 10−6 are due to numerical errors, and are
then set at 0.
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Template ρG,V (A)

G0 G1 G3,1
db G2 G5

P 9.2696 9.1712 8.7019 9.2696 9.2696

Q 9.5868 9.0161 8.6881 9.5868 9.4886

Table 8.3 Graph-based approximations of the JSR of system (8.23) with
G0, G1, G3,1

db , G2 and G5 for the templates Q of quadratic functions and P ,
the primal copositive norms.

We have also computed the approximations provided by the graphs
G1, G3,1

db and G3 in Figures 7.13 and 8.3 for system (8.23). The results pro-
vided in Table 8.3 highlight the comparison relations that we have proved
in previous examples: G2 provides a better approximation than G1 for both
templates while G3 is as bad as the common Lyapunov function graph G0.

8.3 Preparatory work for a general necessary condition

So far, we have succeeded in proving the characterization Theorems 8.1,
8.5 and 8.6 by providing ad hoc auxiliary results, namely Lemmas 8.2, 8.4
and 8.7. In this section, we identify the common structure of these proofs
and we compare it with previous characterization results. We believe that
it is possible to prove the characterization by the simulation using less de-
manding results, and in particular by requiring a common property to the
template-dependent lifts. In this section, we summarize preliminary work
on this topic and we present our main conjecture.

We start by emphasizing that all the proofs of the characterization the-
orems follow the same structure. In particular, we compare the construc-
tions in Lemmas 6.31, 8.2, 8.4 and 8.7 and Theorem 6.15. By definition
of the path-complete formalism, any labeled and directed graph encodes
Lyapunov inequalities on both a switched system and a set of candidate
Lyapunov functions. Then for each graph, there exist several pairs (F :=
{ f1, . . . , fM}, V := {Vs : s ∈ S}) that satisfy the corresponding graph-
based Lyapunov inequalities. Among them, it is possible to draw specific
pairs (V, F) which are extremal in the sense that they allow to derive prop-
erties on the graph, and as a consequence on all the other pairs (F, V). For
each different property, we require a different extremal constraint. Table 8.4
summarizes this comparison.
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8 | Characterization of the template-dependent ordering

In particular, Theorem 6.15 states that the path-completeness is a neces-
sary and sufficient condition for the corresponding Lyapunov certificate to
be valid. The proof of the necessary condition required a special construc-
tion developed and fully detailed in [JAPR17]. In brief, the authors show
that it is possible to derive an unstable system F and an index set of can-
didate Lyapunov functions V := {Vs : s ∈ S} from a non-path-complete
graph G = (S, E) such that the pair (F, V) satisfies the Lyapunov inequali-
ties encoded by G. In this case, this specific pair (F, V) is extremal with re-
spect to the path-completeness property since it allows to characterize the
validity of a certificate by the path-completeness. Similarly, Lemma 6.31
proves the existence of a pair (F, V) which is extremal with respect to the
simulation and the general ordering in (6.12). Lemmas 8.2, 8.4 and 8.7 in
turn show that there exists an extremal pair (F, V) for the simulation and
the template-dependent ordering relation in (6.11) for the family of tem-
plates closed under minimum, maximum and addition respectively.

Although the proofs of the different characterization theorems follow
the same structure, we believe that the corresponding extremal constraint
that we required might be weakened but still strong enough to character-
ize the template-dependent ordering relations (6.11) for specific classes of
templates. In what follows, we describe preliminary thoughts on the ap-
propriate extremal property.

By definition of the PCLF formalism, a path-complete graph G = (S, E)
encodes a set of Lyapunov inequalities between some Lyapunov functions
{Vs : s ∈ S} that we are looking for in a given template V . If ⋆ denotes
a closure property of this template, we know that the template remains
stable through ⋆, i.e.

∀k ∈N, ∀g1, . . . , gk ∈ V : g1 ⋆ . . . ⋆ gk ∈ V .

