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Abstract 
 
In a setting of R&D co-opetition we study, by using an all-pay auction approach, how 
collaboration affects strategic decisions during a patent contest, and how the latter influences the 
possible collaboration network structures the firms can hope to form. The all pay auction 
approach allows us to 1) endogenize both network formation and R&D intensities and 2) take 
heterogeneous and private valuations for patents into account. We find that, different from 
previous literature, the complete network is not always the only pairwise stable network, even and 
especially if the benefits from cooperating are important. Interestingly, the other possible stable 
networks all have the realistic property that some firms decide not to participate in the contest. 
Thus, weak cooperation through network formation can serve as a barrier to entry on the market 
for innovation. We further show that there need not be any network that survives a well known 
refinement of pairwise stability, strong stability, which imposes networks to be immune to 
coalitional deviations. 
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1 Introduction

It is widely recognized that �rms invest in R&D in order to increase their com-

petitiveness and market power. Especially for high-tech sectors, �rms are typi-

cally engaged in R&D contests in order to be the �rst, and maybe the only, to

develop a new product/technology. In such an environment �rms generally have

the opportunity to develop some degree of collaboration. Historically, the litera-

ture modelling R&D competition has focused mainly on the two extremes of the

collaboration spectrum: pure R&D competition (patent race, contest etc.) or

full R&D cooperation (R&D Partnerships, Research Joint Ventures). That is,

situations in which �rms are either friends or foes. 1Recentely, more attention

has been devoted to instances in which �rms are both friends and foes: interme-

diate forms of collaboration in which �rms cooperate to strengthen their joint

position in R&D contests, without sharing the bene�ts of winning the contest.

Nonetheless, the last decades witnessed an increasing number of R&D part-

nerships even among competing �rms (OECD [2001]). Second, it is shown

(Greenlee [2005]) that �rms adopt two types of cooperation: either �rms build

up Research Joint Ventures (RJV) where they coordinate resources (R&D labs,

scientists, etc.) and share the related results (technologies and products); or

�rms choose weaker forms of R&D cooperation, like Cross Licensing, where

partners just share their knowledge without the need of coordinating their R&D

activity or sharing the R&D results. The existence of both types of cooperation

is con�rmed by Roijakkers & Hagerdoon [2006] who show also that the share of

weak partneships in the Biotech and Pharmaceutical sectors has been increasing

during the last years.

Independently of the form of collaboration, it is clear that �rms cannot keep

up with their competitors without cooperating and competing with them at the

same time. For example, Anand & Khanna [2000] show that in the Electron-

ics and Computer sectors competing �rms usually cooperate via cross licensing

even for technologies not yet developed.Cohen et al. [2002] �nd that not even

high-tech but also low-tech Japanese �rms usually cooperate through cross li-

censing and other forms of information sharing more often and more extensively

than U.S. �rms.

1 In particular, the latter stream of research has mainly focused on the welfare and/or the

antitrust implication of Research Joint Ventures. See Caloghirou et al. [2003] & Hagerdoon

et al. [1999] for a survey on research partnerships.
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Given these stylized facts a �rst goal of this paper is to provide a theo-

retical framework to analyze sectors featured by �R&D co-opetition�, namely

sectors where �rms cooperate in R&D before competing with one another for

the development of a new technology/product. In such a setting, two related

questions arise quite naturally: First, how does (weak) cooperation bene�t �rms

in the competition stage and how does that in�uence R&D activity? Second,

given the impact cooperation has on R&D activity, what are the likely patterns

of cooperation that will emerge?

A great deal of literature has focused on (a part of) this issue, but, as far

as we know, these two questions have not yet been analyzed jointly. Among

the papers that analyze patent races and R&D cooperation at the same time

(e.g. Martin [1995] and [2002], Stein [2008]) the contributions which are closer

to ours are Goyal & Joshi [2006] and Joshi [2008]. Both these papers propose a

two stage game model where in the �rst stage �rms cooperate in R&D while in

the second they participate in a patent race contest à la Loury [1979].

Goyal & Joshi [2006] study endogenous network formation in a context of a

patent race where the R&D investment is exogenously given. In other words

question two has been answered �xing R&D behaviour exogenously. Their main

�nding is that the complete network is the only one to be pairwise stable when

the linking costs are low. On the other hand, Joshi [2008], in a similar setting,

studies coalition formation game with endogenous R&D e¤ort. Joshi thus an-

swers the two questions simultanously but coalition formation implies that �rms

strongly cooperate such that they both share the prize and coordinate the R&D

e¤ort at the coalition level.2 Similarly to the previous paper, Joshi �nds that,

as the cost of participating in a coalition is low, the grand coalition is the only

one to be pairwise stable. In both papers the value of the patent is treated to be

the same for all �rms and moreover it is common knowlegde. One contribution

of our paper is to introduce heterogenous valuations for patents.

