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Abstract

This article presents a computational implementation for the Vector-based Graphic Statics (VGS)
framework making it an effective CAD tool for the design of spatial structures in static equilibrium
(VGS-tool). The paper introduces several key features that convert a purely theoretical graph and
geometry based framework into a fully automated computational procedure, including the
following new contributions: a general algorithm for constructing 3-dimensional interdependent
force and force diagrams; the implementation of a procedure that allows the interdependent
transformation of both diagrams; an approach to apply specific constraints to the computationally
generated diagrams; the integration of the algorithms as a plug-in for a CAD environment
(Grasshopper3D of Rhino3D). The main features of the proposed framework are highlighted with a
design case study developed using the newly introduced CAD plug-in (namely the VGS-tool). This
plugin uses synthetic-oriented and intuitive graphical representation to allow the user to design

spatial structures in equilibrium as three-dimensional trusses. The goal is to facilitate collaboration

s between structural engineers and architects during the conceptual phase of the design process.

1. Introduction

1.1 Graphic statics and structural design

Graphic statics provides intuitive methods to design efficient and
elegant structures. It involves the use of form and force diagrams, with
the former representing the geometry of a structure in static
equilibrium and the loads acting on it and the latter representing the
equilibrium of forces for each node of the structure (Rankine, 1858;
Maxwell, 1864; Culmann, 1866; Cremona, 1872). The graphical nature of
the two diagrams offers a visual and intuitive understanding of the
relationship between form and forces in a structure, which facilitates the
structural design process (Zalewski and Allen, 1998). Swiss engineer
Robert Maillart, amongst others, used graphic statics to design new
structural forms such as the Chiasso shed in 1924 (Zastavni, 2008), the
Salginatobel Bridge in 1929 (Fivet and Zastavni, 2012), and the Vessy
Bridge in 1936 (Zastavni et al, 2014). Moreover, contemporary
structural engineers such as Jurg Conzett, Joseph Schwartz and Bill
Baker from Skidmore Owings & Merril (Beghini et al, 2014) have utilized

this approach in their work. In recent years, comprehensive research

66

68

69

80

81

82

has been conducted to extend graphic statics to the third dimension
(Jasienski et al,, 2014). In this context, two formulations of the problem
have been mainly pursued: the polyhedron-based (Konstantatou et al,
2018; Akbarzadeh, 2016; Lee, ], 2019) and the vector-based (DAcunto et
al, 2019) approaches. One of the main reason to pursue the
development of vector-based graphic statics in 3D is that the graphical
forms the human perceives more accurately are points and linear
elements, including their position, lengths and angles (Mackinlay, 1986).
1.2 Problem statement and objectives

Implementing 3D graphic statics within a computational environment
has the potential to provide an invaluable resource for the design of
spatial structures in static equilibrium. Such projects are under
development for the polyhedron-based approach, including Polyframe
(Nejur and Akbarzadeh, 2021), compas_3GS (Lee et al,, 2018) and 3DGS
(MiloSevi¢ and Graovac, 2023).

Within the domain of vector-based graphic statics, the algebraic graph
approach (Van Mele & Block, 2014; Alic and Akesson, 2017) was

computationally implemented but it only addresses the case of 2D
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structures whose form diagrams have underlying planar graphs, i.e,

graphs that can be drawn on the plane without edge intersections.

In the 3D case, a vector-based force diagram can be readily assembled
by manual constructions using iterative simple geometric operations
within a 3D software environment for a given form diagram (Jasienski et
al, 2016; DAcunto et al, 2019). However, this procedure requires the
user to have a specific knowledge and is very time-consuming for
complex structures. An even minor modification of the initial setup -
such as changes in the topology of the structure, applied loads or
position of supports - almost always implies the entire new
reconstruction of the diagrams. This shortcoming renders the manual
approach inconvenient for the design of complex 3D structures,
especially in the conceptual design phase when several design

variations are usually tested. Some unpublished partial computational

workflow existed but were case-specific and not fully automated.

1.3. Contribution

This paper introduces a new computational framework for the
automated construction of vector-based interdependent form and force
diagrams for any 2D and 3D pin-jointed truss structures with planar or

non-planar underlying graphs.

