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Abstract. This article introduces a novel methodology, Network
Simulator-centric Compositional Testing (NSCT), to enhance the ver-
ification of network protocols with a particular focus on time-varying
network properties. NSCT follows a Model-Based Testing (MBT) ap-
proach. These approaches usually struggle to test and represent time-
varying network properties. NSCT also aims to achieve more accurate
and reproducible protocol testing. It is implemented using the Ivy tool
and the Shadow network simulator. This enables online debugging of real
protocol implementations. A case study on an implementation of QUIC
(picoquic) is presented, revealing an error in its compliance with a time-
varying specification. This error has subsequently been rectified, high-
lighting NSCT’s effectiveness in uncovering and addressing real-world
protocol implementation issues. The article underscores NSCT’s poten-
tial in advancing protocol testing methodologies, offering a notable con-
tribution to the field of network protocol verification.
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1 Introduction

Ensuring the safety and effectiveness of systems is paramount. One way to
achieve this goal is through the use of model-checking approaches. These ap-
proaches employ mathematical models of the system and exhaustively check the
specifications against all possible behaviors of the system. Examples of such ap-
proaches include SPIN [27,42] and NUSMV [20,43], which use Linear-Temporal
Logic (LTL) [53] or Computation Tree Logic (CTL) [18] to describe specifi-
cations. First, model checking results were applied to mathematical models of
the system under validation. However, over the last decades, we have seen the
emergence of techniques applied directly to implementations [19]. An inherent
hurdle in model-checking lies in the state-space explosion dilemma triggered by
exhaustive exploration of the entire state-space.

To tackle this challenge, researchers have proposed Statistical Model Check-
ing (LLTYSG19, LL20). This approach entails simulating the system and us-
ing statistical algorithms to ascertain whether it meets a measurable speci-
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fication within a finite execution with a certain probability and given confi-
dence. The approach, which has been implemented in tools such as UPPAAL-
SMC [22,34,35,37] and PLASMA [9,13,39], has been applied on a wide range of
case studies [36]. Statistical Model Checking is primarily employed for validating
properties on mathematical models. Except for specific instances like in [49], di-
rect validation on code has been rarely proposed. Generating fair traces from the
code required by the statistical algorithm is challenging. Furthermore, with few
exceptions as seen in [17], specifications are typically formulated using Bounded
LTL. This representation is inadequate for describing the specifications of a net-
work protocol. In this paper, we propose an approach that leverages the princi-
ple of simulation akin to Statistical Model Checking, but within the framework
of specifications described in a sophisticated language and directly validated
against the implementation. This approach, known as model-based testing [50],
offers a more scalable solution. Our approach also introduces specific techniques
to address the challenges involved in protocol verification.

In protocol verification, traditional methodologies rely on multiple indepen-
dent implementations and interoperability testing to validate protocol designs.
However, comprehensive model-based verification is often lacking in well-known
approaches. Ivy, a notable exception, allows working with protocol implementa-
tions and adversarial stimuli.

Ivy’s mathematical model [51] serves as the language describing the system
specifications, whereas model-checking approaches typically involve two mathe-
matical models, one for the system and one for the specifications.

Network-centric Compositional Testing (NCT) [45] is an emerging method-
ology that was introduced within Ivy. NCT introduces a formal statement of a
protocol standard, allowing effective testing of implementations for compliance,
not just interoperability. NCT uses formal specifications of protocols to auto-
matically create testing tools. These tools generate random test cases by solving
constraints with the help of an SMT solver. This enables adversarial testing in
real-world environments, uncovering compliance issues and ambiguities in stan-
dard protocol documents (RFCs). NCT uncovered errors and vulnerabilities in
the real-world protocol QUIC [31], proving its effectiveness.

Although NCT serves as a foundation for network-centric protocol verifica-
tion, it does not address time-varying network properties. Time-varying network
properties describe the timed aspects of network protocols. These properties in-
clude internal timeouts to, for example, trigger a packet retransmission. These
are involved in properties that are more complex to model, such as congestion
control schemes in retransmission mechanisms.

