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ABSTRACT: The evaluation of the static second hyperpolarizability (γ) of
diradical species is a challenging task due to the use of spin-unrestricted
methods, which may suffer from spin contamination. Here, we present the
methodological aspect of a density-based differentiation procedure to evaluate
static polarizability and hyperpolarizabilities. The finite-field calculations are
done on the spin-projected electron density to remove the spin contamination,
and the automatized Romberg’s differentiation procedure is used to improve the
numerical accuracy in the finite-field method. This implementation is tested in
the present report for the challenging case of the evaluation of the second
hyperpolarizability of the singlet ground state of p-quinodimethane (PQM) for
the equilibrium geometry as well as for a stretched geometry where the diradical
character of PQM is increased, and for twisted ethylene models where the
diradical character changes with the dihedral angle. The application of the approximate spin-projected (ASP) scheme leads to a
major improvement of the density functional theory calculations. In particular, for PQM models, BHandHLYP functional
reproduces the UCCSD(T) values when the diradical character is below 0.5. The visualization of the γ-densities shows that (i)
when increasing the diradical character, the amount of γ-density increases on the −CH2

• extremities, and (ii) the ASP scheme
decreases the amount of “p-like” γ-density for diradical character below 0.4, and increases it for larger diradical character. For
twisted ethylene model, we show that the UCCSD(T) reference values can be reproduced by the ASP-UB3LYP method for y <
0.4 and by the ASP-UBHandHLYP method for y > 0.6. To best reproduce the UCCSD(T) reference calculations, the amount of
exact exchange in hybrid functionals needs to be tuned along the range of diradical characters.

1. INTRODUCTION

The nonlinear optical (NLO) properties of matter are central
to various technologies (including frequency multipliers, space
communications, and NLO imaging microscopies).1,2 Organic
molecules are particularly promising in this respect due to their
short response time as well as to the possibility to modify their
structure−property relationship by synthesis of new deriva-
tives.3 A multidisciplinary approach is needed to design efficient
organic NLO compounds. This includes their synthesis and
experimental/theoretical characterizations. However, the the-
oretical prediction of the NLO properties of organic molecules
remains a challenge due to the need to consider many subtle
issues4−6 such as accounting for electron correlation, vibrational
contributions, effect of surroundings, and frequency dispersion.
To address such issues, hierarchies of approximate methods and
interpretation schemes have been developed.2,7

In 1989, Chopra et al.8 introduced the idea that the NLO
properties can be interpreted in terms of spatial regions that
contribute to the field dependence of the electron density. The
electron density is expanded in Taylor series as a function of
the electric field components, in the same way as it is done for

the energy or the dipole moment. Density derivatives are the
parameters of the Taylor expansion of the electron density, and
they can be obtained by the finite-field method. The dipole
moment expansion can simply be recovered by integration of
the position vector times the electron density. In the same way,
(hyper)polarizabilities can be obtained by integration over their
corresponding density derivatives. They also showed that it is
possible to partition the density derivatives into contributions
from individual orbitals or groups of orbitals. Following this, it
has been applied in different contexts. In 1991, Nakano et al.9

used for the first time the third derivative of the electron
density (the γ-density) to resolve the spatial characteristics of
the static second hyperpolarizability (γ) of substituted
polydiacetylenes. In 1995, Champagne et al.10 investigated
the origin of the large difference in the static vibrational
polarizability of polyethylene and polysilane (all-trans) by
performing finite-deformation calculations and analyzed the
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induced electron density variations. In 1996, Nakano et al.11

proposed a new method to analyze dynamic (hyper)-
polarizabities in the presence of a time-dependent electric
field, where they introduced the concept of “dynamic
(hyper)polarizability density”. This allows the visualization of
dynamic electron fluctuation and relaxation processes. The
same year, they investigated the shape of the γ-density of
H2NO and H2CO.

12 They concluded that MP2 is able to
reproduce the shape of the γ-density of H2CO but not of
H2NO. In 2002, with the semiempirical INDO/S method,
Nakano et al.13 explored the relationship between γ and
molecular architecture in phenylacetylene dendrimers using the
γ-density analysis. In a large phenylacetylene dendrimer (24
units), they found that the spatial contributions to γ originate
from the fractal architecture. In 2012, Yang and co-workers14

