NRP1 is a receptor for mammalian orthoreovirus engaged by

2 distinct capsid subunits

3	
4	Pengcheng Shang, ^{1,2} Rita dos Santos Natividade, ³ Gwen M. Taylor, ^{1,2} Ankita Ray, ³
5	Olivia L. Welsh, ^{1,2} Kay L. Fiske, ^{1,2} Danica M. Sutherland, ^{1,2} David Alsteens, ^{3,4} and
6	Terence S. Dermody ^{1,2,5*}
7	
8	¹ Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh,
9	Pennsylvania, USA
10	² Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of
11	Pittsburgh, Pittsburgh, Pennsylvania, USA
12	³ Louvain Institute of Biomolecular Science and Technology, Université catholique de
13	Louvain, Louvain-la-Neuve, Belgium
14	⁴ WELBIO department, WEL Research Institute, Wavre, Belgium
15	⁵ Department of Microbiology and Molecular Genetics, University of Pittsburgh School of
16	Medicine, Pittsburgh, Pennsylvania, USA

- 17
- 18 *Address correspondence to Terence S. Dermody, <u>terence.dermody@chp.edu</u>.

19 SUMMARY

20

21	Neuropilins (NRPs) bind a variety of physiological ligands and serve as receptors for
22	viruses with public health importance. However, mechanisms regulating NRP-mediated
23	virus entry and the roles of NRPs in viral pathogenesis are not well understood. In this
24	study, we identified murine NRP1 (mNRP1) as a mammalian orthoreovirus (reovirus)
25	receptor. mNRP1 binds reovirus with nanomolar affinity and promotes reovirus infection.
26	Our findings reveal a unique mechanism of virus-receptor interaction, which is
27	coordinated by multiple interactions between distinct reovirus capsid subunits and
28	NRP1 extracellular domains. By engineering reovirus mutants incapable of binding
29	NRP1, we found that NRP1 contributes to reovirus dissemination and neurovirulence in
30	mice. Collectively, our results demonstrate that NRP1 is an entry receptor for reovirus
31	and uncover mechanisms by which NRPs promote viral entry and pathogenesis.
32	

33 KEYWORDS

NRP1, reovirus, binding, infection, affinity, capsid proteins, dissemination, CNS,
neuropathogenesis

37 INTRODUCTION

38

Neuropilins (NRPs) are cell-surface receptors with pleiotropic physiological functions in 39 the cardiovascular, nervous, and immune systems.¹⁻⁵ Two NRP homologs, NRP1 and 40 NRP2, bind a range of structurally diverse ligands, including vascular endothelial growth 41 factor (VEGF) isoforms and semaphorins (SEMAs).¹⁻⁵ NRPs also are used as receptors 42 or coreceptors by several pathogenic viruses,⁶ including pandemic SARS-CoV-2⁷⁻⁹ and 43 several herpesviruses.¹⁰⁻¹² Host receptors often determine viral dissemination routes 44 and tropism for discrete tissues.¹³⁻¹⁶ The broad expression of NRPs in endothelial, 45 immune, and neuronal cells suggests roles for these receptors in viral dissemination 46 and tissue tropism. However, since NRP-null animal models are not viable,^{1,2} functions 47 of NRPs in viral pathogenesis have not been confirmed.⁶ 48 NRPs incorporate multiple extracellular domains with remarkable structural 49 flexibility to accommodate binding to different ligands.^{3,5,17-19} NRPs engage native 50 51 ligands following the C-end rule (CendR), in which a conserved pocket in the extracellular b1 domain binds a C-terminal polybasic R/KXXR/K motif in the ligand,^{1,3} 52 53 which is a native C-end or produced by furin cleavage. The SARS-CoV-2-NRP1 interaction depends on furin cleavage of viral spike proteins and is associated with 54 membrane fusion. However, some virus-NRP interactions, including interactions 55 56 between human cytomegalovirus (hCMV) pentamer protein and NRP2 are independent of the CendR but still appear to promote fusion.^{18,19} Other herpesviruses also use NRP1 57 as a fusion protein receptor.^{11,12,20} Therefore, the function of NRPs in viral entry is often 58 59 associated with enveloped virus fusion regardless of the CendR.

60 In this study, we identified NRP1 as an entry receptor for nonenveloped reovirus and investigated functions of NRP1 in reovirus pathogenesis. Reovirus encapsidates a 61 segmented, double-stranded RNA genome in a double-layered icosahedral capsid shell 62 composed of eight capsid proteins.²¹ With a robust reverse genetics system.²² reovirus 63 is a well-established experimental system to study nonenveloped virus receptor 64 engagement, internalization, and disassembly.²³ Reovirus has a broad host range in 65 mammals^{21,24} and has been linked to celiac disease in humans.^{25,26} In mice, reovirus 66 establishes primary infection in the intestine and disseminates to sites of secondary 67 infection, including the CNS, by hematogenous or neural routes.^{21,24} Reovirus 68 69 dissemination pathways and neurovirulence are extraordinarily dependent on viral serotype,²⁴ which is likely regulated by serotype-specific neural receptors. We have 70 71 identified several attachment factors and receptors for reovirus and found that reovirus 72 entry involves discrete virus-receptor pairs, which influence viral pathogenesis at multiple steps.²⁷⁻³⁵ However, how reovirus receptors regulate neuropathogenesis 73 74 remains largely unknown.

75 In a previous genome-wide CRISPR screen for host factors that promote reovirus infection, murine NRP1 (mNRP1) emerged as a top candidate³⁶. Here, we validated 76 mNRP1 as a reovirus receptor and investigated the function of mNRP1 in reovirus cell 77 entry and pathogenesis. We discovered an unusual virus-receptor interaction 78 79 mechanism characterized by high-affinity, multi-valency, and host specificity, in which distinct viral capsid subunits bind multiple NRP1 extracellular domains. Our findings 80 81 indicate that NRPs can function in fusion-independent entry of nonenveloped viruses 82 and demonstrate that NRP1 contributes to viral dissemination, replication in the CNS,

and neurovirulence in mice. This work highlights reovirus as an experimental model to
investigate mechanisms of NRP-mediated viral entry and its significance in viral

85 pathogenesis.

86

87 **RESULTS**

88

89 mNRP1 promotes reovirus binding and infection

In a previous whole-genome CRISPR-knockout (CRISPR-KO) screen, CRISPR-edited 90 91 mouse microglial BV2 cells were infected with prototype reovirus strains type 1 Lang (T1L) or type 3 Dearing (T3D), and gene candidates promoting infection were identified 92 from surviving cells.³⁶ NRP1 was identified as the top proviral gene candidate in the 93 94 screen using strain T3D. We validated these results using NRP1-targeting sgRNAs to eliminate expression of NRP1 in BV2 cells (Figure S1A) and observed that T3D 95 infection was significantly attenuated in cells lacking NRP1, while T1L infection was not 96 97 altered (Figures 1A and S1B).

CRISPR-KO screens often identify essential viral entry factors, including viral
 receptors.^{37,38} If murine NRP1 (mNRP1) serves as a reovirus receptor, overexpression
 of mNRP1 cDNA in nonsusceptible CHO cells that lack reovirus receptors should
 promote reovirus binding and infection.²⁷ Concordantly, transient mNRP1 expression
 promoted T3D but not T1L infection, suggesting that mNRP1 functions as a receptor for
 reovirus T3D (Figures 1B and S1C). In these experiments, human NRP1 (hNRP1) and
 NRP2 paralogs did not promote reovirus infection.

105 To determine whether reovirus binds to mNRP1-expressing cells, we used non-106 sialic-acid-binding (SA-) viruses (T1LSA- and T3DSA-) to eliminate attachment to sialylated cell-surface proteins as a potential confounding variable²⁷ (Figures 1C and 107 108 S1D). mNRP1 overexpression promoted robust T3DSA- virus binding and modest 109 T1LSA- binding, whereas hNRP1 overexpression did not efficiently promote binding of 110 either reovirus strain. Virus binding to and infectivity of mNRP1-expressing cells was 111 blocked by preincubating cells with either mNRP1-specific antibody (Figures 1D-E) or 112 NRP1 ligand VEGF (Figure 1F) as well as preincubating reovirus with recombinant 113 mNRP1 (Figure 1G). These data support the specificity of mNRP1 in promoting 114 reovirus binding and infection. mNRP1 also promoted infection by another reovirus 115 strain, type 3 Abney (also called T3C87), but not the other type 3 strains tested³⁹ 116 (Figure S2), suggesting that the recognition of mNRP1 is strain-specific and not serotype-specific. Collectively, ectopically expressed mNRP1 specifically promotes 117 118 reovirus T3D binding and infection, suggesting that mNRP1 is a reovirus receptor. 119

120 Biophysics of reovirus-NRP1 interactions

To determine whether reovirus directly binds to mNRP1, we analyzed the reovirus NRP1 interaction using a biophysical approach. In precipitation assays using
 recombinant receptors, T3DSA- virions were efficiently bound by mNRP1 but not
 hNRP1, while T1LSA- virions were not bound by either receptor (Figure 2A). To further
 investigate the kinetics and thermodynamics of the reovirus-NRP1 binding complex,, we
 used atomic force microscopy (AFM) to quantify virion-NRP1 interactions at the single molecule level. AFM tips covalently functionalized with T3DSA- virions were moved

cyclically toward and away from an mNRP1-coated surface, which allows virus-receptor
bonds to form and break (Figure 2B). Force-distance (FD) curves measuring adhesion
events were collected, and binding frequencies (BF) were calculated. In these
experiments, T3DSA- virions bound specifically to mNRP1-coated surfaces (Figure
2C). Virus binding was significantly reduced by preincubation with VEGF, consistent
with results using NRP1-expressing cells (Figure 1F), but preincubation with mNRP1specific mAb did not decrease binding.

To quantify reovirus-mNRP1 binding kinetics, the rupture force of the complex 135 was probed at different loading rates⁴⁰ (**Figures 2D** and **S3**), as previously 136 described.^{27,41-43} The data were fit with the Bell-Evans model of mono-bond interactions, 137 which assumes that the energy landscape governing the bond rupture can be 138 approximated by a simple potential energy barrier ^{44,45} and allows the extraction of 139 140 kinetic parameters of molecular interactions such as the dissociation rate (k_{off}) and 141 distance to the transition state (x_u) (Figure 2E). For the T3DSA- reovirus-mNRP1 142 complex, the estimated k_{off} (0.15 ± 0.12 s⁻¹) and x_u (0.92 ± 0.08 nm) values indicate 143 formation of a stable complex with large conformational variability. We extracted the association rate (kon) by monitoring the binding frequency versus the contact time⁴⁶ (kon 144 = 39.30 \pm 6.85 μ M⁻¹ s⁻¹) and observed an equilibrium dissociation constant (K_D = 3.89 \pm 145 146 3.69 nM) (Figure 2E), indicating a high-affinity interaction between T3DSA- and mNRP1. 147

We also detected significant binding of T3DSA- to a recombinant hNRP1-coated model surface (**Figure S4**), which was only weakly detectable in the cell-based binding (**Figures 1C**) and precipitation assays (**Figure 2A**). T3DSA- binding to hNRP1 was

151 similarly fit with the Bell-Evans model and estimated to have a comparable dissociation 152 constant (K_D = 4.18 ± 2.86 nM) to that of mNRP1 but strikingly diminished k_{on}, 153 suggesting different binding kinetics, which may explain the discordant binding results. 154 The physiological relevance of reovirus-NRP1 binding was further tested by 155 probing the complex on living cells expressing fluorescent-reporter mNRP1 (mNRP1⁺) (Figure 2F). Binding to mNRP1⁺ cells was compared with binding to adjacent mNRP1⁻ 156 cells (Figure 2G). T3DSA- specifically bound mNRP1⁺ cells (Figures 2H-I and S5). 157 Rupture-force curves derived from mNRP1⁺ cells were overlaid on those from model 158 159 surfaces (Figure 2J; blue data points) and plotted as a histogram (Figure 2K). Data 160 from model surfaces and living cells were concordant, although higher-ranged rupture 161 forces representing potential multivalency were more frequent in the experiments with 162 living cells. We used the Williams-Evans model to predict forces associated with rupture 163 of simultaneous uncorrelated bonds (Figure 2J; red dashed line, I-VI), which showed a 164 strong match with force peaks obtained using living cells (Figures 2J-K), suggesting 165 that high-ranged forces correspond with the establishment of simultaneous bonds 166 between virions and multiple receptor molecules. Such multivalent reovirus-NRP1 167 interactions may be favored on cell membranes. Overall, these biophysical data demonstrate specific and high-affinity interactions between reovirus T3D and mNRP1 at 168 169 a single-molecule level and in a more complex live-cell system.

170

171 **Reovirus-NRP1 interactions require multiple NRP1 extracellular domains**

172 mNRP1, but not its human homolog, functions as a reovirus receptor. To define NRP1

domains involved in the interaction, we reciprocally exchanged the five extracellular

174 domains (a1, a2, b1, b2, and c) between murine and human homologs to construct 175 chimeric receptors^{3,5} (Figure 3A). We reasoned that exchanging domains required for reovirus binding should produce a phenotypic switch between mNRP1 and hNRP1. 176 177 Murine and human NRP1 homologs share substantial amino acid identity (~ 93%) in the 178 extracellular region, suggesting that reciprocal exchange of homologous domains 179 should maintain structural stability and surface expression. As anticipated, surface 180 expression of the chimeric receptors was comparable (Figure 3B), with the exception of hNRP1 with the mNRP1 a1 domain (hNRP1-ma1). We first assessed the chimeric 181 182 receptors for reovirus-binding capacity (Figure 3C). For mNRP1 chimeras, a2 or c 183 domain exchange (mNRP1-ha2, -hc) did not diminish reovirus binding relative to WT 184 mNRP1. In contrast, b1 or b2 domain exchange (mNRP1-hb1, -hb2, -hb1b2) diminished 185 reovirus binding. For hNRP1 chimeras, substitution of the a2, b1, or b2 domain (hNRP1-186 ma2, -mb1, -mb2, -mb1b2) increased reovirus binding relative to WT hNRP1. In 187 contrast, a1 or c domain exchange (hNRP1-ma1, -mc) did not alter binding. These 188 results suggest that multiple mNRP1 domains are required for binding reovirus. 189 We then determined the effect of NRP1 domain exchange on reovirus infectivity 190 (Figure 3D). For mNRP1 chimeras, infectivity was decreased when b1 or b2 were 191 exchanged (mNRP1-hb1, -hb2, -hb1b2). As expected, exchange of hNRP1 b1 or b2 (hNRP1-mb1, -mb2, -mb1b2) enhanced infectivity. Due to the importance of the NRP1 192 193 b1 domain in reovirus infection (Figures 3C-D), we tested the effect of CendR inhibitors 194 on reovirus infection of NRP1-expressing cells (**Figure S6**). Not surprisingly, as a 195 nonenveloped virus, reovirus infection was not diminished by treatment with small-196 molecule inhibitors of furin and the b1 domain, suggesting that reovirus-NRP1

interactions do not follow the CendR. Furthermore, the mNRP1-specific mAb that blocks
reovirus binding to cells (Figure 1D-E) binds to the b1 domain (Figure S7). Collectively,
these results indicate that mNRP1 domains b1 and b2 are required for reovirus binding
and infection in manner independent of the CendR.