Ivy deterministically generates output packets from input packets, but does
not provide computation time requirements. This duration can non-deterministi-
cally exceed (or not) protocol timeouts. This can impact the inputs, for example
by triggering a packet retransmission. This non-determinism prevents the repro-
ducibility of the experiments. If Ivy discovers a bug in an implementation, Ivy
is not necessarily able to reproduce it.
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We have developed a new approach called Network Simulator-centric Compo-
sitional Testing (NSCT) to address these limitations. NSCT is designed to focus
on verifying time-varying network properties in network protocols and ensuring
experimental reproducibility.

Our method extends Ivy to support time-related features, providing a more
network-centric approach. Additionally, we have integrated the Shadow network
simulator which allows online debugging of protocol implementations. This in-
tegration ensures the determinism and reproducibility of the experiments. We
have successfully applied our approach to test the QUIC protocol and have demon-
strated its effectiveness in verifying time-varying network properties. NSCT re-
veals an error on the picoquic implementation and the QUIC idle timeout connec-
tion termination. This approach brings advancements to the network commu-
nity by enabling more detailed and accurate protocol testing and verification.
It enables specifying loss detection and congestion control in QUIC defined by
RFC9002 [29].

The remainder of this paper is structured as follows. Section 2 provides back-
ground information on different verification types and the emergence of Ivy.
Section 3 outlines our methodology, providing details about Network Simulator-
centric Compositional Testing (NSCT). Section 4 delves into the verification of
time-varying network properties in QUIC. Then, Section 5 discusses our findings
and proposes avenues for future work. Finally, Section 6 leads to the related
work and the conclusion.

2 Background

There are two main ways to create adversarial tests for network protocols: with
[10, 52, 61] or without [3, 12, 16, 38, 54] checking compliance with a standard.
Approaches that do not check compliance with a standard include fuzz testing
[38], white-box testing [12,54], and other methods that create a verified reference
implementation [3] or prove properties of an existing implementation [16]. On
the contrary, approaches that verify compliance with a standard, also known as
Model-Based Testing (MBT) [50], involve constructing an abstract model with
Finite State Machines (FSMs) to explore and generate test scenarios [10,52,61].
However, the incorporation of data into FSMs adds significant complexity and
challenges to these formalisms [45].

Network-centric compositional (NCT) approaches avoid the use of FSMs. To
grasp this and our approach, which builds upon NCT, it is crucial to understand
the functioning of the Ivy tool that implements them.

Ivy is a verification tool implementing multiple proving techniques [44, 51]. It
is used to correct the design and implementation of algorithms and distributed
protocols. It supports modular specifications and implementation. Ivy is used
to interactively verify the safety properties of infinite-state systems. Ivy intro-
duced a Relational Modeling Language (RML). This language allows describing
the state of a program using formulas from first-order logic and uses relations
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(boolean predicate), functions, modules, and type objects as the main abstrac-
tions to represent the state of the system. Let us illustrate the functioning Ivy
using a running protocol example.

MiniP (Minimalist Protocol) is a simple protocol. MiniP defines packets that
contain frames. Any packet must contain exactly two frames. Three types of
frames are defined: PING, PONG, and TIMESTAMP frames. PING frame contains
a four-byte string representing the word "ping". PONG frame also contains a
four-byte string expressing the word "pong". The PING frame or the PONG frame
must be present in a packet. Finally, the TIMESTAMP frame contains an eight-byte
unsigned integer representing the moment, in milliseconds, when the packet is
sent. This frame must be present in all packets.

Figure 1 represents the finite state machines (FSM) of MiniP. The client
starts by sending a packet containing the PING frame followed by the TIMESTAMP
frame as payload. The server must then respond within three seconds, with a
packet containing the PONG frame followed by the TIMESTAMP frame. This ex-
change continues until the client stops the connection. The client terminates the
connection by not transmitting any packets for more than three seconds.

receive:
PING
+TIMESTAMP

Start Pong
Sent

Ping
Recv

send:
PONG
+TIMESTAMP

receive:
PING
+TIMESTAMP

timeout
[wait time

> 3 sec]

Close

(a) MiniP server FSM

timeout
[wait time

> 3 sec]

send:
PING
+TIMESTAMP

Start Pong
Recv

Error

Wait

receive:
PONG
+TIMESTAMP

send:
PING
+TIMESTAMP

(b) MiniP client FSM

Fig. 1: MiniP Finite state machines (FSM)

