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Je tiens à remercier très chaleureusement mon promoteur, le professeur
Jean-François Remacle, qui m’a permis de réaliser cette thèse de doctorat,
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Introduction

In1 a recent presentation [92], Professor Thomas J.R. Hughes estimated that
there were on the order of one million finite element analyses performed a day
in engineering companies throughout the world. This has been made possible
in part by computer aided design (CAD) systems, which allow engineers to
represent design geometry up to manufacturing tolerances: a CAD model is
usually considered as an exact representation of the geometry. However, finite
element analysis also requires a computational mesh, and it is commonly ad-
mitted that about 80% of the human time spent in finite element analysis is
spent in the construction of a suitable mesh [92].

In an attempt to decrease the time required for a finite element analysis,
a significant effort has been devoted to the development of numerical methods
that either do not require a mesh [21,31] or for which the mesh generation pro-
cess is dramatically simplified [125,190]. Unfortunately, none of these methods
have become a credible replacement to standard finite element analysis. On the
other hand, although over the past twenty years there has been many impor-
tant theoretical and practical results [176,76,55,136,112], relatively little effort
is being devoted to the improvement of current mesh generation techniques:
there are currently fewer than twenty research teams in the world that actively
work on mesh generation and mesh adaptation research.

Although mesh generation techniques started to develop with the early de-
velopments of the finite element methods, mesh adaptation has only been con-
sidered since the 70s, when the idea that a mesh could be modified according
to particular requirements of a computation first appeared. Since then, the
usual role played by mesh adaptation has been to optimize the distribution of
the computational resources over the domain: the mesh is refined where the
solution should be more accurately computed, and coarsened where the error
on the solution has a smaller impact on the quantities of interest.

The common way to decide where to refine or coarsen a mesh is to build
an error estimate of the solution [1]. Goal-oriented mesh adaptation proce-
dures [66,18] aim at reducing the global error, or distributing it uniformly over
the domain. As an example, Figure 1 (a) depicts a problem in which the equa-
tion of plane strain elasticity is solved using linear finite elements. Figure 1
(b) and (c) show respectively a mesh with a uniform element size, and the
same mesh on which we applied an adaptation procedure which objective is to
minimize the global error with an approximately constant number of elements.

1Parts of the introduction have been taken from our paper [149].
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(a) Von-Mises stresses, (b) Initial mesh, (c) Optimal mesh,
loads and fixations. 3, 301 triangles, 3, 230 triangles.

deformed structure.

Figure 1: An example of mesh adaptation for reducing the global error with
an approximately constant number of elements (see [149] for details).

More details can be found in [149]. A simple error procedure [193] has been
used for estimating the error. In this example, for an equivalent number of
elements, the energy norm of the error is reduced by a factor 2.5.

Because it was a critical issue in this field, mesh adaptivity has mainly
been developed in the framework of CFD (Computational Fluid Dynamics)
with the goal of improving the efficiency of the existing methods. Refining,
coarsening and optimizing locally the mesh was found to be an interesting mean
to reduce the computational cost of the very expensive CFD computations while
increasing the range of scales that can be captured in a simulation: the size
of the elements can be reduced where the small scales appear, and enlarged
elsewhere. Mesh adaptivity has also proved to be an interesting technique for
capturing discontinuities like shocks [152,71], or interfaces between fluids [44].

In parallel to the error control, a particular field of applications for mesh
adaptivity has arisen: the computations with deforming domains. With ap-
plications in forging, machining and other industrial processes [39, 82, 137, 29],
fluid-structure interaction problems in aeronautics like blade fluttering [174],
crash simulations [33,101] or insect flights [146], and other fields like multiphase
flows with interface tracking [54], flows in moving machines like pumps or pis-
tons [85,5] and crack propagation [138,160] among others, the mesh adaptation
methods have greatly extended their potential. Recently, the biomedical com-
munity has shown an increasing interest in mesh adaptation for deforming do-
mains, in particular for modeling the human cardiovascular system [165,40,163],
or medical devices like blood pumps [8].

The issues related to deforming domains can be partly covered by the node
repositioning techniques or r-adaptation, as for instance the very popular elastic
analogy proposed by Tezduyar et al. [186]. However, the r-adaptation methods
suffer from intrinsic limitations: if the deformation of the mesh is too large,
the quality of the elements is degraded, and at some point the r-adaptation
techniques even fail in returning a valid mesh.
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(a) Swimming man (b) Flow behind a helix

(c) Hummingbird flight (d) Multiple wind turbines

Figure 2: Example applications for which a computation may require deforming
domains.

A classical solution to overcome that issue is to re-mesh the entire domain
with for instance an advancing front technique [136], a Delaunay kernel [27],
or a volume minimization principle [52] when the quality or size distributions
of the mesh become insufficient. An advantage of this approach is that the
geometry of the domain is implicitly taken into account in the meshing process.
On the other hand these methods imply a mesh-to-mesh projection of the
solution over the entire domain every time the domain is re-meshed. Another
drawback of the this approach is that the mesh generation in parallel is very
challenging. Today, parallel mesh generation is still an open problem. In order
to circumvent those issues, methods that adapt the mesh locally have been
proposed. The investigations achieved in the present manuscript deal with
this class of methods. The re-meshing and local mesh adaptation methods are
usually termed h-adaptive methods.

There exist a small number of other approaches to handle large mesh de-
formations, among which the sliding mesh techniques [123]. Compared to local
mesh modifications, they have the disadvantage of requiring a flux computation
at the interface and working with non coinciding meshes. Furthermore, this
approach is not applicable if a sliding surface cannot be a priori determined.
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We also mention the overset grid methods which yielded results in [107,
144] but they require grid assemblies and donor cell search processes. The
local mesh modification technique has a unique mesh and a single prescribed
boundary motion, which leads to a conceptually simple method and robust
mesh movements.

Despite the need for efficient and reliable mesh adaptation methods, few
computational packages include 3D mesh adaptation tools, and only a small
number of groups are working on adaptive methods in the scientific commu-
nity in comparison to the efforts made in the field of finite elements and finite
volumes methods. We think that one of the reasons is the lack of freely avail-
able software sources, although the meshing field is very technical and the
efficiency of the solutions usually depends on the proposed algorithms and im-
plementations. In the 3D meshing field, several open source packages have been
developed, brought to maturation, and recognized as references in the domain,
like Netgen [166], Tetgen [172] or Gmsh [78]. However, no free solution has
really broken into 3D mesh adaptation up to now.

Historical review and state of the art

The mesh adaptation by local mesh modifications has been under development
since the 1970s with the first developments of Babuska [11] and those of Berger,
Oliger and Colella [23, 22] who developed a block-structured grid method to
solve compressible [22,135,122] and incompressible flows problems [158]. Block-
structured grid methods allow to increase the resolution with multiple levels of
refinements on blocks located near regions where the scales cannot be resolved
by the coarse grid. This technique is quite appropriate to solve problems on
uniform grids, as well as the quadtree based methods.

The quadtree grids are more general and more efficient than the block-
structured grids in the sense that additional points are only added where it is
required. Nevertheless, quadtrees require complex data structures which results
in complicated algorithms and impacts on the computational time. Further-
more, the approach is not suitable for anisotropic meshes and leads to very
complex algorithms when turning to parallel computations. Examples of ap-
plications of the quadtree methods can be found for the Euler incompressible
equations [141], two-phase flows computations [115], and volume-of-fluid meth-
ods [80].

More appropriate methods for unstructured grids were first designed to
perform local refinements with a control on elements quality by ordered edge
splits, like the longest-edges refinement for triangulations [155, 156, 157], the
successive bisection procedure controlled in terms of affine transformation [108,
110, 111], the reg-green algorithms [97, 26, 25], and the newest vertex bisection
algorithm [124].

These methods were incremented by coarsening algorithms which consist in
undoing the refinement modifications [155,147,113,97,176]. The disadvantage
of these methods is that they tend to over-refine the mesh and provide only a
limited control on elements quality. Furthermore, the coarsening is limited to
the initial mesh size.
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The next generation of methods included general coarsening operators, the
edge and face swaps and the node relocation in the set of local modifications
in order to improve the control on mesh quality [94, 32, 55, 95]. A particular
issue with the adaptation methods based on local mesh modifications is the ap-
parition of slivers, i.e. elements with a poor quality, but edges with reasonable
lengths. Such undesirable elements can be generated by refinement or coarsen-
ing operations, or result from vertex relocations. Techniques to eliminate the
sliver elements and optimize element shapes were progressively added to the
global procedures [70,15,106,48].

The combination of the different modifications in an adaptation method
governed by criterions on element size and quality distributions were set up for
triangular meshes in [36,34,62] and later for tetrahedral meshes in [133,13].

In [106], the classical modifications were combined with a refinement pro-
cedure cutting all long edges at once and applying refinement templates for a
tetrahedron with one to six split edges. This approach was preferred to individ-
ual edge splits and Delaunay insertions since, according to the authors, it mini-
mizes over-refinement, does not create sliver elements and is relatively efficient.
A drawback of template refinements is that they introduce non-tetrahedrizable
polyedra (Schöenhart polyedra) so that the introduction of unwanted extra
points (Steiner points) is mandatory.

Isotropic and anisotropic mesh adaptation procedures based on the previous
local mesh modifications and governed by element sizes and shape criterions
have been widely applied in fluid mechanics. A non-exhaustive list of applica-
tions includes shallow water problems [154], compressible flows [185,152,71,3],
blood flows [127,163] and multi-phase flows [54,44].

Extensions to the local mesh modifications methods to comply to a possibly
non-manifold CAD model have been proposed recently by Shephard, Li et
al. [105, 170]. In particular, algorithms to snap vertices on the exact location
returned by the CAD model have been introduced. However, the proposed
methods are based on complex procedures and the robustness of the methods
can still be challenged.

The first achievements made to supply to r-adaptive methods with the local
mesh modifications consisted in applying refinement/coarsening procedures ac-
cording to both shape and deformation measures of the elements [14,13]. The
robustness of the method was improved recently by adding edge and face swaps
to eliminate sliver elements [38,54].

In parallel with these developments, another approach using a local re-
meshing based on a minimum volume principle was proposed by Coupez et
al. [52] and mostly applied in the field of forging and manufacturing. This
approach has the advantage of starting from a mesh which can be non conform
to the geometry of the domain. The method was parallelized in [51] and applied
to multi-domain problems in [81].

We also mention another class of methods based on the minimization of
a spring-like energy function associated with each edge and dependent of its
length and the local scales of the flow [53,191,6]. The method is combined with
local node repositionings and edge swaps in order to improve element shapes.
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Recently, a fixed point procedure for steady and unsteady computations
was proposed by Alauzet, Frey et al. [3] to yield a convergence for both the
adaptive mesh and the CFD solution together.

From the implementation point-of-view, only a few packages have been
proposed as open source libraries for mesh adaptation in 3D. We mention the
mesh adaptation module of the Gerris flow solver [142] and the libMesh [100,99]
library. However, these packages are based on quadtrees and only provide
refinement/de-refinement procedures which is far behind the current state of
the art of mesh adaptation.

Objectives of the present work

Today, many problems related to mesh adaptivity remain open. Finite element
and finite volume methods could largely benefit by proposing solutions to the
remaining issues. Among the challenges that are still to be taken up, we men-
tion the adaptation for curvilinear meshes, the anisotropic mesh adaptation
with high aspect ratios, the gradation control in highly anisotropic meshes, the
automatic generation and adaptation of boundary layer meshes, the handling
of complex CAD models, issues in mesh optimization like fully robust sliver
elimination, and adaptivity for very large meshes.

In the present work, we address some of these issues, in particular those
related to the mesh adaptation with large domain deformations. Some key
points for the applicability of the method to industrial or biomedical problems
are reached, like CAD models handling, automatic boundary layer meshing,
element shapes optimization or computational efficiency.

Mesh adaptivity applied to two-phase flows Although the first contri-
bution presented in this work [44] is not strictly speaking intended to be applied
to large deforming domains, it evaluates the applicability of the mesh adapta-
tion method on which the present work is based to a class of highly transient
problems: two-phase flow computations.

An interface capturing method is considered here for modelling the interface
between the fluids. With interface capturing methods, the position of the
interface is not directly related to the position of some mesh entities. In our
case, the iso-zero surface of a level set function is used to locate the interface.

The presented mesh adaptation procedure is used to maintain a refined
zone around the interface in order to capture the small scales, evaluate more
accurately the surface tension forces, and limit the mass losses inherent to
the computational method. The benefit in terms of efficiency coming from
anisotropic elements aligned with the interface is also evaluated.

Arbitrarily large deformations It is well recognized in the literature [13,
38,54] that the robustness is a key element of the mesh adaptation procedures
for large deformations since a single ill-shaped element can be responsible for
a global failure of the method.

Recent results allow to perform large deformations on relatively complex
geometries in particular fields: multiphase flows with interface tracking [54],
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and separation of objects in an external flow [38]. However, when arbitrarily
large deformations occur, existing methods can still fail in providing a valid
mesh.

In this work, we consider both large deformations [48, 47] and complex
geometries [45], and we address the issues related to the robustness of the
method, as well as the control on element quality. A particular attention is paid
to the sliver elimination. The objective is not to target a particular application
but rather to provide the general techniques that will be able to face any motion
of the domain.

Automatic boundary layer meshing Among the issues that are raised
when generating a mesh, one of the most time-consuming task is certainly the
generation of a suitable mesh in the regions where a boundary layer (BL) has
to be captured. For fixed domains, techniques exist to generate structured BL
meshes in a semi-automatic way. Those techniques usually extrude the sur-
face mesh several times, which yields successive layers of structured elements.
Several problems may arise with this approach. First, particular techniques
have to be designed for the different geometrical cases in which a simple extru-
sion of the surface mesh yields an invalid or low quality mesh. The resulting
elements can have poor qualities in those particular regions, and sometimes
the intervention of an experimented user is required. Secondly, such a mesh is
not suitable when dealing with large deforming meshes: when the boundaries
undergo large deformations, preserving the quality and above all the validity
of a semi-structured mesh is a challenging task.

In a previous work [161] it has been shown that unstructured BL meshes
yield acceptable results for viscous flows, although the solution exhibits spu-
rious oscillations that do not appear with structured meshes. In the present
work, an additional test is performed to evaluate the potential of unstructured
anisotropic meshes for capturing BL at low Reynolds numbers.

From the mesh adaptation method proposed for the large deforming do-
mains [48, 47], an anisotropic unstructured BL mesh adaptation method can
be derived by building the appropriate anisotropic size field representing the
desired sizes in the BL and intersecting it with the other prescribed size field(s).
The advantage of such an approach is that the adaptivity of the BL mesh and
the interior mesh are gathered under a single adaptation procedure via size
field intersections. The BL meshing is then automatic, provided that the con-
struction of the size field in the BL region is also automatic. Such an approach
is well suited for generating a BL mesh in an existing mesh, and adapting it
through the computation whether the domain is deformed or not.

The automatic construction of the size field in the BL can be obtained from
the determination of the tangent and normal directions to the wall inside the
BL region. In order to obtain a well-posed problem for the mesh adaptation
procedure, the anisotropic size field of the BL has to be computed carefully.
Around curved walls, the curvatures of the boundary restrict the possibili-
ties of building elements with large anisotropic ratios, simply because highly
anisotropic elements cannot be piled up and fill the space in a curved region.
Furthermore, a curved boundary should be discretized by several elements in
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order to capture the non-uniform flow. The present work addresses this issue
and describes the unified method for generating and adapting the mesh in both
the interior domain and the BL region.

Geometrical model handling When the mesh adaptation methods are
used in the context of industrial computations, the domain discretized by the
mesh is usually defined by a Computer Aided Design (CAD) model. Ensuring
the compatibility of the mesh to the CAD model is therefore an important task
when running an adaptation method since successive refinement, coarsening
and optimization operations can dramatically alter the shape of the bound-
aries of the mesh if special care is not given to the compliance with the model.
A simple way to preserve the shape of the domain is to deny mesh modifi-
cations on the boundaries, thus disabling any possibility to refine/coarsen or
optimize the boundary elements. This solution is very restrictive in most cases
since interesting phenomenons can occur at the vicinity of the boundaries, like
travelling shock waves or boundary layer separation.

Adapting the mesh of a complex domain with an automatic compliance to
a CAD model is a challenging task in which robustness and elements quality
are key points. Most of the methods based on global re-meshing implicitly
include the compliance to the model since the volume mesh is built on the
surface mesh of the model boundaries. For the methods based on local mesh
modifications, special considerations have to be made when designing the mesh
modifications. In particular, the creation of new boundary nodes requires to
snap the nodes to their corresponding location on the model boundary, which
yields the issue of the quality, indeed even volume positivity, of the neighbor
elements. Coarsening and swap modifications are also to be considered since
they may yield a mesh which is no longer compatible with the CAD model. For
instance, an invalid coarsening would put in contact two surfaces of the model
which were initially separated.

New developments are made in the present work [45] to address these issues.
The aim is to state in details the constraints brought by the handling of a CAD
model in a mesh adaptation procedure by local modifications and to provide
new techniques that improve the reliability of the procedure.

Mesh adaptation platform A contribution of the present work is the devel-
opment of an open source mesh adaptation platform: MAdLib (Mesh Adaptation
Library) [46,47] which implements the achievements proposed in this work.

The mesh adaptation field is very technical in the sense that the resulting
meshes depend on the algorithms and implementations. Some algorithms are
based on heuristics, like for instance the sliver elimination procedures. Fur-
thermore, the efficiency of an algorithm can be dramatically altered if some
considerations about its implementation are not taken into account, like in the
research of the optimal edge swap configuration for instance.

We think that providing such an open code, contributes to the research in
the field of numerical mechanics for the following reasons:

• We believe that adaptive procedures have not reached a sufficient impact
in engineering design and that one of the main reasons of that relative
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success is that there are too few freely available solutions. Despite the
presence of a literature in the mesh adaptation field, many resources
must be invested by a research or industrial group to obtain a robust and
efficient 3D mesh adaptation tool. This investment is often discouraging
when a group wishes to improve a mesh adaptation method, or use it in
an industrial project or in a third-part research.

• The repeatability of the numerical experiments is hard, indeed even im-
possible to ensure when the original implementation is not available. It
is therefore very hard to compare different methods, or to experience the
effect of modifications in the existing methods.

• Mesh related codes need time and users to become usable. By distributing
a source code, we hope to build a community around it, which may allow
for improvements in the code thanks to the comments and contributions
of the community, return on the method when applied in different fields
of application, and new ideas or suggestions for development lines around
the proposed package. Such a community has already been built around
other platforms in the field of mesh generation like for Gmsh [77].

Outline

The outline of the present work is as follows. The first chapter describes the
mesh adaptation procedure and its application to two-phase flow computa-
tions. To this end, the paper entitled Transient adaptivity applied to two-phase
incompressible flows, Compère, Marchandise, Remacle, Journal of Computa-
tional Physics (2008) is presented. In Chapter 2, the techniques proposed
to extend the method to arbitrarily large domain deformations are discussed
and the paper Transient mesh adaptivity with large rigid-body displacements,
Compère, Remacle, Marchandise, Proceedings of the 17th International Mesh-
ing Roundtable (2008) is proposed. The investigations performed for the prob-
lems related to the boundary layer meshes are discussed in Chapter 3, and
the handling of CAD geometries is detailed in Chapter 4, where the paper
entitled Mesh adaptivity complying to a geometrical model, Compère, Remacle
(not submitted yet) is presented. Finally, a discussion on source code distri-
bution and the description of the mesh adaptation package MAdLib are given
in Chapter 5, which reproduces the paper A mesh adaptation framework for
dealing with large deforming meshes, Compère, Remacle, Jansson, Hoffman,
accepted for publication in the International Journal for Numerical Methods
in Engineering.





Chapter 1

Mesh adaptivity by local
mesh modifications: an
example application

This chapter describes the first achievement of the present work, which con-
sists in applying an existing mesh adaptation method to two-phases flow sim-
ulations. This is the issue reached in Article I, Transient adaptivity applied to
two-phase incompressible flows, Compère, Marchandise, Remacle, J. of Comp.
Phys. (2008) presented here after. In this framework, the computational do-
main remains unchanged along the computation.

The main interest of this chapter is to introduce the mesh adaptation by
local mesh modifications, which will be the basis of the rest of the work, and to
evaluate its contribution to an example application: highly transient two-phase
flows.

The mesh adaptation method is described in details in [104, 106]. It has
already proved to be appropriate to adapt meshes on fixed domains [152,154].
The main ingredients of the method are

• A mesh size field, which is the way to specify the desired (non-homogeneous)
length of the edges over the mesh. It can be isotropic or anisotropic. The
size field allows to classify an edge e as long, acceptable or short according
to the ratio between the prescribed and the real length of e. A rigorous
definition of long and short edges can be found in Article I.

• The local mesh modification operators, which goal is to replace a cavity
C (a set of connected elements) of the mesh by another cavity C′ with the
same boundary as C.

• A sliver elimination procedure. A sliver element is an element with a
poor quality and no short or long edge.

• A global procedure linking the ingredients together in order to produce
an optimal mesh, i.e. a mesh that satisfies the mesh size field and with
element shapes that comply to some criterions.

11
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The application proposed is the two-phase flow modeling with high density
and viscosity ratios between the fluids. In this work, an interface capturing
method based on level set functions [119] is used. In this method, the interface
is given by the iso-zero of a level set function which is advected based on
the fluid velocities, contrary to the interface tracking method, in which the
interface is given by a set of mesh entities, thus constraining the mesh to follow
the motion of the interface. Here, despite the mobile interface, the meshed
domain is fixed.

A drawback of this method is the mass transfer between the fluids, which
results from an inaccurate discretization of the fluid variables and level set
function at the interface.

Here, we use the mesh adaptation procedure to produce a mesh which is fine
at the vicinity of the interface, and relatively coarse elsewhere, thus concen-
trating the computational resources on our zone of interest: the interface. The
objective is to capture smaller scales of the flow, which reduces the mass losses,
and evaluates more accurately the surface tension forces. We also evaluate the
benefit of using slightly anisotropic elements aligned with the interface.
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catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

3 Fonds National de la Recherche Scientifique, rue d’Egmont 5, 1000 Bruxelles, Belgium

Abstract

An anisotropic adaptation process is applied to a three-dimensional incompressible

two-phase flow solver. The solver uses a level-set/finite-element method on unstruc-

tured tetrahedral meshes. We show how the level set function can be used to build

an anisotropic mesh with good properties. Some computations with a strong tran-

sient character and large densities ratios (1/1000) are presented. We show that the

efficiency of the computations can be deeply enhanced by mesh adaptations.

Key words: Adaptivity, Anisotropic, Two-phase, Finite elements, Level set

I.1 Introduction

Among all the problems that have to be addressed in the numerical simula-
tions of two-phase flow problems, obtaining an accurate representation of the
interface is certainly the most difficult issue. At least two arguments lead to
this observation:

• most of the fluid vorticity is concentrated near the interface [180],

• the rapid variation of the fluid properties generates spurious oscillations
in the velocities close to the interface [7].

Those issues are even more critical in the presence of large density and/or
viscosity jumps across the interface. This is indeed the case in many practical
applications, and among those are the ones that involve interfaces between air
and water. There, the density ratio is about 1/1000 while the viscosity ratio is
about 1/100.

In previous works [120, 119, 118], our team has developed a technique to
accurately model three dimensional two-phase flows. A level set [132,181,119]



14 Chapter 1. Mesh adaptivity: an example application

approach was chosen to model the interface1. The level set function φ(x, t)
is an implicit function that is defined on the whole mesh. Its iso-zero φ0 ≡
φ(x, t) = 0 is a surface that evolves in time and that represents the fluid
interface. The property of the fluid at one point x is identified by the sign
of the function. The level set function φ is transported and deformed by the
fluid flow. An equation of transport is solved at each time step that allows to
move the fluid interface [120]. The level set method is well suited to represent
complex flows with dramatic changes in the interface topology. Applications
of level set in two-phase flow calculations have been extensively described by
Sussman, Smereka and Osher in [184, 182, 181] and used by [42, 41, 131, 129]
among others.

This paper starts from the following observation: in two-phase flows prob-
lems, the denser is the mesh at the vicinity of the interface, the better is the
solution. In other words, an adaptive strategy is required in order to put the
effort in the region where the solution is more complex.

Adaptive mesh refinement (AMR) has now been used for two decades
in flow problems. The first achievements are those of Berger, Oliger and
Colella [23, 22] who developed a block-structured grid method to solve com-
pressible [22, 135, 122] and incompressible flows problems [158]. Those meth-
ods have been more recently applied to two-phase flow problems by Sussman
et al. [180, 179]. Block-structured grid methods allow to increase the resolu-
tion with multiple levels of refinements on blocks located near regions where
the scales cannot be resolved by the coarse grid. This technique is quite ap-
propriate to solve problems on uniform grids, as well as the quadtree based
methods. The quadtree grids are more general and more efficient than the
block-structured grids in the sense that additional points are only added where
it is required. Nevertheless, quadtrees require complex data structures which
results in complicated algorithms and impacts on the computational time. Re-
sults of the coupling of the Euler incompressible equations with the quadtree
method have been presented by Popinet [141]. Two-phase flows computations
were first performed by Losasso [115], and recently Greaves proposed a coupling
with a volume-of-fluid method [80]. Finally, we mention the methods based on
the minimization of a mesh energy used by Cristini et al. [53, 191, 6]. In those
methods, a spring-like energy is associated with each edge and is dependent
of its length and the local scales of the flow. A more detailed review of the
AMR techniques coupled with level set methods and incompressible flows can
be found in [114].

In this paper we describe an alternative method to the techniques presented
above. Its simplicity allows robust anisotropic mesh adaptations [152, 154].
Because our aim is to adapt the mesh in time, we use an adaptive procedure that
is based on local mesh modification operators. Starting from an existing mesh,
we apply local mesh modification operators until each edge of the resulting
mesh has a non-dimensional length that is close to 1. Non-dimensional edge
lengths are computed using a non uniform anisotropic metric field that is based

1Level set and volume of fluid [87,139,178] can be classified as interface capturing methods.
They differ from interface tracking methods [86, 91, 63, 58, 83] in the sense that interface
tracking methods use an explicit representation of the interface.
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on the position of the interface. An interest of using anisotropic elements is
that the high variations of density and viscosity across the interface can be
captured in a more efficient way by having more elements along the crossing
direction. As a consequence, mesh adaptation can be seen as an alternative to
the common solution consisting in smoothing the fluid properties on a thin layer
around the interface [182, 129]. In the same way, the high pressure gradients
generated at the interface in presence of surface tension forces can be evaluated
more efficiently with anisotropic elements, which reduces spurious velocities.

The remainder of this paper is organized as follows. In section 2, the physi-
cal model is described as well as the numerical methods used in the flow solver.
Section 3 presents the adaptation technique while section 4 gives numerical
examples that show the accuracy and the efficiency of the method.

I.2 Two-phase flow computation

In this section, we give a rapid summary of the different ingredients that are
used in the simulations: constitutive equations, numerical methods and cou-
pling between the fluid and the interface solvers. For more details of the recipe,
see [119].

Constitutive equations

Our solver computes three-dimensional laminar flows involving two incompress-
ible non-miscible fluids. The fluids are identified by (+) and (−), and their
density and viscosity are respectively (ρ+, µ+) and (ρ−, µ−).

The physics of the fluids are given by the two-phase incompressible Navier-
Stokes equations:

Du
Dt

= − ∇p
ρ(φ)

+
1

ρ(φ)
1
Re
∇ · (2µ(φ)S) +

eg

Fr2
+
κn
We

(I.1)

∇ · u = 0, (I.2)

where u and p are the non dimensional velocity and static pressure of the
fluids, ρ(φ) and µ(φ) are the non dimensional density and dynamic viscosity,
S = 1

2

(∇u +∇uT
)

is the deformation rate tensor, eg is the direction in which
the gravity (g) acts, κ is the curvature of the interface and Re, Fr and We are
the numbers of Reynolds, Froude and Weber defined as

Re = ρRURLR
µR

, F r = UR√
gLR

, We = ρRU
2
RLR
σR

, (I.3)

where the subscript R denotes the reference value and σ is the surface tension.
The solutions in both phases are obtained simultaneously.

The interface is captured using a level set method. This method implies a
function φ named the level set whose value is 0 on the interface (φ0), positive
in one fluid and negative in the other. Complex configurations like sloshing
problems with bubbles, separations and merging can then be represented.

This function is advected using a tracer equation that can be written in a
conservative form:

∂tφ + ∇ · (uφ) = 0 . (I.4)
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Further details about the level set method in two-phase flow problems can
be found in [184,119].

Numerical method

Fluid flow: We use a finite element method for computing the fluid flow
(Eqs. (I.1)-(I.2)). Both velocity and pressure are approximated using a piece-
wise linear continuous polynomials. As this representation violates the Babuska-
Brezzi (BB) condition [10], spurious pressure modes have to be removed from
the solution. These oscillations can be avoided using a pressure stabilized
Petrov Galerkin (PSPG) method. The inviscid fluxes are discretized in a sta-
ble manner using an upwind finite volume stabilization [19,168].

A second-order three-point backward difference scheme is employed for the
time-integration. An inexact Newton method based on a finite difference
Newton-Krylov algorithm [79] is used to solve at each time step the system
of nonlinear equations. The iterative solution of the large sparse linear sys-
tems that arises at each Newton iteration is solved by the GMRES method
preconditioned by the RAS [35] algorithm.

Level set advection: The interface equation (I.4) is discretized using dis-
continuous finite elements. The solution is represented using piecewise dis-
continuous polynomials (Np) of order p. The discontinuity of this numerical
approximation is not to be confused with the discontinuous nature of the so-
lution of two-phase flows. In other methods like in the ghost fluid method [67]
the physical discontinuity is exactly fitted by a discontinuity in the model and
a specific treatment of the interface is designed to handle the jump conditions.
This specific treatment leads to the advantage of very small spurious veloci-
ties. Here, the interface is represented by the iso-zero of a continuous level set
function which is discretized in a discontinuous way that is not related to the
physical discontinuities. The surface tension forces are computed according to
the continuum surface force method of Brackbill et al. [30]. Further details
about the computation of the surface tension forces can be found in [118]. The
discontinuity of the physical properties of the fluid (density and viscosity) are
handled by an exact discontinuous integration over the elements overlapping
the interface [175,187].

As Equation (I.4) involves ∇φ and u, we should use a discretization of
the level set for which the gradient is at least in the space of the velocity, i.e.
p ≥ 2. Nevertheless, as it is shown for the two-dimensional dam break problem
presented in the last section of this paper, the use of first order polynomials is
often more efficient if we use an adaptation procedure. Indeed, for the same
computational time, we can build a finer mesh near the interface with a first
order discretization than with a second or a third. The difference in terms
of accuracy due to the order of discretization will be exceeded by the level of
refinement of the mesh.

