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Recent developments in nonlinear imaging microscopy show the need to implement new theoretical
tools, which are able to characterize nonlinear optical properties in an efficient way. For second-
harmonic imaging microscopy (SHIM), quantum chemistry could play an important role to design new
exogenous dyes with enhanced first hyperpolarizabilities or to characterize the response origin in large
endogenous biological systems. Such methods should be able to screen a large number of compounds
while reproducing their trends and to treat large systems in reasonable computation times. To fulfill
these requirements, we present a new simplified time-dependent density functional theory (sTD-DFT)
implementation to evaluate the first hyperpolarizability where the Coulomb and exchange integrals are
approximated by short-range damped Coulomb interactions of transition density monopoles. For an
ultra-fast computation of the first hyperpolarizability, a tight-binding version (sTD-DFT-xTB) is also
proposed. In our implementation, a sTD-DFT calculation is more than 600 time faster with respect
to a regular TD-DFT treatment, while the xTB version speeds up the entire calculation further by at
least two orders of magnitude. We challenge our implementation on three test cases: typical push-pull
π-conjugated compounds, fluorescent proteins, and a collagen model, which were selected to model
requirements for SHIM applications. Published by AIP Publishing. https://doi.org/10.1063/1.5037665

I. INTRODUCTION

Characterizing theoretically nonlinear optical properties
of compounds useful for nonlinear imaging microscopy such
as multicolor two-photon imaging microscopy (M2PIM)1 or
second harmonic imaging microscopy (SHIM)2 is a real chal-
lenge for quantum chemistry where new methods need to be
implemented and tested. These two imaging techniques are
based on nonlinear optical phenomena: two-photon absorp-
tion (2PA) (and emission) and second-harmonic generation
(SHG).3,4 SHIM of biological tissues requires endogenous
and/or exogenous dyes with large first hyperpolarizability (β).
Endogenous dyes encompass many different types of structural
proteins where their molecular arrangements can be probed
by SHIM. Among endogenous dyes, collagen is probably
the most important one for the diagnosis of tissue alteration
due to diseases.5 For example, in case of fibrosis, the three-
dimensional distribution of collagen is modified and fibrillar
collagen accumulates in the tissue. In the case of exogenous
dyes, molecular properties need to be carefully adjusted to pro-
vide dyes with, e.g., limited phototoxicity.6 The desired main
properties are (i) a large first hyperpolarizability at the wave-
length of illumination to maximize the signal, (ii) charge trans-
fer bands enhanced at approximately the wavelength (one-
photon enhancement) and half the wavelength (two-photon

a)Author to whom correspondence should be addressed: mdewergifosse@
gmail.com

enhancement) in the biological tissue transparency window
(700-900 nm), to achieve resonance enhancement, (iii) a high
affinity for biological membranes, and (iv) the ability to
aggregate in a non-centrosymmetric way since centrosymmet-
ric structures have no SHG responses. Amphiphilic dyes are
well suited to satisfy conditions (iii) and (iv). Biological sys-
tems contain membranes and interfacial structures, which are
asymmetric environments and are therefore favorable to orga-
nize the chromophores, leading to constructive interferences
and enhanced SHG responses. Unfortunately, condition (ii) is
counterproductive with respect to the design of dyes exhibit-
ing limited photodamage. Most of SHG exogenous probes
currently used for SHIM can lead to photodamage7,8 where
their SHG signals are always accompanied by two-photon
fluorescence9,10 indicating that the excited states are popu-
lated via a multi-photon process. This demonstrates the need
for designing new dyes with large SHG responses since they
could be detected with smaller laser intensities as well as
low or non-existent 2PA activity in the experimental range
of frequencies.

Designing new SHIM dyes or rationalizing the response
origin in endogenous biological structures could benefit from
a fast and systematic quantum chemical evaluation of β. But
predicting the β value of molecules and matter is, however,
a challenging task, owing to many subtle issues that need to
be considered. The description of the first hyperpolarizabil-
ity requires accurate quantum chemistry methods account-
ing for (i) electron correlation effects, (ii) proper frequency
dispersion, and (iii) environment effects.11,12 Concerning
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electron-correlation effects, two major types of methods are
usually employed to evaluate β: wave function methods and
density functional theory (DFT) approaches. Due to their com-
putational requirements, wave function methods can only be
applied to relatively small systems. They can be used as ref-
erence methods in order to assess the reliability of DFT used
with different approximate exchange-correlation (XC) func-
tionals.13–16 Among wave function methods, de Wergifosse
and Champagne13 showed that the MP2 method predicts β
of push-pull π-conjugated systems with an accuracy simi-
lar to coupled cluster singles and doubles calculations with
a perturbative estimate of triples [CCSD(T)]. MP2 can treat
medium-sized systems, but usually only the static value for
β is obtained using finite-field perturbation theory.17 In that
case, approximate schemes have been developed where the
static β value is calculated at a correlated level, while the
frequency dispersion is estimated at a lower theory level, typi-
cally using the time-dependent Hartree-Fock (TDHF) scheme.
Carefully used, TD-DFT (time-dependent density functional
theory) can provide an efficient way to determine nonlinear
properties for medium to large systems but sometimes for
non-negligible computational costs. This implies a wise selec-
tion of the XC functional and the basis set. In the case of
push-pull π-conjugated compounds, de Wergifosse and Cham-
pagne13 showed that among XC correlation functionals, the
long-range corrected LC-BLYP functional (LC-BLYP) seems
the most reliable to characterize trends for a set of molecules in
a systematic manner. Solvent effects are commonly accounted
for by using continuum models. However, the reliability of
implicit solvation models was recently challenged by compar-
ison against an explicit scheme where the solvent molecules
are represented by point charges,18–20 and where the first
solvation shell is considered explicitly in the QM calculation
as well.19 It was shown that β calculated with the implicit
solvation model are usually larger than those obtained with
the multiscale approach.18 The effects of the environment
can also be treated explicitly using the ONIOM (our own
N-layered integrated molecular orbital and molecular mechan-
ics) method,21 where the system is divided into successive
layers: the core layer, which should be treated at the highest
level of approximation (quantum level with electron correla-
tion) and the outermost layer that can be treated at a low level
(semi-empirical Hamiltonian or Hartree-Fock level). In stud-
ies on fluorescent proteins,22,23 de Wergifosse et al. showed
that in order to achieve quantitative agreement with experi-
ment, electron correlation is crucial to get accurate molecular
first hyperpolarizabilities as well as to describe the first shell of
residues (amino acids and water molecules) involving H-bonds
and van der Waals interactions.

