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Abstract While chronic heart failure (CHF) treatment has considerably improved patient prognosis and survival, the therapeutic manage-
ment of acute heart failure (AHF) has remained virtually unchanged in the last decades. This is partly due to the scarcity of pre- 
clinical models for the pathophysiological assessment and, consequently, the limited knowledge of molecular mechanisms involved 
in the different AHF phenotypes. This scientific statement outlines the different trajectories from acute to CHF originating from the 
interaction between aetiology, genetic and environmental factors, and comorbidities. Furthermore, we discuss the potential mo-
lecular targets capable of unveiling new therapeutic perspectives to improve the outcome of the acute phase and counteracting the 
evolution towards CHF.
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Graphical Abstract

Assembling the acute heart failure (AHF) in a translational view. Different causes of AHF can be reproduced in pre-clinical models to unveil novel patho-
physiological and molecular mechanisms. Identifying novel molecular targets amongst organelles and cellular compartments can be tested again in the pre- 
clinical models. Effective strategies can be exploited in human scenarios. Image was partially created with BioRender.com.
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1. Introduction
The management of chronic heart failure (CHF) has significantly improved 
over the last three decades, due to a better understanding of the underlying 
molecular and pathophysiologic mechanisms and to the consequent ad-
vancement of pharmacologic and device therapies, able to arrest, or at least 
delay, the disease progression.1–5

In contrast, the management of acute heart failure (AHF) has remained 
mostly unchanged over the decades and is based on the standard loop 
diuretics, vasodilators, vasopressors, and inotropes.5,6

AHF is a complex clinical syndrome that arises from the rapid onset or 
worsening of a pre-existing cardiac dysfunction that impairs the ability of 
the ventricle to fill and eject blood, producing signs and symptoms of 
HF, and a need for acute admission to the emergency department and un-
planned hospitalizations.5 Nonetheless, hospital admissions herald poor 
prognosis with a high risk of readmissions and deaths post-discharge, as evi-
denced by several AHF registries.7–11 This article is the result of a science 
retreat held in September 2019 by the ESC Working Group on Myocardial 
Function, starting from a proposal of Prof Michele Ciccarelli and discussed 
with the other Nucleus Members.

The complexity of AHF is demonstrated by the finding that acute cardiac 
dysfunction may arise from several aetiologies and include a multitude of 
comorbidities, making this a complex set of HF syndromes.12 Specifically, 

a significant challenge in classifying AHF as a single entity is the heterogeni-
city in its clinical presentation: patients admitted with AHF span from those 
with severe left ventricular (LV) systolic dysfunction and low cardiac output 
to those with normal or near-normal LV systolic function and severe 
hypertension.13 In addition, worsening haemodynamic profile in a major 
feature of patients with reduced left ventricular ejection fraction (LVEF). 
In contrast, in patients with preserved LVEF a precipitating factor can be 
worsening of comorbidities.13 Here we classify AHF as (i) New-onset or 
de novo AHF, which occurs in patients without a previous history of HF 
and (ii) acute worsening HF14 or acutely decompensated HF,15 which oc-
curs in patients with pre-existing CHF.15,16 The degree of the physiologic 
response is typically different between the two conditions, being more 
pronounced in de novo AHF cases and subtler in chronic cases because 
of previously activated adaptive mechanisms. In acutely decompensated 
HF, symptoms increase in individuals with previously diagnosed chronic 
HF;15 it can be defined as the sudden or gradual onset of HF symptoms 
or signs requiring hospitalization, emergency room visits, or unplanned of-
fice visits.17 Despite the causal precipitant of the exacerbation, pulmonary 
and systemic congestion due to augmented right- and left-heart filling pres-
sures is a nearly universal finding in acutely decompensate HF.17 Precisely, 
in acute worsening HF, structural abnormalities of the heart are considered 
irreversible, and the pharmacological approach in the stable phase aims to 
arrest or delay the progression of the disease by inhibiting the 
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pathophysiological and molecular mechanisms involved in cardiac remod-
elling.15 De novo AHF occurs in subjects without previous history of heart 
disease with an apparently normal cardiac substrate, in which the establish-
ment and progression towards irreversible cardiac damage rely on the 
crosstalk between aetiology (ischaemic and non-ischaemic), demographic 
factors (age, sex), presence of comorbidities (e.g. diabetes, chronic kidney 
disease, anaemia, chronic obstructive pulmonary disease, depression, and 
genetic predisposition) and timing of pharmacological and/or non- 
pharmacological interventions.18 Most patients with de novo AHF present 
reduced LVEF,11 but even in cases where LVEF is preserved, cardiac dam-
age is mostly reversible. Often there are two events that lead to AHF: a 
known cardiomyopathy decompensates acutely due to rhythm distur-
bances, infection, fluid imbalance, ischaemia or high blood pressure; obvi-
ously, treatment will be different from primary events. Indeed, some 
individuals with reversible or treatable causes of HF, such as hypertensive 
heart disease, alcohol-induced cardiomyopathy, peripartum cardiomyop-
athy (PPCM), or tachycardia-induced cardiomyopathy (TIC), may even re-
cover from HF with treatment and show resolution of HF symptoms, as 
well as normalization of the LVEF and cardiac structure.19

Moreover, the evolution of a de novo AHF towards CHF occurs in a rela-
tively short time frame upon injury, when the complexity of the activated 
molecular pathways impacts the specific trajectory.15,18 Overall, little is 
known about the possible therapeutic window and treatment targets to 
reverse HF or prevent the onset of CHF in de novo AHF patients that 
may improve their long-term outcomes.20 The presence of different biol-
ogy and molecular mechanism according to the aetiology and comorbid-
ities of de novo AHF imposes different approaches to reduce the risk of 
its progression towards chronic worsening or even advanced HF.

Bearing this in mind, it is necessary to conceive and implement novel pre- 
clinical models of AHF, as well as deepen our understanding of the specific 
molecular mechanisms to define the specificity of each AHF phenotype. 
Here, we describe the clinical scenario and molecular mechanisms through 
which AHF can evolve to remission or to persistent/advanced HF, the avail-
able animal models of AHF, and potential molecular targets that could be 
exploited to develop novel therapeutic strategies.

2. Trajectories of AHF: how de novo 
AHF evolves into persistent or 
worsening HF
The natural history of HF includes progressive modifications in the clinical 
risk of hospitalization and death over time, with risk increasing from 
‘pre-HF’ to ‘new-onset/de novo HF,’ and further increasing with each epi-
sode of ‘worsening HF’.21 It is, therefore, pivotal to recognize the stage 
of the patient’s natural history, and to identify the patient’s specific trajec-
tory heading to HF remission, persistent or worsening HF.22 Noteworthy, 
a condition of AHF is not necessarily associated with a LV dysfunction in 
terms of morphological changes and/or systolic function;23 instead, we fo-
cused on how mechanisms activated after a cardiac insult and the next evo-
lution towards remission, persistent and advanced HF. The transition from 
one stage to another, particularly from de novo AHF to worsening HF, is 
dictated by a series of pathophysiological and molecular events that reflect 
the specific combination of aetiology, comorbidities, and environmental 
factors.