A Runge-Kutta algorithm of order p+1 is employed for the time discretiza-
tion. More details about the time and space discretization of the level set
function can be found in [120].
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Coupling of the two solvers

The coupling between the fluid and the interface solvers requires a special
attention as the discretization differs. The level set function is discretized by
using discontinuous p-order elements, while the flow solver uses continuous
linear approximations (N1) for the velocity u

u =
4∑
i=1

uiN1
i and φ =

np∑
i=1

φiN
p
i ,

where np is the number of Lagrangian points in each tetrahedral element

np = (p+ 1)(p+ 2)(p+ 3)/6.

For efficiency reasons, the same mesh is used by both solvers.
The algorithm that couples the solvers is summarized as follows. At initial

time t0, initialize the level set φ. Then, for each time tn, n = 1, 2, . . .

1. Solve the Navier-Stokes equations in time t ∈ [t, t+ ∆t] to find u(t+ ∆t)
and p(t+ ∆t).

2. Project the velocity field onto the degrees of freedom of the level set.

3. Solve the interface equation in time t ∈ [t, t+∆t] using sub-time steps and
linear interpolations of u between u(t) and u(t+ ∆t) to find φ(t+ ∆t).

4. Project the level set function onto the degrees of freedom of the velocity.

5. Increment in time t = t+ ∆t and go back to step (1).

I.3 Mesh adaptation

The appropriate way to ensure that a mesh-based numerical analysis procedure
produces the most effective solution results is to apply an adaptive solution
strategy. Efforts on the development of these techniques have been underway
for over twenty five years.

In this work, a local approach is used for adapting the mesh. The size field
that is used for building the optimized mesh is build up using principally the
fluid interface data.

Adapting the mesh using local mesh modifications

It is only recently that authors have developed adaptive methods for transient
problems that are able to be applied to unstructured grids. Transient adaptive
simulations require to modify the mesh in time. For that purpose, two ap-
proaches are possible. The first one requires to build a new mesh any time the
mesh has to be adapted. [4,27,164]. In those global re-meshing techniques, the
issues related to mesh to mesh interpolation are critical. In order to control the
mesh interpolation errors, Alauzet et al. [3] were able to reduce the number of
re-meshings using a fixed point algorithm. A metric fieldM is computed using
the intersection of metric fields at successive times t1, t2, . . . , tn. The simulation
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is rewound at time t1 and the mesh is adapted against metric field M. The
adapted mesh is valid for a large time interval and it is therefore adapted less
often.

The other way of doing the adaptation in time is to locally modify the
mesh [104, 152, 154, 60]. A common belief is that doing local mesh modifica-
tions has to be faster than re-meshing. This is not usually the case. Global
re-meshing procedures are in fact usually faster than local mesh modifications
techniques. This is the case essentially because global re-meshing algorithms
converge much faster: they allow to create vertices that are readily at their
right locations when local mesh modification procedures iteratively add and
remove vertices in the mesh. For transient adaptive computations, local mesh
modifications have determinant advantages that are not linked with their com-
putational efficiency:

• local solution projection procedures can be easily set up that ensure the
exact conservation of conservative quantities [152,154],

• the mesh remains unchanged in most of the domain, allowing to adapt
the mesh frequently,

• local mesh modifications can be performed in parallel [61], enabling tran-
sient adaptive simulation to run on parallel computers.

Local mesh modification operators all consist in replacing a cavity of el-
ements C by another one C′ . In our adaptation procedure, we have set up
a moment when both cavities C and C′ are simultaneously present. At this
point, both fluid and interface solvers are called back so that a local solution
projection procedure can be performed. The solution in the new cavity C′ is
computed using the information in C. More details about this mesh adaptation
procedure can be found in previous papers [152,154,24,104].

As the level set is represented by discontinuous polynomials, projections
are made at the elementary level. This is one of the major advantages of the
DG method. The fluid solution, i.e. velocities and pressures, uses continuous
piecewise linear approximations. Both fields are located at mesh vertices. In
our projection algorithm, the only local mesh modification that requires some
work is the edge splitting. When a new vertex is inserted in the mesh, the fluid
solution is simply taken as the average of the solutions at the two nodes of the
initial edge.

The mesh metric field

A mesh metric field is a smooth tensor valued M(x) defined over the domain.
The metric at a point is a symmetric positive definite tensor. Let us consider a
mesh edge e that defines a vector e that goes from its initial vertex to its final
one. The non-dimensional length Ltre of e is computed as

Ltre =
∫
e

√
etM(x) e dl. (I.5)

The aim of the mesh adaptation procedure is to modify an existing mesh to
make it a unit mesh, i.e. a mesh for which every edge is of size Ltre = 1.
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The use of a tensor valued metric field allows the construction of anisotropic
meshes. More details about metrics and metric-based operations are given in
Appendix A.

Local mesh modification operators are essentially edge-based operators in
the sense that they locally modify mesh cavities composed of all the tetrahe-
drons. The mesh adaptation algorithm works as follow.

(1) Loop over all edges of the mesh, consider the edge e of size Ltre

– Refinement : if Ltre >
√

2, e is a long edge. Edge e is therefore split
in its middle, according to the metric.

– Coarsening : if Ltre < 1/
√

2, e is a short edge. The cavity sur-
rounding e has therefore to be investigated and a coarsening proce-
dure [106] in which e could be collapsed by merging its two nodes is
applied.

– Shape optimization : the edge e is eliminated using an edge swapping
algorithm if a better configuration is obtained after swapping.

(2) Go back to (1) if any short or long edge is still present in the mesh.

(3) Do one more step of shape optimization.

Typically, the algorithm stops when every edge of the domain has a dimen-
sionless size in the interval Ltre ∈ [1/

√
2,
√

2]. Using this interval for short and
long edges ensures that the two new edges created by a bisection will not be
short edges. Oscillations between coarsening operations and refinements are
therefore prevented.

The metric field is computed at every node of the present mesh using the
results of a procedure that is described below.

For every vertex v of the mesh,

– Both the normal vector n and the normal curvature κ of the level
set are computed using the classical formulas

n =
∇φ
‖∇φ‖ , κ = −∇ · n.

– Two vectors t1 and t2 are found such that (n, t1, t2) form an or-
thonormal basis of R3.

– The distance d from the vertex v to the interface is computed. This
step is achieved using a fast search tree method, namely the Ap-
proximate Nearest Neighbor algorithm (ANN) [9,126].

– Mesh sizes Sn, St1, St2 are computed in the three directions n, t1, t2
as a function of d and κ. The kind of parametrization that is used
in this work is presented in the remainder of this section (§I.3).

– The metric field M at vertex v is computed by

M = RTDR,
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with

R =
(

n, t1, t2
)
, and D =

 S−2
n 0 0
0 S−2

t1 0
0 0 S−2

t2

 . (I.6)

Size field parametrization

Because most of the complex physics involved in two-phase flows is located near
the interface, the mesh is refined at the vicinity of the iso-zero of the levelset.
To be more quantitative, we introduce a distance parameter 2 δ that represents
the thickness of the refined region [φ0 − δ, φ0 + δ] around the interface i.e. the
thickness of the zone that has the maximal mesh refinement. We call this
region the proximity zone. In our algorithm, we ensure that the interface never
leaves the proximity zone. When the interface gets too close to the end of the
proximity zone, the mesh is modified. Figure I.1 shows schematically how the
interface is kept inside the refined region. The parameter δ has to be chosen
carefully. If δ is big, the number of nodes of the mesh increases and so goes
the time spent in the flow solver. If δ is small, the number of mesh adaptations
increases because the interface leaves the proximity zone quicker. A typical
choice for δ is 5 times the element size in the proximity zone.

(a) (b) (c)

Figure I.1: Schematic view of the proximity zone during a simulation: (a)
proximity zone just after a mesh adaptation procedure, (b) new position of the
interface close to the boundaries after several iterations of the fluid solver, (c)
new position of the proximity zone after the next mesh adaptation procedure.

Outside the proximity zone, we build an isotropic mesh of variable size
Liso(d) (see figure I.2) where:

Liso(d) =

 h0 + s1(d− δ) for δ < d ≤ d1

h1 + s2(d− d1) for d1 < d ≤ d2

h2 for d2 < d
(I.7)

where s1 and s2 are defined by

s1 = h1−h0
d1−δ , s2 = d2−d1

d2−d1 . (I.8)

In this setup, h0, h1, h2 are user-defined mesh sizes: h0 is the smallest size that
defines the resolution of the mesh in the proximity zone, h1 is an intermediary
size between δ < d < d1 and h2 is the mesh size in the far field. Following the
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Figure I.2: Distribution of the edge sizes outside the proximity zone.

definition (I.6) of the metric, we have

Sn(d) = St1(d) = St2(d) = Liso(d) for d > δ. (I.9)

Liso is a parameter that is similar to the length of the edges about a sphere de-
fined in [6], except that two slopes are defined and that constant and anisotropic
lengths are prescribed in the proximity zone. The length is maintained con-
stant in this zone in order to allow the flow solver to advect the interface with
a constant resolution without having to adapt the mesh at each time step.

One of the advantages of the mesh refinement near the interface is the
ability to reduce spurious velocity oscillations arising from a strong difference
of properties between the fluids. We denote by Rn the mesh size reduction
factor in the normal direction to the interface. The reference length Sn in the
proximity zone is then

Sn = h0
Rn

for d ≤ δ. (I.10)

The ratio Rn is constant in time and space (in the proximity zone). Simula-
tions were performed using isotropic and anisotropic mesh refinements. Fig-
ure I.3 shows the difference between results obtained with both isotropic and
anisotropic refinements for a dam break simulation. More explanations about
this simulation are given in the section related to the computational results.
During the computation, both meshes keep almost the same number of nodes
(about 2, 850 nodes in figure I.3). The mesh are adapted according to the
following parameters:

• for the first mesh, h0 = 0.075, δ = 0.1,

• for the second mesh, h0 = 0.15, δ = 0.05, Rn = 4,

In both cases, the roughness of the interface is due to spurious velocity os-
cillations and the interface is clearly smoother using meshes that are adapted
directionally.
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Isotropic mesh, computed interface.

Anisotropic mesh, computed interface

Figure I.3: Comparison of the meshes and the interfaces φ0 in a dam break
simulation after a ’small’ time for isotropic and anisotropic meshes. The meshes
have almost the same number of nodes (about 2, 850 nodes). For the first mesh,
h0 = 0.075, δ = 0.1. For the second, h0 = 0.15, δ = 0.05, Rn = 4. The other
parameters are identical for the 2 simulations.

Another advantage of refining the mesh at the interface is the ability to
capture smaller scales. This ability can still be improved by taking the curva-
ture κ of the interface into account in the definition of mesh sizes [192]. To this
end, we define a reducing ratio Rt(κ) as follows

Rt(κ) = min
(
Rt,max, 1 +

κ

κmax
(Rt,max − 1)

)
, (I.11)

where Rt,max and κmax are arbitrary constants. This ratio is applied in the
tangential directions t1, t2 to the interface:

St1 = St2 = h0
Rt(κ) for d ≤ δ. (I.12)

Figure I.4 summarizes the use of the ratios Rn and Rt(κ). Finally, the mesh
refinement parameters are defined as:

• ’near’ the interface: δ, h0, Rn, Rt,max and κmax,

• ’far’ from the interface: h1, h2, d1 and d2.
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Figure I.4: Schematic view of the anisotropic aspect ratios Rn and Rt(κ) used
near the interface.

I.4 Computational results

Our two-phase flow solver has already been validated using fixed meshes [119].
The two first tests check that the spurious velocities are reduced when a finer
refinement is applied to the mesh. They also show that the anisotropic refine-
ments exhibit smaller spurious currents than the isotropic ones. The next test
checks that the mesh adaptation procedure at least does not deteriorate the
solution of the fixed mesh solver. More complex simulations are then presented
to show that the method can be applied to complex and highly transient flows.

In order to make comparisons between adaptive and non-adaptive compu-
tations in terms of computational time, we have to choose an edge length hna
for the non-adaptive mesh such that a similar accuracy is obtained with both
approaches. As the non-adaptive meshes are isotropic, we define a criterion for
the meshes to give similar results. We make the assumption that the accuracy
at the interface φ0 only depends of the size of the edges in the normal direction
to the interface, and we obtain hna as follows:

hna ≈ h0

Rn
. (I.13)

Two effects are not taken into account with this criterion.

• First, with the adaptive technique developed in this paper, the mesh is
coarse far from the interface whereas it is homogeneous on the whole
domain for the fixed mesh. The modeling of the flow can then be slightly
different.

• Secondly, the positive effects of anisotropy on the parasitic velocities and
the roughness of the interface discussed in I.3 only acts in adaptive com-
putations.

Unless it is specified, the fluid characteristics are the following for each test
(l and g subscribes stand for liquid and gas):

• density ρl = 1000kg.m−3, ρg = 1kg.m−3,

• dynamic viscosity µl = 10−3Pa.s, µg = 10−5Pa.s,
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and the level set function is discretized using piecewise linear approximations
(p = 1). The density and viscosity ratios are close to those of air and water.

The tolerance for the GMRES solver has been prescribed to 10−6. All the
computations have been performed on a Dual Core AMD Opteron Processor
265 (1800MHz).

Parasitic velocities: free surface at rest

As a consequence of the high density ratio of the two fluids, spurious velocity
oscillations may occur at the interface. A way to highlight these velocities
is to look on how our scheme is able to resolve the hydrostatic equilibrium.
Spurious velocities will hopefully decrease with the size of the elements near
the interface. We consider a plane rectangular free surface in a 3D box. The
two fluids are at rest at initial time t = 0 and no perturbation is introduced
in the shape of the flat interface. The pressure is initialized to the hydrostatic
equilibrium value. The velocity u is supposed to remain zero and the equation
of motion (I.1) becomes

∇p
ρ(φ)

=
eg

Fr2
. (I.14)

If elements cross the interface, the exact solution does not belong to the finite
element space and spurious velocities are generated.

The setup of this test is the following. The domain has a width of 2 × 2
and a height of 1 and is equally divided into air and water. We characterize
the parasitic velocities by the infinity norm |Upar|∞ of the velocities on the
domain after that it has reached a stable value:

|Upar|∞ = max
(√

u2
par + v2

par + w2
par

)
Table I.1 shows the maximum velocities obtained for different sizes of the

elements. Results have been obtained for isotropic and anisotropic meshes.
For the anisotropic refinements the ratio Rn is 4 and the edge length h0 is
multiplied by 2

1
3 in order to have the same mean volume for the elements in

the isotropic and anisotropic computations.

hiso0 isotropic anisotropic (Rn = 4)
0.1 2.76 10−4 1.64 10−4

0.01 1.39 10−5 6.14 10−6

0.001 2.38 10−7 1.22 10−7

Table I.1: Stationary case: Maximum parasitic velocities |Upar|∞ with
isotropic and anisotropic meshes. For the anisotropic computations, the ra-
tio Rn is 4 and the edge length haniso0 = 2

1
3 hiso0 .

We note that anisotropic meshes need more iterations to reach the tolerance
of the GMRES solver since the introduction of anisotropic elements which are
not aligned with the flow are known to deteriorate the conditioning of the
system. Table I.2 shows the number of iterations needed per time step for each
computation.
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hiso0 isotropic anisotropic
0.1 12 14
0.01 19 22
0.001 44 56

Table I.2: Stationary test: number of GMRES iteration performed per time
step for the isotropic and anisotropic (Rn = 4) computations.

Parasitic velocities: 3D static droplet

In the case of a spherical droplet with no gravity effects, a stationary equi-
librium occurs at the interface between the pressure forces and the surface
tension forces and gives rise to a pressure jump at the vicinity of the interface.
However, since the pressure discontinuity and the discontinuous surface tension
forces are not approximated in exactly the same way, this equilibrium may be
perturbed and spurious velocities may occur near the droplet interface. Several
authors have highlighted this phenomena, like Popinet and Zaleski [143] and
Francois et al. [69].

The setup is the same as in [69] and [189] for the 3D bubble. The domain is
a cube of side size C = 8. The bubble has a diameter of d = 4.0 and is located
in the center of the domain. There is no viscosity effect and the density ratio
is set to 0.1 between the two fluids, the bubble having the highest density. A
surface tension of γ = 73 is prescribed.

Here we show how the mesh refinement can be used to decrease the para-
sitic currents. Three levels of mesh refinements are presented, each one with
an isotropic and an anisotropic refinement. The number of elements is kept
approximately constant between corresponding isotropic and anisotropic com-
putations by applying a factor of 31/3 to h0 (haniso0 = 31/3 hiso0 ) since a ratio
Rn of 3 is used. Table I.3 shows the maximum velocity Umax at t = ∆t and
t = 50∆t, with ∆t = 0.001. The results are compared with the best results of
Francois et al. in [69] and Williams et al. in [189] obtained with h = C

40 . We
can observe that the velocities decrease with the size of the elements, which is
a common result in the literature. An interesting result is that the anisotropic
computations lead to smaller spurious velocities.

The number of iterations required by the GMRES solver at each time step
increases slightly when an aspect ratio is applied, as shown in table I.4.

2D Dam break

We consider a column of water maintained by a wall (a dam) that is impulsively
removed at t = 0. This test is the basis of many works which try to predict
the effects of a dam break. This test case has been widely studied in the
literature using experimental, theoretical and numerical approaches. As this
test involves recombinations and strong deformations of the interface as well as
a great unsteady character, it is also a good test case to validate our adaptive
model.
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hiso0 t isotropic anisotropic Francois Williams
et al. [69] et al. [189]

C/20 t = ∆t 9.19 10−2 7.34 10−2

C/20 t = 50∆t 9.26 10−1 4.36 10−1

C/40 t = ∆t 6.80 10−2 5.69 10−2 4.02 10−3 8.55 10−2

C/40 t = 50∆t 3.77 10−1 1.88 10−1 4.02 10−2 3.86 10−1

C/80 t = ∆t 5.73 10−2 4.53 10−2

C/80 t = 50∆t 2.59 10−1 1.31 10−1

Table I.3: Stationary spherical bubble case: maximum velocity Umax with
several levels of refinement. The time step is ∆t = 10−3. The results are
obtained for isotropic refinements and anisotropic refinements with a ratio of
Rn = 3 and the same numbers of nodes as in the corresponding isotropic
meshes. The results are compared with the best results of Francois et al.
in [69] and Williams et al. in [189] obtained with h = C

40 .

hiso0 isotropic anisotropic
C/20 12 14
C/40 18 21
C/80 22 25

Table I.4: Stationary spherical bubble case: number of GMRES iterations re-
quired for three levels of refinements in isotropic and anisotropic computations.
The mean volume of the elements in the dense zone is the same between the
corresponding isotropic and anisotropic computations.

The length of the domain is 6 and its height is 4. The water column is
initially at the extreme right of the domain. The height and the width of the
water column are 1. Slip conditions are applied on the bottom and the side
walls, neglecting possible boundary layer effects. A zero-pressure condition is
imposed on the upper boundary.

Two adaptive computations have been performed. Linear and quadratic
elements have been used to discretize the level set function. Table I.5 shows
the two sets of parameters. The effects of surface tension are neglected because
this flow is essentially governed by the gravity. With these parameters, the

p h0 h1 h2 δ d1 d2 Rn Rt,max κmax
Comput. 1 1 0.1 0.2 0.4 0.1 0.3 0.6 3.0 2.0 10.0Comput. 2 2 0.12 0.3 0.6 0.08

Table I.5: 2D dam break test: parameters of the two first computations.

number of nodes ranges from 1, 380 to 3, 151 for the computation 1, from 1, 013
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to 1, 848 for computation 2. Figure I.5 shows the interface and the mesh of the
first computation at different times.

Figure I.5: 2D dam break problem: visualization of the meshes and the level
set fields at dimensionless times 0, 1 and 3 for the first computation. The upper
part of the domain is not represented.

The history of the dimensionless horizontal displacement of the water front
is shown in fig.I.6. The time is non-dimensionalized by t =

√
hl/g where hl

is the height of the water column. The experimental results from Martin and
Moyce [145] and the numerical results from Marchandise and Remacle [119]
with a non-adaptive mesh are added to the diagram. The latter computation
has been performed on a domain of height 1.5, with an unstructured mesh of
10, 218 nodes and a mean edge length of about 0.04.
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Figure I.6: 2D dam break problem: comparison between experimental results,
non-adaptive method and present method.

One can see that these results are in good agreement with the non-adaptive
computations and the experiment from Martin and Moyce, except for the height
of water in the second simulation, for which the number of nodes is not sufficient
to avoid significant mass losses.

For the first computation, the computational time to reach the dimension-
less time 3 was 48 minutes, with about 24% spent in the adaptation pro-
cess (involving projections). A non-adaptive computation with an edge length
hna = 0.033 has been performed with the same domain and fluids setup. The
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mesh was composed of 46, 204 nodes (230, 418 elements). The time 3 was
reached after 15.4 hours.

The second computation was a bit slower than the first, with 85 minutes
spent to reach time 3 (13.6% in adaptation process).

In order to highlight the efficiency of the anisotropic refinements compared
to the isotropic refinements, the evolution of the front position computed with
isotropic and anisotropic coarse refinements are presented in figure I.7. Two
levels of accuracy are proposed, each one being tested with the values 1 and
4 for the ratio Rn. The size h0 is chosen in such a manner that the number
of nodes is roughly the same for the corresponding isotropic and anisotropic
computations. The parameters of the meshes are mentioned in table I.6. In
order to emphasize the differences between the results, the meshes are relatively
coarse which leads to big errors.

p h0 h1 h2 δ d1 d2 Rn Rt,max κmax
Comput. 3 1 0.15 0.4 0.4 0.2 0.3 0.6 1.0 1.0
Comput. 4 0.3 4.0 2.0 10.0
Comput. 5 1 0.1 0.4 0.4 0.2 0.3 0.6 1.0 1.0
Comput. 6 0.2 4.0 2.0 10.0

Table I.6: 2D dam break test: parameters of the computations 3 to 6.

3D Dam break with a square pile

This test case is still a dam break, but the geometry of the problem is 3D.
A column of water collapses under gravity and the path of the wave crosses a
square pile, leading to the development of a complex three-dimensional highly
transient flow. The complexity of the shape of the interface and its variability
is space and time makes the adaptive approach highly competitive.

The geometrical setting is the following. The height and the length of the
initial water mass are 1. Its width is 1.6. The distance to the pile is 1.35. The
pile has a square base of 0.3 and is shifted of 0.1 to the left. The back wall is
located 3 far from the water. Slipping conditions are applied on all the walls.
A zero-pressure condition is applied on the upper face of the domain, which is
located 5 above the bottom wall.

Two computations were performed, with the parameters of table I.7, a
Reynolds number of 40, 000, a Froude number of 0.3193 and no surface tension.
Note that the Reynolds number is purely indicative because boundary layers
are not captured in our simulation.

With these settings, the number of nodes ranges from 5, 202 to 29, 350 for
the first computation and from 3, 361 to 16, 185 for the second. The computa-
tional times were respectively 33.9 hours (21.4% in the adaptation process) and
51.0 hours (12.6% adapt.) hours to reach the dimensionless time 2.5. In order
to build fixed meshes with the same accuracy according to criterion (I.13), the
number of nodes would have raised to a number of about 600, 000 in the first
simulation, and to about 250, 000 in the second simulation. Figure I.9 shows the
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Figure I.7: 2D dam break problem: comparison between isotropic and
anisotropic coarse refinements.

interface with the meshes of some boundaries at different times, while figure I.8
represents a cut in the tetrahedral mesh at time 1.59.
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p h0 h1 h2 δ d1 d2 Rn Rt,max κmax
Comput. 1 1 0.15 0.4 1.0 0.045 0.4 0.6 4.0 3.0 10.0Comput. 2 2 0.2 0.06

Table I.7: 3D dam break case: parameters of the computations.

Figure I.8: 3D dam break case: volume of water and tetrahedral mesh at time
1.59.

Axisymmetric bubbles coalescence

In this test case, two air bubbles are immersed in a volume of water. The
first one has a bigger radius and is initially located above the second. The
bubbles rise under the effect of gravity, but the second rises faster because of
the depression created by the first. Eventually, the bubbles merge into a single
non-spherical bubble. The effects of surface tension are not taken into account.

The computational domain has a length of 1 in x and y directions, and 2.3
in z. The radius are respectively 0.15 and 0.10 for the first (above) and the
second bubble. The bubbles are at a distance of 0.05. The gravity acts in the z
direction. Slipping conditions are applied on all the boundaries. The Reynolds
number and the Froude number are the following: Re = 200 and Fr = 1.

First order elements are used to represent the level set function. The meshes
have the characteristics given by I.8. The meshes produced have a number of
nodes ranging from 16, 480 to 24, 922.

Figure I.10 shows the interface and the meshes at different times. We were
able to obtain very smooth interfaces thanks to mesh adaptation.

It took 17.7 hours to run this computation. About 19% of the time was
spent in the adaptation process. A non-adaptive computation with a similar
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Figure I.9: 3D dam break case: interface and surface meshes at times 0, 0.88,
1.17 (continued on next page).
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Figure I.9: 3D dam break case (continued): interface and surface meshes at
times 1.59, 2.0 and 2.39.
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h0 h1 h2 δ d1 d2 Rn Rt,max κmax
0.03 0.15 0.40 0.02 0.02 0.15 3.0 2.0 0.05

Table I.8: Axisymmetric bubbles coalescence: parameters of the meshes.

(a) (b)

(c) (d)

Figure I.10: Axisymmetric bubbles coalescence. Re = 200, Fr = 1, ρ1/ρ2 =
1/1000 and µ1/µ2 = 1/100. Interface and meshes at dimensionless times (a)
0.2, (b) 0.56 and (c,d) 1.
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accuracy, according to (I.13), would have needed a mesh size hna = 0.01. With
this very small mesh size, the mesh would have contained more than 2, 300, 000
nodes.

Oblique bubbles coalescence

For this test, two spherical bubbles of the same radius are immersed in the
fluid with a shift between their horizontal positions. Both phases are initially
at rest.

The domain is a parallelepiped of size [0, 4]× [0, 4]× [0, 8]. The center of the
bubbles are located at positions (2, 2, 2.15) and (2.5, 2, 1). Both bubbles have an
initial radius R = 0.5. The following dimensionless values are set: Re = 18.8,
We = 50, Fr = 1, ρ1/ρ2 = 1/20 and µ1/µ2 = 1/26. The computation has
been made with quadratic shape functions for the level set.

Table I.9 resume the meshes parameters that have been chosen.

h0 h1 h2 δ d1 d2 Rn Rt,max κmax
0.4 0.4 2.0 0.15 0.3 2.0 4.0 3.0 0.2

Table I.9: Oblique bubbles coalescence: parameters of the meshes.

Figure I.11 shows the evolution of the bubbles. The results compare well
with those obtained by Marchandise et al. [118] without mesh adaptation and
a grid of 30×30×60. They also compare well with those obtained by Sussman
and al. [183] with a 64 × 64 × 128 grid, those of Sousa et al. [57] and the
experimental results obtained by Narayanan [130]. Whereas 54, 000 nodes were
necessary in [118], all meshes produced with our computation comprised less
than 6, 000 nodes, leading to a computation of 7 hours (about 12% spent for
mesh adaptation) to reach t = 3.

We can see from figure I.11 that the anisotropic refined mesh combined with
quadratic elements for the levelset were able to represent the smallest scales of
the interface with a very good accuracy.

I.5 Conclusion

An adaptive procedure to improve the efficiency of the numerical method based
on the model described by Marchandise and Remacle in [119] has been pre-
sented.

This model was already able to simulate highly transient flows with high
ratios of densities and viscosities, with the advantages that it simply uses first
order elements to represent pressure and velocity variables, and that it relies
on a level set method for the interface, which is very flexible. Numerous appli-
cations are also in the scope of the model as it is able to represent the effects
of surface tension in an accurate way.

The CPU time to perform complex simulations has been dramatically re-
duced by the adaptive improvement, without undermining the accuracy. This
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t = 0 t = 0.4 t = 0.603

t = 0.847 t = 1.05 t = 1.17

Figure I.11: Oblique bubbles coalescence. Re = 18.8, We = 50, Fr = 1,
ρ1/ρ2 = 1/20 and µ1/µ2 = 1/26. Position of the interface at different dimen-
sionless times ranging from 0 to 2.89. A view of the mesh is superimposed to
the view of the interface (continued on next page).

enhancement allows us to handle more complex computations in which either
small and large scales are solved.

In the future works, a parallel implementation will be carried out. The
fluid solver is already able to perform parallel computations. We are now
focusing on the parallelization of the adaptive process, resorting to the work of
Dobrzynski [61].
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t = 1.33 t = 1.56 t = 1.95

t = 2.26 t = 2.55 t = 2.89

Figure I.11: Oblique bubbles coalescence (continued). Re = 18.8, We = 50,
Fr = 1, ρ1/ρ2 = 1/20 and µ1/µ2 = 1/26. Position of the interface at different
dimensionless times ranging from 0 to 2.89. A view of the mesh is superimposed
to the view of the interface.





Chapter 2

Mesh adaptation for large
deformations

In this chapter, we focus on the improvements brought to the mesh adaptation
methods based on local modifications in order to meet the requirements of the
computations with deforming domains. The goal here is to be able to adapt a
mesh when the meshed domain undergoes arbitrarily large deformations.

A common solution to the problems involving large displacements or defor-
mations is to reposition the nodes globally, the displacements being the solution
of an auxiliary problem like for instance the computation of an elasticity prob-
lem where an analogy is made between the domain and an elastic material [186],
and the displacement of the boundaries is given as a Dirichlet boundary con-
dition. However, when the deformations are too large or a shear layer appears
in the underlying elastic problem, the node repositioning techniques fail in re-
turning a valid mesh. In addition, such a method does not provide a control
on the quality of the elements. As an example, Figure 2.1 shows the mesh of
a rotating propeller. The nodal repositioning is computed by a method based
on the elastic analogy. We can see that the elements become progressively
ill-shaped at the tip of the blades and finally, tangled elements appear.

The solution proposed in the present work is to mix the nodes repositioning
techniques with a mesh adaptation procedure in order to enable arbitrarily
large domain deformations, and additionally to give a control over elements
quality.

The starting point of the work was the mesh adaptation method presented
in Chapter 1 since

• we had a relatively good experience of it,

• it proved to be efficient and robust in the work presented in Chapter 1,

• it allows for anisotropic adaptivity,

• the approach is parallelizable.

After the first tests, the following conclusions were made:

39
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(a) (b)

(c) (d)

Figure 2.1: Example of a mesh undergoing large deformations if only node
repositioning is applied: (a) initial mesh, (b) and (c) intermediate meshes, and
(d) meshes when first tangled elements appear.

• The combination of the most common local mesh modifications (edge
split, edge collapse and edge swap) and the sliver elimination procedure
presented in [106] and used in Chapter 1 were able to provide valid meshes
in some cases, like the straight displacement of a sphere in a box, but it
failed for simple bodies with straight faces and sharp edges, like a moving
cube.