We answer the two above mentioned questions by developing a two stage

game. In the �rst one, we consider a network game where �rms can form

links with one another where a link a¤ects (increases) the expected value of the

bene�ts of winning the patent game. In the second stage, �rms are involved

in a patent contest which is in�uenced by the network structure realized in

the former stage. Di¤erently from Goyal & Joshi [2006] and Joshi [2008] we

formalize such stage as an all-pay auction rather than a classical patent race.

2As we will see later on, Joshi motivates the choice of endogenizing the R&D e¤ort at the

coalition level (rather than the individual one) because of a lack of tractability.
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The reason behind this is threefold. First, weak cooperation allows �rms to

increase their expected valuation for a patentable invention. This can be due to

the fact that �rms assess the future market for their potential patented product

di¤erently, that they draw di¤erent marginal costs, etc. In order to capture this

e¤ect, we need to allow for the possibility that �rms di¤er in their valuation for

the bene�ts of obtaining a patent. When potential bene�ts are di¤erent among

the various competitors, this will likely have an impact on the e¤orts dedicated

to innovation. Moreover, since this valuation is usually private information,

modeling the patent game as an all-pay auction with private information allows

us to take this into account.

Second, since we wish to model the incentive to form weak R&D links before

entering into the patent game, the expected payo¤s of the latter will play a major

role in deciding which links to form. In order to perform this backward induction

approach, the expected payo¤s of the patent game need to be tractable. As has

been pointed out by Joshi [2008] in a model of coalition formation in a race,

when research intensities are chosen non-cooperatively in a classic patent race

in which all �rms equally value the bene�ts from the patent the equilibrium is

no longer tractable. The all-pay auction with private information allows us to

circumvent this problem by using the results of Parreiras and Rubinchik [2006].

Third, from a methodological point of view, as has been pointed out by Baye

and Hoppe [2003] there is quasi-equivalence3 between classic patent races and

rent seeking games, of which all pay auction is a special case through assuming

that the �rm with the highest R&D e¤ort wins the patent game with probability

one.4

Hence, even though modelling the patent game as an all pay auction may

seem, at �rst sight, an oversimplifaction, it allows us to take a more general ap-

proach by taking heterogenous and private valuations for a patent into account,

while maintaining the spirit of the classic patent race (Loury) and, by doing so,

study the stability of weak R&D networks.

Once we have answered the above questions, it will be clear that when a �rm

decides to engage in R&D cooperation with a �rm, this will a¤ect the expected

pro�ts of all its (potential) rivals in the R&D contest. Network formation makes

a �rm stronger with respect to others and this may lead some rivals to decide

not to invest in R&D by exiting the market for innovation. Hence cooperation

through networks has the potential to act as a barrier to entry. Given this we

3 In fact, in the limit where the interest rate is equal to zero, there exists an isomorphism

between the classic patent races and rent seeking contests.
4One could weaken the probability one assumption by mixing the all pay auction with a

lottery, but this would only complicate the analysis without changing the qualitative results.
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wish to know if this potential barrier to entry can arise in equilibrium. If the

answer is yes, then we provide an alternative explanation for why some �rms

may decide not to incur R&D e¤orts, even though all �rms started o¤ on equal

foot. In this situation, one may worry about a potential negative e¤ect of weak

cooperation: by creating barrier of entry on the market for innovation, does it

reduce e¢ ciency?

Our main results are as follows. First we show that our set up allows us to

endogenize both R&D e¤ort and network formation. Second, like Goyal & Joshi

[2006] and Joshi [2008] we �nd that the complete network is always pairwise sta-

ble as the cost of forming a link is not too high. However, when the bene�t of

forming a link (i.e. a partnership) is large enough, there exist asymmetric pair-

wise stable networks which have the dominant group architecture: a non empty

set of �rms does not participate to the contest while all participating �rms form

links with one another. Therefore, when cooperation is of high strategic im-

portance, it becomes possible that some �rms decide, in equilibrium, NOT to

participate in the R&D contest, even when the cost of linking is negligible. As

mentioned above, the economic intuition behind our results is rather straightfor-

ward. Network formation between �rms leads to better prospects from a future

invention. By adding a link with another �rm, a �rm becomes a stronger partic-

ipant in the R&D contest. Firms that have few links can become so weak that,

for any possible valuation they may draw for the future invention (the patent),

the marginal bene�t from any positive R&D amount is always lower than the

marginal cost, which makes them decide not to participate in the contest. Hence

link formation between some �rms can form a barrier to entry for other �rms,

strengthening the position of the former. In an example we show that a pair-

wise stable network with some �rms opting out of the market for innovation can

pareto dominate, from the point of view of the �rms, the network formed by the

grand coalition. Hence the barrier to entry is not necessarily welfare reducing.

When both types of networks are pairwise stable, we wish to re�ne the

solution concept by studying which network structures are strongly stable by

imposing immunity to coalitional deviations (Jackson and van den Nouweland

[2005]). Unfortunately strong stability proves to be too strong a re�nement as

we show, again by means of an example, that there need not be any network

surviving it.

The rest of the paper is organized as follows: in the next section we introduce

the R&D cooperation stage (Section 2) followed by the competitive one (Section

3). In Section 4, we solve the model while in Section 5 we provide an example

of the model with �ve �rms. In Section 6 we study the strong stability issue
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while Section 7 concludes.