Overall, long-term-trajectories are defined as reversible HF/HF in remis-
sion, persistent HF, and advanced HF24 and are mainly affected by the es-
tablishment and extension of irreversible cardiac damage (Figure 1: 
Crosstalk between aetiology and comorbidities in the long-term trajectory 
of de novo AHF).25

Conditions that often evolve to remission of HF are stress-induced car-
diomyopathy [Takotsubo (TTS)], PPCM, or thyroid disease26 (Figure 1). In 
addition, temporary cardiac systolic impairment can be observed before or 
near complete restoration of LVEF. Still, this dysfunction is not associated 
with macroscopic fibrotic myocardial areas akin to those seen in post- 
acute ischaemia, and cardiac function often recovers within days, weeks, 

or months after the acute onset. Nevertheless, it can ease evolution to per-
sistent or even advanced HF in case of pre-existing structural or genetic 
damage or comorbidities.27

Myocarditis may present as AHF and is an example of how a persisting 
injury, when not entirely resolved in the acute phase, prompts progression 
to a persisting or advanced HF, with a dilated cardiomyopathy (DCM) as a 
typical functional and morphological cardiac phenotype.28,29

Similarly, acute coronary syndrome (ACS) leads to AHF in about half of 
cases8 and often evolves towards a persistent/advanced HF due to exten-
sive scar tissue replacement of the necrotic myocardium.30 Myocardial in-
farction (MI) can acutely occur either because of sudden occlusion of a 
coronary vessel (Type 1 MI) or as a consequence of increased oxygen de-
mand by the cardiac muscle (Type 2 MI, e.g. during uncontrolled hyperten-
sion in combination with anaemia or respiratory failure in pulmonary 
oedema). As for most forms of AHF, also in AHF due to myocardial ischae-
mia, comorbidities negatively affect prognosis.5,31–33 Anaemia and impaired 
renal function have probably the worst impact on outcomes.5,34 However, 
remission of HF can potentially occur and strongly depends on the timing 
of treatment when the heart function can be restored, thanks to prompt 
treatment of myocardial ischaemia and precipitating factors. Specifically, in 
the stunned myocardium, the severity and duration of myocardial ischae-
mia are not prolonged enough to kill cardiomyocytes or induce extensive 
cardiac damage. When the ischaemia is relieved by reperfusion, the myo-
cardium is viable but stunned, showing transient post-ischaemic contractile 
and biochemical dysfunction.30

The effectiveness of a prompt and early intervention is particularly evi-
dent in AHF due to TIC.

TIC is generally reversible if it can be treated successfully with medica-
tions, surgery or catheter ablation,35 and cardiac function is often restored 
in weeks or months after.36

More complexity is observed in genetic cardiomyopathies, in which 
gene-environmental crosstalk and comorbidities have a significant influ-
ence on the development of the cardiac remodelling, which spans from 
DCM, to hypertrophic (HCM) or arrhythmogenic cardiomyopathy 
(AC).37 Direct causes of these cardiomyopathies include pathogenic 
gene variants (known mutations; DCM up to 30%, HCM 50–60%, AC 
70%) and acquired causes such as toxins, auto-immunity, storage dis-
eases, infections, and tachyarrhythmias.38 Disease modifiers aggravating 
or triggering a cardiomyopathy include age, gender, pregnancy, lifestyle, 
and most cardiovascular comorbidities39,40 that often lead to a persist-
ent/advanced HF (Figure 1).

3. Translational research for 
developing new strategies in AHF
3.1 Molecular and pathophysiological 
mechanisms involved in AHF
The molecular mechanisms leading to cardiac remodelling and the transi-
tion from acute to chronic HF activate immediately after an insult, and 
from a cellular point of view, involve the cardiomyocyte population and 
other cell types. Endothelial cell dysfunction, neurohormonal activation, in-
flammation, defective microcirculation, mitochondrial dysfunction, and 
oxidative stress produce cardiac damage, increasing the chance of develop-
ing persistent HF. These processes are variably represented and intercon-
nected in the different AHF aetiologies, and initiate a series of adverse 
pathologic mechanisms following a myocardial injury that triggers fibrosis, 
progressive LV dysfunction, and remodelling, by involving the cardiovascu-
lar system, splanchnic bed, and renal function (Figure 2). Moreover, al-
though underlying causes are heterogeneous, most AHF patients have 
symptoms of pulmonary congestion that lead to compromised gas ex-
change and arterial hypoxaemia, with dyspnoea presenting as the key mani-
festation.41 The primary causal mechanism for pulmonary congestion in 
AHF is high LV filling pressure resulting in increased pulmonary capillary 
wedge pressure and pulmonary hypertension.42
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3.2 Endothelial dysfunction and 
microvascular dysfunction in AHF
Endothelial dysfunction is characterized by nitric oxide (NO) dysregulation, 
inflammation, and oxidative stress, which compromise the ability of the 
vascular endothelium to perform its several functions, such as regulation 
of vascular tone, anti-fibrinolysis, and inflammatory processes.43

These events are recognized in several conditions like sepsis and PPCM, 
where endothelial dysfunction results from various adaptive mechanisms 
following decreased cardiac output, neurohumoral activation, vasocon-
striction, increased oxidative stress, and imbalance of NO generation 
and metabolism. In PPCM, for example, oxidative stress promotes cleavage 
of the hormone prolactin into a smaller antiangiogenic subfragment, 
16 kDa prolactin, driving endothelial damage.44,45 During sepsis, the endo-
thelial barrier is primarily damaged by bacterial components by activating 
toll-like receptors.46

Moreover, acute inflammation involving the coronary microvascular 
endothelium leads to impaired nitric oxide (NO) bioavailability for adjacent 
cardiomyocytes and dysregulates the cyclic guanosine monophosphate 
(cGMP)-protein kinase G signalling. The reduced phosphorylation state 
of the giant sarcomere protein titin may foster LV stiffness, further exacer-
bating diastolic dysfunction and increasing the risk of triggering AHF.47

Diastolic dysfunction is often observed in patients prone to hypertensive 
AHF, where acute fluid redistribution due to increased neurohormonal ac-
tivity, NO insensitivity, and arterial/ventricular stiffening associated with 
physiological stressors are critical determinants of the development of 
the phenotype.48