• The combination described here above loses most of its interest of one of
the mesh modifications is removed from the set.
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• Combining the set of modifications and the sliver elimination procedure
with a node repositioning technique improves the robustness and effi-
ciency of the method and the quality of the resulting meshes. However,
tangled elements can still appear in very simple motions, like a wall mov-
ing in its normal direction. The main reason for it is that the quality of
the smallest elements located near the walls is strongly degraded by the
motion of the body and the sliver elimination procedure can fail in elimi-
nating them. It is therefore interesting to use node repositioning methods
with a variable stiffness depending on the distance to the mobile walls
or the size of the elements [177], as well as a better sliver elimination
procedure.

The new techniques developed to reach the objectives of the present chap-
ter are described in Article II, Transient mesh adaptivity with large rigid-body
displacements, Compère, Remacle, Marchandise, Proc. of the 17th Int. Mesh.
Roundtable (2008), proposed here below. The key points are (i) a new efficient
sliver elimination procedure, and (ii) a global adaptation method that gath-
ers the different ingredients (mesh sizes evaluation, local modifications, global
repositioning with selective stiffness, slivers elimination) in an efficient way. In
this paper, the resulting method is applied to simple fluid-structure interaction
(FSI) problems.

In the paper entitled A mesh adaptation framework for dealing with large
deforming meshes (Compère, Remacle, Jansson, Hoffman) (Article IV) pre-
sented in Chapter 5, an additional technique is presented to handle arbitrarily
large domain deformations inside a single time step by applying topological
mesh modifications during the global node repositioning. A more complex
FSI problem in which the pure node repositioning technique is compared to
the mesh adaptation method developed here is also presented, and the impact
of the adaptation frequency on element shapes, number of modifications and
computational time is analyzed.
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Article II

Transient mesh adaptivity with large rigid-body
displacements

Gaëtan Compère1,2∗, Jean-François Remacle1, Emilie
Marchandise1

1 Université catholique de Louvain, Department of Civil Engineering, Place du Levant 1,
1348 Louvain-la-Neuve, Belgium

2 Fonds National de la Recherche Scientifique, rue d’Egmont 5, 1000 Bruxelles, Belgium

Abstract

This paper presents a procedure for computing fluid-structure interaction problems

when the boundaries of the domain undergo large displacements. The algorithm

is based on both mesh motion and mesh adaptation techniques. More specifically,

we use a node repositioning algorithm based on an elastic analogy together with

a mesh adaptation procedure based on local mesh modifications [106]. This paper

also includes a new technique for eliminating sliver tetrahedra. Some computational

results are finally presented that include statistics on mesh quality measures.

II.1 Introduction

This paper deals with the issue of computing fluid-structure interaction (FSI)
problems with large displacements of the structure. The most common way of
dealing with FSI is to adopt an Arbitrary Lagrangian Eulerian (ALE) formula-
tion of the fluid equations. ALE formulations allow to take into account small
motions of the nodes in the fluid caused by the displacement of the structure.
This approach suffers from obvious limitations as node repositioning cannot
always provide a valid mesh when significant displacements or deformations of
the structure are considered.

One way of addressing this problem is to re-mesh the entire domain when
the displacements of the structure are too large to be handled [4, 27]. In this
work, we rather use local mesh modifications [106,152,38,13] both to optimize
the quality of the tetrahedra and to comply a mesh size field. This approach
is globally advantageous compared to global re-meshing:

• Local solution projection procedures can be built in a way that ensures
local conservation [152],

• The mesh remains unchanged in large parts of the domain,
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• Local mesh modifications can be performed in parallel, enabling transient
adaptive simulation to run on parallel computers [38].

There exist a small number of other approaches to handle large mesh de-
formations, among which the sliding mesh techniques [123]. Compared to local
mesh modifications, they have the disadvantage of requiring a flux computa-
tion at the interface and working with non coinciding meshes. The overset
grid methods [107] are also developed in the literature but require grid assem-
blies and donor cell search processes. The local mesh modification technique
has a unique mesh and a single prescribed boundary motion, which leads to a
conceptually simple method and robust mesh movements [38].

Transient adaptive computations using local mesh modifications have al-
ready been applied to transient multiphase flow simulations in [44]. In this
previous work, the mesh was adapted in order to capture the interface between
two fluids, described by a level set function. In this paper, we extend the
method to FSI problems.

In this context, two new issues have to be addressed. The first issue is
the formulation of the mesh motion problem. In FSI, only the motion of the
boundaries of the domain is prescribed. Typically, some kind of elastic anal-
ogy, possibly with a variable stiffness [177], is used to extend this motion inside
the domain. Here, we do not make the assumption that the boundary mo-
tion is small or that the volume of the domain remains unchanged. An elastic
approach does not give any guarantee on the validity of the mesh for large dis-
placements. Even when the motion is limited, ill-shaped elements are produced
in the process. This is the second issue. A new efficient procedure is presented
that enables to eliminate all ill-shaped elements that are inevitably produced
during the mesh motion.

The remainder of this paper is organized as follows: the first section in-
troduces the different edge size fields. Section II.3 describes the set of local
mesh modification operators while section II.4 presents the ill shaped elements
elimination algorithm. In section II.5, we recall the principles of the elastic
analogy for mesh motion and discuss the choice of local element stiffness. The
global procedure is then described in section II.6. Section II.7 presents some
numerical results.

II.2 Mesh size field

The aim of the mesh generation process is to build elements of controlled shape
and size. Mesh generators are usually able to adapt to a so called mesh size
field (see for instance [136,106]). An isotropic mesh size field is a scalar function
δ(x, t) that defines the optimal length of an edge at position x of the domain
and at time t.

We typically define the dimensionless length Ltre of edge e as

Ltre (t) =
∫
e

δ−1(x, t)dl. (II.1)

The quantity Ltre represents the number of subdivisions of edge e that are
necessary for having an edge that has exactly the right size with respect to the
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size field. For the sake of simplicity, we do not consider here an anisotropic
metric field and the corresponding dimensionless length defined by (I.5) and
further described in Appendix A. More explicitly, (II.1) is a particular case of
(I.5) in which the eigenvalues of M(x, t) are all equal to δ−2(x, t).

There are many ways to define a size field: some are based on rigorous
error estimation procedures [1] but there are many heuristics. For example, it
is often considered that the mesh size should be smaller near boundaries: when
dealing with viscous flows, a large part of the vorticity is created near the walls,
when dealing with solid mechanics problems, stress concentration are usually
located near the boundaries...

We define d(x, t) as the distance to the closest boundary at time t. This
distance can be computed in place using the Approximated Nearest Neighbor
Algorithm [9]. A first mesh size field δ1(x, t) is computed as follows:

δ1(x, t) = δsmall
1 + α1(x, t)(δlarge

1 − δsmall
1 ),

where

α1(x, t) =


0 if d(x, t) ≤ dmin

1
d(x,t)−dmin

1
dmax
1 −dmin

1
if dmin

1 < d(x, t) < dmax
1

∞ if d(x, t) ≥ dmax
1

with δlarge
1 and δsmall

1 a large and a small desired mesh sizes, dmax
1 and dmin

1

two field values that define the zone of refinement. An example of use of δ1 is
presented in figure II.1.

Other size fields δ2(x, t), δ3(x, t), . . . can be defined:

1. mesh sizes prescribed at model vertices and interpolated linearly on model
edges;

2. prescribed mesh gradings on model edges (geometrical progressions, ...);

3. mesh sizes defined on another mesh (a background mesh) of the domain;

4. mesh sizes that adapt to the principal curvature of model entities.

The size field δ(x, t) is computed, at time t, as the minimum of all size fields.
It is usually bounded by upper and lower values of mesh sizes.

In an ideal mesh, each edge has a dimensionless length Ltre = 1. This ideal
situation cannot be attained in practice. In the adaptation procedure one has
to decide whether an edge is acceptable, i.e. find a range [Llow, Lup] for which
an edge is considered to have a good size. Then a long edge has a size Ltre > Lup
and a short edge has a size Ltre < Llow.

In [106], the authors show that choosing a too narrow range for acceptable
edge sizes may lead to infinite loops between splits and collapses. In § II.6 and
§ II.7, we show the influence of this interval on the mesh quality and on the
number of infinite loops.
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Figure II.1: Mesh adapted using the distance to boundaries: size field (top)
and resulting mesh (bottom).

II.3 Local mesh modifications

The three basic local mesh modifications are the edge split, the edge collapse
and the edge swap. Other operators like face swap and some compound oper-
ators are also used in this work.

There are two ways of dealing with long edges. The first one consists in
tagging every long edge of the mesh. Then, every tetrahedron of the mesh is
subdivided using a template that is function of the number of edges that have
been split. The second manner consists in splitting all tetrahedra surrounding
a long edge, and then proceed to the next edge. The latter approach has
been used because it is simpler (only one template has to be defined), more
robust (no Steiner point has to be introduced) and (surprisingly) more efficient.
Moreover, we have found out that both methods lead to meshes with elements
of similar qualities. The edge split operator is depicted on figure II.2.

When a short edge is found, an edge collapse is applied. The edge collapse
operator (see figure II.3) removes an edge and all its bounding elements from
the mesh by merging its two extremities at one of their locations.
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(a) (b)

Figure II.2: Edge split operation: (a) initial cavity, (b) cavity after the edge
split.

(a) (b)

Figure II.3: Edge collapse operation: (a) initial cavity, (b) cavity after the edge
collapse.

The edge swap consists in re-meshing the cavity surrounding the edge with
the aim of improving the worst element shape in that cavity. The shape quality
measure of a tetrahedron K is chosen to be the cubic mean ratio η3

K [108],
defined by

η3
K = 15552

VK
2(∑6

i=1(Li)2
)3 , (II.2)

with VK the volume of K and Li the length of the ith edge of K. The 15552
factor is set to scale η3

K such that it ranges from 0 to 1. Its value is 1 for an
equilateral tetrahedron and 0 for a flat tetrahedron.

Figure II.4(a) shows an edge to be swapped that is surrounded by five
tetrahedra. Figures II.4(c), (d) and (e) depict three of the five possible con-
figurations after the swap. The retained configuration is the one that has the
best minimal element quality in the cavity.

(a) (b) (c) (d) (e)

Figure II.4: Edge swap operation: (a) initial cavity with n = 5, (b) mean
surface that is going to be triangulated, (c),(d) and (e) three possible configu-
rations after the swap.
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The face swap removes a face and replaces it by an edge, leading to the
creation of three tetrahedra instead of two. This operation can be seen as the
inverse edge swap with n = 3.

The face collapse operator can be seen as the compound of an edge split
and an edge collapse. The operation is depicted in Figure II.5. One of the
edges of the face is split and the resulting new edge is collapsed on the new
vertex. This operation is particularly well suited to eliminate an ill-shaped

(a) (b) (c)

Figure II.5: Face collapse operation: (a) initial tetrahedron, (b) split of an edge
of the concerned face, (c) collapse of the new edge on the new vertex.

element that has a face with a small ratio area/edge lengths.
The double edge split collapse compound operator consists in splitting

two edges of a tetrahedron and then collapsing the edge joining the two new
vertices. This operator is used when a tetrahedron with a small volume has
two edges nearly intersecting. The operation is depicted on Figure II.6.

(a) (b) (c)

Figure II.6: Double edge split + edge collapse operation: (a) initial tetrahedron,
(b) situation after the edge splits, (c) situation after the edge collapse.

II.4 Sliver tetrahedra handling

A tetrahedron is said to be a sliver when it has a small volume and no short
edge. Such a tetrahedron can be classified in one of the two categories [32]
depicted on figure II.7. Type I slivers are tetrahedra in which two edges almost
intersect. In type II slivers, one vertex is very close to its opposite face. The
determination of the sliver type is important because it gives a useful infor-
mation about the best local mesh modification that can be applied in order to
eliminate it. The projection algorithm presented in [106] is used in this work
to determine the type of sliver.

In FSI, when the mesh motion solver is pushed to its limits, it inevitably
generates slivers near the boundaries undergoing a motion. In [106], an al-
gorithm selecting the local mesh modifications to be applied was proposed to
eliminate most of them. In this work, we propose an extension to this algorithm
that eliminates more slivers.
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(a) (b)

Figure II.7: Classification of the sliver tetrahedra: (a) type I, (b) type II.

A new sequence of mesh modification operations is proposed in Table II.1.
The operations are sorted with respect to their average efficiency to eliminate
slivers of type I and II. The efficiency measure that we have used takes into
account both the rate of success of eliminating slivers and CPU time consump-
tion of the given operator. The rates of success of the different operations
have been deduced from various test cases. Some of them are presented in
section II.7. We notice that the vertex motion is the very last solution as it
is highly probable that the tetrahedron becomes a sliver again after the next
step of the boundaries motion. The target location for the motion is computed
with the method proposed in [56].

Type Priority Local mesh modification
I 1 Split one of the two key edges

2 Collapse one of the edges of the tetrahedron
3 Split both key edges and collapse the new interior edge
4 Split one of the key edges and collapse the new vertex
5 Swap one of the two key edges
6 Relocate a vertex

II 1 Collapse one of the edges of the tetrahedron
2 Collapse the key face
3 Swap any of the edges bounding the key face
4 Swap the key face
5 Relocate a vertex

Table II.1: Sequence of local mesh modifications attempted to eliminate a
sliver.

Note that those sequences are designed to be part of the sliver elimination
algorithm inserted in the global adaptation procedure presented in section II.6.
Other sequences could be more efficient if the global procedure was modified.

In this work, we consider that eliminating the slivers is more important
than enforcing locally the length criterion, which means that an operation that
can eliminate a sliver or at least improve the local quality is performed, even if
it creates long or short edges. The long or short edges will be eliminated later
on by the global procedure but only if they do not create a sliver tetrahedron
(see section II.6).
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The construction of the list of sliver tetrahedra is made by computing the
quality of every element of the mesh by (II.2). An element is considered as
a sliver (type I or II) if its quality is under a certain threshold Qsl. In all
simulations presented in this paper, Qsl is set to 0.01.

II.5 Mesh motion solver

In FSI problems, the structure imposes its motion to some of the boundaries
of the fluid domain. Moving only the boundary nodes leads to the generation
of ill conditioned tetrahedra. A way to circumvent partially this issue is to
relocate the nodes of the volume using a linear elasticity analogy [186,13].

A linear elastic problem is solved every time the mesh is moved. Here, we
use the approach of [177] in which a stiffness alteration based on the Jacobian
of the elements is used to stiffen the smaller elements. The corresponding finite
element formulation is written as follows. Consider the vector of displacements
of the nodes yh ∈ Sh, where Sh is the piecewise linear nodal finite element
space. The modified energy of deformation of a tetrahedron e submitted to a
displacement yh (with the corresponding strain and stress tensors ε and σ) is
written as:

1
2

∫
e

[
ε(yh) : σ(yh)

]e
Je
(
J0

Je

)χ
dv, (II.3)

where χ is the stiffening parameter and J0 a fictitious volume constant over
the mesh.

Figure II.8 illustrates the influence of χ. With χ = 0, we observe ill shaped
elements near the walls. The elastic solver fails to achieve the mesh deformation
with positive volumes of the elements if a motion of the cube of more than 0.1×h
where h is the size of the cube is imposed. With χ = 1 and χ = 2, a motion of
1.0×h can be attained without any particular problem. In the χ = 2 case, the
elements are very well preserved around the cube but the quality falls outside
of the refined zone. The choice of χ = 1 seems to be a good compromise and
has been used in all the computations presented in this paper.

II.6 Global mesh modification procedure

Our FSI procedure has two different stages: the node repositioning stage and
the mesh adaptation stage. The node repositioning step does not imply any
change in the mesh topology. As it does not need to reallocate the resources
for the storage of the topology, the solution or any data, it can be performed
often at a reasonable computational cost, that is, each time a displacement is
prescribed at the interface between the fluid and the structure. Moreover, the
node repositioning is explicitly taken into account in the ALE formulation of
the governing equations and does not need any mesh to mesh interpolation.
In the second step of the procedure, the mesh is adapted using the local mesh
modifications presented in section II.3 and the global size field presented in
section II.2.
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Initial mesh χ = 0.0

χ = 1.0 χ = 2.0

Figure II.8: Deformation of the mesh around a moving cube (straight motion)
for various values of χ in (II.3).
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The mesh adaptation algorithm

The aim of the adaptation procedure is twofold. First, the dimensionless size of
all edges of the mesh have to lie in the interval [Llow, Lup]. Then, the quality
of the resulting mesh has to be optimal. Minimal quality criterions can be
expressed for instance in terms of a minimal quality for every element and/or
a minimal mean quality of the elements.

The mesh adaptation procedure can be described as follows:
Do {

• Collapse short edges i.e. edges that have lengths Ltre < Llow.

• Do an edge swap loop: loop over all edges and compute the minimal
quality of the elements surrounding the edge. The quality is given by
the cubic mean ratio (equation II.2). If the quality is lower than a given
threshold Qswap, try to find a swap configuration. Apply the swap if it
improves the minimal quality in the cavity and if it does not create a long
or a short edge. The threshold Qswap is fixed to 0.1 in all the simulations
presented in this paper.

• Eliminate sliver tetrahedra with the algorithm described in section II.4.

• Split long edges i.e. edges that have lengths Ltre > Lup.

} While the mesh is modified.
The collapse loop is performed first in order to avoid memory peaks. Indeed,

the number of nodes decreases during this loop. As the edge swap loop is costly,
it is performed just after the coarsening loop, with the minimum number of
nodes. The sliver region elimination can then be performed without having
to compute any element shape, as all element qualities are computed at the
previous step.

Infinite loops

There are a few ways in which the adaptation procedure can degenerate in an
infinite loop between two or more configurations.

If the interval of tolerance for the length of the edges is not large enough,
an infinite loop between split and collapse operations can appear. Due to the
heuristic nature of the mesh adaptation, we cannot guarantee that such a loop
will never appear, even for a large interval. For that reason, a maximum number
of iterations is imposed in the global procedure. The edge length interval should
then be carefully chosen in order to strongly limit the number of infinite loops
without being too far from the unit mesh. More detailed results are presented
in section II.7.

Another possibility of having an infinite loop is illustrated in Figure II.9, in
which an edge split is followed by an edge collapse and an edge swap. This is
possible because the goal of the edge split and collapse operators is to respect
a criterion on edges length while the edge swaps tend to improve the quality of
the tetrahedra. A way to eliminated such a scenario is to forbid an edge swap
if it creates a long or short edge.
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(a) (b) (c) (d)

Figure II.9: Infinite loop between an edge swap, an edge split and an edge
collapse: (a) initial cavity, (b) cavity after the split, (c) cavity after the collapse,
(d) cavity after the swap, identical to (a).

Finally, the operators used in the sliver regions handler can also create a
set of complex infinite loops. This possibility can be avoided if any operation
that creates a sliver tetrahedron is forbidden. Of course, as an exception, we
allow the replacement of a sliver by a better sliver.

II.7 Computational results

Our adaptation procedure has been evaluated on three test cases. The quality
of the meshes, the elimination of the sliver tetrahedra and the evolution of the
number of nodes are presented in the first and the second cases. The third test
case is a fluid-structure interaction computation with a very large motion of
one or two spheres in a fluid at rest.

Cylinder and tube

This test case consists in the penetration of a cylinder in a tube, the diameters
of the objects being quite close. The initial geometry and mesh are shown in
figure II.10. The cylinder has a radius of 0.9 and a length of 3.0. The tube has
the same length with an internal radius of 1.0 and an external radius of 1.2.
The initial distance between the two objects is 1.0. The two objects move with
a velocity of 1.0 for the cylinder and −1.0 for the tube. The end of the test is
fixed at time 4.0, when the objects are completely separated and the distance
between them is 1.0.

A global edge length of 0.6 is prescribed on the whole domain and both
objects are equipped with a local size field. The parameters of the local size
fields for the cylinder and the tube are{

dmin
cyl = 0
dmax
cyl = 1.0

{
δsmall
cyl = 0.1
δlarge
cyl = 0.6

{
dmin
tube = 0
dmax
tube = 1.0

{
δsmall
tube = 0.4
δlarge
tube = 0.6

For an interval [Llow, Lup] set at [0.5, 1.4], the number of nodes ranges from
about 23.500 to 33.000 during the adaptation. This is sufficient to get repre-
sentative data and statistics about the mesh quality and the sliver elements
handling.

A time step of 0.01 has been chosen for this test case. It corresponds to a
relative motion of the objects of 0.2dmin

cyl at each time step.
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Figure II.10: Cylinder and tube test case: cut in the initial mesh.

The mesh aspect obtained at different times with a time step of 0.01 and
an interval [Llow, Lup] set at [0.5, 1.4] is shown in figure II.11.

Figure II.11: Mesh aspect at different times with ∆t = 0.01, Llow = 0.5 and
Lup = 1.4.

Sliver tetrahedra handling: In order to get more information about the
efficiency of each mesh modification applied in the sliver region elimination,
we have run the adaptation procedure in which the slivers handling algorithm
is enhanced with a routine that tests all operations individually on each sliver
before going in the normal algorithm of elimination. This routine has no in-
fluence on the results, but provides the statistics shown in table II.2. The first
columns indicates the number of sliver tetrahedra that the operators can elim-
inate without creating a new sliver. The second column shows the number of
situations in which the operator can only eliminate the sliver by creating an-
other sliver with a better quality, while the third column shows the number of
slivers that could not be eliminated or for which a worse sliver would appear.
The rate of success of the operator (not including the cases in which a new
sliver is created) is indicated in the last column.

We can see that combining all operators does not lead to a total elimina-
tion of the slivers but provides a very good rate of elimination. The vertex
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Successes New sliver Failures Success rate (%)
Type I (547)
All operators 541 1 5 98.9
Edge collapse 244 3 300 44.6
Edge split 346 20 181 63.3
Double split+collapse 210 11 326 38.4
Face collapse 279 13 255 51.0
Edge swap 306 17 224 55.9
Vertex relocation 504 10 33 92.1
Type II (308)
All operators 306 1 1 99.4
Edge collapse 119 2 187 38.6
Face collapse 155 1 152 50.3
Edge swap 202 5 101 65.6
Face swap 112 6 190 36.4
Vertex motion 292 1 15 94.8

Table II.2: Tube and cylinder test case: statistics about sliver tetrahedra han-
dling.

repositioning looks attractive but we observed that many slivers eliminated by
a repositioning become slivers again once a global node motion is applied. For
type I slivers, the edge split is very efficient if we notice that it is a very fast
operator compared to the edge swaps. Note that those results are influenced
by the fact that the sliver elimination is done after the edge collapse and edge
swap loops and before the edge split loop.

If a sliver cannot be eliminated by the present method, an alternative is to
use a local re-meshing technique [52]. In that case, a cavity including the sliver
has to be deleted and re-meshed. The size of this cavity will be iteratively
increased until it can be meshed without any sliver element.

Mesh quality and infinite loops: A particular result that we observe in
our simulations is that the mean quality of the mesh depends on the boundaries
of the interval [Llow, Lup]. Figure II.12 (a) shows the evolution of the quality for
various intervals, figure II.12 (b) shows the evolution of the number of nodes in
each case, while table II.3 shows the number of time steps in which an infinite
loop was created.

Interval [0.4, 1.0] [0.4, 1.4] [0.5, 1.2] [0.5, 1.4] [0.5, 1.6] [0.5, 2.0]
Inf. loops 400 0 400 81 0 0

Table II.3: Tube and cylinder test case: comparison between intervals
[Llow, Lup]: number of infinite loops.
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Figure II.12: Cylinder and tube test case: comparison between intervals
[Llow, Lup]: (a) evolution of the mean quality of the mesh and (b) the number
of nodes.

We can see that the condition Llow < 0.5Lup is not sufficient to avoid
infinite loops. Indeed, there is an infinite loop at each time step with the
intervals [0.4, 1.0] and [0.5, 1.2] while some infinite loops appear with [0.5, 1.4].
We would then recommend to use an interval with a similar range than [0.4, 1.4]
or [0.5, 1.6].

We also observe that the quality is dependent on the boundaries of the
interval. If we compare the intervals [0.4, 1.4] and [0.5, 1.4], the quality seems
to be better with the largest Llow. If we examine the results for [0.5, Lup], we
can see that the quality decreases to a smaller value when Lup is bigger. These
two observations lead to the conclusion that the quality tends to a bigger value
if the interval is smaller.

In order to get the best mean quality without running into infinite loops, a
compromise has to be found on the size of the interval. The smaller interval
which do not lead to infinite loop should be used. From the set of intervals
tested here above, our choice would turn towards [0.4, 1.4] or [0.5, 1.6].

Worm screw

The second test case is a worm screw whirling inside a cylinder. It has been
chosen to demonstrate the capabilities of the adaptation procedure on relatively
complex geometries.

Figure II.13 shows the geometry and the initial mesh of the domain at time
0. The domain is bounded by a worm screw of diameter 4.94 and length 15.6
turning with an angular speed of 1.0, and a fixed cylinder of diameter 5.2 and
length 16.2. The computation ends when a complete turn has been operated,
i.e. at t = 2π. A time step of 0.02 is chosen.

The maximum size on the whole domain is set to 1.0, while a size field with
the following parameters is prescribed at every wall:

dmin
1 = 0 dmax

1 = 0.4 δsmall
1 = 0.2 δlarge

1 = 0.4
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Figure II.13: Worm screw: initial geometry and mesh.

The interval [Llow, Lup] is set to [0.5, 1.6]. With these parameters, the number
of nodes ranges from 125.000 to 155.000 during the computation.

Figure II.14 shows the aspect of the mesh at times 4.0 and 6.0.

(a) (b)

Figure II.14: Worm screw: cuts in the mesh at times 4.0 and 6.0.

The evolution of the mean quality is shown in figure II.15 (a). The cubic
mean ratio tends to a value close to 0.40, which is quite similar to what was
observed in the previous test case with the same interval [Llow, Lup]. The
evolution of the number of nodes is drawn on figure II.15 (b). It stabilizes
around 155.000. The quality distributions in the initial and final meshes are
shown in figure II.16. Note that Qswap is set to 0.1 here, which means that
edge swaps have only be attempted to improve elements for which quality was
lower than 0.1.

The statistics about the elimination of the sliver tetrahedra are shown in
table II.4. Every sliver is eliminated and most of them are eliminated at the
first attempts.
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Figure II.15: Worm screw: (a) evolution of the mean cubic mean ratio, and (b)
evolution of the number of nodes.
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Applied (no sliver) Applied (new sliver)
Type I (1532)
Edge split 1182 0
Edge collapse 239 0
Double split+collapse 15 1
Face collapse 18 0
Edge swap 4 1
Vertex relocation 72 0
Remaining 0
Type II (1521)
Edge collapse 1430 0
Face collapse 33 1
Edge swap 17 0
Face swap 1 0
Vertex motion 38 1
Remaining 0

Table II.4: Worm screw: statistics about sliver tetrahedra handling.

Spheres falling in a fluid

In this test case, the mesh adaptation procedure is applied to a fluid-structure
interaction solver. The problem solved implies the motion of one or two spheres
falling in a fluid.

The fluid is governed by the incompressible Navier-Stokes equations. The
equations are discretized in a dual finite elements / finite volumes formulation.

The motion of the sphere is computed with the Newmark method and the
coupling is achieved with a CSS procedure [140] equipped with sub-iterations
cycles.

Single sphere

For this computation, a single sphere is immersed in the fluid. We fix the
parameters of the fluid so that the Reynolds number Re is equal to 1 at equi-
librium. Due to the gravity, the sphere accelerates until the gravity is exactly
balanced by the drag force and the Archimede’s force. We fix the mass of the
sphere such that the theoretical velocity at equilibrium is 1.

Figure II.17 shows the evolution of the displacement and velocity of the
sphere. We notice that the velocity tends to 1 as expected. The evolution
of the mean quality and the final distribution of elements quality are shown
on Figure II.18. We observe that the quality decreases slowly so that the loss
along the computation is not significant.

Two spheres

In the next computation, the motion of two vertically aligned spheres are in-
vestigated.
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Figure II.17: Single sphere test case: (a) evolution of the displacement, and
(b) velocity.
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Figure II.18: Single sphere test case: (a) evolution of the mean quality of the
mesh, and (b) elements quality distribution at time 10.

The evolution of the displacements and the velocities of the spheres are
shown in figures II.19 (a) and (b). We observe that from the time 1.5, the
upper sphere is aspirated by the flow around the first one. Eventually, the
spheres touch and the computation stops.

The cut of the computational mesh is represented on figure II.20 for different
times as well as the pressure field.

II.8 Conclusion

A procedure to handle large deformations of a mesh in FSI problems by nodes
movement and local mesh adaptation was presented. The procedure is robust
and can handle complex geometries with very large deformations of the domain.

For that purpose, a node repositioning technique with a selective treatment
for the elements previously applied for two-dimensional meshes was applied for
three-dimensional meshes.
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Figure II.19: Two spheres test case: (a) evolution of the displacements and (b)
velocities.

A new adaptation procedure has been proposed in which an efficient han-
dling of the sliver tetrahedra is included. The procedure achieves a good quality
for the mesh and complies a mesh size field. Important parameters of the pro-
cedure like the boundaries of the interval [Llow, Lup] were studied with a set of
computations. In particular, some clues are given to choose them by looking
at the quality, number of nodes and production of infinite loops.

Finally, mesh deformation tests and fluid-structure computations have been
performed in order to show the potential of the presented approach.
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Time: 0.0 2.0

Figure II.20: Two spheres test case: mesh and pressure field at different time
steps (continued on next page).
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Time: 3.4 3.9

Figure II.20: Two spheres test case: mesh and pressure field at different time
steps (continued).





Chapter 3

Adaptive boundary layer
meshes

Capturing the boundary layer is an important point in most of the CFD compu-
tations. The behaviour of the flow around a wall deserves a particular attention
for several reasons: (i) at high Reynolds numbers, the boundary layer can have
a significant impact on the global solution, in the case of a boundary layer sep-
aration for instance, (ii) for low Reynolds flows, although the global flow does
not significantly depend on the boundary layer, local quantities of interest like
the wall shear stress can be dramatically affected by the error on the boundary
layer computation. Furthermore, high variations of the velocity occur in the
boundary layer, which requires an appropriate design method for the mesh.

In the literature as well as in the commercial softwares, solutions are usually
proposed to build structured or semi-structured simplicial or non-simplicial
meshes [121, 84, 98, 74, 93, 169] for the boundary layer mesh. Those methods
rely on an extruded mesh around the no-slip walls and the issues raised by
geometrical configurations like corners, sharp ridges, concave cavities, . . . (see
Figure 3.1) are solved by ad-hoc algorithms. The complexity of the global
method increases with the apparition of new geometrical features. In some
cases, manual interventions are even required. In the industry, it results in a
significant amount of human time spent in preparing a CAD model and meshing
it, regarding the computational time of the CFD simulation.