Some MiniP components implementation with Ivy The first and most im-
portant components to implement for this protocol are frames. In Ivy, a frame is
implemented using the type object. Listing 1 provides an example of the frame ob-
ject, which includes a subtype object representing the PING frame and a generic
action handle(f:frame) that must be implemented by subtype objects. The
PING frame defines a data field containing the four-byte payload as described in
the specification.
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1. State example
1 ob j e c t frame = {
2 type t h i s
3 ob j e c t ping = {
4 var i ant t h i s o f frame = s t ru c t {
5 data : stream_data
6 }
7 }
8 ac t i on handle ( f : t h i s ) = {
9 r e qu i r e f a l s e ;

10 }
11 }

Ivy’s "action" statement is used to manipulate the states and add require-
ments. An action can be considered as a procedure and cannot be stored in
variables or passed as arguments. Listing 2 illustrates the handle(f:frame) ac-
tion, which encompasses all the properties associated with the PING frame and
adds requirements that will be checked every time a PING stream is received and
generated. Lines 7 and 8 specify that the data payload must be a "ping" and
have a length of four bytes. Line 9 requires that a PING frame should not be
present in a packet using the relation ping_frame_pending defined on Line 1.
Line 12 illustrates the invocation of the enqueue_frame(f:frame) action, which
also modifies various states within the model and is used to append a frame to
a packet object.

2. Object procedure example
1 r e l a t i o n ping_frame_pending
2
3 ob j e c t frame = {
4 ob j e c t ping = {
5 ac t i on handle ( f : frame . ping )
6 around handle {
7 r e qu i r e f . data = ping_data ;
8 r e qu i r e f . data . end = 4 ;
9 r e qu i r e ∼ping_frame_pending ;

10 . . .
11 ping_frame_pending := true ;
12 c a l l enqueue_frame ( f ) ;
13 }
14 }
15 }

Network-centric Compositional Testing methodology (NCT) NCT, a
specialized approach within Model-Based Testing (MBT), is specifically designed
for network protocols. It provides a structured method for creating formal spec-
ifications of Internet protocols and subsequently testing them [45]. The NCT
principle is demonstrated in Figure 2 using Ivy. The process begins with con-
verting the RFC into an Ivy formal model a○. Once the Ivy code is parsed,
a generator is used to create concrete and randomized testers b○. Finally, the
implementation of the real-life protocol is tested and verified against the testers
that employ an SMT solver to satisfy the constraints of the formal protocol re-
quirements. When a requirement fails, the resulting traces c○ can be analyzed
to identify any potential errors or vulnerabilities.
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<model>.ivy

Ivy-based
tester

Protocol RFCs
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b

a

Non-deterministic
networks traces

parsing Generate
tester
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Tested
implementation

Fig. 2: Ivy implementing NCT

The NCT principle is based on compositional testing, which views formal
specifications as a set of interconnected components/processes with their corre-
sponding inputs and outputs. This approach allows testing protocol behaviors
as observed on the wire, rather than relying on an abstract mathematical model
of the protocol. This is why this methodology is called "network-centric".

The design of MiniP is in line with the principles of the NCT methodol-
ogy. In MiniP, the "Frame" process produces output that serves as input for
the "Packet" process. The "assumptions" regarding the inputs of a process are
treated as "guarantees" for the outputs of other processes. Figure 3 provides a
visual representation of this structure. In the context of MiniP, each element rep-
resents a layer of the MiniP stack, including the frame layer a○ and the packet
layer b○. The shim component c○ is responsible for transmitting and receiv-
ing packets across the network. When a packet is received, the shim invokes the
ping_packet_event action. This action contains all the specifications associated
with the MiniP packet and will generate an error if any of the requirements are
not met. For instance, it verifies that a packet always contains two frames in the
correct order. The frames are similarly managed with their respective actions.
In Figure 3, the set of requirements is connected to the packet component b○.

Limitations NCT’s success derives from how effectively it identifies errors and
vulnerabilities in real-world protocols like QUIC [21,46]. However, NCT presents
some limitations associated with its inability to test time-varying network prop-
erties.

For instance, it cannot model the congestion control mechanism specified in
RFC9002. Calculating the time needed for packet generation and verification of
received packets can be significant, particularly when implementations under test
generate packets in bursts, leading to false congestion due to increased round-trip
time.
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Fig. 3: MiniP Network-Centric Testing (NCT) structure

Additionally, debugging implementations is challenging because traces have
no guarantee of reproducibility. In summary, here are the current main limita-
tions of NCT for protocol testing:

1○ Lack of the expressiveness to handle time-varying network properties [46].
NCT lacks the necessary capabilities to reason about precise time intervals and
deadlines. It also does not provide guarantees on thread-scheduling or computa-
tion time. For example, NCT cannot verify whether a MiniP server will respond
to a PING within three seconds.