201 We also used NRP1 domain-deletion mutants as a complementary approach to 202 define domains required for reovirus binding (Figure 3E). Deletion of mNRP1 a1 or c, which are not contained in the structurally rigid a2-b1-b2 core,^{47,48} did not alter receptor 203 204 expression relative to WT (Figure 3F). Concordant with diminished reovirus binding of 205 the a1 exchange (mNRP1-ha1) (**Figure 3C**), deletion of a1 (Δ a1) substantially 206 attenuated reovirus binding (Figure 3G) and infection (Figure 3H). In contrast, deletion of the c domain only slightly decreased reovirus binding and did not alter infection 207 208 (Figures 3G-H). Collectively, these results indicate an essential role for the mNRP1 a1 209 domain in interactions with reovirus.

210

211 **Reovirus interactions with NRP1 require multiple capsid proteins**

212 The reovirus outer capsid is composed of heterohexamers of $\sigma 3$ and $\mu 1$ proteins, in 213 which $\mu 1$ is a pedestal for $\sigma 3$, and $\sigma 1$ trimers embedded into $\lambda 2$ pentamers at the 214 icosahedral fivefold vertices²¹ (Figure 4A, schematic). To identify the surface-exposed capsid proteins that bind mNRP1, we reciprocally exchanged gene segments encoding 215 216 the $\lambda 2$, $\sigma 1$, and $\sigma 3$ proteins (L2, S1, and S4, respectively) of strains T1L and T3D using reverse genetics²² (Figure 4A, table). We hypothesized that exchanging essential 217 218 capsid protein-encoding gene segments of T3D with non-essential gene segments of 219 T1L would decrease infection of mNRP1-expressing cells and vice versa. For T3D

220 reassortants, L2 (λ2) exchange (T3D-T1L L2, -T1L L2+S1, and -T1L L2+S4) resulted in 221 complete loss of infectivity (**Figure 4B**), suggesting that $\lambda 2$ is required for NRP1-222 mediated reovirus infection. Conversely, S1 (σ 1) or S4 (σ 3) exchange (T3D-T1L S1, -223 T1L S4, and -T1L S1+S4) did not dampen infectivity. For T1L reassortants, S1 (σ 1) or 224 S4 (σ 3) exchange (T1L-T3D S1, -T3D S4, and -T3D S1+S4) did not increase infectivity 225 (Figure 4C). In contrast, L2 (λ 2) exchange (T1L-T3D L2 or -T3D L2+S1) resulted in a 226 modest infectivity increase, with L2+S4 (λ 2+ σ 3) dual-exchange (T1L-T3D L2+S4) 227 producing the most substantial increase in infectivity. Collectively, these results suggest 228 that both $\lambda 2$ and $\sigma 3$ of strain T3D are required to bind NRP1, and $\lambda 2$ may be more 229 important for the interaction.

230 To better understand the function of $\sigma 3$ in NRP1-mediated reovirus infection, we 231 tested the interaction of mNRP1 with infectious subvirion particles (ISVPs), a reovirus 232 disassembly intermediate^{21,23} (Figures 4D-E). ISVPs are formed by the proteolytic removal of σ 3 from virions during viral disassembly, while the integrity and conformation 233 234 of $\lambda 2$ are maintained.^{21,23} T3D virions and ISVPs infected cells expressing $\sigma 1$ receptor 235 JAM-A, while only virions infected mNRP1-expressing cells (Figure 4D). Moreover, 236 recombinant mNRP1 did not capture ISVPs in precipitation assays (Figure 4E), 237 suggesting an essential role for σ 3 in the interaction with mNRP1. Indeed, mNRP1 238 bound T3D σ 3 in precipitation assays (**Figure 4F**) and did so with a ~ 25-fold higher 239 affinity than hNRP1 ($K_D = 2 \text{ nM vs } 49 \text{ nM}$), as assessed by biolayer interferometry (BLI) 240 (Figures 4G-H). This finding helps explain differences in reovirus infection of cells 241 expressing murine and human NRP1 homologues. Consistent with AFM results using 242 virions and model surfaces (**Figure 2C**), the σ 3-NRP1 interaction was blocked by VEGF

243 (**Figure S8**). Collectively, these results indicate that outer-capsid protein σ 3 of strain

244 T3D directly engages NRP1 and demonstrate an essential role of capsid turret protein

245 $\lambda 2$ in strain-specific NRP1-mediated reovirus infectivity.

246

258

260

262

247 Capsid turret protein $\lambda 2$ contributes to NRP1 binding and is required for NRP1-

248 mediated reovirus infection

Reovirus λ2 proteins form pentameric turrets at the virion icosahedral fivefold vertices ⁴⁹⁻ 249

250 ⁵¹, at which $\lambda 2$ and peripentameric $\mu 1_3 \sigma 3_3$ heterohexamers may form a substructure to

251 bind NRP1 (**Figure 5A**). The λ 2 turret is the viral mRNA-capping enzyme and

252 incorporates a guanylyltransferase (GTase) domain, two methyltransferase (MTase)

domains (2'-O-MTase and N7-MTase), and a C-terminal Flap domain⁴⁹ (Figure 5B). 253

254 The MTase and Flap domains are partially surface-exposed (Figures 5C and S9).

Since $\lambda 2$ is essential for reovirus infection of mNRP1-expressing cells (Figure 4B), it is 255 possible that polymorphic surface-exposed residues at the MTase and Flap domains 256

257 dictate differences in interactions with mNRP1 (Figure 5C and Table S1). We chose

259 analysis (Figures 5C-D). The five residues selected in the Flap domain are adjacent to

seven and five residues in the N7-MTase and Flap domains, respectively, for further

an integrin-binding motif (IBM).^{35,52} Two IBMs are located within the N7-MTase and Flap

domains (Figures 5B-C and S9), of which the surface-exposed IBM motif (KGE) in the 261

Flap domain is required for integrin binding.³⁵ This motif is distal to the σ 1 encapsidation

263 pore formed by assemblies of the Flap domain (Figures 5C and S9), suggesting that

264 this region of the Flap domain is sterically accessible for receptor binding and may

265 engage NRP1.

266 To test this hypothesis, we classified surface-exposed polymorphic residues 267 based on domain distribution and reciprocally exchanged polymorphic residues 268 between T1L and T3D λ 2 (**Figure 5D**). Regions containing residues-of-interest in λ 2 269 Flap and N7-MTase domains were annotated as region I (R I) and region II (R II), 270 respectively. We first analyzed the infectivity of mutant viruses using mNRP1-271 expressing cells (**Figure 5E**). Substitutions in λ^2 region I or II (R I or R II) of T3D 272 decreased infectivity. These results correlate well with infectivity data using T1L x T3D 273 reassortants (**Figure 4B**), as a T1L mutant virus (λ 2 R I-II + σ 3-T3D), engineered with 274 T3D λ 2 residues in region I and II and a T3D-derived σ 3-encoding S4 gene, gained the 275 capacity to infect mNRP1-expressing cells. We then analyzed effects of $\lambda 2$ polymorphic 276 residue substitution on T3D-NRP1 binding (**Figures 5F-G**). Substitutions in λ 2 region II 277 (λ 2 R II) modestly diminished binding, whereas the combination of λ 2 region I and II (λ 2 R I-II) substitutions decreased T3D-NRP1 binding more significantly. In contrast, a T1L 278 279 mutant with T3D λ 2 polymorphic residues and a T3D σ 3 protein (λ 2 R I-II + σ 3-T3D) 280 gained the capacity to bind mNRP1. Additionally, infectivity (Figure 5E) and in vitro 281 binding (Figures 5F-G) results suggest that residues in region II of the N7-MTase 282 domain appear to contribute more substantially to the mNRP1-binding interaction than 283 residues in region I of the Flap domain. Thus, the σ 1-distal region of the λ 2 turret may 284 serve as an NRP1-binding interface (Figures 5C and S9). Disrupting the potential 285 binding interface on $\lambda 2$ abolished infectivity but only diminished NRP1 binding, 286 suggesting that the capsid turret protein $\lambda 2$ regulates an essential early step in NRP1-287 mediated viral infection, such as internalization into the endocytic pathway. 288

289 Sequences in outer-capsid protein σ 3 required for NRP1 binding

290 To understand how σ 3 binds NRP1, we analyzed the distribution of σ 3 polymorphic residues in the substructure formed by $\lambda 2$ and peripentameric $\mu 1_3 \sigma 3_3$ heterohexamers 291 292 (**Figure 6A** and **Table S2**) and classified σ 3 polymorphic residues into three patches 293 (patches [P] I, II, and III). To identify the patch that influences NRP1 binding, we 294 substituted polymorphic residues within each patch of T3D σ 3 with corresponding T1L 295 residues (Figures 6B-C) and analyzed infectivity using NRP1-expressing cells (Figure 296 6D) and mNRP1-binding capacity (Figure 6E). A T3DSA- reassortant virus with a T1L 297 σ 3 (σ 3-T1L) was used as a loss-of-function control. Substitutions in both patch I and III 298 $(\sigma 3 \text{ P I-III})$ significantly decreased infectivity (**Figure 6D**), which was reduced to a level 299 comparable to that of the T1L S4 reassortant (σ 3-T1L). Since polymorphic residue 300 substitutions in $\lambda 2$ only partially disrupted mNRP1 binding (**Figures 5F-G**), we 301 introduced $\lambda 2$ residue substitutions (R I-II) into the T3D $\sigma 3$ mutant viruses to construct a virus that should be incapable of binding mNRP1 (mNRP1-blind) (Figure 6C) and 302 303 tested the effect on mNRP1-binding capacity (Figures 6E and S10A). Infectivity results 304 were largely concordant with binding results. No obvious effect was observed by 305 substitutions in σ 3 patch II, whereas polymorphic residues in σ 3 patch I, which is most 306 proximal to the putative binding interface in $\lambda 2$, modestly altered NRP1 binding. In 307 contrast, polymorphic residues in σ 3 patch III contribute more substantially to mNRP1 308 binding, as incorporation of substitutions in $\lambda 2$ ($\sigma 3 P$ I-III + $\lambda 2 R$ I-II) further reduced 309 mNRP1-binding capacity to the level of background (Figures 6E and S10A). Therefore, this T3DSA- mutant (σ 3 P I-III + λ 2 R I-II) was considered to be mNRP1-blind. 310 311 Reciprocal exchange of the polymorphic residues in σ 3 patch III alone between T1L and

T3D (**Figure 6F**) further confirmed the importance of patch III for NRP1-mediated infectivity (**Figure 6G**) and mNRP1-binding capacity (**Figures 6H** and **S10B**). These results indicate that interactions with mNRP1 are regulated by polymorphic residues in outer-capsid protein σ 3, which may belong to distinct σ 3 protomers in the μ 1₃ σ 3₃ heterohexamer (**Figure 6A**).

317

318 NRP1 contributes to reovirus dissemination and neurovirulence in mice 319 Neurotropic reovirus disseminates using hematogenous and neural routes to infect neurons in the CNS and cause lethal encephalitis.²⁴ Expression of NRP1 by vascular, 320 321 immune, and nervous system cells suggests that this receptor contributes to reovirus 322 dissemination and neuropathogenesis. We first tested T3D infection of primary cortical 323 neurons and observed decreased infectivity following preincubation of cells with 324 mNRP1-specific mAb (Figures 7A and S11A). We then tested infectivity of neurons by 325 NRP1-binding mutants (NBMs) including the loss-of-function λ^2 mutant (R I-II) and the 326 dual σ 3 and λ 2 mutant (P I-III + R I-II) (**Figures 7C-D**), which were re-named NBM1 and 327 NBM2 for convenience. NBM1 has attenuated NRP1-binding capacity and does not 328 infect NRP1-expressing cells (Figures 5E-G), while NBM2 is NRP1-blind (Figure 6E). 329 As an important control, NBM1 and NBM2 are capable of infecting JAM-A-expressing 330 L929 cells and produce titers comparable to those of WT virus (Figure 7B). Concordant 331 with the antibody-blockade effects, NBMs showed reduced infectivity (Figures 7C and 332 **S11B**) and replication (Figure 7D) following inoculation of primary neurons, which 333 suggests a potential function for NRP1 in reovirus replication in the nervous system.

Since embryonic development requires NRP1,^{1,2} we compared replication 334 335 capacity and virulence of WT and NBM viruses to determine whether NRP1 functions in 336 reovirus pathogenesis (Figures 7E-G). We first analyzed viral replication and virulence 337 following intracranial inoculation (Figures 7E-F), which circumvents dissemination 338 routes and allows establishment of infection directly in the CNS. Viral titers in the brain 339 of NBM-inoculated mice were significantly lower than those of WT virus (Figure 7E). Mice inoculated with NBM viruses also had improved survival relative to those 340 341 inoculated with WT virus (Figure 7F). These results suggest that NRP1 is required for 342 maximal reovirus replication and full neurovirulence in mice. We tested whether NRP1 343 expression influences reovirus neurotropism by analyzing the distribution of viral antigen 344 in the brain of inoculated mice (Figure S12). In these experiments, NBM and WT 345 viruses infected similar brain regions in samples with comparable viral loads, suggesting 346 that NRP1 does not influence reovirus neurotropism.

Systemic pathogen infection requires (i) traverse of physiological barriers 347 348 separating blood and tissue^{53,54} or (ii) transit through nerves innervating peripheral tissues to reach distant sites.^{53,54} To investigate whether NRP1 contributes to reovirus 349 350 hematogenous or neural dissemination, we inoculated mice intramuscularly with WT or 351 NBM viruses (Figure 7G). Intramuscular inoculation was used in these experiments due to the relative instability of strain T3D in the proteolytically active intestinal lumen.^{55,56} 352 353 Tissues were harvested at early (2 days post-inoculation [DPI]), medium (4 DPI), and 354 late (8 DPI) stages of infection. Viral titers in the blood (viremia) of NBM-inoculated mice 355 were significantly lower than those of WT virus, suggesting that NRP1 contributes to 356 hematogenous dissemination (Figure 7G). In addition, viral titers in the spinal cord and

brain of NBM-inoculated mice were significantly lower than those of WT virus at 2 and 4
DPI, which provides further evidence of a function for NRP1 in viral dissemination from
muscle to the CNS. Following intramuscular inoculation, virus in the spinal cord at early
and medium timepoints is mainly attributable to neural dissemination.⁵³ Therefore, it is
possible that NRP1 also contributes to neural dissemination, consistent with a function
for NRP1 in reovirus infection of neurons (Figure 7A and 7C-D).

