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ABSTRACT: We review recent developments in the framework of
simplified quantum chemistry for excited state and optical response
properties (sTD-DFT) and present future challenges for new method
developments to improve accuracy and extend the range of application.
In recent years, the scope of sTD-DFT was extended to molecular
response calculations of the polarizability, optical rotation, first
hyperpolarizability, two-photon absorption (2PA), and excited-state
absorption for large systems with hundreds to thousands of atoms. The
recently introduced spin-flip simplified time-dependent density
functional theory (SF-sTD-DFT) variant enables an ultrafast treatment
for diradicals and related strongly correlated systems. A few drawbacks
were also identified, specifically for the computation of 2PA cross
sections. We propose solutions to this problem and how to generally
improve the accuracy of simplified schemes. New possible simplified schemes are also introduced for strongly correlated systems,
e.g., with a second-order perturbative correlation correction. Interpretation tools that can extract chemical structure−property
relationships from excited state or response calculations are also discussed. In particular, the recently introduced method-agnostic
RespA approach based on natural response orbitals (NROs) as the key concept is employed.

■ INTRODUCTION

Due to the complexity of the studied systems, the fate of
molecular quantum mechanics has always been related to
computing technology since its very beginning.1 Until the
1990s, traditional semiempirical methods2 were the workhorse
of quantum chemistry. Then, it reached the point where
sufficient computing power was available to run calculations
with ab initio methods on chemically interesting systems,
replacing little by little their semiempirical counterparts. Ab
initio wave function theory (WFT)3 and density functional
theory (DFT)4−6 methods are now the new busy bees of
molecular quantum mechanics. System-size-wise, usually a
hierarchy of methods with different degree of sophistication is
applied to balance cost/accuracy, meaning that small systems
are usually treated more accurately than larger ones. Ab initio
excited-state calculations, e.g., at a standard time-dependent
density functional theory (TD-DFT)7−11 level, are currently
limited to systems sizing up to a few hundreds of atoms, far
from large systems such as fluorescent proteins or molecular
aggregates that are of current interest.
Excited state calculations are challenging in general because

essentially all of them are dealing with open-shell states (with
several unpaired electrons)12,13 and some are even multi-
configurational. The electronic states are often classified into
three classes: (i) valence excitation that involve localized
orbitals, (ii) Rydberg states that involve transitions from

localized to diffuse orbitals, and (iii) charge-transfer excitations
in which net charges in different parts of the system change to
a significant degree. A universally accurate method should be
able to cope with all types of excitations in vertical and
adiabatic (relaxed) mode, but such a method does not exist, at
least for systems with more than a few atoms. In practice, TD-
DFT has emerged as the workhorse of quantum chemistry for
the calculation of excited-state properties and electronic
spectra. Although, TD-DFT with many standard exchange-
correlation (XC) functionals yields large errors for excited
states with substantial charge-transfer, double excitation, and
Rydberg character, it is expected to work well for many low-
lying valence states,14 where the only remaining problem is the
choice of the XC functional. High accuracy and including the
subtle details of many individual states is often not necessary
for spectra or response calculations. A simple but physically
reasonable model involving the most important single
excitations can be sufficient to describe the very high density
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of electronic states in a large system. Note that some of the
TD-DFT problems come from the wrong asymptotic behavior
of the XC potential and the self-interaction-error (SIE) that
may lead to artificial “ghost” states.
While (TD)DFT methods can efficiently treat medium-size