2○ Non-reproducible experiments. While NCT offers deterministic verification
for formal properties, this determinism does not extend to the network (network
nondeterminism) or the implementations being tested (internal nondetermin-
ism). As a result, the experiments cannot be reproduced. For example, a MiniP
server that crashes when sending an odd TIMESTAMP will not crash deterministi-
cally when tested with NCT.

3○ Computational time exceeding protocol timeout. The computation time re-
quired to verify incoming packets and generate packets that satisfy the model
can interfere with the standard behavior defined by some protocols. This also
hinders the reproducibility of the experiment. For instance, a MiniP server im-
plementation in NCT may take too long to check the integrity of a PING and
exceed the response time limit of 3 seconds. This issue would not occur with
MiniP implementation on a modern computer, but it arises with real protocols
due to the inherent complexity of their RFCs, as with QUIC [46].
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3 Network Simulator-centric Compositional Testing

Network Simulator-Centric Compositional Testing (NSCT) is a specialized ap-
proach within Model-Based Testing (MBT) that aims to overcome the limita-
tions of NCT discussed previously. NSCT, similar to NCT, adopts a network-
centric perspective and employs a combination of two key ingredients.

Ingredient 1: Introduction of Network Simulators (NS)

Type of Network Simulators NS tools permit running a model or a real
executable inside a controlled network environment. Model-oriented simulators
are mainly used to verify protocols during their development stage [11]. Many
types of NS exist; we will focus on time-dependent NS tools that have two main
properties: they proceed chronologically and maintain a simulation clock [28].
This clock is essential to verify time-related properties. There are two types of
time-dependent NS: time-driven and event-driven.

(1) Time-driven NS advance their clocks exactly by a fixed interval of δ time
units [28]. This means that the simulation has a time precision of δ. To increase
precision, δ must be small, which slows down the simulation computation.

(2) Event-driven NS, by comparison, advance their clocks by variable steps.
Such tools progress as events unfold; each time step jumps precisely to the next
event:

Event-driven network simulator [25]
while simulation is in progress do

remove smallest time-stamped event;
set time to this timestamp;
execute event handler;

end

Our approach using NS Our solution involves integrating NCT with an event-
driven, time-dependent network simulator to effectively overcome the limitations
2○ (Non-reproducible experiments) and 3○ (Computational time), and partially
limitation 1○ (Time-varying network properties).

Addressing Limitation 2○: Model-based testers and protocol implementations
are real software components that must be executed rather than just modeled.
When they are executed in a controlled environment, it becomes possible to
stabilize and replicate desired random behaviors like encryption. This solution
addresses the second limitation 2○. This ensures the determinism of model-based
protocol testing.
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Addressing Limitation 3○: Formal specifications developed to test internet pro-
tocols with respect to NCT focus on packet events. This means that the latency
of the (network) link between the model-based test and the implementation un-
der test (IUT) determines the clock steps. Assuming a latency of l, if the IUT
sends a packet at time t, the model-based tester will receive it at time t+ l. If the
model-based tester responds immediately (without waiting for a specific delay
to verify a timing property), the IUT will receive the response at time t + 2l.
This resolves 3○ as the computation time does not affect the time perceived by
the IUT.

Addressing (partially) Limitation 1○: To address 1○ (time-varying network prop-
erties), it is essential to employ a time-dependent NS. However, simply using a
time-dependent NS is not enough. It is also necessary to have a formal verifica-
tion tool that can interact with the simulation clock. We will discuss this further
in the second ingredient of NSCT.

Additional values using NS: The use of NS provides the ability to manage and
control the network. It simplifies the creation of various network-related situa-
tions, including connection migration as described in RFC9000. An NS also en-
ables realistic simulation scenarios of advanced modern network protocols [26].
In the following sections, we will introduce the specific NS that we used for
NSCT.