2 R&D Cooperation

Modeling Networks We consider a �nite set of ex-ante identical �rms N =

1; : : : ; n with n > 2. Then, a network game is a game where every �rm i 2 N
announces its intended link sij 2 f0; 1g with all �rms j 6= i. If �rm i wants to

make a link with j, then sij = 1 and 0 otherwise.

Since �rm i has to decide whether to link or not with all its competitors,

then a strategy for a �rm i is given by si = fsijgj 6=i, which is a n � 1 vector
taken from the strategy set Si.

A link among �rms i and j will occur if and only if sij = 1 = sji, namely

when both agree to form the partnership. In the following we describe the

existence of a link among the players i and j through a binary variable ij such

that

ij =

8<:1 if i and j are linked

0 otherwise

A strategy pro�le s = fs1; : : : ; sng induces a network g(s) which can arise
from the set of all the possible networks �. Therefore, a network g = f(ij)g is
a N �N matrix describing all the pairwise links between the �rms. Let Ni(g)

be the set of �rms that have a link with �rm i given the network g. Then,

�i(g) = jNi(g)j is the number of �rms linked with i. To simplify the notation,
g + ij means that the link ij is added to the network g. Similarly, g � ij

corresponds to the network g without the link ij.

We say that there exists a path between i and j if either ij = 1 or if there

exists a sequence of l distinct players fk1; k2; :::klg such that ik1 = k1k2 = ::: =

kl�1kl = klj = 1: Network g� is said to be a component of network g if for all i,

j, i 6= j belonging to g�; there exists a path between i and j and for i 2 g� and
j 2 g; if ij = 1 then j 2 g�:
The complete network gc is characterized by �i(g

c) = n � 1 for all i 2 N:

The empty network g0 is characterized by �i(g
c) = 0 for all i 2 N .

A network g is said to have a dominant group structure when the component

ND(g) = fi 2 N; �i(g) > 0g ( N is complete and all j =2 ND(g) have no links:

�j(g) = 0

Main assumptions and stability concept Once a network is induced, we

assume that each �rm pays a negligible but positive cost c > 0 per link formed.
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Given a strategy pro�le s, the payo¤ of �rm i is given by

�i(si; s�i) = �i(g(s))� c� �i(g(s)) (1)

Given this framework strategy pro�le s� = fs1 : : : sng is a Nash Equilibrium if

�i(s
�
i ; s

�
�i) � �i(si; s��i) 8si 2 Si; 8i 2 N (2)

However, Nash Equilibrium in network theory is too weak a concept for modeling

network formation insofar as it allows the existence of too many equilibrium

networks.5 Therefore, we adopt a stronger stability concept proposed by Jackson

and Wolinsky [1996]; pairwise stability

De�nition 1 (Pairwise Stability) A network g is pairwise stable (PWS) if

the following two conditions hold

1. there exists a Nash Equilibrium that supports g

2. 8ij =2 g if �i(g + ij) > �i(g)) �j(g + ij) < �j(g)

Intuitively, the two conditions state that, starting from a network g, no �rm

wants to sever a link (condition 1) and no couple of �rms want to form a new

one (condition 2).

When there is more than one pairwise stable network structure, it is useful

to consider a re�nement introduced by Jackson and van den Nouweland [2005];

strong stability, which corresponds to the idea that a network should be immune

to coalitional deviations.

De�nition 2 (Strong Stability) A network g is strongly stable (SS) if the

following two conditions hold

1. there exists a Nash Equilibrium that supports g

2. There does not exist a set of players N 0 � N and a network gN
0
(g) such

that, N 0 can implement6 gN
0
(g) from network g such that 8i 2 N 0 :

�i(g
N 0
(g)) > �i(g) with at least one i 2 N 0 : �i(g

N 0
(g)) > �i(g):

It is immediate that if a network is strongly stable, it is also pairwise stable.

The reverse is not always true.

5For example, the empty network is always a Nash Equilibrium: if no one has an incentive

to make a link with i, then the best strategy for i is to reject the link formation (sij = 0).
6Given network g;a set of players N 0 � N; can implement a network g0 from g through

deletion or adding of links solely by members of �coalition�N 0:
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3 R&D Competition

We now model how the formation of weak cooperation in�uences the (expected)

payo¤s during the patent contests.

We assume that the creation of a new link ij allows �rms i and j to improve

their expected prospects from a patentable invention. More precisely we model

this by assuming that �rm�s i valuation of the patent given a network g; vi(g);

be uniformly distributed according to

vi(g) � �i(g) = U [0; �i(g)]; (3)

where �i(g) is the ex-ante maximal valuation of the patent given the network

g. This means that the support of the distribution of values depends on the

network g:

Given these assumptions each �rm chooses an R&D e¤ort level �i 2 [0;1) in
order to maximize her expected payo¤ from the all pay auction. We are looking

for an equilibrium of e¤ort levels which is increasing in the valuation of the �rm.