3.3 Inflammation and neurohormonal 
activation in AHF
Inflammation is well recognized as the key pathophysiological mechanism 
in AHF phenotypes like myocarditis and non-infectious diseases like TTS. 
In myocarditis, AHF is associated with severe neurohormonal, inflamma-
tory, and immunological changes.49 Typically, the infection of the 

myocardium occurs in three phases: Phase 1 includes viral entry into myo-
cytes and activation of innate immunity; during Phase 2, viral replication and 
activation of acquired immune responses occur; and Phase 3 is either reso-
lution with recovery or development of DCM.50 Cardiac decompensation 
following myocarditis relates to a systemic pro-inflammatory environ-
ment42,51 due to the activation of innate immunity, as observed in Phase 
2. In particular, high levels of cytokines, tumour necrosis factor (TNF), 
IL-1 α, IL 1 ß, IL 2, and IFN γ, together with antibodies to viral and cardiac 
proteins, can further increase cardiac damage and compromise systolic 
function through derangement of the contractile apparatus and/or intersti-
tial cells and matrix proteins.50 TNF-α and IL-1ß have a direct negative ino-
tropic effect on cardiomyocytes by downregulating the expression of 
Ca2+-regulating genes,52 triggering cardiomyocyte apoptosis,53,54 and en-
hancing the activity of cardiac fibroblasts.55,56 Pro-inflammatory cytokines 
also induce endothelial cells apoptosis,57 generate oxygen-centred free ra-
dicals, facilitate transendothelial migration,58 increase adhesion molecule 
expression,59 and following adhesion of immune cells to the 
endothelium.60

Whether the systemic inflammatory response in AHF contributes to the 
pathophysiology of decompensation leading to hospitalization (i.e. causal-
ity) has yet to be established.61 However, acute administration of cytokines 
in the pre-clinical model has been shown to induce a pathophysiological 
scenario typical of AHF with ventricular dysfunction, increased diastolic 
stiffness, and pulmonary oedema.62

Likewise, SARS-CoV-2 may contribute to myocarditis and other myo-
cardial involvement by multiple mechanisms, comprising direct virus inva-
sion, microvascular angiopathy, and host inflammatory or immune 
responses.63–66

COVID-19 produces an intensely pro-inflammatory state, as suggested 
by high levels of C-reactive protein, ferritin, lactate dehydrogenase, 
interleukin-6, and D-dimer. The cytokine hyperproduction in COVID-19 
comprises TNF, IL-6, IL-7, and inflammatory chemokines (CCL2, CCL3, 
and soluble IL-2 receptors).67 This so-called ‘cytokine storm’ stimulates 
thrombosis through several mechanisms, including activation of mono-
cytes, neutrophils, and endothelium, finally inducing vascular injury.68

Figure 1 Trajectories of AHF. The figure displays the possible remission of the different AHF phenotypes. As shown, each phenotype owns a distinct pos-
sibility of recovery from the systolic and diastolic dysfunction in the acute phase; specifically, three different trajectories are possible: remission, persistent and 
advanced. The evolution of AHF relates to aetiology and environmental factors such as comorbidities and the earliness of therapy.
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Similarly, in non-infectious myocarditis, the so-called cytokine release 
syndrome caused by anticancer CAR-T therapies and by specific antibodies 
such as blinatumumab is due to high levels of inflammatory cytokines 
released by activated CAR-T cells and other immune cells, such as macro-
phages, with fever and tachycardia that may be associated with hypoxia and 
hypotension. Additionally, the (counter-) regulatory processes following an 
episode of AHF also seem to involve heart-specific adaptive immunity.69

Indeed, anti-myocardial autoantibodies have been found in patients hospi-
talized with AHF, probably reflecting patterns of adaptive immune re-
sponses in these patients.70 Interestingly, impaired thymic tolerance to 
myosin antigens is one of the putative mechanisms of development for im-
mune checkpoint inhibitors (ICIs, used for cancer treatment) related to 
cardiovascular immune adverse events.71,72 In another model, Gil-Cruz 
et al.73 showed that the progression of autoimmune myocarditis to severe 

heart disease depends on cardiac myosin-specific Th17 cells imprinted in 
the intestine by a peptide mimic derived from a commensal Bacteroides 
species, with a significantly high Bacteroides-specific CD4+ T cell and 
B cell responses in human myocarditis. Accordingly, antibiotic therapy 
led to the effective prevention of lethal disease in mice, suggesting that mi-
mic peptides from commensal bacteria can stimulate inflammatory cardio-
myopathy in genetically susceptible patients.74

In TTS, adrenergic signalling activates cytoadhesin expression 
(ICAM-1) by bone marrow cells and cardiac endothelial cells, fostering 
diapedesis, developing sterile inflammation, and remodelling of the failing 
heart.75,76

Additionally, neurohormonal and inflammatory alterations in AHF may 
impair the endothelial glycocalyx’s structure and function, consisting of net-
works of glycosaminoglycans connected to the endothelium by adhesion 

Myocardial
injury

Myocardial

Renal dysfunction
Adrenergic system activation
RAAS activation

Myocardial energetic failure
Mitochondrial dysfunction

Oxidative stress
Wall stress

Altered Ca2+ handling

Endothelial dysfunction
NO production
Oxidative stress

Alteration of splanchnic bed
Reduced vascular compliance

Intermittent hypoxic insults

Figure 2 Common pathophysiological mechanisms in AHF phenotypes. Different causes of cardiac injury activate early pathophysiological and molecular 
mechanisms, including energetic cardiac failure, renal and endothelial dysfunction, and alteration of the splanchnic bed. Perpetuating these mechanisms pro-
motes cardiac fibrosis and remodelling. NO, nitric oxide; RAAS, Renin–Angiotensin–Aldosterone System.
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molecules. Glycosaminoglycans networks function as sodium buffer and 
therefore play a critical role in regulating endothelial function and intersti-
tial fluid accumulation. Neurohumoral alterations observed in AHF can al-
ter glycosaminoglycan density and sulfatation, resulting in amplified vascular 
resistance and permeability, oedema, and cardiac filling pressures.77

Inflammation is also accompanied by the early onset of interstitial and 
perivascular fibrosis.78 Drugs that may address anti-remodelling effects 
through targeting multiple pathways in parallel, such as miRNA therapeu-
tics, thus may be well suited as next-generation therapeutics. As such, pre- 
clinical and clinical evidence suggests that targeting remodelling-associated 
miRNA miR-132 leads to a normalization of pathological hypertrophy and 
fibrosis, and maybe a novel entry point to fight early pathological remod-
elling post-MI.79,80

3.4 Mitochondrial dysfunction and oxidative 
stress
Mitochondria are abundant in energy-demanding cardiac tissues, and mito-
chondrial energy production depends on factors that modulate normal 
mitochondrial function, such as enzyme activity and cofactor availability. 
In addition, oxidative stress, genetic factors, mitochondrial biogenesis, 
and aging may affect mitochondrial function.81

Energetic myocardial deficiency has been observed in TTS patients,82

which may contribute to the development of chronic HF.83 Recently, car-
diac metabolic alterations were recapitulated in a rat model of TTS with 
the observation of multiple changes at all metabolic pathways. In particular, 
TTS displays dysregulation of glucose and lipid metabolic pathways with 
decreases in final glycolytic and β-oxidation metabolites and reduced avail-
ability of Krebs intermediates. The energetic deficit is accompanied by de-
fective Ca2+ handling, inflammation, and upregulation of remodelling 
pathways, with the preservation of sarcomeric and mitochondrial integ-
rity.84 Although a precise mechanism reconciling the above observations 
has not yet been identified, it is plausible that these early alterations, to-
gether with the activation of inflammatory and fibrotic processes, may con-
tribute to cardiac remodelling following TTS.