363 NBM2, which is incapable of binding NRP1, had the most attenuated phenotypes 364 in replication and virulence in mice (**Figures 7E-G**), while NBM1 had more intermediate 365 phenotypes. The correlation between NRP1-binding capacity and pathogenicity further 366 underscores the importance of NRP1 in reovirus pathogenesis. Collectively, these data 367 demonstrate that NRP1 contributes to reovirus dissemination, replication in the CNS, 368 and neurovirulence.

369

370 **DISCUSSION**

371

372 In this study, we identified NRP1 as a reovirus receptor and present biophysical and 373 functional characterization of reovirus-NRP1 interactions. Our work establishes reovirus as a nonenveloped virus that uses NRP1 as a receptor and uncovers an unusual virus-374 receptor interaction mechanism, in which reovirus-NRP1 binding appears to be a step-375 376 wise process orchestrated by multiple interactions between distinct viral capsid subunits 377 and NRP1 domains. Investigation of the biophysical dynamics of NRP1-mediated 378 reovirus infection expands an understanding of multi-faceted ligand-NRP interactions 379 and will contribute to studies of ligand-induced NRP endocytosis and signaling. We

further discovered that NRP1 is a receptor for reovirus dissemination and
 neurovirulence, providing experimental support for a function of NRPs in viral
 pathogenesis.⁶ Collectively, our studies establish reovirus as a model to investigate
 mechanisms by which viruses use NRPs as entry receptors.

384 Viruses interact with NRPs using different mechanisms and do not always follow the canonical CendR. The SARS-CoV-2-NRP1 interaction is CendR-dependent,⁷⁻⁹ as 385 386 furin cleavage at the spike protein S1-S2 junction exposes the S1 C-end motif to bind the NRP1 b1 domain and primes S2 for membrane fusion. Some enveloped viruses 387 388 with furin-activated fusion machinery have converged on similar requirements for NRPs as co-receptors.⁶ However, binding of hCMV to NRP2 is CendR-independent.^{18,19} The 389 390 NRP2 a2, b2, and possibly a1 domains bind the hCMV pentamer. Even though the b1 391 domain is not engaged, pentamer-NRP2 binding may achieve an effect comparable to 392 furin-activated fusion, which possibly uncouples the pentamer from the gB protein and 393 subsequently activates gB to initiate the fusion process. NRP1 also serves as a receptor for gB of other herpesviruses,^{11,12,20} indicating that NRP binding is associated with 394 395 fusion during enveloped virus entry independent of CendR use. Here, we demonstrate 396 that NRPs also can serve as receptors for nonenveloped viruses. Reovirus-NRP1 397 binding requires the NRP1 a1, b1, and b2 domains (Figure 3), and the engagement of the b1 domain does not require the CendR (Figure S7), which differs from the SARS-398 399 CoV-2-NRP1 interaction. Moreover, a1-b1-b2 engagement differs from another CendR-400 regulated multiple-domain binding mode, exemplified by the NRP1-plexinA4-sema3a complex,¹⁷ which additionally involves a1 and a2 domains. Therefore, the reovirus-401 402 NRP1 binding mechanism further diversifies ligand-NRP interaction strategies. Our

study also shows that NRP1 binding can mediate fusion-independent entry of
nonenveloped viruses, which expands the utility of NRPs as viral entry receptors.

405 We propose a step-wise model of reovirus-NRP1 interactions (Figure S13) in 406 which the unbound NRP1 extracellular region adopts an "upright" conformation (i) 407 containing a structurally rigid a2-b1-b2 core as well as a1 and c domains with a more flexible orientation.^{17,47} In the initial contact, we think reovirus σ 3 patch III residues bind 408 409 the NRP1 a1 domain (ii), subsequently triggering a conformational change in NRP1 to 410 expose the b1-b2 domains to bind both σ 3 and λ 2 (iii). The broad contact interface 411 ensures a strong and stable interaction to trigger ligand uptake. Long and disordered 412 linkers in the NRP1 extracellular region¹⁷ ensure conformational flexibility. Unlike SARS-CoV-2 and hCMV, which bind NRP with protruding envelope proteins,⁷⁻⁹ the reovirus-413 414 NRP1 interaction requires minimally-protruding outer-capsid protein σ 3 and pedestal 415 protein $\lambda 2$. Our reovirus-NRP1 interaction model explains functions of the NRP1 a1, b1, 416 and b2 domains and the engagement of structurally distinct capsid subunits and 417 provides guidance for future structural analysis, which will confirm the direct contact between $\lambda 2$ protein with NRP1 domains and elucidate the reovirus-NRP1 binding 418 419 kinetics.

Broad NRP tissue expression raises the possibility that these receptors function in viral dissemination and tissue tropism.^{1,2,4} Previous studies provide some information about the roles of NRPs in viral infection of specific cell types.⁶ For example, NRP1 may influence susceptibility of nasopharyngeal epithelial cells to Epstein-Barr virus infection,¹¹ mesenchymal stem cells to Kaposi's sarcoma-associated herpesvirus infection,¹² and astrocytes and neurons to SARS-CoV-2 infection.^{57,58} NRP2 may be

used as a receptor for hCMV infection of epithelial and endothelial cells.¹⁰ However, the 426 427 roles of NRPs in viral pathogenesis remain largely unknown. Reovirus is a genetically tractable model to study virus-host interactions. Diversity in receptor use and 428 pathological phenotype can be ascribed to specific viral gene segments,^{27,28,43,59} which 429 enabled determination of the reovirus proteins required for NRP1 binding (Figures 4A-430 **C**). Furthermore, high-resolution structures of reovirus capsid proteins^{49-51,60,61} allowed 431 432 for molecular modeling and engineering of viral mutants incapable of binding NRP1 (Figures 5-6). These mutants were instrumental in elucidating functions of NRP1 in viral 433 434 pathogenesis (Figure 7). Our findings indicate that NRP1 is required for efficient 435 reovirus dissemination and full neurovirulence, which may be functions of NRP1 shared 436 by other neurotropic viruses.

437 Neurotropic reovirus disseminates using hematogenous and neural routes. Our finding that NRP1 contributes to reovirus dissemination raises several important 438 439 questions. For hematogenous dissemination, it is unclear (i) whether NRP1 facilitates 440 viral entry at the basolateral surface of endothelial cells for release of viral progeny from the apical surface,⁵⁴ similar to the function of JAM-A in reovirus dissemination,^{62,63} and 441 442 (ii) whether NRP1 allows virus to bind or invade leukocytes for bloodstream 443 dissemination.⁵⁴ For neuronal dissemination, it is not known whether the distribution of 444 NRP1 in neurons (cell body, dendrite, axon, or synapse) regulates interneuronal transmission.⁶⁴ Use of *in vitro* models of physiological barriers⁵⁴ and synapses⁶⁵ should 445 446 allow genetic ablation of NRP1 expression to define how NRP1 regulates viral dissemination. 447

448 Reovirus σ 1 fibers bind endothelial receptor-JAM-A for hematogenous dissemination³⁰ and unidentified serotype-specific neural receptors for neurotropism.⁵⁹ 449 450 However, reovirus capsid proteins other than σ 1 bind receptors that maximize the 451 efficiency of reovirus infection of neurons and contribute to neurovirulence. The reovirus σ 3 protein binds to human NgR1,⁴³ murine PirB,²⁷ and murine NRP1 (this study), which 452 are required for efficient neuronal infection. From infection studies using mice, we 453 hypothesize that PirB and NRP1 function to accelerate the establishment of infection in 454 455 the CNS. Following intracranial inoculation or dissemination from peripheral sites, 456 physiological barriers and antiviral immune responses may constrain reovirus infection 457 in the CNS and subsequent interneuronal spread. PirB and NRP1 may allow reovirus to 458 overcome these bottlenecks, perhaps by enhancing viral entry into neurons or 459 transmission across synapses. Our hypothesis is supported by the functions of non- $\sigma 1$ receptors in reovirus replication and pathology in the CNS²⁷ (Figures 7E-F). In the case 460 461 of NRP1, NBMs replicate less efficiently in the murine brain at early times following 462 inoculation but eventually reach titers comparable to WT virus in some mice at later times. Mice inoculated with either WT or NBM viruses show neuropathological signs at 463 464 8-13 DPI. However, the enhanced survival of NBM-inoculated mice relative to those 465 inoculated with WT virus suggests that NBM viruses overcome replication bottlenecks inefficiently, as shown by mice with low viral loads in the brain at 8 DPI. Therefore, we 466 467 conclude that non- σ 1 receptors maximize reovirus replication and neurovirulence. The reovirus σ 1 trimer has the potential to extend ~ 400 Å from the virion 468

469 surface,⁶⁶ which may sterically hinder $\lambda 2$ binding to the ~ 160 Å NRP1 ectodomain.⁶⁷ 470 This hypothetical constraint may be alleviated by the relatively low $\sigma 1$ encapsidation

efficiency of strain T3D relative to strain T1L,⁶⁸ which may increase access to the non-471 472 protruding capsid proteins required for NRP1 binding. This hypothesis is supported by our observation that gain-of-function mutations in T1L failed to increase NRP1-binding 473 474 capacity and infectivity to that of T3D (Figures 5E-G and 6G-H). Moreover, the potential 475 functional redundancy of NRP1 and σ 1 receptors in endothelial and neuronal cells may 476 allow NRP1 to be a receptor for certain neurotropic reovirus strains with low $\sigma 1$ 477 encapsidation efficiency.⁶⁹ This hypothetical trade-off of σ 1 encapsidation efficiency and 478 NRP1 binding rationalizes the engagement of NRP1 as a co-receptor for viral entry and 479 provides an evolutionary explanation for its function in pathogenesis.

480 Mammalian orthoreovirus is a generalist pathogen with a broad mammalian host 481 range including humans. Acquisition of the capacity to bind a conserved receptor like 482 NRP1 may lower cross-species transmission barriers. Pathological outcomes of viral infection often exert selective pressure on host receptors.⁷⁰ NRP1 is the third identified 483 host-specific receptor for reovirus.²⁷⁻²⁹ suggesting that reovirus influences the 484 485 evolutionary trajectory of receptor proteins. Reovirus also may balance host-to-host 486 transmission and virulence by using different entry receptors during co-evolution with 487 different host species. Structure-guided evolutionary analysis of reovirus-receptor 488 interactions will help define viral and host factors governing genetic resistance or 489 susceptibility to reovirus infection in mammals, facilitate assessment of the epidemic 490 potential of reovirus variants, and foster countermeasure development.

491 ACKNOWLEDGEMENTS

492

493 We are grateful to members of the Alsteens, Dermody, and Prasad laboratories for 494 many useful discussions. We thank the UPMC Children's Hospital of Pittsburgh Flow 495 Cytometry Core for flow cytometry assistance. We thank Dr. Neetu Neetu and Dr. B. V. 496 Venkataram Prasad from Baylor College of Medicine for assisting protein docking 497 simulations. This work was supported by U.S. Public Health Service award R01 AI174526 498 499 (P.S., O.L.W., D.M.S., and T.S.D.), UPMC Children's Hospital of Pittsburgh (P.S.), and 500 the Heinz Endowments (T.S.D.). Additional support was provided by the Université 501 catholique de Louvain, the Fonds National de la Recherche Scientifique (F.R.S.-FNRS), 502 the European Union (ERC, SingViroPhys, Project 101088316), and the FNRS-Welbio

(grant number CR-2019S-01). D.A. is a Senior Research Associate of the FNRS. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

506

507 AUTHOR CONTRIBUTIONS

508

509 P.S. conceived, designed, and conducted experiments, analyzed data, contributed

510 materials and analytic tools, and drafted the paper. R.D.S.N., A.R., and D.A. conceived

- and designed experiments, contributed materials and analytic tools, and analyzed data.
- 512 G.M.T., O.L.W., K.F., and D.M.S. conceived, designed, and conducted experiments.

- 513 T.S.D. conceived and designed experiments, analyzed data, and drafted the paper. All
- authors reviewed, critiqued, and provided comments on the manuscript.

515

516 **DECLARATION OF INTERESTS**

- 517
- 518 The authors declare no competing interests.

519 STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Cells		
Murine L929 fibroblast cells	Lab preservation	N/A ^a
Chinese hamster ovary (CHO) cells	Lab preservation	N/A
Murine microglial BV2 cells	Lab preservation	N/A
Baby hamster kidney (BHK) cells		
stably expressing T7 polymerase	Lab preservation	N/A
(BHK-T7)		
Primary murine cortical neurons	Current study	N/A
Antibodies		
Rat anti-mouse NRP1 mAb	Biolegend	Cat #145202
Mouse anti-human NRP1 mAb	Biolegend	Cat #354502
Rat PE anti-mouse NRP1 mAb	Biolegend	Cat #145204
PE Rat IgG2a, κ isotype control	Biolegend	Cat #400508
Mouse APC anti-human NRP1 mAb	Biolegend	Cat #354505
Purified rat IgG2a, κ isotype control	Biolegend	Cat #400502
Purified mouse IgG2a, κ isotype	Biolegend	Cat #400202
control	Diolegena	
Goat anti-rat IgG (H+L) cross-		
adsorbed secondary antibody, Alexa	Thermo Fisher	Cat #A-11006
Fluor™ 488		
Goat anti-mouse IgG (H+L) highly		
cross-adsorbed secondary antibody,	Thermo Fisher	Cat #A-11029
Alexa Fluor™ 488		
Goat anti-rabbit IgG (H+L) highly		
cross-adsorbed secondary antibody,	Thermo Fisher	Cat #A-11034
Alexa Fluor ¹¹¹ 488		0-1 #27250
Rabbit anti-mouse NRPT mAD	Cell Signaling	Cat #37255
Rabbit anti-myc tag mAb	Cell Signaling	Cat #22785
Rabbit anti-reovirus polycional	Lab preservation	N/A
Plasmids		0.4.1/50000
	Addgene	Cat #52963
IentiCRISPRv2-blast-mNRP1	Current study	N/A
	· · · ·	
	Current study	N/A
pCDNA3.1	Lap preservation	N/A

	pCDNA3.1-hJAM-A	Lab preservation	N/A
	pCDNA3.1-hCAR	Lab preservation	N/A
	nVX_Acc_mNRD1	Dharmacon	Cat #MMM1013-
	pTX-ASC-INNICE I	Dhannacon	202859215
	MAC-tag-c-hNrp1	Addgene	Cat #158384
	pCMV3-mNRP2	Sino Biological	Cat #MG57465-UT
_	pCR-Topo-hNRP2	Dharmacon	Cat #MHS6278-
			211687836
	pCDNA3.1-mNRP1	Current study	N/A
	pCDNA3.1-hNRP1	Current study	N/A
	pCDNA3.1-hNRP2	Current study	N/A
	pCDNA3.1-mNRP1-ha1	Current study	N/A
	pCDNA3.1-mNRP1-ha2	Current study	N/A
	pCDNA3.1-mNRP1-hb1	Current study	N/A
	pCDNA3.1-mNRP1-hb2	Current study	N/A
	pCDNA3.1-mNRP1-hb1b2	Current study	N/A
	pCDNA3.1-mNRP1-hc	Current study	N/A
	pCDNA3.1-hNRP1-ma1	Current study	N/A
	pCDNA3.1-hNRP1-ma2	Current study	N/A
	pCDNA3.1-hNRP1-mb1	Current study	N/A
	pCDNA3.1-hNRP1-mb2	Current study	N/A
	pCDNA3.1-hNRP1-mb1b2	Current study	N/A
	pCDNA3.1-hNRP1-mc	Current study	N/A
	pCDNA3.1-mNRP1-Δa1	Current study	N/A
	pCDNA3.1-mNRP1-Δc	Current study	N/A
	pcDNA3.1(+)IRES GFP	Addgene	Cat #51406
	pcDNA3.1(+)-mNRP1-IRES-GFP	Current study	N/A
	T3D and T1L reverse genetic system	Previous study ²²	N/A
	pT7-T3D L2 Flap (R I)	Current study	N/A
	pT7-T3D L2 N7MTase (R II)	Current study	N/A
	pT7-T3D L2 Flap+N7MTase (region		N1/A
	I-II)	Current study	N/A
	pT7-T3D S1 R202W (SA-blind	Current study	NI/A
	mutant)	Current study	N/A
	pT7-T1L S1 S370P/Q371E (SA-	Draviaua atudu ⁵⁹	N/A
	blind)	Previous study**	N/A
	pT7-T1L L2 Flap+N7MTase (R I-II)	Current study	N/A
	pT7-T3D S4 patch I (σ3 P I)	Current study	N/A
	pT7-T3D S4 patch I-II (σ3 P I-II)	Current study	N/A
	pT7-T3D S4 patch I-III (σ3 P I-III)	Current study	N/A
	pT7-T3D S4 patch III (σ3 P III)	Current study	N/A
	pT7-T1L S4 patch III (σ3 P III)	Current study	N/A