The expected payo¤ form �rm i is:

�i(�; �i; g) = �i
Y
j 6=i
�j(�j(�))� �; (4)

where �j(�) is the valuation of contestant j such that she also makes an

e¤ort equal to � : the inverse bidding function: The �rst order condition can be

written as:

�i
X
j 6=i

Y
k 6=j;i

�k(�)
1

�j(g)
�
0

j(�) = 1: (5)

The left hand side is the marginal bene�t of an extra R&D e¤ort: it is

the valuation for the invention times the increase in the probability of winning

the contest. The right hand side is the marginal cost. It could well be that

a contestant�s �rst order condition is negative, even for its highest possible

valuation7 . In this case this �rm will not enter the race. This intuition was

con�rmed formally by Perreiras and Rubinchik (2006) (condition 9 on page 18)

as they derived the following participation condition on the distributions of the

7Assume contestant i has no links (�i � 1) then if all other contestants have links such

that �j(g) becomes very large for all j 6= i; then likely �k(�)�
0
j(�) will become very small

compared to �j(g): That is, in order to bid the same amount of contestant i they need to

draw a very low value �j(�); compared to �j(g); and hence by contemplating to increase any

positive bid, contestant i can only marginally change the probability of winning.
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�rms�valuations: contestant i will not participate; �i(v) = 0 8v 2 [0; �i(g)], if
the following condition is satis�ed:

�i
X
j 6=i

��1j < (N � 2): (6)

Once again, the intuition behind this result is that if these �rms participate

to the contest (exert a positive R&D e¤ort), the marginal bene�t of increasing

their e¤ort (the increased probability of winning times their valuation) is always

smaller than the marginal cost and hence they are better o¤ not participating

at all. In fact one can check that a �rm i will not participate, given the others

are participating, if its maximum valuation �i(g) is lower than (N �1)=N times

the harmonic mean of the maximum valuations �j(g) of all �rms j who partic-

ipate. This result mirrors the result obtained in Hillman and Riley (1989) for

a linear Tullock contest without private information. The driving force behind

the potential barrier to entry are the asymmetric valuations that stem from a

certain network structure. The more links one has, the more likely some �rms

will drop out, leaving fewer competitors for the prize.

However, this does not necessarily mean that the network g in which a �rm

j exits the race will be pairwaise stable. It could well be that there is always

another �rm i such that the network g + ij is mutually bene�cial for i and j:

In order to answer this question we need to take a look at the payo¤s of any

given network. Given any network g one can use condition 6 to eliminate all

non-active participants and study the payo¤s of the contest with the remaining

�rms. De�ne F : �! P (N) to be a function from the set of networks to set of

subsets of �rms that selects all the active �rms for any given network structure

g: Let f(g) = #F (g): Then the �rst order conditions can be manipulated (see

Parreiras and Rubenchik (2006) for details) in order to obtain:

�i(v) =
f(g)� 1P

j �
�1
j

�
v

�i

� 1+�
�i

; (7)

where �i =
P

j 6=i �
�1
j �(f(g)�2)��1iP

j 6=i �
�1
j �(f(g)�2)��11

and � =
P

i 6=1 �i:

This yields expected payo¤s :

�i =

"
�i �

f(g)� 1P
j �

�1
j

# P
j �

�1
j � (f(g)� 1)��1i

2
P

j �
�1
j � (f(g)� 1)��11

: (8)

Given these building blocks, we can summarize the timing of the patent

contest in three steps:
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STEP 1. The network g determines the distributions �i(g) of all �rms.

STEP 2. Each �rm decides whether to enter the contest or not. Following

Parreiras & Rubinchik [2006], a �rm i will participate to the race if and only if

the following condition is satis�ed:

�i(N) > 0, �i
X
j 6=i

��1j > (N � 2): (9)

is satis�ed.

STEP 3. Each �rm i 2 F (g) draws its private valuation vi and makes a non
recoverable bid (proxy for R&D e¤ort). The highest bidder wins the contest.

4 Solution

Before we study if there are pairwise stable networks, we will make two simplify-

ing assumptions. First, the support only depends on the amount of links a �rm

has: �i(g) = �i(�i(g)): Second, we assume that there exists a multiplicative

e¤ect8 on the expected maximal value �i in such way that:

�i(g) = �i(�i(g)) = ��i(g); � > 1: (10)

In order to �nd out which partnership structures are pairwise stable, we

solve the model by backward induction. Given the expected payo¤ functions

obtained above we obtain for any network g :

8i 2 F (g) : �i(g) =
�i (�iA�i � f(g) + 2)2

(2�iA�i � f(g) + 3) (1 + �iA�i)
(11)

8i =2 f(g) : �i(g) = 0 (12)

where A�i =
PF (g)

j 6=i �
�1
j .

