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Graphic Statics for Continuous Beams and Frames: A Review of the Fixed-points 
Method
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ABSTRACT
Graphic statics not only applies to statically determinate systems but also extends to indeterminate 
systems. This paper reviews a historical graphical method tailored for continuous beams and 
frames: the fixed-points method. Despite its current obscurity, the fixed-points method played 
a crucial role in the repertoire of graphic statics and enjoyed considerable popularity during the 
late 19th and early 20th centuries. Our review outlines its historical evolution, explains its principles 
and techniques, and illuminates Robert Maillart’s applications of this method in the Simme bridge 
in Garstatt and the Weissensteinstrasse Overpass in Bern.
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1. Introduction

1.1. Graphic statics

Graphic statics is a classic geometric-based approach 
for structure analysis and design. It encompasses 
a variety of graphical methods tailored for different 
structure types (Allen and Zalewski 2009; Saliklis  
2019). This method relies on graphical diagrams 
rather than algebraic calculations to ascertain the 
internal forces and reactions of a structure. Graphic 
statics was extensively studied and applied in the late 
19th and early 20th centuries but was almost totally 
supplanted by algebraic and numerical methods by 
the mid-20th century.

In recent years, there has been a partial resurgence 
of graphic statics. Due to its unparalleled visual clarity, 
graphics statics has been rediscovered as an insightful 
method for structure, leveraging enhanced efficiency 
through computerization (D’acunto et al. 2019; Fivet 
and Zastavni 2015). Additionally, this renewed appli
cation of graphic statics into the design was accompa
nied and inspired by the investigation of historical 
designs and writings (Huerta 2006; Zastavni 2008). 
Furthermore, it finds renewed application in the ana
lysis of historical masonry structures (Block and 
Lachauer 2014; Costa-Jover, Lluis i Ginovart, and 
Coll-Pla 2017; Cusano et al. 2023; Fang et al. 2019; 
Karanikoloudis et al. 2021; Kavanaugh et al. 2017; 
Ramos and Sturm 2014).

1.2. The fixed-points method

Regrettably, contemporary scholarly work on graphic 
statics tends to focus primarily on statically determinate 
structural systems. This focus has contributed to the 
prevailing misconception that graphic statics cannot be 
applied to statically indeterminate systems. However, 
graphical methods for the elastic analysis of continuous 
beams and frames, which fall under the category of 
statically indeterminate systems, were indeed 
a significant component of the arsenal of graphic statics. 
This is unsurprising given that the era when graphic 
statics was rapidly developed and increasingly applied 
coincided with the rise of continuous structures. Many 
monographs on graphic statics then, including some 
standard ones (Culmann 1866; Ritter and Culmann  
1900), endeavored to extend the application of graphic 
statics to these emerging structure types.

Among these methods, the fixed-points method 
(German: Methode der Festpunkte) stands out as the 
earliest and arguably the most influential one. Ernst 
Suter, a pivotal figure in the development of this 
method, remarked, “Because of its clarity, the fixed- 
points method is rightly very popular among engineers” 
(Suter 1923, V). Besides, this method was regarded as 
one of the most well-known approaches in practical 
engineering, as noted by (Guldan 1943, 145). As a case 
in point, the authors discovered that the renowned 
Swiss engineer Robert Maillart applied the fixed-points 
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method in his analysis of two bridges: the Simme 
bridge in Garstatt and the Weissensteinstrasse 
Overpass in Bern.

1.3. Relevant researches

Recently, the historical graphical methods tailored for 
continuous beams and frames have begun to receive 
limited attention in scholarly works. T. Boothby 
reviewed Charles Greene’s semi-graphical method for 
continuous girders (Boothby 2015, 198–200). E. Saliklis 
has provided a lucid and pedagogical explanation of 
a graphical method which solves continuous beams 
with funicular polygons (Saliklis 2019, 213–248). 
A similar method for continuous beams and portal 
frames was reviewed by the authors (Han, 2022). In 
addition, before the current resurgence of graphic sta
tics, Charlton reviewed another graphical method 
named the characteristic points method which was 
invented by Thomas Claxton Fidler (Charlton 1982). 
While these three methods share some theoretical foun
dations with the fixed-points method, they primarily 
differ in their approach to solving static indeterminacy. 
They all employ a tentative approach as opposed to the 
synthetic approach of the fixed-points method.

A comprehensive review dedicated to the fixed- 
points method seems to be absent in contemporary 
writings to the best of our knowledge. Although 
a historical drawing employing the fixed-points 
method was included in the monograph of historical 
engineering methods by T. Boothby, no accompany
ing explanation was provided (Boothby 2015, 197). 
Furthermore, this method was only briefly men
tioned in the encyclopedic book on the history of 
structural theory by K. Kurrer, while the evolution of 
the graphical methods for statically determinate sys
tems was reviewed in detail (Kurrer 2018, 702). The 
most recent literature detailing the principles and 
techniques of the fixed-points method known to the 
authors dates back to the late 1960s and is more 
focused on the numerical version of this method 
instead of the graphical one (Sattler 1969). The cur
rent state of obscurity surrounding this method does 
not match its historical significance. Keeping this in 
perspective, the authors have undertaken an initial 
examination of this method (Han, 2023).

1.4. Research aim, significance, and outline

To this end, this paper aims to present a review of the 
fixed-points method, including its historical evolution, 
principles, techniques, and application cases.

This review of the fixed-points method could poten
tially contribute to the preservation of historical struc
tures designed using this method. The absence of 
knowledge regarding this method might impede the 
accurate interpretation of original design documents, 
leading to potential pitfalls in preservation design. 
Take the Weissensteinstrasse Overpass as an example. 
Although this bridge was originally designed as 
a continuous frame, it has long been erroneously asso
ciated with continuous beams supported by hinged pil
lar head (Bill 1955, 132; Billington 1979, 125). Its 
maximum load capacity will be underestimated if it is 
preserved as a continuous beam. Considering the pur
ported popularity of this method, such a review could 
inform numerous preservation designs.

Additionally, the fixed-points method constitutes 
a significant aspect of intangible architectural cultural 
heritage, sharing equal importance of the cultural value 
with historical structures to which it was applied. In the 
field of cognition and teaching, the recent resurgence of 
graphic statics as an insightful design tool has illustrated 
the special merits of graphical methods that were once 
considered obsolete (Hartz et al. 2018). The fixed-points 
method also exhibits superiority over prevailing con
temporary methods in visualizing the relation between 
member stiffness and bending moment.

The remaining sections of this study are organized as 
follows: Section 2 outlines the evolution of this method, 
which is periodized according to its historical context of 
construction. Section 3 delves into the theoretical foun
dations of the method. Sections 4 elucidates the ratio
nale of the fixed points, which serves as the core 
technique for solving static indeterminacy. The proce
dures for analyzing continuous beams and frames are 
explained in Sections 5 and 6, respectively. Section 7 
sheds light on Robert Maillart’s application of this 
method in two bridges. Finally, Section 8 summarizes 
the main points, highlights contributions, and discusses 
potential avenues for future research.

2. The evolution of the fixed-points method

The fixed-points method was invented by Christian 
Otto Mohr (1835–1918) in 1868 in his seminal work 
“Beiträge zur Theorie der Holz- und 
Eisenkonstruktionen” (Contribution to the Theory of 
Wood and Iron Constructions) (Mohr 1868). It under
went successive developments by various engineers 
before becoming obsolete in the second half of the 
20th century. According to the different theoretical 
interest generated by construction practices, the evolu
tion of this method can be broadly periodized into 
(Figure 1):
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(1) The era of continuous beams (from 1868 to 
around 1900).

(2) The era of continuous frames (about the first half 
of the 20th century).

2.1. In the era of continuous beams (from 1868 to 
around 1900)

2.1.1. The proliferation of continuous bridges
The mid-19th century witnessed a notable surge of 
continuous-beam bridges driven by railway expansion 
and the increased use of wrought iron. The continuous 
beam often exhibits greater structural efficiency com
pared to consecutive simply supported beams, as the 
continuous joints reduced the maximum moment at 
the mid-span. This structural efficiency proved benefi
cial, especially in designing railway bridges where high 
bearing capacities were crucial. Additionally, during this 
period, the transition from cast iron to wrought iron 
effectively addressed the challenge of creating continu
ous joints. Wrought iron has balanced tensile and com
pressive strength and is ductile enough for riveting. 
These favorable properties facilitated the construction 
of continuous connections, further driving the adoption 
of this efficient structural type.