Defective mitochondria following acute myocardial ischaemia (AMI) 
contributes to the development of AHF and the following adverse cardiac 
remodelling, as observed in ischaemia-reperfusion injury. Significant bio-
chemical and metabolic changes occur in the first few minutes of AMI, in-
cluding mitochondrial Ca2+ overload, oxidative stress, rapid pH correction, 
and opening of the mitochondrial permeability transition pore (mPTP).85

Reperfusion upon revascularization induces additional intracellular and 
mitochondrial Ca2+ overload due to disruption of the plasma membrane, 
oxidative stress-induced damage to the sarcoplasmic reticulum, and mito-
chondrial re-energization, which permits the recovery of the mitochondrial 
membrane potential to drive the entry of Ca2+ into mitochondria via the 
mitochondrial Ca2+ uniporter (MCU). The molecular identification of the 
MCU86 and the mitochondrial Na+/Ca2+ exchanger (NCX), which med-
iates mitochondrial calcium extrusion,87 may result in the discovery of a 
new class of specific inhibitors for reducing acute ischaemia and reperfu-
sion in AMI.88 In summary, AHF is characterized by mechanisms activated 
in the acute phase and, if persisting, fosters the progression toward persist-
ent/advanced HF.

3.5 Pre-clinical models of AHF
The molecular mechanisms underlying AHF evolution should ideally be 
reproduced in animal models. Over the years, numerous animal 
models of AHF have been implemented in different species (mice, rats, 
rabbits, pigs, dogs) to study AHF pathophysiology and develop new 
therapies.89–93 Nevertheless, most of these models present significant lim-
itations and only partially recapitulate the clinical traits of the human con-
dition89 (Table 1), which comprise: (i) impaired LV function; (ii) congestion 
with increased central venous, pulmonary artery, and capillary wedge pres-
sures; (iii) pulmonary oedema and reduced respiratory exchange with sys-
temic acidosis, and (iv) increased circulating cardiac biomarkers (cTnT, 
BNP, and others).

Moreover, the pattern of worsening AHF is difficult to reproduce, as an 
interaction of existing systemic factors and comorbidities is present in hu-
mans.89 Thus, new animal models accurately mimicking human AHF are ur-
gently needed to test new drugs before their clinical translation.

Several aspects should be considered when selecting the most appropri-
ate species and animal model for AHF (Table 1). Ischaemia-induced HF is 
the most widely used approach.91,92 However, acute coronary occlusion 
frequently fails to induce stable HF due to neurohormonal activation, de-
velopment of collateral circulation, or LV dilation.90 Microembolization is 
alternative option to promote ischaemic HF, but it generally requires nu-
merous injections of microbeads to induce modest cardiac dysfunction.90

Administration of anticancer cardiotoxic drugs, such as anthracyclines, are 
known to produce HF but require multiple invasive procedures and result 
in high mortality.93,94 Doxorubicin can induce AHF shortly after high-dose 
injection in rodents (Table 1). This model has the advantage of a short mod-
elling period and predictable time of cardiotoxicity but has high mortality 
and limited reproducibility.107 Also, high-dose injections of catecholamines 
are known to induce cardiac dysfunction typical of transient TTS.99

However, more recently, Ali et al.98 reported that a catecholamine surge 
might not be mandatory to generate an episode of TTS since they demon-
strated that inotropes, such as milrinone, also trigger TTS (Table 1). 
Nevertheless, TTS animal models remain challenging as they only partially 
reproduce the cardiac features of TTS.108 Most studies are conducted in 
young male animals, contrasting with 92% of TTS patients, who are post- 
menopausal females. Finally, rapid-pacing-induced HF is another possible 
approach to induce AHF; however, it is reversible with cessation of 
pacing.90,103

Regarding the choice of the species to privilege, swine have been increas-
ingly used due to their anatomic and pathophysiologic similarities to the 
human heart, making them the most translational model in biomedical re-
search. Besides being genetically well-defined, mini-pigs weigh 30–70 kg at 
maturity, making them easier to handle compared to agricultural pigs that 
may grow to weigh over 320 kg. Some examples of AHF porcine models 
are depicted in Table 1. Rabbits are medium-sized animals that resemble 
many cellular (electrophysiology and Ca2+ homeostasis) and molecular 
characteristics of humans and represent a practical alternative to larger 
mammals. AHF can also be induced in rats after acute myocardial infarction 
(Table 1). However, the phenotype is strain-dependent, with Lewis inbred 
rats surviving more than Sprague-Dawley, which has been ascribed to its 
more uniform pattern of coronary branching and, thus, predictable infarct 
size.109 Moreover, important differences in mouse strains and substrains 
should be considered when implementing mouse models of AHF. For in-
stance, the C57BL/6J strain has a mutation in the nicotinamide nucleotide 
transhydrogenase (Nnt) gene, which regenerates NADPH from NADH. 
This mutation protects C57BL/6J mice from oxidative stress and HF 
post-TAC, compared to the inbred C57BL/6N strain.110 Recently, a model 
of AHF developed in the BALB/C strain,104 showed reproducible and ro-
bust pulmonary congestion that mimics patients with acute decompen-
sated HF, thereby becoming a clinically relevant model of AHF. The 
most dangerous condition of AHF is cardiogenic shock, with a mortality 
of around 50% in patients. Very recently, a mouse model of cardiogenic 
shock was developed consisting of coronary ligation combined with hypox-
ic ventilation, recapitulating most features of cardiogenic shock after myo-
cardial infarction, including increased lactate levels.106 This model can 
better define the pathophysiology and potential therapeutic approaches 
for this devastating AHF syndrome.