proposed to decompose the first hyperpolarizability in local and
nonlocal contributions by partitioning the electron density
using the Hirshfeld partitioning analysis. This scheme has been
applied to six prototypical donor−acceptor molecules for which
the local and nonlocal hyperpolarizabilities are evaluated based
on their MP2 densities. Recently, to predict the linear and
second-order nonlinear susceptibilities of molecular crystals,
Seidler et.al.15 have considered the “quantum theory of atoms
in molecules” to divide the electron density between
submolecular “atoms” sites to distribute the polarizability
tensors and to predict accurately local field tensors.
In 2011, Nakano et al.16 have developed a method using the

density derivatives to analyze the (hyper)polarizabilities of
open-shell systems. They proposed to remove the spin-
contamination inherent to the use of a spin-unrestricted
method by using an approximate spin-projected (ASP) scheme
based on the natural orbitals and the spin-projected occupation
numbers.17 When using broken symmetry schemes, it is
essential to remove the spin contamination to obtain correct
molecular structures18 and magnetic properties.19,20 In 2014,
we proposed an automatization of the Romberg’s scheme to
improve the numerical accuracy in the finite-field (FF) method
to evaluate molecular static hyperpolarizabilities.21 Further, the
same study showed that accurate numerical derivatives can be
obtained using Romberg’s method, where the Romberg’s
triangular table is analyzed considering the field amplitude
error and the iteration error. The hyperpolarizability values so
obtained have the same accuracy as those obtained analytically.
Recently, we studied the γ of trimethylenemethane (TMM)
and two 1,3-dipole derivatives (NXA and OXA) in their triplet
ground state.22 We used the coupled-cluster with the inclusion
of singles and doubles as well as perturbative estimate of the
triples (UCCSD(T)) method as reference. We showed that γ
decreases from TMM to NXA and OXA, following the opposite
order of their permanent dipole moments. Then, the
UCCSD(T) results were used to assess wave function- and
density functional theory (DFT)-based methods. We also
removed the spin contamination from the DFT calculations by
using the approximate spin-projection scheme proposed by
Nakano and co-workers,16 where the numerical differentiation
was done on the spin-projected electron density using the
automatized Romberg procedure21 we developed. Since the
spin contamination of the triplet state is negligible, this new
method has a little impact.
In 2013, we were interested in the evaluation of the

hyperpolarizabilities of three p-quinodimethane (PQM) de-
rivatives with low diradical character.23 In particular, the
performance of DFT-based methods was assessed with respect

to the CCSD(T) level of calculation. We concluded that these
systems are not well treated by DFT method with the
considered set of exchange-correlation (XC) functionals, where
the results are spin-contaminated. Before that, in 2005, the
dependence of γ on the diradical character (y) was investigated
using several different wave function and DFT methods with a
relatively small basis set (6-31G*+p) by Nakano et al.24 To
tune the diradical character of singlet diradical systems, the
PQM molecule with different exocyclic carbon−carbon bond
lengths was used. They found that PQM has a quinoid
equilibrium geometry, whereas when stretching exocyclic C−C
bonds, the diradical character increases. The main conclusion
was that an intermediate diradical character enhanced the γ
values for singlet diradical systems. They also found that their
DFT calculations failed to reproduce the UCCSD(T) reference
calculations. Following this, in 2010, Nakano et al.25 applied the
ASP scheme to PQM models with the same basis set. They
concluded that the ASP LC-UBLYP (μ = 0.47) method
reproduces semiqualitatively the diradical dependence of γ.
They also provided a succinct analysis of the γ-density as a
function of y. They stated that the shape of the γ-density is the
same for all the range of y and that the dominant contribution
to the response comes from the −CH2

• extremities. The
difference between the spin-projected and nonprojected γ-
densities was also provided. They showed that the correction
applied on all C atom γ-density contributions with alternating
sign and that the sign of the correction is reversed between y =
0.257 and 0.491.
In the article about the PQM models in 2005, Nakano et al.24

also provided a study about the γ of twisted ethylene
geometries (from 55° to 90°) and showed the dependence of
γ as a function of the diradical character at the UCCSD(T)/6-
31G**+sp level of theory. This was previously studied for
dihedral angles from 0° to 75°, in 1999, by Yamada et al.26 at
the UHF, UQCISD, and UCCSD(T) levels of theory. They
observed that the rotation of the CH2 group changes the γ-
response significantly, and therefore the computed γ is
considerably influenced by the level of treatment. Recently,
Mondal et al.27 characterized the γ of twisted ethylene
geometries with MRCISD, CASSCF(4,4), and DFT methods.
In particular, they used spin-projected UDFT method, without
providing any information about the methodology they used.
They obtained almost the same results with and without spin
projection and concluded that the spin contamination is not the
only parameter that influences the failure of DFT method to
describe the γ of twisted ethylene models. Nevertheless, they
stated that LC-UBLYP and UBHandHLYP results are similar to
the MRCISD results.
In this article, the methodological aspects of the