systems, larger ones involving thousands of atoms are still out
of the reach, at least for a routine full ab initio treatment. Over
the past, INDO/S (intermediate neglect of differential overlap
using configuration interaction with singles (CIS)) meth-
od2,15,16 was favored to compute excited states. It describes
vertical excitations relatively well but is not suited to
characterize potential energy surfaces (PES).16 The INDO/S
scheme was used in various QM/MM (quantum mechanics/
molecular mechanics) studies, tackling biological systems, e.g.,
the bacteriochlorophyll b dimer and aggregates of bacterio-
chlorophylls.2 The OM1, OM2, and OM3 series of
methods,17,18 for which the NDDO (neglect of diatomic
differential overlap) one-electron term includes orthogonaliza-
tion correction, are more geared for PES explorations because
they describe well the ground and excited states.2 In particular,
the OM2/MRCI (multireference configuration interaction)
method was used for excited-state dynamics of large biological
structures such as the photostability of DNA strands or the
photocycle of the green fluorescent protein showing relatively
good results with respect to experiment and high-level
calculations.2 The past 3 decades gave also rise to the DFTB
(density functional based tight-binding) class of semiempirical
methods.19,20 The time-dependent DFTB (TD-DFTB)
method21 and its other flavors (DFTB2, DFTB3, and LC-
DFTB2)21−26 are cheap methods to compute excited states.
For a set of 30 organic molecules, Fihey and Jacquemin27

recently benchmarked the performance of TD-DFTB methods
with respect to higher level calculations as well as experiment.
They showed that while average errors are usually larger than
for B3LYP and CC2 methods, in some cases DFTB3 and LC-
DFTB2 outperform these methods. Note that a spin-flip

version of the TD-DFTB method was introduced last year by
Inamori et al.28

In this context, Grimme and co-workers29,30 developed a
simplified version of TD-DFT, called sTD-DFT and a related
variant termed sTDA employing the Tamm−Dancoff approx-
imation. The idea behind these methods is to decrease the
computational cost by applying approximations for computa-
tionally demanding steps while keeping the essential physics of
the electronic interactions. In the case of the sTD-DFT/sTDA
methods, these approaches approximate the two-electron
integrals and massively truncate the single-excitation expansion
space, leading to orders of magnitude speed-up at a minor loss
of accuracy and even partially improving the SIE problem in
DFT. Figure 1 summarizes the sTD-DFT/sTDA workflow. In
a typical sTD-DFT calculation, the user only provides
molecular orbitals and energies from a Kohn−Sham SCF (or
tight-binding (TB) calculation). The first approximation
concerns the computationally very demanding calculation of
four-index two-electron integrals needed to construct TD-DFT
matrix elements. A simple, damped transition density
monopole (atomic charge) scheme approximates these two-
electron integrals in the simplified methods. The Mataga−
Nishimoto−Ohno−Klopman (MNOK)31−33 Coulomb oper-
ator is adapted according to the integral type, either Coulomb
or exchange, by two respective empirical parameters, which are
dependent on the amount of exact Hartree−Fock exchange ax
in the XC functional. Thus, both globally fitted parameters are
determined by simple linear relations in the ax range from 0 to
1. The second main approximation neglects response terms
involving the exchange-correlation functional in the TD-DFT
equations. The third, main approximation concerns the
massive truncation of the configuration space because most
electron correlation effects are already captured by the ground
state calculation. This truncation is based on the diagonal
Hamiltonian matrix elements of single excitations and selects
those below a given threshold, typically the spectral energy
range of interest. Then, a second-order perturbation theory

Figure 1. Schematic representation of the sTD-DFT/sTDA methods theoretical workflow.
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scheme treats the single excitations disregarded by the first
step. Note that the molecular orbital (MO) space was
truncated according to the energy range of interest prior to
these steps in order to avoid computational overhead in
integral transformation steps.
The sTD-DFT/sTDA schemes were originally designed as

fast methods to screen large sets of compounds or large
systems allowing the interpretation of their UV−visible and
CD spectra. The theoretical key points are (i) a general
formulation for hybrid XC functionals, (ii) the inclusion of
only two globally fitted parameters for the description of two-
electron integrals, (iii) two electron integrals having an
asymptotically correct 1/R behavior, and (iv) an efficient
truncation of the CI space for a given energy threshold.
Designed for hybrid XC functionals, Grimme and co-workers34

extended the sTD-DFT parametrization to range-separated
hybrid (RSH) functionals.
The computational bottleneck of sTDA and sTD-DFT