We would like to derive a lifted graph of the initial graph, denoted by
L⋆(G), which fully exploits this closure property ⋆, so that we can compare
them in terms of the ordering relations in Definition 6.21. In other words,
we aim to build L⋆(G) such that it exclusively encodes the Lyapunov in-
equalities which are satisfied for any switched system F by the composition
with ⋆ of the Lyapunov functions in V := {Vs : s ∈ S} provided that V is
admissible for G and F.

We propose the following definition.
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Definition 8.15 (Lift which symbolizes an operation). Consider a binary
operation ⋆ which preserves the Lyapunov properties and M ∈N. The lift
symbolizes the operation ⋆, denoted by L⋆ : GraphsM → GraphsM, if for any
path-complete graph G = (S, E) on the alphabet ⟨M⟩,

L⋆(S) :=
⋃

T∈N

MultiT(S)

and an edge ({s1, . . . , sk}, {d1, . . . , dl}, i) ∈ L⋆(E) if and only if for any
switched system F := { f1, . . . , fM} and any V ∈ C0

+(R
n, R)S:

V ∈ PCLF(G, F) ⇒ ∀x ∈ Rn :(
Vd1 ⋆ · · · ⋆ Vdl

)
( fi(x)) ≤

(
Vs1 ⋆ · · · ⋆ Vsk

)
(x),

(8.24)

where i ∈ ⟨M⟩, k, l ∈N and sj, dh ∈ S for j = 1, . . . , k and h = 1, . . . , l.

First of all, let us show that the lift in Definition 8.15 is well-defined,
meaning that it satisfies Definition 7.2 and let us discuss its validity.

Proposition 8.16. Consider L⋆ which symbolizes a binary operation ⋆ which
preserves the Lyapunov properties. The lift L⋆ is valid with respect to any template
closed under ⋆.

Proof. Consider a path-complete graph G = (S, E) on the alphabet ⟨M⟩.
Let us first demonstrate that L⋆ is a lift in the sense of Definition 7.2,

i.e. L⋆(G) is path-complete. Definition 8.15 implies in particular that the
initial graph G is a subcomponent of the lifted graph L⋆(G). Indeed, all
the singletons {s} ∈ L⋆(S) for every s ∈ S and all the edges of the form
({s}, {d}, i) ∈ L⋆(E) where (s, d, i) ∈ E. Since G is path-complete by as-
sumption, so is L⋆(G).

Let us now discuss the validity of L⋆. Given a template V closed under
the operation ⋆, we have to prove that G ≤V L⋆(G). Assume that V ∈ VS

is admissible for G and a switched system F := { f1, . . . , fM}. We define

W := {W(s1,...,sk)
:= Vs1 ⋆ · · · ⋆ Vsk : (s1, . . . , sk) ∈ L⋆(S)}.

By definition of the edges of the lift L⋆ in Equation (8.24), the Lyapunov in-
equalities for the system F encoded by the lifted edges are trivially satisfied
by W, which ends the proof.
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8 | Characterization of the template-dependent ordering

Note that we could define the lift that symbolizes an operation ⋆ within a
specific family of switched systems F , denoted by L⋆,F by restricting Def-
inition 8.15 to F . Then, we could prove that L⋆,F is valid with respect to
any template closed under ⋆ and F .

Definition 8.15 suggests to use the following core methodology. At first,
we associate a node of the lifted graph to any multi-set of finite cardinal-
ity of the universe S, such that it is associated to the ⋆-composition of the
Lyapunov functions {Vs : s ∈ S}. Then, we hope that the lift is expres-
sive enough to capture all the possible inequalities which are satisfied by
construction.

In fact, Definition 8.15 seems relevant to characterize the lifts since Lem-
mas 8.2 and 8.4 allow us to show that the min and max lifts symbolize the
pointwise minimum and maximum operations.

Proposition 8.17. The min and max lifts symbolize the pointwise minimum and
maximum operation respectively.

Proof. Consider a path-complete graph G on the alphabet ⟨M⟩, with M ∈
N. We have to prove that the following equivalence holds for any subsets
A, B ⊆ S and any label i ∈ ⟨M⟩:

(A, B, i) ∈ Emin ⇔ ∀F ⊂ C0(Rn,Rn),[
V ∈ PCLF(G, F) ⇒ ∀x ∈ Rn : min

b∈B
{Vb( fi(x))} ≤ min

a∈A
{Va(x)}

]
.