Specific NS There are two modern discrete-event network simulators:

(1) The ns-3 [56] simulator is a freely available tool that has been specifically
designed for research and educational purposes. It operates using models. To
enable the execution of direct code within ns-3, the DCE framework [57] in-
tercepts system calls and links them to ns-3. However, DCE does not support
many of the necessary system calls required for protocol implementation, and
the environment it supports has become outdated. The use of ns-3 DCE to sim-
ulate QUIC implementations requires significant effort and inhibits tool longevity.
Researchers have recently expressed concerns about various challenges encoun-
tered while trying to simulate QUIC implementations using the ns-3 DCE frame-
work [1].

(2) Shadow [32, 33] is a free, open source simulator. It was primarily designed
to simulate Tor networks. Shadow works by intercepting a subset of the system
calls (syscalls), simulating network calls. Despite lacking support for some key
system calls initially, the Shadow project remained highly active and has since
added built-in implementation for several important syscalls that were originally
missing. This is a positive sign for the long-term sustainability of the tool.

Shadow provides a range of network-specific functionalities that are highly
beneficial for researchers and engineers. It allows users to carefully design the
network topology that they want to simulate, specifying nodes, links, and their
connections. Shadow allows users to adjust parameters like link latency and
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jitter, which are crucial for evaluating the performance of networked applications
under different network conditions. Beyond its flexible design capabilities (e.g.,
configurable topologies), Shadow offers live debugging features to monitor and
troubleshoot network behaviors in real-time during simulations.

Shadow easily supports single-threaded and multithreaded implementations.
For example, if there is a multithreaded server connected to two clients, Shadow
enables deterministic debugging of one client while allowing the other client
and the server to operate independently within the simulation. This level of
control and precision in debugging, even in complex multithreaded scenarios,
provides researchers and developers with valuable insights into the behavior and
interactions of various components. As a result, it improves the thoroughness of
protocol analysis.

Ingredient 2: Integration of time-varying network properties testing
in Ivy

In practice, network link properties are designed in the Ivy model or directly
with Shadow. Ivy then builds the simulation configuration file with those prop-
erties and references the executable used for the test. Finally, Shadow launches
the IUT and the Ivy test.

Adapting Ivy for Event-Driven Network Simulation Our approach aims to en-
hance the compatibility of the Ivy verifier with event-driven network simulators.
To improve protocol verification in Ivy, we propose an adaptation that intro-
duces an interface for manipulating time-related actions/relations. The interface
is implemented in C++ and leverages the ’time.h’ library to facilitate the inter-
ception of system calls (syscalls) by the Shadow simulator.

This interface provides several key functionalities, including the manipula-
tion of time in various units (seconds, milliseconds, microseconds), timer con-
trol (start and stop actions), and current-time querying. The interface supports
setting time breakpoints at specific events and implements both blocking and
non-blocking sleep mechanisms. Using non-blocking sleep allows the simulation
to receive network events while "sleeping," resulting in simulations that more
accurately mirror real-world network behavior.

Ivy’s time interface is extensible, which allows for further adaptations and
enhancements to meet the evolving needs of network protocol verification. The
time interface is represented at Figure 4 a○.

Our progress in Ivy for simulating event-driven networks is built on an im-
proved method for controlling event generation. We use signal handlers along
with time-based signals such as SIGALRM to accurately manage event timing.
This approach is illustrated in Figure 4 b○. It is especially effective in situations
that require delayed responses, as it allows precise control over the timing of
event generation and processing.

Finally, while Shadow’s ability to modify network conditions is beneficial, it
lacks flexibility, as it cannot vary the delay during the connection. To address
this limitation, we developed a formal model that represents network quality,
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Fig. 4: Protocol Formal Verification toolchain (PFV)

enabling us to simulate more specific scenarios of network condition. Neverthe-
less, we still rely on Shadow for reproducibility and intercepting time syscalls as
shown in Figure 4 c○.

Monitoring time-varying properties We can now use Shadow intercepting time
syscalls to define safety properties for time-varying properties in Ivy without
having to modify the tools directly. Using the implemented time module and the
standard Ivy key words such as "require" or "assume", we can model all the
first-order logic formula with time as variable or predicate.

Protocol Formal Verification (PFV) PFV1 toolchain implements NSCT by lever-
aging Ivy and Shadow. The usability of the previous work is enhanced by im-
plementing a multistage docker containerisation procedure [47], coupled with
microservices and a basic graphical interface to initiate experiments. This ar-
chitecture allows for easy testing of new protocol implementations with Ivy and
Shadow. All containers implement a REST API to start Ivy.