The aim of this article is to introduce a new sim-
plified TD-DFT formulation to evaluate first hyperpolar-
izabilities, providing a fast and efficient method able to
screen large numbers of compounds and to treat very large
molecular systems. The density-matrix based linear and
nonlinear-response TD-DFT formalism24–30 is modified in
the same sTD-DFT (simplified TD-DFT) framework as pro-
posed by Grimme and co-workers31–33 for the determina-
tion of electronic excitation spectra of very large molecules.
This formalism is also extended to an existing tight-binding

based sTD-DFT approximation (sTD-DFT-xTB), following
the method proposed by Grimme and Bannwarth.33 A similar
scheme was proposed by Nénon and Champagne34,35 using
the SCC-DFTB (self-consistent charge density functional
tight-binding) method. Though, only the evaluation of the
static property was done using a finite-field method. After a
recapitulation of the density-matrix based linear and nonlinear-
response TD-DFT formalism and its sTD-DFT counterpart
in Sec. II, three challenging cases are tested: push-pull
π-conjugated compounds,13,36 fluorescent proteins,22,23,37 and
a collagen model,38 comprising more than 1035 atoms in
the largest system considered. Section III gives details about
the implementation, systems, and computations, Sec. IV con-
tains the results, and conclusions and outlooks are outlined in
Sec. V.

II. THEORY
A. Linear and quadratic-response TD-DFT

The sTD-DFT method to evaluate the first hyperpo-
larizability employs the density-matrix based linear and
nonlinear-response TD-DFT formalism.24–30 The popular
Tamm-Dancoff approximation introduced by Hirata and Head-
Gordon25 in the quantum chemistry community was for-
mulated in this framework, which was extended to linear
and nonlinear responses by Furche.26 We are following the
derivation of Zahariev and Gordon29 that was implemented
in GAMESS,39,40 in 2014. Recently, Furche and co-workers30

reported a TURBOMOLE41 implementation using a similar
formalism. In the following, p, q, r, s indices refer to gen-
eral molecular orbitals, i, j, k, l to occupied, and a, b, c, d to
unoccupied molecular orbitals.

Prior to applying any perturbation, the system belongs to
its ground state where the one-electron density matrix ρ(r, r′)
is developed in the Kohn-Sham spin-orbitals φp(r),

ρ(r, r′) =
∑
pq

Dpqφp(r)φ∗q(r′), (1)

where Dpq is a one-particle density matrix component in this
representation. When applying a perturbation, the time evolu-
tion of the discrete-index representation of the density matrix
obeys to the Heisenberg equation-of-motion

i
∂Dpr

∂t
=

∑
q

(FKS
pq Dqr − DpqFKS

qr ), (2)

where FKS is the Kohn-Sham equivalent to the Fock matrix.
Suppose that the system is perturbed by an external monochro-
matic oscillating electric field at a frequency ω,

~F(t) = ~f (ω)[e−iωt + eiωt], (3)

with field amplitudes ~f (ω). The time-dependent perturbation
reads

Vpq(t) = λ[hpqe−iωt + h∗pqeiωt], (4)

where hpq =
∑x,y,z
ζ fζ (ω)〈φp | µ̂ζ |φq〉 and λ is a dimension-

less coupling strength. Note that considering a monochromatic
electric field leads naturally to the linear case. The time evo-
lution of the density matrix and the Fock matrix are expressed
as perturbation expansion
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Dpq = D(0)
pq + λD(1)

pq + λ2D(2)
pq + · · · , (5)

FKS
pq = F(0)

pq + λF(1)
pq + λ2F(2)

pq + · · · . (6)

Setting λ = 1, inserting (5) and (6) into the equation-of-
motion (2), and solving it for the first-order perturbation using
idempotence relations lead to the linear response TD-DFT
equation

i
∂D(1)

pr

∂t
=

∑
q

(F(1)
pq D(0)

qr − D(0)
pq F(1)

qr ) +
∑

q

(F(0)
pq D(1)

qr − D(1)
pq F(0)

qr ),

(7)
where the linear response of the density matrix is expressed as

D(1)
pq = [dpqe−iωt + d∗pqeiωt]. (8)

Note that only occupied-unoccupied and unoccupied-occupied
density matrix blocks are nonzero. The first-order response of
the Fock matrix reads

F(1)
pq = Vpq(t) +

∑
r,s

∂Fpq

∂Drs
D(1)

rs . (9)

Equations (8) and (9) are combined into (7) and by collecting
terms in e−iω t and in eiω t , the linear-response matrix equation
is obtained,


*
,

A B

B∗ A∗
+
-
− ω *

,

1 0

0 −1
+
-


*
,

X(ω)

Y(ω)
+
-
= *

,

h

h
+
-
, (10)

where one defines Xai = dai and Yai = dia,

Aia,jb = δijδab(εa − ε i) + 2(ia|jb) − ax(ij |ab)

+ (1 − ax)(ia|fXC |jb), (11)

and

Bia,jb = 2(ia|bj) − ax(ib|aj) + (1 − ax)(ia|fXC |bj). (12)