4. Biomarker research in the setting 
of AHF: future directions
Biomarkers are non-invasive and highly reproducible quantitative tools that 
have highly improved the understanding of AHF pathophysiology.111 The 
most studied and extensively recognized biomarkers in diagnosing AHF 
are natriuretic peptides (NPs), which help distinguish individuals with acute 
dyspnoea from those with non-cardiac disease.112 The NPs comprise 
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atrial natriuretic peptide, B-type or brain natriuretic peptide (BNP), in-
active form of BNP, N-terminal pro B-type natriuretic peptide 
(NT-proBNP),112 that, due to their diagnostic use, is recommended in pa-
tients with possible AHF from the European and American practice guide-
lines.5,113 However, it is crucial to correctly interpret NPs levels, which can 

be significantly influenced by other alterations that mimic AHF, such as MI, 
anaemia, aortic stenosis, atrial fibrillation etc., thus making the diagnosis un-
certain. Moreover, it is essential to consider that NPs are released during 
haemodynamic stress when the ventricles are dilated, hypertrophic, or 
subject to increased wall tension, linking them to specific molecular 
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Table 1 Animal models of acute heart failure

Species Model Features References

Pig AMI induced by occlusion of left anterior descending coronary 

artery followed by a second AMI by circumflex coronary 
artery occlusion 2 weeks later

• Reduced LV ejection fraction < 30%. Olivari et al.89

• Increased thoracic fluid content > 35%.
• Pulmonary oedema and high pulmonary capillary wedge pressure 

∼30 mmHg.

• Increased central venous and pulmonary arterial pressures.
• Respiratory acidosis with low arterial PO2 and high PCO2

• Increased LV end-diastolic/systolic volumes.

• Increased circulating troponin T, natriuretic peptide, and 
adrenomedullin.

β-Blockade by an initial dose of Carazololin (1 mg/kg), 

followed by a continuous infusion of 1 mg/kg/h in German 
Landrasse pigs

• All measure parameters declined by 30%, including cardiac output, 

LV pressure, aortic blood pressure, systolic contractility 
(dP/dtmax), and systolic wall thickening fraction.

Kaczmarek 

et al.94

Rabbit Radiation • Induces acute myocardial lesions, such as pancarditis with 

inflammatory exudates, followed by a latent phase

Fajardo et al.95

• Myocardial and pericardial fibrosis.

Repetitive direct current shock • Decreased cardiac output. Arnolda et al.96

• Increased LV end-diastolic pressure.
• Raised peripheral resistance.

• Decrease intestinal and renal flow.

Rat Acute cardiac decompensation induced by salt-loading (1.8 g/ 
kg) in rats with well-established HF due to coronary ligation

• Reduction in cardiac output. Peschanski 
et al.97• Decreased myocardial perfusion.

• Slight increase in pulmonary weight.

• Impaired coronary relaxation.
• Transient heart rate reduction improved acute decompensated 

HF-induced LV and coronary dysfunction.

Rat Transient Takotsubo Syndrome (TTS) induced by a high-dose 
of catecholamines

• Acute severe ventricular systolic dysfunction. Ali et al.98

Paur et al.99• LV apical akinesia (correlated with LVEF) and hypercontractility in 

the basal segments, resolving in 7 days.

• Mortality rate of 33–42% (lower in females).
• Localized myocardial inflammatory changes (early neutrophil 

followed by macrophage infiltrates).

• Females need a higher triggering dose.
Rat and 

mice

A single intraperitoneal injection of DOX (10–25 mg/kg) or a 

single tail vein DOX (20 mg/kg) can induce acute 

cardiotoxicity

• Weight loss, diarrhoea, and reduced activity. Hayward 

et al.100

Al-Salam 
et al.101

Shao et al.102

• Decreased LVEF, ±dP/dTmax and increased LVEDP.

• Oxidative stress and mitochondrial damage.
• Myocardial fibre distortion and rupture.

• Increased myocardial necrosis and minimal fibrosis.

• Increased BNP, lactate dehydrogenase and calponin T.
Rat and 

mice

Rapid pacing-induced HF Shinbane 

et al.103

Mice Coronary ligation (chronic or I/R) • Reduced survival, systolic dysfunction, pulmonary congestion, and 
pleural effusion.

Ma et al.104

Gao et al.105

• Cardiac rupture, and not AHF, is the most common cause of death 

within the first-week post-MI.
Mice Coronary ligation and hypoxic ventilation • Recapitulates the most features of cardiogenic shock after 

myocardial infarction including increased lactate levels, severe 

systolic dysfunction, congestion, and high mortality

Wang et al.106
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mechanisms and physiological conditions. In addition, the circulating levels 
of NPs are higher in patients HFrEF than in patients with HFpEF, making the 
diagnosis of HFpEF difficult or falsely ruled out.

This ‘grey area’ in the use of NPs has dramatically contributed to raising 
the interest of the scientific community in identifying new biomarkers that 
would be useful to take in consideration other physiological conditions and 
molecular pathways alteration involved in the diagnosis and prognosis of 
HF, in particular aiming at developing a multimarker approach composed 
of additional biomarkers that can be used in combination with the previ-
ously renowned NPs. Therefore, in the last two decades, pre-clinical and 
clinical research has moved toward identifying comprehensive biomarkers 
to mirror the different mechanisms of AHF pathophysiology (Table 2) with 
the object of obtaining an integral adjunctive tool for AHF management and 
the identification of individuals at risk of developing an advanced HF.

Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) 
emerged as good markers of cardiac remodelling and fibrosis, although 
the molecular mechanisms of their release are not fully elucidated.114

Myeloperoxidase (MPO) is a microbicidal haeme-containing enzyme of 
the innate immune system produced by neutrophils. It has been implicated 
in the pathogenesis of several inflammatory conditions, including coronary 
artery disease, HFpEF, chronic obstructive pulmonary disease, chronic kid-
ney disease, and non-alcoholic steatohepatitis. In addition, elevated MPO 
levels are associated with advanced HF and correlate with microvascular 
dysfunction,124 particularly in patients with myocarditis.115

Other studies have suggested the ‘Cytokine Hypothesis’ in the different 
settings of AHF. C-reactive protein (CRP) and interleukin-6 (IL-6) emerged 
as potential biomarkers for patients’ stratification and prognosis of AHF. 
Pro-inflammatory markers are related to disease severity and provide im-
portant prognostic information beyond traditional clinical parameters and 
other markers such as BNP.

HF is also characterized by endothelial damage; thus, measuring circulat-
ing levels of endothelial cell injury markers could help determine the dis-
ease severity. A novel recent marker of endothelial damage related to 
high blood pressure is represented by sortilin.122 This novel biomarker 
can be potentially implicated in AHF related to elevated blood pressure 
levels that can lead to cardiac remodelling.122

In conclusion, most novel HF biomarkers provide evidence of specific 
molecular and cellular processes, although in a non-cardiac-specific fashion. 
Therefore, it is still unclear whether altered plasma biomarkers can be dir-
ectly associated with the degree of cardiac damage and risk of evolving to-
ward an advanced HF.123 Further studies focused on their additive value in 
the diagnosis of HF, the relationship between their measurements, and the 
identification of individuals at risk of developing HF is needed.