However, the high cost of wrought iron demanded 
a more precise engineering of continuous beams for 
economic viability. Additionally, the statically indeter
minate nature of continuous beams presented an analy
tical challenge. As the number of supports exceeded 
two, the internal forces couldn’t be determined solely 
by static equations.

Consequently, the structural analysis of continuous 
beams became a focal point in engineering research, 
leading to the development of various analysis methods 

tailored for this structure type. Before this, the founda
tion stones of the algebraic method for continuous 
beams were laid successively by Johann Albert 
Eytelwein and Claude-Louis Navier in the early 19th 
century. Émile Clapeyron’s publication of the theorem 
of three moments in 1857 furthered this development. 
The emerging theories swiftly found application in con
struction projects like the Britannia Bridges (con
structed in 1846–50), showcasing unprecedented scales 
of continuous beams. These algebraical methods have 
been extensively reviewed by (Charlton 1982; Kurrer  
2018).

2.1.2. The theoretical groundwork for the 
fixed-points method
The era of the proliferation of continuous beams coin
cided with the establishment of graphic statics, notably 
marked by Carl Culmann’s (1821–1881) landmark book 
Die graphische Statik (the Graphic Statics) (Culmann  
1866). As an experienced engineer of iron bridges, 
Carl Culmann sought to extend this new discipline to 
the analysis of continuous beams. His book extensively 
discussed the analysis of continuous beams, dedicating 
an entire section to this topic (Culmann 1866, 273–351). 
However, Culmann encountered difficulties in develop
ing a graphical method for continuous beams due to the 
challenge of analyzing deflection graphically—an essen
tial aspect in analyzing statically indeterminate struc
tures. Culmann’s attempts were hindered by the 
complexity of his curvature formula, which proved too 
intricate for graphical representation (Culmann 1866, 
289).1 Consequently, he then settled for a somewhat 
abstruse algebraical approach.

Nonetheless, Culmann laid the foundational ground
work for graphical methods in analyzing beam bending 
through his method for constructing bending moment 

Figure 1. The evolution of the fixed-points method.

1The modern formula for curvature, which is simplified yet sufficiently precise, had already been discovered decades ago of by (Navier 1833, 49) and (Rankine 
and Roberts 1858, 160–161). However, these findings were regrettably unknown unto Culmann.
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diagrams of statically determinate beams. He found that 
the bending moment diagram of plane beams could be 
analogously constructed as an enclosed funicular poly
gon (Culmann 1866, 124–132). Moreover, Culmann 
highlighted that the bending moment diagram of con
tinuous beams could be depicted by the overlapping 
diagrams of statically determinate and indeterminate 
moments (Culmann 1866, 274).

Culmann’s method was built upon Pierre Varignon’s 
(1645–1722) graphical method for constructing the 
funicular polygon, which represents the equilibrium 
position of an inelastic suspended rope under loads 
(Varignon 1725). Varignon’s method was based on the 
law of the parallelogram of forces, a principle progres
sively revealed by Leonardo da Vinci, Simon Stevin, 
Gilles de Roberval, and Isaac Newton (Capecchi 2012).

Another pivotal advancement for the invention of the 
fixed-points method was achieved by Christian Otto 
Mohr (1835–1918) in the same paper which presented 
this method (Mohr 1868). With the simplified formula 
for curvature, Mohr revealed that the elastic curve of 
a beam could also be represented as an enclosed funi
cular polygon by analogically taking moment area as the 
‘loading’.

Varignon, Culmann and Mohr’s contribution will be 
explained in section 3.

2.1.3. The invention and dissemination of 
fixed-points method for continuous beams
With the foundation work of Varignon and Culmann 
and his method for elastic curves, Mohr invented the 
fixed-points method (Mohr 1868). This method derived 
its name from its unique approach to addressing static 
indeterminacy through geometric constraints of fixed 
points on the bending moment diagram. Mohr located 
these fixed points using specific elastic curves, which are 
referred to as abstract elastic curves in this paper. 
Additionally, he introduced the technique of crossing 
lines (kreuzlinien) to ascertain the bending moment of 
loaded spans. Furthermore, Mohr expanded the method 
to accommodate continuous beams with varying second 
moments of area.

Mohr’s groundbreaking work prompted responses 
from Culmann and Karl Wilhelm Ritter (1847–1906). 
Ritter was Culmann’ pupil and was then working as 
Culmann’s assistant and a privatdozent at ETH 
Zürich. With Culmann’s consent, Ritter published 
a concise book to introduce Mohr’s elastic curve and 
fixed-points method to the Culmann’s audience (Ritter  
1871), which was revised and reprinted in was 1883 
(Ritter 1883). In this book, Ritter confined the applica
tion to simpler cases involving continuous beams with 
a constant cross-section and a uniformly distributed 

load, which he believed would suffice in most practical 
scenarios.

Culmann also incorporated Mohr’s funicular of elas
tic curve for analyzing one-span statically indeterminate 
beams, in the first volume of the expanded second edi
tion of Die graphische Statik (Culmann 1875, 627–644, 
Pl. 617). He promised to dedicate a section in the sub
sequent volume specifically to the systematic use of the 
fixed-points method for analyzing continuous beams 
(Culmann 1875, 627). Unfortunately, he passed away 
before completing the second volume.

Subsequently, Ritter published the long-awaited 
monograph on the analysis of continuous beams as the 
third volume of his series “Anwendungen der gra
phischen Statik” (Applications of Graphic Statics) in 
1900 (Ritter and Culmann 1900). Ritter took over 
Culmann’s unfinished research on graphic statics and 
professorship in 1882. However, rather than continuing 
Culmann’s work, Ritter initiated his comprehensive ser
ies on graphic statics and postponed writing about the 
analysis of continuous frames. Furthermore, delays in 
this monograph resulted from Ritter’s extensive engage
ments in bridge engineering practice (Ritter and 
Culmann 1900, IV).

This monograph represented the pinnacle of apply
ing the fixed-points method to continuous beams. In the 
preface, Ritter acknowledged Mohr’s significant contri
butions, remarked that,

Rarely has such a simple idea yielded such rich fruits as 
Mohr’s method for drawing the elastic curve. Since 
then, stone after stone has been added to the foundation 
laid at that time, and today we have come to the point 
where we can not only answer the most mundane 
questions belonging here with playful ease, but also 
hardly flinch from the most difficult tasks presented to 
us by civil engineering. (Ritter and Culmann 1900, V)

Ritter showcased various problem-solving applications 
of the fixed-points method in analyzing continuous 
beams, including trussed continuous beams with vary
ing height. He highlighted the simplicity and clarity of 
this graphical method in solving tasks compared to 
algebraic methods.

Beyond Switzerland, the renowned German profes
sor Heinrich Müller-Breslau included the fixed-points 
method in his influential book (Müller-Breslau 1892, 
352–356). However, his approach focused more on ana
lytical formulas rather than graphical drawing in deter
mining fixed points and moments.

In non-German-speaking countries, along with the 
translation of Ritter’s works, the fixed-points method 
was introduced by various engineers. It was introduced 
to America by Augustus Jay Du Bois (Du Bois 1875), 
and later to Britain by James Chalmers (Chalmers 1881). 
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In France, Maurice Lévy incorporated the fixed-points 
method into the expanded second version of his influ
ential monograph on graphic statics (Levy 1886, 
321–343). Maurice Koechlin, a student of Culmann 
known for his pivotal contribution to the Eiffel Tower, 
included this method in his book (Koechlin 1889, 
345–361). Additionally, the method found a place in 
(Pillet 1895, 218–250), which was developed from the 
Pillet’s teaching.

2.2. The era of continuous frames (around the first 
half of the 20th century)

Ritter’s monograph also marked the shift in the interest 
of theoretical exploration, transitioning from continu
ous beams to continuous frames. On one hand, Ritter 
noted a declining preference among engineers for con
tinuous bridges as the drawbacks of this structural type 
were scrutinized more thoroughly (Ritter and Culmann  
1900, IV). On the other hand, Ritter extended the fixed- 
points method to continuous frame bridges without 
lateral displacement (Ritter and Culmann 1900, 
125–146).