A and B components have been written for a global hybrid
density functional in the singlet restricted case. Here, ax is the
amount of Fock exchange, εp is the energy of the p orbital,
(ia�� jb), (ia��bj), and (ib��aj) are exchange type integrals in the
Mulliken notation, (ij��ab) is a Coulomb-type integral, and
(ia�� f XC

�� jb) and (ia�� f XC
��bj) are the responses of the exchange-

correlation functional. Note that by switching off the pertur-
bation, Eq. (10) leads to the usual TD-DFT matrix equation to
compute excited state energies and eigenvectors. Equation (10)
is reformulated by assuming that the orbitals used are real and
by taking its first derivative with respect to the external applied
electric field ( ∂

∂Fζ
|~F=0),


*
,

A B

B A
+
-
− ω*

,

1 0

0 −1
+
-


*
,

Xζ (ω)

Yζ (ω)
+
-
= −*

,

µζ

µζ
+
-
, (13)

where the derivative of the first-order perturbation of the
density matrix defines the frequency-dependent response vec-

tors
∂D(1)

ai (ω)
∂Fζ

|~F=0 = Xζ ,ai(ω) + Yζ ,ai(ω) and where µζ ,ai

= 〈φa | µ̂ζ |φi〉. When considering a monochromatic perturba-
tion, the time evolution of the electric dipole moment depends

on the polarizability tensor,
↔
α(−ω;ω). Since the perturbation

expansion of the electronic component of the dipole moment
is expressed as

µζ (t) = −2



∑
pq

µζ ,pqD(0)
pq +

∑
ω

x,y,z∑
η

∑
pq

µζ ,pq
∂D(1)

pq (ω)

∂Fη
|~F=0 fη(ω)e±iωt

+
1
2!

∑
ω1,ω2

x,y,z∑
η,ξ

∑
pq

µζ ,pq
∂2D(2)

pq (ω1,ω2)

∂Fη∂Fξ
|~F=0 fη(ω1)fξ (ω2)e±iωσ t + · · ·


, (14)

and that the Taylor expansion of the time-dependent dipole
moment reads

µζ (t) = µζ (0) +
∑
ω

x,y,z∑
η

αζη(−ω;ω)fη(ω)e±iωt

+
1
2!

∑
ω1,ω2

x,y,z∑
η,ξ

βζηξ (−ωσ;ω1,ω2)

× fη(ω1)fξ (ω2)e±iωσ t + · · ·, (15)

a component of the polarizability tensor is defined as

αζη(−ω;ω) = −2
∑

ai

µζ ,ai
∂D(1)

ai (ω)

∂Fη
|~F=0

= −2
∑

ai

µζ ,ai(Xη,ai(ω) + Yη,ai(ω)). (16)

The linear response vectors at a frequency ω necessary to
evaluate the polarizability are obtained as

Xζ (ω) + Yζ (ω) =
−2µζ

(A + B) − ω2(A − B)−1
. (17)

In the case of two incident photons,ω1 andω2, the dipole
moment quadratic response is described by the first hyper-

polarizability tensor,
~↔
β(−ωσ;ω1,ω2). To obtain this quantity,

one needs to evaluate the quadratic-response TD-DFT equa-
tion obtained by solving the Heinsenberg equation-of-motion
for the second-order to obtain quadratic response vectors. This
can be alleviate by using the “(2n + 1)” theorem and only eval-
uating linear-response vectors calculated for three different
frequencies: ω1, ω2, and −ωσ = −ω1− ω2. The derivation
of the first hyperpolarizability component, βξζη(−ωσ; ω1,
ω2), in terms of linear-response vectors is out of the scope
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of this paper, but the interested reader can follow the pro-
gression of Zahariev and Gordon,29 further information can
be gathered from the seminal paper by Furche26 and a paper
by Wang et al.27 The linear-response solution of the first
hyperpolarizability reads

βξζη(−ωσ;ω1,ω2) = A − B + C, (18)

A =
∑

perm.ξ ,ζ ,η




∑
aij

Xξ ,ai(−ωσ)

−µζ ,ij +

∑
ck

f HXC
ij,ck

(
Xζ ,ck(ω1)

+ Yζ ,ck(ω1)
)

Yη,aj(ω2)



, (19)

B =
∑

perm.ξ ,ζ ,η




∑
iab

Xξ ,ai(−ωσ)

−µζ ,ab +

∑
ck

f HXC
ab,ck

(
Xζ ,ck(ω1)

+ Yζ ,ck(ω1)
)

Yη,bi(ω2)



, (20)

C =
∑

perm.ξ ,ζ ,η




∑
aibjck

gXC
ai,bj,ck(Xξ ,ai(−ωσ) + Yξ ,ai(−ωσ))

× (Xζ ,bj(ω1) + Yζ ,bj(ω1))(Xη,ck(ω2) + Yη,ck(ω2))



, (21)

where “perm.ξ, ζ , η” is related to the inclusion of six permuta-
tions of indices (and related frequencies) into the summation.
f HXC
ij,ck is the Hartree exchange-correlation kernel,

f HXC
ij,ck = 2(ij |ck) − ax( jk |ci) + (1 − ax)(ij | fXC |ck), (22)

and gXC
ai,bj,ck is the third functional derivative of the exchange-

correlation functional.

B. Simplified TD-DFT approaches

Following the simplified approach used in sTDA31,33

and sTD-DFT,32 three modifications are applied in the lin-
ear response TD-DFT equation (13). First, the response of
the exchange-correlation functional is neglected in A and B
matrices. Second, the Coulomb and exchange integrals are
approximated by short-range damped Coulomb interactions
of transition density monopoles. While a Löwdin popula-
tion analysis determines transition charge densities qA

pq cen-
tered on atom A, the two-electron integrals are approximated
by

(pq|rs)′ =
N∑
A

N∑
B

qA
pqqB

rsΓAB, (23)

where ΓAB is the Mataga-Nishimoto-Ohno-Klopman
(MNOK)42–44 damped Coulomb operator. For Coulomb inte-
grals (ij |ab)′J , the MNOK operator takes the form

Γ
J
AB =

(
1

(RAB)yJ + (axη)−yJ

) 1
yJ

, (24)

where RAB is the interatomic distance, yJ is a parameter,
and η is the chemical hardness mean of atoms A and B.