5. Strategies for AHF treatment
In contrast to CHF treatment, pharmacological treatment of AHF has 
remained largely unchanged over the past decades. The cornerstones of 
the therapy, which is mostly symptomatic and focused on short-term out-
comes, is diuretics, vasodilators, inotropes, and vasopressors depending on 
the clinical profile.5 Implementation of the underlying pathophysiology is 
incomplete: while particular triggers of AHF such as ACS, hypertension, ar-
rhythmia, mechanical problems (e.g. acute valvular insufficiency), and pul-
monary embolism have their specific treatments, other conditions are 
mainly tackled with general measures. The major, yet unresolved, problem 
is pharmacologically enhancing cardiac output in patients suffering from 
severely reduced LVEF and low blood pressure without life-threatening 
side effects. However, the management of AHF in urgent/emergency situa-
tions is extensively described in previous papers, and is beyond the pur-
pose of this work. Still, it is necessary to underline that searching for 
AHF therapies that can reduce cardiac damage and improve long-term clin-
ical outcomes is daunting.

Of notice, even after remission from an AHF event, some patients tend 
to have further events over time. Primary AHF events may lead to subclin-
ical changes (molecular, epigenetics modifications, metabolic changes, etc.), 
which could explain this tendency to new events within of an apparent 
healthy heart. This is consistent with the idea that LVEF recovery does 
not necessarily correspond to the recovery from HF.125 Precisely, the 
regression of the AHF phenotype and the accompanying return towards 
a more normal cardiac phenotype does not, per se, mean that the cellu-
lar/molecular biology and physiology of these hearts is functional, which 
may explain why reverse remodelling may be related to different clinical 
outcomes.126

Identification of these subclinical footprints, however, could be pivotal 
for novel therapeutic strategies to avoid new AHF events.

5.1 Potential therapeutic strategy in AHF
The lack of univocal results regarding current available molecules makes al-
ternative innovative strategies necessary; specifically, a growing number of 
molecular mechanisms could theoretically be targeted through pharmaco-
logical approaches for new therapeutic strategies (Figure 3). As said, in the 
failing heart, oxidative stress plays an essential role.127 Specifically, the re-
search focused on drugs targeting mitochondrial function and energy sup-
ply (trimetazidine, mitoTEMPO, mitoQ, H2S donors, mPTP inhibitor 
TRO40303, SS-31, mitochondrial Na+/Ca2+ exchange inhibitors, PARP in-
hibitors), inhibitors of reactive oxygen species (ROS) sources (NOX inhi-
bitors, MAO inhibitors, MPO inhibitors), drugs targeting NO/cGMP 
signalling and vasodilatation (PETN, H2S donors, BH4, eNOS enhancer, 
and serelaxin), and antioxidant improving the redox balance (direct ROS 
scavenging or hormesis: Resveratrol, Coenzyme Q, NRF2 activators).128

5.1.1 Endothelial cell dysfunction
Interruption of the NO-sCG-cGMP pathway is broadly observed in indivi-
duals with HF leading to endothelial dysfunction.129 The disruption is 
caused by an oxidized state resulting in low bioavailability of NO and 
cGMP.129 The intensification in ROS can also result in oxidized, and subse-
quently haeme free, soluble guanylylcyclase (sGC) enzyme that NO is un-
able to stimulate, worsening the endothelial dysfunction.129 Two novel 
classes of drugs, sGC stimulators and sGC activators, have become an at-
tractive target for HF therapy. Specifically, the VICTORIA trial assessed the 
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Table 2 Biomarkers and related pathway in the setting of acute heart 
failure

Biomarkers Pathway involved References

Natriuretic peptides (BNP 

and NT-proBNP)

Haemodynamic 

stress and 

myocardial stretch

Rorth et al.114

Troponin Cardiomyocites 

injury

Shah et al.115

Soluble suppression of 
tumourgenicity 2 (sST2)

Combined/unknown 
pathways, fibrosis

Lotierzo et al.116

Galectin-3 (Gal-3) Extracellular matrix 

remodelling, 
fibrosis

Lok et al.117

Myeloperoxidase Oxidative stress Meijers et al.118

C-reactive protein (CRP), 
interleukin-6 (IL-6), 

procalcitonin, and 

Adrenomedullin (ADM)

Inflammation Petersen et al.119

Gaggin et al.120

Cvetinovic et al.121

Sortilin, CD146, 

Phosphatidylcoline, and 

ANGPTL8

Endothelial 

dysfunction

Shah et al.115

Di Pietro et al.122

Medina-Leyte 
et al.123
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efficacy and safety of the oral sGC stimulator Vericiguat, in patients with a 
reduced LVEF and recently decompensated CHF.5,130

Adrenomedullin (ADM) is a vasoactive peptide that is increased in pa-
tients with volume overload; consequently, high levels are found in 
HF.131 Specifically, the main functions of ADM are vasodilatation to pre-
serve vascular integrity and decrease vascular leakage. Accordingly, numer-
ous pre-clinical132–135 and small clinical136–139 studies have recognized the 
effects of exogenous administration of ADM in HF. Briefly, these effects in-
clude reduction in myocardial infarct size, cardiac myocyte apoptosis, LV 
remodelling (in animals) and aldosterone levels (animals and humans), while 
haemodynamics (in both humans and animals) and survival (in animals) 
were improved.131

Accordingly, in a case series of AHF patients with dyspnoea and pulmon-
ary congestion, the effects of long-term intravenous administration of 
ADM in acute decompensated HF were studied: ADM infusion reduced 
mean arterial pressure, pulmonary arterial pressure and systemic and pul-
monary vascular resistance without altering heart rate, and improved car-
diac output for most time-points compared with those at baseline.140

In particular, Adrecizumab is a humanized, monoclonal, non-neutralizing 
ADM-binding antibody with a half-life of 15 days.131 Due to its high mo-
lecular weight, the antibody adrecizumab cannot cross the endothelial bar-
rier and remains in the circulation.131 The observation that adrecizumab 
increases plasma concentrations of ADM indicates that ADM-binding by 
adrecizumab is able to drain ADM from the interstithiium into the circula-
tion. Consequently, by improving vascular integrity, adrecizumab may de-
crease tissue congestion and thereby may improve clinical outcomes in 
individuals with acute decompensated heart failure.131

Similarly, the calcium sensitizer/PDE inhibitor ORM-3819 produces 
endothelium-independent vasodilation. In animal models, Nagy et al.141 de-
monstrated that this drug is a potent positive inotropic agent exerting its 
cardiotonic effect by a cTnC-dependent Ca2+-sensitizing mechanism in 
combination with the selective inhibition of the PDE III isozyme; these 
two mechanisms of action led to the concentration-dependent augmenta-
tion of the contractile performance under control conditions and in the 
post-ischaemic failing myocardium.141 Moreover, the results of Marton 
et al.142 suggest that this compound is a potent vasodilating agent able to 
relieve coronary artery vasospasm by causing hyperpolarization of vascular 
smooth muscle cells through a process involving activation of voltage-gated 
potassium channels in isolated porcine coronary arteries.