Furthermore, the common meshers can yield meshes with a non-optimal
distribution of the elements, as in the example presented in Figure 3.2, and non-
optimal element quality. Finally, the directions induced by the layers can affect
the solution of the CFD solver. All those issues are raised by the structured
nature of the mesh.

When dealing with mesh adaptation, structured meshes raise other issues,
like the preservation of the structure of the adapted mesh, or the elements
validity and quality control with large deformations. Its only recently that
the issues related to mesh adaptivity for 3D semi-structured meshes started to
receive some attention in the literature with the works of Sahni et al., who de-

65
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Figure 3.1: Examples of geometrical configurations in which specific techniques
are needed in order to build structured meshes.

Figure 3.2: Structured mesh with non-optimal element distribution.

signed a method to adapt semi-structured meshes for viscous flow computations
when using linear [161] and curved [162] meshes.

To sum up, working on structured or semi-structured meshes is a strong
constraint. As it will be discussed in the first section of this chapter, con-
straining the mesh to be structured in the boundary layer regions is not always
justified. For inviscid and low Reynolds number flows, unstructured simplicial
meshes lead to reasonable results, but with a numerical noise [163, 161]. For
the high Reynolds number flows however, the reliability of the unstructured
meshes currently proposed in the literature has still to be improved.

An attempt to generate anisotropic unstructured boundary layer meshes
with a reasonable quality is presented in [37] for 2D flows, where it is proposed
to design the mesh metric field in such a way that the eigenvectors of the
metric are aligned with the normal and tangent directions of the wall. It is also
proposed to relocate nodes in order to force their alignment with the tangent
directions. The approach has not been extended to 3D yet, and the issue of
building suitable mesh metric fields around curved boundaries is not handled
in the paper.

In this chapter, we investigate a method to automatically build and adapt an
unstructured mesh including viscous boundary layers with the mesh adaptation
procedure described in Chapter 2 by modifying the size field near the no-slip
walls. Such a method has several advantages:

• the mesh can be build automatically based on general specifications of the
boundary layer mesh like layer thickness and number of elements across
the thickness,
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• the method can be easily used to build and adapt meshes based on an
a posteriori error estimate (in the boundary layer as elsewhere), like the
Hessian of a solution [163],

• the method is independent of the complexity of the geometry, as it uses
the techniques described in Chapter 4 for adapting the mesh on the
boundaries,

• the domain can be arbitrarily deformed,

• the mesh size field can be smoothed (see for instance [28] for anisotropic
size field smoothing) in order to control the transition between the bound-
ary layer mesh and the rest of the domain.

Following the idea of [37], the size field is built in such a way that its eigen-
vectors are aligned with the normal and tangent directions of the wall. A par-
ticular attention is given to the computation of an appropriate prescribed edge
length near curved boundaries. Indeed, since it is impossible to fill a curved re-
gion with highly anisotropic elements, the specified sizes around curved surfaces
should take its curvature into account.

3.1 Testing the non-structured BL meshes: the
flat plate test

In order to compare structured and unstructured meshes for boundary layer
modeling in viscous flows, we show here a very simple example for which an
analytical solution is known: the plate test.

Flow problem The configuration of the test is depicted in Figure 3.3. The
plate has a length L = 2.07m, and a region of length 0.67m is left upstream
of the leading edge in order to capture the leading edge flow. The far stream
is located at 0.5m, which is far enough to consider it as fairly uniform. Since
a 3D fluid solver is used to compute the flow, the domain is extruded in the
spanwise direction to the plane and symmetry boundary conditions are applied
on the two resulting planes.

The fluid enters in the domain with constant velocity U = 1m/s and pres-
sure p = 1Pa in space and time. The same boundary conditions are applied
to the top boundary. No-slip and slip wall boundary conditions are applied
respectively to the plate and the bottom boundary in the upstream region. At
the outlet, the boundary conditions are a pressure p = 1Pa and a zero strain
tensor S:

S = µ
(∇u +∇uT

)
= 0, (3.1)

where µ is the dynamic viscosity of the fluid. The flow is incompressible and the
equations solved are the incompressible Navier-Stokes equations. The following
density ρ and dynamic viscosity µ of the fluid are chosen

ρ = 1 kg/m3, µ = 10−4m/s2. (3.2)
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Figure 3.3: Geometrical settings for the plate test (reproduced from [117]).

With the values given here above, the Reynolds number of the flow corre-
sponding to the length of the plate is computed by

Re =
ρLU

µ
= 2.07 104. (3.3)

The transition from laminar to turbulent flows occurs around Re = 5 105.
The quantity of interest we choose to compare the different solutions is the

skin friction coefficient Cf , which is given by

Cf =
τw

1
2ρu∞

, (3.4)

with the wall shear stress τw

τw = (S.n) · t. (3.5)

Theory A reference solution for this problem has been obtained by Blasius
(see for instance [188]), for which the theoretical skin friction coefficient is given
by

Cf =
0.664√
Rex

, (3.6)

where Rex is the Reynolds number at abscissa x given by

Rex =
ρxu∞
µ

, (3.7)

with u∞ the velocity at an infinite distance from the plate. We assume that
the domain is large enough to write u∞ = U .

According to the solution of Blasius, the thickness δ∗99% of the boundary
layer, defined as the distance at which u = 0.99u∞, is given by

δ∗99%(x) ≈ 3.5
√

2νx
u∞
≈ 4.95

x√
Rex

, (3.8)

with ν = µ/ρ the kinematic viscosity of the fluid.
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Computational settings The fluid solver used to solve the incompressible
Navier-Stokes equations is Argo, which is developed by Cenaero1. Argo uses
a mixed finite elements / finite volumes (convective fluxes) method. The non-
linear problem is solved by a Newton method. In this work, we choose to solve
the linear system with a GMRES solver together with an ILU preconditionner
and a fill level of 2.

The stabilization of the incompressible flow is done by a PSPG method
where the stabilization parameter is chosen as constant and set to 0.1.

The computation is performed with six different meshes. Structured and
non-structured meshes will be compared both on relatively coarse, medium and
fine meshes.

The meshes are depicted on Figure 3.4. The corresponding structured and
non-structured meshes have approximately the same element size distributions
in the boundary layer. The structured and unstructured meshes have respec-
tively 3810 and 3051 elements (5 elements in the boundary layer), 4634 and
3835 elements (6 elements in the BL), and 124, 800 and 101, 372 elements (over-
refined meshes). The difference between the structured and unstructured mesh
sizes comes from the refined zone out of the region of interest in the structured
case. An additional mesh with only 2583 elements but a refinement located
in the region of the boundary layer defined by (3.8) is also evaluated. Such a
mesh could typically be obtained by an adaptive computation although here
the solution of Blasius was used.

Computational results Figure 3.5 depicts the skin friction coefficient Cf
along the plate obtained with the structured and unstructured meshes. We
observe that the unstructured meshes yield results which are as close to the
theoretical solution as the structured ones, but with a numerical noise. The
same observations are made from the results presented by Sahni et al. [163,161]
in the case of cylindrical pipes. We also notice that the mesh refined in the
boundary layer region defined by (3.8) yields better results than the simple
unstructured coarse mesh although it has less elements. When the mesh is
over-refined, Figure 3.5(c) shows that both types of meshes converge to the
same solution.

The velocity profiles at different abscissa x and for y ∈ [0, 0.05] obtained
with the unstructured mesh adapted according to the Blasius solution are de-
picted on Figure 3.6.

In the unstructured meshes, the element shapes are variables and therefore
could be locally worse than in the corresponding structured meshes. However,
the convergence of the computation is not affected, as shown in Figure 3.7,
where only a structured mesh yields a degradation of the convergence.

3.2 General method

The solution we propose to generate or adapt an anisotropic boundary layer
mesh relies on two components: the mesh adaptation method described in

1Center for Excellence in Aeronautics, Gosselies, Belgium
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Figure 3.4: Structured and unstructured meshes evaluated for capturing the
boundary layer on the plate test. The last mesh is refined in the region defined
by (3.8).

Chapter 2, and an anisotropic mesh size field over the boundary layers which
will be intersected with the other size fields prescribed over the domain.

The boundary mesh size field must have the following characteristics:

• a small and progressive size in the normal direction to the wall,

• large sizes in the tangent directions,

• the tangent size should be realistic for the geometry of the wall. It should
be locally limited to a size which is proportional to the radius of curvature
of the wall.
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Figure 3.5: Skin friction coefficient Cf along the plate obtained with structured
and unstructured meshes for (a) 5 elements in the BL, (b) 6 elements in the
BL, and (c) over-refined meshes.

The last condition is needed to avoid ill-defined problems: if the local radius
of curvature of the wall is small compared to the prescribed size, the size field
is geometrically impossible to satisfy, even with a large interval [Llow, Lup]. In
such a case, the behaviour of the adaptation procedure will be affected: in the
optimal mesh, short edges will remain, as well as elements with a poor quality
in the transformed space.

The technique presented here allows to build this size field almost automat-
ically. The desired normal and tangent sizes in the boundary layer have to be
prescribed, but the features of the geometry are automatically treated by the
method.
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Figure 3.6: Velocity profiles at different x obtained with the mesh refined in
the boundary layer region defined by the solution of Blasius.
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Figure 3.7: Plate test: convergence of the different computations.

3.2.1 Applications

Using the mesh adaptation procedure presented in Chapter 2 for adapting
boundary layer meshes allows to merge the adaptation of the whole mesh,
possibly with large deformations, and the particular adaptation of the boundary
layer mesh by simply intersecting the size field of the boundary layer with the
other size fields before running the adaptation procedure. For that reason,
the techniques presented here can be seen as an extension of the proposed
adaptation method to the CFD computations that capture boundary layers.

Note that since the initial mesh can be coarse and isotropic, a simple mesh
generation method with boundary layer meshes can therefore be obtained
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from the present work. It simply consists in producing a first mesh without
any care of the mesh size, and then adapting it by the present method to get
the desired mesh, as illustrated in Figure 3.8.

(a) (b) (c)

Figure 3.8: Mesh of the junction between an artery and a bypass (anastomosis):
(a) mesh boundaries, (b) cut in initial mesh, (c) cut in mesh with boundary
layer generated by the present method.

Finally, we mention the possibility to use the present method to control
the discretization of the geometric entities by providing a mean to relate the
curvature of the geometry to the surface mesh size. This application of the
method is not further investigated here. The reader can refer to [72, 73] for
related works.

3.2.2 Size field construction

As explained in Chapter 1, an anisotropic size field is given by a metric, which
is a symmetric definite positive tensor. We denote by L(x) the metric related to
the boundary layer mesh size field. As L(x) is symmetric and definite positive,
it can be written as

L(x) = T t(x)

 1/h2
1(x) 0 0
0 1/h2

2(x) 0
0 0 1/h2

3(x)

 T (x), (3.9)

where T (x) is a tensor for which the matrix columns are the principal directions
of the size field in x, and hi(x) are the prescribed sizes in the corresponding
directions.

Metric specification Since we are interested in distinguishing the sizes in
the normal and tangent directions to the wall, we choose T (x) as

T (x) =
(

n(x) t1(x) t2(x)
)
, (3.10)
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where n(x) is the normal direction to the wall and t1(x), t2(x) are the tangent
directions. Note that these directions have to be defined in the boundary layer,
which is a region of the mesh, not a surface. More exact definitions of n, t1
and t2 are given in the remainder of this chapter.

Consecutively to the definition of T , we set h1(x) = hn(x) with hn(x)
the desired size in the normal direction, and h2(x) = h3(x) = ht(x), where
ht(x) is the prescribed size in the tangent direction. Note that in this work,
we restrict the developments to a single size for both tangent directions. A
possible extension of the method with two different sizes is discussed in §3.5.

To sum up, the following directions and sizes have to be defined in order to
compute the metric L(x):

• the normal direction n(x),

• the tangent directions t1(x), t2(x),

• the sizes hn(x) and ht(x).

Normal and tangent directions In order to obtain the main directions of
the metric, the normal direction to the wall has to be defined in the region of
interest. At least two methods can be used to get this normal in a point with
coordinates x. The first one is based on the distance d(x) to the wall. Indeed,
the normal can be computed as the gradient of the distance to the wall:

n(x) = ∇d(x).

Another way is to choose the unit vector with the direction of the straight line
passing through x and the closest point to x on the wall. Both solutions require
the computation of the distance to the wall, but the second is faster and yields
more accurate results in the computation of the curvature, as explained here
after.

The tangent vectors can be any vectors t1(x) and t2(x) such that the
basis (t1(x), t2(x),n(x)) is orthogonal, since the sizes prescribed in the tangent
directions are the same.

Normal size The size hn(x) has to be fixed according to the Reynolds num-
ber of the flow and the desired number of elements in the thickness of the
boundary layer. A common way to build a structured boundary layer mesh
is to start from a given size h∗n0 for the first layer of elements, and to build n
successive layers using a progression factor p, which yields a size h∗ni = pihn0

for the ith layer. The symbol ∗ is used to mention the discrete nature of a
value. The thickness tBL of the boundary layer mesh is given by

tBL = h∗0
pn − 1
p− 1

. (3.11)

The same progression is used here, but we specify it in a continuous rather
than a discrete formulation, which simply corresponds to a linear dependence
between the size hn and the distance d(x) to the wall:

hn(x) = h0 + γd(x), (3.12)
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where h0 is the desired size at the wall and γ is a constant, with γ ≥ 1.
The correspondence with the discrete formulation is obtained by the following
relations:

h0 =
h∗0
p
, γ = p−1

p . (3.13)

Tangent size In the tangent directions, the prescribed size could be very
large. In viscous flow computations for instance, the solution does usually not
vary a lot along the tangent directions. That is the main reason for using
anisotropic meshes for modeling boundary layers. However, as explained here
above, the prescribed size has to be limited by the curvature of the neighboring
wall, in order the end with a geometrically well defined problem.

The solution proposed is to relate directly the limitation of the prescribed
size to a region curvature κ(x), i.e. a curvature defined in the region of the
boundary layer which is a smooth function and has the value of the surface
curvature on the walls. The details about the computation of the curvature
are given in §3.3.2. In our approach, we choose to limit the tangent size to
a value which is proportional to the radius of curvature r(x) = κ−1(x). If a
prescribed size hprt is given, we choose ht(x) by

ht(x) = min (hprt , αr(x)) , (3.14)

where α is a constant coefficient determining the required resolution level of
the geometry to consider that the problem is geometrically well posed. From
the numerical experiments a reasonable choice is α = 0.3.

3.3 Distance and curvature computations

In the previous section, we described a mesh size field which depends on the
computation of the normal to the walls and a region curvature. Both are related
to the distance to the wall. We explain here how to define and compute this
distance and the region curvature. The computation of the normal was already
discussed in §3.2.2.

3.3.1 Distance

The distance of a point p with coordinates x to a wall can be computed in
different ways depending on the available information:

• If a geometrical model is available2, the shape of the wall is exactly known,
and the exact distance to x can be given by the model.

• If the wall is only known by its discretization, a simple definition of the
distance of p to the wall is the distance between p and the closest element
of the discretization.

2More details are given about the geometrical models and their relation to the mesh in
Chapter 4
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• An equivalent function to the distance can be obtained by solving a partial
differential equation (PDE) on the domain (see for instance [102]).

In this chapter, we assume that no geometrical model is given, which excludes
the first possibility. An advantage of the second method is that it returns
an accurate value of the physical distance to the walls, and the normal is
trivially obtained. On the other hand, the gradient of the physical distance is
not continuous, and the determination of the closest entity is mainly based on
heuristics, as explained here below. The third possibility produces a smooth
distance function with a continuous gradient but is less physical and requires
to determine the value of some artificial parameters.

In the present work, we mainly investigate the use of the physical distance,
although we plan to explore the potential of the third possibility in a near
future.

Closest mesh entity In 3D, the simplicial entities discretizing a wall are
triangles. The problem here is to find which triangle of the wall is the closest
to p. The transposition to the 2D case is not described here since it does not
raise any particular issue.

The algorithm proposed starts from an initial guess and advances in the
neighboring elements until an element with a minimal distance is found:

Define the variable t with type ‘triangle’
1. Find w, the closest point to p on the wall
2. t becomes the closest triangle around w (initial guess)
3. Mark all triangles around w as ‘checked’
4. While a neighbor of t is not marked as ‘checked’ {

4.1 t becomes the closest triangle between t and its neighbors
4.2 Mark all triangles around t as ‘checked’

}
Finding the closest vertex to p on the wall can be performed efficiently using

kd-tree data structures [9]. The open source Approximate Nearest Neighbor
(ANN) library [126] implements searching algorithms based on kd-tree data
structures that are able to perform a search in O (log(n)), where n is the
number of vertices of the wall.

Note that the proposed algorithm is not perfectly robust as it is only able
to find a local minimum and relies on the initial guess to converge to the right
solution, although it performs well in most of the cases. Further works should
investigate this issue and propose algorithms to solve the problem of the global
optimum location.

Distance to a triangle In the previous algorithm, the distance d between
the point p and a triangle t has to be computed. According to the relative
position of p and t, the distance d can be either:

• the distance from p to a summit si of t,

• the distance from p to its projection on an edge ei of t,
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• the distance from p to its projection on t.

In order to determine in which of these cases we fall, p is projected on the plane
T containing t. We denote p′ the projection point of p in T . According to the
location of p′ relatively to t, the edges ei and the summits si, we can determine
the way to compute d. The regions of T corresponding to the different cases are
depicted in Figure 3.9. The plane T is divided in 7 zones in which p′ can fall.

s1

s0

e0
2

4
5

6

1= t

s2
7

e2

e1

3

T

Figure 3.9: The different zones of the plane of a triangle on which the projection
of a point can fall.

According to Figure 3.9, the distance between p and t is equal to the distance
between p and

• p′ if p′ lies in zone 1,

• e0, e1 or e2 if p′ lies respectively in zone 2, 3 or 4,

• s0, s1 or s2 if p′ lies respectively in zone 5, 6 or 7.

Note that if p′ is in zone 2, 3 or 4, the projection of p on the line containing the
corresponding edge falls inside the edge. Once the zone has been determined,
the distance d is then simply obtained by a computation of the distance between
two points or a point and a line. In addition to the distance, the corresponding
normal is directly obtained, since the closest point to p in the triangle is known.

3.3.2 Curvatures

In order to determine the tangent size inside the boundary layer, a region cur-
vature κ(x) has to be defined in the boundary layer zones. This curvature has
to be smooth enough since the size field depends directly on it. Furthermore,
its value on the walls should correspond to some definition of the surface cur-
vature. A very common way to obtain the curvature of a surface is to choose
the divergence of the normal:

κ(x) = ∇ · n. (3.15)

From a voluming point-of-view, since the normal to a wall is the gradient
of the distance, we choose to define the curvature κ(x) by

κ(x) = ∆d(x) = ∇ · (∇d(x)) . (3.16)



78 Chapter 3. Adaptive boundary layer meshes

In order to simplify the notations, the dependence in x is omitted in the re-
mainder of the section. Starting from the distance computed as explained here
above, we can compute its Laplacian by a finite element approach. By mul-
tiplying (3.16) by test functions φ̂j , integrating over a mesh element Ω, and
integrating by parts, we obtain∫

Ω

κ φ̂j dΩ = −
∫

Ω

∇φ̂j · ∇d dΩ +
∫
∂Ω

φ̂j . (n · ∇d) d∂Ω. (3.17)

Discretizing κ by κ =
∑
i κiφi yields∑

i

∫
Ω

κiφiφ̂j dΩ = −
∫

Ω

∇φ̂j · ∇d dΩ +
∫
∂Ω

φ̂j . (n · ∇d) d∂Ω. (3.18)

We choose the shapes functions φi as the classical linear shape functions.
In order to save computational time, the mass matrix

∑
i

∫
Ω
κiφiφ̂j dΩ on

the left-hand side is lumped in the computation.
The evaluation of the right-hand side of (3.18) requires the computation of

the gradient of d. The evaluation of∇d can be done in at least two ways. A first
solution consists in setting ∇d =

∑
iDi∇φi, which yields a piecewise constant

approximation of ∇d. This choice is the most natural if the gradient at nodes
is not known a priori, and a piecewise linear approximation of the distance is
available. If the normals to the walls are available at nodes, a piecewise linear
approximation of the distance gradient can be used: ∇d =

∑
i(∇d)iφi. This

is the case if the second option is chosen for the distance computation (see
§3.2.2), i.e. d is the physical distance to the closest point of the wall.

Figure 3.10 shows the curvatures obtained with both approaches in a region
bounded by two concentric spheres. From the difference between (d) and the
other figures, we observe that the smoothness and accuracy of the curvature
is highly dependent of the computation of the gradient and that the piecewise
linear approximation of the gradient (c) yields better results than the constant
one (a), even when the gradient is computed from the analytical distance (b).
Note that in the piecewise linear gradient approach, the computation of the
gradient is directly related to the computation of the distance. The compu-
tation is also efficient since the distance and its gradient are computed at the
same time by the technique described in §3.3.1.

We notice that the resulting curvature is quite noisy. A smoothing is there-
fore applied before using it in the limitation of the tangent size.

3.4 Examples

In this section some examples of the application of the proposed method are
presented.

Planar surface The first test consists in meshing a cube with a desired
boundary layer mesh at the vicinity of a face. The anisotropic ratio at the wall
is about 1200. Figure 3.11 shows the resulting mesh. It has been checked that
the curvature obtained is 0 everywhere.
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(a) (b)

(c) (d)

Figure 3.10: Evaluation of the region curvature κ between two concentric
spheres of radii 1 and 3 with (a) the piecewise constant gradient approach,
(b) the same approach with the analytical distance, (c) the precomputed piece-
wise linear gradient, and (d) the analytical gradient.

Corners and ridges We consider here geometries in which particular diffi-
culties would arise if semi-structured meshes had to be built. For those cases,
no physics computation is made and the geometries are just intended to test
the mesh adaptation techniques developed in this chapter. The first test is a
parallelepiped from which a cube of side length 1 has been removed, leading
to corners and ridges at 90◦. In order to generate a simple mesh adaptation
test (no physics), the surfaces of this cube are the only surfaces along which a
boundary layer mesh is generated. Figure 3.12 shows the meshes obtained with
an anisotropic ratio of 40 at the walls for α = ∞ (no limitation based on the
curvature), α = 0.3, and α = 0.3 with a smoothing of the curvature field. The
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Figure 3.11: Cube test: resulting mesh with an anisotropic ratio 1200 at the
wall.

edge length is limited to 0.03 in order to limit the refinement on the leading
edges, which corresponds to a limitation of the curvature to 10. Figure 3.13
depicts the computed curvature before and after the smoothing. We observe
that the mesh obtained with a control of the size field by the curvature has the
desired edge length at the corners and the ridges, while the elements have both
inappropriate shapes and sizes without taking the curvature into account.

We also point out the high difference in size between the elements located
on the ridges and the other elements if no smoothing is applied to the curvature
field.

In the second test, another region is enclosed in surfaces that form corners
and ridges and a particular point is located at the intersection between a corner
and a ridge. Figure 3.14 depicts the resulting mesh. The coarsely meshed
surfaces are those along which a boundary layer size field was prescribed. The
anisotropic ratio at the wall is also 40 for this test, α is set to 0.3 and the
curvature field is not smoothed. Figure 3.15 shows successive cuts in the mesh
perpendicularly to the sloping surface. The gray scale indicates the computed
curvature.

Anastomosis In the field of biomedical engineering, an important domain of
application of the fluid mechanics is the study of blood flows. In particular, an
objective of the numerical computations is to allow to predict accurately the
effects of a surgical procedure like a bypass operation. The current example
deals with an anastomosis, which is the junction between a sane artery and an
artificial vessel implanted to bypass an obstructed artery.

In order to enable realistic simulations of the blood flow of a particular
patient, imaging techniques have been designed to scan the arteries and produce
realistic representations of it. The resulting three-dimensional images can then
be converted in surface triangulations, and the internal region can be meshed
by classical 3D mesh generation techniques. As an example, a mesh of an
anostomosis located below the knee, at the intersection between the femoral
and popliteal arteries is shown in Figure 3.8 (a) and (b).

Starting from this mesh, a mesh with an anisotropic ratio of 10 at the walls
is produced by the present technique and depicted in Figure 3.16 (a). The
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Figure 3.12: Corner test: no limitation based on curvature (top), limitation
with α = 0.3 (middle), and limitation with α = 0.3 and a smoothed curvature
(bottom). The second view is a cut in the mesh.

value α = 0.5 is chosen and no smoothing of the curvature field is applied. In
Figure 3.16 (b) and (c), a close view of the mesh near a slightly curved wall is
depicted if the tangent size was bounded (c) or not (b) by αr(x). We observe
that the mesh alignment is much better with a curvature limitation. The mesh
with a constant tangent size prescribed in the boundary region is visibly more
disorganized since an ill-defined size field is prescribed.

Figure 3.17 shows the skin friction (a), pressure (b) and velocity (c) of
a steady flow with fluid parameters relatively close to blood: density ρ =
1.06 103 kg/m3 and dynamic viscosity µ = 4.5 kg/ms. No-slip boundary con-
ditions are applied at the walls and a parabolic velocity is imposed at the inlet
with a global inflow of 8 10−3l/s. The diameter of the artery is approximately
10mm at the smallest sections. With those values, the Reynolds number of
the flow is around 200. A constant pressure is imposed at the outlet.

When the initial mesh is a coarse triangulation, the mesh adaptation proce-
dure tends to refine it. Unfortunately, since the initial triangulation is the only



82 Chapter 3. Adaptive boundary layer meshes

(a) (b)

Figure 3.13: Corner test: curvature computed with (3.16) (a) before and (b)
after smoothing.

Figure 3.14: Corners and ridges: resulting mesh. The coarsely meshed sur-
faces are those along which a boundary layer size field was prescribed. The
anisotropic ratio at the walls is 40.

geometrical data available, the new points are simply added along the split edge
and no vertex snapping is performed. This impacts on the computation of the
curvature. Figure 3.18 (a) shows the curvature field obtained on the adapted
mesh if no smoothing is applied. Since only the local features are taken into
account, the curvature is high between two original triangles, and equal to zero
inside it. Figure 3.18 (b) shows the curvature field that can be obtained if a
simple smoothing is applied. This last solution is much more interesting to use.
Note that we proposed an alternative solution to that particular issue in [150].
It consists in building a cubic representation of the linear triangles and snap
the new vertices on it.
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Figure 3.15: Corners and ridges: successive cuts in the mesh. The gray scale
indicates the computed curvature.

3.5 Next steps

In a near future, several trails will be explored to improve the present method.
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(a) (b) (c)

Figure 3.16: Anastomosis: comparison between resulting meshes with (b) a
simple anisotropic size field, and (c) an anisotropic size field with a tangent
size bounded by a function of the curvature.

First, we aim at investigating the generation of an artificial distance func-
tion by the resolution of an appropriate EDP, like proposed in the work of S.
Legrand et al. [102]. Such a function could have interesting properties, like
continuous derivatives. If the iso-lines of the distance function do not intersect
each other, a method to generate structured meshes could been built from this
function by adding vertices along these iso-lines, with a spacing dependent on
the curvature. This method would combine the advantage of being indepen-
dent from the complexity of the geometry with the advantages of the other
structured meshes (suitable for higher Reynolds number flows, no noise in the
solution).

Furthermore, such a function could act as a filter for the high frequencies
in the geometrical input, with a cutoff frequency depending on the parameters
of the EDP. This is particularly interesting in the case of STL triangulations
as it was shown in the results presented above.

About the computation of the curvature, we have seen that using a piecewise
constant approximation of the distance gradient yields very poor results. If the
distance function is given by an EDP, a piecewise linear gradient could be ob-
tained if quadratic shape functions were used to discretize the distance, but the
computational cost would become prohibitive. Another possibility suggested
by E. Marchandise [117] is to use a linear or quadratic reconstruction of the
gradient by a least-square method. The results shown in [117] are promising.

Another important improvement to bring to the method is the computation
of the principal curvatures and the corresponding directions. In this work, a
unique curvature equal to the divergence of the normal is computed, which is
not optimal when the curvatures in the principal directions are very different. In
the case of a cylinder for instance, we wish to have an edge length proportional
to the radius in the direction θ, and long edges in the direction z.
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(a)

(b) (c)

Figure 3.17: Anastomosis: steady flow computation at Re = 200 with the mesh
presented in Figure 3.16 (a): (a) skin friction, (b) cut in the velocity field, and
(c) cut in the pressure field.
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The metric L(x) will therefore be written as

L(x) = T t(x)

 1/hn2(x) 0 0
0 κ1

2(x)/α2 0
0 0 κ2

2(x)/α2

 T (x), (3.19)

with
T (x) =

(
n(x) t1(x) t2(x)

)
, (3.20)

where t1(x) and t2(x) are the directions of the main curvatures κ1(x) and
κ2(x). Those curvatures and their directions will be given by the eigenvalues
and eigenvectors of the tensor K(x) defined by

K(x) = ∇∇d(x).



(a)

(b)

Figure 3.18: Anastomosis: computed curvature (a) without and (b) with a
smoothing.





Chapter 4

Handling of geometrical
models

When dealing with industrial applications in solid or fluid mechanics, a Com-
puter Aided Design (CAD) model is often provided to describe the exact ge-
ometry of the mechanical components to be analyzed. For instance, one could
wish to analyze the stresses in a manufactured piece under some load, or to
study the properties of the flow around an external component of an aircraft
like a landing gear or a wing tip, . . .

In order to take advantage of mesh adaptation methods in such compu-
tations, a particular issue is raised: how do we control the compliance of an
adaptive mesh to the CAD model provided with the initial mesh ? A simple
solution is to fix the mesh near the model boundaries. However, this solution
is quite restrictive:

• The mesh size cannot be controlled on the boundaries, which results in
a lower efficiency of the physics computation in case of a goal-oriented
mesh adaptation like with error minimization methods. Furthermore,
particular phenomenons happening at the vicinity of the boundaries may
require to be captured, like a boundary layer separation or a traveling
shock wave.

• The accuracy of the finite element method is known to be sensitive to
the gradation of the mesh size. In mesh adaptation, the common way to
control this gradation is to limit the gradient of the size field. However, if
the elements located near the model boundaries are fixed, the edge length
at the vicinity of the boundary is not linked anymore to the edge length
given by the size field.

The other solution is to allow the mesh adaptation procedure to modify the
boundary elements. In that case, several requirements are to be satisfied by the
local mesh modification operators: the classification of the new mesh entities,
i.e. their link to the entities of the CAD model, has to be set properly, and the
topology of the CAD model has to be preserved.

89
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Secondly, when new boundary nodes are created, they have to be relocated
(snapped) at their right location on the corresponding geometrical entity. Al-
though this relocation is simple in most of the cases, it can sometimes generate
ill-shaped, or even tangled elements. Up to now, this issue has not been given
a lot of interest in the literature, which results in a lack of robust methods.