methods is the determination of the ground state Kohn−Sham
orbitals and eigenvalues, limiting their application to systems
up to around 1000 atoms. Grimme and Bannwarth35 proposed
to solve this problem by using a specially designed semi-
empirical TB procedure as a replacement for the DFT step.
These ultrafast methods are called sTD-DFT-xTB and sTDA-
xTB where the “x” denotes an extended atomic orbital basis
set. The accuracy of these models is roughly that of TD-DFT/
hybrid functional quality for molecules with not too
complicated electronic structures. They can be used in
complete (unfragmented) routine treatment for systems up
to a few thousands of atoms, e.g., proteins.36,37 The sTD-DFT-
xTB parametrization was recently extended to 4d and 5d
metals as well as 4p, 5p, and 6p elements.38

This Perspective aims to present the current status of these
methods and recent progress and developments as well as

future challenges for new method developments to improve
accuracy and extend its range of application. This includes
extension of the sTD-DFT scheme to the computation of
linear and nonlinear molecular response properties, develop-
ments for strongly correlated systems, new tools to interpret
optical properties using simplified methods, and a discussion of
basic approximations in sTD-DFT.

■ DISCUSSIONS

Simplified Methods for Large Strongly Correlated
Systems. Because of the linear-response/adiabatic approx-
imation, TD-DFT only considers singly excited configurations
relative to the ground state KS-DFT determinant which
drastically reduces the configuration interaction (CI) space.
Note that the Kohn−Sham DFT ground state is normally a
single reference state accounting only implicitly for static
correlation effects.39,40 A simple way to account for the missing
static correlation is the spin-flip (SF-)TD-DFT method41−44

following the spin-flip scheme proposed by Krylov.45−48 It
starts with a well-behaved high-spin reference state. Then, the
target open-shell state is obtained by spin-flipping excitations.
This allows the inclusion of a doubly excited configuration
when the reference state is a high-spin triplet. This doubly
excited configuration is important for strongly correlated
systems such as diradicals with two nearly degenerate frontier
molecular orbitals. For low-lying excited states formed within
the complete SF active space, the SF-TD-DFT method yields
excitation energies41−44 with a similar accuracy to what is
usually achieved by highly correlated methods such as
equation-of-motion coupled-cluster.44 Outside this space,
excited states are often strongly spin-contaminated. The
interested reader about the spin-flip may refer to the excellent
review on the topic by Casanova and Krylov.49

Figure 2. Singlet−triplet energy gaps for nine benchmark compounds obtained at SF-TD-DFT and simplified levels with collinear and noncollinear
exchange-correlation kernels in comparison with the sTD-DFT method. Experimental absorption spectra for a μ-hydroxo-bridged dimer of corrole
tape Ga(III) complexes derivatives are compared to SF-sTD-DFT/B5050LYP/cc-pVDZ and SF-sTD-DFT-xTB calculations. Reprinted with
permission from ref 50. Copyright 2019 American Chemical Society.
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In this context, we developed the simplified SF-sTD-DFT
method and its ultrafast tight-binding counterpart SF-sTD-
DFT-xTB.50 Our implementation considers only collinear XC
functionals and the Tamm−Dancoff approximation. Note that
the difference between collinear and noncollinear XC kernels is
that the noncollinear formulation allows mixing of α and β
orbitals while this is not the case for the collinear one. In the
SF-sTD-DFT procedure, only (iαjα|aβbβ) two-electron integrals
are evaluated. Analogous to the sTD-DFT method, these
integrals are approximated by short-range damped Coulomb
interactions of transition density monopoles. Because these
two-electron integrals consider α → β single excitations, the
sTD-DFT effective Coulomb operator was adjusted and
reparametrized. This approach takes advantage of the sTD-
DFT massive truncation of the single configuration space but
now for α → β single excitations. To simulate absorption
spectra considering the first spin-flip states as the ground state,
the sTD-DFT state-to-state transition dipole moment ex-
pression51 was adapted to the SF case and scaled by a factor of
√2, approximately accounting for missing excitations in the α
space. Figure 2a presents singlet−triplet energy gaps for a
benchmark set51 of nine diradicals. SF-sTD-DFT values are
compared to SF-TD-DFT values considering collinear and
noncollinear exchange-correlation kernels. The agreement
between the simplified method and the full scheme with the
more accurate noncollinear kernel is very good, with a
maximum averaged deviation of 0.076 eV and a root-mean-
square deviation of 0.101 eV. In comparison to the
experimental absorption spectra, the SF-sTD-DFT method
even outperformed the full scheme while drastically reducing
the computational time. The μ-hydroxo-bridged dimers of
corrole-tape Ga(III) complexes were the largest compounds
studied in this context. In only 8 min on a standard desktop
computer (Intel Core i7-6700, 3.40 GHz), we were able to
calculate the absorption spectrum for this system at the SF-
sTD-DFT/B5050LYP/cc-pVDZ level of theory (see Figure
2b), obtaining a relative good agreement with respect to
experiment. Hence, we stated that the SF-sTD-DFT and SF-
sTD-DFT-xTB methods provide a very cheap way to recover
the most important static correlation effects by including one
doubly excited CSF. They also yield reasonable spin symmetry
for states that are usually not well treated by unrestricted DFT,
at least within the SF active space. These encouraging results
open new horizons for the development of new simplified
schemes for the treatment of strongly correlated systems. The
obvious follow-up of the SF-sTD-DFT implementation is to
improve the treatment of states outside the SF active space by
removing the spin contamination. Recent approaches here are
spin-adapted (SA-)SF-TD-DFT52 and mixed-reference (MR-
)SF-TD-DFT53 methods that may be easily “simplified” in the
same manner as was done for the SF-sTD-DFT method. The
very recent spin-flip pair-density functional theory proposed by
Meitei and Mayhall54 may also be investigated
The double-hybrid XC functionals55 applied to excited states