2.2.1. The widespread use of continuous frames and 
early algebraical methods
The transition towards analyzing continuous frames 
was influenced by the proliferation of this system in 
construction practices. During the 19th century, contin
uous frames remained a relatively uncommon structural 
type. However, in the early 20th century their prevalence 
was notably increasing with the emergence of skyscra
pers and the expanding use of materials like steel and, 
notably, reinforced concrete. Due to the magnitude of 
wind load and the slender profile of skyscrapers, the 
issue of lateral bracing became a central concern. The 
continuous frame was utilized as a spatially efficient and 
flexible solution for lateral bracing, as it is free from 
diagonal bracings which could impede inner space or 
envelope opening. Concurrently, the French engineer 
and entrepreneur François Hennebique pioneered the 
first monolithic reinforced concrete frame, integrating 
all structural elements into a continuous system. 
Hennebique’s commercial success inspired the prolif
eration of patented monolithic reinforced concrete 
structures from the mid-1890s to the mid-1910s. These 
frame systems, including Hennebique’s, often derived 
lateral stability from their continuous beam-column 
joints.

However, the analytical methods initially devised for 
continuous beams were often impractical for continu
ous frames due to distinct challenges. First, continuous 
frames generally possess a higher degree of static 

indeterminacy. Solving a statically indeterminate system 
using analytical methods requires solving an equation 
system with as many equations as the degree of inde
terminacy. In an era of manual calculation, even 
a system of merely six equations would challenge most 
engineers. Consequently, engineers often resorted to 
approximation methods like the portal method and 
cantilever method, although their precision was often 
unreliable (Kurrer 2018, 818). Second, continuous 
frames are often used to withstand lateral loads applied 
at beam-column joints rather than on members. This 
application cannot be addressed by the theory for con
tinuous beams.

2.2.2. The extension of the fixed-points method to 
continuous frames
It is in this context that the fixed-points method evolved 
from a technique tailored for continuous beams to 
a method centered on continuous frames.

Ritter made the first step by considering single-story 
continuous frames as exceptional cases of continuous 
beams. He modified the method for locating fixed 
points by incorporating column moment resistance. 
Additionally, Ritter introduced the moment distribution 
angle to graphically distribute bending moment at con
tinuous joints.

This transition was significantly advanced by the 
Swiss engineer Ernst Suter (1884–1929). Suter’s doctoral 
dissertation extended the fixed-points method to analyze 
frames with horizontal displacement, contextualizing 
his theory within the realm of reinforced concrete 
frames (Suter 1916). Notably, his research specialized 
in analyzing frames with varying member section 
lengths, enabled by the adaptability of reinforced con
crete to diverse forms.

After his dissertation, Suter continued his research to 
generalize the fixed-points method. He extensively 
applied and refined this methodology in his role of 
chief engineer at the prominent reinforced concrete 
construction company Wayss & Freytag AG. Suter’s 
research and practice were crystalized into the book 
titled as the fixed-points method (Suter 1923). Due to 
his expertise, he obtained the position of privatdozent at 
ETH Zürich, where he taught the fixed-points method 
between 1924 and 1927 (ETH-Archiv 2018). 
Unfortunately, Suter’s untimely demise in 1929 inter
rupted his contributions, leading to the posthumous 
completion of an updated version by two of his office 
associates (Suter, Baumann, and Häusler 1932), adher
ing to his original intent.

At this stage, the fixed-points method had evolved to 
encompass the analysis of nearly all encountered stati
cally indeterminate frames in practical scenarios. Its 
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versatility extended to multiple-span and multi-story 
continuous frames, accommodating complex loading, 
arbitrarily oriented bars, arched structures, and addres
sing various types of loading. Furthermore, it was adept 
at analyzing stress induced by thermal changes and 
foundation settlements. The capability of graphical 
methods to handle complex issues reached an unprece
dented pinnacle.

In addition to the graphical method, Suter developed 
the algebraical version of the fixed-points method, 
known as the rotation angle method (der 
Drehwinkelmethode). This method is based on numer
ous rotation angles calculated for each member and 
joint under an imaginary unit moment (Suter 1923, 
19–22). These angles represent the stiffness of all the 
members and joints from various perspectives. The 
fixed points and crossing lines can be derived from 
these rotational angles. While the graphical analysis 
involves a substantial amount of drawing due to the 
complexity of the problem, the algebraical approach of 
the fixed-points method serves as a potential shortcut. 
Therefore, the fixed-points method evolved into a fusion 
of two parallel approaches: graphical and algebraical. 
The analysis can be conducted partly through graphs 
and partly through calculations, mutually corroborating 
each other. However, due to space constraints, the 
algebraical approach will not be expounded upon in 
this paper.

2.2.3. The attempt of simplifying the fixed-points 
method
Suter’s method gained prominence within the German- 
speaking region, where there was a strong tradition of 
Culmann’s graphical method. However, outside this 
region, the influence of the fixed-points method seemed 
to wane. The 20th century’s English writing on introdu
cing the fixed-points method to English readers that the 
authors have found was (Robin 1933). Furthermore, 
with the emergence of Cross Hardy’s moment distribu
tion method (Cross 1932), the fixed-points method faced 
competition from the rapidly spreading numerical 
techniques.

The disadvantage of the fixed-points method, parti
cularly against the moment distribution method, can be 
primarily attributed to its complexity. Even in its less 
sophisticated application to continuous beams, the 
fixed-points method was considered “challenging to 
understand” by (Boothby 2015, 197). Suter’s quest for 
a comprehensive solution to continuous frames, while 
admirable, escalated the complexity. For instance, the 
rotation angle method is based on 12 types of angles 
(Suter, Baumann, and Häusler 1932, 18–20). Besides, 
Suter’s extension for frames with varying section within 

spans didn’t align well with the prevalent practical use of 
reinforced concrete frames where constant sections 
within spans were more common. In comparison, the 
moment distribution method is relatively easier to com
prehend and is tailored to frames with inertia varying 
span-wise.

To streamline Suter’s legacy and align it more closely 
with practical needs, Richard Guldan (1901–1955), 
a Sudeten German Professor, introduced a algebraical 
method: the k-method (k-verfahren) (Guldan 1943, 
154–167). Unlike the somewhat intricate rotation angle 
method, the k-method was tailored for frames 
whose second area moment only varied span-wise. In 
this method, the stiffness of a member is represented as 
“k”, equivalent to its moment of inertia divided by its 
length. The parameter k indicates the rotational stiff
ness, given all the members are in the same material. 
The location of fixed points and crossing lines are ana
lytically derived from the stiffness k. Guldan’s work led 
to the third edition of the book fixed-points method by 
Ernst Traub (Henn 1951), which focused on the 
k-method. This method also found its place in the classic 
textbook of statics by (Hirschfeld 1959; Sattler 1969).

However, the fixed-points method for indeterminate 
structures faded into obscurity with the rise of the finite 
element method in the 1960s. The finite element method, 
more compatible with early computers, became domi
nant in practice, aided by rapidly advancing computer 
technology.

3. The theoretical foundation of fixed-points 
method

3.1. The graphical method for funicular polygon

Pierre Varignon found that the funicular polygon of 
a loaded rope can be graphically constructed through 
a force diagram. For instance, in Figure 2 the funicular 
polygon of ABCDEF, which resulted from the given 
loads f1 – f4, is determined using the force polygon on 
the right. Besides, the resultant of all the loads must pass 
through point G, which is the intersection of the exten
sion of edges AB and FE. For a more detailed explana
tion, refer to (Allen and Zalewski 2009, 37–43; Saliklis  
2019, 31–56).

3.2. The analogy between enclosed funicular 
polygon and the bending action of beams

Carl Culmann found that by incorporating a closing 
string, the funicular polygon could ascertain the bending 
moment and reactions of a beam. Consider the simply 
supported beam A’F’ depicted in Figure 2. This beam and 
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the above funicular polygon possess equal spans and are 
under identical loads. Connecting the ends of the funi
cular polygon with the closing string AF generates the 
enclosed polygon, representing the bending moment of 
the beam. The skewed reference line is denoted by AF. 
The scale of this bending moment diagram is the multi
plicative inverse of the pole distance h in the force dia
gram. In simpler terms, the bending moment at an 
arbitrary vertical line x equals h multiplied by v, in 
which v signifies the corresponding vertical distance 
between the funicular polygon and the closing string.