implementation of the density-based automatic Romberg
differentiation procedure to evaluate the molecular static
(hyper)polarizability are detailed in Section 2. In Section 3,
this new implementation is tested for the evaluation of the
second hyperpolarizability of (i) the PQM molecule in its
singlet ground state as well as for PQM models, where the
diradical character of PQM is increased when exocyclic C−C
bonds are stretched, and (ii) twisted ethylene geometries where
the diradical character is a function of the twisted angle. These
particular applications are well-known cases where DFT γ-
values fail to reproduce UCCSD(T) benchmarks for an open-
shell system.23−27 Thus, these are challenging cases to test our
new implementation where we are able to remove the spin-
contamination and thus correct the regular DFT values. In the
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first test case study, we use the 6-31G*+p basis set to compare
the results obtained with the Romberg procedure to the ones
obtained by Nakano et al.25 We discuss their accuracy as well as
the Romberg iteration error of our values. Following this, we
compute the γ of PQM ground state and models characterized
with the aug-cc-pVDZ basis set and compare to those obtained
with the smaller basis set. Finally, the visualization of the
hyperpolarizabity densities is used to understand the origin of
the response in some more detail than in the previous analysis
by Nakano et al.25 In the second test case study, the ASP
scheme is tested for a large set of different XC functionals. We
also visualize the γ-densities for the most reliable functionals.

2. METHODOLOGY
2.1. Density-Based Automatized Romberg Differ-

entiation Procedure. Applying light to matter results in a
perturbation of the motion of electrons and nuclei owing to the
electric field component of light. This can result in different
phenomena such as absorption, emission, or scattering of the
light. In all these processes, the motion of the electrons and
nuclei is perturbed by the external electric field, and this
interaction can be characterized by the variations of the
molecular dipole moment under the form of a Taylor
expansion:

μ μ α β γ⃗ ⃗ = ⃗ + ⃡· ⃗ +
!

⎯→
⃗ ⃗ +

!
⋮ ⃗ ⃗ ⃗ +

←→ ←→
←→

F F FF FFF( )
1
2

:
1
3

...0 (1)

The first term in the expansion, μ0⃗, is the intrinsic dipole
moment vector, the second term α⃡ is the polarizability tensor,

and the higher-order terms are the nonlinear ones where β
⎯→←→

and γ
←→
←→

are, respectively, the first and second hyperpolarizability
tensors. The Taylor expansion is sometimes replaced by a
power series, of which the consequence is to implicitly include
the numerical 1/n! factor into the hyperpolarizabilities. These
definitions correspond to different conventions, denoted T
when using the Taylor expansion and B for the power series
expansion.
The electronic dipole moment can also be obtained by

integrating the position vector times the electron density as
follows

∫μ ⃗ ⃗ = − ⃗ ⃗ ⃗ ⃗F rd r F r( ) ( , )d
(2)

where the electronic density is expressed as a Taylor expansion
with respect to the external electric field:5
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Then, the electronic dipole moment is rewritten as
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The polarizability, and the first and second hyperpolarizabilies,
are defined as the integration of the position vector all over
their respective densities:

∫α ⃡ = − ⃗ ⃗ ⃗ ⃗αrd r r( )d
(5)

∫β
⎯→

= − ⃗ ⃡ ⃗ ⃗β

←→
rd r r( )d

(6)

∫⃡γ = − ⃗
⎯→

⃗ ⃗γ

←→ ←→
r d r r( )d

(7)

In this context, if we consider a geometric progression of
external electric fields F(k) = akF0 for k = 0, 1, ... where F0 is the
smallest field amplitude and a is the common ratio, the
differentiation procedure can consist in combining electron
density grids obtained for this series of electric field amplitudes.
The finite difference expressions for the (hyper)polarized
density tensor components read:
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where the ±i and ±j field indices refer to the field directions.
The static (hyper)polarizability tensor components correspond-
ing to the zero-order iteration is obtained by the following
integrations:

∫α = − ⃗ ⃗αk r d r k r( , 0) ( , )dmi m i
grid (13)

∫β = − ⃗ ⃗βk r d r k r( , 0) ( , )dmij m ij
grid (14)

∫γ = − ⃗ ⃗γk r d r k r( , 0) ( , )dmijl m ijl
grid (15)

where the m field index refers to a field direction, that is, x, y, or
z. The Romberg recursive expression is used to remove the
contaminations from higher-order hyperpolarizabilities:

ξ ξ ξ= − − + −
−

k n
a k n k n

a
( , )

( , 1) ( 1, 1)
1

n

n

2

2 (16)

Romberg iterations can be represented in a triangular table that
allows visualizing the convergence of the numerical derivative.
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An example of Romberg triangular table is provided in Table 1
for the determination of the γzzzz of PQM-2 (see below) at the

ASP-BHandHLYP/aug-cc-pVDZ level with a step-size of 2.0
and a smallest field amplitude of 0.0004 au. The systematic
analysis of this table is performed by an automatized procedure
we have proposed in 2014.21 Indeed, for any molecular systems
there exists a set of field amplitudes defined by upper and lower
bounds where we have a stable finite differentiation. The lower
bound is defined by a large rounding error related to the energy
convergence threshold and the density grid accuracy. The
largest value of this set of fields depends of the particular field
amplitude where the ground state intersects with the excited
states. This set of “stable” field amplitudes defines a sub-
triangular table (see the gray area in Table 1). To determine the
subset of field amplitudes, the automatic procedure analyzes the
field amplitude errors:

ε ξ ξ= + −n k n k n( ) ( 1, ) ( , )k (17)

Since the field amplitude error satisfies the Romberg recursive
expression, the field errors should decrease along the Romberg
iterations. Moreover, the iteration error probes the convergence
between successive Romberg iterations:

ε ξ ξ= + −k k n k n( ) ( , 1) ( , )n (18)

The automatic analysis of these quantities leads to a converged
value ξ(k,n + 1) with a final iteration error εn(k).

21 Note that if
the field window has not been wisely chosen at the beginning,
the automatic procedure will fail to locate a stable sub-
triangular table. Nevertheless, the final iteration error will
always provide reliable information about the stability of this
procedure.
It is also possible to obtain a converged (hyper)polarized

density by using the “Romberg procedure”. Indeed, if the
automatic Romberg differentiation procedure has selected a
converged value ξ(k,n), the corresponding converged density is
obtained by the following recursive expression:

⃗ = ⃗ − − ⃗ + −
−

ξ
ξ ξ

d r k n
a d r k n d r k n

a
( , , )

( , , 1) ( , 1, 1)
1

n

n

2

2

(19)

The integration of the position vector times this density will
give back the same ξ(k,n) value. This converged (hyper)-
polarized density gives a visual insight into the origin of the
response.

2.2. Approximated Spin-Projected Density Scheme.
To remove the spin contamination in open-shell calculations,
spin-projected densities can be used.16 To our knowledge, this
is the only way to remove the spin contamination to determine
(hyper)polarizabilities at the DFT level of calculation. The
spin-projected occupation numbers are used to correct the
electron density and are defined as
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The approximate spin-projected one-electron density ⃗d r( )SP

reads:

∑ ϕ ϕ
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This scheme is approximated since the natural orbitals are not
spin-projected, only the occupation numbers are. In this way,
the spin-projected (hyper)polarizability can be determined
accurately by using the automatic Romberg differentiation
procedure.21

2.3. Computational Details. The PQM diradical is used in
the present work as the first illustrative case study where the
diagonal (longitudinal) γzzzz component is determined by the
ASP method with different DFT XC functionals. We consider
the γzzzz component, since it has the largest response. Figure 1

presents the two resonance forms of PQM diradical as well as
its three key geometrical parameters. The singlet ground-state
geometry of PQM as well as its UCCSD(T)/aug-cc-pVDZ γzzzz
reference value of 150 × 103 a.u. were taken from ref 23. To
estimate the influence of the diradical character over the second
hyperpolarizability, we followed the same methodology as
Nakano et al.24,25 To increase the diradical nature of PQM,
they have considered several PQM models of D2h symmetry
with bond length R1 changing from 1.350 to1.700 Å under the
constraint of R2 = R3 = 1.400 Å. The geometrical parameters of
seven PQM geometries (including the stable singlet ground
state) are presented in Table 2 as well as their respective
diradical character (y) obtained at the UHF/aug-cc-pVDZ level
of theory. The diradical character is defined as

= −
+

y
T

T
1

2
1 2 (22)

Table 1. Romberg Triangular Tablea for the Determination
of the γzzzz of PQM-2 at the ASP-BHandHLYP/aug-cc-pVDZ
Level with a Step-Size of 2.0 and a Smallest Field Amplitude
of 0.0004 a.u.

aThe field amplitude errors and the iteration order errors are written
in blue and in red, respectively. The final field amplitude and iteration
errors are underlined and in bold. The final γzzzz is in bold. The stable
sub-triangle is in gray.