(8.25)
The necessary condition has already been shown in the proof of Proposi-
tion 7.40. The sufficient condition is a direct consequence of Lemma 8.2.

By contraposition, we have to prove that if an edge e := (A, B, i) /∈
Emin, then there exists a system F and an admissible solution V ∈ PCLF(G, F)
which violates the Lyapunov inequality encoded by e. Lemma 8.2 guar-
antees the existence of a common system and a common solution which
violates all the non-edges of the min lift, which ends the proof.

Similarly for the max lift, the necessary condition has already been
shown in the proof of Proposition 7.41 while the sufficient condition is di-
rectly derived from Lemma 8.4 using the same argument.

Similarly, Lemma 8.7 allows us to show that the sum lift symbolizes the
addition in the sense of Definition 8.15.

Proposition 8.18. The sum lift symbolizes the addition.
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Proof. Consider a path-complete graph G on the alphabet ⟨M⟩, with M ∈
N. We want to prove that the sum lift satisfies Definition 8.15, i.e. for all
multi-set A, B ⊆ S of any cardinality T ∈N and any label i ∈ ⟨M⟩:

(A, B, i) ∈ E⊕T ⇔ ∀F ⊂ C0(Rn,Rn),[
V ∈ PCLF(G, F) ⇒ ∀x ∈ Rn : ∑

b∈B
Vb( fi(x)) ≤ ∑

a∈A
Va(x)

]
.

(8.26)

The necessary condition has already been demonstrated in the proof of
Proposition 7.11. The sufficient condition is a direct consequence of Lemma 8.7
and follows the same ideas as Lemma 8.2.

We have shown that the min, max and sum lifts symbolize the corre-
sponding binary operation of pointwise minimum, maximum and addi-
tion respectively. For each operation, the demonstration mainly relies on
the auxiliary Lemmas 8.2, 8.4 and 8.7. These lemmas and Definition 8.15
differ as follows: Lemmas 8.2, 8.4 and 8.7 require the existence of a com-
mon switched system and a common admissible solution which violates all
the non-existing edges of the min lift, while Definition 8.15 allows the sys-
tem and solution to be different for each edge. Then, the notion in Defini-
tion 8.15 is weaker than the conditions required in Lemmas 8.2, 8.4 and 8.7.
We think that these lemmas are actually too strong, and it is sufficient to
require that the lift satisfies Definition 8.15 to prove the simulation-based
characterisation. To go one step further, we conjecture that Definition 8.15
is a necessary and sufficient condition to derive the simulation-based char-
acterization for any binary operation.

Conjecture 8.19. Consider a binary operation ⋆ which preserves the Lyapunov
properties and two path-complete graphs G and G̃ on the alphabet ⟨M⟩. The fol-
lowing statements are equivalent:

(a) G ≤V G̃ for any template V closed under ⋆,

(b) L⋆(G) simulates G̃.

So far, the existence of a switched system and a set of candidate Lyapunov
functions which are both common to all the edges is crucial for the con-
struction in the proof of Theorems 8.1, 8.5 and 8.6. Consequently, the main
challenge in proving this Conjecture 8.19 is to succeed in building the sim-
ulation recursively on the edges, using similar arguments. In return, it
would be easier (since less demanding) to prove that a lift satisfies Defini-
tion 8.15 than to prove the current corresponding key lemma.
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8.4 Summary and further research directions

The path-complete Lyapunov framework generates a wide range of stabil-
ity criteria for discrete-time switched systems by leveraging two degrees of
freedom: the choice of the path-complete graph, and the template. In this
section, we have provided a characterization of the template-dependent or-
dering of path-complete graphs for the specific classes of templates closed
under pointwise minimum and maximum and addition by means of the
combinatorial tool of simulation. In particular, given a switched system
and a template, these results can help guiding the search of a better stabil-
ity certificate by checking the existence of a simulation relation.