The MNOK operator is slightly different for approximated
exchange integrals (ia|jb)′K ,

Γ
K
AB =

(
1

(RAB)yK + η−yK

) 1
yK

, (25)

where yK is another parameter. Simple linear relations deter-
mine yJ and yK parameters in the ax range from 0 to 1.31 The
chemical hardness values used are tabulated for all elements.45

The A and B matrix elements are then approximated by

A′ia,jb = δijδab(εa − ε i) + 2(ia|jb)′K − (ij |ab)′J , (26)

B′ia,jb = 2(ia|bj)′K − ax(ib|aj)′K . (27)

Note that the amount of Hartree-Fock exchange is not appear-
ing anymore in Eq. (26) though, the MNOK Coulomb operator
implicitly incorporates it. The third simplification concerns
the truncation of the CI space which is controlled by a single
energy cut-off parameter; for details, see the original sTDA
publication.31 The implication of this will be discussed in
Sec. IV.

The linear-response vectors used in the sTD-DFT method
to compute the polarizability and the first hyperpolarizability
are obtained by the sTD-DFT equivalent of Eq. (17),

X′ζ (ω) + Y′ζ (ω) =
−2µζ

(A′ + B′) − ω2(A′ − B′)−1
. (28)

The polarizability is then determined by

α′ζη(−ω;ω) = −2
∑

ai

µζ ,ai(X
′
η,ai(ω) + Y ′η,ai(ω)). (29)

For the first hyperpolarizability, we only consider the

second-harmonic generation case [
~↔
β

′

(−2ω;ω,ω)] where the
two incident frequencies are degenerate. To reduce the compu-
tational cost of the method, the sTD-DFT evaluation of the first
hyperpolarizability needs two extra simplifications: first, the C
term in Eq. (18) is dropped and second, the f HXC terms in both
A and B equations are neglected. For the second approxima-
tion, if one wants to keep the f HXC kernel, two new groups of
three-center two-electron integrals need to be parameterized.
Since we are aiming for a simple and fast method with as few
parameters as possible, these two approximations represent a
reasonable compromise. Note that a reparameterization of yJ

and yK could encompass some effects of these simplifications.
The impact of this is discussed for two push-pull π-conjugated
compounds in Sec. IV A. The linear-response solution of the
second-harmonic generation first hyperpolarizability in the
sTD-DFT approximations reads

β′ξζη(−2ω;ω,ω) = A′ − B′, (30)

A′ =
∑

perm.ξ ,ζ ,η




∑
aij

X ′ξ ,ai(−2ω)
[
−µζ ,ij

]
Y ′η,aj(ω)




, (31)

B′ =
∑

perm.ξ ,ζ ,η




∑
iab

X ′ξ ,ai(−2ω)
[
−µζ ,ab

]
Y ′η,bi(ω)




. (32)

In addition, we interface the above described sTD-DFT
scheme with the xTB tight-binding method,33 providing an
unprecedented ultra-fast approach to the second-harmonic
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generation response for large systems (sTD-DFT-xTB approx-
imation). See Ref. 33 for more information about sTD-DFT-
xTB for the calculation of excitation spectra. Briefly, in this
method, the KS-DFT orbitals and eigenvalues are replaced by
corresponding data from an extended basis set tight-binding
calculation.

III. COMPUTATIONAL DETAILS

The sTD-DFT linear and quadratic responses are imple-
mented in the sTDA program.31 To obtain the linear-response
vectors X′ζ (ω) and Y′ζ (ω) for a frequency ω, one only needs
to invert two matrices. For a list of frequencies, the program
inverses (A′−B′) once and [(A′+B′)−ω2(A′−B′)−1] for each
frequency. When calculating the SHG first hyperpolarizability,
the linear-response vectors are computed for ω and −2ω. For
the static case, Kleinman’s conditions46 are applied to reduce
the computational cost, where only ten tensor components are
calculated. In the frequency domain, the SHG β tensor still has
some symmetries because of the two degenerated frequencies.
There, we calculate 18 different tensor components.

We tested our implementation on three challenging cases.
The first one considers a set of six push-pull π-conjugated
molecules (Fig. 1). Four of these molecules were investigated
by de Wergifosse and Champagne in 2011 to assess elec-
tron correlation effects on the first hyperpolarizability:13

(H3C)2N−−(CH==CH)6−−NO2 [m−3], (H3C)2N−−(C≡≡C)6

−−NO2 [m−4], N,N-dimethyl-4-(4-nitrophenyl)aniline
[m−5], and N,N-dimethyl-5-(5-nitrothiophen-2-yl)thiophen-
2-amine [m−6]. Two smaller molecules were investigated
at the CCSD level of theory assessing frequency-dispersion
effects:36 H2N−−CH==CH−−CH==CH−−NO2 [m−1] and

FIG. 1. First case study: the eight push-pull π-conjugated molecules.

H2N−−C≡≡C−−C≡≡C−−NO2 [m−2]. We used the same
geometries as in these previous studies.13,36 The reference
TD-DFT calculations were done using the BHandHLYP47

functional with the 6-31G(d)48 and 6-31+G(d)49 Gaussian
basis sets and compared to sTD-DFT results. Reference values
were taken from Refs. 13 and 36 and compared to sTD-DFT-
xTB results. This includes MP2, CCSD, and CCSD(T) data.
In the comparison with xTB, we have included two extra

FIG. 2. Molecules in the second case
study: the three fluorescent protein chro-
mophores.
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FIG. 3. Molecules used in the second case study: eGFP chromophore and part of its first shell of residues. The sketched picture corresponds to the high ONIOM
layer and the “ball-and-stick” image to the full system considered where the low layer appeared in wires.