Given this equilibrium behavior and payo¤s in stage two, which network

constellations are pairwise stable? In order to answer this question it is useful

to consider the payo¤ of (a participating) �rm i when forming a link with �rm

8We thus assume the existence of a strong strategic incentive to cooperate which corrob-

orates empirical observations mentioned in the introduction. Even if this strong cooperative

environment exists, we will show that the complete network will not always be formed. We

make these assumption in order to be able to compare expected payo¤s between network g

and network g + ij so as to be able to say something meaningful regarding pairwise stabil-

ity. No doubt, our result could hold for more general relationships between a network and

the distributions of valuations, but unfortunately, this comes at the cost of making general

conclusions regarding pairwise stability.
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j; given network g: Following Equation (10), the payo¤ of �rm i in the network

g + ij is

�i(g+ ij) =
��i

�
��i(Ap +

1
��j
)� f(g + ij) + 2

�2
�
2��i(Ap +

1
��j
)� f(g + ij) + 3

��
1 + ��i(Ap +

1
��j
)
� (13)

Where Ap =
PF (g+ij)nfi;jg

p ��1p : 9

Looking at the linking strategy, it is straightforward to see that, given a network

g and a negligible10 linking cost c, two �rms will have an incentive to form a

link if and only if both expected payo¤s are strictly increasing

�i(g + ij) > �i(g) and �j(g + ij) > �j(g)

which implies also that both �rms are willing to participate in the contest g+ij.

In particular, the decision to form a link is determined by the strength of

three e¤ects. First, �rms i and j bene�t directly from improving their ex-

pected valuation of the patent. Second, since the new partnership strengthens

the participation constraint of their competitors (Equation 9), partners bene�t

indirectly if other �rms eventually decide to quit the race. Nevertheless, the

formation of a link also generates a competitive e¤ect as the linking partners

become �ercer competitors, and as such a new link may be harmful for the

partners. However, comparing equations (11) and (13) we �nd the following

Lemma 1 (Cooperative e¤ect dominance) If �rms i and j participate in

g and are not linked in g, then i and j always have an incentive to form the

network g + ij;8� > 1

�i(g + ij) > �i(g) ; �j(g + ij) > �j(g) 8i; j 2 F (g):

Proof: See Appendix A.

In other words, the cooperative e¤ect means that two non-connected competing

�rms always have an incentive to cooperate. It is also immediately seen that:

Corollary 1 The expected payo¤ of the patent game is increasing in the number

of links.

9A non participating �rm will prefer to abandon the race whenever the expected payo¤

from entering the race is non positive.
10 In fact there is a threshold value of c;ec; such that for all c < ec this is true. De�ne, for 8

g 2 �; 8i 2 N; 8j 2 N : � = min
g;i;j

f�i(g + ij)� �i(g) j �i(g + ij) > �i(g)g

Since the maximum amount of links a �rm can form is N � 1; then let ec = �
N�1 :
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Corollary 2 No �rms that participate to the contest in the event of being linked,

have an incentive to cut their link.

Consequently, we can conclude that

Proposition 1 The complete network gc is always pairwise stable.

Proposition 2 con�rms the results found in Goyal & Joshi (2006) and Joshi

(2008): if the complete network (grand coalition) is formed, then no �rms have

an incentive to deviate. However, this does not exclude the existence of other

pairwise stable networks. In order to con�rm the uniqueness result, we need

to analyze whether, given a network g 6= gc; there is always an incentive to

continue forming or deleting links. We show that, to the contrary, there can

always exist a set of �rms who remain outsiders for any additional link they are

o¤ered.

Theorem 1 When � is large enough, there exist asymmetric pairwise stable

R&D networks that have the dominant group structure

Proof: See Appendix B.

As a consequence, even when costs of linking are negligible the complete

network will not always be formed. Interestingly, this occurs when cooperation

is of high strategic importance (high �).

Theorem 1 states that the other possible pairwise stable networks are the

dominant group structure where �rms outside the main component do not par-

ticipate to the contest. We now provide a condition that characterizes all pair-

wise stable dominant group networks.

Proposition 2 Let gk be a dominant group network where the main component

is formed by k �rms. Then, gk is pairwise stable if and only if the following

condition holds

�

�
(N � k � 1) + (k � 1) 1

�k�1
+
1

�k

�
< N � 2: (14)

Proof: See Appendix C.

Naturally, if more than one equilibrium exists, we need to analyze if we can

rank the various equilibria using the pareto dominance criterion. Unfortunately,

the next proposition shows that the complete network can pareto dominate a

dominant group network and vice versa:

12



Proposition 3 Let gk; : : : gk : : : gN�1 be all pairwise stable dominant group net-

works. Then, the complete network gc pareto dominates such networks if and

only if

� > max
k

 
N�k

s
(N + 1)N

(k + 1)k

!
8 k = k : : :N � 1: (15)

Proof: See Appendix D.

In the next section we propose an example that illustrates our model.