Summary of Chapter 8

In this chapter, we use combinatorial tools to provide a complete
characterization of the conservatism-degree of stability conditions
arising from graph-based structures. This characterization, already
tackled in the past for the general case, is here proven for all the
sets of candidate Lyapunov functions closed under minimum,
maximum and addition.

Section 8.1: Min/max lifts and minimum/maximum-closed templates
We show in particular that we can leverage the duality between

the min and max lifts to derive the characterization results from
one lift to the other.

Section 8.2: Sum lift and addition-closed templates
The characterization results in this section provide a step

forward for the analysis and taxonomy of multiple quadratic or
SOS Lyapunov criteria, since both sets are closed under addition.
Moreover, we provide a numerical appealing method (in the form
of a linear program) to compare different path-complete criteria
when it comes to templates closed under addition.

Section 8.3: Preparatory work for a general necessary condition
In this section, we provide an overview and compare the differ-

ent proofs to identify their similarities and differences. In addition,
we summarize preliminary research to provide a general proof of
the characterization of template-dependent graph ordering.
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The proof technique developed in this chapter seems to be general-
izable (with appropriate minor modifications) and relevant for other set-
tings. Given a closure operation on candidate Lyapunov functions, all the
complexity lies in the proof of the corresponding key lemma. In partic-
ular, we expect this methodology to be suitable for the class of templates
closed under composition introduced in Section 7.5. Moreover, the result
provided in Theorem 7.65 suggests the following conjecture.

Conjecture 8.20. Consider two path-complete graphs G = (S, E) and G̃ =

(S̃, Ẽ) on the same alphabet. The following statements are equivalent:

(1) G◦ simulates G̃.

(2) G ≤V ,F G̃ for any template V closed under composition with the dynamics
in F .

The same conjecture holds for the backward composition lift and the fam-
ily of templates closed under composition with the inverse dynamics in F .

Finally, the characterization results presented in this chapter provide a
crucial step in the problem of classifying stability criteria based on multiple
Lyapunov functions with respect to a family of templates which share a
common closure property. However the complete characterization of the
ordering for a specific template is still an open question. We believe that such
a characterization should involve all the closure properties of this specific
template.

Conjecture 8.21. Consider two path-complete graphs G = (S, E) and G̃ =

(S̃, Ẽ) on the same alphabet, and a template V of candidate Lyapunov functions.
The following statements are equivalent:

(1) G ≤V G̃.

(2)
⋃

⋆∈ clos(V)
L⋆(G) simulates G̃,

where clos(V) refers to the set of the closure properties of the template V .

Note that Conjecture 8.21 differs from Conjecture 8.19 in that it charac-
terizes the template-dependent ordering of graphs for a specific template
rather than for a family of templates sharing a common closure property.

For the future, it could be interesting to proceed further in this analysis,
with particular attention to the template of quadratic functions, which is
probably the most common (for both theoretical and numerical reasons)
candidate Lyapunov functions template in control theory.
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Conclusions and
perspectives

THROUGHOUT this thesis, we have studied the stability of switched
systems under arbitrary switching. These are a family of popu-
lar models for complex Cyber-Physical systems, that is algorithmi-

cally challenging, but rather well understood from a theoretical standpoint.
They form an entry point to more complex systems, such as hybrid sys-
tems, and we believe that the methodology that we have applied can be
generalized to these systems.

In particular, we have developed different tools to provide a better
understanding of and improve the conservatism of different stability cer-
tificates for switched systems by merging Lyapunov and graph theories.
Moreover, we have theoretically leveraged the representation power of
neural networks to approximate the joint spectral radius by learning poly-
topic Lyapunov functions, and we have provided an empirical study of
their efficiency.

⋆ Brief summary of the contributions

In what follows, we briefly summarize our contributions throughout this
thesis.

Part II: Neural Lyapunov functions

Motivated by recent developments in neural Lyapunov techniques, we
have introduced for it a benchmark application and a theoretical frame-
work, for the particular case of switched systems.
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We have shown that one can determine theoretical bounds for the ac-
curacy of neural Lyapunov functions, as a function of the parameters of
the network. These guarantees are competitive with classical SDP-based
Lyapunov approaches in terms of number of variables. From the empir-
ical point of view, we have shown that in practice as well, the approach
is competitive while our neural networks were trained on simple personal
computers, which leaves an important room for improvement. We have
emphasized the problem of overfitting, and proposed several avenues for
mitigating it.