Figure 1. Resonance structure and key geometrical parameters of
PQM considering a D2h symmetry.
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where = −T n n
2

HONO LUNO , and n is the occupation number of the

natural orbitals.24 As explained in ref 24, they state “These
boldly approximate models are expected to mimic the change in
diradical character of real systems since the variation in R1
mainly corresponds to the dissociation of π bonds. Although
these models lack the concomitant recovery of aromaticity of
the central benzene ring present in real systems (...)”. Following
the recommendations of our previous study on PQM, the aug-
cc-pVDZ basis set was employed for all the calculations,23

except for the comparison to the previous results of Nakano et
al.25 obtained with the 6-31G*+p basis set.
In the second illustrative case study, we consider the same

twisted ethylene models as in ref 24. We used a CC bond
length of 1.3376 Å, C−H of 1.0868 Å, and an H−C−H angle of
121.58°. Those parameters come from the optimization of the
planar ethylene at the QCISD/6-311G** level of theory. We
vary the twisted angle between the two H−C−H planes from
55° to 85° with step size of 5°. In Table 3, the diradical

character determined at the UHF/aug-cc-pVDZ level of theory
is provided. We used the aug-cc-pVTZ basis set to evaluate the
longitudinal γzzzz component with the ASP method.
The UCCSD(T) was used as reference method to assess the

performance of several XC functionals in unrestricted DFT
computations. In particular, the role of the HF exchange (HF
exc) in the XC functional is assessed with this set of functionals:
BLYP (0% HF exc), B3LYP (20% HF exc), BHandHLYP (50%
HF exc), LC-BLYP (μ = 0.33 and μ = 0.47, default in
Gaussian0928) including 100% of HF exc at large interelec-
tronic distances, M06 (0% HF exc), and M06-2X (54% HF
exc) functionals. In the case of LC-BLYP, Bonness et al.29 have
shown that the LC-UBLYP method with μ = 0.3−0.5 is
adequate for calculating γ of π-conjugated diradical systems.

To reproduce UCCSD(T) values, the approximated spin
projected DFT γzzzz values were determined by the spin-
projected density-based automatized Romberg differentiation
procedure described above. However, the DFT and UCCSD-
(T) γzzzz values were calculated using the energy-based
automatic Romberg differentiation procedure.21 In the
energy-based and density-based FF calculations, we used: ±2k

× 0.0004 or ± ×2 0.0004k
or ± ×2 0.0008k

with k going
from 0 to 5 or 10, as geometric progression of external electric
field amplitudes. We used energy convergence thresholds from
1 × 10−9 to 1 × 10−11 a.u. All the calculations used unrestricted
methods. The precision of the density-based computations
depends on the grid parameters and on the accuracy of the
numerical integration. Small tests were performed on the
integration of the electron density of the H2 molecules with
different box sizes and with different integration methods
(Table S1). From those tests, it appears that the simple cuboid
integration is more accurate, for the same grid size, than other
methods based on the Newton−Cotes rules. In that case, the
integration interval is enlarged since more points are needed to
evaluate it. In Table S1, it is shown that with the diminution of
the grid size, the accuracy of the number of electrons is
decreasing, but the density size is also smaller. Since memory
disc requirement is the principal bottleneck of this method
(each density calculation takes ∼35 mb of disc space for PQM),
we chose a cube mesh generated every 0.1 Å in a rectangular
box with ±4 Å of vacuum around the molecule.
We used the Gaussian09 package28 for the computations.

The automatic Romberg differentiations were performed using
the T-REX program.21 The T convention was used for the
definition of the second hyperpolarizability.

3. RESULTS AND DISCUSSION
3.1. p-Quinodimethane. In ref 25, Nakano et al. tested the

ASP scheme on the PQM models for a set of XC functionals.
Using the 6-31G*+p basis set, they showed that ASP-LC-
UBLYP (μ = 0.47) functional can reproduce semiquantitatively
the UCCSD(T) reference values. Their values were converged
to a numerical accuracy of less than 1% using a simple multiple
point FF formula. We recomputed those values using our new
implementation that utilizes the Romberg procedure, as well as
the ASP-UBHandHLYP γzzzz values. In Figure 2, the percentage

Table 2. Diradical Charaters and Geometrical Parametersa

of PQM Models

name y R1 (Å) R2 (Å) R3 (Å)

PQM-1 0.134 1.351 1.460 1.346
PQM-2 0.244 1.350 1.400 1.400
PQM-3 0.323 1.400 1.400 1.400
PQM-4 0.404 1.450 1.400 1.400
PQM-5 0.482 1.500 1.400 1.400
PQM-6 0.555 1.550 1.400 1.400
PQM-7 0.621 1.600 1.400 1.400
PQM-8 0.729 1.700 1.400 1.400

aPQM-1 is the equilibrium geometry. The diradical character was
computed at UHF/aug-cc-pVDZ level of theory.