The issues brought up here are addressed in the Article III, Mesh adaptivity
complying to a geometrical model, Compère, Remacle (not submitted yet) laid
out here below. The paper describes the key components of a robust mesh
adaptation method complying to a CAD model:

Relation between mesh and geometrical model A CAD model represen-
tation is described, and the relation of the mesh to the model is studied.
In particular, the notion of classification is recalled, and a definition of
compatibility of the mesh to the geometrical model is provided, setting
the framework of the other developments.

Vertex snapping By combining two techniques described in Chapter 2, the
node relocation technique and the optimization by edge and face swaps,
an algorithm allowing to snap the new boundary nodes in a robust way
is proposed. This method is similar to the one used for handling arbi-
trarily large mesh deformations in the paper entitled A mesh adaptation
framework for dealing with large deforming meshes (Compère, Remacle,
Jansson, Hoffman) (Article IV) presented in Chapter 5.

Mesh modification operators The mesh modification operators described
in Chapter 2 are analyzed in the general case of a mesh linked to a CAD
model. Detailed conditions on the applicability of the modifications in
the different configurations are given.
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Article III

Mesh adaptivity complying to a geometrical
model

Gaëtan Compère1,3∗, Jean-François Remacle1,2

1 Université catholique de Louvain, Department of Civil Engineering, Place du Levant 1,
1348 Louvain-la-Neuve, Belgium

2 Center for Systems Engineering and Applied Mechanics (CESAME), Université
catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

3 Fonds National de la Recherche Scientifique, rue d’Egmont 5, 1000 Bruxelles, Belgium

Abstract

In this paper, a method is proposed to enhance the mesh adaptation techniques

based on local modifications. To aim of the method is to make the modifications

conform to the CAD model (possibly non-manifold) associated to the initial mesh in

a robust way. In particular, a new vertex snapping technique is proposed. It uses

an elastic analogy to relocate the closest vertices together with edge and face swaps

to control the minimal quality of the modified elements. Also, the compatibility

between the mesh and the geometrical model is analyzed with more details than in

the previous literature. The subsequent constraints on the mesh modifications are

given. The resulting operators and the snapping method are tested on meshes of

complex geometries in order to show their robustness.

Key words: Mesh, Adaptation, snapping, geometry, CAD, model

III.1 Introduction

In the last decades, the increasing complexity of the computations and the
limited growth of the computational resources lead the researchers to produce
adaptive methods in order to concentrate the efforts on particular regions of
the domain. Among the adaptive methods that arisen, the h-adaptive methods
consist in modifying the mesh during the simulation. The first class of these
methods are based on complete re-meshings: a new mesh is built from scratch
when it is considered as necessary [136, 75, 4]. Another type of h-adaptivity
consists in modifying the mesh locally [94, 32, 36, 55, 50, 106, 48]. The latter
methods have the advantages of requiring only local mesh-to-mesh projections
and being easily parallelizable.

When dealing with domains defined by CAD (Computer Aided Design)
models, the simulation performed on the resulting meshes can be highly de-
pendent on the compliance of the mesh to the geometry. Efforts have been
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made in the past for meshing complex 2D geometries (see for instance [43,73])
and building tetrahedral meshes on it [65, 173, 77]. A set of open source tools
is already available [172, 166, 78] to do this job. However, only a few works
have been performed for handling a CAD model in the 3D mesh adaptation
procedures based on local mesh modifications. The necessity to snap the new
boundary vertices on their exact location on the geometry has been brought
out in [171] and [96], and a procedure to snap those vertices in a relatively
robust way is presented in [104,105]. This procedure tries to move the vertices
one by one and applies local mesh modifications if the motion yields an invalid
mesh (step 1). In some cases, the procedure fails and a local re-meshing is
performed (step 2).

In this paper, we present a relatively simple technique intended to replace
the first step of the previous method in order to improve its robustness. The
proposed technique combines two existing tools: a node repositioning procedure
based on an elastic analogy [186, 13] for repositioning the nodes around the
snapped vertices, and local mesh modifications like edge and face swaps to
improve locally the mesh if necessary. The new method allows to snap the new
vertices in a robust way with a limited number of mesh modifications. Complex
3D test cases are presented to show its robustness.

In previous works [171,96,170], other issues related to the topological com-
patibility between the mesh and the geometrical model were raised. However,
few details are given about the particular checks that have to be performed on
the local mesh modifications. In this paper, we go further in the exact defi-
nition of local mesh modifications preserving the compatibility of the mesh to
the geometrical model.

In order to allow other authors to build on the scientific repeatability of
the current research, we publish the implementation of the method in the open
source library MAdLib [46].

The remaining of this paper is organized as follows. Section III.2 recalls
the class of adaptation procedures on which the current method is built. The
geometrical model and its relation to the mesh are described in section III.3. In
section III.4, we reach the issues arising from the local mesh modifications on
boundaries while the snapping procedure is presented in section III.5. Finally,
numerical examples are shown in section III.6.

III.2 Mesh adaptation procedure

The mesh adaptation procedure on which we build the proposed method is the
adaptation by local modifications [94, 32, 36, 55, 50, 106, 48]. Starting from an
initial mesh, the procedure modifies it in order to reach two goals: (i) satisfying
a mesh size field, i.e. a prescribed edge length in every part of the mesh, and
(ii) maintaining or improving the quality of the elements.

There are many reasons why adapting the mesh can be required. We men-
tion the followings among others:

• handling the mesh-related issues with moving boundaries [59,48],

• complying to a maximal edge length based on an error estimator [12, 4,
103,152,149],
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• controlling the size of the discrete problem [149],

• capturing shocks or other discontinuities in a medium [103,3, 180,44].

In this section, we recall the basis of the mesh adaptation procedure by local
mesh modifications, and we detail the different mesh modifications involved in
the method. These modifications will then be explored from the point-of-view
of the geometrical model in §III.4.

Mesh size field. The usual way to control the mesh size is to use a mesh
size field (see for instance [136, 106]). An isotropic mesh size field is a scalar
function δ(x, t) that defines the optimal length of an edge at a position x of
the domain and at a time t. We typically define the non-dimensional length
Ltre of edge e as

Ltre (t) =
∫
e

δ−1(x, t)dl. (III.1)

One of the goals of the mesh adaptation is to obtain a mesh which is as close
as possible to the unit mesh, i.e. a mesh in which all edges have an non-
dimensional length Ltre = 1. As the unit mesh cannot be exactly reached
in practice, an interval [Llow, Lup] has to be defined. An edge with a length
Ltre < Llow is considered as short, while a long edge is an edge for which
Ltre > Lup.

Local mesh modifications. A local mesh modification is an operator that
removes a cavity C of a mesh M, i.e. a connected set of elements of M, and
replaces it by another cavity C′ with the same boundary. Formally, we write

M′ =M−C + C′.

In this paper, we adopt a very common approach which consists in selecting
a finite number of local mesh modifications [70,55, 106,3, 44, 59], and applying
them successively in a well defined order [106,44].

In particular, we mention the edge split (see Figure III.1(a)) and edge col-
lapse (see Figure III.1(b)) modifications which are designed to control the local
mesh size: the edge split is used to split long edges, and the edge collapse aims
at eliminating short edges.

Other modifications are defined to improve the quality of the elements:

• The edge swap [70] (see Figure III.1(c)) re-meshes the cavity surrounding
an edge.

• The face swap [70] (see Figure III.1(d)) re-meshes the cavity surrounding
a face.

Additional mesh modifications can be created by combining the previous
ones. These modifications usually aim at removing the sliver elements, i.e.
elements with a very poor quality but no long or short edge. The two following
modifications are usually defined:
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• The face collapse, which combines an edge split and an edge collapse [104]
(see Figure III.1(e)): an edge of the face is split and the resulting edge
lying inside the face is collapsed.

• The region collapse, which combines two edge splits and an edge col-
lapse [104] (see Figure III.1(f)): two opposite edges of the region are
split, and the new edge inside the region is collapsed.

(a) (b) (c)

(d) (e) (f)

Figure III.1: The set of mesh modifications: (a) edge split, (b) edge collapse,
(c) edge swap, (d) face swap, (e) face collapse, (f) region collapse.

Finally, isolated node relocations can be joined to the set of available mod-
ifications.

Mesh adaptation procedure. As an example, the following procedure [48]
uses the local mesh modifications described here to satisfy the two goals men-
tioned here above.

Do {
1. Eliminate short edges ( Ltre < Llow ) with edge collapses
2. For every edge e:
2.1 Evaluate the minimal element quality Qe,min around e
2.2 If Qe,min is bigger than a tolerance value Qswap,

go to next edge
2.3 Swap the edge if it increases Qe,min

3. Apply the sliver elimination procedure
4. Eliminate long edges ( Ltre > Lup ) with edge splits
} While ( the mesh is modified )

In this procedure, Qe,min is an element quality above which the edge swap
operation is not attempted. See [134,109] for examples of element shape mea-
sures. Note that the interval [Llow, Lup] has to be chosen sufficiently large so
that no infinite loop occurs between split and collapse modifications. In this
work, we choose the interval [1/

√
3,
√

3].
The elimination of the sliver elements is performed by trying to apply dif-

ferent mesh modifications until one of them is successful. Refer to [48] or [106]
for complete descriptions of sliver elimination procedures.
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III.3 Geometrical model

A geometrical model is a collection of topological entities connected together.
The connections can be for instance a surface bounding a region, or a line being
bounded by two points. The topological entities found in any geometrical model
can be classified according to their dimension. In this work, we consider the
following groups of geometrical entities:

• the model vertices G0
i , which have the dimension 0,

• the model edges G1
i , which have the dimension 1,

• the model faces G2
i , which have the dimension 2,

• the model regions G3
i , which have the dimension 3.

The connections between the topological entities can then be stored in dif-
ferent ways. In this work, the Boundary Representation (BRep) of the geo-
metrical model is used: a volume is bounded by a set of surfaces, a surface is
bounded by a set of lines, and a line is bounded by points. This representation
is implemented in the geometrical model of Gmsh [77, 78]. In Gmsh, a model
entity contains the list of the entities Gd+1

j that it bounds and the entities Gd−1
k

that it uses, i.e. the entities bounded by it. The connectivity of the geometrical
model can be summarized as

G0 
 G1 
 G2 
 G3, (III.2)

Note that we do not restrict the present work to manifold geometries. For
instance, the techniques described here are able to deal with model faces used
by two model regions, or model edges used by several model faces. Rigorous
definitions of manifold and non-manifold geometries can be found in [116].

In addition to its connectivity, every model entity has a representation in
the physical space, a geometry. The geometry of a point is its position x. The
geometry of a line Li is defined by its parametrization p(t) ∈  Li, t ∈ [t1, t2]
while the geometry of a surface Si is defined by its parametrization p(u, v) ∈ Si.
The geometry of a region is simply R3.

Relation mesh - geometry In order to be valid, the mesh has to be com-
patible with the geometrical model. By compatible with the geometrical model,
we mean that the mesh must be a discretization of the geometrical model, thus
complying perfectly to its geometry and topology.

In the remainder of this paper, we denote Md the set of mesh entities Md
i

with dimension d. From [167], we recall the definition of the classification of a
mesh entity on a geometrical entity:

DEFINITION. Classification [167, 171]. The unique association of a topo-
logical mesh entity of dimension di, Mdi

i , to a topological model entity of
dimension dj , G

dj
j , where di ≤ dj , is termed classification and is denoted

Mdi
i < G

dj
j , (III.3)
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where the classification symbol, <, indicates that the left-hand entity or set is
classified on the right-hand entity.

In the remainder of the paper, we say that a mesh entity Mdi
i is using a

mesh entity Mdi−1
j if Mdi−1

j is in the closure of Mdi
i .

In a boundary representation of the geometrical topology, the following
assumption is made on the classification of the mesh entities. For every mesh
entity Mdi

i classified on a geometric entity G
dj
j (di ≤ dj), the following set of

conditions holds:

• If di = 2,

– if dj = 3, Mdi
i is used by exactly two mesh entities M3

k , and M3
k <

G3
j , k = 1, 2.

• If di = 1,

– if dj = 3, for every mesh entity Mdk
k using it, Mdk

k < G3
j ,

– if dj = 2, there are exactly two triangles M2
k using it and classified

on a model face, and M2
k < G2

j , k = 1, 2,
– if dj = 1, there are at least two triangles using it and classified on a

model face. Note that the classification of the triangles can be the
same, as depicted in Figure III.2(a).

• If di = 0,

– if dj = 3, for every mesh entity Mdk
k using it, Mdk

k < G3
j ,

– if dj = 2, there are at least three edges M1
k using it and classified

on a model face, and M1
k < G2

j , k = 1, 2, 3. The other edges using
it are classified on a model region.

– if dj = 1, there are exactly two edges M1
k using it and classified on

a model edge, and M1
k < G1

j , k = 1, 2,

– if dj = 0, there is at least 1 edge M1
k using it and classified on a

model edge. Note that the case in which only one edge using it is
classified on a model edge is rare and corresponds to the summit of
a cone (see Figure III.2(b)).

In this work, we define the topological compatibility of the mesh to the
geometrical model by this set of conditions. The conditions have to be satisfied
at all times. The initial mesh is supposed to be topologically compatible and
the modifications performed on the mesh have to maintain the compatibility.

III.4 Mesh modifications on boundaries

In this section, we emphasize two requirements imposed to the mesh modifica-
tions of the adaptation procedure:

1. The shape of the mesh has to be compatible with the shape of the geom-
etry. This means that a mesh entity Mdi

i < G
dj
j has to lie on the zone of

the space defined by the geometrical representation of Gdjj . For instance,
a vertex classified on a line should not be relocated outside of the line.
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(a) (b)

Figure III.2: Geometrical models for which the mesh involves (a) mesh edges
classified on a model edge and used by two triangles classified on the same
model face, and (b) a mesh vertex classified on a model vertex and used by
only one edge classified on a model edge.

2. The mesh is supposed to be topologically compatible with the geometry at
every time in the mesh adaptation procedure. We assume that the initial
mesh is topologically compatible. In order to satisfy this condition, the
modifications operated at the vicinity of a geometric boundary require a
special attention. Two issues have to be considered:

(a) If new mesh entities are created on a boundary, they have to be
classified on the appropriate geometrical entity.

(b) The modification is to be denied if it leads to a dimension reduction,
i.e. if two mesh entities classified on boundaries are collapsed on each
other. Also, new contacts between geometrical entities cannot be
introduced. As an example, Figure 2b shows a mesh on which invalid
mesh modifications lead to incompatibilities with the geometrical
model.

(a) (b) (c) (d) (e)

Figure III.3: Mesh modifications leading to an invalid mesh: (a) representation
of the geometrical model, (b) initial mesh, (c), (d) and (e) mesh after different
invalid edge collapses.

We introduce the following notation: the edge with summits vi and vj is
denoted {vi, vj}e, the triangle with summits vi, vj and vk is noted {vi, vj , vk}f ,
and the tetrahedron with summits vi, vj , vk and vl is noted {vi, vj , vk, vl}t.

In the remainder of this section, we analyze each mesh modification and de-
scribe the checks that have to be performed in order to comply to the topology
and shape of the geometrical model.
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Edge split: when a boundary edge is split, the new vertex has to be classified
on the same geometric entity as the edge to be split, as well as the two resulting
edges. Also, the faces resulting from the splitting of the classified faces have to
be classified on the geometrical entities on which the deleted faces are classified.

Once every mesh entity is classified on the right geometric entity, we still
have to snap the new vertex at a position located on its geometrical entity.
For edges classified on a surface, the parametrization P of the geodesic curve
of the surface passing through the extremities of the edge (see Figure III.4) is
computed and the coordinate uP of the new vertex on P is obtained by:

uP = (1− r) uP1 + r uP2, (III.4)

where uP1 and uP2 are the parametric coordinates of the summits of the split
edge in the parametrization P, and r is a value in [0, 1] giving the center of
the straight edge in the metric space, the summits of the edge corresponding
to r = 0 and 1. In order words, we choose to snap the new node on its closest
point on the surface.

Figure III.4: Illustration of the snapping on a geodesic of the surface ((III.4)):
the dashed line is the geodesic curve passing through the summits of the edge.
The continuous curve is the curve on which the new vertex would lie if (III.5)
was used.

A simpler way to compute the target location of the new vertex on a surface
with a parametrization S is to give it the following coordinates in S:

uS = (1− r) uS1 + r uS2, (III.5)

where uS1 and uS2 are the parametric coordinates of the summits of the split
edge in the parametrization S. However, choosing a location from (III.4) is
found to be more interesting for the following reasons:

• The alteration of the lengths of the new edges is smaller with (III.4) since
the amplitude of the motion is minimized. A large relocation could indeed
yield edges with a length Ltre > Lup which would lead to the collapse of
a new edge and therefore cancel the initial split operation.
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• The resulting position does not depend on the parametrization of the sur-
face. Indeed, the same surface can be defined by different parametriza-
tions and we have no guarantee that (III.5) will yield a reasonably small
relocation.

Fig III.4 shows two meshes of a sphere obtained by refining the same initial
mesh. Fig III.4 (c) and (d) are the meshes obtained respectively using (III.4)
and (III.5).

(a) (b) (c) (d)

Figure III.5: Comparison between (III.4) and (III.5) for the computation of the
location of the new vertex: (a) geometry, (b) initial mesh, (c) and (d) meshes
after refinement with (III.4) and (III.5) respectively.

If the split edge is classified on a line, the coordinate uL of the new vertex
in the parametrization L of the line is computed as:

uL = (1− r) uL1 + r uL2, (III.6)

where uL1 and uL2 are the parametric coordinates of the summits of the split
edge in the parametrization L.

The split operation does not lead to topological incompatibilities with the
geometry.

Edge collapse: The edge collapse modification is depicted on Figure III.6.
We note e < Ge the edge being collapsed and its classification, vdel < G

dvdel
vdel the

vertex being deleted, vtgt < G
dvtgt
vtgt the vertex on which the edge is collapsed,

and vCi the other vertices such that the edge emidi = {vdel, vCi }e < G
d
emid
i

emidi

or

the edge etopi = {vtgt, vCi }e < G
d
e
top
i

etopi
exists.

In order to comply to the geometry (shape and topology), several checks
have to be made before allowing the edge collapse to be performed. We consider
three sub-cavities of interest in the cavity modified by the edge collapse: the
edge e itself, any face fei = {vtgt, vdel, vCi }f (see Figure III.6(d)), and any
tetrahedron teij = {vtgt, vdel, vCi , vCj }t with vCi , vCj being connected by an edge
(see Figure III.6(c)). Note that the checks involve the cases in which fei or tei
does not exist. The checks are the followings:

• On the edge e, ensure that Gvdel = Ge.
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e

vtgt

vdel

vtgt

vC
i,0

vC
i,1

vdel

vtgt

e

vC
i

vdel

vtgt

e

emid
i

e
top
i

(a) (b) (c) (d)

Figure III.6: Edge collapse: (a) edge e to be collapsed and its cavity, (b) cavity
after the edge collapse, (c) a tetrahedron tei to be collapsed, and (d) a face fei
to be collapsed.

• On the faces fei < G
dfe
i

fei
(see Figure III.6(d)),

– if emidi exists, ensure that fei exists,

– if de
mid
i = 1, ensure that de

top
i > 1,

– if de
mid
i = 1 and de

top
i = 2, ensure that G

dfe
i

fei
= G

d
e
top
i

etopi
,

– if de
mid
i = 2 and de

top
i = 1, ensure that G

dfe
i

fei
= G

d
emid
i

emidi

,

– if de
mid
i = 2 and de

top
i = 2, ensure that dfei = 2.

• On the tetrahedrons teij (see Figure III.6(c)), whether teij exists or not,
ensure that {vtgt, vi, vj}f < G3 or {vdel, vi, vj}f < G3.

Face collapse: The face collapse can be seen as a compound edge split-edge
collapse operation. It is depicted on Figure III.7. We note f < G

df
f the face

being collapsed and its classification, e < Gdee the edge being split and v < Gdvv
the vertex opposite to e in f .

v
opp
0

v1

v
opp
1

v0

e

v
v
opp
0

vnew
v0

v
opp
1

v1

v
v
opp
0

v0
v1

v
opp
1

v
v
opp
0

vnew
v0

v
opp
1

v1

(a) (b) (c) (d)

Figure III.7: Face collapse (edge split followed by edge collapse): (a) face f to
be collapsed and its cavity, (b) cavity after the split of e, (c) cavity after the
edge collapse in the case it is oriented from vnew to v, and (d) cavity if the
other direction is chosen.

In the case the edge collapse is oriented from the new vertex vnew to v
(Figure III.7(c)), the face collapse does not require to snap any vertex as the
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only new vertex is deleted. On the other hand, the compliance to the geometric
topology implies the verification of conditions prior to the application of the
modification:

• ensure Gdee = G
df
f ,

• if we have {v, vi, voppj }f < G
dfij
fij

and {v0, v1, v
opp
j }f < G

dfj
fj

, ensure that
@ i ∈ [0, 1], j ∈ [0, 1] | {dfij = 2 & dfj = 2},

• if we have {v0, v1, v
opp
k }f < G

dfk
fk

and {v, voppk }e < G
dek
ek , ensure that

@ k ∈ [0, 1] | {dek ≤ 2 & dfk = 2},
• if {v, v0, v1, v

opp
i }t does not exists, ensure that {v, voppi }e does not exist.

Note that a consequence is that the faces {v, v0, v
opp
i }f and {v, v1, v

opp
i }f

do not exist as well.

If the edge collapse is applied in the other direction (Figure III.7(d)), vnew
has to be repositioned on the appropriate geometrical entity in a similar way
as in the edge split case. Furthermore, the verifications presented here above
are also to be done in this case, except for the first one which is replaced by
checking that Gdvv = G

df
f .

Region collapse: In this modification, two edges e0 and e1 belonging to the
same tetrahedron t are split, leading respectively to the new vertices v0 and v1,
and the new edge e01 = {v0, v1}e. Then, e01 is collapsed (See Figure III.1(f)).
With no loss of generality, we consider here the case in which e01 is collapsed
from v0 to v1. . In order to maintain the mesh compatibility to the geometrical
topology, only one condition has to be checked for this modification: if we have
the classifications t < G3

t and e0 < G
de0
e0 , the condition G3

t = G
de0
e0 has to be

satisfied.

Edge swap: We denote e < Gdee the edge to be swapped and its classification.
In order to comply to the geometrical topology the swap cannot be performed
if de ≤ 1. Furthermore, if de = 2 another verification has to be made. As
a consequence of the compatibility of the mesh to the geometrical topology
(see §III.3), if de = 2, two and only two faces fi using e are classified on a
model face. If we call vi the vertex of fi which is opposite to e in fi, it should
be checked that {v0, v1}e does not exist. Otherwise, the edge swap cannot be
performed.

Face swap: The only condition for a face swap to maintain the compatibility
of the mesh to the geometrical model is that the face is classified on a model
region.

III.5 Vertex snapping

Given a new vertex v resulting from the split operation applied on a boundary
edge e, the location of the vertex is obtained by its parameters uP in the
parametrization P of its geometrical entity G.
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For that purpose, uP is computed by eq. III.4, which assumes the param-
eters uPi of the summits of e in P are known. Actually, if the summits of
e are classified on a different geometrical entity than G (we name this geo-
metrical entity H, with a parametrization H), we have to find uPi from uHi,
which requires the reparametrization of H in P. Such a reparametrization is
usually available in the interface of the CAD models, and Gmsh provides this
functionality.

Given uP and P, obtaining the coordinates x of v is straightforward. After
the edge split, the location of v is on e, while the target location is x (see
Figure III.5).

(a) (b) (c) (d)

Figure III.8: Edge split operation on a boundary. The boundary mesh entities
are represented in red, the geometrical representation of the boundary is in
blue. In (b), two boundary edges are split. In (c), the target location of the
new vertices on the geometrical boundary has been computed, and in (d) the
vertices have been snapped on the boundary.

In most of the cases, one can simply move v to its target location without
encountering any problem with the neighboring elements. However, in a few
cases, snapping v to x leads to tangled elements, as illustrated on Figure III.5.

(a) (b) (c)

Figure III.9: Edge split and vertex snapping leading to tangled elements: (a)
initial mesh, (b) mesh after the split, (c) mesh after the vertex snapping. The
shadowed triangle is returned when the new vertex is snapped.

In order to circumvent that issue, we propose a method to adapt the mesh at
the vicinity of the boundary. We first select a set S of elements surrounding the
vertices to be snapped. We then compute the displacements dXi of the vertices
contained in S by making an analogy between S and an elastic material with
a technique similar to the one presented in [177]. The target displacements of
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the vertices to be snapped is imposed as a Dirichlet boundary condition in the
elastic model.

This inner vertex repositioning allows to perform a larger displacement
when a vertex has to be snapped. However, even if S contains the whole mesh,
there are still situations in which the snapping with inner vertex repositioning
leads to tangled elements. In order to avoid such a situation, a stepping proce-
dure is proposed in which only a part α of dXi is performed, with 0 ≤ α ≤ 1.
The value of α is taken as the largest value in [0, 1] that doesn’t lead to an
element flipping. The worst elements of S are then eliminated by edge or face
swaps, edge or face collapses, or individual vertex relocations. Thereafter, a
higher value of α can be chosen. This procedure is iterated until α = 1.

The snapping algorithm is summarized as follows:

1. Select the set S of elements surrounding the vertices
to be snapped

2. Compute the relocations dXi of the inner nodes of S by an
elastic analogy

3. Set α = 0
4. While ( α < 1 ), do
4.1 Find the maximum α in [0, 1] such that applying the
relocations α dXi does not tangle any element, and apply it
4.2 If α = 1, exit the while loop
4.3 Eliminate the sliver elements in S by

local mesh modifications
4.4 If no sliver was eliminated in 4.3, the snapping fails
End of while

Note that the motion of the snapped vertices is performed all at once: all
nodes are repositioned together with the same ratio α. Moving nodes indepen-
dently from their neighbours would generate new situations in which tangled
elements appear because of the local differences in the repositioning advance-
ment.

This method is able to handle a very large number of snappings and is far
more robust than the simple boundary vertex relocation, or the relocation with
an elastic analogy but no sliver handling. However, the success of the method
cannot be guaranteed as it depends on the ability to eliminate the elements
turned into slivers during the stepping. If the snapping procedure fails (step
4.4 in the procedure), the snapping is not complete. In this case, the vertices
are not moved to the desired location but they keep their classification on
the boundary as well as their parametric coordinates so they can be relocated
later, when the blocking cavities are modified. A local re-meshing could also be
applied in that case, as in the second step of the procedure proposed in [105].
Such a case is very rare and does not happen in the computations presented in
the present paper.

III.6 Results

In order to show the robustness of the method, we present two examples of
meshes of relatively complex geometries. In the first example, a time-dependent



104 Chapter 4. Handling of geometrical models

size field is prescribed, leading to refinements and coarsenings on the bound-
aries. The second example is a linear elasticity problem in which the error is
minimized using the mesh adaptation procedure.

The open source software Gmsh [78] was used for the generation of the
initial meshes and the representation of the CAD models and meshes. Also,
the CADs presented here are provided in the open source MAdLib [46] package
so that the proposed examples can be easily reproduced.

Example 1: engine block

In this example, we modify the mesh of an engine block. The geometry is
given by a STEP file. The geometry and the initial mesh are depicted on
Figure III.10. Most of the classical geometrical features are present in the

(a) (b) (c)

Figure III.10: Engine block test: (a) representation of the CAD model, (b) and
(c) views of the initial mesh.

CAD (straight planes, cylinders, cones, spheres, B-splines, ...), and some parts
of the mesh are enclosed in very thin regions.

A global coarsening is applied to change the global (uniform) mesh size
from δ = 1 to δ = 5, and a sinusoidal refinement front is propagated through
the whole block by prescribing the following edge length:

δ = 5 ∀|x− v t| > L/2, (III.7)

δ = 5− 4.8 cos
(

(x− v t) π
L

)
∀|x− v t| ≤ L/2. (III.8)

where L is the width of the refined zone, corresponding to a half-period of the
cosine and v is the propagation velocity.

We choose L = 10 cm and v = 1 cm/s. The length of the block in the x
direction is 53 cm and a time step of 1s is chosen, thus leading to a computation
of 73 time steps.

Figure III.11 shows the mesh at different time steps. We can see that
despite the very complex parts of the geometrical model and the high level of
coarsening reached out of the refinement zone, the proposed method is able to
achieve the adaptation. We remark that the snapping algorithm never fails.
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(a) time step 23 (b) time step 54

(c) time step 36

Figure III.11: Engine block test: mesh at different time steps.
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Example 2: error minimization

In this test, we adapt the mesh presented in Figure III.12(b) in a way that
minimizes the discretization error of the finite element computation of an elas-
ticity problem. The problem consists in solving the linear elasticity equation

(a) (b) (c)

Figure III.12: Error-oriented adaptation: (a) geometry, (b) initial mesh, and
(c) size field obtained with equation III.13.

on the piece presented in Figure III.12(a), when the bottom surface is fixed,
and a couple M is applied to the upper plate.

More precisely, we define the error e2
i on an element Ωi as the energy norm

‖.‖ of the difference between the finite element solution uh and the exact solu-
tion u of the elasticity problem:

e2
i =

∫
Ωi

‖u− uh‖2 dv. (III.9)

The local discretization error converges to zero at a convergence rate k = 1 for
this problem

ei = Chki (III.10)

with hi the mesh size, and C a constant that does not depend on hi. Our goal
is to minimize the total error e2 on the mesh, defined as

e2 =
N∑
i=0

e2
i , (III.11)

with a target number of elements N̄ .
To this end, we apply the method proposed in [149], which defines the

reduction factor ri to be applied on edge lengths in order to obtain the minimal
error e2 with a mesh containing N̄ elements. It can be proved [149] that, posing
α = 2k/d, with d the dimension of the problem, we have

ri = e
2

d(1+α)
i α

1
d(1+α)

 (1 + α)N̄(∑N
i=1 e

2
1+α
i

)(
α

2+α
1+α + α

1
1+α

)


1
d

. (III.12)
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Equation III.12 allows us to define a size field based on the initial mesh size
hi:

δi =
hi
ri
, (III.13)

where hi is chosen as the circumradius of the element Ωi belonging to the initial
mesh. Figure III.12(c) shows the size field obtained for N̄ = 270000, with a
uniform mesh containing N̄ elements.

The mesh adaptation method is applied on the initial mesh (Figure III.12(b))
with this size field. The results are shown in Figure III.13. The method pre-
sented here was able to move from a relatively coarse mesh to a mesh with
much finer elements. The mean edge length in the initial mesh is about 9.0,
while the minimal size prescribed is 0.56.

With the adapted mesh, we obtain e2 = 5.61 108 while an error of 9.65 108

was obtained with a mesh containing the same number of uniformly distributed
elements.