Moreover, the magnitude of vertical reactions R1 and 
R2 at the supports can be readily determined by drawing 
a parallel line of the closing string AF through the pole 
P. This parallel line divides the vertical of the force 
diagram into two parts, each representing a support 
reaction. The detailed demonstration can be referenced 
in (Allen and Zalewski 2009, 437–442) and (Saliklis  
2019, 57–70).2

Otto Mohr revealed that the elastic curve of a beam 
could also be represented as an enclosed funicular 

polygon by analogically taking moment area as the 
“force” and bending stiffness (EI) as the pole distance 
as the “force diagram” (Mohr 1868). The “force” is 
figuratively termed as “elastic weight” (elastisches 
Gewicht) by (Suter 1916, 13), and the special “force 
diagram” will be referred to as MΔx polygon/diagram3 

as the load force is replaced by the discretized moment 
area (M*Δx). The pole distance (EI) in the elastic curve 
representation is typically scaled down by a factor of 
n for ease of graphical depiction. Consequently, the 
deflection is scaled up by a factor of n. The demonstra
tion can be found in (Saliklis 2019, 213–248).

For example, in Figure 3, the bending moment dia
gram of the beam is sliced into reasonably short seg
ments (the pole distance of force diagram is set equal to 
one). The moment areas of the segments are considered 
as an array of elastic weights, which are applied at the 
centroids of the respective moment areas. The construc
tion of the funicular polygon for the elastic curve 
involves using the MΔx diagram, where the pole dis
tance is EI/n. Consequently, the vertical distance 

Figure 2. The funicular polygon (left), its corresponding force polygon (right), and a simply supported beam under same loads 
(bottom).

2It is worth noting that this analogy can be readily extended to beams with inclined loadings (Wolfe 1921, 26) and moment-resisting three-hinge arches (Saliklis  
2019, 70–77).

3In Mohr’s original paper, this diagram was referred to simply as the ‘auxiliary figure’ (Hülfsfigur) (Mohr 1868). The naming ‘MΔx force polygon’ closely follows the 
designation provided by (Chalmers 1881, 200), which was one of the earliest introductions of Mohr’s method to English readers. Chalmers termed this 
diagram the ‘MΔy force polygon’, utilizing ‘y’ as the designation for the beam length dimension.
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between the funicular polygon of elastic curve and the 
closing string equates to n times the actual deflection δ.

It is important to note that the quantity of moment 
segments does not affect the slope of the ends of funi
cular polygon. As a result, the difference in slope 
between the two supports can be more easily deter
mined using the abstract elastic curve (represented by 
dashed lines), loaded by the cumulative moment area 
(∑MΔx) of the bending moment diagram.

Today, Mohr’s finding is better known in its algebraic 
version: the moment-area theorem or Mohr’s theorem. 
Compared to the algebraic version, the graphical 
approach provides greater visual clarity, particularly in 
depicting the relationship between bending stiffness and 
deflection. This graphical method proves advantageous, 
especially for beams with varying sections, as showcased 
in examples detailed in (Wolfe 1921, 94–95).4

3.3. The decomposed bending moment diagram of 
the continuous beam

In the fixed-points method, the bending moment diagram 
serves as a graphical tool for analysis. Upon completion of 
this diagram, one can deduce shears, support reactions, and 
deflections. In contrast, the conventional bending moment 

diagram represents a simplified graph of the abscissa- 
moment function, displaying the calculated results.

The bending behavior of a continuous beam differs 
from that of simply supported beams due to the presence 
of the “joining” moment at the continuous joint. 
Consequently, the bending moment within 
a continuous beam can be divided into the moment of 
load and the “joining” bending moment from the con
tinuous joint (see Figure 4). The moment of load is 
dictated by the magnitude and distribution of load, and 
is independent of member stiffness, making it statically 
determinate. Conversely, the “joining” moment depends 
on the stiffness of the joined members and is statically 
indeterminate. Notably, unlike the bending moment dia
gram of simply supported beams (Figures 2 and 3), the 
endpoints of the closing strings of a hyperstatic beam do 
not coincide with those of the funicular polygon. This is 
because of the presence of the “joining” moment, whose 
magnitude is represented by the vertical distance between 
the ends of the funicular polygon and the closing string of 
hyperstatic beams.

This distinction leads to the bending moment diagram 
of a continuous beam being depicted as a superposition of 
funicular polygons and closing strings. The funicular 
polygon represents the moment of load, while the closing 

Figure 3. The graphical method of determining the elastic curve of a simply supported beam.

4It is worth noting that Mohr’s findings cannot be directly applied to structural members with non-rectilinear axis or under inclined loading. This is because 
secondary moments may occur in such cases, which can affect deflection.
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string illustrates bending moment resulted from the 
“joining” moment. The funicular polygon can be 
employed to plot the diagram of the moment of load, 
simplifying the determination of moment within contin
uous structures to locate the closing string.

Despite their opposite signs, both types of moments 
are plotted on the same side of the baseline for visual 
clarity, as demonstrated in Figure 4a. Consequently, the 
combined moment can be measured by the vertical dis
tance between the funicular and the closing string. The 
contraflexure points are identified by their intersections.

4. The principles and determination of the fixed 
points

In the fixed-points method, all the statically indetermi
nacy is resolved by identifying the fixed points within 
the bending moment diagram.

4.1. The fixity of contraflexure points

The principle underlying fixed points lies in the 
stationary contraflexure points on the moment dia
gram of unloaded spans. Put simply, the x-coordi
nates of the zero-moment points in the unloaded 
spans remain unchanged despite the loading applied 
to other spans. For instance, consider the continuous 
beam illustrated in Figure 5: the contraflexure points 
in the three right spans maintain their positions 
irrespective of the loading in the left span. 
Furthermore, each span has two fixed points. As 
the moment propagates towards the left, the fixed 
points on the left part of each unloaded span emerge. 
If an intermediate span is loaded, then the left fixed 
points on the left unloaded spans and right fixed 
points on the right unloaded spans emerge.

The stationarity of contraflexure points is evident 
due to the linear behavior of elastic structures. When 

Figure 4. The bending moment diagram of a two-span continuous beam (a) is composed of two superposed parts(b)(c), following the 
composition of bending moment.

Figure 5. The fixed points of a four-span continuous beam under different loadings.
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the spreading moment increases by a factor of ‘n’, the 
moment at the contraflexure points also multiplies by 
‘n’, consequently remaining at zero.

The x-coordinates of the fixed points are intrinsic 
values specific to each span and hinge on the rotational 
stiffness5 (EI/L) of that span and the subsequent span 
relaying the moment. For instance, consider span S3S4 
in Figure 5: the abscissa of its right fixed point of 
moment contraflexure is determined by its rotational 
stiffness and that of span S4S5.

In an end span that is fixed at one end — such as span 
S4S5—the fixed point near the clamped end is positioned 
at the right trisection point. Conversely, in a span 
hinged at one end, the fixed point near the hinge coin
cides with the hinge itself. As these points remain zero 
moment regardless of the moment propagated from 
other spans.

4.2. The abstract elastic curve of triangulated 
moment area

The fixed points can be graphically located using the 
abstract elastic curve. Essentially, locating the fixed 
points is a graphical approach of solving static indeter
minacy, thus it must involve analyzing deflection. 
However, the graphical elastic curve in subsection 3.2 
is quite laborious for solving static indeterminacy due to 
its numerous moment area segments. We can, however, 
reduce the workload by minimizing the number of 
moment area segments. This is because the angular 
deflection at continuous joints, rather than the linear 
deflection within the spans, is our primary concern 
when solving the indeterminacy. And as explained in 
subsection 3.2, the number of moment area segments 
does not affect the end slope of the funicular polygon.