Two alternative algorithms are
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1.4 Content
This article is organized as follows. Section 2 briefly highlights the key

features of the theoretical background upon which the presented
computational implementation is based. Section 3 describes the
computational process, from the general scheme to the core steps of the
procedure. Section 4 represents the main contribution of this research
and describes the algorithm that planarizes non-planar graphs, which is
necessary to construct the force diagrams. Section 5 presents the
integration of the computational procedure as a plugin in the CAD
environment of Grasshopper3D in Rhino3D (McNeel, 2023). Finally,
Section 6 illustrates the potential of the proposed computational
framework for structural design with a case-study.

1.5 Notation

For a given structure in static equilibrium, three classes are used in the
proposed computational framework to represent the structure’s form
(F), force (F*) and topological (T) diagrams, the latter corresponding to
the underlying graph of F. Tp refers to a planar embedding (i.e. plane
graph) of T; if T is non-planar, it is first planarized into a planar graph
through a computational routine. The index ¢ denotes a graph generated
in the computational environment. The index i designates an

intermediary version of the graph (T:) that is modified during an

developed (namely the MED and the QUAD) for the assembly of the force
diagram. In the non-planar case, each algorithm corresponds to a
different strategy for the automated planarization of the underlying
graph of the form diagram, thus leading to different configurations of the
force diagram since there is no unique way to planarize a non-planar
graph.

The paper also presents the implementation of these algorithms into a

grasshopper3D plugin. Some new features such as the form finding of

13 iterative loop. Tmc and Tic are the result of splitting the graph Tc in two
13« graphs, one being the maximum planar graph, the other being the graph
15 containing the remaining edges. The notation used to describe the
136 constituting elements of the three classes T, F and F* is presented in
17 Table 1, as well as their structs and attributes, constituting the data
s structure of the algorithms presented in this contribution. The graphical

139 convention for tension, compression and external forces is illustrated in

new structures at equilibrium are presented for the first time. v Fig 1.
Table 1: Algorithmic Data structure & notation.
Class Structs Attributes
Form diagram Vertices Vi ID i..J
F Coordinate Vi[X, Y, Z]
Edges Ef; Adjacency [i = j]
Duplicate Identity k
Type Inner Force -1/1
External Force 0
Force magnitude f
Correspondence {lg,p, k] ...}
Force diagram Vertices A ID q..p
F* Coordinate VXY, Z]
Edges E"Zf_p* Adjacency [q — ]
Duplicate Identity k
Type Inner Force -1/1
External Force 0
Edge Length |f| * scale
Correspondence [i,j,k]
Cycles of force vectors <Vi>* ID i.j
Topological Cycles <Vi> Embed Edge Order vi|{E{‘_j .}
;iagram Cycle of auxiliary vertices <ni> Embed Edge Order nl{EL; ..}
Assemble Sequence {v; ..} Cycle ID <Vi> or <n;>
Related Edge v; to vj|Eik_j




T, cycles of F*

(a) (b)

144 Fig. 1: (a) 3D form diagram F of a self-stressed octahedron; (b) Plane graph Tp (in colours); (c) individual closed cycles of force vectors representing the static equilibrium of

15 each node in the self-stressed tetrahedron. (d) 3D force diagram F*.
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2. Theoretical background

2.1 Vector-based graphic statics

The computational framework presented in this paper is based on the
vector-based graphic statics approach, which was initially introduced by
Maxwell (1864). In this approach, the equilibrium of the forces acting on
anode Vi of F is represented by a close cycle of force vectors <Vi>" in F*.
Moreover, for each pair of opposite forces acting within the same edge
Eij of F, two opposite force vectors exist in F¥ each belonging to distinct
closed cycles of force vectors <Vi>"and <V;j>". When two such opposite
force vectors overlap in F*, a force edge Ei;"replaces them (DAcunto et
al, 2019). The diagrams are reciprocal in the special case that F and F*
have an equal number of edges (Crapo, 1979). Otherwise, non-
overlapping force vectors exist (Jasienski et al, 2016), and the diagrams

are not reciprocal (Fig. 2)
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Structural members that are in compression are in blue, those in tension are in red.