Table 3. Diradical Charatera and Twisted Angle of Ethylene
Models

name y θ (deg)

ETH-1 0.102 55
ETH-2 0.157 60
ETH-3 0.234 65
ETH-4 0.337 70
ETH-5 0.467 75
ETH-6 0.626 80
ETH-7 0.807 85

aThe diradical character was computed at UHF/aug-cc-pVDZ level of
theory.

Figure 2. Romberg iteration error for the determination of the second
hyperpolarizability as a function of the diradical character for the PQM
models obtained at the ASP-UBHandHLYP, ASP-LC-UBLYP, and
UCCSD(T) levels of theory with the 6-31G*+p basis set. Lines are
used to connect the points to improve readability.
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of Romberg iteration error is presented for those two
functionals as well as for the UCCSD(T) method, where the
differentiation is based on the energy. The maximum iteration
error is obtained for the PQM-1 at the ASP-LC-UBLYP level,
with a value of 0.156%. Note that this error can be easily
reduced by decreasing the step size of the geometrical
progression of fields (here we use a step size of 2.0) as well
as by using a finer grid. For ASP-UBHandHLYP, we have a
maximum iteration error of 9.50 × 10−4, using the same field
amplitudes. In Figure 3, we compare the results of Nakano et
al.25 to the values we computed. We also provide the
percentage of error with respect to our values as a function
of the diradical character. First, their ASP-UBHandHLYP are
very well converged, with less than 0.532% of error. This is
because the derivative is relatively stable for a large range of
field amplitudes as indicated by the Romberg iteration error in
Figure 2. Second, for ASP-LC-UBLYP functional, we note that
the Romberg iteration error is relatively “large” for y = 0.491.
Here the stable field window is narrower than for ASP-
UBHandHLYP. Thus, using a simple multiple-point FF formula
needs to be done carefully in that case. Their value has 1.63% of
error with respect to ours. Still, this error value is quite low.
Third, we have 6.83% of error for the UCCSD(T) value for the
equilibrium geometry (PQM-1). But this can be because we
used the geometry from ref 23 and not the same as them.
Nevertheless, the errors are larger for the energy-based
UCCSD(T) calculations. Note that we pay particular attention
to the convergence threshold for the CCSD(T) calculation (1
× 10−11 Ha).
With the larger aug-cc-pVDZ basis set, the ratios between the

DFT γzzzz values and the reference UCCSD(T) value for the
singlet ground-state geometry of PQM (PQM-1) are presented
in Figure 4. This also includes ratio with the ASP DFT γzzzz
values. As we already found in ref 23, since the diradical
character is small for PQM, not all XC functionals lead to
unrestricted solutions. In fact, for PQM, only BHandHLYP,
LC-BLYP with μ = 0.47 give unrestricted solutions. The XC
functionals with restricted solution predict too small values.
This includes BLYP, B3LYP, LC-BLYP (μ = 0.33), and M06-
2X functionals all of which underestimate the reference by
∼50%. However, M06 performs even worse and consistently
underestimates γzzzz by 70%. BHandHLYP and LC-BLYP with
μ = 0.47 functionals overestimate the reference value by ∼100%

and 50%, respectively. For those two functionals, the
application of the ASP DFT scheme leads to a major
improvement. For the BHandHLYP functional, the reference
value is only underestimated by 7.0%. The LC-BLYP value,
however, is 35% under the reference value. Note that the LC-
BLYP (μ = 0.33) functional gives a restricted solution, which is
not the case with a range-separated parameter of 0.47.
Using the PQM models, the diradical character dependence

of γzzzz is presented in Figure 5 for the two XC functionals with
unrestricted solutions, in the case of PQM-1. Without the ASP
scheme, as for the smaller basis set,25 the two functionals are
unable to reproduce the UCCSD(T) reference shape.
However, when using the ASP scheme, the reference shape is
qualitatively well reproduced by both functionals over the
whole range of y values. This was already noted by Nakano et
al.25 However, with this larger basis set, their conclusion that

Figure 3. Comparison between the second hyperpolarizability obtained with and without the Romberg procedure as a function of the diradical
character for the PQM models obtained at the ASP-UBHandHLYP, ASP-LC-UBLYP, and UCCSD(T) levels of theory with the 6-31G*+p basis set.
The second graph provides the percentage of error with respect to Romberg values as a function of the diradical character. Lines are used to connect
the points to improve readability. The results without Romberg procedure were taken from ref 25 (courtesy of Prof. M. Nakano).