The abstract elastic curve uses triangulated moment 
areas to minimize the number of moment segments and 
to fix the action lines of the elastic weights. Consider 
span AB (length L1 and stiffness EI) in Figure 6 as an 
example. It is an unloaded span of a continuous beam 
and subjected to a leftward-propagated moment. The 
values of its end moments Ma and Mb are given. To 
construct its abstract elastic curve, the moment area of 
AA’B’B is divided into overlapping ΔAA’B and ΔBB’A’. 
Since the centroid of a triangle divides medians at a ratio 
of 2:1, the action lines (verticals TT’ and UU’) of the 
triangulated elastic weights trisect the span, regardless 
of Ma and Mb. Hence, these verticals are referred to as 
“the trisection line” (drittellinien).

With the fixed action lines, the abstract elastic curve 
A0TUB0, representing the funicular polygon formed 
under the elastic weights of ΔAA’B and ΔBB’A’, is con
structed with the MΔx diagram. Since the heights 
(Ma and Mb) and width (span L1) of the two triangles 
are given, the elastic weights, respectively, equal MaL1

2 and 
MbL1

2 . Following the signs of Ma and Mb, those of the 
elastic weights are opposite.

The x-intercept of the abstract elastic curve in 
Figure 6 coincides with the fixed points, which is the 
zero-moment point (F1). According to Mohr’s Second 
Theorem (Mohr 1868),6 the ratio between the lengths of 
A0A” and B0B”, which denote the y-intercepts of the TU, 
equates to the ratio between the moment areas of ΔAA’B 
and ΔBB’A’. Since the width of both triangles is L1, this 
ratio equals the ratio between Ma and Mb, which is 
expressed as A0A : B0B ¼ Ma : Mb. It follows that the 
moment at the intersection between line TU and the 
baseline must equal zero. This means that the x-inter
cept of the abstract elastic curve (F1’) coincides with the 
fixed point (F1) regardless of the magnitude of Ma and 
Mb. Their shared location depends solely on the ratio 
between Ma and Mb.

4.3. The abstract elastic curve of continuous spans 
and the combined trisection line

Without knowledge of the magnitude of bending 
moment Mb or Mc, we can proceed to construct the 
abstract elastic curve for the unloaded continuous 
span BC. Assume that the length of BC is L2 and its 
bending stiffness is the same as span AB (for spans with 
different stiffness please refer to 4.4). Similarly, the 
moment area of span BC in Figure 6 is dissected into 
ΔBB’C’ and ΔBCC’, whose centroids V’ and X’ are fixed 
on the trisection lines VV’ and XX’. Extend line UB0 until 
it intersects trisection line VV’ at V. Line B0V represents 
the first edge of the abstract elastic curve, maintaining 
the continuity of angular deflection over support B.

The second edge is plotted by utilizing the action line 
(w) of the resultant of the elastic weights of ΔA’B’B and 
ΔBB’C’. The ratio between the areas of ΔA’B’B and ΔBB’C’ 
corresponds to the ratio of L1 to L2. Additionally, their 
trisection lines UU’ and VV’ respectively maintain dis
tances of L1/3 and L2/3 from support B. Consequently, the 
x-coordinate of the vertical action line w of the resultant 
is also fixed and independent of the moment magnitudes. 
This fixed vertical line w is referred to as the combined 
trisection line (verschränkte drittellinien). It can be easily 

5The ratio between its bending stiffness (EI) and length (L) is commonly referred to as “bending stiffness”, “flexural stiffness/rigidity”, or simply as “stiffness”. The 
term “rotational stiffness” is chosen to distinguish this ratio from these more general terms.

6Mohr’s Second Theorem: the linear deflection of an elastic curve at any given point, relative to the slope line projected from another point, multiplied by EI, 
equals to the moment of the area, about the first point, of the bending moment diagram between the two points (Mohr 1868).
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proved that the distance between w and UU’ is L2/3, while 
that between w and VV’ is L1/3. The vertical w intersects 
the extension of TU at point W.

Then the second edge of the abstract elastic curve VX 
can be plotted by connecting W to V and extending it 
until it intersects trisection line XX’ at X. This is due to 
the collinearity between WV and VX, resulting from the 
equilibrium of the funicular polygon UWV. As proved 
earlier, the x-intercept of WV coincides with the fixed 
point. The intersection between line WV and the base
line, denoted as F2’, denotes the fixed point. The last 
edge of the funicular polygon can be easily plotted by 
connecting point X to C0. It is important to note that 
constructing the abstract elastic curve for span BC does 
not require the MΔx diagram.

4.4. The continuous beams with 
non-constant second moment of area

For continuous beams featuring an non- 
constant second moment of area, the process of deter
mining fixed points generally remains unchanged, 
except for the action lines of the elastic weight.

If the second moment of area varies span-wise while 
remains constant within each span, the second moment 
of area must be involved in determining the combined 
trisection line. The distances from the combined 

trisection line to its two trisection lines are proportionate 
to the second moment of area of the member and 
inversely proportional to the length of the member. 
For example, assuming the second moment of area of 
the span AB (I1) in Figure 6 is different from that of BC 
(I2), the ratio of d1 to d2 should equal I1L2

I2L1
.

In instances where the second moment of area varies 
within the span, the action lines are the resultants of the 
area of the diagram of M/EI instead of the moment 
diagram. Therefore, they no longer trisect the span, 
although are still independent of bending moment. 
Consider span AB in Figure 7, of which the member 
height increases near the right end B, resulting in an 
increased second moment of area. The action lines of 
the elastic weight due to the moment propagated from 
either side are graphically determined using the funicular 
polygon loaded by the area of the diagram of M/EI 
(hatched in oblique lines) instead of the triangular 
moment diagram (hatched in grey). Note that the action 
lines tend to approach the thinner end and no longer 
necessarily locate within one-third of the member length.

5. The fixed-points method for continuous 
beams

The process of constructing the bending moment 
diagram of a continuous beam using the fixed-points 

Figure 6. The continuous beam ABC, along with its bending moment diagram (hatched), mδx diagram, and the abstract elastic 
curves. For ease of representation, the ratio between support moments is distorted. Source: modified and redrawn from (Chalmers  
1881).
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method is depicted in the flow chart presented in 
Figure 8. Initially, the fixed points are pinpointed 
based on the length and the second moment of 
area of each span. Then the bending moment dia
gram of a loaded span is obtained through the super
position of its closing string and the funicular 
polygon of the loading. The funicular polygon of 
the loading is plotted using a force diagram. The 
crossing lines, determining the closing string of the 
loaded span, are derived from the funicular polygon 
and the fixed points of the loaded span. Finally, the 
moment propagated to the unloaded spans is plotted 
using a train of straight lines. These lines connect the 
ends of the closing string of the loaded span to the 
fixed points of the unloaded span in a sequential 
manner. This sequential connection represents the 
propagation of moments through the structure.

5.1. Determining the fixed points of continuous 
beams

The abstract elastic curve of triangulated moment areas 
enables the consecutive determination of fixed points 
for continuous beams with any number of spans, with
out requiring knowledge of the actual moment. 
Consider the continuous beams S1S2S3S4S5 in Figure 9 
(1) as an example, of which the second moments of area 
is constant. The first two spans bear evenly distributed 
loads, while the third span sustains a point load. The left 
and right series of fixed points are, respectively, denoted 
as Fn and In. The Fn series (solid points) in Figure 9(2) 
represents the fixed contraflexure points when an ima
ginary moment is exerted on S5 and propagates left
ward, while the In series (solid points) in Figure 9(3) 
signifies those for an imaginary moment imposed on S1 

and transmitted rightwards.

Figure 7. The action lines of the elastic weight due to the moment propagated from either side are determined with the diagram of M/ 
EI (hatched in oblique lines). The bending moment diagram (hatched in light grey) and trisection lines are also drawn for comparison.

Figure 8. The procedure of analyzing continuous beams with the fixed-points method.
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The determining of the Fn series of fixed points 
begins from the leftmost point S1, as illustrated in 
Figure 9(2). Initially, the first fixed point F1 coincides 
with S1, as the moment at the hinge support S1 remains 
zero regardless of the moment imposed on S5. To 
locate F2, trisection lines u2, v2 and their combined 
trisection line w2 are drawn. The first edge of the 
abstract elastic curve originates from point S1 with an 
arbitrary slope, intersecting verticals u2 and w2 respec
tively at points U and W. Subsequently, the second 
edge, represented by line US2, intersects vertical v2 at 
point V. Then the subsequent edge VU’ is drawn by 
connecting W and U and extending until intersecting 
the trisection line u3 at U’. The intersection of line VU’ 
and the x-axis pinpoints the fixed point (F2) of 
the second span.