FIG. 4. The collagen triple helix [(Pro-Pro-Gly)10]3 model used in the third case study.

molecules from Ref. 13 (H3C)2N−−(CH==CH)4−−NO2 [m−7]
and (H3C)2N−−(C≡≡C)4−−NO2 [m−8].

The second case study concerns three fluorescent pro-
teins: the so-called eGFP, SHardonnay, and DsRed, which
were characterized experimentally and theoretically for their
SHG properties.22,23,37,50,51 SHardonnay was the first fluores-
cent protein especially designed to produce enhanced SHG
values.22 All these three proteins are derivatives of the green
fluorescent protein where the protein β-barrel encapsulates the
chromophore. To characterize them theoretically, two differ-
ent models were considered: I. the chromophore only (Fig. 2),
keeping the same conformation as in the protein, that was pre-
viously characterized at the TDHF, TDDFT, and MP2 levels of
theory and II. the chromophore surrounded by its first shell of
residues (including water molecules and amino acids from the
protein-barrel, see Fig. 3) that was treated using the multi-layer
ONIOM MP2:HF method in Refs. 22 and 23. Here, we used
the first type of model to assess performances of sTD-DFT for
β values in comparison with BHandHLYP/6-31+G(d) results.

The second and larger models were used to characterize the
performance of the sTD-DFT-xTB method and compared to
ONIOM MP2:HF reference values.

In the last part, we used a model of a collagen triple
helix [(Pro-Pro-Gly)10]3 (PPG10, see Fig. 4) where in a pre-
vious publication, comparisons were made between ONIOM
HF:HF and LC-BLYP:HF results38 and experiment.52 This
model serves to assess the performance of the sTD-DFT-xTB
method to characterize the SHG first hyperpolarizability of a
large biochemical system.

One quantity which is usually extracted from hyper-
Rayleigh scattering experiments is βHRS .4 Since this quantity
encompasses all β-tensor components, it was systematically
evaluated and discussed here. The βHRS is defined as the mean
of β-tensor orientations

βHRS(−2ω;ω,ω) =
√{〈

β2
ZZZ

〉
+

〈
β2

ZXX

〉}
, (33)

where molecular averages without assuming Kleinman’s con-
ditions53 are defined in the laboratory frame as

〈
β2

ZZZ

〉
=

1
7

x,y,z∑
ζ

β2
ζζζ +

4
35

x,y,z∑
ζ,η

β2
ζζη +

2
35

x,y,z∑
ζ,η

βζζζ βζηη +
4
35

x,y,z∑
ζ,η

βηζζ βζζη +
4
35

x,y,z∑
ζ,η

βζζζ βηηζ +
1
35

x,y,z∑
ζ,η

β2
ηζζ

+
4

105

x,y,z∑
ζ,η,ξ

βζζη βηξξ +
1

105

x,y,z∑
ζ,η,ξ

βηζζ βηξξ +
4

105

x,y,z∑
ζ,η,ξ

βζζη βξξη +
2

105

x,y,z∑
ζ,η,ξ

β2
ζηξ +

4
105

x,y,z∑
ζ,η,ξ

βζηξ βηζξ ,

(34)
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and〈
β2

ZXX

〉
=

1
35

x,y,z∑
ζ

β2
ζζζ +

4
105

x,y,z∑
ζ,η

βζζζ βζηη −
2
35

x,y,z∑
ζ,η

βζζζ βηηζ +
8

105

x,y,z∑
ζ,η

β2
ζζη +

3
35

x,y,z∑
ζ,η

β2
ζηη −

2
35

x,y,z∑
ζ,η

βζζη βηζζ

+
1

35

x,y,z∑
ζ,η,ξ

βζηη βζξξ −
2

105

x,y,z∑
ζ,η,ξ

βζζξ βηηξ −
2

105

x,y,z∑
ζ,η,ξ

βζζη βηξξ +
2
35

x,y,z∑
ζ,η,ξ

β2
ζηξ −

2
105

x,y,z∑
ζ,η,ξ

βζηξ βηζξ .

(35)

In addition, from these quantities, the depolarization ratio can
be obtained,

DR =
I2ω
VV

I2ω
HV

=

〈
β2

ZZZ

〉〈
β2

ZXX

〉 . (36)

All reported β values are given in a.u. [1 a.u. of β = 3.6213
× 10−42 m4 V−1 = 3.2064 × 10−53 C3 m3 J−2 = 8.639 × 10−33

esu] within the Taylor series convention.54 The TD-DFT β cal-
culations were computed using GAMESS quantum chemistry
program.39,40

IV. RESULTS
A. Push-pull π-conjugated compounds

Push-pull π-conjugated molecules exhibit enhanced first
hyperpolarizabilities modulated by donor-acceptor groups
and the nature of their π-conjugated pathways. The six
prototypical molecules [m−1 to m−6] were investigated at
BHandHLYP/6-31G(d) and 6-31+G(d) levels of theory using
TD-DFT as reference for comparison with sTD-DFT results
and evaluated for thirteen different wavelengths (photon ener-
gies): 632 (1.96), 670 (1.85), 713 (1.74), 751 (1.65), 794 (1.56),

855 (1.45), 929 (1.33), 1240 (1.00), 1064 (1.17), 1500 (0.83),
1900 (0.65), 4133 (0.30), and∞ (0) nm (eV). Note that for an
amount of exact exchange of 0.5, yK = 1.66 and yJ = 1.115.
sTD-DFT calculations require an energy cut-off parameter as
input related to the truncation of the CI space. This parameter
was originally designed to truncate the excitation space in a
way that excited states below that energy value are reasonably
accurate. For the evaluation of β, the response equations con-
verge for an energy cutoff above 10.0 eV. For safety reason
and since it does not increase much the amount of CPU time,
we chose an energy cutoff of 15.0 eV. Note that to achieve
the same accuracy using the sum-over-state expression, one
needs to include many more high-lying states up to at least
50.0–100.0 eV, increasing significantly the computation time.
For example, to compute the polarizability mean of m−1
with a truncation parameter of 15.0 eV, using response the-
ory 92% of the non-truncated calculated value is recovered,
while using the sum-over-state expression we have only 65%
of it.