Recombinant reoviruses		
WT T3D	Lab preservation	N/A
WT T1L	Lab preservation	N/A
T3DSA- (σ1 R202W/T249I (R202W: SA-blind; T249I: protease-resistant) (only used in cell-based binding assays, ISVP preparation, and AFM assays)	Lab preservation	N/A
T3DSA- (σ1 R202W)	Current study	N/A
T1LSA- (σ1 S370P/Q371F)	Previous study ⁵⁹	N/A
T3D-T1L L2	Current study	N/A
T3D-T1 S1	Current study	N/A
T3D-T1L S4	Current study	N/A
T3D-T1L L2+S1	Current study	N/A
T3D-T1L S1+S4 (also called T3D- RV)	Previous study ²⁵	N/A
T3D-T1L L2+S4	Current study	N/A
T1L-T3D L2	Current study	N/A
T1L-T3D S1	Current study	N/A
T1L-T3D S4	Current study	N/A
T1L-T3D L2+S1	Current study	N/A
T1L-T3D S1+S4	Current study	N/A
T1L-T3D L2+S4	Current study	N/A
T3D λ2 Flap (λ2 R I)	Current study	N/A
T3D λ2 N7MTase (λ2 R II)	Current study	N/A
T3D λ2 Flap+N7MTase (λ2 R I-II)	Current study	N/A
T3DSA- λ2 Flap (λ2 R I)	Current study	N/A
T3DSA- λ2 N7MTase (λ2 R II)	Current study	N/A
T3DSA- λ2 Flap+N7MTase (λ2 R I- II)	Current study	N/A
T1LSA- λ2 Flap+N7MTase + T3D σ3 (λ2 RI-II + σ3-T3D)	Current study	N/A
T3DSA- σ3 patch I	Current study	N/A
T3DSA- σ3 patch I-II	Current study	N/A
T3DSA- σ3 patch I-III	Current study	N/A
T3DSA- σ3 patch I + λ 2 Flap+N7MTase (σ3 P I + λ 2 R I-II)	Current study	N/A
T3DSA- σ3 patch I-II + λ 2 Flap+N7MTase (σ3 P I-II + λ 2 R I-II)	Current study	N/A
T3DSA- σ3 patch I-III + λ 2 Flap+N7MTase (σ3 P I-III + λ 2 R I-II)	Current study	N/A

T3DSA- σ3 patch III	Current study	N/A	
T3DSA- σ3 patch III + λ2	Current study	N/A	
Flap+N7MTase (σ 3 P III + λ 2 R I-II)			
T1LSA- σ3 patch III	Current study	N/A	
T1LSA- σ3 patch III + λ2	Current study	N/A	
Flap+N7MTase (σ 3 P III + λ 2 R I-II)	Ourient Study		
Recombinant proteins			
mNRP1-Fc	Sino Biological	Cat #50509-M38H	
hNRP1-Fc	R&D Systems	Cat #10455-N1-050	
mNRP1-His	Sino Biological	Cat #50509-M08H-50	
hNRP1-His	Acro Biosystems	Cat #15817367	
Murine VEGF164	Acro Biosystems	Cat #VE4-M4216	
Human VEGF165	Acro Biosystems	Cat #16408149	
T3D σ3 (<i>E.coli</i> expression,	Coomo Pio	Cat #CSB-	
precipitation assays)		EP365971RCHa0-20	
T3D σ 3 (Insect cell expression, BLI	Gontaur	Cat #GEN1007713	
assay)	Gentaul	Cat #GEN1097715	
Chemicals and kits			
Alexa Fluor™ 647 NHS ester	Thermo Fisher	Cat #A37573	
Sodium bicarbonate	Fisher Scientific	Cat #BP328-500	
Furin inhibitor I (Decanoyl-RVKR-	Sigmo Aldrich	Cat #211020	
CMK)	Sigma-Alunch	Cat #344930	
Furin inhibitor II (Hexa-D-arginine	Sigma Aldrich	Cat #SCP0148	
_amide)	Sigina-Alunch	Cat #3CF 0148	
EC 00229 (trifluoroacotato salt)	Cayman	Cat #33037	
	Chemical	Cat #35957	
Dimethyl sulfoxide	Sigma-Aldrich	Cat #D2650	
Invitrogen™ Colloidal Blue Staining	Thermo Fisher	Cat #I C6025	
Kit		Cat #200023	
Pierce™ Protein G Magnetic Beads	Thermo Fisher	Cat #88848	
2x Laemmli loading buffer	Bio-Rad	Cat #1610737	
4x Laemmli Sample Buffer	Bio-Rad	Cat #1610747	
Xylenes, histological grade	Sigma-Aldrich	Cat #534056	
Absolute ethanol, molecular biology	Fisher Scientific	Cat #200GMP0125	
grade			
NucleoBond® Xtra Midi EF	Takara Bio	Cat #740420.50	
Polysciences Aqua-Poly/Mount	Polysciences	Cat #18606	
Chloroform	Sigma-Aldrich	Cat #288306-100ML	
APTES	Sigma-Aldrich	Cat #A3648-100ML	
Ald-Ph-PEG24-NHS ester	Broadpharm	Cat # BP-24093	
Triethylamine	Sigma-Aldrich	Cat #471283-100ML	
Ethanolamine	Sigma-Aldrich	Cat #411000-100ML	

Ultrapure water generated by Milli- Q [®] IQ 7000 Ultrapure Lab Water	Millipore Sigma	https://www.emdmillipore.
System		com
Cell culture media and related chen	nicals	
Dulbecco's phosphate-buffered saline (DPBS), no calcium, no magnesium	Thermo Fisher	Cat #14190144
Dulbecco's phosphate-buffered saline (DPBS), calcium, magnesium	Thermo Fisher	Cat #14040133
TransIT-LT1	Mirus Bio	Cat #MIR2306
Lipofectamine™ LTX with PLUS™ reagent	Thermo Fisher	Cat #12343593
Blasticidin	Invivogen	Cat #ant-bl-1
Geneticin™ Selective Antibiotic (G418 Sulfate)	Thermo Fisher	Cat #10131035
Trypsin-EDTA (0.25%), phenol red	Thermo Fisher	Cat #25200114
Fetal Bovine Serum (FBS), qualified, heat inactivated, United States	Thermo Fisher	Cat #S11550H
GIBCO™ FBS (AFM assay)	Fisher Scientific	Cat #11570506
Dulbecco's modified Eagle medium (DMEM)	Thermo Fisher	Cat #11965118
Ham's F-12 Nutrient Mix	Thermo Fisher	Cat #11765054
Ham's F-12 Nutrient Mix (AFM assay)	Sigma-Aldrich	Cat #N4888-500ML
Joklik's modified Eagle's minimal essential medium (JMEM)	United States Biological	Cat #M3867
Neurobasal medium	Thermo Fisher	Cat #21103049
B-27 supplement	Thermo Fisher	Cat #17504044
GIBCO™ L-glutamine	Thermo Fisher	Cat #A2916801
Penicillin-streptomycin (5,000 U/mL)	Thermo Fisher	Cat #15070063
Penicillin-streptomycin (AFM assay)	Sigma-Aldrich	Cat #P4333-100ML
Normocin (AFM assay)	InvivoGen	Cat #ant-nr-1
Amphotericin B solution	Sigma-Aldrich	Cat #A2942-50ML
Corning™ CellStripper Dissociation Reagent	Fisher Scientific	Cat #MT25056CI
32% Paraformaldehyde (PFA) aqueous solution	Electron Microscopy Sciences	Cat #15714
Methanol	Fisher Scientific	Cat #A412-500
Equipment		
LSR II Flow Cytometer	BD	https://www.bdbiosciences .com

Lionheart FX Automated Microscope	BioTek	https://www.agilent.com	
TissueLyser LT	QIAGEN	Cat #85600	
Stainless Steel Beads, 5 mm	QIAGEN	Cat #69989	
Odyssey CLx Imager	LI-COR	https://www.licor.com/bio	
UV radiation and ozone (UV-O)	Jetlight	https://www.jelight.com	
ForceRobot300	JPK	https://www.jpk.com	
NanoScope Multimode 8	Bruker	https://www.bruker.com	
MSCT-D cantilevers	Bruker	https://www.brukerafmpro bes.com	
Zeiss Observer Z.1 epifluorescence microscope	Zeiss	https://www.zeiss.com	
Bioscope Resolve AFM	Bruker	https://www.bruker.com	
PFQNM-LC cantilevers	Bruker	https://www.brukerafmpro bes.com	
Gold-coated model surfaces	Silicon wafer: Siegert Wafer Company; Gold pellets: Neyco	Gold pellets: cat #AU3X6	
OCTET® BLI	Sartorius	https://www.sartorius.com	
OCTET® AR2G biosensors	Sartorius	https://www.sartorius.com	
OCTET® NTA biosensors	Sartorius	https://www.sartorius.com	
Mice and inoculation-related materials			
C57BL/6J mice	The Jackson Laboratory	Cat #000664	
129S4/SvJaeJ mice	The Jackson Laboratory	Cat #009104	
Hybrid C57BL/6J x 129S4/SvJaeJ mice	Current study	N/A	
Formalin (10% in phosphate buffer)	Fisher Scientific	Cat #SF100-4	
Syringe with BD Luer-Lok™ Tip	BD	Cat #309628	
Syringe needle 30G	BD	Cat #305106	
Hamilton syringe (Model 702 LT	Hamilton Company	Cat #80401	
CRISPR-KO saRNA sequences	oompany		
mNRP1 sqRNA1			
5' CTCTGACTATGAGACACATG 3' mNRP1 sgRNA2 5' CAAGACTCGAATCCTCCCGG 3'	Previous study ⁷¹	N/A	
Software and Algorithms			
Gen5 software, v3.12	BioTek	https://www.agilent.com	
CLC Genomics Workbench 22	QIAGEN	https://www.qiagen.com/	

GranhPad Prism 10	GraphPad	https://www.graphpad.com
Graphi au Fhshi 10	Software	
FlowJo v10.8.1	BD	https://www.flowjo.com
ImageJ	ImageJ	https://imagej.net
NanoScope software v9.1	Bruker	N/A
JPK Data Processing v6.1.149	JPK	N/A
NanoScope analysis software v1.7	Bruker	N/A
OriginPro 2021, v9.8.0.200	OriginLab	N/A
NanoScope software v9.2	Bruker	N/A
Gwyddion v2.58	Gwyddion	http://gwyddion.net
ZEN (blue edition) v3.2	Zeiss	https://www.zeiss.com
OCTET® BLI Discovery v12.2.2.20	Sartorius	N/A
OCTET® Analysis Studio v	Contonius	NI/A
v12.2.2.26	Sanonus	IN/A
Pymol	Pymol	https://pymol.org
	RBVI, UCSF	https://www.cgl.ucsf.edu/c
		himera
HDOCK Sonier	Huang Lab	http://hdock.phys.hust.edu
NDOCK Server		.cn
BioRender	BioRender	https://www.biorender.com

522 ^aNot applicable.

523 EXPERIMENTAL MODEL AND SUBJECT DETAILS

524

525 Cell lines and primary cells

- 526 CHO, BV2, and BHK-T7 cells were maintained at 37°C in 5% CO₂ in completed Ham's
- 527 F-12 medium, DMEM, and DMEM, respectively. F-12 and DMEM media were
- supplemented to contain 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin/streptomycin,
- and 250 ng/ml amphotericin B. T7 polymerase-expressing BHK-T7 cells were
- 530 maintained in DMEM medium supplemented to contain 1 mg/ml Geneticin. Spinner-
- adapted L929 cells were maintained in JMEM supplemented to contain 5% FBS, L-
- 532 glutamine, penicillin/streptomycin, and amphotericin B in suspension (35°C, ambient
- 533 CO₂) or monolayer (37°C, 5% CO₂) cultures. Primary neurons were isolated from
- 534 cortices of E15.5 murine embryos and cultivated in neurobasal medium supplemented

535 to contain B-27 supplement as described previously.^{27,72}

536

537 **Mice**

538 C57BL/6J x 129sv mice were maintained in a specific-pathogen-free vivarium or animal

biosafety level 2⁺ (ABSL2⁺) facility at a macroenvironmental temperature range of 68 to

- 540 76°F (20 to 24.4°C) and a relative humidity range of 35% to 55% with a 12 h/12 h
- 541 light/dark cycle. Mice were anesthetized with inhaled isoflurane.