5 An example

Suppose there are N = 5 �rms that want to discover a new technology. Some

possible network structures that can be formed are shown in Figure 1 and Figure

2. The �rst step to solve the model is to obtain the maximal ex-ante bene�ts

�i that �rms can get in each network. Then, since less connected �rms have a

lower payo¤ (Corollary 1) and consequently a higher chance of not participating

to the contest, we check when they satisfy their participation constraint. For

example, looking at network g3 (Figure 3), we �rst calculate the participation

constraints of �rms 4 and 5. If they are satis�ed, we then calculate the payo¤s

of the remaining �rms knowing that all �rms will participate to the race (i.e.

f(g3) = 5). If �rms 4 and 5 do not participate, we calculate the payo¤ of the

other �rms knowing that f(g3) = 3:

5.1 Pairwise Stability (PWS)

From the previous section, we know that the possible pairwise stable networks

are the complete network gc and the dominant group networks gk where k =

2; 3; 4. (See for instance Figure 3,Figure 4 and Figure 5) Theorem 1 ensures

that the complete network is always PWS while Proposition 2 allows us to

verify when asymmetric dominant group networks are PWS. In particular:

1. g2 is PWS if and only if

�

�
2 +

1

�
+
1

�2

�
< 3, 2�+

1

�
< 2;

2. g3 is PWS if and only if

�

�
1 +

2

�2
+
1

�3

�
< 3, �+

2

�
+
1

�2
< 3, �3 � 3�2 + 2�+ 1 < 0;

13



3. g4 is PWS if and only if

�

�
3

�3
+
1

�4

�
< 3, 3�3 � 3�� 1 > 0:

It is straightforward to see that PWS conditions for g2 and g3 are never

satis�ed while g4 is PWS when � is large enough (� > �4 ' 1:137158). Therefore
in our example there are two PWS networks

� gc for any � > 1

� g4 for any � � �4

Moreover, following Proposition 3, the complete network pareto dominates

g4 only when � > 3=2.

6 Strong Stability (SS)

The example shows us that, for a considerable range of parameters, multiple

equilibria coexist. One can wonder whether it is possible to eliminate some of

the equilibria by looking at re�nements of the pairwise stability concept. We

do so by studying strong stability, which demands pairwise stable networks to

be immune to coalitional deviations. When one pairwise stable network pareto

dominates another one, it is clear that there exists a coalitional deviation from

one to the other.11 Unfortunately, as we will see below, our above example

conveys that there need not exist any strongly stable network.

Lemma 2 A strongly stable network may fail to exist

6.1 An example (continued)

Recall that, a network g is SS when there is no coalition of players that �nds

it pro�table to deviate from g to another network g0 (no matter whether g0 is

pairwise stable or not). Let us use the following notation

gX
fi;j;kg�! gY

to indicate that players i, j and k deviate from network gX toward gY .

11Looking at our example this means that g4 is never SS as � > 3=2 because a grand

coalition can pro�tably deviate to the complete network.
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Strong Stability of network gc If the deviation gc
f1;2;3;4g�! g4 is pro�table,

then the complete network is not SS. In order to verify such pro�tability, we

must distinguish two cases.

� If the deviation does not lead �rm 5 to drop out of the race (i.e. when

1 < � < 3
p
4=3)), then deviating players i = 1; 2; 3; 4 are better o¤ if and

only if

�i(g
4)��i(gc) > 0,

�9

2(�3 + 2)(�3 + 4)
� �4

30
> 0:

Plotting such di¤erence within the range 1 < � < 3
p
4=3) (Figure 7), we

can immediately see that it is always satisifed. Consequently gc is not SS

in such range because it is always pro�table to deviate from gc to g4.

� On the other hand, if the deviation forces �rm 5 to leave the race (i.e.

� � 3
p
4=3), then gc

f1;2;3;4g�! g4 is pro�table if and only if

�i(g
4) > �i(g

c), �3

20
>
�4

30
, � <

3

2
:

Therefore, whenever 3
p
4=3 � � < 3

2 the deviation g
c f1;2;3;4g�! g4 is prof-

itable too.

Merging the two cases we have that the complete network is not SS for any

1 � � < 3
2 . Moreover, one can prove that, whenever 3=2 < � < 1:89414, three

�rms will always �nd it pro�table to deviate from the full network to a network

g
ek with two components of three and two �rms respectively.12 Therefore, even
though the complete network pareto dominates g4 it is still not SS when 3=2 <

� < b� = 1:89414.
Strong Stability of network g4 About the strong stability of g4, note that

since g4 is not PWS while gc is not SS as 1 < � < �4, this means that there is

no SS network in this range.

However we know that g4 is PWS for any � � �4. Is it possible that g
4 is

SS when �4 � � < 3
2? To answer this question, let us consider the following

deviation g4
f1;2;3g�! g3.

12This is due to the fact that in such network both outsiders always participate so that the

other three �rms will deviate only when

�i(g
ek) > �i(gc), �2(2�� 1)2

(4�+ 2)(2�+ 3)
>
�3

20

a condition that is satis�ed as 3=2 < � < 1:89414.
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� If �4 � � <
q

3
2 , outsiders of the component participate. Therefore, the

deviation g4
f1;2;3g�! g3 is pro�table if and only if

�i(g
3)��i(g4) � 0,

�2(2�2 � 1)2

(4�2 + 2)(2�2 + 3)
� �3

20
> 0:

Plotting such di¤erence for any value of � inside [�4;
p
3=2] we can immedi-

ately see that it is always satis�ed (Figure 6). Therefore, as � 2 [�4;
q

3
2 ];

network g4 is PWS but not strongly stable.