may be an interesting route to go beyond the standard
approximation employed in sTD-DFT. One of us and Neese56

proposed a scheme that adds a second-order perturbative
correlation correction to excited states analogously to the
CIS(D) method in WFT proposed by Head-Gordon.57

Inclusion of nonlocal electron correlation effects implying
virtual orbitals could solve inherent TD-DFT problems for
excited states with ionic, charge transfer, double excitation, or
Rydberg character. Note that the (D) correction not only

includes double excitations but also effects from disconnected
triple excitations.57 As a perspective, computationally efficient
”simplified” second-order correction for TD-DFT excited
states could be developed. Another option is to add one or a
few doubly excited configurations as in the so-called dressed
(d-)TD-DFT method.58−60 More ambitious developments are
a simplified version of the GW and Bethe−Salpeter equation
(BSE) formalisms61 and/or the DFT/MRCI method62−64

They may require an improved approximate treatment of the
two-electron integrals. This is currently under investigation.
The development of such simplified methods for large, strongly
correlated systems could represent a breakthrough for future
applications in materials and life sciences where optical
properties of large systems are at stake.

Linear and Nonlinear Molecular Optical Response
Properties. During the last 3 years, we expanded the range of
application of the sTD-DFT method to linear and nonlinear
molecular optical response properties by implementing the
linear and quadratic response functions at the sTD-DFT level.
This enables fast computations of the polarizability, optical
rotation (OR),65 first hyperpolarizability,66 two-photon
absorption (2PA), and excited-state absorption51 for large
systems. To evaluate the polarizability,66 the sTD-DFT
equations are solved for the electric dipole perturbation
without any additional approximations while for the first
hyperpolarizability two extra approximations are applied.66

Note that because of the “(2n + 1)” theorem, only linear
response vectors are needed. The first approximation neglects
the computationally involved Hartree exchange-correlation
kernel that accounts for orbital relaxations. The second
approximation neglects exchange-correlation parts in the
quadratic response avoiding the computation of the third
derivative of the exchange-correlation functional. We showed
for two typical push−pull π-conjugated systems that these two
approximations have almost no impact on the response (see
Figure 5 in ref 66).
For a set of eight push−pull π-conjugated systems,66 the