2.2 Assembly of the force diagrams: a graph theory-based approach

The general approach to constructing F* is to derive the underlying
graph T of F and use its planar embedding Tp and its corresponding dual
graph as a reference for generating F* Depending on how T is
planarized into T, (Tarjan, 1970; Beneke and Pippert , 1978; Brandes,
2000; Buchleim et al, 2013), different configurations of F* are available,
each characterized by a specific organization of the cycles of force
vectors within the diagram (DAcunto et al. 2019). A possible way to
manually generate a plane graph T, of T is to successively split its
crossing edges and reconnect them to one or more newly introduced
auxiliary vertices v, while fulfilling the static equilibrium of every node

of the structure (DAcunto et al. 2019).

F*

(c)

Fig. 2: Externally loaded octahedron: (a) Form Diagram F (b) plane graph Tp; (c) 3D force diagram F* F and F* are not reciprocal diagrams because the initial graph
corresponding to the structure T is not planar. The non-overlapping vectors can be identified as those vectors represented twice in (c).
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3 Computational implementation

3.1 Overview of the computational setup

This section outlines the full computational implementation of the
theoretical framework briefly introduced in Section 2, namely the VGS
algorithm. A general scheme is presented in Fig. 3, and the algorithm's
main steps are described in section 3. The tool’s main function is to
generate automatedly interdependent form and force diagrams for a
given arbitrary 2D or 3D structure with applied forces in static

equilibrium.

Structural model
e geometry
® supports
e forces

Form Diagram
F

Caculate Equilibrium
: of F' (when necessary)
[=3.2]

Find order of edges
for F* using T
[=3.3 and =4]

internal and cycles of L
external forces ordered edges
<Vi>#*..,

—

J

Assembly

Procedure
[=3.4]

Force Diagram

F*
Interdependent
Transformations

of F and F* [253]

constraints

157 Fig. 3: Overview of the general algorithmic procedure (VGS algorithm) that
158 automatedly generates interdependent form and force diagram from a given
189 structural model.
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The preliminary step is to provide a geometry, supports and forces
(external or internal) that together compose a valid discrete structural
model.

The first step of the algorithm is to generate a form diagram F based on
the input geometry, supports and forces. If the structural model

provided in the initial setup is not in static equilibrium, a numerical
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solver will calculate the magnitude of the internal and external forces
(see section 3.2).

The second step involves finding an ordered sequence for the edges of
each vertex that will compose the force diagram (see section 3.3). Two
alternative planarization algorithms that are necessary to perform this
task are detailed in section 4.

Thanks to these two sets of data, an assembly procedure generates a
force diagram F* corresponding to the previously defined form diagram
F (see section 3.4).

Eventually, the two diagrams are made interdependent from each other
through numerical methods. This allows the user to apply specific
transformations and constraints to one of the diagrams and assess in
real time how it affects the other diagram (see section 5.3).

3.2. Evaluation of the equilibrium

The equilibrium of the structure’s nodes and the calculation of the
magnitude of the internal forces are, by default, solved geometrically
node-by-node or numerically after setting up the equilibrium matrix of
the structure (DAcunto et al, 2019). However, this initial information
could also be provided by other equilibrium solvers and form-finding
tools. It should also be noted that solving the equilibrium problem is not
a strict prerequisite to assembling form and force diagrams. On the
contrary, the VGS-tool introduces the possibility to enforce the static
equilibrium of an arbitrary structure by relying on the transformation
function (see Section 5.3).

3.3 Finding the order of force vectors in the force cycles constituting F*
For a given F, this part of the algorithm provides the specific order of
force vectors used to construct the closed cycles of forces vectors <Vi>*
constituting F* The algorithm uses the Boyer-Myrvold script for
planarity testing (Boyer and Myrvold, 2004). First, the graph T is
generated from T. To this end, all the edges and vertices of F are
identified and stored in a list of lists composed of a list of the vertices
and after one list per vertex containing all its edges. When external
forces (i.e. applied forces and support forces) exist, a new vertex VE is
created, and new edges connecting Vg to the nodes (Jasienski et al. 2016)
where the external forces are applied are added to the list of edges. After
that, the planarity check algorithm is performed on T.. If T is not planar,
a specific planarization algorithm (based on the choice made by the user
- see Section 4) is implemented to modify the graph T iteratively (Tic)
until it is converted into a planar graph Tpc. From Ty, a list of clockwise-
ordered edges can be extracted for each node of the structure.
Retrieving this information is equivalent to defining the dual graph of
Tpe, which corresponds to the underlying graph of F* The lists of
clockwise-ordered edges are subsequently used by an algorithm to
assemble the cycles of force vectors and, eventually, the entire F* (see

Section 3.4.).