We have also introduced an automatic and sound algorithm to study
the stability of switched systems by approximating the joint spectral ra-
dius of the corresponding set of matrices. Our architecture relies on two
elements: a ReLU neural network, and an SMT solver. We therefore ben-
efit from the advantages of these two components: notably the flexibil-
ity of neural networks and the soundness of SMT solvers. We also suffer
from their disadvantages, like the poor scalability of SMT solvers. How-
ever, we introduce post processed norms to address this problem, and en-
sure a valid approximation of the JSR. Our algorithm has shown promis-
ing results on several examples, nearly always beating the usual quadratic
approximation, but further comparison is required with more advanced
methods, and in higher dimensions.

Part III: Template-dependent comparison of Path-Complete
Lyapunov functions

The path-complete approach is an appealing tool for stability analysis
of switching systems because it provides a way of building ad-hoc, non-
standard, Lyapunov stability criteria while alleviating the combinatorial
explosion of classical optimization techniques. In this thesis, we studied
the problem of establishing relations among different path-complete struc-
tures, with the goal of optimizing this structure, while controlling the com-
putational cost at the same time. We have demonstrated the strong connec-
tions between templates of candidate Lyapunov functions and the ordering
relations between graph-based conditions.

We provided new results concerning the comparison problem for path-
complete Lyapunov conditions. We introduced new formal transforma-
tions of path-complete graphs, called lifts, which allow us to establish or-
dering relations between graphs. We analyzed how the effectiveness of
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these lifts strongly depends on the closure properties of the chosen tem-
plate. This allowed us to generalize previous results and to provide a
unifying framework which enables for finer comparison criteria between
path-complete techniques.

As particular case study, we thoroughly analyzed positive systems and
copositive functions, for which we showed that our techniques did outper-
form the state of the art. The results have been validated with several ex-
amples. This work has opened the way for a larger research avenue, such
as the generalization of this approach to a wider class of templates/sys-
tems (notably the quadratic functions cases).

Moreover, we have provided a complete characterization of the degree
of conservatism of stability conditions arising from graph-based structures.
While, in the past, this characterization had been tackled for the general
case, in this work, we have proven a similar characterization for all the sets
of candidate Lyapunov functions closed under a closure property. These
results marked a significant step in the comparison problem stability crite-
ria based on multiple quadratic Lyapunov functions, even if the complete
characterization of the ordering for this specific template remains an open
question.

⋆ Perspectives

This work has opened several paths for future research. At the end of each
chapter, we have already sketched several perspectives for future work.
In addition, we present hereunder a few general ideas for future research.
At first, we list some research areas in which the path-complete Lyapunov
could be used to generalize current results to switched systems. The sec-
ond research direction aims to merge Parts II and III of this thesis in order
to generate path-complete neural Lyapunov functions. Finally, we pro-
pose to exploit the similarities between template-dependent lifts and the
abstraction-based techniques to help smartly refine the abstraction.

Future fields of application: over the past few years, the path-complete
Lyapunov formalism initially introduced for the stability of discrete-time
switched systems [AJPR14] has been generalized to various fields. Exam-
ples include a partial extension in the continuous-time setting [DPA22] and
a general framework for the stability analysis of constrained switched sys-
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tems [PEDJ15, Phi17]. Moreover, the path-complete Lyapunov methods
have allowed to extend some concepts to switched systems, such as a gen-
eralization of the p-dominance for switched systems [BFJ18] and the notion
of path-complete barrier functions [AJZA].