Figure 4. Electron correlation effects of DFT XC functionals on the
second hyperpolarizability of PQM. Lines are used to connect the
points to improve readability. This figure compares regular DFT values
obtained with and without the approximate spin-projection scheme
with respect to the UCCSD(T)/aug-cc-pVDZ γzzzz reference value.
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ASP-LC-UBLYP method reproduces semiquantitatively the
reference curve does not stand anymore since the discrepancy
between the two curves is larger. Indeed, only the BHandHLYP
functional is able to reproduce the UCCSD(T) γzzzz values, at
least for diradical characters below ∼0.500. In that threshold,
the reference values are underestimated for PQM-1 and PQM-2
by 7.0% and 6.3%, respectively, and overestimated by 5.4% for
PQM-5. This last percentage corresponds to a larger
discrepancy since the absolute γzzzz value is larger than for the
PQM model with smaller R1 bond lengths. The best agreement
is obtained for PQM-3 and PQM-4 with only 0.6% and 1.4% of
difference with respect to the UCCSD(T) reference,
respectively. Above a diradical character of 0.500, an over-
estimation of 9.0%, 13.4%, and 26.5% are obtained for PQM-6,
PQM-7, and PQM-8, respectively. Since the spin-projection is
only done on the occupation numbers and not on the natural
orbitals, this method has difficulties to correct the second
hyperpolarizability behavior for large diradical characters, but at
least, it can provide an agreement with less than 10% of

Figure 5. Diradical character dependence of γzzzz for the PQM models
with BHandHLYP and LC-BLYP XC functionals. Lines are used to
connect the points to improve readability. This figure compares
regular DFT values obtained with and without the approximate spin-
projection scheme to the UCCSD(T)/aug-cc-pVDZ γzzzz reference
value.

Figure 6. γ-densities (isovalue of 200 au) and the approximate spin-projected γ-densities are presented in columns 1 and 3, respectively. The
differences between those two densities are presented in the second column. These γ-densities were used to obtain the diagonal γzzzz components as
determined at the UBHandHLYP/aug-cc-pVDZ level of calculation with and without spin-projection. The blue/red colors show positive/negative
densities.
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difference with respect to the reference for diradical character
below 0.600.

In Figure 6, the UBHandHLYP/aug-cc-pVDZ γ-densities
with and without approximated spin-projection employed to

Figure 7. Diradical character dependence of γzzzz for the ethylene models with B3LYP, BHandHLYP, and LC-BLYP (μ = 0.33) XC functionals. Lines
are used to connect the points to improve readability. These figures compare regular DFT values obtained with and without the approximate spin-
projection scheme to the UCCSD(T)/aug-cc-pVTZ γzzzz reference value.

Figure 8. γ-densities (isovalue of 15 au) used to obtain the diagonal γzzzz components as determined at the ASP-UB3LYP/aug-cc-pVDZ and ASP-
UBHandHLYP/aug-cc-pVDZ levels of calculation. The blue/red colors show positive/negative densities.
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obtain the dominant diagonal γzzzz components for all the PQM
models are presented for the same isovalue of 200 au We also
presented the difference between these two densities
( ⃗ − ⃗γ γd r d r( ) ( )[ASP]zzz zzz ) to provide a visual representation
of the impact of the ASP scheme on the γ-densities. By using
the Romberg procedure, these γ-densities are converged. Note
that Nakano et al.25 have also provided the ASP-LC-UBLYP
surfaces but only for three diradical characters. As already
mention in the Introduction, they stated that the shape of the γ-
density is the same for all the range of y and that the dominant
contribution to the response comes from the −CH2

•

extremities. A quick look to our surfaces shows that, in fact,
the PQM-1 γ-density is quite different from the others. Indeed,
for PQM-1 (the singlet ground-state geometry), from the
inspection of its key geometrical parameters, it is more
quinoidic than aromatic. Consequently, with ASP scheme, the
amount of density is more concentrated on double-bonds (R1
and R3) with a density node in the middle of the bond. The
highest density is on the −CH2

• extremities as already noted by
Nakano et al.25 The ASP scheme has strongly corrected the

⃗γd r( )zzz by removing a large amount of “p-like” γ-density on
each carbon, in particular, on the −CH2