Before discussing numerical results, it is noted that the
most important requirement for the proposed method should
be its ability to deal with off-resonance β responses. In a
hyper-Rayleigh scattering experiment, after measuring the

FIG. 5. Frequency dispersion of βHRS for H2N−−CH==CH−−CH==CH−−NO2 [m−1] and (H3C)2N−−(CH==CH)6−−NO2 [m−3] calculated using BHandHLYP
TD-DFT method with 6-31G(d) basis set. In blue, the C term and the Hartree exchange-correlation kernel are neglected.
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dynamic βHRS of a solution, the next step is to extrapolate
the static response by removing resonance enhancements,
using an approximated scheme as the two-state approximation

or more refined models.55 This makes the static β, a cru-
cial parameter to compare theory to experiment. From a
theoretical point view, this workflow seems safer than directly

FIG. 6. Frequency dispersion of βHRS for H2N−−CH==CH−−CH==CH−−NO2 [m−1], H2N−−C≡≡C−−C≡≡C−−NO2 [m−2], (H3C)2N−−(CH==CH)6−−NO2 [m−3],
(H3C)2N−−(C≡≡C)6−−NO2 [m−4], N,N-dimethyl-4-(4-nitrophenyl)aniline [m−5], and N,N-dimethyl-5-(5-nitrothiophen-2-yl)thiophen-2-amine [m−6] calculated
using BHandHLYP TD-DFT and sTD-DFT methods with 6-31G(d) and 6-31+G(d) basis sets.
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comparing β values at the experimental wavelength because
resonance enhancements are difficult to handle due to the
divergent nature of response equations in the near-resonance
regime.

Another point that needs to be discussed, is the validity of
the two approximations to obtain the sTD-DFT first hyperpo-
larizability expression [Eq. (30)]. We have modified the TD-
DFT implementation in GAMESS by neglecting the C term
and the Hartree exchange-correlation kernel, like in the sTD-
DFT implementation. Figure 5 presents the comparison of TD-
DFT β values obtained with and without these approximations,
for m−1 and m−3, at wavelengths of∞, 4133, 1900, 1378, and
1064 nm. While these approximations really speed up the cal-
culation by almost a factor of two (in our unoptimized modified
version of GAMESS), the accuracy loss is negligible. These
preliminary results indicate that quantum chemistry pack-
ages may implement this approach to allow users to benefit
from these approximations, to avoid evaluating the very costly
Hartree exchange-correlation kernel. Further tests of these
approximations which can also be beneficial for the determina-
tion of two-photon absorption cross sections are ongoing in our
laboratory.

Figure 6 presents TD-DFT and sTD-DFT βHRS frequency
dispersions. Globally, the sTD-DFT static βHRS seem to be
very similar to TD-DFT ones. Considering the 6-31G(d) basis
set, static TD-DFT βHRS values are overestimated by 2.8%,
2.5%, and 0.9% for m−1, m−2, and m−6, respectively, and
underestimated by 11.9%, 3.0%, and 10.0%, for m−3, m−4,
and m−5, respectively. At the 6-31+G(d) level, the sTD-DFT
method underestimates TD-DFT reference values by 6.41%,
14.2%, 6.2%, 11.6%, and 0.1% for m−2, m−3, m−4, m−5,
and m−6, respectively. Only the m−1 value is overestimated
by 9.0%. With increasing frequency, the correlation between
TD-DFT and sTD-DFT remains quite good up to 1.0 eV. Above
that value, resonance enhancements are entering into the game
and are difficult to handle for the sTD-DFT default parameter-
ization. A reparameterization may improve the results, but it
cannot be expected that the monopole approximation used to
approximate the two-electron integrals can describe correctly
all types of excitations/deexcitations implied in the β scatter-
ing process at high energies. While this method provides a
good description of charge-transfer transitions,31 by increas-
ing the frequency, other types of excitation/deexcitation pro-
cesses play a role, like transition to higher Rydberg states,
for example. In Fig. 6, for m−4, one can observe that
around 1 eV the resonance enhancement of TD-DFT is
largely underestimated by sTD-DFT. To alleviate this, a mul-
tipole scheme for the two-electron integrals is currently under
investigation.

sTD-DFT computation times for hyperpolarizabilties
with an energy cutoff of 15.0 eV are much smaller than
TD-DFT ones as shown in Fig. 7. The TD-DFT and
sTD-DFT BHandHLYP/6-31G(d) calculations in Fig. 7 were
done on the same 8 cores desktop computer (Intel core i7-6700,
3.40 GHz). The reduction of the number of basis functions
after the CI-space truncation by the sTD-DFT method is also
shown. For m−1, the sTDA program used 0.01 min to com-
pute the static βHRS value, while GAMESS needed 4.35 min
to compute it. Note that the GAMESS implementation does

FIG. 7. Computation times at both TD-DFT and sTD-DFT levels using
BHandHLYP functional and 6-31G(d) basis set as a function of the num-
ber of basis functions. The number of basis functions after truncation of
the CI space by the sTD-DFT method is also provided. All the calcula-
tions were done on the same 8 cores desktop computer (Intel core i7-6700,
3.40 GHz).

not allow to compute a list of frequencies, meaning that for
each requested frequencies, A and B matrices need to be
recomputed each time. The sTD-DFT calculation for m−3
took 0.67 min, and the TD-DFT one took 30.9 min. This
impressive reduction of computational time and the ability
to characterize off-resonance first hyperpolarizabilties with
a relatively good accuracy makes the sTD-DFT method a
good choice to screen huge sets of compounds and to char-
acterize large systems, routinely not accessible by standard
TD-DFT.