Case Study - MiniP Protocol In our MiniP formal specification example, we
implemented the property that the PONG message should be received within 3
seconds after the PING message being sent, as seen in Listing 3. To achieve that,
we use the concept of time breakpoint. Then we add requirement manipulating
the values extracted from these breakpoints.

3. Testing time-varying properties
1 # Get current time from l a s t break point
2 current_time := time_api . c_timer . now_millis_last_bp ;
3 # Check tha t i t s a t i s f i e s the 3 seconds l im i t
4 r e qu i r e current_time ≤ 3000 ;

1 https://github.com/ElNiak/PFV

https://github.com/ElNiak/PFV
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The time breakpoint is set in the PING frame event handler as presented in
Listing 4:

4. Adding time breakpoint
1 ob j e c t ping = {
2 around handle {
3 # [ previous requirements ]
4 . . .
5 c a l l time_api . c_timer . s t a r t ; #add time break point
6 # [ previous requirements ]
7 }
8 }

This example demonstrates how simple it is to test a time-varying network
property with a safety property thanks to the network-simulator assumption.

Three distinct implementations of the protocol were discerned. The first im-
plementation consistently adhered to the specification by responding with PONG
within the 3-second limit. In contrast, the second implementation displayed inter-
mittent deviations from the desired behavior, indicating the necessity for further
refinement. The third implementation consistently failed to meet the specifica-
tion, exposing significant deficiencies.

Shadow’s capabilities were employed to introduce link jitter between the
client and the server, simulating network conditions with varying packet deliv-
ery times. This additional element of uncertainty influenced the performance of
the implementations. The previously flaky implementation, which occasionally
deviated from the specification, now violated the time constraint more frequently.

The experiment’s determinism helped us to identify a specific seed value that
leads to early connection failure in the flaky implementation.

Shadow’s debugging capabilities allow precise analysis of the two faulty im-
plementations. By attaching a debugger to the implementations during testing,
we can precisely identify which components were responsible for the deviations
from the specified behavior.

4 Threat to validity for QUIC

This section provides an overview of how NSCT is applied to the QUIC protocol.
It begins by defining the QUIC protocol and then discusses the modifications
made to the formal model described in previous work [21,46]. It also includes an
analysis of the results obtained from the picoquic implementation, highlighting a
specification violation. This issue was subsequently addressed through a pull re-
quest in the picoquic repository, fixing the error and aligning the implementation
with the QUIC specifications.

QUIC is a modern transport protocol that combines the advantages of TCP
(Transport Control Protocol) and TLS 1.3 (Transport Layer Security), while
overcoming their limitations, as detailed in RFC9000 [31]. It introduces innova-
tive secure communication methods at the transport layer. The RFC describes
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how data are organized into frames and packets to ensure effective data segmen-
tation, reliability, and control.

Tested implementation: picoquic is a research implementation of QUIC [15].
This implementation participated in the development of a QUIC standard by
providing feedback. picoquic is written in C and consists of 103k lines of code.
The tool incorporates various QUIC extensions and is currently under active
development, making it an ideal choice for testing purposes. Moreover, QUIC
has recently been chosen as the basis of HTTP/3 and is expected to handle a
substantial portion of internet traffic in the coming years [46].

Table 1 summarizes the contribution to QUIC formal specification and the
problems we found per RFC while testing picoquic:

A. RFC9000 B. RFC9002 C. Ack Frequency

Previous works Partially
complete / /

Contributions - Ack-delay
- Idle timeout

- Congestion control
(rtt calculation)
- Loss recovery

90% of the draft

Problems found Max
retransmission / Misinterpretation in

a frame field

Table 1: Summary of contributions to Ivy model and problems found in picoquic

A. Analysis of RFC9000: Our approach, integrating the time module and
Shadow, has enabled enhancements to the existing QUIC model by incorporating
time-related requirements as per RFC9000 specifications.

We focused on the idle timeout connection termination behavior of QUIC.
QUIC outlines three primary methods for connection termination: immediate
close, stateless reset, and idle timeout. We designed our tests to validate the
implementation of these methods, particularly the idle timeout.

According to RFC9000 section 10.1, an endpoint restarts its idle timer upon
receiving or sending ack-eliciting packets (i.e., the packet triggering ACK mech-
anism), ensuring that connections remain open during active communication.