� On the other hand, outsiders do not participate for
q

3
2 � � < 3

2 . There-

fore, a deviation to g3 is pro�table only when

�i(g
3) > �i(g

4), �2

12
>
�3

20
, � <

5

3
;

which means that it is always pro�table to deviate from g4 to g3 wheneverq
3
2 � � < 3

2 .

As a consequence of these results, network g4 is PWS but never SS when

�4 � � < 3
2 .

Given that g4 and gc are never SS while all the other networks are not PWS,

there is no strongly stable network whenever � 2 [1; b�]. Such result clearly
indicates that strong stability may be too strong a re�nement with respect to

pairwise stability.

7 Concluding Remarks

In this paper we provide a theoretical background to sectors featured by R&D

co-opetition, namely sectors where �rms cooperate in R&D even though they

compete in a patent contest. Our analysis started from the observation that,

during the last years, there has been an increasing number of weak partnerships

among �rms that compete for the development of new products/technologies.

In this setting, we studied, by using an all-pay auction approach, how this

weak collaboration a¤ects strategic decisions during the patent contest itself,

and how the latter in�uences the possible network structures the �rms can hope

to form. The all pay auction approach allows us to 1) endogenize both network

formation and R&D intensities and 2) take heterogeneous and private valuations

for patents into account.

We �nd that, di¤erent from previous literature, the complete network is not

always the only pairwise stable network, even and especially if the bene�ts from

cooperating are important. Interestingly, the other possible stable networks
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all have the realistic property that some �rms decide not to participate in the

contest. In other words, network formation can serve as an endogenous barrier

to entry.

We further show that there need not be any network that survives a well

known re�nement of pairwise stability; strong stability, which imposes networks

to be immune to coalitional deviations.

A Proof of Lemma 1

Let us consider the following �rm i�s pro�ts in the network g

�i(g) =
�i

�
�i(Ap +

1
�j
)� f(g) + 2

�2
�
2�i(Ap +

1
�j
)� f(g) + 3

��
1 + �i(Ap +

1
�j
)
� ;

and in the network g + ij

�i(g+ ij) =
� �i

�
� �i(Ap +

1
� �j

)� f(g + ij) + 2
�2

�
2� �i(Ap +

1
� �j

)� f(g + ij) + 3
��
1 + � �i(Ap +

1
� �j

)
� ;

where � > 1. Suppose for simplicity that f(g) = f(g+ij) = f � N , namely that

no �rm decides not to participate.13 Taking the di¤erence of the log-pro�ts, a

new link is pro�table when

log �i(g + ij)� log �i(g) = log
� �i
�i

+ 2 log
� �i(Ap +

1
� �j

)� f + 2
�i(Ap +

1
�j
)� f + 2

� log
2� �i(Ap +

1
� �j

)� f + 3
2�i(Ap +

1
�j
)� f + 3

� log
1 + � �i(Ap +

1
� �j

)

1 + �i(Ap +
1
�j
)

:

Simplifying some terms we have

log �i(g + ij)� log �i(g) = log �+ 2 log
� �iAp +

�i
�j
� f + 2

�iAp +
�i
�j
� f + 2

� log
2 � �iAp +

�i
�j
� f + 3

2 �iAp +
�i
�j
� f + 3 � log

1 + � �iAp +
�i
�j

1 + �iAp +
�i
�j

:

Rewriting � = 1 +  and simplifying

log �i(g + ij)� log �i(g) = log(1 +  ) + 2 log
"
1 +

 �iAp
�iAp +

�i
�j
� f + 2

#
13Since such assumption excludes the indirect bene�t that some competitors could give up

because of this new link, we are actually considering the least favorable condition for the

pro�tability of the new link ij.
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� log
"
1 +

2  �iAp
2 �iAp +

�i
�j
� f + 3

#
� log

"
1 +

 �iAp
1 + �iAp +

�i
�j

#
:

Rearranging terms

log �i(g+ij)�log �i(g) =

Az }| {
log

"
1 +

 �iAp
�iAp +

�i
�j
� f + 2

#
� log

"
1 +

 �iAp
1 + �iAp +

�i
�j

#
+

log(1 +  ) + log

"
1 +

 �iAp
�iAp +

�i
�j
� f + 2

#
� log

"
1 +

2  �iAp
2 �iAp +

�i
�j
� f + 3

#
| {z }

B

;

it is su¢ cient to prove that A and B are always positive.