FIG. 8. Static βzzz component for H2N−−CH==CH−−CH==CH−−NO2 [m−1],
H2N−−C≡≡C−−C≡≡C−−NO2 [m−2], (H3C)2N−−(CH==CH)6−−NO2 [m−3],
(H3C)2N−−(C≡≡C)6−−NO2 [m−4], N,N-dimethyl-4-(4- nitrophenyl)aniline
[m−5], N,N-dimethyl-5-(5-nitrothiophen-2-yl)thiophen-2-amine [m−6],
(H3C)2N−−(CH==CH)4−−NO2 [m−7], and (H3C)2N−−(C≡≡C)4−−NO2
[m−8] obtained at the sTD-DFT-xTB level of theory and compared to MP2,
CCSD, and CCSD(T)/6-31+G(d) reference values.13,36
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FIG. 9. Frequency dispersion of βHRS for H2N−−CH==CH−−CH==CH−−NO2 [m−1] and H2N−−C≡≡C−−C≡≡C-NO2 [m−2] calculated using sTD-DFT-vTB and
-xTB methods and compared to CCSD-QRF/6-31+G(d) reference values.36

Figure 8 presents static βzzz components computed at the
sTD-DFT-xTB level of theory for eight push-pull molecules
in comparison to high-level reference [MP2, CCSD, and
CCSD(T)] data.13,36 Note that the z direction is along the
π-conjugation pathway, and that βzzz component has the
largest response. Considering the level of approximation of
sTD-DFT-xTB, the purpose of this comparison is to test its
ability mainly to reproduce trends in a series of similar com-
pounds. The calculations presented in Fig. 8, all took less than
a couple of minutes for computing the full tensor. In 2011,
the computation of the static value of β at the CCSD(T)/6-
31+G(d) level for only one component took several months
using the finite-field method for m−7 and m−8.13 The com-
parison is straightforward showing that the sTD-DFT-xTB
method reproduces trends in a set of push-pull molecules,
except for m−1 and m−2, but the difference is small. Con-
sidering the level of approximation, the amplitude of the
response is well reproduced for m−1, m−2, m−5, m−6, and
m−7, with −28.2%, 22.8%, 40.8%, 23.2%, and 10.1% differ-
ence, respectively. These differences are still lower than when
using the HF method or most of DFT exchange-correlation
functionals.13,36 Figure 9 compares the βHRS frequency dis-
persion for m−1 and m−2 obtained at the sTD-DFT-vTB,
-xTB, and CCSD/6-31+G(d) levels of theory. vTB means that
the diffuse AO basis functions have been removed from the
xTB basis set, leaving only valence functions. Frequency dis-
persion curves are best described by the smaller basis set
but reference βHRS values are systematically under-evaluated.
For m−1, the inclusion of diffuse functions improves the
results for responses below 1.0 eV. Above that energy, how-
ever, xTB overestimates it. The basis set used in the xTB
method could probably be improved to evaluate such prop-
erties, like by including polarization functions, but those
are costly. As intermediate conclusion, the sTD-DFT-xTB
method represents a very cheap way to evaluate frequency

dependent first hyperpolarizabilities. This method is able to
predict trends of β response values of push-pull π-conjugated
molecules.

B. Fluorescent proteins

The next test case concerns three fluorescent proteins
showing large SHG responses. For the chromophore geome-
tries (Fig. 2), we computed BHandHLYP/6-31+G(d) TD-DFT
and sTD-DFT βHRS responses at the five wavelengths 1064
(1.17), 1378 (0.90), 1900 (0.65), 4133 (0.30), and ∞ (0) nm
(eV). To improve the match with the TD-DFT results, we tuned
the yJ parameter (called β in the original publication) on a
small model of the FP chromphore (Fig. 10) and obtained an
optimum yJ value of 0.83. Figure 11 presents results for eGFP,
SHardonnay, and DsRed, as well as for the FP model. With
the default parameters, sTD-DFT overestimates the static βHRS

by 22.0%, 23.8%, 32.6%, and 20.2% for the FP model, eGFP,
SHardonnay, and DsRed. Tuning the yJ parameter reduces the
difference to−0.14%, 3.7%, and−10.5%, for eGFP, SHardon-
nay, and DsRed. The aim of this was to show that to screen a set
of similar compounds, a small parameter adjustment can dra-
matically improve the results. Doing the adjustment on a small
model compound and applying it to larger molecules seem to

FIG. 10. Fluorescent protein chromophore model used to tune the Coulomb
parameter yJ .
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FIG. 11. Frequency dispersion of βHRS for chromophore models, eGFP, SHardonnay, and DsRed, calculated using BHandHLYP TD-DFT (in gray) and sTD-
DFT (in black) methods with 6-31+G(d) basis set. The blue line shows sTD-DFT results where the yJ parameter is optimized to best reproduce chromophore
model TD-DFT values.

be a reasonable general workflow to improve the accuracy of
the sTD-DFT method.

Considering the sTD-DFT-xTB method, Fig. 12 com-
pares static βHRS values to HF, BHandHLYP, and MP2/6-
31+G(d) values,22,23,37 for eGFP, SHardonnay, and DsRed
chromophores. While for eGFP, the MP2 reference is best
reproduced by BHandHLYP with a 5% over-estimation,
SHardonnay and DsRed BHandHLYP values under-estimate
MP2 βHRS by 50% and 45%, respectively. sTD-DFT-xTB
outperforms HF and BHandLYP, for SHardonnay and DsRed,
with βHRS values, 38% and 24%, lower with respect to the
MP2 level of theory.