Form Diagram
F 249

Find order of edges for F* [3.3] 0

251

( convert F into Tc } 252

Choice of
algorithm:
-Quad
-MED

Planarization algorithm ;
Quad (=4 .2) or MED(=4.3)

H 256

Plane graph ;

cycles of ordered
edges <Vi>*

242 Fig. 4: Algorithm to find the order for edges of F* (see section 3.3).
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3.4. Assembly procedure

After all the cycles <Vi>* of F*have been determined, a specific sequence
for assembling them is required to construct a complete F* This
sequence is composed of vertices of F Seq = {..,VkVj,...} fulfilling the
condition that the two adjacent cycles of force vectors <Vk>* <Vj>*share
at least one edge, which is made of two opposite force vectors that refer
to the same edge of F. This problem could be summarized as such:
finding a one-way path that visits once all the vertices of the plane graph
Tpc.

The method developed to solve this problem uses an elimination
procedure that is illustrated in Fig. 5. The algorithm works with the
adjacency matrix of the graph Tpc and always starts from the least
connected vertex (i.e. the vertex that counts the least row element
number in the adjacency matrix). The procedure repeats as follows.
After a vertex vn is added to the sequence, for all the related vertices that
are connected to vn the adjacent element in their rows is removed. The
next vertex is selected in the rows of vy, fulfilling the criteria of having
the least count of the row elements of the vertex connecting to vn.

In some cases, a one-way path that connects all the vertices of a graph
cannot be established due to its topology, resulting in a gap in the
assembly sequence. This happens if the selected vertex has no row
element because of the previous elimination process. In this case the
algorithm starts from another vertex that is connected to a vertex which
was selected in the previous iteration. The elimination procedure then

carries on until all the vertices of the graph have been selected.

n7->v0->v1I-=>v2-2v3-2n6->v4->v5 0 1 2 3 4 5 6 7
VO v [v2|v3||va| vs [n6 |In7 p|ip | p | p|p|D D D
77 (v0)

%%
ala
1)
241 50413 |— — —
: a|ala
(v2)
2= 5 4
e - - -
i 6 6 6
i A A |
il 7.6 6|6
a2
2 s 15 44
a
atataty |1 jriels / 8 6

- . ) The picked vertex
Eliminate a vertex connection H in this step a The candidate

in a certain step The d adjacent vertex
¢ degrees

of vertices

Fig. 5: Assembly procedure. (a) Tp with the sequence of the assembly procedure represented by a grey arrow, with the order corresponding to the number at each

vertex. The adjacency matrix is represented on the right (b, ¢, d) with the elimination procedure in colour.



4. Algorithm for the planarization of the topological graph

The present section describes the algorithm for the automated
planarization of the topological graph of the structure. Two variations of
the algorithim are presented, namely the QUAD (Section 4.2) and the
MED (Section 4.3). For both, the presented approach relies on an
incremental process that starts from a reduced planar subgraph (the
maximal planar graph - see Section 4.1.1) that is successively enlarged
to correspond to a suitable Tpc (meaning that this planar embedding
contains all the initial

edges of T). Hence the algorithmic

Theoretical procedure (=2.2)

Tpc’

QUAD algorithm (=4.2)

implementation processes in an opposite manner compared to the
theoretical procedure (resumed in Section 2). Irrespective of the specific
procedure that is used, the result is a suitable planar graph Tpc that
contains all the required information to assemble the force diagram F*
Each algorithm leads to a different type of configuration of force
diagram that can prove more visually adequate for different structural
typologies. The definition of this algorithm is key to the present

contribution since it determines the resulting configuration of F*.