We believe that the path-complete Lyapunov approach could be further
used to study switched systems. In particular, we think that the notion
of recurrent sets [SBM22] could be extended to switched systems through
the path-complete formalism, as well as the concept of dissipativity [BP07,
WZG13]. In addition, the path-complete Lyapunov formalism could also
be adapted to deal with different sorts of systems and problems: state-
dependent switched systems, where each node of the graph would be as-
sociated to one region of the state-space partition for instance. The path-
complete Lyapunov formalism has already been partially extended to no-
tion of almost sure stability in [DJ22a], while the stabilization problem of find-
ing a specific switching sequence which stabilizes the system could also be
tackled through the prism of the path-complete Lyapunov methods. On
the other hand, the stabilization problem in the presence of input variables
has been already partially tackled in [DAJJ24, DAG24].

Path-complete neural Lyapunov functions: in this thesis, we have devel-
oped in parallel two ways of adding complexity to stability certificates for
switched systems, in order to reduce their conservatism: either by using
the neural template, or by smartly choosing a mutliple Lyapunov struc-
ture appropriate to the template used. We are convinced that these two
approaches are complementary, and could be combined to synthesize neu-
ral path-complete Lyapunov functions. In particular, we expect that we could
leverage the information learned by the network to refine the underlying
path-complete graph and iteratively produce better stability certificates. In
particular, we could maybe draw inspiration from [SP24] where the au-
thors consider neural Lyapunov functions, whose structure is iteratively
refined in response to the failure to satisfy the Lyapunov inequalities.

Moreover, it is well known that neural networks are particularly good
at capturing and exploiting patterns in data, and graph-structured data es-
pecially, see [ZCH+20]. Possible links with this field could be considered.

Application to abstractions: nowadays, abstraction-based techniques are
more and more popular [AHKV98, Tab09, RZ16, BPB19, ELJ22, CMGJ24].
These methods rely on a 3-step approach. First, a finite state abstraction of
the concrete system is derived for which an abstract controller is synthe-
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sized as a second step. Then, the concretization step aims to derive a con-
troller for the concrete system based on the abstract controller. Different
abstraction relations between the concrete system and its abstraction have
been introduced, each of which leads to a different concretization step. In
practice, the properties of the abstraction relations directly influence (or
even characterize) the controller design: the initial definition of feedback
refinement relation [RZ16] (FRR for short) requires to use the same input,
and the concrete control is defined as the abstract control quantized. Re-
cently, new abstraction techniques have been introduced in order to build
more complex concrete controllers. Moreover, recent results have shown
that these new abstraction relations can be translated as a FRR relation
between an augmented system and the abstract system. This methodol-
ogy echoes the lift procedures that we have developed in this thesis. In-
deed, we first used the simulation relation to characterize the general or-
dering of graphs. In practice, the simulation allows to build a solution for a
graph G̃ from the solution for another graph G, by keeping the same func-
tions. Then, we have characterized the template-dependent ordering of
graphs for specific class of templates. In this case, the simulation relation
involves a lifted graph which allows to consider more complex relations
between the solutions of G̃ and G. In brief, we believe that the core ideas
of both methodologies are similar: the template-dependent lifts and the
new abstraction relations allow to consider more complex expressions for
the Lyapunov pieces and for the controller respectively, and then reduce
the conservatism. Therefore, both topics could be mutually enhanced, in
particular by translating into their formalism the various tools introduced
respectively.

In addition, we are convinced that path-complete techniques could be
used to smartly refine the abstractions, and thus improve the scalability of
these methods. Indeed, both path-complete and abstraction-based meth-
ods rely on the choice and/or the construction of combinatorial tools which
capture the dynamics of the underlying system. However, in both settings,
we are facing similar challenges. In particular, enlarging the graph usually
goes with an increase of the computation time, which prevents us from
using these techniques for higher dimensional systems: in the abstraction-
based techniques, the number of cells of a grid grows exponentially with
the dimension, while the number of nodes and edges increases exponen-
tially with respect to the order in the De Bruijn hierarchy. It becomes there-
fore necessary to introduce smart methods to improve graphs/abstrac-
tions, while taking into account the computational cost. This thesis deals
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specifically with this question, and proposes combinatorial operations to
improve path-complete graphs. We argue that the underlying methodol-
ogy of the lift approach could be generalized to abstraction-based tech-
niques in order to iteratively locally refine a coarse abstraction.
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