Figure 13 presents sTD-DFT-xTB static βHRS results
on the larger systems, i.e., eGFP, SHardonnay, and DsRed

chromophores surrounded by their first shell of residues,
which were previously investigated at the ONIOM MP2:
HF/6-31+G(d) level of theory.22,23 Note that such ONIOM
calculations took half a year to be completed on a 12 CPU
computer node. For the sTD-DFT-xTB calculation, the energy
cutoff to truncate the CI space was set to 10.0 eV. For the eGFP
model, it took 1.7 h to compute three sTD-DFT-xTB βHRS

values at 1064, 1900, and∞ nm. Only the static results are pre-
sented here since it was not possible to determine the frequency
dispersion at the MP2 level. For SHardonnay, the ONIOM
MP2:HF reference is under-estimated by 6% using the sTD-
DFT-xTB method. For eGFP and DsRed, reference values are
over-estimated by 32% and 30%, respectively. Trends in this
set of systems are similar at both levels of theory. These results
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FIG. 12. Static βHRS values for eGFP, SHardonnay, and DsRed chro-
mophores obtained at the sTD-DFT-xTB level of theory and compared to
HF, BHandHLYP, and MP2/6-31+G(d) reference values.22,23,37

are very promising for an ultra-fast computation of the first
hyperpolarizability for large systems with a relatively good
accuracy.

C. Collagen model

Figure 14 presents the βHRS frequency dispersion
of the PPG10 collagen model at the sTD-DFT-xTB
level compared to ONIOM HF/6-31+G(d):HF/6-31G(d) and
LC-BLYP/6-31+G(d):HF/6-31G(d) results taken from a
previous investigation.38 As for the large fluorescent protein
models, a truncation parameter of 10.0 eV was used. While
both ONIOM calculations took several months to obtain the
βHRS data, it only took less than two days for sTD-DFT-xTB
method. The static sTD-DFT-xTB βHRS value is only 8% lower
than the ONIOM HF/6-31+G(d):HF/6-31G(d) value and 10%
lower than the LC-BLYP/6-31+G(d):HF/6-31G(d) result. The
sTD-DFT-xTB βHRS frequency-dispersion curve is very
similar to the one obtained at the LC-BLYP/6-31+G(d):
HF/6-31G(d) level of theory. Note that this model system is
composed of 1035 atoms. This result clearly demonstrates
the potential of the sTD-DFT-xTB method for an ultra-fast
treatment of large biological systems.

FIG. 13. Static βHRS for eGFP, SHardonnay, and DsRed chromophores
and their first shell of surrounding residues obtained at the sTD-DFT-xTB
level of theory and compared to ONIOM MP2:HF/6-31+G(d) reference
values.22,23

FIG. 14. Frequency dispersion of βHRS for PPG10, calculated at the sTD-
DFT-xTB level of theory and compared to ONIOM HF/6-31+G(d):HF/6-
31G(d) and LC-BLYP/6-31+G(d):HF/6-31G(d) results.38

V. CONCLUSIONS AND OUTLOOKS

In this article, we have presented a first sTD-DFT imple-
mentation to evaluate first hyperpolarizability values for
molecules. This method approximates the standard linear
TD-DFT response equations by three simplifications: neglect
of the XC functional response, monopole approximation of
Coulomb and exchange integrals, and truncation of the CI
space. In addition to this, to evaluate the quadratic response,
we neglect the Hartree XC kernel and the third derivative of
the XC functional. As shown for two push-pull π-conjugated
compounds, these two approximations do not lead to any sig-
nificant loss of accuracy but speed up the calculations by
almost a factor of two. They should be further tested in regular
TD-DFT implementations. In addition to the sTD-DFT
method, a tight-binding version (sTD-DFT-xTB) was also
tested. We challenged our implementation on three test
cases: push-pull π-conjugated compounds, fluorescent pro-
teins, and a collagen model, consisting of 1035 atoms. For
push-pull systems, below a frequency-dispersion at about
1.0 eV, the sTD-DFT results are very similar to TD-DFT
ones. Above that value, resonance enhancements are not so
well treated. A reparameterization of the integral approxi-
mation parameters could help to correct this, but while the
monopole approximation accurately describes valence and
charge-transfer excitation/de-excitation processes, it is not
necessarily the case for excitations which are more relevant
at higher energies. Nevertheless, the sTD-DFT-xTB method
computes trends between static β values for a set of push-pull
π-conjugated molecules, well showing its ability to screen a
large set of compounds, qualitatively and inexpensively. In the
case of fluorescent proteins, two types of systems were inves-
tigated: the chromophore in its natural conformation to test
sTD-DFT and sTD-DFT-xTB methods, and the chromophore
with its first shell of residues to challenge the sTD-DFT-
xTB capability to treat large systems. By slightly tuning the
yJ parameter for the Coulomb integrals on a small chro-
mophore model, we were able to dramatically improve the
description in comparison to TD-DFT in its regular or sim-
plified formulations, even at 1064 nm excitation frequency.
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The comparison between reference MP2/6-31+G(d) calcu-
lations and sTD-DFT-xTB results shows that sTD-DFT-
xTB outperforms HF and BHandHLYP, for SHardonnay and
DsRed chromophores. Considering the larger systems, the
sTD-DFT-xTB method was able to reproduce the trends with
respect to the ONIOM MP2:HF calculations, while the evalu-
ation of β was completed ultra-fast. Finally, for the collagen
model, in a couple of days, sTD-DFT-xTB was able to pro-
vide a β frequency dispersion curve similar to the ONIOM
LC-BLYP:HF one with a static βHRS only 8% lower. This
result shows the capability of the sTD-DFT-xTB method for
an ultra-fast treatment of complicated electronic properties in
large biological systems.
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