MED algorithm (=>4.3)

204+ Fig. 6. Comparison of the planarized topological graph and the corresponding form diagram for the Force diagram F presented in Figure 1 (a)(c)(e): general procedure (Tp (a)
205 and F* (b) and (b’)), QUAD algorithm procedure (Tpc’ (c) and F*(d) and (d’)’), MED algorithm procedure (Tpc”(e)’ and F*” (f) and (f’)).The two last lines of figures represent
206 different views of the resulting force diagram (middle line is top view, bottom line is side view)
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4.1. Preliminary step - finding the maximal planar graph

The preliminary step for both QUAD and MED procedures is to
generate the maximal planar graph of T.. Indeed, for any non-planar
graph, it is always possible to find a planar graph that is a subgraph of
it (Harary, 1969). The computationally generated topological graph Tc
is consequently split into two graphs: the maximal planar graph Tmc

and the graph containing all the remaining edges T so that:

Te=Tmc U Trc

Two different algorithms are mainly used to find the maximum planar
graph (Tamassia, 2013): namely the Vertex Increment method (VIM) and
Edge Increment method (EIM) (Jayakumar et al, 1989). The principles of
these two procedures are illustrated in Fig. 7.

Both methods provide a planar graph Tmc as a valid solution but cannot
ensure that it is the exact maximum planar graph (which is a
nondeterministic polynomial-time complete problem). The task has a
complexity of O(n?) at worst case for both VIM and EIM. In the scope of
the present research, several experiments were set up to compare their
efficiency in the context of the VGS algorithm. Both methods were tested
on randomly generated non-planar graphs T = T, U Ty, where Ty is a

triangulated planar mesh graph, and T is the set of edges added to make

Vertex increment method (VIM)

Timc Ve Timc (&Tirc)

(b)
Edge increment method (EIM)
Vg

Timc Timc (&Tirc)

step 0

v, Vs

(a) (b)

the graph non-planar (see Fig. 8).
The planarity rate is defined as:
319 Rs=Tr. Rs; = T,.edges_count/T.edges_count.
20 Two statistics studies are carried outon Ry = 25% and Ry = 70% on
graphs with incremented vertex number (20~100). The results are
displayed in Fig. 9. The analysis of the results shows that EIM is more
efficient than VIM on planarizing the graphs that have a low Rg. VIM
works slightly better in the graphs that have a high R. With all the
above results in regard, VGS-tool implements EIM by default to fit the
most case for better planarization efficiency and accuracy.

The EIM starts from a planar subgraph Timc which at the first iteration
only contains all the adjacent edges of the first vertex vo (and in
29 presence of external forces of ve as well) and adds one vertex at each
iteration. At an iteration resulting in Timc being not planar anymore, the
algorithm will check all the adjacent edges to the edge that was added
and find the most edges that can be added to Timc and keep it still planar.
In each iteration, the identified edges will be added to Ti. and

disregarded for the other vertices. At the end of the algorithm:
Tirc (=Trc) U Time (Tmc) = Te.

Ve Tmc (&Trc)

Vi

\ NG step 13
\ XX iy
¥ S

(c)

330 Fig.7 : Principles of Vertex Increment method (top) and Edge increment method (bottom). VIM adds back each edge connected to the same vertex, testing if the graph is still
340 planar after an edge is added. Then the procedure goes to the next vertex. EIM adds back one edge after, , testing if the graph is still planar after an edge is added The
341 intermediate steps are represented in (a) and (b) and the final maximal planar graph Tmc are represented with the graph of remaining edges Trc in (c).



Vertex: 20 Vertex: 20 Vertex: 20
Edge: 45 Edge: 56 Edge: 160
(0 non-planar edges) (11 non-planar edges) (115 non-planar edges)

312 Fig. 8 : Example of graphs used for the accuracy test. (a) The planar triangulated mesh graph Tp, (b) The graph T = Tp U Tr (represented in magenta) with Rs = 25% (c) the
313 graph T = Tp U Tr (represented in magenta) with Rs = 70%. (b) and (c) correspond respectively to the first row of the two tables in Fig 9.