542

543 Viruses

- 544 Recombinant reoviruses were recovered using plasmid-based reverse genetics by
- 545 transfecting cDNAs encoding viral gene segments into BHK-T7 cells as described

546 previously.⁷³ Mutant reovirus plasmids were engineered using site-directed

547 mutagenesis. Reovirus propagation, purification, plaque assay to determine infectious

548 units, fluorescent labelling, and ISVP preparation were conducted as described

549 previously.²⁷

550

551 METHOD DETAILS

552

553 CRISPR knockout

554 BV2 cells were transfected with either empty CRISPR-KO transfer vector

555 (lentiCRISPRv2-blast) or vector encoding mNRP1-specific sgRNAs using Transit-LT1

according to the manufacturer's instructions. At 48 h post-transfection (hpt), cells were

selected with medium supplemented to contain 4 µg/ml blasticidin for 6 days. Surviving

cells were used to assess NRP1 expression and susceptibility to reovirus infection.

559

560 Transient expression of receptor cDNAs

561 CHO cells were transfected with receptor cDNAs using Transit-LT1 according to the

562 manufacturer's instructions and incubated for 48 h prior to analysis of reovirus binding

563 and infection.

564

565 **Reovirus binding assay**

566 Reovirus binding assays were conducted as described previously.²⁷ Purified virions of

567 strain T3DSA- (σ1 R202W/T249I) or T1LSA- (σ1 S370P/Q371E) were labelled with

568 Alexa Fluor 647 as described previously.²⁷ Cells were nonenzymatically dissociated with

CellStripper and either adsorbed with fluorescently-labelled reovirus (2 × 10⁵ virions/cell)
or receptor-specific antibodies (PE- or APC-conjugated) at 4°C for 1 h. After virus or
antibody adsorption, cells were washed extensively with PBS and fixed with 2% PFA.
For antibody-blockade assays, CHO cells were incubated with NRP1-specific antibody
or isotype IgG at 4°C for 1 h prior to virus adsorption. Reovirus binding to CHO cells
was assessed by flow cytometry and quantified using FlowJo software.

575

576 Reovirus infectivity assay

CHO cells were transfected with receptor cDNAs as described previously.²⁷ Cells were 577 578 adsorbed with reovirus virions or ISVPs at various MOIs at 37°C for 1 h. The inoculum 579 was removed and replaced with Ham's F-12 medium supplemented to contain 2% FBS. 580 At 24 h post-adsorption (hpa), cells were fixed with ice-cold methanol, and viral infection 581 was detected by indirect immunofluorescence assay (IFA). For antibody- or VEGF-582 blockade assays, CHO cells were incubated with NRP1-specific antibody or 583 recombinant mVEGF164 at 37°C for 1 h prior to reovirus adsorption. Isotype IgG was used as a negative control for NRP1-specific antibody. For CendR-inhibitor treatment, 584 CHO cells were incubated with furin inhibitors CMK or Hexa-D-arginine or NRP1 b1 585 586 inhibitor EG 00229 at 37°C prior to reovirus adsorption. For receptor-competition 587 assays, the reovirus inoculum was pre-incubated with protein G beads, which were pre-588 coated with 2.5 µg of recombinant NRP1-Fc or isotype IgG, prior to adsorption. 589 Cultivated murine primary neurons (7 days post-isolation) were adsorbed with 590 reovirus at 37°C for 1 h. For antibody-blockade assays, primary neurons were incubated 591 with NRP1-specific antibody or isotype IgG prior to adsorption with reovirus at 37°C for

592 1 h. At 24 hpa, neurons were fixed with 4% PFA in PBS at RT for 30 min, permeabilized

with 1% Triton X-100 in PBS at RT for 20 min, and blocked with PBS containing 5%

594 BSA (5% PBS-BSA) at RT for 30 min. Viral infection was detected by IFA.

595 Reovirus IFA was conducted using rabbit polyclonal reovirus-specific antiserum

596 (1:3000 dilution) and Alexa Fluor 488-conjugated goat anti-rabbit secondary antibody

597 (1:500 dilution). Antibodies were diluted in PBS containing 1% BSA (1% PBS-BSA).

598 Nuclei were stained with DAPI. Cells were imaged using a Lionheart FX fluorescence

599 microscope. Quantification of reovirus CHO cell infection was automated using Gen5

software (reovirus positive cells divided by total cells). Reovirus-infected neurons were

601 enumerated using the Cell Counter plugin of ImageJ software.

602

603 **Reovirus replication assays**

L929 cells or primary neurons were adsorbed with reovirus at 37°C for 1 h. The

605 inoculum was removed and replaced with fresh medium. Cells and supernatants were

harvested together at 24, 48, and 72 hpa by freezing. Titers in cell lysates were

607 determined by plaque assay as previously described.²⁷

608

609 *In vitro* precipitation assay

610 Pierce[™] protein G magnetic beads (15 µl/sample) were washed with PBS

supplemented to contain 0.02% Tween-20 (0.02% PBST) and incubated with 2.5 μg

recombinant Fc-tagged NRP1 or IgG isotype in PBS at RT for 1 h. Protein-coupled

beads were washed with 0.02% PBST and incubated with reovirus virions or ISVPs (5 \times

10¹⁰ particles) in PBS at RT for 1 h. Beads were washed twice with 0.02% PBST, and

615 bead-bound proteins were released and heat-denatured using 2x Laemmli loading 616 buffer. For σ 3-NRP1 interaction studies, NRP1-coupled beads were incubated with 1 µg 617 of recombinant T3D σ 3 protein. To eliminate nonspecific interactions, 0.5% PBST was 618 used as a binding and washing buffer, and σ 3-bound beads were washed six times 619 before heat-denaturation. Input (50%) and bead-bound proteins were resolved by SDS-620 PAGE, and gels were stained using the Colloidal Blue Staining Kit according to the 621 manufacturer's instructions. Protein gels were scanned using an Odyssey CLx Imager, 622 and fluorescence intensity of protein bands was quantified using Image Studio software. 623

624 Structural analysis

625 The following protein structures were acquired from the RCSB Protein Data Bank 626 (PDB): reovirus particle, 2CSE; virion sub-structures, 6XF8 and 7ELL; λ 2 pentamer, 7YFE; mNRP1 a1-b2 extracellular region, 4GZ9; and hNRP1 c domain, 5L73. The 627 628 peripentameric subunit formed by $\lambda 2$ and $\mu 1_3 \sigma 3_3$ was generated by superimposing two 629 substructures (6XF8 and 7ELL) using UCSF Chimera software. Protein structures were 630 rendered and visualized using PyMOL software. In silico protein interactions were 631 simulated using the HDOCK program with the constraints of capsid protein residues, 632 including polymorphic residues in $\lambda 2$ region I-II and $\sigma 3$ patch I-III, found to be required 633 for reovirus-NRP1 binding. The following NCBI GenBank accession numbers were used 634 to analyze reovirus L2 and S4 sequences: T1L L2 (AAK57507.1); T3D L2 635 (ABP48914.1); T1L S4 (CAA43783.1); and T3D S4 (ABP48922.1). Amino acid 636 polymorphisms in T1L and T3D capsid proteins were identified using the alignment 637 function in CLC Genomics Workbench software.
639 Functionalization of AFM tips

640 AFM tips were functionalized as described previously.^{74,75} <u>*Amino-functionalization*</u>:

641 Briefly, MSCT (for model surface experiments) or PFQNM-LC (for live cell experiments)

642 cantilevers were washed with chloroform for 5 min and cleaned with UV-O for 15 min. A

643 desiccator was flooded with argon gas, and tips were placed inside the desiccator.

644 APTES (30 μ L) and triethylamine (10 μ L) were added separately into two trays within

the desiccator, which was subsequently closed. After incubation for 2 h, trays were

removed, and the desiccator was flooded with argon gas for 10 min. APTES coating on

647 the tips were left to cure for at least 2 days. *<u>Tip coupling with flexible PEG linkers</u>*: Tips

648 were immersed for 2 h in a solution containing Ald-Ph-PEG₂₄-NHS ester (3.3 mg) in

649 chloroform (0.5 ml) and triethylamine (30 μl) and then cleaned three times for 5 min in

650 chloroform. After letting the tips dry, the tips were placed on Parafilm in a Petri dish and

651 stored in an ice box. *Virus linkage:* Virus (10⁸ particles of T3DSA- [σ1 R202W/T249I]) in

652 100 μl was added to tips, and 2 μl of freshly prepared sodium cyanoborohydride

653 solution (~ 6% [wt/vol] in 0.1 M NaOH) was added to the virus droplet. Tips were

654 incubated at 4°C for 1 h. Reactions were quenched by adding 5 μL of ethanolamine (1

655 M [pH 8.0]) to the droplet and incubating at 4°C for 10 min. Tips were rinsed three times

in ice-cold virus storage buffer (150 mM NaCl, 15 mM MgCl₂, and 10 mM Tris [pH 7.4] in

657 MilliQ water).³⁴ Tips were stored individually in virus storage buffer at 4°C until use.

658

659 **Preparation of NRP1-coated AFM surfaces**

660 His-tagged mNRP1 or hNRP1 proteins were grafted onto gold-coated model surfaces 661 by NTA-His₆ binding chemistry as described previously.⁷⁶ Surfaces were rinsed with 662 ethanol, dried with a low nitrogen flow, and cleaned with UV-O for 15 min. Surfaces 663 were incubated in an ethanol solution containing 0.05 mM NTA-terminated (10%) and 664 PEG-terminated (90%) alkanethiols. After incubation overnight, the surfaces were 665 rinsed with ethanol, dried with nitrogen gas, and incubated in a 40 mM agueous solution of NiSO₄ (pH 7.2) for 1 h. Surfaces were rinsed with MilliQ water, dried with nitrogen 666 gas, placed on a Teflon surface, and incubated with recombinant mNRP1 or hNRP1 667 668 (0.1 mg/ml) for 1 h. Surfaces were rinsed ~ 10 times with PBS and kept hydrated at 4°C 669 until use.

670

671 **FD-based AFM using model surfaces**

Force-distance (FD) curve-based AFM experiments were conducted using virus-672 673 functionalized MSCT-D probes in virus buffer at room temperature. Force-Robot300 or 674 NanoScope Multimode 8 were used to conduct experiments in force-volume mode. The thermal tune method⁷⁷ was used to calculate cantilever spring constants, which ranged 675 676 from 0.02 to 0.04 N/m. NRP1-grafted model surfaces were mounted on a piezoelectric 677 scanner using a magnetic carrier. For all AFM experiments, areas of $5 \times 5 \mu m$ (with 32×10^{-10} 32-pixel resolution) were scanned (corresponding to 1,024 FD curves) with a ramp size 678 679 set to 500 nm. The maximum force was set to 500 pN, and the approach velocity was 680 maintained at 1 µm/s. Binding frequency (BF) was calculated as the percentage of 681 analyzed curves that displayed specific adhesion events.

682 Surface-blocking experiments were conducted as independent controls to ensure 683 specific interactions between virus and sample. Measurements were collected before 684 and after adding 50 µg/ml of anti-mNRP1 mAb or 100 µg/ml of hVEGF165 to 685 independent samples. For all blocking experiments, the same sample area was probed 686 several times using the same tip.

687 To probe a wide range of loading rates, dynamic force spectroscopy (DFS) experiments were conducted with no surface delay and by varying the retraction 688 velocities (0.1, 0.2, 1, 5, 10, and 20 µm/s). Kinetic on-rate (kon) measurements were 689 690 made using different hold times (0, 50, 100, 150, 250, 500 and 1000 ms), which allowed 691 the tip to stay in contact with the surface for different intervals.

692 Depending on the instrument used, either JPK Data Processing or NanoScope 693 analysis software was employed for analysis. For DFS data, FD-curves were fit with the worm-like chain model for polymer extension.⁷⁸ Loading rates were determined using 694 the slope of the force-time curves and rupture forces were extracted. The results were 695 696 displayed in DFS plots using Origin software, which also was used to fit histograms of 697 rupture force distributions for distinct loading rate (LR) ranges, applying various force spectroscopy models, as described.^{79,80} For kinetic on-rate analyses, BFs were 698 699 determined for different hold times, and data were fit and K_D calculated as described.⁸¹ 700

701 Preparation of cells for live-cell AFM studies

702 CHO cells were cultivated at 37°C in a humidified atmosphere with 5% CO₂ in Ham's F-703 12 medium supplemented to contain 10% FBS, penicillin, streptomycin, normocin, and 704 L-glutamine. Cells were seeded into slide-bottom microdishes, incubated for 24 h, and

transfected with pcDNA3.1(+)-mNRP1-IRES-GFP plasmid using Lipofectamine LTX and
Plus reagent according to the manufacturer's instructions. Medium was replaced ~ 6 h
after transfection. Cells were incubated overnight and gently rinsed five times with fresh
medium prior to imaging in Ham's F-12 medium.

709

710 **FD-based AFM and correlative imaging using living cells**

711 FD-based AFM was conducted using a Bioscope Resolve AFM, operated in PeakForce 712 QNM mode, equipped with a 150-µm piezoelectric scanner. Correlative fluorescence 713 images were obtained using an inverted epifluorescence microscope coupled to the 714 AFM. The cell-culture chamber was maintained at 37°C ± 1°C and infused at 0.1 l/min 715 with a gas mixture supplemented with 5% CO_2 and 95% relative humidity. Vacuum, 716 incorporated into the AFM sample plate, was used to stabilize the cell dish. PFQNM-LC 717 cantilevers were used with pre-calibrated spring constants. Deflection sensitivity of the 718 cantilevers was calculated using the thermal-tune method. AFM images were collected 719 by probing an area of 22 to 30 µm at imaging forces of 500 pN and a scan frequency of 720 0.125 Hz. The sample was scanned using 256 pixels per line (256 lines). Cantilevers 721 were oscillated at 0.25 kHz in PeakForce tapping mode, with an amplitude of 750 nm. 722 Fluorescent images were collected using standard GFP and DIC settings. In a subset of 723 experiments, correlative images were acquired before and after adding hVEGF165 (at 724 0.5 µg/ml) by scanning the same area using identical experimental parameters. 725 NanoScope analysis software and Origin software were used to analyze FD-curves 726 showing adhesion events. Loading rates were determined using the slope of the force-727 time curves. AFM images were analyzed using NanoScope analysis software and

Gwyddion. Binding frequency was calculated by pixel counting using ImageJ. Optical
images were analyzed using ZEN (blue edition) software. Force peak predictions were
estimated using Origin software by visually intercepting the Williams-Evans prediction
curves, which is based on model surface data, with the LR average of living cell
data.^{44,82,83}

733

734 Biolayer interferometry

735 Amine-reactive biosensors were hydrated in PBS for 10 min, after which an initial 736 baseline was assessed in PBS for 60 s. Recombinant reovirus σ 3 protein (10 µg/ml) 737 was grafted onto the sensor via an NHS/EDC coupling step (300 s), followed by 738 guenching with ethanolamine (300 s). After a second PBS baseline (60 s), the sensor 739 was dipped in solutions containing recombinant mNRP1 or hNRP1 at different 740 concentrations (13, 26, and 52 nM, respectively) for 20 min. Dissociation steps were 741 conducted in PBS for 10 min. As a control, interactions between mNRP1 or hNRP1 and 742 σ 3 were investigated in the presence of hVEGF165. After an initial PBS baseline (60 s), 743 Ni-NTA biosensors were loaded with recombinant His-tagged mNRP1 or hNRP1 (10 744 µg/ml) for 10 min. Following a second PBS baseline, sensor was dipped in solution 745 containing VEGF165 (10 µg/ml) for 10 min. After a 300-s dissociation step in PBS, the 746 sensors were immersed in a σ 3 solution (2 µg/ml) for 10 min. Lastly, a final baseline in 747 PBS was determined for 300 s. All measurements were conducted at 25°C and shaker 748 speed at 1000 rpm. For kinetic assessments, the association and dissociation sections 749 of the curve were fit with a Langmuir 1:1 stoichiometric model to obtain the dissociation 750 constant (K_D) using Octet Analysis software.