sTD-DFT method performed particularly well for hyper-
polarizability values below an excitation energy of 1 eV. Above
that value, resonance and double-resonance enhancements are
somewhat shifted by the simplified theory. Note that the sTD-
DFT method was primarily parametrized to reproduce
excitation energies29,30 and not response properties. A
reparametrization may improve response properties, but it
cannot be expected that the monopole type two-electron
integrals is appropriate to describe all types of excitation/
deexcitation processes at high energies. Nonetheless, compu-
tation times are drastically reduced (see Figure 3) and static
first hyperpolarizability values are particularly well described.
The sTD-DFT-xTB variant provided excellent results for large
systems such as fluorescent proteins and a collagen model
structure (see Figure 4) at drastically reduced computational
cost. Concerning the chromophore pocket inside the protein
(∼500 atoms) for eGFP, SHardonnay, and DsRed, reference
ONIOM MP2:HF static first hyperpolarizabilities were well-
reproduced by the sTD-DFT-xTB method. Note that it took
about 6 months for each reference calculation to be completed
compared to only a few hours with the actual version of the
stda program.67 For the collagen PPG10 model structure,
the sTD-DFT-xTB frequency dispersion is very similar to the
reference ONIOM LC-BLYP:HF one while the static value is
only 8% down-shifted. These results show the suitability of the
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sTD-DFT-xTB method for an ultrafast treatment of large
biological systems.
Since 2018, two projects were initiated to evaluate the

second-harmonic generation (SHG) property for biological
systems. One concerned the dynamic structural effects on SHG
of tryptophane-rich peptides and gramicidin A.68 It was shown
for nonrigid molecular structures that all significantly
populated conformations at room temperature should be

accounted for to provide reliable total first hyperpolarizability
values. This exploration was done fully quantum mechanically
via the recently proposed meta-dynamics based on efficient
GFN2-xTB calculations with the crest code.69−71 In
ongoing work, we have tried to establish a fully quantum-
mechanical workflow for the SHG of fluorescent proteins with
up to 4000 atoms, which is only possible at the sTD-DFT-xTB
level of theory. To reduce memory requirements in the stda
program,67 we will introduce a dual threshold method that
includes a larger configurations space for more important parts
of the protein (chromophore) compared to spectator residues.
This should enable a reasonably accurate and robust treatment
of the SHG of large biological systems such as biotags used for
second-harmonic imaging microscopy.72 The ultimate goal of
these future studies is to provide new design guidelines to fine-
tune the hydrogen-bond network and steric hindrances within
the protein cavity to create new fluorescent proteins with
improved SHG brightness.
The evaluation of 2PA cross sections is a “by-product” in the

determination of the quadratic response function, for which
only its single residue is needed. In 2018, we implemented this
feature in the stda program.67 Figure 5 shows 2PA
transitions computed for water and toluene at TD-DFT and
sTD-DFT levels of theory (BHandHLYP/6-31G(d)). One can
observe that while energies are shifted, transitions are well
reproduced for toluene except for excitation energies higher
than 7.5 eV. Unfortunately, for larger organic molecules, the
quality of 2PA electronic transitions becomes more erratic,
limiting the general use of the sTD-DFT 2PA implementation.
To calculate 2PA transitions, one needs first to compute
excited states and their eigenvectors. Then, linear response
vectors are computed at half of the transition energy for each
excited state. Both eigenvectors and linear response vectors are

Figure 3. Computation times for the evaluation of the first
hyperpolarizability at both TD-DFT and sTD-DFT levels using the
BHandHLYP functional and the 6-31G(d) basis set as a function of
the number of basis functions. The number of basis functions after
truncation of the CI space by the sTD-DFT method is also provided.
All the calculations were done on the same 8 cores desktop computer
(Intel core i7-6700, 3.40 GHz). Reprinted with permission from ref
66. Copyright 2018 AIP Publishing.