Since F2 maintains zero bending moment regard
less of the moment at S5, it can be considered 
a freely rotatable end like S1. Therefore, for ease of 
drawing, the construction of the abstract elastic 
curves proceeds with the line F2U”, whose slope is 
arbitrary, in place of using F2U’. The determination 
of fixed points F3 and F4 follows the same iterative 
process. The fixed points of the I series are then 
determined similarly, but from the terminal support 
S5, as demonstrated in Figure 9(6).

5.2. Determining the bending moment induced at 
loaded span with the crossing lines

As illustrated in Figure 9(3–5), the bending moments 
induced by the loads in different spans are individually 

Figure 9. The analysis of a continuous beam with the fixed-points method. 
(1) The continuous beam and its loads. (2) Determing the left fixed points with the abstract elastic curves. (3) Determining 
the moment induced by the load of the first span with a crossing line. (4) Determining the moment induced by the load of 
the second span with crossing lines. (5) Determining the moment induced by the load of the third span with crossing lines. 
(6) Determing the right fixed points with the abstract elastic curves. Source: Adapted and modified from (Mohr 1868).
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determined using crossing lines. Subsequently, the 
resultant bending moment can be obtained by summing 
up the induced moments.

Let us consider the first loaded span S1S2, prior to 
determining the crossing lines, the positive moment 
of the load is depicted with the funicular polygon 
S1M’S2, with its vertex at point M’. The funicular 
polygon represents the statically determinate 
moment of the load and is plotted above the refer
ence line. This moment induces the reactive negative 
statically indeterminate moment at continuous joint 
S2 (represented by line B2S2), which propagates suc
cessively to the spans on the right. Both kinds of 
moments at this span are plotted above the reference 
line, despite their opposite signs. To determine the 
moment at S2, first join S2 and M’ and extend until 
intersecting the vertical line s1’ at point D’. Line D’S2 
is the crossing line of this span, and it intersects the 
vertical of the predetermined fixed point I4 at I4’. 
The closing string S1B2 must pass through I4’, and 
thus is determined.7

For the intermediate span like S2S3, the closing 
string is located by two crossing lines, as illustrated 
in Figure 9(4). The lines GS3 and HS2 are plotted by 
connecting the supports to N’, which is the vertex of 
the moment parabola of the statically determinate 
moment. The closing string at this span can be 
determined with the points F2’ and I3’, which are 
the intersections between the crossing lines and the 
verticals of fixed points. The demonstration can be 
readily derived from the one above.

For spans like S3S4 which is under a point load at 
point O, the crossing lines JS4 and KS3 no longer 
pass through the vertex of the moment diagram of 
load (point O’), as illustrated in Figure 9(5). To plot 
the crossing lines, first, points K’ and J’ are located 
on the baseline by measuring off the horizontal dis
tance of the span L3 from point O. Then the y-inter

cepts of crossing lines (points K and J) are obtained 
by projecting the height of vertex O’ from point K’ 
and J’ to the verticals of supports on the opposite 
side. Then draw the crossing lines JS4 and KS3 and 
locate the closing string F3’I2’ with the same 
procedure.8 This technique of crossing lines can 
also be applied to a span under multiple loads by 
graphically pre-determining their resultant with the 
technique in subsection 3.1.

6. The fixed-points method for continuous 
frames

6.1. One-story continuous frames without lateral 
displacement

As shown in Figure 10, within a continuous frame, 
the bending moment of the beam undergoes 
a discontinuity at the rigid joint due to the moment 
resistance of the columns. The presence of continu
ous T-joints poses two challenges when applying the 
fixed-points method. First, the abstract elastic curve 
used to pinpoint fixed points needs modification to 
consider the moment resistance of columns. Second, 
after determining the closing string at loaded spans, 
the moment needs to be distributed to two con
nected members via the T-joint based on their 
respective stiffness. Wilhelm Ritter introduced the 
“E-line” (E-Linie) and the moment distribution angle 
to address these two issues, respectively.

The “E-line” is a fixed vertical line that divides the 
distance between the combined trisection line and 
the trisection line of the second span in accordance 
with the stiffness of the columns and the previous 
beam. For instance, in Figure 10(3), the vertical line 
e is the E-line for determining the left fixed points of 
the second span. Vertical line e divides the distance 
between the combined trisection line w and trisection 

7To comprehend the principle behind the crossing line, suppose the moment at S2 is given (represented by the length of B2S2). Connect B2 to the fixed point I4 

and extend the line until it intersects the vertical line s1’ at point D. Assume the removal of the load and the imposition of a positive moment at S1, whose 
magnitude is represented by the length of line S1D. According to the concept of the fixed point, this hypothetical moment would propagate through fixed 
point I4, inducing a moment at S2 whose magnitude is represented by the height of B2S2. Consequently, the angular deflection at support S2 induced by this 
hypothetical moment is equivalent to that of the actual load of the first span. Therefore, the linear deflection at support S1, relative to the slope line projected 
from S2, both equals the slope at support S2 multiplied by L1. According to Mohr’s Second Theorem, the moment of the moment area of the parabola S1M’S2 

about point S1 must equal that of the ΔS1DS2. Therefore, 1
2 �S1S2�

2
3 �S1S2�M0M ¼ 1

3 �S1S2�
1
2 �S1S2�S1D. We can deduce that: S1D ¼ 2�M0M. 

The equation holds true regardless of the magnitude of the distributed load, and the entire derivation is reversible. Consequently, we can determine the 
length of B2S2 by measuring off twice the length of MM’ downward from S1 to D and projecting the length of S1D via I4 to the vertical of S2. As the length of 
S1D’ is also double the height of M’M and equals S1D, the length of B2S2 can be more conveniently determined by projecting S1D’ via I4’ using the crossing line 
M’S2.

8KS4 is the height of the projection of vertex O’ from point K’ to the verticals of support S4. Due to the similarity between ΔK’KS4 and ΔK’O’O, KS4 equals ðL3þbÞh
L3

, in 
which L3 is the span, b the length of OS4, and h the length of OO’. Consequently, the moment of the area of triangle ΔKS3S4 about support S3 equals L3ðL3þbÞh

6 . 
This moment is the same as the moment of the area of triangle ΔO’S3S4 about point S3. According to Mohr’s Second Theorem, the bending moment area of 
ΔKS3S4 and ΔO’S3S4 would induce the same deflection at the spans on the left side of S3. Similarly, ΔJS3S4 and ΔO’S3S4 would induce the same deflection at the 
span on the right side of S4 (Chalmers 1881, 215–218).
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line v at the ratio of a to b, which is half the ratio of the 
end stiffness of the column head to the rotational stiff
ness of the beam.9 The abscissa of e is independent of the 
bending moment, like the x-coordinates of w and v.

To determine the fixed points of the span BC, start by 
drawing the line AU from the first fixed point A at an 
arbitrary slope, intersecting trisection line u and combined 
trisection line w at points U and W. Then connect point 
U to support B and extend to intersect trisection line v at 
point V. Unlike the abstract elastic curve for continuous 
beams, the fixed point does not lie at F2’ (black circle), 
which is the x-intercept of line WV. Instead, connect points 
W and V’, where V’ is the intersection between vertical line 
v and the baseline. Point E (black point) is the intersection 
between line WV’ and the vertical line e. Finally, the fixed 
point F2 is determined by the intersection between EV and 
the baseline. The demonstration can be found in the refer
ence (Ritter and Culmann 1900, 131). Following the same 
approach, the fixed points of subsequent spans are deter
mined iteratively using predetermined E-lines. With the 

fixed points, the closing string B’C’ of the loaded span BC 
is established using crossing lines.