To prevent overly brief idle timeouts, QUIC mandates an idle timeout period
be at least three times the current Probe Timeout (PTO). This extension allows
multiple opportunities for packet transmission before a timeout.

The connection in QUIC is automatically and silently closed, discarding its
states if it remains idle beyond the minimum duration set by the max_idle_timeo
ut transport parameter.

Our experiments revealed some discrepancies in the implementation of the
idle timeout feature not in line with the standard behavior dictated by RFC9000.
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We noticed deviations in the handling of retransmission thresholds and idle time-
outs.

This test involved suspending packet transmission after a random period
and observing if the connection closes silently, according to the specifications.
However, our experiments revealed a deviation in the picoquic implementation.
Rather than closing the connection after the idle timer expired, picoquic termi-
nated it prematurely upon reaching a retransmission threshold. This behavior,
probably influenced by TCP retransmission mechanism, deviates from RFC9000
standards, which require explicit notification through CONNECTION_CLOSE or
APPLICATION_CLOSE frames for such terminations.

The discovered issue has been resolved through a pull request that was
merged into the picoquic repository. This confirms the effectiveness of NSCT
in detecting real-world anomalies in protocols.

B. Analysis of RFC9002 [58] This RFC discusses loss detection and conges-
tion control in QUIC, differentiating it from TCP. It includes 37 mandatory spec-
ifications and 27 recommendations as per RFC2119. Key concepts introduced
include the "probe timeout" (PTO) for managing congestion windows and the
round-trip time (RTT) estimation process, comprising metrics like "min_rtt",
"smoothed_rtt", and "rttvar". The RFC also details a sender-side congestion
control mechanism, akin to TCP/NewReno, focusing on packet losses and Explicit
Congestion Notification (ECN) [5, 24] .

Our analysis involved implementing and testing the specified requirements
and behaviors of RFC9002 in the context of congestion control and loss recov-
ery, excluding the ECN component because it requires kernel support, which is
not currently supported by Shadow. Future work could explore additional con-
gestion control mechanisms like CUBIC [55] or BBR [14], and extensions such as
QUIC-FEC [48]. Tests were conducted to evaluate the model’s behavior under
various network conditions, including loss, delay, and jitter, ensuring adherence
to the RFC’s guidelines.

While our formal specification of the RFC9002 did not identify specific prob-
lems in the picoquic implementation, it significantly contributed to refining the
formal specification of QUIC, making it more precise and closely aligned with
real-world scenarios.

C. Analysis of "QUIC Acknowledgement Frequency" [30] extension Cur-
rently in its draft-05 version, this extension enhances QUIC by allowing for de-
layed packet acknowledgments. It introduces the min_ack_delay transport pa-
rameter and two new frames: ACK_FREQUENCY and IMMEDIATE_ACK. The ACK_FRE
QUENCY frame adjusts acknowledgment rates based on the network state, while
the IMMEDIATE_ACK frame assists connection liveliness.

In our examination, we analyzed the integration of this extension into the
QUIC formal specification, focusing on the implications of delayed acknowledg-
ments. During this process, an error was identified in the picoquic implemen-
tation; it incorrectly returned a FRAME_ENCODING_ERROR when processing an
ACK_FREQUENCY frame. This issue, initially suspected to be a draft inconsistency,
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was actually due to a misinterpretation of the "ACK-Eliciting Threshold" field
in picoquic.

5 Discussion and future work

It is clear that the NSCT methodology, which involves various tools, is suc-
cessful in uncovering new behaviors in protocol implementations, especially in
terms of their temporal dynamics. However, combining multiple tools also brings
about the intrinsic limitations of each tool and difficulties from their joint use.
For example, employing network simulators, such as Shadow, comes with specific
constraints. The necessity for simulators to depend on system calls for interacting
with implementations restricts the range of implementations that can be tested.
Moreover, busy loops (an anti-pattern not very used) reduce precision in time
as they do not wait through system calls. In addition, the topology part of the
NSCT testing process requires scenario-based simulations, where the behavior
of the network within the simulated environment is predetermined.

A natural strategy to tackle these limitations is to replace certain tools used
in the existing NSCT framework. For example, employing a network simula-
tor that accommodates dynamic topology might alleviate the restrictions of
scenario-based simulations, though it would necessitate modifications to existing
automation scripts. Furthermore, substituting Ivy with any tool that implements
the NCT methodology could be feasible, but this would require adapting the Ivy
models.