• extremities. Going
from PQM-1 to PQM-2, the main difference is that the
geometrical parameters were chosen to have a pure aromatic
geometry with R2 = R3. This increases the diradical character as
well as the γzzzz response. The shape of the ASP ⃗γd r( )zzz changes
drastically with a more complex arrangement, including the
PQM-1 shape plus “p-like” contributions. First, there is now a
contribution on the R2 bond, and second, the amount of
density has largely increased on −CH2

• extremities leading to a
larger γzzzz response. The ASP scheme provides the same type
of corrections on the γ-density than for PQM-1 by removing
contributions on each carbon but with a smaller impact. For
larger R1 bond lengths, An increase of the amount of ⃗γd r( )zzz on
the −CH2

• extremities is observed with the increase of the
diradical character, which saturates when y > 0.6. Note that the
ASP scheme decreases the γ-density for y < 0.4, and increases it
with diradical characters above 0.4.
3.2. Twisted Ethylene. In Figure S1, using the twisted

ethylene geometries, we present the diradical character
dependence of γzzzz for all the XC correlation functionals
(with and without ASP) considered in this study as well as for
the UCCSD(T) reference. In Figure 7, we report only the
UB3LYP, UBHandHLYP, and LC-UBLYP (μ = 0.33) results.
From all this set of XC functionals, only LC-UBLYP (μ = 0.33)
is able to reproduce the UCCSD(T) values without spin-
projection, at least for y values of 0.336 and 0.467, with an
underestimation of just 2.3% and 1.0%, respectively. For the
ASP scheme, for a y-value below 0.4, ASP-UB3LYP reproduce
the UCCSD(T) reference values with less than 4.7% of
difference. The ASP-UBHandHLYP functional best reproduces
the global UCCSD(T) shape and, in particular, for large y
values of 0.626 and 0.807. The ASP-DFT γzzzz of the twisted
ethylene models is really sensitive to the amount of exact
exchange present in the functional. This is further confirmed by
the visualization of the γ-density for both functionals (Figure
8), where the shape is really sensitive to the functional
employed. For dihedral angles of 55° and 60°, the ASP-
UB3LYP γ-density is dominated by “p-like” density on the two
carbons. This is no more the case for a dihedral angle of 60°,
where the density is dominated by “σ-like” density. Increasing
the dihedral angle leads to the return of a “p-like” density on

the two carbons. ASP-BHandHLYP method is not able to
describe this change of γ-density shape. While ASP-
BHandHLYP reproduces well the change of “p-like” γ-density
for y > 0.4, this is not the case for ASP-UB3LYP. The amount
of exact exchange in the functional must be tuned along the
range of diradical characters considered to best reproduce the
UCCSD(T) reference. Note that the ASP scheme changes the
DFT results drastically, unlike the case reported by Mondal et
al.27

4. CONCLUSIONS
In this article, we have presented the methodological aspects of
the implementation of the density-based automatic Romberg
differentiation procedure to evaluate molecular static (hyper)-
polarizabilities. The use of this method has been motivated by
the fact that spin contamination can be removed from broken-
symmetry calculations. We assess the performance of this
method by applying it to two well-known cases where the DFT
method is impacted by spin contamination and fails to
reproduce UCCSD(T) static second hyperpolarizabilities of
the singlet ground state of PQM as well as PQM models with
higher diradical character, and twisted ethylene models. For the
singlet ground state of PQM, we have shown that the
application of the ASP scheme leads to a major improvement
of the DFT calculations, where the BHandHLYP functional
underestimates by only 7% the UCCSD(T) value. The
application of the ASP scheme at the DFT level on PQM
models allows to reproduce qualitatively the evolution of the
UCCSD(T) γ as a function of the diradical character. In
particular, the BHandHLYP functional is able to reproduce the
UCCSD(T) values for diradical character below 0.5. Moreover,
the visualization of the γ-densities shows that (i) with an
increase of the diradical character, the amount of γ-density
increases on the −CH2

• extremities, and (ii) the ASP scheme
decreases the amount of “p-like” γ-density for diradical
character below 0.4 and increases it for larger diradical
character. In case of the twisted ethylene models, we have
shown that ASP-UB3LYP method is able to reproduce the
UCCSD(T) reference values for y < 0.4 and ASP-
UBHandHLYP method for y > 0.6. To best reproduce the
UCCSD(T) reference calculations, the amount of exact
exchange in hybrid functionals must be tuned along the range
of diradical characters. We also find that the ASP scheme is
really important to remove the spin-contamination in these
systems.
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