752 Reovirus infections of mice

753 Neonatal (2-day-old) C57BL/6J x 129sv hybrid mice (body weight = 1.5 to 2.3 g) were 754 inoculated with 5 µl of virus diluted in PBS using a 30-gauge needle attached to a 755 Hamilton syringe. For intracranial (IC) inoculations, mice were inoculated in the right 756 cerebral hemisphere and either euthanized at various intervals (for viral replication and 757 histology studies) or euthanized when found to be moribund (for viral virulence studies). 758 Mouse brains were hemisected along the longitudinal fissure. Right-brain hemispheres 759 were processed for determination of viral titers, and left-brain hemispheres were fixed in 760 10% neutral-buffered formalin (NBF) for immunohistochemistry. For intramuscular (IM) 761 inoculations, mice were inoculated in the right quadriceps muscle. Tissue samples were 762 collected into 1 mL of PBS. Tissues and whole blood were frozen and thawed twice and 763 homogenized using a TissueLyser LT and stainless-steel beads. Viral titers in tissue 764 homogenates were determined by plague assay. Inoculated mice were monitored daily 765 for signs of disease, including lethargy, seizures, and paralysis. Moribund mice with any of these symptoms or mice with $\geq 25\%$ body weight loss were euthanized. Viral titers of 766 767 inocula were confirmed by plaque assay to be within 3-fold of the intended dose.

768

769 Immunohistochemistry

Immunohistochemistry of brain sections was conducted as described previously.²⁷ Leftbrain hemispheres collected from intracranially inoculated mice were fixed using 10%
NBF for 24 h and transferred to fresh NBF solution. Tissue samples were embedded in
paraffin and divided into 5 µm-thick sections. Sections were submerged in xylene at RT

774 for 5 min to remove paraffin, hydrated by serial passage in dilutions of ethanol (100%, 775 95%, 70%, and 50%) at RT for 5 min, and rinsed with distilled water. Antigen retrieval 776 was accomplished by incubating sections in sodium citrate buffer (10 mM sodium 777 citrate, 0.05% Tween-20, pH = 6) at 95-100°C for 45 min. Sections were incubated with 778 5% PBS-BSA at RT for 1 h and rabbit reovirus-specific polyclonal antiserum diluted 1: 779 3,000 in 1% PBS-BSA at RT for 1 h. After three washes with PBS containing 0.1% 780 Tween-20 and 0.1 M glycine, sections were incubated with Alexa Fluor 488-conjugated 781 goat anti-rabbit secondary antibody diluted 1: 500 in 1% PBS-BSA and washed three 782 times with PBS containing 0.1% Tween-20 and 0.1 M glycine. Nuclei were stained with 783 DAPI. Tissue sections were mounted with Aqua-Poly/Mount on glass coverslips 784 overnight at RT and scanned using a Lionheart FX fluorescence microscope. 785

786 FIGURE LEGENDS

787

788 Figure 1. mNRP1 promotes reovirus binding and infection

- (A) Reovirus infection of genetically modified BV2 cells. Cells expressing mNRP1-
- 790 specific CRISPR-KO sgRNAs were adsorbed with reovirus strain T1L at a multiplicity of
- infection (MOI) of 1000 PFU/cell and strain T3D at an MOI of 10 PFU/cell. Empty
- sgRNA vector was used as a negative control.
- 793 (B-G) CHO cells were transfected with the receptor cDNAs shown. hJAM-A was used
- as a positive control; hCAR and empty vector (EV) were used as negative controls. (B)
- 795 Reovirus infection of receptor-expressing cells. (C) Reovirus binding to receptor-
- 796 expressing cells. Cells were adsorbed with fluorescent T1LSA- or T3DSA-. (D-E) Cells
- 797 were preincubated with mNRP1-specific mAb or isotype IgG prior to reovirus
- adsorption. Effect of mNRP1-specific mAb on (D) T3DSA- binding and (E) T3D
- infection. (F) Effect of VEGF on mNRP1-mediated T3D infection. Cells were
- preincubated with murine VEGF164 (mVEGF164) prior to reovirus adsorption. (G)
- 801 Effect of recombinant mNRP1 ectodomain on T3D infection. The viral inoculum was
- 802 incubated with recombinant mNRP1-Fc or IgG-coupled protein G beads prior to
- adsorption. (C-D) Virus binding was assessed by flow cytometry. (B, E-G) Cells were
- adsorbed with reovirus at a MOI of 10 PFU/cell.
- 805 (A-B, E-G) Infectivity was quantified by indirect immunofluorescence assay (IFA).
- 806 Experiments were conducted in quadruplicate (A, C-D) or triplicate (B, E-G). Mean
- values are shown. Error bars indicate standard deviation (SD). (A) Two-way ANOVA
- 808 with Holm-Sidak's test. (D-G) One-way ANOVA with Tukey's test. ****, *P* < 0.0001.
- 809

810 Figure 2. Biophysics of reovirus-NRP1 interactions

811 (A) Binding of reovirus particles to NRP1 assessed by precipitation assay. Protein G 812 beads coupled with recombinant Fc-tagged mNRP1, hNRP1, or IgG isotype were 813 incubated with T3DSA- or T1LSA- virions. Input (50%) and bound proteins were 814 resolved by SDS-PAGE and stained for total protein. 815 (B-K) Reovirus-NRP1 binding thermodynamics on model surfaces (B-E) and living cells 816 (F-K). (B) Experimental schematic for probing reovirus binding to a recombinant 817 mNRP1-coated model surface. (C) Binding frequency on model surfaces before and 818 after hVEGF165 or mNRP1-specific mAb treatment. One data point represents the 819 binding frequency obtained for one map consisting of 1,024 FD curves. (D) Dynamic 820 force spectroscopy (DFS) plot of the distribution of average rupture forces across 821 discrete loading rate ranges. Solid line, Bell-Evans fit. n = 2597. (E) Binding frequency 822 as a function of the contact time between a T3DSA- virion-functionalized tip with the 823 mNRP1-coated surface. Least-squares fit of the data to a mono-exponential decay model (black line, $r^2 = 0.99$) provides the average binding kinetic on-rate (k_{on}). The Bell-824 825 Evans fit provides k_{off} and x_u values, and the K_D is calculated using k_{off}/k_{on} . 826 (F) Experimental schematic for probing reovirus binding on living CHO cells. (G) 827 Representative DIC and fluorescence images, height, and adhesion maps. Data were collected by scanning the boxed area (top) containing mNRP1⁺ and mNRP1⁻ cells. The 828 829 maps correspond to recorded binding events are indicated by bright pixels. (H) Binding 830 frequency of T3DSA- on living cells. (I) T3DSA- binding to living cells before and after 831 hVEGF165 treatment. (J) DFS plot of T3DSA- interactions with mNRP1 on living cells 832 (blue; n = 1247). Model surface data (D) were incorporated (gray). Solid line (I): Bell-

- 833 Evans fit; dashed line (II to VI): Williams-Evans prediction. (K) Force distribution of the
- 834 T3DSA- interaction with mNRP1 on living cells. Estimated rupture force peaks
- 835 corresponding to mono- (I) or multi-valent interactions (II to VI) are shown.
- 836 (C-E, H-K) Mean values are shown. Error bars indicate SD. All data are representative
- of at least n = 3 independent experiments. (C and H) Two-sided Student's t-test. (I)
- 838 Two-way ANOVA with Turkey's test. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001; ****,
- 839 *P* < 0.0001.

- 840 Figure 3. Reovirus-NRP1 interactions require multiple NRP1 extracellular domains
- (A) Schematic of mNRP1 (blue) and hNRP1 (red) wild-type (WT) and chimeric
- receptors. PM, plasma membrane.
- 843 (B-D, F-H) CHO cells were transfected with the receptor cDNAs shown. (B) Ectopic
- 844 expression of chimeric receptors was detected by NRP1-specific antibody. (C) Reovirus
- T3DSA- binding to chimeric receptor-expressing cells. (D) Reovirus T3D infection of
- 846 chimeric receptor-expressing cells following adsorption at an MOI of 10 PFU/cell.
- 847 (E) Schematic of mNRP1 ectodomain deletion constructs.
- 848 (F) Ectopic expression of mutant receptors was detected by mNRP1-specific mAb. (G)
- 849 Reovirus T3DSA- binding to mutant receptor-expressing cells. (H) Reovirus T3DSA-
- 850 infection of mutant receptor-expressing cells following adsorption at an MOI of 30
- 851 PFU/cell.
- 852 Experiments were conducted in triplicate (D, H) or quadruplicate (B-C, F-G). Mean
- 853 values are shown. Error bars indicate SD. (C-D, G-H) One-way ANOVA with Turkey's
- 854 test. *, *P* < 0.05; **, *P* < 0.01; ****, *P* < 0.0001.

855 Figure 4. Multiple reovirus capsid proteins are required for interactions with NRP1

- 856 (A) Panel of T1L x T3D reassortant viruses.
- 857 (B-D) CHO cells were transfected with the receptor cDNAs shown. (B-C) Infection of
- 858 mNRP1-expressing cells by reassortant viruses following adsorption at an MOI of 5
- 859 PFU/cell. (D) Infection of mNRP1-expressing cells by T3DSA- virions and ISVPs
- following adsorption at an MOI of 2×10^4 particles/cell.
- (E) Binding of T3DSA- virions and ISVPs to recombinant mNRP1.
- 862 (F) Binding of T3D σ 3 to recombinant mNRP1.
- 863 (E-F) Interactions were assessed using a precipitation assay. Protein G beads coupled
- with Fc-tagged mNRP1 or IgG isotype were incubated with either viral particles or

865 recombinant σ 3.

- 866 (G-H) Biolayer interferometry (BLI) sensograms depicting association and dissociation
- trace of T3D σ3 with either mNRP1 (G) or hNRP1 (H). Blue lines represent an
- 868 independent experiment with the concentrations shown of recombinant NRP1 and
- green lines represent the fit. Isotherms were fit using 1:1 model to estimate K_D.
- 870 (B-D) Experiments were conducted in triplicate. Mean values are shown. Error bars

indicate SD.

Figure 5. Capsid turret protein $\lambda 2$ contributes to NRP1 binding and is required for

873 NRP1-mediated infectivity

- (A) Surface-rendered structure of the reovirus capsid and the peripentameric subunit
- structure formed by $\lambda 2$ and $\mu 1_3 \sigma 3_3$ (representative subunit outlined on the left,
- 876 expanded on the right). The structure of the T3D virion was acquired from the Protein
- 877 Data Bank (PDB ID 2CSE). The peripentameric subunit was generated by
- superimposing two substructures (PDB IDs 6XF8 and 7ELL).
- (B, C) Domain organization (B) and surface rendering (C) of λ 2 protein (PDB, ID 6XF8).
- 1880 IBMs are depicted in cyan; T1L-T3D polymorphic residues are shown in magenta.
- 881 Numbered residues were exchanged.
- (D) Polymorphic residues in $\lambda 2$ regions I and II chosen for substitution.
- (E) Infection of receptor-expressing cells by λ^2 mutants. T3D mutants, MOI of 5
- PFU/cell; T3DSA- mutants, MOI of 30 PFU/cell; and T1LSA- mutants, MOI of 100

885 PFU/cell.

- (F-G) Binding of WT T3DSA- or λ 2 mutants to mNRP1 assessed by precipitation assay.
- 887 Representative gel images (F) and quantification (G) are shown. Relative binding
- efficiency was calculated by normalizing band intensity of the capsid μ 1 or σ proteins to
- that of the corresponding input level and subsequently compared with the levels for WTT3DSA-.
- 891 (E-G) Assays were conducted in triplicate. Mean values are shown. Error bars indicate
- 892 SD. (G) One-way ANOVA with Turkey's test. *, *P* < 0.05; ***, *P* < 0.001.****, *P* < 0.0001.

Figure 6. Protomers of outer-capsid protein σ 3 are engaged in interactions with

894 NRP1

- (A) Surface-rendered (left) or ribbon-tracing (right, partial) view of outer-capsid complex
- of λ 2 and σ 3₃µ1₃ (PDB ID: 6XF8). T1L-T3D polymorphic residues within λ 2 region I and
- 897 II, σ 3, and μ 1 are depicted in magenta; IBM (KGE) is shown in cyan. Dashed ovals
- indicate three patches of polymorphic residues in σ 3. Polymorphic σ 3 residues in these
- patches are indicated on the ribbon diagram in (A) and summarized in (B).
- 900 (C) Design of T3D σ 3 mutants to define the structural basis of reovirus-NRP1
- 901 interactions.
- 902 (D) Infection of receptor-expressing cells by WT T3DSA- and σ 3 mutants following
- adsorption at an MOI of 30 PFU/cell.
- (E) Binding of WT T3DSA- or σ 3 mutants to mNRP1 assessed by precipitation assay.

905 (D-E) Mutants used for pathogenesis studies were highlighted.

- 906 (F) Design of T3D σ 3 Patch III mutants to define the structural basis of reovirus-NRP1 907 interactions.
- 908 (G) Infection of receptor-expressing cells by T3DSA- and T1LSA- σ 3 mutants following
- adsorption at an MOI of 30 PFU/cell.
- 910 (H) Binding of WT T3DSA- or σ 3 mutants to mNRP1 assessed by precipitation assay.
- 911 (E, H) Binding efficiency was calculated by normalizing band intensity of the viral µ1 and
- 912 σ proteins to that of the corresponding input level.
- 913 (D-H) Assays were conducted in triplicate. Mean values are shown. Error bars indicate
- 914 SD. (E, H) One-way ANOVA with Turkey's test. *, *P* < 0.05; **, *P* < 0.01; ***, *P* <
- 915 0.001.****, *P* < 0.0001.