A First, A is positive if and only if

log

"
1 +

 �iAp
�iAp +

�i
�j
� f + 2

#
� log

"
1 +

 �iAp
1 + �iAp +

�i
�j

#
)

 �iAp
�iAp +

�i
�j
� f + 2 �

 �iAp
1 + �iAp +

�i
�j

) 1+�iAp+
�i
�j
� �iAp+

�i
�j
�f+2) f�1 � 0:

B Therefore A is always positive. Now, in order to have B positive we need

that

log(1+ )+log

"
1 +

 �iAp
�iAp +

�i
�j
� f + 2

#
� log

"
1 +

2  �iAp
2 �iAp +

�i
�j
� f + 3

#
:

A simple way to check this condition is to see when the right hand side is

dominated by either the �rst term or the second one of the left hand side. The

LHS �rst term dominates the RHS when14

log(1+ ) � log
"
1 +

2  �iAp
2 �iAp +

�i
�j
� f + 3

#
,  � 2  �iAp

2 �iAp +
�i
�j
� f + 3 ,

2 �iAp +
�i
�j
� f + 3 � 2 �iAp ,

�i
�j
� f � 3:

On the other hand the second term of the LHS dominates the RHS when

log

"
1 +

 �iAp
�iAp +

�i
�j
� f + 2

#
� log

"
1 +

2  �iAp
2 �iAp +

�i
�j
� f + 3

#
,

 �iAp
�iAp +

�i
�j
� f + 2 �

2  �iAp
2 �iAp +

�i
�j
� f + 3 ,

14Note that since the participation condition for �rm i requires that �iAp +
�i
�j

� N � 2,
the second term of the LHS is always positive.
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2 �iAp +
�i
�j
� f + 3 � 2

�
�iAp +

�i
�j
� f + 2

�
, �i

�j
� f � 1:

This means that, for any value of f , the �rst and/or the second term of the left

hand side dominate(s) the RHS. Therefore B is always positive. Concluding,

since A and B are always positive, it is always bene�cial to form a link with

another partner.

B Proof of Theorem 1

First, by Lemma 1 we know that all participating �rms will always form a

complete component. Second, a �rm i will not form a link when

�i(N) � 0, (N � 2) � �i
X
j 6=i

��1j :

It is straightforward to see that when two competitors form a new link they

reduce the right hand side of the participation constraint while the left hand

side is constant. Therefore, as � is high enough and �rms j 6= i are su¢ ciently

linked, it is possible that �rm i does not participate in the network g + ij for

any j participating �rm. Finally, equation 1 implies that a non participating

�rm i always has an incentive to stay isolated. Q.E.D.

C Proof of Proposition 2

Let us consider a network gk where the dominant group consists of k �rms

while all the others are isolated and non participating �rms. In order not to

participate outsider �rms must not only violate their participation constraint,�
(N � k � 1) + k

�k�1

�
< N � 2;

but they also have to stay out even when they can form a new link

� with a member of the component

�

�
(N � k � 1) + (k � 1) 1

�k�1
+
1

�k

�
< N � 2; (16)

� with another outsider

�

�
(N � k � 2) + k 1

�k�1
+
1

�

�
< N � 2: (17)
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Network gk is PWS only when all these conditions hold. However, we can

show that Equation (16) is the most restrictive.

First, Equation(16) is more restrictive than the participation constraint if

and only if

�

�
(N � k � 1) + (k � 1) 1

�k�1
+
1

�k

�
>

�
(N � k � 1) + k

�k�1

�
,

(��1)(N�k�1)+k � 1
�k�2

>
k � 1
�k�1

, (��1)(N�k�1)�k�1+(k�1)(��1) > 0,

(�� 1)
h
(N � k � 1)�k�1 + (k � 1)

i
> 0;

a condition that is always satis�ed.

On the other hand, Equation(16) is more restrictive than Equation (17) if

and only if

�

�
(N � k � 1) + (k � 1) 1

�k�1
+
1

�k

�
> �

�
(N � k � 2) + k 1

�k�1
+
1

�

�
,

1 +
1

�k
>

1

�k�1
+
1

�
, �k + 1 > �+ �k�1 , �k�1(�� 1) > (�� 1),

(�k�1 � 1)(�� 1) > 0;

which is always true. Therefore, Equation(16) is the most restrictive condition

for the PWS of a dominant group network.Q.E.D.

D Proof of Proposition 3

It is straightforward to see that moving from a dominant group network to

the complete one, �rms that were outside the component are better o¤ insofar

as their payo¤ becomes strictly positive instead of being null. Therefore, the

complete network pareto dominates a dominant group network gk only when all

component members i are better o¤ when they move from gk to gc, namely

�i(g
c) > �i(g

k), �N�1

(N + 1)N
>

�k�1

(k + 1)k
, � > N�k

s
(N + 1)N

(k + 1)k
: (18)

Consequently, the complete network pareto dominates all the other PWS net-

works only when Equation (18) holds for any k = k; : : : ; N � 1. Q.E.D.
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Figure 1: An example of a network with 5 �rms

E Figures
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Figure 2: Example of a network with an isolated �rm

Figure 3: Three-�rm group dominant network g3
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Figure 4: Four-�rm group dominant network g4

Figure 5: The complete network gc
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Figure 6: �i(g4)��i(gc) as � 2
h
1; 3
p
4=3
i

Figure 7: �i(g3)��i(g4) as � 2 [�4; 3=2]
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