Also, serelaxin, a recombinant form of human relaxin-2, has been tested 
in patients with AHF.143 Serelaxin is known to have a range of pleiotropic 
properties, in addition to vasodilatation, including anti-fibrotic, angiogenic, 
anti-apoptotic, and anti-inflammatory effects.144 Precisely, relaxin pro-
duces these effects by binding to a cognate receptor RXFP1 and activating 
a variety of signalling pathways including cAMP, cGMP, and MAPKs as well 
as by altering gene expression of TGF-β, MMPs, angiogenic growth factors, 
and endothelin receptors.144 However, infusions of serelaxin did not result 
in a lower incidence of death in patients with AHF.143

5.1.2 Mitochondrial function and energy supply
The mitotrope trimetazidine blocks mitochondrial oxidation of fatty acids 
by the enzyme thiolase and similarly shifts metabolism towards glucose.145

Small cohorts and open-label randomized studies suggest that trimetazi-
dine improves myocardial performance and contractility with clinical ben-
efits for HFrEF patients.146–148 Breedt et al.149 demonstrated that despite 
negligible effects on heart function during the critical AHF phase, trimeta-
zidine had positive effects for both male and obese female mouse hearts 
when administered during the recovery AHF phase. Thus, trimetazidine 
emerges as worthy to consider for AHF treatment in normal and obese- 
diabetic individuals, but only when administered during the recovery phase. 
Nevertheless, these results have not been reproduced in appropriately 
sized randomized clinical trials.150

Sodium-glucose co-transporter 2 (SGLT2) inhibitors are newly intro-
duced drugs in the 2021 ESC HF guidelines.5 There is evidence that 
SGLT2 inhibition improves cardiac mitochondrial function in animal mod-
els independently of the diabetes mellitus status.151,152 Specifically, the 

EMPULSE trial recently demonstrated the beneficial effect of empagliflozin 
in both de novo and acute worsening HF.153,154 Additional studies are 
needed to assess the possible effects of SGLT2 inhibition more compre-
hensively on cardiac mitochondrial function, such as mitochondrial protein 
levels, post-translational modifications, oxidative capacity, metabolic flux, 
and dynamics.151

The complexity and mechanistic implications of the G protein-coupled 
receptor kinase type 2 (GRK2) in HF are well demonstrated and documen-
ted.155–157 The inhibition of GRK2 ameliorates cardiac metabolism and 
mitochondrial dysfunction.157–159 It was demonstrated that the systemic 
administration of the GRK2 inhibitor cyclic peptide ‘C7’ corrects cardiac 
(lipids) metabolism and mitochondrial abnormalities (morphology, biogen-
esis, respiration, and ATP production) in a mouse model of HF.160

Accordingly, previous studies, employing different strategies of GRK2 in-
hibition, demonstrated that by reducing the activity of this kinase, it is pos-
sible to re-establish myocardial function at biochemical and contractile 
level.161,162 Some features of GRK2 inhibition make this target unique; in 
particular, C7 in non-failing cardiomyocytes is a direct positive inotrope 
and chronic infusion of GRK2 inhibitors results in metabolic and biochem-
ical changes that could complement with adrenergic beta-blocker.160 To 
date, numerous methods have been developed to inhibit GRK2 activity; 
most of them are far from clinical applications, but cyclic peptides are 
the most promising. These data support the idea that inhibition of GRK2 
could be a useful strategy to restore alterations of cardiac metabolic state 
in AHF.

Another example is the mitochondria-targeted coenzyme Q10 (mitoQ) 
compound in which the direct ROS scavenger coenzyme Q is conjugated 
to the positively charged triphenylphosphonium, which targets mitoQ to 
mitochondria.163 MitoQ has been shown to reduce ROS production at 
the onset of reperfusion, reducing myocardial infarct size in experimental 
studies of AMI and reperfusion injury.164,165 Coenzyme Q10 (CoQ10) is a 
potent intracellular antioxidant generally used in cardiomyopathy;128

moreover, MitoQ can also improve arterial endothelial function when 
administered to aged mice.166 The antioxidant 2,2,6,6-tetramethyl- 
1-piperidinyloxyl (TEMPO, a spin trap) has also been conjugated to triphe-
nylphosphonium to make mitoTEMPO and, when administered to rats, 
mitoTEMPO can prevent the increase in H2O2 levels and diaphragm mus-
cle weakness associated with HF.167 Recent evidence suggests that in the 
setting of HF, increased cytoplasmic Na+ combined with impaired Ca2+ re-
lease from the sarcoplasmic reticulum alters Na+ and Ca2+ gradients across 
the mitochondrial inner membrane, resulting in altered energy supply and 
demand and driving mitochondrial oxidation.128 Accordingly, inhibition of 
mitochondrial Na+/Ca2+ exchange with 7-chloro-5-(2-chlorophenyl)- 
1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) re-establishes 
mitochondrial Ca2+ handling and protects against sudden death in a guinea 
pig model of HF.168 Specifically, in vivo MitoTEMPO treatment of HF ani-
mals reversed HF, eliminated sudden cardiac death by decreasing disper-
sion of repolarization and ventricular arrhythmias, suppressed chronic 
HF-induced remodelling of the expression proteome, and prevented spe-
cific phosphor-proteome alterations.169 Moreover, oxidatively inactivated 
proteases may be an endogenous target for mitoTEMPO treatment in 
pressure overload HF.170

Under certain (genetic) condition, catecholamines impair cardiac metab-
olism resulting in mitochondrial dysfunction with subsequent oxidative 
stress and energy depletion. For example, STAT3 deficiency and PPCM 
seem highly sensitive to β1-adrenergic receptor agonist stimulation.171

Therefore, treatment of PPCM patients with β-adrenergic receptor ago-
nists should be avoided whenever possible. In cases with cardiogenic shock 
complicating PPCM, when treatment with β-adrenergic receptor agonists 
cannot be prevented, co-medication with perhexiline might help to reduce 
the cardiotoxic side effects of β-adrenergic receptor stimulation.171,172