Subsequently, the moment distributed to the adjoining 
unloaded spans AB and CD are determined graphically 
with the moment distribution angles, as depicted above 
the moment diagram in Figure 10(2). For example, the 
moment distribution angle for span AB is drawn above 
joint B, with its hypotenuse is on the extension of B’B. 
The other side of the angle (GB) is plotted by setting the 
sine of the angle HBG equal to the ratio of the end 
stiffness10 of AB to the combined end stiffness AB and 
the left column. The length of BB’ is measured off upward 
from point B, reaching point H. Consequently, the 
moment carried by span AB can be measured from is 
the distance from point H to line GB. This distance is 
measured off downward from point B to located B”. Thus, 
the bending moment diagram of AB is plotted by joining 
A to B”, and the moment carried by the columns head is 
represented by the length of B’B”. This graphical method 
is efficient when dealing with moments distributed from 

Figure 10. Analysis of a one-story continuous frame using the fixed-points method. (1) the frame and applied load. (2) the bending 
moment diagram and moment distribution angles. (3) determining fixed points (solid points) using the abstract elastic curve and 
E-lines. Source: adapted and modified from (Ritter and Culmann 1900, 130–131).

9The length W’W” is the relative deflection induced by the elastic weight of the moment area of △BB’C at the vertical w. According to Mohr’s second theorem 
and the explanation in 3.2, W0W ¼ n

EI � ABB0C �
1
3 L1. In this equation n is the scale factor for the abstract elastic curve (all the y-coordinates is n times the 

corresponding actual deflection), 1
3 L1 is the distance between the triangle centroid and the vertical w, ABB0C is the area of △BB’C and equals 1

2 � BB0 � L2. 
Likewise, W0W ¼ n

EI � AABB �
1
3 L2, in which ABB0C equals 1

2 � BB � L1. It follows WW ¼ W0W � W0W ¼ n
6EI � L1 � L2 � B0B 

Meanwhile, the end stiffness of the column head is denoted as ε, the rotation at joint B as τ, which equals B0B
ε . The slope of line UV is n times τ. As point V’ 

trisects the span, VV 0 ¼ n � τ � 1
3 L2 ¼

n
3ε � B

0

B � L2. 
Finally, due to the similarity between ΔEWW” and ΔEV’V, a : b ¼ WW : VV 0 ¼ 1

2 ε : EI
L1

� �

10Like in the moment distribution method (Cross 1932), the end stiffness of a structural member is the moment that need to be applied to an end of the 
member to induce a unit rotation of that end. it equals 3EI

L for members pinned at the other end like AB, CD and columns, 4EI
L for members fixed at the other 

end, in which L is the length of the member in question. For members rigidly connectedly to other member(s) at other end, like the member BC, its end 
stiffness can be numerically determined with the rotation angle method.
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multiple loaded spans, which will be exemplified by the 
Weissensteinstrasse Overpass in subsection 7.2.

6.2. Continuous frames with lateral displacement

Continuous frames would undergo horizontal displace
ment due to lateral loading at beam-column joint. 
Besides, the lateral displacement can also be caused by 
factors such as unsymmetrical vertical loading, unsym
metrical form, and different columns supports. The 
horizontal displacement can induce significant 
moments in the columns, necessitating analysis with 
caution. This subsection will explain the analysis of 
one-story continuous frames using the fixed-points 
method. This method has also been adapted for multi- 
story frames (Suter and Traub 1951, 67–74). However, 
akin to the moment distribution method, its application 
becomes cumbersome for such problems.

The analysis of a one-story continuous frame lateral 
loaded at its beam-column joint is similar to that of 
a continuous beam. The difference lies in the generation 
of moments, which occurs through deflected columns 
instead of loaded beams. The generated moment is then 
propagated through the fixed points of other members 
and summed up. However, as the portion of the lateral 
loading carried by each column is currently unknown, the 
moment cannot be directly computed from the load. To 
determine the moment induced at columns, initially, the 
actual load F is replaced by an unknown virtual load 
f which can induce a unit virtual lateral displacement at 
the beam. We then calculate the moment generated by 
this unit displacement at each column. Subsequently, we 
determine the magnitude of the virtual load f by summing 
up the propagated moment. By scaling the total moment 
induced by force f at the ratio of F to f, we can obtain the 
actual moment of the frame under the lateral point load F.

If the lateral displacement is induced by the above- 
mentioned factors other than lateral point load, a virtual 
lateral constraint is imposed at the beam-column joint to 
retain the frame in place (Figure 11). This allowed the 
analysis of this retained frame using Ritter’s method to 

determine both the moment and the retaining force 
R imposed by this constraint. Subsequently, the moment 
induced by lateral displacement can be quantified by 
applying the counterforce of R as the point load on the 
frame. Finally, the internal forces of the original frame 
were determined by combining the internal forces of 
these two decomposed systems.

7. Robert Maillart’s application in the analysis 
of bridge frames

During his studies at ETH Zurich, Robert Maillart (1872– 
1940) learnt graphic statics during lectures with Wilhelm 
Ritter. He adeptly applied graphic statics in his exploration 
of innovative and efficient structural forms (Fivet and 
Zastavni 2012; Zastavni 2008). Maillart employed the 
fixed-points method in at least two reinforced concrete 
bridges: the bridge over the Simme river in Garstatt 
(German: Brücke über die Simme in Garstatt, 1939–40) 
and the Weissensteinstrasse Overpass (German: 
Überführung der Weissensteinstrasse, 1938). The applica
tion of this method in these two bridges is evidenced by 
their documented static calculations, which stated that the 
calculation was according to the book of (Suter, Baumann, 
and Häusler 1932). Despite being later, the application on 
the Garstatt Bridge is presented first due to its more rudi
mentary nature.

The Garstatt Bridge over the Simme was designed in 
1940 and is in the small village of Garstatt in the Canton 
of Bern, Switzerland. The structure primarily comprises 
two parallel three-hinged arches, each of which is com
posed of twin box girders. Additionally, beyond each 
arch, the load of the bridge deck is further supported by 
the continuous L-frame (Figure 12).

Due to the great stiffness of the box girder, the left 
support of the beam which was embedded into the box 
girder was modelled as a rigid support. The column base 
of the L-frame was also embedded into the solid foun
dation, resulting in a three-degree static indeterminacy. 
Disregarding enlargement of the beam section at the 

Figure 11. The analysis of a portal frame that undergoes laterally displacement due to unsymmetrical vertical load. The structure 
system is decomposed into a laterally constrained frame and a frame solely loaded by the counterforce of the retaining force.
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ends, Maillart assumed the second moment of area of 
the L-frame to be constant.

7.1. The L-frame of the Garstatt Bridge over the 
simme river

The analysis process of this L-frame is similar to that of 
a two-span continuous beam which is subjected to 
uniformly distributed load at the left span. Initially, 
the fixed points of the beam (F and I) and the lower 
fixed point of the column (Ib) were located. Since the 
frame is clamped at both supports, the fixed points 
F and Ib are situated at the trisection point of their 
member. The location of the right fixed point (I) was 
derived from rotational stiffness of the two members 
using the rotation angle method. Meanwhile, the funi
cular polygon of the statically determinate moment of 
the distributed vertical load was readily plotted. With 
the maximum value of the moment (M0) of load and 
fixed points F and I, the closing string F’I’ was deter
mined using crossing lines. The end moment at joint 
B is propagated to the column, whose diagram is 

determined by drawing a line passing through fixed 
point Ib. Finally, the reactions at the supports and shear 
force were deduced from the bending moment.

7.2. The three-span continuous frame of the 
weissensteinstrasse overpass

The Weissensteinstrasse Overpass is an auto road bridge 
designed and erected in 1938. It is located near the 
Fischermätteli station in Bern, Switzerland. The deck is 
supported by twin continuous frames which span over 
railways (Figure 13). Each of the twin continuous frames 
is embedded at column bases E and F and supported by 
rollers at ends A and D (Figure 14), resulting in eight 
freedom constraints and a total of five degrees of external 
static indeterminacy. The girder height increases towards 
the continuous joints, correlating with the increase of the 
bending moment of vertical loading. Thanks to its sim
plicity yet structurally effectiveness, this bridge was 
praised as one of Maillart’s finest works (Bill 1955, 132).