In addition to improvements related to the joint use of several tools. Other
future avenues may also be investigated. For example, a further improvement
of the time module can allow for a more thorough verification of different types
of properties. Closer integration between Ivy’s generation process and the time
module could make generating events at specific time points easier. This adap-
tation would enhance the tool’s precision and overall usefulness.

Expanding the scope of the testing to include different congestion mechanisms
in various protocols would provide more detailed insight into the details related
to implementation and effectiveness.

Applying the methodology and tools discussed here to a broader range and
scale of QUIC implementations would better validate and improve reliability and
security.

Another promising area of research lies in the examination of the synergy
between formal attacks models in network and Shadow’s capabilities, especially
considering the ongoing development of protocols like MPQUIC [23]. Currently,
MPQUIC is still in its draft phase, grappling with significant security consider-
ations between two main solutions. Given Shadow’s unique ability to create
custom network topologies, our methodology stands to offer substantial assis-
tance. It enables the modeling of both solutions under consideration for MPQUIC,
providing a comprehensive framework to assess their security implications and
vulnerabilities.
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Furthermore, another innovative approach is to leverage AI to simplify the
creation of formal models from RFCs. This integration would greatly streamline
the modeling process, making it more efficient and accessible. Additionally, a
Graphical User Interface (GUI) for Ivy would allow users to engage in formal
modeling without needing to understand the complexities of Ivy code, thereby
making the process more user-friendly and approachable.

6 Conclusion

Protocol validation methods are diverse. Notably, the INET suite within the
OMNeT++ simulation library offers a powerful tool for network protocol val-
idation [60]. Previous research used INET to simulate a QUIC model within
OMNeT++ [62, 63], but the evaluation was limited to protocol models and did
not include real-world implementations. Studies like [2] used formal verification
methods and simulations to validate complex protocol properties. This work
measured the impact of specific attacks like Denial-of-Service on network pa-
rameters like energy consumption and computational effort, but did not use
formal methods alongside simulations for verification.

Other research [7, 8, 40] attempted to enable the expression of time-varying
network properties in the ISO standard to specify OSI protocols, known as
Language Of Temporal Ordering Specification (LOTOS ) [6]. While extensions
to LOTOS offered varied expressiveness [8], subsequent Model-Based Testing
(MBT) tools like TorXakis [59] only ensure guarantees about the tester’s side
due to its lack of a network simulator. This limits its ability to verify time-varying
network properties.

In [41], the authors compose their model with a network model to control the
non-determinism of the network. This approach increases determinism, but it is
not as powerful as NSCT, which extends determinism to IUT. [4] proposed using
a test oracle on IUT traces, which allows offline verification of time-sensitive
network properties that change based on network conditions. This approach
avoids the high computational cost associated with online verification. However,
this approach does not allow for the expression of time-dependent scenarios.
Additionally, verifying traces does not facilitate the reproducibility of errors.

In this study, we propose an extension to Network-centric Compositional
Testing (NCT). NCT is a simulation-based formal verification approach pre-
viously employed to validate QUIC implementations with Ivy. However, it has
certain drawbacks; Ivy and NCT cannot capture time-varying network require-
ments or replicate experiments due to the inherent randomness of the method-
ology and the network. In addition, the extensive computational time required
to scrutinize actual implementations of Internet protocols may affect protocol
behaviors.

This study has successfully demonstrated the efficacy of Network Simulator-
centric Compositional Testing (NSCT) in enhancing the verification of network
protocols, particularly in addressing key challenges of NCT. NSCT, through the
integration of the Ivy tool and the Shadow network simulator, effectively solves



Network Simulator-centric Compositional Testing 17

several issues. These include the addition of time-varying network property veri-
fication, ensuring deterministic outcomes in protocol testing, and enhancing the
reproducibility of test results. Our paper demonstrates the described method
using a custom minimalist MiniP protocol. The application of NSCT in the pi-
coquic implementation of QUIC identified a compliance error with time-varying
network specifications, which was then rectified. This underscores the method-
ology’s capability in managing complex, real-world network scenarios.

Additionally, a formal model is developed for RFC9002 that integrates con-
gestion control and loss recovery into the existing QUIC model. The formal model
of the "Acknowledgement Frequency" QUIC extension is also included.
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