5.1.3 Cellular redox state
A wide variety of different pharmacological methods is under investigation 
as means to modulate cellular redox state. In mammalian cells, seven sir-
tuins (SIRT1-7) modulate distinct metabolic and stress-response pathways; 
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specifically, SIRT1 and SIRT3 have been most widely studied in the cardio-
vascular system.173 The pharmacologic activation of these two sirtuins can 
potentially ameliorate the progression of HF because they participate in 
the regulation of energy production, oxidative stress, intracellular signalling, 
angiogenesis, autophagy, and cell death/survival.173 The natural polyphenol, 
resveratrol, is of particular interest as it is believed to mediate the benefits 
of red wine in the cardiovascular system by activating SIRT1 via an allosteric 
mechanism.174–176 On the other hand, there is a wide body of pre-clinical 
evidence that Nrf2 activation is extremely protective in HF models.177

Although Nrf2 activators such as sulforaphane, dimethylfumarate, and bar-
doxolone are currently studied in multiple clinical trials for a broad range of 
indications, including chronic kidney disease and pulmonary hypertension, 
yet there is no clinical trial in patients with CVD.128

Nitroxyl (HNO), the one-electron reduction product of NO, has been 
shown to improve cardiac function in a redox sensitive way in experimental 
and clinical HF178,179 by enhancing Ca2+ cycling and increasing myofilament 
Ca2+ sensitivity. The third generation HNO donor BMS-986231 (cimla-
nod) was recently tested in AHF. The compound rapidly and sustainably 
lowered pulmonary capillary pressure while improving cardiac index, with-
out altering heart rate, or inducing arrhythmia, hypotension, or other ma-
jor adverse events.180 Ongoing Phase 2B trials are testing its clinical 
efficacy.181 Unfortunately, the STAND-UP AHF Study (NCT03016325) 
showed that cimlanod reduced markers of congestion, but this did not per-
sist beyond the treatment period.182

5.1.4 Immune modulation
Activation of innate immunity occurs in minutes upon myocardial injury, 
which can evolve to a chronic inflammatory state that contributes to fur-
ther disease progression, under the harmful effects of sustained inflamma-
tion on cardiac myocytes and the extracellular matrix. Therefore, the 
modulation of pro-inflammatory mediators in the acute setting can poten-
tially facilitate resolution.183 Several transcriptional or translational ap-
proaches have been evaluated to antagonize pro-inflammatory 
mediators or by the so-called ‘biological response modifiers’ that bind 
and/or neutralize soluble cytokines (e.g. TNF or IL-1β) involved in the acute 
phase.184 These approaches have produced contrasting results on the 

outcome in the context of CHF. However, it is possible that, given the rele-
vance of the innate immune system in the first phase of a cardiac insult, the 
employment of these strategies in the acute setting can produce precise 
and favourable results. For instance, the IL-6 inhibitor tocilizumab can pro-
tect against major adverse cardiovascular events in CAR-T patients185 and 
in severe ICI-related myocarditis unresponsive to high-dose glucocorticoid 
therapy.186 In the acute myocarditis setting, if symptoms and laboratory 
findings do not improve with high-dose glucocorticoids, other immunosup-
pressant agents (e.g. mycophenolate mofetil, methotrexate, calcineurin in-
hibitors, intravenous immunoglobulin, anti-thymocyte globulin, rituximab, 
and infliximab) may be considered for management of ICIs cardiotoxicity, 
as reported in the consensus recommendations from the Society for 
Immunotherapy of Cancer Toxicity Management Working Group.187

Recently, alemtuzumab, a humanized mAbs that binds to CD52, a protein 
present on the surface of mature lymphocytes, monocytes, macrophages, 
dendritic cells, and natural killer cells, led to a rapid cytolytic induction 
of immunosuppression with the resolution of cardiotoxicity in a 
steroid-refractory autoimmune myocarditis induced by PD-1 therapy.188

In another case, intravenous abatacept (a cytotoxic CTLA-4 agonist used 
in patients with rheumatoid arthritis diseases) led to resolution of the 
drug-related side effect, and this was attributed to the inhibitory effects 
of abatacept on T cell co-stimulation upstream of the PD-1/PD-L1 path-
ways.189 Recently, in a pre-clinical mouse model of ICI-associated myocar-
ditis, the monoallelic loss of CTLA-4 in the context of complete genetic 
absence of Pdcd1 leads to premature death in approximately half of 
mice; specifically, premature death resulted from myocardial infiltration 
by T cells and macrophages, closely recapitulating the clinical and patho-
logical hallmarks of ICI-associated myocarditis observed in patients.190

6. Conclusions
AHF represents a highly relevant clinical problem regarding short-term 
outcomes and subsequent evolution towards CHF. Beyond the need to 
use strategies for haemodynamic support in cardiogenic shock conditions, 
it is essential to develop new approaches to preserve vital myocardium and 
to counteract the evolution towards CHF. HF patients display a marked 

Figure 3 Summary of established and potential targets for future strategies in AHF. The coloured squares show common pathophysiological pathways be-
tween the different AHF phenotypes. NO, nitric oxide; cGMP, cyclic guanosine monophosphate; sGC, soluble guanylylcyclase; PETN, pentaerithrityl tetrani-
trate; H2S, hydrogen sulphide; BH4, tetrahydrobiopterin; eNOS, endothelial nitric oxide synthase; NRF2, nuclear factor-E2-related factor 2; mitoTEMPO, 
mitochondria-targeted 2,2,6,6-tetramethyl-1-piperidinyloxyl; mitoQ, mitochondria-targeted coenzyme Q10; mPTP, mitochondrial permeability transition 
pore; PARP, poly(ADP-ribose) polymerase; NOX, NADPH oxidase; MAO, monoamine oxidase; MPO, myeloperoxidase.
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heterogeneity in the disease evolution; however, it is possible to trace the 
different trajectories of AHF based on the aetiology, comorbidities and en-
vironmental factors, although aspects of the underlying molecular mechan-
isms need to be clarified.

In particular, timing is pivotal for an effective pharmacological or thera-
peutic approach to avoid transitioning from the AHF to CHF. However, 
the mechanisms that are early activated upon injury are poorly investigated. 
The improvement and/or development of new pre-clinical models, stem 
cell-derived models to in situ modelling of heart properties, and bioinfor-
matic models based on large datasets, which show clinically relevant char-
acteristics observed in patients with cardiovascular disease,191 are needed 
to better understand the specific phenotypes and the potential therapeutic 
interventions. Thus, it becomes increasingly evident that research should 
focus on the specific combination of aetiology/comorbidities underlying 
AHF to administer an adequate therapeutic scheme which considers all 
the pathophysiological mechanisms underlying that specific phenotype. 
An effective approach to improve the outcome in AHF is to develop and 
validate personalized therapeutic strategies for each phenotype rather 
than waiting for the perfect panacea for all. Medical progress in discovering 
new AHF drugs has substantially stalled in the past 20 years; nevertheless, 
advances in data technology,192 along with developments in clinical trials 
design and research focused on individual phenotypes,191 could help to 
bring a new generation of therapies into clinical use.
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