Figure 4. Static βHRS values for eGFP, SHardonnay, and DsRed chromophores (shown with their first shell of surrounding residues) obtained at the
sTD-DFT-xTB level of theory and compared to ONIOM MP2:HF/6-31+G(d) reference values. Frequency dispersion of βHRS for PPG10,
calculated at the sTD-DFT-xTB level of theory and compared to ONIOM HF/6-31+G(d):HF/6-31G(d) and LC-BLYP/6-31+G(d):HF/6-
31G(d) results. Reprinted with permission from ref 66. Copyright 2018 AIP Publishing.
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then combined to calculate 2PA cross sections. As observed for
the first hyperpolarizability frequency dispersion,66 the quality
of the response vectors seems to worsen at higher energies.
This is not very relevant for first hyperpolarizabilities because
experimental dynamic values are mostly extrapolated to zero
frequency prior to a comparison to theory. However, 2PA
transitions are less forgiving with that respect. One future
challenge is to cure this problem. Two possible solutions are
currently investigated. First, we propose to improve the
approximate two-electron integrals by using a multipolar
expansion as it was introduced by one of us for GFN2-
xTB.71 There, all electrostatic interaction and exchange-
correlation energies include terms up to second-order in the
multipole expansion using cumulative atomic multipole
moments.73 Second, we suggest the reintroduction of an
approximated exchange-correlation kernel, as was done, e.g.,

for the DFTB method.74 Note that all molecular response
properties may benefit from these developments.
Another “by-product” of the quadratic response function is

the excited state absorption (ESA) which is derived from its
double residue to compute expectation values of the
(unrelaxed) state-to-state transition dipole moment. Due to
both approximations in the sTD-DFT quadratic response
function, only excited state transition amplitudes are needed,
which is computationally inexpensive compared to usual
excited state calculations. This implementation enables the
ultrafast evaluation of ESA spectra.51 Figure 6a presents the
transient ESA spectra of s-cis-β-carotene following a 498 nm
pump excitation recorded after 60 and 300 fs. The comparison
to sTD-DFT ESA calculations shows that the second excited
state is first populated. Then, it relaxes to the first excited state
after 300 fs. In this formalism, the extremely efficient sTD-

Figure 5. 2PA transitions of water and toluene at TD-DFT and sTD-DFT levels (BHandHLYP/6-31G(d)).

Figure 6. Transient ESA spectra of s-cis-β-carotene in n-hexane following a 498 nm pump excitation recorded after 60 and 300 fs compared to
sTD-DFT/ωB97X-D3/6-311+G(d,p) calculations for their first and second singlet excited-state absorption spectra. Transient absorption of PYP in
10 mM Tris−HCl buffer solution at pH 8.1, 1.5 ps after a 370 nm actinic excitation, compared to sTDA-xTB first singlet excitation, absorption,
“fake” stimulated emission, and the simulated transient spectra. Reprinted with permission from ref 51. Copyright 2019 AIP Publishing.
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DFT-xTB and sTDA-xTB35 methods can be applied as well to
treat systems of a few thousands of atoms. Employing the
sTDA-xTB scheme, we determined the ESA spectrum of the
photoactive yellow protein (PYP) composed of 1931 atoms
and explained main features of the corresponding pump/probe
experiment (see Figure 6b).51 Recently, we extended the linear
response sTD-DFT method to the evaluation of frequency-
dependent optical rotation (OR).65 We took benefit of the
existing implementation for the polarizability and adapted it for
the evaluation of the electric dipole-magnetic dipole polar-
izability. In this case, the antisymmetric linear response vector
needs to be computed. For systems with a valence state-
dominated response, the sTD-DFT method provides good
quantitative agreement with experiment. This is especially true
for substituted helicenes as shown in Figure 7. These results
showed that the sTD-DFT method could be quite useful for
the design of new helicenes with enhanced chiroptical
properties, e.g., new chiral bilayer nanographenes.75