916 Figure 7. NRP1 contributes to reovirus dissemination and neurovirulence in mice

- 917 (A) Effect of mNRP1-specific antibody blockade on reovirus infection of primary murine
- 918 cortical neurons. Neurons were preincubated with mNRP1-specific mAb or isotype IgG
- and adsorbed with WT T3DSA- at an MOI of 20 PFU/cell.
- 920 (B) Replication of WT T3DSA- and NRP1-binding mutants in L929 cells following
- adsorption at an MOI of 0.1 PFU/cell. NBM, NRP1-binding mutant.
- 922 (C) Infection of primary neurons by WT T3DSA- and NBMs.
- 923 (D) Replication of WT T3DSA- and NBMs following infection of primary neurons.
- 924 (A, C) Viral infectivity was quantified by IFA.
- 925 (E) Replication of WT T3DSA- and NBMs in mice following intracranial inoculation of
- 926 100 PFU/mouse. *n* = 4, 6, and 8 at 4, 6, and 8 DPI (WT); *n* = 8, 11, and 9 at 4, 6, and 8
- 927 DPI (NBM1); *n* = 8, 9, and 9 at 4, 6, and 8 DPI (NBM2).
- 928 (F) WT T3DSA- and NBMs virulence in mice following intracranial inoculation of 100
- 929 PFU/mouse.
- 930 (G) Replication of WT T3DSA- and NBMs in mice following intramuscular inoculation of
- 931 10⁷ PFU/mouse. *n* = 9, 10, and 9 at 2, 4, and 8 DPI (WT); *n* = 9, 10, and 9 at 2, 4, and 8
- 932 DPI (NBM1); *n* = 9, 9, and 8 at 2, 4, and 8 DPI (NBM2).
- 933 (D, E, G) Viral replication was quantified by plaque assay.
- 934 (E and G) Each symbol indicates a single mouse. Mean values are shown. Error bars
- 935 indicate SD. Limit of detection (LOD) was shown with dash line. (A-D) Two-way ANOVA
- 936 with Holm-Sidak's test. (E, G) Multiple unpaired t tests. (F) Log-rank (Mantel-Cox) test.
- 937 *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001; ****, *P* < 0.0001.
- 938

939 **REFERENCES**

- Raimondi, C., Brash, J.T., Fantin, A., and Ruhrberg, C. (2016). NRP1 function
 and targeting in neurovascular development and eye disease. Prog Retin Eye
 Res 52, 64-83. 10.1016/j.preteyeres.2016.02.003.
- Raimondi, C., and Ruhrberg, C. (2013). Neuropilin signalling in vessels, neurons
 and tumours. Semin Cell Dev Biol *24*, 172-178. 10.1016/j.semcdb.2013.01.001.
- 3. Guo, H.F., and Vander Kooi, C.W. (2015). Neuropilin functions as an essential
- 946 cell surface receptor. J Biol Chem 290, 29120-29126. 10.1074/jbc.R115.687327.
- 947 4. Chuckran, C.A., Liu, C., Bruno, T.C., Workman, C.J., and Vignali, D.A. (2020).
- 948 Neuropilin-1: a checkpoint target with unique implications for cancer immunology
 949 and immunotherapy. J Immunother Cancer *8*. 10.1136/jitc-2020-000967.
- 950 5. Parker, M.W., Guo, H.F., Li, X., Linkugel, A.D., and Vander Kooi, C.W. (2012).
- Function of members of the neuropilin family as essential pleiotropic cell surface
 receptors. Biochemistry *51*, 9437-9446. 10.1021/bi3012143.
- 953 6. Balistreri, G., Yamauchi, Y., and Teesalu, T. (2021). A widespread viral entry
- 954 mechanism: the c-end rule motif-neuropilin receptor interaction. Proc Natl Acad
 955 Sci U S A *118*. 10.1073/pnas.2112457118.
- 956 7. Daly, J.L., Simonetti, B., Klein, K., Chen, K.E., Williamson, M.K., Antón-Plágaro,
- 957 C., Shoemark, D.K., Simón-Gracia, L., Bauer, M., Hollandi, R., et al. (2020).
- 958 Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science *370*, 861-865.
- 959 10.1126/science.abd3072.
- 960 8. Cantuti-Castelvetri, L., Ojha, R., Pedro, L.D., Djannatian, M., Franz, J., Kuivanen,
- 961 S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., et al. (2020).

- 962 Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science *370*, 856963 860. 10.1126/science.abd2985.
- 964 9. Kielian, M. (2020). Enhancing host cell infection by SARS-CoV-2. Science *370*,
 965 765-766. 10.1126/science.abf0732.
- 966 10. Martinez-Martin, N., Marcandalli, J., Huang, C.S., Arthur, C.P., Perotti, M.,
- Foglierini, M., Ho, H., Dosey, A.M., Shriver, S., Payandeh, J., et al. (2018). An
 unbiased screen for human cytomegalovirus identifies neuropilin-2 as a central
 viral receptor. Cell *174*, 1158-1171.e1119. 10.1016/j.cell.2018.06.028.
- 970 11. Wang, H.B., Zhang, H., Zhang, J.P., Li, Y., Zhao, B., Feng, G.K., Du, Y., Xiong,
- 971 D., Zhong, Q., Liu, W.L., et al. (2015). Neuropilin 1 is an entry factor that
- promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun *6*, 6240.
 10.1038/ncomms7240.
- 974 12. Lu, Z.Z., Sun, C., Zhang, X., Peng, Y., Wang, Y., Zeng, Y., Zhu, N., Yuan, Y.,
- and Zeng, M.S. (2023). Neuropilin 1 is an entry receptor for KSHV infection of
- 976 mesenchymal stem cell through TGFBR1/2-mediated macropinocytosis. Sci Adv
- 977 9, eadg1778. 10.1126/sciadv.adg1778.
- 978 13. Dimitrov, D.S. (2004). Virus entry: molecular mechanisms and biomedical
- applications. Nat Rev Microbiol 2, 109-122. 10.1038/nrmicro817.
- 980 14. Maginnis, M.S. (2018). Virus-Receptor Interactions: The Key to Cellular Invasion.
- 981 J Mol Biol *430*, 2590-2611. 10.1016/j.jmb.2018.06.024.
- 982 15. Morizono, K., and Chen, I.S. (2011). Receptors and tropisms of envelope
- 983 viruses. Curr Opin Virol 1, 13-18. 10.1016/j.coviro.2011.05.001.

- 16. Long, J.S., Mistry, B., Haslam, S.M., and Barclay, W.S. (2019). Host and viral
 determinants of influenza A virus species specificity. Nat Rev Microbiol *17*, 6781. 10.1038/s41579-018-0115-z.
- 17. Lu, D., Shang, G., He, X., Bai, X.C., and Zhang, X. (2021). Architecture of the
- 988 Sema3A/PlexinA4/Neuropilin tripartite complex. Nat Commun *12*, 3172.
- 989 10.1038/s41467-021-23541-x.
- 990 18. Kschonsak, M., Johnson, M.C., Schelling, R., Green, E.M., Rougé, L., Ho, H.,
- 991 Patel, N., Kilic, C., Kraft, E., Arthur, C.P., et al. (2022). Structural basis for HCMV
- 992 pentamer receptor recognition and antibody neutralization. Sci Adv 8, eabm2536.
- 993 10.1126/sciadv.abm2536.
- 994 19. Wrapp, D., Ye, X., Ku, Z., Su, H., Jones, H.G., Wang, N., Mishra, A.K., Freed,
- D.C., Li, F., Tang, A., et al. (2022). Structural basis for HCMV pentamer
- recognition by neuropilin 2 and neutralizing antibodies. Sci Adv 8, eabm2546.
- 997 10.1126/sciadv.abm2546.
- 998 20. Chen, M., Wang, M.H., Shen, X.G., Liu, H., Zhang, Y.Y., Peng, J.M., Meng, F.,
- 999 Wang, T.Y., Bai, Y.Z., Sun, M.X., et al. (2022). Neuropilin-1 facilitates
- 1000 pseudorabies virus replication and viral glycoprotein B promotes its degradation
- 1001 in a furin-dependent manner. J Virol *96*, e0131822. 10.1128/jvi.01318-22.
- 1002 21. Knipe, D.M., and Howley, P.M. (2013). Fields virology, 6th Edition (Wolters
 1003 Kluwer/Lippincott Williams & Wilkins Health).
- 1004 22. Kobayashi, T., Antar, A.A., Boehme, K.W., Danthi, P., Eby, E.A., Guglielmi, K.M.,
- Holm, G.H., Johnson, E.M., Maginnis, M.S., Naik, S., et al. (2007). A plasmid-

based reverse genetics system for animal double-stranded RNA viruses. Cell
Host Microbe 1, 147-157. 10.1016/j.chom.2007.03.003.

1008 23. Roth, A.N., Aravamudhan, P., Fernández de Castro, I., Tenorio, R., Risco, C.,

and Dermody, T.S. (2021). Ins and outs of reovirus: vesicular trafficking in viral

- 1010 entry and egress. Trends Microbiol 29, 363-375. 10.1016/j.tim.2020.09.004.
- Sutherland, D.M., Aravamudhan, P., and Dermody, T.S. (2018). An orchestra of
 reovirus receptors: Still searching for the conductor. Adv Virus Res *100*, 223-246.
 10.1016/bs.aivir.2017.10.005.
- 1014 25. Bouziat, R., Hinterleitner, R., Brown, J.J., Stencel-Baerenwald, J.E., Ikizler, M.,

1015 Mayassi, T., Meisel, M., Kim, S.M., Discepolo, V., Pruijssers, A.J., et al. (2017).

1016 Reovirus infection triggers inflammatory responses to dietary antigens and

1017 development of celiac disease. Science *356*, 44-50. 10.1126/science.aah5298.

1018 26. Medina Sanchez, L., Siller, M., Zeng, Y., Brigleb, P.H., Sangani, K.A., Soto, A.,

1019 Engl, C., Laughlin, C.R., Rana, M., Van Der Kraak, L., et al. (2023). The gut

1020 protist tritrichomonas arnold restrains virus-mediated loss of oral tolerance by

1021 modulating dietary antigen-presenting dendritic cells. Immunity 56, 1862-1875.

1022 10.1016/j.immuni.2023.06.022.

1023 27. Shang, P., Simpson, J.D., Taylor, G.M., Sutherland, D.M., Welsh, O.L.,

Aravamudhan, P., Natividade, R.D.S., Schwab, K., Michel, J.J., Poholek, A.C., et

- al. (2023). Paired immunoglobulin-like receptor B is an entry receptor for
- 1026 mammalian orthoreovirus. Nat Commun *14*, 2615. 10.1038/s41467-023-38327-6.
- 1027 28. Konopka-Anstadt, J.L., Mainou, B.A., Sutherland, D.M., Sekine, Y., Strittmatter,
- 1028 S.M., and Dermody, T.S. (2014). The Nogo receptor NgR1 mediates infection by

- 1029 mammalian reovirus. Cell Host Microbe *15*, 681-691.
- 1030 10.1016/j.chom.2014.05.010.
- 1031 29. Aravamudhan, P., Guzman-Cardozo, C, Urbanek, K, Welsh, OL, Konopka-
- 1032 Anstadt, JL, Sutherland, DM, and Dermody, TS (2021). The murine neuronal
- 1033 receptor NgR1 is dispensable for reovirus pathogenesis. J Virol 96, e00055-
- 1034 00022.
- 1035 30. Antar, A.A.R., Konopka, J.L., Campbell, J.A., Henry, R.A., Perdigoto, A.L.,
- 1036 Carter, B.D., Pozzi, A., Abel, T.W., and Dermody, T.S. (2009). Junctional
- adhesion molecule-A is required for hematogenous dissemination of reovirus.
- 1038 Cell Host Microbe *5*, 59-71. 10.1016/j.chom.2008.12.001.
- 1039 31. Barton, E.S., Forrest, J.C., Connolly, J.L., Chappell, J.D., Liu, Y., Schnell, F.J.,
- 1040 Nusrat, A., Parkos, C.A., and Dermody, T.S. (2001). Junction adhesion molecule
- 1041 is a receptor for reovirus. Cell *104*, 441-451. Doi 10.1016/S0092-8674(01)00231-
- 1042
- 1043 32. Stencel-Baerenwald, J., Reiss, K., Blaum, B.S., Colvin, D., Li, X.N., Abel, T.,
- Boyd, K., Stehle, T., and Dermody, T.S. (2015). Glycan engagement dictates
- 1045 hydrocephalus induction by serotype 1 reovirus. mBio 6, e02356-02314.
- 1046 10.1128/mBio.02356-14.

8.

- 1047 33. Frierson, J.M., Pruijssers, A.J., Konopka, J.L., Reiter, D.M., Abel, T.W., Stehle,
- 1048 T., and Dermod, T.S. (2012). Utilization of sialylated glycans as coreceptors
- enhances the neurovirulence of serotype 3 reovirus. J Virol *86*, 13164-13173.
- 1050 10.1128/Jvi.01822-12.

1051	34.	Koehler, M., Aravamudhan, P., Guzman-Cardozo, C., Dumitru, A.C., Yang, J.,
1052		Gargiulo, S., Soumillion, P., Dermody, T.S., and Alsteens, D. (2019). Glycan-
1053		mediated enhancement of reovirus receptor binding. Nat Commun 10, 4460.
1054		10.1038/s41467-019-12411-2.
1055	35.	Koehler, M., Petitjean, S.J.L., Yang, J., Aravamudhan, P., Somoulay, X., Lo
1056		Giudice, C., Poncin, M.A., Dumitru, A.C., Dermody, T.S., and Alsteens, D.
1057		(2021). Reovirus directly engages integrin to recruit clathrin for entry into host
1058		cells. Nat Commun 12, 2149. 10.1038/s41467-021-22380-0.
1059	36.	Ortega-González, P., Taylor, G., Jangra, R.K., Tenorio, R., Fernández de Castro,
1060		I., Mainou, B.A., Orchard, R.C., Wilen, C.B., Brigleb, P.H., Sojati, J., et al. (2022).
1061		Reovirus infection is regulated by NPC1 and endosomal cholesterol
1062		homeostasis. PLoS Pathog 18, e1010322. 10.1371/journal.ppat.1010322.
1063	37.	Barrass, S.V., and Butcher, S.J. (2020). Advances in high-throughput methods
1064		for the identification of virus receptors. Med Microbiol Immunol 209, 309-323.
1065		10.1007/s00430-019-00653-2.
1066	38.	Puschnik, A.S., Majzoub, K., Ooi, Y.S., and Carette, J.E. (2017). A CRISPR
1067		toolbox to study virus-host interactions. Nat Rev Microbiol 15, 351-364.
1068		10.1038/nrmicro.2017.29.
1069	39.	Dermody, T.S., Nibert, M.L., Bassel-Duby, R., and Fields, B.N. (1990). A s1
1070		region important for hemagglutination by serotype 3 reovirus strains. J Virol 64,
1071		5173-5176.