III.7 Conclusion

A new technique to snap the vertices on their geometrical boundary is pre-
sented. It consists in relocating the neighboring vertices with a technique based
on an elastic analogy. The repositioning is reinforced by a set of mesh modifica-
tions which are applied if invalid elements appear. Different levels of refinement
can therefore be obtained on various geometries.

The different mesh modifications performed in the classical mesh adaptation
methods are also analyzed regarding the conformity to the geometrical model.
It is shown how these operations can be performed while keeping the mesh
compatible to the geometrical model at all times.

In order to facilitate future developments and repeatability of the numerical
experiments, the techniques proposed here are implemented in the open source
library MAdLib.

In the future, we aim at using the current method to automatically build
anisotropic meshes around the geometrical boundaries in order to capture
boundary layers in viscous flow computations.
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Figure III.13: Mesh adaptation based on error minimization: adapted mesh,
with the initial mesh and the size field shown resp. in Figure III.12(b) and (c).



Chapter 5

Implementation of an open
source library

When dealing with numerical mechanics, the availability of well designed soft-
ware solutions implementing recent numerical methods is crucial. This is a
reality for both industrial community that needs state-of-the-art softwares to
solve new numerical problems without going through the time-consuming pro-
cess of software design, and researchers who may want both to improve the
existing methods or to combine it with other projects. This is especially true
for mesh adaptation since it is more a tool for the numerical methods than
a goal in itself. The time spent by a researcher in writing source code can
be very significant, sometimes for implementing already published and tested
techniques, when no open source solution is available.

The meshing field (generation and adaptation) is especially technical in
the sense that the efficiency and robustness of a method is generally highly
dependent on its implementation. This is the case for the mesh adaptation
by local modifications. As an example, several choices are to be made when
designing a mesh database. Non-optimal choices would significantly affect the
performances of the method. The repeatability of the numerical experiments
is also very dependent on the implementation.

However, although some open source softwares have recently emerged in
the field of mesh generation (Netgen, Tetgen, Gmsh, . . . ), no open solution
has really broken up yet in the mesh adaptation domain. By publishing the
implementation of the techniques described in the previous chapters in a library,
MAdLib (Mesh Adaptation Library), we open the possibility for a community
involving developers and users to be built around it, like it was the case for the
packages cited here above in the field of mesh generation.

Together with the publication of the sources in MAdLib, this chapter reaches
several aspects of the technical achievement of an adaptive computation. The
most generic aspects of the work are presented in Article IV, A mesh adap-
tation framework for dealing with large deforming meshes, Compère, Remacle,
Jansson, Hoffman (accepted for publication in the International Journal for

109



110 Chapter 5. Implementation of an open source library

Numerical Methods in Engineering) presented here after. The issues addressed
in the paper are the following:

Mesh database How to build a fast and relatively compact mesh database
which fulfills the requirements of a mesh adaptation package: fast iter-
ation over mesh elements, on-the-fly creation and deletion of mesh enti-
ties, . . . ? What is the memory load resulting from the proposed solution
?

Solution projection An advantage of the adaptation by local mesh modifi-
cations is that the solution has only to be projected locally. It implies to
perform a particular action when a cavity of the mesh is modified which
requires a specific implementation inside the mesh adaptation package.
However, the exact definition of the projection differs from a numerical
method to another. How to cope with this technical issue ?

Insertion in a physics solver and interface How to use an external mesh
adaptation package like MAdLib in a physics solver ? How to manage
the solution and data allocation and projection ?

The performances of the proposed implementation are also analyzed in
terms of computational efficiency, which opens the way to comparisons with
other packages or methods.

The programming interface of MAdLib is described in the last section of
this chapter.
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Article IV

A mesh adaptation framework for dealing with
large deforming meshes

Gaëtan Compère1∗, Jean-François Remacle1,2, Johan Jansson3,
Johan Hoffman3

1 Université catholique de Louvain, Department of Civil Engineering, Place du Levant 1,
1348 Louvain-la-Neuve, Belgium

2 Center for Systems Engineering and Applied Mechanics (CESAME), Université
catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

3 Royal Institute of Technology, Computational Technology Laboratory, Stockholm, Sweden

Abstract

In this paper, we identify and propose solutions for several issues encountered when

designing a mesh adaptation package, like mesh-to-mesh projections and mesh database

design, and we describe an algorithm to integrate a mesh adaptation procedure in a

physics solver. The open source MAdLib package is presented as an example of such

a mesh adaptation library. A new technique combining global node repositioning and

mesh optimization in order to perform arbitrarily large deformations is also proposed.

We then present several test cases to evaluate the performances of the proposed tech-

niques and to show their applicability to fluid-structure interaction problems with

arbitrarily large deformations.

Key words: Mesh adaptation, local modifications, large deformations, open source,

fluid-structure interaction

IV.1 Introduction

Mesh motion due to a moving interface or boundary is an essential component
in many modern finite element procedures [64, 90, 177], with applications in
many domains, and in particular the numerical computation of fluid-structure
interactions (FSI).

The mesh motion algorithm, or r-adaptivity, is a crucial ingredient of FSI
computations. The standard mesh motion algorithm moves mesh points clas-
sified on moving/deforming interfaces. Then some kind of mesh smoothing is
applied to the rest of the mesh in order to maintain reasonable mesh quality.
The topology of the mesh is not modified during this process which means
that the underlying graph of the mesh remains unchanged. However, this ap-
proach is not general and fails for even simple motion such as large rigid body
translation and rotation. Furthermore, even though the mesh topology may be
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preserved for simple mesh motion, such a procedure gives little control of the
mesh size field δ(x, t): some cells may be compressed or stretched undesirably
due to the mesh motion and smoothing, likely leading to large error in the
solution.

For what concerns large deforming domains, only a few works can be found
in the literature about the mesh adaptation methods. The first achievements
made to supply r-adaptive methods with the local mesh modifications consisted
in applying refinement/coarsening procedures according to both shape and de-
formation measures of the elements [14, 13]. The robustness of the method
was improved recently by adding edge and face swaps to eliminate sliver ele-
ments [38, 54]. In [48], a procedure based on local mesh modifications with a
more robust sliver elimination algorithm is extended to the case of large do-
main deformations. Other authors [59] use Delaunay point insertions to provide
anisotropic deforming meshes. However, all these procedures are not infallible
since a very large domain deformation can still cause the node repositioning
algorithm to fail.

The aim of our mesh adaptation process is, as usual, twofold: (i) to satisfy
a prescribed mesh size field δ(x, t) and (ii) to maximize mesh quality. In this
paper, we detail the design choices that have been made to build a general mesh
adaptation procedure applied to large mesh deformations from the mesh adap-
tation method and a node repositioning procedure based on an elastic analogy.
In particular, we present a new technique to allow arbitrarily large domain de-
formations by applying mesh modifications during the node repositioning step
itself instead of only adapting the mesh between two repositionings. Applying
mesh modifications at this stage avoids the apparition of poorly shaped or tan-
gled elements, which highly increases the robustness of the technique. A global
procedure that allows general mesh motion is then presented. The procedure
is based both on standard local mesh modification operators (edge splits, edge
collapses and edge swaps) and the proposed node repositioning technique.

Finite element formulations in the time domain allow the mesh to vary
in time. For vertex motions, formulations are usually written in the arbi-
trary Lagrangian-Eulerian framework. When topological modifications are
performed, mesh to mesh interpolations are usually used [152, 148]. Disap-
pointingly, most of the state-of-the-art finite element implementations only
allow a limited set of operations. For example, implementations in [17, 68, 49]
only allow local mesh refinement (no coarsening). However, several authors
have proposed more general methods for local mesh adaptation. These meth-
ods either use local re-meshing [50], or rely on a larger set of mesh modifica-
tions [94, 32, 36, 55], leading to a well-proved [127, 152, 154, 163, 3, 44] class of
mesh adaptation methods for fixed domain boundaries. But no open source im-
plementation of such a method is available. Finally, some packages allow global
re-meshing using closed and ad-hoc mesh generation softwares, as suggested in
various works [136,75,4].

This paper can be seen as the technical companion of the MAdLib (Mesh
Adaptation Library) library. We have decided to distribute MAdLib as free
software under the LGPL license. We hope to build a community around
MAdLib, in the same manner as we have already done for Gmsh [77]. In our
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opinion, there are only good reasons for distributing such a code as an open
source. First, mesh adaptation procedures are very technical, in the sense that
their robustness is extremely sensitive to their implementation. Mesh related
codes need time and users to become usable. Therefore, distributing MAdLib
will allow researchers to use an already stable version of mesh adaptation rou-
tines. On the other hand, the bigger the community is, the faster the remaining
problems will be resolved. Another good reason for going open source is that
we are convinced that adaptive procedures have not reached a sufficient im-
pact in engineering design. We believe that one of the reasons of that relative
success is that there are too few freely available solutions. Finally, mesh gen-
eration/adaptation in a scientific project is generally not an aim in itself: it
is a tool that lies in the same category as linear system solvers or linear alge-
bra packages. For that reason, research on meshing is done by relatively few
research teams in comparison to the research that is done in finite element
analysis. Therefore, mesh generation researchers should make their research as
widely available as possible to accelerate scientific development.

The present paper has several goals: to explain the key points in the design
of a mesh adaptation procedure that enables to deal with large mesh defor-
mations, to discuss the most generic aspects of the implementation of a mesh
adaptation package, and to show the efficiency and robustness of the proposed
method and implementation by solving some non-trivial test cases. To this
end, some test problems are presented:

1. A rotating propeller. This test shows the robustness of the mesh adapta-
tion algorithm and analyzes the quality of the resulting meshes regarding
the prescribed element quality. The efficiency of the implementation is
also analyzed in terms of CPU time and memory consumption.

2. Two rigid spheres that fall in a viscous fluid. This example demonstrates
the coupling of mesh adaptation with a fluid solver. In particular, the
relative cost of mesh adaptation is studied.

3. A 3D turbulent fluid-structure flag problem representing a problem we
can expect in real-world applications, where we compare standard mesh
smoothing with mesh smoothing plus mesh adaptation.

The first section will recall the definition of the size field and the mesh
adaptation by local modifications, and presents the global procedure for con-
trolling a mesh with moving boundaries. Some efficiency aspects of the method
are also reached. The next section describes the adaptive mesh database. The
general coupling scheme with a physics solver is then described, including the
issues related to the handling of projection algorithms through the adaptation
process. The last section provides results from the application of the method
to the different test cases.

IV.2 Mesh adaptation

There are basically two kind of techniques that enable to adapt a mesh. Re-
meshing techniques consist in removing the existing mesh and replacing it by
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an adapted one. In the context of transient computations, this approach has
two important drawbacks: (i) complete re-meshing introduces a lot of numer-
ical diffusion in the mesh-to-mesh interpolation procedure and (ii) re-meshing
approaches are difficult to be applied when the computation is done in parallel.
The alternative way to do mesh adaptation is to use local mesh modifications.
The latter technique is (surprisingly) known to be slower than re-meshing.
Yet, it can be applied in parallel and it usually introduces much less numerical
dissipation [152].

In this section, we start by briefly recalling the general concepts governing
the mesh adaptation methods based on local modifications. The interested
reader can refer to [55, 106] for more complete descriptions of the adaptation
methods for fixed domains, and to [59, 48] for previous applications of the
method to large deformations. We then present a new technique to perform
arbitrarily large domain deformations, and we finish with considerations about
efficiency intended to improve the performances of the mesh adaptation proce-
dure.

Mesh Size Field: The mesh size field is a standard way of prescribing mesh
sizes. It consists in defining a function δ(x, t) that describes optimal mesh sizes
at any point x of the domain and at any time t of the possibly time dependant
simulation, see for instance [136,106].

Using the size field, it is possible to define the non-dimensional length Ltre
of edge e as

Ltre (t) =
∫
e

δ−1(x, t)dl.

An edge with a non-dimensional size of Ltre = 1 is an edge with an optimal size.
It is usually impossible to build meshes for which edges have the optimal size
everywhere. Therefore, a range [Llow, Lup] of acceptable sizes has to be defined:
an edge for which Ltre < Llow is a short edge while an edge with Ltre > Lup is a
long edge. This range of acceptable edge lengths is a very sensitive parameter
of the adaptation process.

Local mesh modifications: Consider a mesh M = {M1, . . . ,MN} com-
posed of N elements Mj , j = 1 . . . , N . A cavity C = {Mk1 , . . . ,Mkn} is a
subset of M that forms a simply connected domain. For example, all mesh ele-
ments connected to one mesh edge or to one mesh vertex form a cavity. A local
mesh modifications consist in removing elements from a cavity C and replacing
them by a new submesh C′ with elements that conform to the boundary of C.
Formally, we write

M′ =M−C + C′.
We use a finite set of local mesh modifications. Elementary local mesh

modifications are

• The edge split operator (see Figure IV.1(a)) that consists in splitting one
edge of the mesh.

• The vertex collapse [104] operator (see Figure IV.1(b)) that consists in
removing one vertex from the mesh.
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• The edge swap [70] (see Figure IV.1(c)) for which one edge is removed
from the mesh.

• The face swap [70] (see Figure IV.1(d)) for which one triangular face is
removed from the mesh.

Swap operators (edge swaps and face swaps) aim at improving locally the qual-
ity of the elements. Splits and collapses are there to control the mesh size: long
edges are split while one of the two vertices of short edges are collapsed [104,48].

Compound operators are also defined:

• The face collapse operator [104] (see Figure IV.1(e)) for which an edge of
the face is split and the new vertex is collapsed on the opposite vertex,
or the opposite vertex is collapsed on the new one.

• The double edge split collapse [104] (see Figure IV.1(f)) for which two
opposite edges of a tetrahedron are split and one of the new vertices is
collapsed on the other one.

(a) (b) (c)

(d) (e) (f)

Figure IV.1: The mesh modification operators: (a) edge split, (b) edge collapse,
(c) edge swap, (d) face swap, (e) face collapse, (f) region collapse.

Compound operators are usually designed to eliminate sliver elements [104,
48], i.e. elements with a very poor quality but no short or long edge.

Some authors also use template refinement [104]: long edges are all split at
once and templates are defined that enable to divide one tetrahedron that has
one to six split edges. In our work, we have found out that the use of templates
was not necessarily a good idea, for three main reasons: (i) the use of the
edge split operator only is more efficient in term of CPU time that the tem-
plate refinement, (ii) the implementation of template refinement is extremely
tedious and (iii) template refinement introduces non-tetrahedrizable polyedra
(Schönhardt polyedra, [159]) so that the introduction of unwanted extra points
(Steiner points) is mandatory.

Starting from an initial mesh, the adaptation procedure applies sequentially
edge splits, vertex collapses and swaps. Compound operators are finally used
for eliminating sliver tetrahedra. All the ingredients of the recipe are known.
Yet, obtaining the good recipe is difficult. The following issues have to be
addressed
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• What is the optimal sequence of operators? Here, we apply collapses
first, in order to reduce the size of the mesh before producing new nodes.
This avoids memory peaks. Then, the most costly operations, swaps and
slivers elimination, are applied while the size of the mesh is minimal, and
finally edge splits are performed. The sequence is then reproduced until
no modification occurs.

• How do we define the range [Llow, Lup] of acceptable edge lengths? A
sharp range will certainly introduce infinite loops between edge splits and
collapses. A wider range will produce sub-optimal meshes [48]. Here, we
use [1/

√
3,
√

3].

• How do we deal with slivers? Looking at edge lengths is, in 3D, not
sufficient to control tetrahedra’s volumes. The elimination of slivers is
a hard task. Slivers can be classified in different categories (see [104]).
For each category, a specific sequence of operators [48] is applied that
maximizes the probability of the removal of the sliver.

Mesh adaptation on a deforming domain: In the case of deforming do-
mains, the mesh adaptation procedure generally combines two steps:

1. a global node repositioning step: nodes of the deforming boundaries are
moved and the displacement of those nodes are propagated using an el-
liptic PDE. A common choice for the PDE is to use an elastic anal-
ogy [186, 13]. The node repositioning stage may be sufficient for small
deformations.

2. When large deformations occur, a local mesh modification procedure like
the one described in the previous paragraph enables to extend the ap-
plicability of the adaptation to arbitrarily large deformations. A mesh
adaptation procedure is usually called between two repositionings in order
to optimize the mesh and “prepare it” for the next motion.

The two steps are usually performed sequentially. The node repositioning does
not require to reallocate the resources for the storage of the mesh, solution and
other data. As a consequence, the node repositioning is usually called every
time a boundary is moved, while the adaptation by local mesh modification
is called when the quality of the mesh is not sufficient or the size criterion
is not fulfilled. The local mesh modifications require local projections of the
solution while the node repositioning can be taken into account in an arbitrary
Lagrangian-Eulerian (ALE) formulation of the problem. Note that some au-
thors are working on an extension of the ALE formulation to edge swaps (in
2D). It is therefore possible that, in the future, some of the local mesh mod-
ifications operations (essentially the ones that conserve the number of mesh
vertices) could be taken into account inside the ALE formulation.

In the MAdLib package, from which the results of §IV.5 are obtained, the
node repositioning is based on an elastic analogy with a variable stiffness [177].
The resulting linear system is solved by a conjugate gradient method. From
an implementation point a view, the PETSc [16] library is chosen to solve the
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linear system, as it is open source and it provides the best performances among
the tested solvers.

When the mesh is deformed slowly, i.e. when the domain boundaries are
not moved too much between two node repositionings, it is possible to adapt
the mesh by simply combining the two steps: node repositioning and optional
mesh adaptation. On the other hand, when the motion of the boundaries is
large between time steps, the node repositioning can fail in returning a valid
mesh.

Figure IV.2 shows a simple 2D test problem that illustrates this issue and
the new technique proposed to solve it. A non convex object is rotated and
translated through the domain. The colors given to the elements are related
to their quality measure, η: for a triangle T and a tetrahedron K, we choose
the mean ratio which is given respectively by

ηT = 4
√

3
AT∑3

i=1 (l(ei))
2 , and ηK = 12

(3VK)2/3∑6
i=1 (l(ei))

2 ,

with AT the area of T , VK the volume of K, and l(ei) the length of the ith edge
of T or K respectively. This quality measurement lies in the interval [0, 1], an
element with η = 0 being a flat element.

The mesh around the object at its initial position is shown in (a). At the
next time step, the position is given by (b). The displacement from (a) to (b)
is quite large. A simple node repositioning yields the mesh shown in (c): the
mesh comprises tangled elements. In order to circumvent that issue, a solution
is presented in Figures IV.2 (d), (e) and (f). It consists in stopping the node
repositioning just before a first element is returned (see (d) and (e)), and to
apply edge swaps in order to eliminate the worst elements (see (f)). The node
repositioning is then continued. This procedure is applied iteratively until the
object has reached its final location. Note that the elastic computation is only
made once.

A possible issue with this approach is the agglomeration of ill shaped ele-
ments in a region of the mesh (see Figure IV.2(d)). When several sliver ele-
ments are grouped together, swapping edges can be inefficient in eliminating
them because applying an edge swap inside the group will likely generate other
ill shaped elements. Consequently, the previous approach is modified in order
to apply edge swaps before the step shown in Figure IV.2(d) is reached. We
fix a threshold value Q∗ for the elements quality under which the node repo-
sitioning is stopped, and the edge swap optimization is applied, as depicted
in Figures IV.2 (g), (h) and (i). In (g), the node repositioning is stopped
because an element with a quality Q < Q∗ exists (see (h)). Edge swaps are
then applied to eliminate the worst elements (see (i)) and the motion is contin-
ued, yielding the mesh in (b). In our experience, the values Q∗ = η∗T = 0.2 and
Q∗ = η∗K = 0.1 yield very robust node repositioning procedures for respectively
2D and 3D meshes.

Implementation. Some considerations about the computational complexity
of the mesh adaptation methods can help to greatly improve the efficiency in
terms of CPU time and memory consumption.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure IV.2: Simple 2D example of a deforming domain: an object is translated
and rotated: (a) initial mesh, (b) next position of the object and mesh resulting
from the proposed approach, (c) mesh if simple node repositioning is applied,
(d) and (e) mesh just before a first element is returned, (f) same mesh after
optimization by edge swaps, (g) and (h) mesh when a first element has a quality
Q < Q∗, and (i) same mesh optimized.

A general consideration for the mesh adaptation procedures is that the op-
erations reducing the number of nodes, typically the edge collapses, should be
performed first, in order to avoid the memory peaks. The most costly oper-
ations, like those intended to improve elements quality, should be performed
just after, so that the global time spent in the procedure is minimized.

Concerning the efficiency of the mesh modifications, the edge swap op-
erations are usually responsible for more than half of the total computational
time spent in the adaptation procedure (excluding the node repositioning step),
when designed carefully. In [70], it is shown how the edge swap operator can
be designed to minimize the number of element quality computations when
evaluating a possible configuration.

Some authors choose the first configuration that enhances the minimal qual-
ity in the cavity. However, the mean number of element evaluations is not
significantly lower than nt(p) and the resulting quality is not optimal. We also
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recommend to set a threshold value for the minimal element quality around an
edge above which the edge swap will not be evaluated.

As an example, consider the mesh around a tube and a cylinder undergoing
an opposite displacement, as depicted in Figure IV.3. The full motion is divided

Figure IV.3: Cylinder and tube: initial geometry and mesh.

in 400 time steps in which the adaptation procedure is applied. The mesh after
100 time steps is shown in Figure IV.4. The mean time required per time step

Figure IV.4: Cylinder and tube: mesh aspect after 100 time steps.

is 7.5 seconds for a number of nodes ranging in [9.100, 12.300]. In this window,
60% of the time is for the global node relocation (elastic analogy) and 40%
is for the mesh adaptation by local modifications. The total time per cycle
(forward and backward motion) is about 2900 seconds. The total numbers of
split, collapse and swap operations performed are respectively 56682, 59537 and
94273, and the time spent in the different operators is 72.8, 137.1 and 742.5
seconds. Figure IV.5 shows the evolution of the number of nodes and mean
element quality if 10 cycles are performed.

For measuring the quality of the shape of elements, various element shape
measures are available in the literature [134, 109]. Here, we choose to use the
mean ratio [108] for its relatively small computational cost.

Finally, we notice that the storage of elements quality requires only a small
memory space but saves a significant computational time. The storage is made
in the following way. When the quality of an element is required, the quality
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Figure IV.5: Cylinder and tube: evolution of (a) the number of nodes and (b)
the mean element quality over a computation of 10 cycles.

previously computed is returned if available. If not, it is computed and stored.
When a mesh modification is applied, the quality measures of the modified
elements are deleted. As an illustration, we observe that the time required for
the tube and cylinder test increases of 65% for a difference of 2Mb of memory
if the element qualities are not stored.

IV.3 Mesh Database

When it comes to the implementation of a mesh adaptation procedure, issues
associated to data structures have to be addressed. Describing an unstructured
mesh on a computer can be done in various ways, depending on the mesh
adjacencies that have to be accessed by algorithms.

We deal here essentially with tetrahedra. In a tetrahedral mesh with Nv
vertices, there are about 6Nv tetrahedra, 12Nv triangular faces and 7Nv edges.
Concerning upward adjacencies, there are about 14 edges adjacent to a ver-
tex, 5 faces adjacent to an edge and 2 tetrahedra adjacent to a face. Storing
all possible adjacencies cannot be envisaged for obvious reasons of memory.
Different solution have been proposed in the past. Some were using a pre-
defined static set of adjacencies [20], some others were using a dynamic set of
adjacencies [153].

In this work, we have used the bi-directional data structure [153] for our
mesh database. Every tetrahedra knows about his four triangular faces, every
face knows both its adjacent tetrahedra and its three edges, every edge knows
about its adjacent faces and its two ending vertices and every vertex knows all
its adjacent edges and its coordinates.

In term of implementation, any adjacency requires to store the address of
the adjacent entity. The bi-directional data structure that is used in MAdLib
requires therefore

Nv(14) + 7Nv(2 + 5) + 12Nv(3 + 2) + 6Nv(4) = 147Nv
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addresses (or pointers). In comparison, the usual element-to-node data struc-
ture requires

Nv + 6Nv(4) = 25Nv
addresses, which is way smaller. Yet, a simple element-to-node data structure
is not rich enough to allow general local mesh modifications. Another common
data structure that is used in mesh generation [77, 59] is an enriched element-
to-node data structure where every tetrahedron knows about its four adjacent
tetrahedra. In this case, the theoretical number of addresses required is

Nv + 6Nv(4 + 4) = 49Nv.

The enriched element-to-node data structure is one of the lightest that enables
to do local mesh modifications. Yet, it does not allow to modify the discretiza-
tion of both model surfaces and model edges in 3D.

In this work, we aim at providing algorithms that allows to perform mesh
adaptation in transient computations. Therefore, allowing to adapt both vol-
ume and surface meshes at the same time is mandatory. In forthcoming papers,
we will show that this approach also enables to do mesh adaptation that com-
plies with the exact geometry of the model.

Our data structure requires to store all vertices, all edges, all faces and all
tetrahedra of the mesh. Mesh adaptation procedures require to add and remove
mesh entities form the mesh entity containers. In a previous approach [153], we
used hash tables as mesh entity containers. In principle, removing or adding
operations can be performed in constant time. We have found out that this
approach was not optimal, both in terms of computational efficiency and of
memory usage. We use now simple linked lists (std::list of the standard
template library [128]) to store mesh entities because those containers provide
some key advantages:

• they allow fast iteration (linear time) over the container,

• they allow fast insertion and deletion (constant time), as there is no
sorting and no reallocation of the structure.

The main drawbacks of lists are that they don’t allow random access, and,
more important they do not allow fast search operations. In other words,
removing an element of the list is only possible when the iterator is positioned
on the element to remove. Consider the edge swap operation. We typically
iterate on all edges of the mesh and check if the edge swap improves the quality
of the elements surrounding the edge. Building the cavity around the edge is
trivial with the data structure because edges know about their neighboring
faces and faces know about their neighboring tetrahedra. Removing all those
faces and tetrahedra cannot be done in constant time. In order to take full
advantage of the lists (fast iteration, insertion and deletion), without needing
random access, we have defined the following behaviors:

1. When an entity is created, it is added to the end of the list.

2. When an entity is removed from the mesh, it is not actually removed
from the memory, as we do not necessarily have an iterator pointing to
its location in the list. It is rather marked as a “dead” element.
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3. Iterators on lists have been modified so that, when an iterator points to
an entity that is marked as dead, the element that is pointed is actually
removed from the memory. The iterator goes therefore to the next el-
ement of the list until it finds either the end of the list or a non dead
element.

Those behaviors are illustrated on Figure IV.6.

DEAD DEAD DEAD

Previous Next alive

ITERATOR

Mark New

MESH MODIFICATION

Figure IV.6: Behaviors of the list iterator and mesh modification operators
about element creation, deletion and access.

The presented mesh database has already been integrated successfully in
several codes. Its implementation in MAdLib gives the following results in
terms of memory: 2.66Gb for one million nodes, which represents typically
6 millions tetrahedra, and 650Mb for one million nodes in 2D. Table IV.1
compares the memory usage of different mesh databases: MAdLib for both
mesh loading and mesh adaptation (without nodes repositioning) and Gmsh
for mesh loading and mesh generation.

Table IV.1: Memory consumption for different softwares: Gmsh and MAdLib,
for tetrahedral meshes. The mesh database of Gmsh has been tested for two
different configurations: simple mesh loading and mesh generation.

Gmsh (read) Gmsh (generation) MAdLib

Memory per million nodes (Mb) 485 970 2660

IV.4 Adaptation within any physics solver

It is well known that mesh adaptivity is a specific field in the domain of compu-
tational mechanics. The issues encountered are often treated separately from
solving the PDEs. The mesh adaptation functionalities are generally gathered
in a separate module, or included from an external package, leading to an
isolated framework.
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As a consequence, integrating a mesh adaptation procedure in a PDE solver
has become a technical challenge in addition to the theoretical issues of mesh
adaptivity. In order for a mesh adaptation package to be usable, it is necessary
to rely on an efficient interface to the physics solvers, and to provide generic
means to project the solution from the initial mesh to the adapted one.

The integration of a mesh adaptation procedure in a PDE solver also raises
the issue of the evolution of the performances in terms of CPU time and memory
requirements.

In this section, we propose solutions to the different problems faced when
integrating a mesh adaptation procedure in a computation. The callback func-
tion, which is the support for the projection of the solution is first described.
The general scheme to achieve the coupling is then discussed.

Solution transfer

The projection issues are crucial when a solver uses a mesh adaptation tech-
nique. The projection algorithms have to be carefully designed in order to
avoid the propagation of important errors. However, this design is highly de-
pendent on the numerical method used by the solver and it would not make any
sense to build a generic projection method in a mesh adaptation library. For
that reason, we propose a flexible framework allowing to build any projection
method and interfacing it to a mesh adaptation tool.

The physics solver has its own data structure for the solution or any other
data, which is often static in the sense that it is not designed to allocate or
deallocate parts of the solution. The method we propose is the following. Be-
fore starting the adaptation procedure, the static data has to be turned into
a dynamic one. In order to do that, we extend the mesh database presented
in §IV.3 by adding the possibility to store a set of informations within an object
representing a mesh entity, which allows to attach a part of the solution to its
corresponding mesh entity (vertex, edge, face or tetrahedron), as illustrated
in Figure IV.7(a). The static data structures can thereafter be deleted. As a
consequence, the data allocation or deallocation associated to a mesh modifi-
cation can simply be performed at the same time as the modification itself, as
depicted in Figure IV.7(b).
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Figure IV.7: Dynamic data structure: (a) initial cavity with data attached to
each node, (b) cavity after an edge split.
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In order to set the variables to appropriate values when the mesh is modi-
fied, projections have to be performed. While the adaption is running, a set of
functions registered by the physics solver are called every time a mesh modi-
fication occurs. These functions, named callback functions, are defined in the
solver according to standard specifications that can be given by the interface
of the mesh adaptation library.

We propose the following standard specification for the callback functions:
they perform the projection on any cavity, including allocating/deallocating
the data contained in the mesh entities of the cavity, and receive the following
arguments:

• the cavity to be deleted,

• the new cavity,

• the type of operation,

• an identifier giving access to the attached data,

• a mesh entity that could be directly accessed depending on the type of
operation, like the new node in the case of an edge split for instance.

The user of a mesh adaptation library implementing this framework is then
totally free in the definition and registration of these functions, which allows
him to design an appropriate projection scheme for every type of data.

Another option available with the callback functions is to use them to build
a list of modified mesh entities without doing any projection, thus allowing the
solver to perform all the projections at once on the modified elements at the
end of the adaptation procedure. Note that in that case, the initial mesh and
solution have to be kept along the mesh adaptation procedure.

Several examples of callback functions are available in the MAdLib [46] and
FEniCS [68] open source packages.