For smaller molecules, with a Rydberg state-dominated
response, the agreement of the sTD-DFT and TD-DFT results
is less good but still acceptable. Because optical rotations are
usually evaluated at 589.3 nm, sTD-DFT values are affected by
the worsening of the response at higher frequency as was
observed for other optical properties. However, linear response
properties are less affected than nonlinear ones, for which
double resonances come into play. Nevertheless, sTD-DFT
optical rotation values should also benefit from future method
developments. Note that, for optical rotations, the sTD-DFT-
xTB method gives poor results, probably because the basis set
used is too small to treat such a complicated (signed) response
property correctly. To improve the entire sTD-DFT-xTB
scheme, we propose to replace the existing model by a new
general tight-binding (gTB) method based on a nonself-
consistent mean-field electronic structure theory. The basic
idea here is to generalize the existing TB schemeswhich are
limited to a mostly minimal valence atomic orbitals basis set
to a general (double- or triple-ζ) basis set as usually used in

standard DFT or WFT methods. Work in this direction is in
progress in our laboratory. This implementation will also be
beneficial for the evaluation of 2PA cross sections that usually
need larger basis sets.
For direct comparisons to experiment, an implicit solvation

model is crucial to treat large systems such as fluorescent
proteins because including explicit solvent molecules is
computationally prohibitive. While the ground state includes
implicit solvation terms self-consistently, nonequilibrium
solvent effects are not accounted for in the stda program.67

An implicit model such as the polarizable continuum model
(PCM)76 treats the solvent as a polarizable cavity around the
solute. In solution, the solvent environment is polarized when
an electronic (virtual) transition occurs. Considering equili-
brium effects means that the solvent has the time to
adiabatically adjust to the perturbation. Then, solvent electrons
and nuclei are acclimated to the new solute electronic state. In
a nonequilibrium regime, due to a fast perturbation, only the
solvent electrons have the time to adjust themselves to the
perturbation. This is the typical case for experimentally
recorded optical spectra. Two approaches exist to treat
nonequilibrium effects: the linear response method77,78 and a
state-specific scheme,79−82 which both may be implemented in
the stda program.

Interpretation Tools. We took special care in developing
tools for the interpretation of excited state and response
calculations in the stda program. To characterize excited
states, natural transition orbitals (NTOs) were recently added.
They are particularly important to provide a method-
independent orbital picture to electronic transitions as it was
stressed again recently by Krylov.83 NTOs were also used to
describe spin-flip excitations84 as it was proposed by Orms et
al.85 Two types of NTOs are defined in this case; i.e., type-I
SF-NTOs describe SF transitions from the reference to the
target SF state while type-II SF-NTOs are related to transitions
between SF states. They are particularly useful when the first
SF state is the ground state. Our first application was to

Figure 7. Comparison of experimental and theoretical optical rotations at the sodium D-line (589.3 nm) for a set of substituted helicenes obtained
at the sCAM-B3LYP/aug-cc-pVDZ level of theory in the velocity representation, except for compounds 1d1, 3a, and 3b including transition metals
for which we used the def2-SV(P) basis set. Reprinted with permission from ref 65. Copyright 2020 AIP Publishing.
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interpret absorption spectra of a set of conjugated expanded
indenofluorene and diindeno[n]thiophene derivatives with
possible diradical character.84

To provide a method-agnostic, chemically intuitive inter-
pretation of molecular optical response properties, we
introduced the RespA approach.86 This strategy includes two
interrelated schemes that describe response properties in terms
of newly introduced natural response orbitals (NROs) and
chemical fragment response. Both quantities are extracted from
the frequency-dependent perturbed one-electron transition/
current density matrix obtained from any quantum mechanical
response function calculation. It is currently only implemented
in the stda program but should be also available in other
quantum chemistry codes in the future. NROs provide a
compact virtual exciton picture by decomposing the response
in few hole and electron NRO pairs. Moreover, on-site and
between-site fragment responses partition the property in a
chemically intuitive manner. The first application of the RespA
approach was to interpret the optical rotation of particularly
difficult cases. For example, Figure 8 presents the decom-

position of the dominant βzz component of the optical rotation
tensor of (1S,4S)-norbornenone into NROs and fragment
response. The dominant NRO pair characterizes conveniently
the virtual transition that results from the coupling between the
π → π* from the CC bond and n → π* from the CO
bond. This was further confirmed by the fragment analysis. An
interesting future scope here is the use of the compact NRO
basis to evaluate response properties for large aggregates of
(supra)molecules using a virtual exciton coupling model. This
will render the treatment of systems such as protein oligomers
or large dye clusters possible.
An Extra Challenge Ahead. Last year, Ochsenfeld and co-

workers87 employed sTD-DFT/sTDA methods combined with
the Hammes-Schiffer−Tully model and GPU-based integral
routines to reduce the cost of nonadiabatic molecular dynamics