- 1072 40. Alsteens, D., Newton, R., Schubert, R., Martinez-Martin, D., Delguste, M., Roska,
- 1073 B., and Müller, D.J. (2017). Nanomechanical mapping of first binding steps of a 1074 virus to animal cells. Nat Nanotechnol *12*, 177-183. 10.1038/nnano.2016.228.
- 1075 41. Diller, J.R., Halloran, S.R., Koehler, M., dos Santos Natividade, R., Alsteens, D.,
- 1076 Stehle, T., Dermody, T.S., and Ogden, K.M. (2020). Reovirus σ1 conformational
- 1077 flexibility modulates the efficiency of host cell attachment. J Virol 94, e01163-
- 1078 01120. 10.1128/jvi.01163-20.
- 1079 42. dos Santos Natividade, R., Koehler, M., Gomes, P., Simpson, J.D., Smith, S.C.,
- 1080 Gomes, D.E.B., de Lhoneux, J., Yang, J., Ray, A., Dermody, T.S., et al. (2023).
- 1081 Deciphering molecular mechanisms stabilizing the reovirus-binding complex.
- 1082 Proc Natl Acad Sci U S A *120*, e2220741120. 10.1073/pnas.2220741120.
- 1083 43. Sutherland, D.M., Strebl, M., Koehler, M., Welsh, O.L., Yu, X., Hu, L., dos Santos
- 1084 Natividade, R., Knowlton, J.J., Taylor, G.M., Moreno, R.A., et al. (2023). NgR1
- 1085 binding to reovirus reveals an unusual bivalent interaction and a new viral
- 1086 attachment protein. Proc Natl Acad Sci U S A *120*, e2219404120.
- 1087 10.1073/pnas.2219404120.
- 1088 44. Evans, E., and Ritchie, K. (1997). Dynamic strength of molecular adhesion
 1089 bonds. Biophys J *72*, 1541-1555. 10.1016/s0006-3495(97)78802-7.
- 1090 45. Evans, E.A., and Calderwood, D.A. (2007). Forces and bond dynamics in cell
- adhesion. Science *316*, 1148-1153. 10.1126/science.1137592.
- 1092 46. Rankl, C., Kienberger, F., Wildling, L., Wruss, J., Gruber, H.J., Blaas, D., and
 1093 Hinterdorfer, P. (2008). Multiple receptors involved in human rhinovirus

1094 attachment to live cells. Proc Natl Acad Sci U S A *105*, 17778-17783.

1095 10.1073/pnas.0806451105.

- 1096 47. Appleton, B.A., Wu, P., Maloney, J., Yin, J., Liang, W.C., Stawicki, S., Mortara,
- 1097 K., Bowman, K.K., Elliott, J.M., Desmarais, W., et al. (2007). Structural studies of
- 1098 neuropilin/antibody complexes provide insights into semaphorin and VEGF
- 1099 binding. Embo j 26, 4902-4912. 10.1038/sj.emboj.7601906.
- 1100 48. Janssen, B.J., Malinauskas, T., Weir, G.A., Cader, M.Z., Siebold, C., and Jones,
- 1101 E.Y. (2012). Neuropilins lock secreted semaphorins onto plexins in a ternary
- signaling complex. Nat Struct Mol Biol *19*, 1293-1299. 10.1038/nsmb.2416.
- 1103 49. Reinisch, K.M., Nibert, M., and Harrison, S.C. (2000). Structure of the reovirus
 1104 core at 3.6 angstrom resolution. Nature *404*, 960-967.
- 1105 50. Liemann, S., Chandran, K., Baker, T.S., Nibert, M.L., and Harrison, S.C. (2002).
- 1106 Structure of the reovirus membrane-penetration protein, μ 1, in a complex with its 1107 protector protein, σ 3. Cell *108*, 283-295.
- 1108 51. Zhang, X., Ji, Y., Zhang, L., Harrison, S.C., Marinescu, D.C., Nibert, M.L., and
- 1109 Baker, T.S. (2005). Features of reovirus outer capsid protein μ1 revealed by
- 1110 electron cryomicroscopy and image reconstruction of the virion at 7.0 Å

1111 resolution. Structure *13*, 1545-1557. 10.1016/j.str.2005.07.012.

- 1112 52. Maginnis, M.S., Forrest, J.C., Kopecky-Bromberg, S.A., Dickeson, S.K., Santoro,
- 1113 S.A., Zutter, M.M., Nemerow, G.R., Bergelson, J.M., and Dermody, T.S. (2006).
- 1114 β1 integrin mediates internalization of mammalian reovirus. J Virol 80, 2760-
- 1115 2770.

- 1116 53. Koyuncu, O.O., Hogue, I.B., and Enquist, L.W. (2013). Virus infections in the
- 1117 nervous system. Cell Host Microbe *13*, 379-393. 10.1016/j.chom.2013.03.010.
- 1118 54. Ayala-Nunez, N.V., and Gaudin, R. (2020). A viral journey to the brain: current
- 1119 considerations and future developments. PLoS Pathog *16*, e1008434.
- 1120 10.1371/journal.ppat.1008434.
- 1121 55. Chappell, J.D., Barton, E.S., Smith, T.H., Baer, G.S., Duong, D.T., Nibert, M.L.,
- and Dermody, T.S. (1998). Cleavage susceptibility of reovirus attachment protein
- 1123 σ 1 during proteolytic disassembly of virions is determined by a sequence
- 1124 polymorphism in the σ 1 neck. J Virol 72, 8205-8213.
- 1125 56. Nibert, M.L., Chappell, J.D., and Dermody, T.S. (1995). Infectious subvirion 1126 particles of reovirus type 3 Dearing exhibit a loss in infectivity and contain a 1127 cleaved σ 1 protein. J Virol 69, 5057-5067. 10.1128/jvi.69.8.5057-5067.1995.
- 1128 57. Kong, W., Montano, M., Corley, M.J., Helmy, E., Kobayashi, H., Kinisu, M.,
- 1129 Suryawanshi, R., Luo, X., Royer, L.A., Roan, N.R., et al. (2022). Neuropilin-1
- 1130 mediates SARS-CoV-2 infection of astrocytes in brain organoids, inducing
- inflammation leading to dysfunction and death of neurons. mBio *13*, e0230822.
- 1132 10.1128/mbio.02308-22.
- 1133 58. Joyce, J.D., Moore, G.A., Goswami, P., Harrell, T.L., Taylor, T.M., Hawks, S.A.,
- 1134 Green, J.C., Jia, M., Yallayi, N., Leslie, E.H., et al. (2023). SARS-CoV-2 infects
- 1135 peripheral and central neurons before viremia, facilitated by neuropilin-1. bioRxiv.
- 1136 10.1101/2022.05.20.492834.
- 1137 59. Sutherland, D.M., Aravamudhan, P., Dietrich, M.H., Stehle, T., and Dermody,
- 1138 T.S. (2018). Reovirus neurotropism and virulence are dictated by sequences in
 - 60

the head domain of the viral attachment protein. J Virol 92, e00974-00918.

1140 10.1128/JVI.00974-18.

- 1141 60. Pan, M., Alvarez-Cabrera, A.L., Kang, J.S., Wang, L., Fan, C., and Zhou, Z.H.
- 1142 (2021). Asymmetric reconstruction of mammalian reovirus reveals interactions
- among RNA, transcriptional factor μ 2 and capsid proteins. Nat Commun *12*,
- 1144 4176. 10.1038/s41467-021-24455-4.
- 1145 61. Bao, K., Zhang, X., Li, D., Sun, W., Sun, Z., Wang, J., and Zhu, P. (2022). In situ
- 1146 structures of polymerase complex of mammalian reovirus illuminate RdRp
- 1147 activation and transcription regulation. Proc Natl Acad Sci U S A *119*,
- 1148 e2203054119. 10.1073/pnas.2203054119.
- 1149 62. Excoffon, K.J.D.A., Guglielmi, K.M., Wetzel, J.D., Gansemer, N.D., Campbell,
- 1150 J.A., Dermody, T.S., and Zabner, J. (2008). Reovirus preferentially infects the
- 1151 basolateral surface and is released from the apical surface of polarized human
- 1152 respiratory epithelial cells. J Infect Dis *1*97, 1189-1197. 10.1086/529515.
- 1153 63. Lai, C.M., Mainou, B.A., Kim, K.S., and Dermody, T.S. (2013). Directional release
- of reovirus from the apical surface of polarized endothelial cells. mBio 4, e00049-
- 1155 00013. 10.1128/mBio.00049-13.
- 1156 64. Li, J., Liu, T., Dong, Y., Kondoh, K., and Lu, Z. (2019). Trans-synaptic neural
 1157 circuit-tracing with neurotropic viruses. Neuroscience bulletin *35*, 909-920.
- 1158 65. Zhang, J., Yang, H., Wu, J., Zhang, D., Wang, Y., and Zhai, J. (2022). Recent
- 1159 progresses in novel in vitro models of primary neurons: a biomaterial perspective.
- 1160 Front Bioeng Biotechnol *10*, 953031. 10.3389/fbioe.2022.953031.

- 1161 66. Fraser, R.D., Furlong, D.B., Trus, B.L., Nibert, M.L., Fields, B.N., and Steven,
- 1162 A.C. (1990). Molecular structure of the cell-attachment protein of reovirus:
- 1163 correlation of computer-processed electron micrographs with sequence-based
- 1164 predictions. J Virol *64*, 2990-3000.
- 1165 67. Li, Z.L., and Buck, M. (2021). Neuropilin-1 assists SARS-CoV-2 infection by
- stimulating the separation of spike protein S1 and S2. Biophys J *120*, 2828-2837.
 10.1016/j.bpj.2021.05.026.
- 1168 68. Dietrich, M.H., Ogden, K.M., Long, J.M., Ebenhoch, R., Thor, A., Dermody, T.S.,
- and Stehle, T. (2018). Structural and functional features of the reovirus σ 1 tail. J
- 1170 Virol 92, e00336-00318. 10.1128/JVI.00336-18.
- Larson, S.M., Antczak, J.B., and Joklik, W.K. (1994). Reovirus exists in the form
 of 13 particle species that differ in their content of protein sigma-1. Virology *201*,
 303-311. DOI 10.1006/viro.1994.1295.
- 1174 70. Sironi, M., Cagliani, R., Forni, D., and Clerici, M. (2015). Evolutionary insights
- 1175 into host-pathogen interactions from mammalian sequence data. Nat Rev Genet
- 1176 *16*, 224-236. 10.1038/nrg3905.
- 1177 71. Sanson, K.R., Hanna, R.E., Hegde, M., Donovan, K.F., Strand, C., Sullender,
- 1178 M.E., Vaimberg, E.W., Goodale, A., Root, D.E., Piccioni, F., and Doench, J.G.
- 1179 (2018). Optimized libraries for CRISPR-Cas9 genetic screens with multiple
- 1180 modalities. Nat Commun 9, 5416. 10.1038/s41467-018-07901-8.
- 1181 72. Aravamudhan, P., Raghunathan, K., Konopka-Anstadt, J., Pathak, A.,
- 1182 Sutherland, D.M., Carter, B.D., and Dermody, T.S. (2020). Reovirus uses

1183 macropinocytosis-mediated entry and fast axonal transport to infect neurons.

1184 PLoS Pathog *16*, e1008380. 10.1371/journal.ppat.1008380.

- 1185 73. Kobayashi, T., Ooms, L.S., Ikizler, M., Chappell, J.D., and Dermody, T.S. (2010).
- 1186 An improved reverse genetics system for mammalian orthoreoviruses. Virology
- 1187 398, 194-200. 10.1016/j.virol.2009.11.037.
- 1188 74. Wildling, L., Unterauer, B., Zhu, R., Rupprecht, A., Haselgrübler, T., Rankl, C.,
- 1189 Ebner, A., Vater, D., Pollheimer, P., Pohl, E.E., et al. (2011). Linking of sensor

1190 molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem

- 1191 22, 1239-1248. 10.1021/bc200099t.
- 1192 75. Ebner, A., Hinterdorfer, P., and Gruber, H.J. (2007). Comparison of different
- aminofunctionalization strategies for attachment of single antibodies to AFM
- 1194 cantilevers. Ultramicroscopy *107*, 922-927. 10.1016/j.ultramic.2007.02.035.
- 1195 76. Dupres, V., Menozzi, F.D., Locht, C., Clare, B.H., Abbott, N.L., Cuenot, S.,
- 1196 Bompard, C., Raze, D., and Dufrêne, Y.F. (2005). Nanoscale mapping and
- 1197 functional analysis of individual adhesins on living bacteria. Nature methods 2,1198 515-520.
- 1199 77. Butt, H.-J., and Jaschke, M. (1995). Calculation of thermal noise in atomic force
 1200 microscopy. Nanotechnology *6*, 1.
- 1201 78. Bustamante, C., Marko, J.F., Siggia, E.D., and Smith, S. (1994). Entropic
 1202 elasticity of λ-phage DNA. Science *265*, 1599-1600.
- 1203 79. Newton, R., Delguste, M., Koehler, M., Dumitru, A.C., Laskowski, P.R., Müller,
- 1204 D.J., and Alsteens, D. (2017). Combining confocal and atomic force microscopy

to quantify single-virus binding to mammalian cell surfaces. Nature protocols *12*,
2275-2292.

- 1207 80. Alsteens, D., Newton, R., Schubert, R., Martinez-Martin, D., Delguste, M., Roska,
- 1208 B., and Müller, D.J. (2017). Nanomechanical mapping of first binding steps of a
- 1209 virus to animal cells. Nature nanotechnology *12*, 177-183.
- 1210 81. Rankl, C., Wildling, L., Neundlinger, I., Kienberger, F., Gruber, H., Blaas, D., and
- 1211 Hinterdorfer, P. (2011). Determination of the kinetic on-and off-rate of single
- 1212 virus–cell interactions. Atomic Force Microscopy in Biomedical Research:
- 1213 Methods and Protocols, 197-210.
- 1214 82. Evans, E.A., and Calderwood, D.A. (2007). Forces and bond dynamics in cell 1215 adhesion. Science *316*, 1148-1153.
- 1216 83. Williams, P.M. (2003). Analytical descriptions of dynamic force spectroscopy:
- 1217 behaviour of multiple connections. Analytica Chimica Acta 479, 107-115.

Figure 1. mNRP1 promotes reovirus binding and infection

Figure 2. Biophysics of reovirus-NRP1 interactions

Figure 3. Reovirus-NRP1 interactions require multiple NRP1 extracellular domains

Figure 4. Multiple reovirus capsid proteins are required for interactions with NRP1

Figure 5. Capsid turret protein $\lambda 2$ contributes to NRP1 binding and is required for NRP1-mediated infectivity

Figure 6. Protomers of outer-capsid protein σ 3 are engaged in interactions with NRP1

Figure 7. NRP1 contributes to reovirus dissemination and neurovirulence in mice