As explained in 3.3, the bending moment diagram of 
each loaded span comprises a funicular polygon, which 

Figure 12. Top: the L-frame (solid grey hatching) and the box girder of the Garstatt Bridge, with the recently added panel (hatched in 
oblique lines). Source: plotted on a photo photographed by the authors in 2022. Bottom: Maillart’s analysis of the L-frame. Source: 
modified from the original drawing.

Figure 13. Views of the Weissensteinstrasse Overpass from the west and below. Source: photographed by the authors in 2022.
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represents the statically determinate moment of the load, 
and a closing string. The closing string represents the 
statically indeterminate bending moment induced by the 
“joining force” at continuous joints. The ordinate of the 
closing string of a span equals the sum of the statically 
indeterminate bending moment of the span considered 
and the propagation of such bending moment in other 
spans. Taking the bending moment diagram of span BC 
(hatched area in Figure 14) as an example, it is defined by 
the funicular polygon joining BC and the closing string 
B0C0. The ordinate of closing string B0C0 is the summa
tion of the hyperstatic bending moment from span BC 
(red line B”C”) and the bending moments distributed 
from the hyperstatic bending moments in spans AB 
(green solid line) and CD (magenta solid line).

To construct the bending moment diagram, firstly, the 
funicular polygon for the statically determinate moment of 
load was constructed using force diagrams with the method 
briefed in 3.1 (Figure 14). Take span BC for example, the 
vertical loading of the middle span BC was divided into 
segments represented by discrete point loads 9–21 which 
are placed at the center of mass of each of these divisions. 
The divisions closer to the joints with vertical legs were 
denser due to the increased dead load modeling thicker 
beam sections. These point loads were then transposed 
onto the load line in the corresponding force diagram, 
based on which the funicular polygon of load moment 
was constructed below the baseline.

Subsequently, the preliminary closing string for the 
hyperstatic bending moment at B”C” was determined 
using fixed points F2 and I2, along with the crossing 
lines BC’ and CB’. The fixed points were located numerically 
by employing the rotation angle method, which considered 
the varying second moment of area. The distribution fac
tors of members AB and CD were deduced from their 
rotational stiffness and both equal 0.31. The magnitude of 
the bending moment propagated from BC to these spans 
was determined graphically using the moment distribution 
angles above joints B and C.

Similarly, the statically indeterminate bending moments 
induced on side spans AB and CD were individually deter
mined with crossing lines and then propagated to the other 
spans of the girder. It is important to note that the statically 
indeterminate bending moment from span AB propagated 
via the right fixed point I2, whereas that of span CD pro
pagated via left fixed point F2. The hyperstatic bending 
moments of these three spans and their propagation were 
combined to obtain the total hyperstatic bending moment 
of the girders. The bending moment at the top of the 
column equalled the difference between bending moments 
of the ends of two girders connected to it. The oblique lines 
for the bending moment diagrams of the columns were 
then constructed through the fixed points of the columns. 
As depicted in Figure 14, the overall bending moment was 
represented by the shaded area which is enclosed by the 
closing strings and the funicular polygons11

Figure 14. The analysis of the weissensteinstrasse overpass with the fixed-points method. Source: redrawn from the original drawing.

11Given its asymmetrical beam spans, this frame would undergo lateral displacement under the vertical load. To evaluate the effect of the lateral displacement, 
a virtual lateral constraint was added to support D (red roller support in Figure 14). The moment induced by lateral displacement equals that by the 
counterforce of the retaining force imposed by the virtual constraint. This moment was determined with the procedure explained in 6.2. However, the 
resulting moment was found to be negligible.
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8. Discussion and conclusion

Through historical research and a detailed technical 
presentation of dedicated solving methods and their 
applications, this article demonstrates that graphic sta
tics can be and has been used to analyze statically inde
terminate structures of continuous beams and 
continuous frames. The evolution of the fixed-points 
method is reviewed in relation to its historical back
ground, offering insights into both its development 
and decline. Additionally, the principles and procedures 
of the fixed-points method are briefly introduced. This 
technical knowledge lays the ground for an explanation 
of Robert Maillart’s utilization of the fixed-points 
method in designing two bridges.

8.1. Contributions

This article presents the most comprehensive survey of 
the history of the fixed-points method, to the best of the 
authors’ knowledge. Section 2 complements existing 
knowledge of the history of graphic statics. Despite 
being unduly neglected, the fixed-points method occu
pies a significant place in the history of structural the
ory. It represents a crucial yet imperfect attempt to 
extend graphic statics to address emerging practical 
challenges in the development of structures. Its defini
tive abandonment contributed significantly to the 
decline of graphic statics.

This paper also extends the comprehension of 
Maillart’s design approach for continuous-structure 
bridges, a topic that has been relatively overlooked and 
partly misunderstood. Moreover, there are reasons to 
conjecture that some of Maillart’s other bridges, which 
have long been associated with continuous beams, may 
also have been designed as a continuous frame.

This technical explanation of the fixed-points method 
has the potential to benefit historical research into the 
works of other engineers, as this method appears to have 
been popular then.

9. Limitations, discussion, and future work

This review of the fixed-points method is far from com
plete. Other works may have contributed to this method 
and deserve to be investigated. Additionally, it remains 
unclear whether the fixed-points method was used to 
refine structural forms rather than solely as an analysis 
tool for predetermined forms. The examination of 
Maillart’s design methods on other works, such as the 
Salginatobel Bridge and the Chiasso Shed, revealed that 
Maillart employed commonly utilized analysis techni
ques not just for analytical purposes but also to refine 

the structural geometries (Fivet and Zastavni 2012; 
Zastavni 2008). Furthermore, during the investigation 
of historical writings, we uncovered other graphical 
methods for continuous beams and frames. An upcom
ing paper dedicated solely to these methods is currently 
in preparation.

Beyond historical research and heritage preservation, 
a question of greater practical significance arises: can an 
extension of fixed-points method finds relevance in con
temporary structural teaching and design, akin to the 
graphical methods for reticular structures?

On one hand, the graphical version of the fixed- 
points method is less mathematically demanding and 
aligns with the graphical thinking patterns commonly 
employed by architects. As a result, it bears the potential 
to serve as an accessible common platform facilitating 
communication between architects and structural engi
neers. Moreover, the assurance of static equilibrium, 
conveyed through the geometric interplay among dia
grams, allows for dynamic adjustments in both geome
try and bending behavior. This two-way approach, 
historically utilized and currently revived for pin- 
jointed structures, not only yields visually captivating 
designs but also ensures structural efficiency (D’acunto 
et al. 2019; Fivet and Zastavni 2012). Additionally, the 
fixed point, central to this method, visually elucidates 
the correlation between member stiffness and bending 
moment. Designers using the fixed-points method can 
thus make informed decisions regarding modifying 
member sections. This cognitive value for design was 
confidently underscored in the preface of (Suter, 
Baumann, and Häusler 1932, V):

If a truly artistic architecture is to develop once again, it 
can only come from people who know exactly how the 
forces flow within the structural elements and who are 
able to design the outer forms in accordance with this. 
However, there is hardly a better way to familiarize 
yourself with the internal course of forces in compli
cated architectural structures than to work using the 
fixed-points method.

On the other hand, due to the intricate nature of con
tinuous structures, the relations presented by the fixed- 
points method are not as readily accessible as those of 
pin-jointed structures by conventional graphic statics. 
Besides, this graphical method is somewhat complicated 
in terms of the ease of comprehending and learning. The 
complex principles and procedures hinder its potential 
in both dissemination and application as a design tool. 
The somewhat abstruse abstract elastic curve not only 
obscures the relation between stiffness and moment but 
also obstructs the possible bi-directional design 
approach.
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For these reasons, improvements are necessary to 
realize the promising potential of the fixed-points 
method as a practical design tool. One possible direc
tion is to simplify the method by merging it with 
approximate methods like the portal or cantilever 
method. Another approach is computerization and 
parameterization, revolutionizing the efficiency of 
graphical methods by automating some mathemati
cal process while maintaining the visual dimension 
of the method. In addition, previous studies 
(Muttoni, Schwartz, and Thürlimann 1996; 
Rondeaux and Zastavni 2018) have demonstrated 
that graphic statics applies perfectly to plastic analy
sis, showing its great efficiency for structural design. 
Yet the full potential of the fixed-points method for 
plastic design of continuous beams and frames 
remains to be ascertained.
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