Interfacing a mesh adaptation library

From our experiments, a mesh adaptation procedure relying on a dynamic mesh
database as presented in §IV.3 can be integrated in the global stepping of any
physics solver by applying the following sequence (see Figure IV.8):

1. deallocate the solver data built from the solution and/or the mesh,

2. build the dynamic mesh database from the solver mesh,

3. build the dynamic data structure from the solver solution (see §IV.4) and
delete the solver solution,

4. delete the solver mesh,

5. create the size field,

6. run the adaptation procedure,

7. build a new mesh in the solver from the dynamic mesh database,
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8. build the solver data structure for the solution,

9. delete the dynamic mesh and solution,

10. build the solver data from the solution and/or the mesh.

4.

Solution
Solution

+ Callback function

3.

1.

Solution

Dynamic mesh

+ Size field 5.

6.

8.

10.

2. 7.

9.

Data Data

Static mesh database Static mesh database

Physics solver Physics solverMesh adaptation lib.

Figure IV.8: The general scheme for integrating a mesh adaptation procedure
in any physics solver.

The proposed sequencing of the allocation and deletion of the data, solu-
tions and mesh structures before and after the adaptation is designed to avoid
memory peaks. The position of the deallocation and reallocation of the solver
data in particular (resp. first and last steps) generally avoids any memory peak
during the global scheme.

We notice that the number of operations is relatively small, which enables
the writing of a compact interface to a mesh adaptation library. A minimal
interface can be built with the following functionalities:

• Generic specification of the callback function.

• Construction/destruction of mesh entities.

• Allocation/deallocation of attached data, and functions to get or modify
it.

• Construction/destruction of a size field, and function to specify a size at
a vertex.

• Call to the adaptation procedure.

As an example, the MAdLib package [46] and the FEniCS project [68] are
interfaced together with the method described here.

IV.5 Computational results

Several examples are shown to demonstrate the applicability of the proposed
techniques when very large displacements or deformations occur. The quality
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of the mesh and the requirements of the mesh adaptation procedure (computa-
tional time and memory) are illustrated in the first example. The second exam-
ple is a simple fluid-structure test in which the structural parts undergo large
displacements. The relative cost of the mesh adaptation in the fluid-structure
problem is investigated. In the last example, the techniques developed in this
paper are applied to a complex FSI problem with large deformations in order
to illustrate the applicability of the technique and discuss the pertinence of the
mesh adaptation and node repositioning techniques.

The computational times have been obtained with a single processor In-
tel(R) Core(TM)2 Duo CPU E6850 at a frequency of 3.00GHz. The mesh
adaptation package is MAdLib 1.2.3 and the different codes were compiled
with the GNU GCC 4.3 compiler.

Propeller

In this test, large displacements are imposed to a domain: a propeller rotates
around its axis. For the current example, the propeller is enclosed in a cu-
bic box. The rotation period T is set to 1 and the time step is chosen as
∆T = 0.001T . The objective of this test is twofold: (i) to provide tangible
informations about the CPU time and memory requirements for the MAdLib
library, thus giving clues to evaluate the techniques presented in this paper in
terms of computational performances, and (ii) analyzing the elements quality
obtained when different quality threshold are given by the solver side, i.e. when
the mesh has to be adapted more or less frequently.

Computational requirements In order to evaluate the performances of
MAdLib with different mesh sizes, we first analyze some runs with various
sets of size fields. The aspect of the meshes obtained for some size fields is
depicted on Figure IV.9, while the meshes obtained at different time steps with
a medium size (≈ 55.000 odes) are shown on Figure IV.10.

10.921 nodes 55.481 nodes 197.092 nodes

Figure IV.9: Propeller test: meshes obtained after 20 time steps for different
sets of size fields.

Figure IV.11 shows the different CPU time and memory consumptions ob-
tained. Note that for this example, the whole mesh is used in the node repo-
sitioning thus leading to a huge linear system. We observe that the memory
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t = 0.0

t = 1.6

t = 1.7

Figure IV.10: Propeller test: meshes obtained at different time steps. The
number of nodes is approximately 55.000. At times 1.6 and 1.7, the propeller
is in its second revolution.
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is maximal during the node repositioning procedure. The amount of memory
required including node repositioning tends to 5200 bytes per node, while the
pure mesh adaptation costs 2900 bytes per node.
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Figure IV.11: Propeller test: CPU time and memory required for the different
mesh sizes.

Element quality We are now interested in the evolution of the element
quality. One can decide to reposition the nodes and to adapt the mesh every
time the boundaries of the domain are moved, or to fix a threshold value Qad
for the minimum element quality over which the nodes are repositioned and
no adaptation is performed. If an element has a quality below Qad, the node
repositioning is followed by mesh adaptation.

In Figure IV.12, the worst and mean qualities are shown for several ap-
proaches: node repositioning only (Qad = 0), quality control by node reposi-
tioning and mesh adaptation with different values for Qad, and node reposition-
ing with systematic mesh adaptation (Qad = 1). The initial mesh has around
15, 000 nodes. Note that the sliver quality threshold Qsl is set to 0.25, and
the quality threshold inside the node repositioning algorithm Q∗ is set to 0.1,
except in the case Qad = 0 in which no local mesh modification is performed.

We observe that adapting the mesh at each iteration yields results with a
better quality, both for the mean and the worst qualities. On the other hand
the mean CPU time per time step is around 23.4 s in that case, while it is only
around 15.5 s and 14.4 s for Qad = 0.2 and Qad = 0.15 respectively. Table IV.2
shows the number of mesh modifications performed during a complete rotation
period with the different approaches. We observe that more mesh modifica-
tions are applied when the mesh is adapted more frequently. This is another
drawback of the approach which consists in adapting the mesh at every time
step.

When no adaptation is applied, the quality becomes very low in the first
time steps and an element is returned at time step 116, corresponding to a
rotation of about 40◦.
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Figure IV.12: Propeller test: worst (a) and mean (b) element qualities for
different approaches. The worst quality is depicted for the first 500 time steps
(half period) for clarity, while the mean quality is shown for 1 complete period
in order to observe the global evolution.

Table IV.2: Propeller test: number of mesh modifications performed during
the first period.

Qad Edge splits Edge collapses Edge swaps

0 (No adaptation) 0 0 0
0.15 18608 19654 68702
0.2 18888 20005 70521

1 (Systematic) 20645 21800 75152

Spheres falling in a fluid

In this test case, a simple FSI computation involving large displacements is
shown. We consider two rigid spheres vertically aligned and immersed in a
fluid initially at rest. The density of the spheres ρs and the fluid ρf are chosen
such that ρs > ρf . At t = 0, the spheres accelerate downward under the effects
of gravity. As the velocities of the spheres increase, a low pressure zone appears
between them which results in an attraction between the spheres. Eventually,
after some time, the two spheres touch.

The fluid is governed by the incompressible ALE Navier-Stokes equations
while the displacements of the spheres are obtained by the second Newton’s law.
The densities ρs, ρf , the dynamic viscosity of the fluid µf and the diameter of
the spheres D are chosen as:

ρs = 1.5, ρf = 1.0, µf = 0.025, D = 1.0.

The initial distance between the spheres centers is 4D. With these values, the
Reynolds number of the flow around the spheres ranges from 0 to ≈ 100 until
the spheres touch.
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The Navier-Stokes equations are solved with Argo (Cenaero, Belgium), a
finite element solver with a P1/P1 interpolation of velocity and pressure, sta-
bilized with a finite volume computation of the convective fluxes. A pressure
stabilization of type PSPG for the incompressible flows is also used. The non-
linear problem is solved with a Newton method, and the linear system is solved
by a GMRES solver with an ILU preconditioner (fill in: 2). The coupling is
achieved with a conventional staggered scheme.

The callback function called by the mesh adaptation procedure is very sim-
ple:

• When an edge is split: interpolate linearly the velocity and pressure on
the edge to fix the variables at the new vertex.

• When an edge is collapsed: remove the solution attached to the deleted
node.

• When an edge is swapped: do nothing.

• When an face is swapped: do nothing.

• When a vertex is moved: do nothing (the motion is automatically in-
cluded in the computation of the mesh velocity for the ALE fluxes).

The following sizes are prescribed for the edges:

• a maximum size of 4.0 is imposed over the whole domain,

• two size fields depending on the distance d(x) to the walls are defined for
every sphere with to the following parameters (identical for both spheres):

δ1(x) = 0.05 + 0.15 d(x), δ2(x) = 0.2 + 3.8 d(x).

The resulting meshes have a number of nodes ranging from 26800 to 28500.
The displacements and velocities of the spheres are shown on Figure IV.13.

We observe an increasing difference in velocity between the spheres from time
2.4. The computation is stopped at time 13.5, when the spheres touch.

Figure IV.14 shows snapshots of the mesh and the pressure in the fluid at
different time steps. The mesh is adapted after every time step.

Concerning the performance of the adaptation procedure, we make the fol-
lowing observations.

• There is no memory peak in the adaptation procedure. The total amount
of memory required is maximal (500-510 Mb) when the memory for the
GMRES solver of Argo has been allocated. The memory required dur-
ing the adaptation procedure reaches a maximum at 460-470 Mb. The
mesh database and the adaptation data (size fields, elements quality, . . . )
consumes 80 to 85 Mb.

• The computational time for the full adaptation procedure described in
§IV.4 represents 25.8% of the total time. We can subdivide the adaptation
time in three parts:
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Figure IV.13: Spheres test: displacements (a) and velocities (b) of the spheres.

1. data transfer to the dynamic structures (steps 1 to 5): ≈ 5.1%,

2. mesh adaptation (step 6): ≈ 11.7%,

3. data transfer to the solver (steps 7 to 10): ≈ 9.0%.

The difference between the first and third parts comes from the solver data
built from the solution and/or the mesh. These data has to be computed at
step 10 of the procedure while it is deleted in step 1. We observe that the deal-
location and reallocation of data (solution, meshes, other data) is responsible
for less than 15% of the global time, which is reasonably small compared to
the advantages of adapting on a specific mesh database.

Fluid-structure interaction: 3D turbulent flag

In [88] we describe a Unified Continuum (UC) model in Euler coordinates with
a moving mesh for tracking a fluid-structure interface as part of the General
Galerkin (G2) discretization. The UC model is implemented in the free soft-
ware/open source Unicorn component, which is part of the FEniCS project [68].
We have extended the Unicorn implementation with an interface to the MAdLib
library, and here show results for a test problem.

The test problem consists of a flexible flag mounted behind a fixed cube in
turbulent flow and exhibits complex 3D behavior with torsion, large structure
deformations and highly fluctuating flow. We choose an inflow velocity of
1 · 102 m/s, a cube of 1 · 10−1 m side and a flag mounted at the top of the
back face of the cube with a length of 3 · 10−1 m and a thickness of 5 · 10−2

m. The viscosity of the fluid is 1 · 10−4 Pa s (density ρ = 1) which gives a
representative Reynold’s number Re = 1 · 105. Note that the G2 method (used
in Unicorn) is a LEStype method without full resolution of all physical scales
in the flow, where the numerical stabilization of the method acts as a subgrid
model, see [89] for details. For simplicity we here assume all boundary layers to
be laminar, which is modeled by a no slip (zero velocity) boundary condition.
Since the main purpose of this example is to demonstrate robustness we have
not performed convergence studies or applied error control.
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Time: 0.1 9.0 12.0 13.4

Figure IV.14: Spheres test: snapshots of the mesh at different time steps. The
close views of the mesh show the pressure distribution.

The deformation of the flag induced by the flow in the simulation is large.
In [88], the resulting mesh deformation is handled by an elastic smoothing
method which is sufficiently robust for this case, but in general cannot guar-
antee control of cell size and shape, and which can be costly. It would thus be
desirable to be able to use mesh adaptivity to avoid being limited in the choice
of problems by the mesh smoothing method.

We simulate the flag problem with (a) pure elastic smoothing and (b) mesh
adaptation together with elastic smoothing acting as quality optimization on
cells falling below a quality threshold. A representative snapshot of the flag
motion is given in Figure IV.15, with a magnification of the flag tip in Fig-
ure IV.18 illustrating the mesh behavior with the different methods. We verify
that the methods give roughly the same amplitude and frequency of oscillation
by plotting the y-coordinate of the top-right-closest corner of the flag in time
in Figure IV.17, where we can see that this is the case. We also perform a ro-
bustness test with zero inflow and a downward force on the flag causing the flag
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(a) (b)

Figure IV.15: Flag simulation: snapshots with (a) elastic smoothing and (b)
mesh adaptation. A cut of the mesh is shown together with an isosurface of
the pressure to visualize the flow.

(a) (b)

Figure IV.16: Flag simulation: robustness test with (a) elastic smoothing and
(b) mesh adaptation. Note the badly shaped cells squeezed between the cube
and flag.
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Figure IV.17: Flag simulation: plot of y-coordinate of displacement of top-
right-closest corner of the flag for (0) elastic smoothing and (1) mesh adapta-
tion.

to hang straight down from the cube. The mesh adaptation maintains good
cell quality and satisfies the prescribed tolerance interval for δ(x, t), while the
elastic smoothing gives very distorted cells between the flag and cube. An even
clearer robustness test would be a rotating cube where the elastic smoothing
would fail completely.

We conclude that the mesh adaptation gives qualitatively similar solutions
to mesh smoothing (pure motion of the mesh nodes), while giving a far superior
control of cell size and quality, meaning that the presented mesh adaptation
algorithm could replace or extend mesh smoothing implementations in fluid-
structure solvers. We speculate that the optimal mesh motion algorithm should
be a hybrid with a cheap mesh smoothing acting by default and with mesh
adaptation being applied when the prescribed size field and cell quality is no
longer satisfied. Since a cheap mesh smoothing algorithm should be less costly
than pure mesh adaptation the hybrid should thus be far superior in generality
and size and quality control to pure mesh smoothing and superior in cost and
number of projections to pure mesh adaptation.

In future work we aim to apply the mesh adaptivity not only to mesh
motion, but also in an adaptive error control algorithm. This would further
show the advantages of having general mesh adaptation where we would then
have full control of the size field in space and time to adapt the mesh to satisfy
a tolerance on some output of the error, drag for example (extending [89]). We
also aim to further study the behavior of hybrid algorithms combining elastic
mesh smoothing (quality optimization) with mesh adaptation.
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(a) (b)

Figure IV.18: Flag simulation: starting phase, zoomed in on tip, with (a)
elastic smoothing and (b) mesh adaptation. Note that in (a) the surrounding
cells are dragged along and deformed with the flag while in (b) the surrounding
cells are fixed and only cells close to the flag are modified.

IV.6 Conclusion

In this paper, we have described a new node repositioning algorithm that com-
bines a standard global node repositioning with local mesh modifications. The
global procedure combines this technique with mesh modifications that are only
applied when the quality of the mesh becomes insufficient. We have shown that
the method and its implementation

• enables to deal with very large motions of the structure in FSI problems,

• enables to deal with domains in which the meshed volume varies,
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• enables to control both the quality and the size of the elements.

In addition, we have shown that local mesh modifications do not introduce
excessive amount of numerical dissipation, thanks to their locality.

We also presented a new open source library, MAdLib, that provides tools
and algorithms to transiently adapt tetrahedral meshes. The use of MAdLib
enables to perform computations involving large deformations or displacements
of the boundaries.

A particular attention has been paid to the effectiveness of the implementa-
tion regarding its CPU time and memory consumptions. We have shown that
the mesh adaptation procedure was not expensive when inserted in a state-of-
the-art 3D incompressible fluid solver and that no memory peak occurred.

Both the simulation code [68] used for the flag test case and the adaptation
library [46] are available as open-source codes. In our experience in the meshing
community, we have seen that the effectiveness of mesh adaptation procedures
were very sensitive to their implementation. We hope that making this source
code available will enable to build a community around it, as we already did
for mesh generation [77].

In future works, mesh adaptivity will be also applied to control the error
of FSI computations. A hybrid strategy between the smoothing technique pre-
sented in [88] and the method presented here will also be investigated. Finally,
we will use the technique to snap vertices to real geometries while doing mesh
adaptation.
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5.1 Programming interface of MAdLib

The source code of a library includes at least two important components: the
definition of a public interface, and its implementation.

A good interface allows the user to easily take advantage of the full po-
tential of the library. Its definition is therefore important. Important are also
the means provided by the developers to the user to help him using it (manual,
tutorial, examples, . . . )

The implementation is a time-consuming process that needs to be done
carefully in order to end with a library which is efficient, robust, portable and
easy to maintain.

The key points of the implementation are reached in Article IV and are not
further described here. In this section, we describe the specific aspects related
to the interface of the library and the possible connection with a physics solver.

5.1.1 Interface of MAdLib

The MAdLib package is organized around four modules. These modules have a
particular role to play and a related interface. These interfaces form the global
interface of MAdLib. We describe here below every module:

• The Tools module contains the mathematical (vectors, matrices, met-
rics, . . . ) and general tools (error handling, CPU time and memory man-
agement, expression evaluation, . . . ) that are used by the other parts of
the code. It is the only internal module (no public interface).

• The Geometry module contains a minimal geometrical model and the
interface to the geometrical module of Gmsh. The geometrical entities are
stored in this module. The interface contains the functions to manipulate
the geometrical model (model I/O, iterators over model entities, . . . )
and the geometrical entities (entity closure, parametrization, curvature
computation, . . . ).

• The Mesh module is intended to store the mesh: entities, connectivity,
coordinates, classification on model entities, . . . The interface includes
all the functions related to the mesh (iterators over mesh entities, mesh
I/O, . . . ), mesh entities (adjacencies questioning, geometrical computa-
tions, . . . ), attached data and validity checks.

• The Adaptation module contains all the components of the mesh adap-
tation: size fields, mesh modification operators, node repositioning, sliver
elimination procedures, quality control tools, various outputs, . . . The in-
terface contains functions to modify a mesh in various ways (refinement,
coarsening, element quality optimization, node repositioning, Laplace
smoothing, . . . ), the global procedures proposed in the present work,
and function to adjust the value of some parameters (tolerance interval
for adimensional edge lengths, sliver quality threshold, . . . ).



138 Chapter 5. Implementation of an open source library

5.1.2 Connection with a model solver

In §IV.4 (Article IV), an algorithm is proposed to embed the mesh adaptation
method in a physics solver. We describe here an example implementation of
the algorithm in order to provide a connection between the concepts presented
in the paper and the interface of the code. In order to illustrate the present
section, a tutorial module is provided in MAdLib and annotated C++ classes
are reproduced from it in Appendix B. We also refer to the open source FEniCS
project [68] for an example of a coupling between a model solver and MAdLib.
The flag test case presented in §IV.5 was obtained by this coupling.

Consider a solver S which aim is to solve a partial differential equation
by a finite element or finite volume method. The goal here is to embed the
mesh adaptation procedure of MAdLib in the routines of S. In order to fix
the things, we assume that S can be abstracted by the classes shown in Ap-
pendix B.2. These classes contain basic functions as accesses to the mesh
elements, nodal coordinates or solution, allocation and deallocation routines
for the mesh, solution and other data, . . .

In the solver implementation, we add the class laid out in Appendix B.1
which contains all routines dependent on both the solver implementation and
MAdLib interface. The functions appearing in the class are:

• The global adaptation routine, which is the only public routine of the
class. Its implementation is given by Appendix B.3 and corresponds to
the procedure presented in § IV.4.

• The mesh and geometrical model conversions between the databases of
MAdLib and S.

• The construction of the mesh size field. The implementation will differ ac-
cording to the objectives sought by using mesh adaptation: error and/or
mesh size control, discontinuities capturing, boundary layer meshing, . . .

• The solution transfer routines between the data structures of MAdLib
and S.

The mesh of S can then be adapted by simply calling the adaptation routine
adaptMesh() when needed.

A typical implementation of a callback function is also given in Appendix B.4.
It is specified as a callback function to the main adaptation class in the global
adaptation routine presented in Appendix B.3.
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Short summary

In the present work new techniques have been proposed to handle large defor-
mations of the domain with local mesh modifications in a robust way. The basis
of the work is a mesh adaptation method which relies on a set of local mesh
modifications applied in a well defined order. Starting from an initial mesh, the
aim of the method is twofold: produce elements with a desired size, and main-
tain elements quality to a desired level. In the present work, the method has
been applied to two-phase flows with an interface capturing method based on a
level set function. The method has been equipped with techniques to generate
and adapt anisotropic and unstructured boundary layers meshes. The preser-
vation of the compatibility of the mesh to a CAD model in the framework of
the method has also been addressed. The different achievements presented in
this work have been implemented in the open source library MAdLib.

Contributions, perspectives and future works

We give here more details about the different contributions of the present work
and try to bring out new trails for future developments.

The first objective of this work was the handling of arbitrarily large de-
formations. In this framework, a new sliver elimination procedure has been
presented. This procedure is a key stone of the method since the robustness of
the node repositioning is highly dependent on the presence or not of low qual-
ity elements. Although more efficient and robust than the previous techniques,
this sliver elimination procedure is not proved to (and do not) eliminate 100%
of the slivers. Solutions involving local re-meshing could be investigated to
further improve the robustness of the sliver elimination procedure.

A repositioning procedure that combines the classical node reposition-
ing techniques with edge and face swaps has been proposed. This technique
enables very large deformations when no intermediate mesh adaptation is pos-
sible or desired. Classical finite element formulations allow to solve an arbitrary
Lagrangian Eulerian formulation of the equations, and therefore take implicitly
into account the motion of the mesh coming from the node repositioning. The
technique proposed here could be fully integrated in a finite element formula-
tion if an equivalent ALE formulation was found for the edge swap. Note
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that a formulation for the face swap would be trivially deduced by the latter
since a face swap is the reverse modification of a 3-2 edge swap. This new for-
mulation is currently investigated by G. Olivier and F. Alauzet (INRIA, Paris),
and promising results have already been presented for the 2D edge swap.

For the elastic analogy itself, a choice that was made here was to relate the
stiffness of an element to its volume. This alteration of the stiffness greatly
improves the robustness of the node repositioning since we observed that the
smallest elements were always the first to be returned. Another option would
be to relate the stiffness to the distance to the closest moving boundary. This
option could be particularly interesting in the case of rotating objects since the
mesh enclosed in the domain of rotation could move in a relatively rigid way.
The best choice could lie in a combination of these two stiffness alterations.

Concerning the handling of CAD models in the adaptation procedure,
a robust method has been proposed and complex three-dimensional tests were
performed. The method involves a node repositioning procedure based on an
elastic analogy around the nodes to be snapped. In order to preserve the shape
of the boundaries, a zero displacement is imposed as a Dirichlet boundary con-
dition for all nodes classified on a surface, line or point. A possible improvement
of the method would be to allow the surface nodes to move inside their model
face. For that purpose an elastic computation could also be performed in the
surfaces. A simple way to formulate the underlying elastic problem is to solve
the 2D elasticity equation in the parametric plane of the surface. Such a re-
location would be particularly useful when new nodes are added on a model
line.

About the boundary layer meshes, a method to automatically build
anisotropic unstructured boundary layer meshes in a geometrically compatible
way has been presented. Several possible investigations to improve the method
were presented in the last section of Chapter 3. The proposed method to
compute the distance to walls is based on heuristics and raises issues like
the determination of the closest point on the boundary. Furthermore, the
gradient of the the resulting distance is not continuous. An alternative is to
compute a fictitious derivable distance function by solving a partial differential
equation (PDE). A PDE allowing to compute this function at a reasonable cost
is proposed in a work of S. Legrand et al. [102].

Obtaining an accurate representation of the normal and tangent directions
to a set of walls, as well as their curvatures, is an important deal in the proposed
method. Additionally, it is a generic problem that can have much more outlets
than the only boundary layer meshing. The normal direction and curvature
are given by the gradient and Laplacian of the distance function. With
the present approach, the error produced in the computation of the distance
gradient yields significant oscillations in the curvature field. Indeed, obtaining
an accurate distance gradient has been shown to be important for the compu-
tation of the curvature. In particular obtaining at least a linear representation
of the gradient would be interesting, but costly since at least second order poly-
nomials should be used to represent the distance. Another way to improve the
gradient and curvature computations is suggested by E. Marchandise in [117],
who investigated linear and quadratic reconstructions of the distance gradient
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(actually, a level set gradient in [117]) by a least-square method and showed
convincing results. We aim at applying such a technique to the present method
in a near future.

Another important improvement to be brought to the method is the com-
putation of the principal curvatures of the wall and the underlying directions.
In most of the cases, those curvatures differ and different mesh sizes have to
be prescribed in the main directions.

Eventually, a method to automatically build semi-structured meshes could
be derived from the presented approach. A cloud of aligned vertices could be
generated from the normal and tangent fields obtained in the boundary layer
regions. Such a method would be very attractive since it would combine the
advantages of the semi-structured meshes (no spurious oscillations in the solu-
tion, applicability to high Reynolds number flows) with the generic formulation
and automatic behavior of the present approach.

The last part of the present work deals with the implementation of the
techniques summarized here above. A M esh Adaptation Library, MAdLib, has
been published as an open source software. The performances of the library,
and the topics related to its implementation, like interfacing the library with a
solver, designing an appropriate mesh database and the general algorithm for
the mesh to mesh projection of a solution, have been described. By publishing
the source code, we hope to build a community around it, which should accel-
erate its development and feed the project with new expectations and ideas.
MAdLib is also intended to fill a gap in the field of the open source softwares
in computational mechanics since, up to our knowledge, no open source code
for general adaptivity of tetrahedral meshes exists, while several open source
softwares can be found for finite element computations and mesh generation.

In the future, the new techniques that improve the current mesh adaptation
method should be implemented in the library. Already published methods
could also be integrated in the code. In particular, a smoothing technique for
the metric field [2], and adaptivity for high order meshes [162] would be useful.

An important extension to bring to the present method is its paralleliza-
tion. In a previous work, C. Dobrzynski has been able to establish a parallel
mesh adaptation procedure for fixed domains. Besides, this technique is already
implemented in MAdLib. Other authors also proposed similar techniques like
H. de Cougny and M. Shephard [55], J-F. Remacle et al. [151] and P. Cavallo et
al. [38]. It would be interesting to develop a parallel extension of the techniques
presented in this manuscript including the global node repositioning.

The usual bottleneck of the mesh generation techniques for large meshes
are the memory requirements in serial and the design of appropriate algorithms
in parallel. Parallel mesh adaptivity for fixed domains opens a perspective for
parallel mesh generation, since an initial coarse mesh can be generated in serial,
partitioned by a classical partitioning procedure, and adapted by the present
method. Therefore, the remaining question is about the required memory in
parallel when dealing with very large meshes (> 10 millions nodes). This issue
is common for both mesh generation and adaptation. In the present work, we
described a mesh database that results from a compromise between memory
requirements and time consumption for the most common operations. The
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memory per million nodes is about 2.6 Gb for tetrahedral meshes. Compared
to mesh generation softwares, this amount is relatively large. For instance,
Gmsh uses 0.9 Gb per million nodes. The resulting gain in terms of CPU time
is interesting when doing frequent mesh adaptation steps in a computation.
However, for adapting or generating large meshes, different choices could be
made for designing the mesh database. In particular, using simple linked list
for storing the entities instead of double linked lists, and avoiding the storage
of the faces and their adjacencies are possibilities to be explored.

Finally, a mesh adaptation library is a tool, a package intended to be used
by other softwares. For that reason, the real usefulness of MAdLib comes from
its integration in other softwares. As it is discussed here, mesh adaptivity
can be used for both adapting meshes during a computation and providing an
initial mesh with particular properties. MAdLib has already been interfaced
in several softwares, like the finite element library FEniCS [68], the fluid solver
Argo (Cenaero1), and the ice model of the SLIM2 project, but lots of other
projects could take advantage of mesh adaptivity through MAdLib. In the
future, we also aim at interfacing the library with the meshing module of Gmsh,
which will allow for generating meshes in parallel and using the size fields and
local mesh modifications to optimize the generated meshes and make it comply
to some specified element size distribution.

1Center for Excellence in Aeronautics (Gosselies, Belgium), http://www.cenaero.be/.
2Second-generation Louvain-la-Neuve Ice-ocean Model (UCL, Louvain-la-Neuve, Bel-

gium), http://sites.uclouvain.be/slim/.

http://www.cenaero.be/
http://sites.uclouvain.be/slim/
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[19] T. Barth. Aspects of Unstructured Grids and Finite-Volume Solvers for
the Euler and Navier-Stokes Equations, chapter 4. Special Course on
Unstructured Grid Methods for Advection Dominated Flows. AGARD
R-787, May 1992.

[20] M.W. Beall and M.S. Shephard. A general topology-based mesh data
structure. International Journal for Numerical Methods in Engineering,
40:1573–1596, 1997.

[21] T. Belytschko, Y. Krongauz, D. Organ, and M. Fleming. Meshless meth-
ods: an overview and recent developments. Computer Methods in Applied
Mechanics and Engineering, 139(1–4):3–47, 1996.

[22] M. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64–84, 1989.

[23] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. Journal of Computational Physics, 53:484–512,
1984.

[24] P.-E. Bernard, N. Chevaugeon, V. Legat, E. Deleersnijder, and J.-F.
Remacle. High-order h-adaptative discontinuous galerkin methods for
ocean modelling. Ocean Dynamics, 57:109–121, 2007.

[25] J. Bey. Tetrahedral grid refinement. Computing, 55:271–288, 1995.

[26] F. Bornemann, B. Erdmann, and R. Kornhuber. Adaptive multilevel
methods in three-dimension spaces. International Journal for Numerical
Methods in Engineering, 36:3187–3203, 1993.



BIBLIOGRAPHY 145

[27] H. Borouchaki, P.-L. George, F. Hecht, P. Laug, and E. Saltel. Delaunay
mesh generation governed by metric specifications - part i: Algorithms
and part ii: Applications. Finite Elements in Analysis and Design, 25:61–
83, 85–109, 1997.

[28] H. Borouchaki, F. Hecht, and P.J. Frey. Mesh gradation control. Inter-
national Journal for Numerical Methods in Engineering, 43:1143–1165,
1998.

[29] R. Boussetta, T. Coupez, and L. Fourment. Adaptive remeshing based
on a posteriori error estimation for forging simulation. Computational
Metal Forming, 195(48-49):6626–6645, 2006.

[30] J.U. Brackbill, C. Kothe, and D.B. Zemach. A continuum method for
modeling surface tension. Journal of Computational Physics, 2:335–354,
1992.

[31] C.A. Brebbia, L.C. Wrobel, and J.C.F. Telles. Boundary element tech-
niques: theory and applications in engineering. Springer-Verlag, 1984.

[32] E. Briere de l’Isle and P.-L. George. Modeling, Mesh Generation, and
Adaptive Numerical Methods for Partial Differential Equations, I., vol-
ume 75, chapter Optimization of tetrahedral meshes, pages 97–128. I.
Babuska et al. Eds., Springer, Berlin, 1993.

[33] K. Brown, S. Attaway, S. Plimpton, and B. Hendrickson. Parallel strate-
gies for crash and impact simulations. Computer Methods in Applied
Mechanics and Engineering, 184(2-4):375–390, 2000.

[34] G.C. Buscaglia and E.A. Dari. Anisotropic mesh optimization and its
application in adaptivity. International Journal for Numerical Methods
in Engineering, 40:4119–4136, 1997.