(NAMD) simulations. However, they evaluated exactly two-
electron integrals because derivatives of simplified two-electron
integrals with respect to nuclear coordinates were not available.
They concluded “For all investigated systems ranging from
small organic molecules to proteins, excited-state properties
and dynamics are described qualitatively correctly with a
significantly reduced computational cost.” This promising
result suggests further development of the simplified methods
for NAMD and related dynamical calculations. This requires
implementation of two-electron integral derivatives with
respect to nuclear coordinates in the simplified framework. A
properly developed code for nuclear derivatives additionally
enables computation of emission spectra and vibrationally
resolved band shapes. Most computed excitation energies for
large systems are vertical transitions implying that the
geometry of the molecule does not change upon excitation.
While this is a reasonable approximation for some excited-state
properties, it does not provide rigorous observables directly
comparable to experiment.12,88 An accurate comparison should
include computations of the 0−0 energy that involve excited
state geometry optimizations, calculations of the zero-point
vibrational energy (ZPVE) for both states, and optionally, the
vibrationally resolved band shape.89−93 As a perspective for
sTD-DFT/sTDA/SF-sTD-DFT methods, one should imple-
ment both excited-state analytical gradient and finite-difference
Hessian including a special treatment for the configuration
truncation procedure. This future implementation could
characterize nonadiabatic coupling in particular with the
spin-flip method and respective spin-adapted and/or mixed-
reference versions. Note that the SF-TD-DFT method has
become a very important tool to explore potential energy
surfaces for photochemistry,94 especially for medium-sized
systems.

■ CONCLUSIONS
In this Perspective, we reviewed recent developments in the
sTD-DFT framework as well as future challenges ahead. For
strongly correlated systems, we discussed the ultrafast SF-sTD-
DFT method that provides good spin symmetry for (large)
systems usually not well treated by standard DFT. This result
suggests a way for the development of new simplified methods
to treat strongly correlated systems, including (i) simplified
versions of SA-SF-TD-DFT or MR-SF-TD-DFT methods, (ii)
the inclusion of nonlocal electron correlation effects with the
(D) correction to the sTD-DFT scheme, and (iii) the
simplified version of the d-TD-DFT method.
We recently extended the range of application of the sTD-

DFT method to a range of molecular optical response
properties: polarizability, optical rotation, first hyperpolariz-
ability, 2PA cross sections, and excited state absorption. We
also identified some drawbacks for the characterization of
frequency dispersions at small wavelengths that directly impact
the usability of the 2PA part of the stda program. To cure
this, we propose to replace the monopole approximation for
the evaluation of two-electron integrals by a multipole scheme
and to restore the exchange-correlation kernel in an
approximate way. Concerning large systems, we are currently
investigating the development of a new and more flexible tight-
binding scheme than the actual sTD-DFT-xTB method.
We provide interpretation tools for excited states but also for

response properties with the new method-agnostic RespA
approach. We introduced the concept of natural response
orbitals that may be used in the future in a virtual exciton

Figure 8.Molecule coordinate system for norbornenone as well as the
hole and electron NRO pair for the largely weighted contribution to
the βzz component of the OR tensor. The weight is provided above
the arrows while the response of NRO pairs are shown below.
Fragment definitions for norbornenone as well as important on-site
(red) and between-sites response (green for A < B and blue for A >
B) for the βzz component of the OR response tensor are also shown.
Reprinted with permission from ref 86. Copyright 2020 American
Chemical Society.
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coupling model to characterize optical response properties of
large systems such as protein oligomers or clusters of dyes.
Finally, the development of both excited-state analytical
gradient and finite-difference Hessians with simplified methods
is a viable option.
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