[35] X. Cai, C. Farhat, and M. Sarkis. A minimum overlap restricted ad-
ditive Schwarz preconditioner and applications in 3D flow simulations.
Contemporary Mathematics, 218:478–484, 1998.

[36] M. J. Castro-Diaz, F. Hecht, and B. Mohammadi. New progress in
anisotropic grid adaptation for inviscid and viscous flows simulations.
In Proc. 4th Int. Meshing Roundtable, pages 73–85. Sandia Nat. Lab.,
Albuquerque, NM, 1995.

[37] M.J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau.
Anisotropic unstructured mesh adaptation for flow simulations. Inter-
national Journal for Numerical Methods in Fluids, 25:475–491, 1997.

[38] P.A. Cavallo, N. Sinha, and G.M. Feldman. Parallel unstructured
mesh adaptation method for moving body applications. AIAA Journal,
43:1937–1945, 2005.

[39] J.H. Cheng. Automatic adaptive remeshing for finite element simulation
of forming processes. International Journal for Numerical Methods in
Engineering, 26(1):1–18, 1988.



146 BIBLIOGRAPHY

[40] E.M. Cherry, H.S. Greenside, and C.S. Henriquez. Efficient simulation
of three-dimensional anisotropic cardiac tissue using an adaptive mesh
refinement method. Chaos, 13(3):853, 2003.

[41] J. Chessa and T. Belytschko. An enriched finite element method and level
sets for axisymmetric two-phase flow with surface tension. International
Journal for Numerical Methods in Engineering, 58:2041–2064, 2003.

[42] J. Chessa and T. Belytschko. An extended finite element method for two-
phase fluids. Journal of Applied Mechanics (transactions of the asme),
70:10–17, 2003.

[43] L.P. Chew. Guaranteed-quality mesh generation for curved surfaces. In
Proceedings of the 9th Annual Symposium on Computational Geometry,
pages 274–280. ACM, New York, USA, 1993.

[44] G. Compère, E. Marchandise, and J.-F. Remacle. Transient adaptivity
applied to two-phase incompressible flows. Journal of Computational
Physics, 227:1923–1942, 2008.

[45] G. Compère and J.-F. Remacle. Mesh adaptivity complying to a geomet-
rical model. , In preparation.

[46] G. Compère and J.-F. Remacle. MAdLib: Mesh Adaptation Library,
2008. http://www.madlib.be.

[47] G. Compère, J.-F. Remacle, J. Jansson, and J. Hoffman. A mesh adap-
tation framework for dealing with large deforming meshes. International
Journal for Numerical Methods in Engineering. Published online, DOI:
10.1002/nme.2788.

[48] G. Compère, J.-F. Remacle, and E. Marchandise. Transient mesh adap-
tivity with large rigid-body displacements. In R. Garimella, editor, Proc.
17th Int. Meshing Roundtable, volume 3, pages 213–230. Springer, 2008.

[49] COMSOL. COMSOL multiphysics, 2009. http://www.comsol.com.

[50] T. Coupez and J.L. Chenot. Large deformations and automatic remesh-
ing. In E. Onate (Eds.) E. Hinton, D.J.R. Owen, editor, Computational
Plasticity, pages 1077–1088. Pineridge Press, Swansea, 1992.

[51] T. Coupez, H. Digonnet, and R. Ducloux. Parallel meshing and remesh-
ing. Applied Mathematical Modelling, 25:153–175, 2000.

[52] T. Coupez, N. Soyris, and J.L. Chenot. 3-d finite element modeling
of the forging process with automatic remeshing. Journal of Materials
Processing Technology, 27:119–133, 1991.

[53] V. Cristini, J. Blawzdziewicz, and M. Loewenberg. An adaptive mesh
algorithm for evolving surfaces: simulations of drop breakup and coales-
cence. Journal of Computational Physics, 168:445–463, 2001.

http://www.madlib.be


BIBLIOGRAPHY 147

[54] M. Dai and D.P. Schmidt. Adaptive tetrahedral meshing in free-surface
flow. Journal of Computational Physics, 208:228–252, 2005.

[55] H.L. de Cougny and M.S. Shephard. Parallel refinement and coarsening
of tetrahedral meshes. International Journal for Numerical Methods in
Engineering, 46:1101–1125, 1999.

[56] H.L. de Cougny, M.S. Shephard, and M.K. Georges. Explicit node point
mesh smoothing within the octree mesh generator. Scorec report, Rens-
selaer Polytechnic Institute, 10 1990.

[57] F. de Sousa, N. Mangiavacchi, L. Nonato, A. Castel, M. Tome, V. Fer-
reira, J. Cuminato, and S. McKee. A front-tracking/front-capturing
method for the simulation of 3d multi-fluid flows with free surfaces. Jour-
nal of Computational Physics, 198:469–499, 2004.

[58] W. Dettmer, P. Saksono, and D. Peric. On a finite element formulation
for incompressible Newtonian fluid flows on moving domains in the pres-
ence of surface tension. Computer Methods in Applied Mechanics and
Engineering, 19:659–668, 2003.

[59] C. Dobrzynski and P. Frey. Anisotropic delaunay mesh adaptation for
unsteady simulations. In R. Garimella, editor, Proc. 17th Int. Meshing
Roundtable, volume 3, pages 177–194. Springer, 2008.

[60] C. Dobrzynski, P.J. Frey, B. Mohammadi, and O. Pironneau. Fast and
accurate simulations of air-cooled structures. Computer Methods in Ap-
plied Mechanics and Engineering, 195:3168–3180, 2006.

[61] C. Dobrzynski and J.-F. Remacle. Parallel mesh adaptation. Interna-
tional Journal for Numerical Methods in Engineering. , in preparation.

[62] J. Dompierre, M.-G. Vallet, Y. Bourgault, M. Fortin, and W.G.
Habashi. Anisotropic mesh adaptation: towards user-independent, mesh-
independent and solver independent cfd. part iii: Unstructured meshes.
International Journal for Numerical Methods in Fluids, 39:675–702, 2002.

[63] J. Donea. Arbitrary Lagrangian-Eulerian finite element methods. Com-
putational Methods for Transient Analysis, 1:473–516, 1983.

[64] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Encyclope-
dia of computational mechanics, chapter Arbitrary Lagrangian-Eulerian
Methods, pages 413–437. Wiley, 2004.

[65] H. Edelsbrunner and N.R. Shah. Incremental topological flipping works
for regular triangulations. Algorithmica, 15:223–241, 1996.

[66] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Dif-
ferential Equations. Cambridge University Press New York, 1996.

[67] R.P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory
eulerian approach to interfaces in multimaterial flows (the ghost fluid
method). Journal of Computational Physics, 152:457–492, 1999.



148 BIBLIOGRAPHY

[68] FEniCS. Fenics project, 2003. http://www.fenics.org.

[69] M. Francois, S. Cummins, E. Dendy, D. Kothe, J. Sicilian, and
M. Williams. A balanced-force algorithm for continuous and sharp inter-
facial surface tension models within a volume tracking framework. Jour-
nal of Computational Physics, 213:141–173, 2006.

[70] L.A. Freitag and C. Ollivier-Gooch. Tetrahedral mesh improvement us-
ing face swapping and smoothing. International Journal for Numerical
Methods in Engineering, 40(21):3979–4002, 1998.

[71] P.J. Frey and F. Alauzet. Anisotropic mesh adaptation for cfd com-
putations. Computer Methods in Applied Mechanics and Engineering,
194:5068–5082, 2005.

[72] P.J. Frey and H. Borouchaki. Surface meshing using a geometric error
estimate. International Journal for Numerical Methods in Engineering,
58:227–245, 2003.

[73] P.J. Frey and P.-L. George. Mesh generation. Wiley, London, 2008.

[74] R.V. Garimella and M.S. Shephard. Boundary layer mesh generation for
viscous flow simulations. International Journal for Numerical Methods
in Engineering, 49:193–218, 2000.

[75] P.-L. George and F. Hecht. CRC Handbook of Grid Generation, chapter
Nonisotropic grids, pages 20.1–20.29. J. F. Thompson, B. K. Soni and
N. P. Weatherill, Eds., CRC Press, Inc., Boca Raton, 1999.

[76] P.-L. George, F. Hecht, and E. Saltel. Automatic mesh generator with
specified boundary. Computer Methods in Applied Mechanics and Engi-
neering, 92(3):269–288, 1991.

[77] C. Geuzaine and J.-F. Remacle. Gmsh: a finite element mesh generator
with built-in pre- and post-processing facilities. International Journal for
Numerical Methods in Engineering, 2009. in press.

[78] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities, 2009.
http://geuz.org/gmsh/.

[79] P. Geuzaine. Newton-krylov strategy for compressible turbulent flows on
unstructured meshes. AIAA Journal, 39:528–531, 2001.

[80] D. Greaves. A quadtree adaptive method for simulating fluid flows with
moving interfaces. Journal of Computational Physics, 194:35–56, 2004.

[81] C. Gruau and T. Coupez. 3d tetrahedral, unstructured and anisotropic
mesh generation with adaptation to natural and multidomain metric.
Computer Methods in Applied Mechanics and Engineering, 194:4951–
4976, 2005.

http://geuz.org/gmsh/


BIBLIOGRAPHY 149

[82] K. Hans Raj, L. Fourment, T. Coupez, and J.L. Chenot. Simulation of
industrial forging of axisymmetrical parts. Engineering Computations,
9(5):575–586, 1992.

[83] F. Harlow and J. Welch. Volume tracking methods for interfacial flow
calculations. Physics of fluids, 8:21–82, 1965.

[84] O. Hassan, K. Morgan, E.J. Probert, and J. Peraire. Unstructured tetra-
hedral mesh generation for three-dimensional viscous flows. International
Journal for Numerical Methods in Engineering, 39:549–567, 1996.

[85] W.D. Henshaw and D.W. Schwendeman. Moving overlapping grids with
adaptive mesh refinement for high-speed reactive and non-reactive flow.
Journal of Computational Physics, 216(2):744–779, 2006.

[86] C. Hirt, A. Amsden, and J. Cook. An Arbitrary Lagrangian-Eulerian
computing method for all flow speeds. Journal of Computational Physics,
14:227–253, 1974.

[87] C. Hirt and B. Nichols. Volume of Fluid Method (VOF) for the dynamics
of free boundaries. Journal of Computational Physics, 39:201–225, 1981.

[88] J. Hoffman, J. Jansson, and M. Stöckli. Unified continuum modeling of
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[112] R. Löhner. Extensions and improvements of the advancing front grid
generation technique. Communications in Numerical Methods in Engi-
neering, 12:683–702, 1996.
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Appendix A

About metrics

When doing anisotropic mesh adaptation, it is required to specify the desired
mesh sizes in terms of edge lengths and directions in which those sizes operate.
It is also needed to evaluate how a given edge satisfies or not the size pre-
scriptions. For the sake of simplicity, we will consider here the question in two
dimensions, but the developments can easily be extended to three dimensions.

Metric and unit length

The problem is summarized on Figure A.1, in which an edge e is given as
well as the prescribed sizes: h1 and h2, respectively in directions t1 and t2.
We currently make the assumption that the prescribed sizes and their direc-
tions are constant along e. We also assume that the principal directions are
perpendicular to each other.

An interesting way to measure the compatibility of e with the prescribed
sizes is to transform the usual space in a space in which the length of a perfect
edge is 1 whatever its direction in the usual space. To this end, we define
a transformation which is the combination of a rotation R and a scaling H.
The rotation R aligns t1 and t2 with the main axis of the transformed space
(Figure A.1 (b)). The columns of the matrix corresponding to the rotation
are the ti. The scaling H applies hiti on ti for i = 1, 2 (Figure A.1 (c)). The
corresponding matrix is therefore a diagonal matrix with coefficients 1/hi.

If e is the vector joining the summits of e, the vector eM corresponding to
the transformed edge is

eM = HR e. (A.1)

Once this transformation is defined, we can write the dimensionless length
leM of e as

leM =
√

eM · eM =
√

etRtHtHRe =
√

etRtH2Re =
√

etMe, (A.2)

with M = RtH2R. The metric M is symmetric positive definite. The direc-
tions ti are its eigenvectors, and the corresponding eigenvalues are λMi = 1/h2

i .
Note that the length of eM is dimensionless. An edge with a dimensionless

size leM equal to 1 is called a unit edge length. It has exactly the size prescribed

159
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0

t1t2

(a)

e

R

0 Rt1

Rt2

(b)

H

1 0 HRt1

HRt2

(c)eM

Figure A.1: The successive transformations from the usual space to the metric
space.

for its orientation. In the transformed space, the unit edges are the edges that
join a point of the unit circle to the origin. From Figure A.1, we remark that
the set of points defining a unit edge, i.e. which lies on the unit circle in the
transformed space form an ellipse (an ellipsoid in 3D) in the usual space, with
principal directions ti and radii and hi.

If the metricM depends on the position x, the dimensionless length of e is
written

leM =
∫
e

√
etM(x)e dx. (A.3)

Values in transformed space

Other values can be computed in the transformed space, like angles, areas or
volumes.

Angles : In the usual space, the angle θ between two vectors v1 and v2 can
be computed from

cos(θ) =
v1 · v2

‖ v1 ‖ ‖ v2 ‖ . (A.4)

Using the same formula to obtained the angle θM between the transformed
vectors v1

M and v2
M, we have

cos(θM) =
v1
M · v2

M

‖ v1
M ‖ ‖ v2

M ‖ =
v1Mv2

lv1
M lv2

M
. (A.5)

Areas : Given a surface S in the usual two-dimensional space, like depicted
in Figure A.2, we would like to obtain the area AMS of S in the transformed
space. Considering the metric transformation as the combination of a rotation
and a scaling, we observe that the scaling is the only transformation that affects
the area of the surface. Given the area in the usual space AS , it is therefore
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(a)

HR

1

(b)

Figure A.2: Area in a space transformed by a metric.

straightforward to compute AMS :

AMS =
AS
h1h2

. (A.6)

The 3D extension to the computation of the volume VMR of a region R in
the transformed space is trivial and yields:

VMR =
VR

h1h2h3
, (A.7)

with VR the volume of R in the usual space.

Metrics intersection

It is quite common that several metric fields are given, each one correspond-
ing to different sizes and alignments. In such a case, the different metrics are
intersected like depicted in Figure A.3. If two metrics M1 and M2 are given,
a usual way to build the intersection metric M1∩2 is to find the largest met-
ric such that the length of any vector v computed in the space transformed
by M1∩2 is larger than the lengths computed in both transformed spaces of
M1 and M2. Graphically, the ellipse corresponding to lM1∩2

v = 1 is exactly
contained in the ellipses given by lM1

v = 1 and lM2
v = 1.

In the literature, several works can be found that describe this metrics inter-
section method. However, the descriptions are usually limited to the resulting
formulae. We give here a more intuitive description of the method and show
graphically how the classical results are obtained.

Figure A.4 (a) shows the ellipses corresponding to two metricsM1 andM2

and their intersection M1∩2 in the usual space. The lengths of a vector v in
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lM2
v = 1

lM1
v = 1

lM1∩2
v = 1

Figure A.3: Representation of the intersection of two metrics.

those metrics spaces are

lM1
v =

√
vtM1v, (A.8)

lM2
v =

√
vtM2v, (A.9)

lM1∩2
v =

√
vtM1∩2v. (A.10)

Figure A.4 (b) shows the same ellipses in the transformed space of the metric
M1. In this space, v becomes vM1 which is obtained by

vM1 = H1R1v, (A.11)

where H1 and R1 are the scaling and rotational transformations corresponding
to M1. The ellipse of the vectors of unit length for M1 becomes a circle of
radius 1, and the ellipse associated to M2 is given by

vtM2v = vM1
tR−1

1

tH−1
1

tM2H−1
1 R−1

1 vM1 = vM1
tM−1

1 M2vM1 = 1.
(A.12)

We define the matrix N as

N =M−1
1 M2, (A.13)

The matrix N can be diagonalized, which yields

N = QtL2Q, (A.14)

with Q a matrix whose columns are the main directions of M2 expressed in
the transformed space of M1, and L a diagonal matrix with coefficients λNi
equal to λM2

i /λM1
i .
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vtM2v = 1

vtM1v = 1

vtM1∩2v = 1
(a)

H1R1

vtM−1
1 M2v = 1

vtM−1
1 M1∩2v = 1

(b)

Figure A.4: Construction of the intersection of two metrics M1 and M2. The
metrics and their intersectionM1∩2 are represented in (a) the usual space and
(b) the transformed space corresponding to M1.

We observe that the ellipse corresponding toM1∩2 in the transformed space
ofM1, i.e. M−1

1 M1∩2 is the intersection of the ellipse ofM2 in the same space
with the unit circle. In that space, the directions of M1∩2 are therefore the
directions ofM2, and the intersection withM1 just results to a minimum value
of 1 for its eigenvalues. The intersection metric in the space transformed by
M1 is therefore

N ∗ = QtL∗2Q, (A.15)

with L∗ a diagonal matrix with coefficients equal to max
(
λNi , 1

)
.

Coming back to the usual space, the intersection metric is computed as

M1∩2 =M1N ∗ = P−1t

 max
(
λM1

1 , λM2
1

)
0

0 max
(
λM1

2 , λM2
2

) P−1,

(A.16)
where P is the matrix mapping the canonical basis to the basis associated with
N .

Metric interpolation

The problem here is to find a metric M(t) that is equal to a metric M0 for
t = 0, and a metric M1 for t = 1, and which vary monotonously for t ∈ [0, 1].
Typically, such an interpolation is useful for finding a metric in a point of a
straight line when the only metric values that are known are the values at the
extremities of the line.
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A classical method to obtain M(t) is the following

M(t) = P−1t

 1“
(1−t)hM0

1 +t h
M1
1

”2 0

0 1“
(1−t)hM0

2 +t h
M1
2

”2

P−1, (A.17)

where P is the matrix mapping the canonical basis to the basis associated with
N = M−1

1 M2, and h
Mj

i is the length prescribed in the ith direction in the
metric Mj , j ∈ [0, 1]. More details can be found in [73].



Appendix B

Annotated C++ classes for
interfacing a PDE solver to
MAdLib

B.1 Mesh adaptation interface

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Class i n t e r f a c i n g MAdLib with ’ So lver ’
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c l a s s M A d L i b I n t e r f a c e {

p u b l i c :

M A d L i b I n t e r f a c e ( ) ;
˜ M A d L i b I n t e r f a c e ( ) ;

v o i d a d a p t M e s h ( ) ;

p r i v a t e :

// Mesh to mesh convers ion
v o i d i m p o r t F r o m M A d M e s h ( c o n s t M A d : : p M e s h , S o l v e r _ m e s h ∗ ) ;
v o i d e x p o r t T o M A d M e s h ( c o n s t S o l v e r _ m e s h ∗ , M A d : : p M e s h ) ;
v o i d i m p o r t F r o m M A d M o d e l ( c o n s t M A d : : p G M o d e l , S o l v e r _ m o d e l ∗ ) ;
v o i d e x p o r t T o M A d M o d e l ( c o n s t S o l v e r _ m o d e l ∗ , M A d : : p G M o d e l ) ;

// S i z e f i e l d cons t ruc t i on
v o i d b u i l d S i z e F i e l d ( M A d : : P W L S F i e l d ∗ ) ;

// So lut ion to s o l u t i on convers ion
v o i d a t t a c h S o l u t i o n T o M e s h ( M A d : : p M e s h ) ;
v o i d g e t S o l u t i o n F r o m M e s h ( M A d : : p M e s h ) ;

p r i v a t e :

// The s o l v e r that needs mesh adapt iv i ty
S o l v e r ∗ s o l v e r ;

// Correspondence t ab l e s between nodal id ’ s in the s o l v e r
// and in the MAdLib mesh
s t d : : m a p<i n t , i n t> M A d T o S o l v e r I d s ;
s t d : : m a p<i n t , i n t> S o l v e r T o M A d I d s ;

} ;
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B.2 Solver data interface

// So lver c l a s s conta in ing the s o l v e r geometr i ca l model i f any .
c l a s s S o l v e r _ m o d e l

{
p u b l i c :

v o i d a d d G e o E n t i t y ( i n t d i m , i n t i d ) ;
s t d : : s e t<s t d : : p a i r<i n t , i n t> > g e t A l l G e o E n t i t i e s ( ) c o n s t ;
// return a s e t o f pa i r s ( dimension , id ) ,
// each pa i r r ep r e s en t i ng a geometr ic en t i t y .

} ;

// So lver c l a s s conta in ing the s o l v e r mesh
c l a s s S o l v e r _ m e s h

{
p u b l i c :

v o i d a l l o c a t e ( i n t n N o d e s , i n t n E l e m e n t s ) ;
v o i d a d d N o d e ( i n t id , d o u b l e x , d o u b l e y , d o u b l e z ) ;
v o i d a d d E l e m e n t ( i n t id , i n t ∗ n o d e s ) ;
i n t g e t D i m ( ) c o n s t ;
i n t n V e r t i c e s ( ) c o n s t ;
i n t n E l e m e n t s ( ) c o n s t ;
c o n s t d o u b l e ∗∗ g e t C o o r d i n a t e s ( ) c o n s t ;
c o n s t i n t ∗∗ g e t E l e m e n t s ( ) c o n s t ;
c o n s t i n t ∗ g e t E l e m G e o T a g s ( ) c o n s t ;

} ;

// So lver s o l u t i on . We assume a nodal s o l u t i on but the current example can be
// e a s i l y extended to other d i s c r e t i z a t i o n s .
c l a s s S o l v e r _ s o l u t i o n

{
p u b l i c :

d o u b l e ∗ o p e r a t o r [ ] ( i n t i ) ;
c o n s t d o u b l e o p e r a t o r [ ] ( i n t i ) c o n s t ;

} ;

// So lver c l a s s conta in ing po in t e r s to s o l v e r data , s o l u t i on and mesh
c l a s s S o l v e r

{
p u b l i c :

S o l v e r _ m o d e l ∗ g e t M o d e l ( ) { r e t u r n m o d e l ;}
S o l v e r _ m e s h ∗ g e t M e s h ( ) { r e t u r n m e s h ;}
S o l v e r _ s o l u t i o n ∗ g e t S o l u t i o n ( ) { r e t u r n s o l u t i o n ;}
v o i d d e l e t e M e s h ( ) ;
v o i d d e a l l o c a t e S o l u t i o n ( ) ;
v o i d a l l o c a t e S o l u t i o n ( ) ;
// opt i ona l f unc t i on s :
v o i d d e l e t e D a t a ( ) ;
v o i d a l l o c a t e A n d C o m p u t e D a t a ( ) ;
d o u b l e p r e s c r i b e d E d g e L e n g t h ( i n t n o d e ) ;

p r i v a t e :
S o l v e r _ m o d e l ∗ m o d e l ;
S o l v e r _ m e s h ∗ m e s h ;
S o l v e r _ s o l u t i o n ∗ s o l u t i o n ;

} ;



B.3. Mesh adaptation in a model solver 167

B.3 Mesh adaptation in a model solver

v o i d M A d L i b I n t e r f a c e : : a d a p t M e s h ( )
{

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Step 1 : Prepare f o r adaptat ion
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// 1 . Delete mesh/ s o l u t i on dependent data in the s o l v e r
s o l v e r−>d e l e t e D a t a ( ) ;

// 2 .A. Build the MAdLib geometr i ca l model .
p G M o d e l M A d M o d e l = N U L L ;
G M _ c r e a t e (& M A d M o d e l , " t h e M o d e l " ) ;
e x p o r t T o M A d M o d e l ( s o l v e r−>g e t M o d e l ( ) , M A d M o d e l ) ;

// 2 .B. Build the MAdLib mesh .
p M e s h M A d M e s h = M _ n e w ( M A d M o d e l ) ;
e x p o r t T o M A d M e s h ( s o l v e r−>g e t M e s h ( ) , M A d M e s h ) ;

// 3 . Trans fer s o l u t i on to the MAdLib mesh as an attached data
a t t a c h S o l u t i o n T o M e s h ( M A d M e s h ) ;
s o l v e r−>d e a l l o c a t e S o l u t i o n ( ) ;

// 4 . Delete the s o l v e r mesh .
s o l v e r−>d e l e t e M e s h ( ) ;

// 5 . Build the s i z e f i e l d used in adaptat ion
P W L S F i e l d ∗ s i z e F i e l d = n e w P W L S F i e l d ( M A d M e s h ) ;
b u i l d S i z e F i e l d ( s i z e F i e l d ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Step 2 : Run the adaptat ion
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// 6 .A. Build the adaptat ion too l
M e s h A d a p t e r ∗ a d a p t e r = n e w M e s h A d a p t e r ( M A d M e s h , s i z e F i e l d ) ;

// 6 .B. Reg i s t e r the ca l l back funct i on ( s ) o f the s o l v e r
a d a p t e r−>a d d C a l l b a c k ( S o l v e r _ C B F u n c t i o n , ( v o i d ∗) t h i s ) ;

// 6 .C. Edit the adaptat ion parameters i f neces sary
a d a p t e r−>s e t E d g e L e n S q B o u n d s ( 1 . 0 /3 . 0 , 3 .0 ) ;
a d a p t e r −>... ; // see AdaptInter face . h

// 6 .D. Run the adaptat ion procedure
a d a p t e r−>r u n ( ) ;

// 6 .E. Optional output
a d a p t e r−>p r i n t S t a t i s t i c s ( s t d : : c o u t ) ;
M _ w r i t e M s h ( M A d M e s h , " a d a p t e d _ m e s h . m s h " , 2 ) ;

// 6 .F . Clean the adaptat ion ob j e c t s
d e l e t e a d a p t e r ;
d e l e t e s i z e F i e l d ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Step 3 : Rebuild s o l v e r data and mesh
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// 7 . Rebuild the s o l v e r mesh
i m p o r t F r o m M A d M o d e l ( M A d M o d e l , s o l v e r−>g e t M o d e l ( ) ) ;
i m p o r t F r o m M A d M e s h ( M A d M e s h , s o l v e r−>g e t M e s h ( ) ) ;

// 8 . Get the s o l u t i on from the MAdLib mesh
s o l v e r−>a l l o c a t e S o l u t i o n ( ) ;
g e t S o l u t i o n F r o m M e s h ( M A d M e s h ) ;

// 9 . Delete MAdLib mesh
d e l e t e M A d M e s h ;
d e l e t e M A d M o d e l ;

// 10 . Build mesh/ s o l u t i on dependent data in the s o l v e r
s o l v e r−>a l l o c a t e A n d C o m p u t e D a t a ( ) ;

}
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B.4 Callback function: an example

v o i d S o l v e r _ C B F u n c t i o n ( p P L i s t b e f o r e , p P L i s t a f t e r , v o i d ∗ d a t a ,
o p e r a t i o n T y p e t y p e , p E n t i t y p p p ) {

// Data can point to the ob j e c t o f type ’ MAdLibInterface ’ f o r in s tance
// ( not used here ) .
M A d L i b I n t e r f a c e ∗ m i = s t a t i c _ c a s t <M A d L i b I n t e r f a c e ∗>( d a t a ) ;

// The data id used to i d e n t i f y the data attached to mesh e n t i t i e s
p M e s h D a t a I d d a t a I d = M D _ l o o k u p M e s h D a t a I d ( " S o l u t i o n T a g " ) ;

// Do the r i gh t manipulation on data accord ing to the mesh mod i f i ca t i on
s w i t c h ( t y p e ) {
c a s e M A d _ E S P L I T : // Edge s p l i t case

// − ’ b e f o r e ’ conta ins the s p l i t edge ( not de l e t ed yet )
// − ’ a f t e r ’ conta ins the two new edges
// − ’ ppp ’ conta ins the new vertex
{

// f i nd the edge to be de l e t ed
v o i d ∗ t e m p = N U L L ;
p E d g e p E = ( p E d g e ) P L i s t _ n e x t ( b e f o r e ,& t e m p ) ;

// get coo rd ina t e s and data at old nodes
d o u b l e d a t a 0 = 0 . ;
p V e r t e x p V 0 = E _ v e r t e x ( ( p E d g e ) pE , 0 ) ;
i n t g o t i t 0 = E N _ g e t D a t a D b l ( ( p E n t i t y ) p V 0 , d a t a I d , &d a t a 0 ) ;

d o u b l e d a t a 1 = 0 . ;
p V e r t e x p V 1 = E _ v e r t e x ( ( p E d g e ) pE , 1 ) ;
i n t g o t i t 1 = E N _ g e t D a t a D b l ( ( p E n t i t y ) p V 1 , d a t a I d , &d a t a 1 ) ;

i f ( ! g o t i t 0 | | ! g o t i t 1 ) { e r r o r ( . . . ) ; }

// i n t e r p o l a t e the data at the new vertex ( here l i n e a r i n t e r p o l a t i o n )
d o u b l e t = E _ l i n e a r P a r a m s ( pE , ( p V e r t e x ) p p p ) ;
d o u b l e n e w D a t a = (1.− t ) ∗ d a t a 0 + t ∗ d a t a 1 ;

// attach t h i s data to the new vertex
E N _ a t t a c h D a t a D b l ( p p p , d a t a I d , n e w D a t a ) ;

} b r e a k ;
c a s e M A d _ E C O L L A P S E : // Edge c o l l a p s e case

// − ’ b e f o r e ’ conta ins the r eg i on s (3D) or f a c e s (2D) o f the cav i ty
// be fo r e the edge c o l l a p s e ( not de l e t ed yet )
// − ’ a f t e r ’ conta ins the r eg i on s (3D) or f a c e s (2D) o f the cav i ty
// a f t e r the edge c o l l a p s e
// − ’ ppp ’ conta ins the vertex to be de l e t ed ( not de l e t ed yet )
{

// remove the data on de l e t ed vertex
E N _ d e l e t e D a t a ( p p p , d a t a I d ) ;

} b r e a k ;
c a s e M A d _ F S W A P : // Face swap case

// − ’ b e f o r e ’ conta ins the r eg i on s o f the cav i ty be fo r e the f a c e swap
// ( not de l e t ed yet )
// − ’ a f t e r ’ conta ins the r eg i on s o f the cav i ty a f t e r the f a c e swap
// − ’ ppp ’ conta ins the swapped fac e ( not de l e t ed yet )
{

// nothing to be done here
} b r e a k ;

c a s e M A d _ E S W A P : // Edge swap case
// − ’ b e f o r e ’ conta ins the r eg i on s (3D) or f a c e s (2D) o f the cav i ty
// be fo r e the edge swap ( not de l e t ed yet )
// − ’ a f t e r ’ conta ins the r eg i on s (3D) or f a c e s (2D) o f the cav i ty
// a f t e r the edge swap
// − ’ ppp ’ conta ins the swapped edge ( not de l e t ed yet )
{

// nothing to be done here
} b r e a k ;

d e f a u l t : e r r o r ( . . . ) ;
}

} ;
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