Graph - Edge Increment Method (E1M) Vertex Increment Method (V1V1) 25% Non-PlanarEdge Graph Test | Comparison EIM and VEIM
on-
V(count) E(count) FPlanar Tpe Tre  Tre/E(count) Tpe Trc  Tre/E(count)] Best 50,00%
Edge Rate| Method
20 56 25% 38,31 17,69 31,59% 37,87 18,13 32,38% E 4500%
25 74 25% 50,14 23,87 32,25% 49,86 24,14 32,63% E
30 92 25% | 6124 30,76 3344% | 6038 31,63 3438% E 4000%
35 110 25% 70,30 39,70 36,09% 68,58 41,42 37,65% E
40 133 25% 86,10 46,90 35,26% 80,70 52,30 39,32% E 3500%
45 151 25% 95,70 55,30 36,62% 92,40 58,60 38,81% E
50 170 25% 105,80 64,20 37,76% 98,50 71,50 42,06% E
55 189 25% 112,40 76,60 40,53% 107,50 81,50 43,12% E 30,00%
60 208 25% 125,00 83,00 39,90% 118,20 89,80 43,17% E
65 226 25% 13470 9130 40,40% | 128,10 97,90 4332% E 2500%
70 245 25% 142,30 102,70 41,92% 133,40 111,60 45,55% E
75 264 25% 153,60 110,40 41,82% 143,00 121,00 45,83% E 20,00%
80 280 25% 162,30 117,70 42,04% 148,40 131,60 47,00% E
85 298 25% 175,00 123,00 41,28% 158,00 140,00 46,98% E 1500%
90 316 25% 178,20 137,80 43,61% 165,80 150,20 47,53% E 20 30 40 50 60 70 80 90 100
95 335 25% | 18930 14570 4349% | 17740 157,60 47,04% E I
100 353 25% 198,10 154,90 43,88% 183,00 170,00 48,16% E
Graph - Edge Increment Method (E1M) Vertex Increment Method (V1V) 70% Non-PlanarEdge Graph Test | Comparison EIM and VEIM
on-
V(count) E(count) FPlanar Tpe Tre  Tre/E(count) Tpe Tre  Tre/E(count)] Best
Edge Rate| Method 79,00%

20 160 70% 51,42 108,58 67,86% 51,74 108,26 67,66% E
25 213 70% 67,33 145,67 68,39% 66,67 146,33 68,70% v 77,00%
30 257 70% 78,00 179,00 69,65% 78,67 178,33 69,39% E
35 307 70% 89,00 218,00 71,01% 94,00 213,00 69,38% v 7500%
40 353 70% 96,00 257,00 72,80% 105,67 247,33 70,07% \
45 403 70% 105,33 297,67 73,86% 114,00 289,00 71,71% \ 73,00%
50 453 70% 121,33 331,67 73,22% 123,33 329,67 72,77% \4
55 503 70% 130,67 372,33 74,02% 13533 367,67 73,09% \ 71,00%
60 553 70% 136,00 417,00 75,41% 145,67 407,33 73,66% \
65 603 70% 145,00 458,00 75,95% 156,67 446,33 74,02% \ 69,00%
70 653 70% 152,33 500,67 76,67% 168,00 485,00 7427% \4
75 703 70% | 15467 54833 7800% | 17733 52567 1477% v 67.00%
80 747 70% 172,00 575,00 76,97% 18533 561,67 75,19% \4
85 793 70% 182,33 610,67 77,01% 192,67 600,33 75,70% \ 65.00%
90 843 70% 185,67 657,33 77,98% 202,67 640,33 75,96% \ 20 30 40 50 60 70 80 90 100
95 893 70% 196,33 696,67 78,01% 211,67 681,33 76,30% \4 —o-EM -o_VM
100 940 70% 205,67 73433 78,12% 22433 715,67 76,13% \4

315 Fig.9:  Results of the experiment comparing the efficiency of EIM and VEIM for 25% non-planar edge graph (top-left) and 70% non-planar edge graph (bottom-left).
316 Graphical results of the experiment comparing the efficiency of EIM and VEIM for 20% non-planar edge graph (top-right) and 70% non-planar edge graph (bottom-right).



w1 4.2 The QUAD procedure s vertex vpiat every crossing of edges in T, resulting in the creation of

;53 quadrilateral auxiliary cycles <Vpi>* in F*,
s« As it is introduced in Section 4.2.1, the initial graph T. is cut in two

355 subgraphs (using the EIM): a maximum planar subgraph Tmc and the

Topological ss  resulting other subgraph Tre (meaning Tme + Trc = Tc). The iterative

Diagram T¢
g 37 process modifies Tic (corresponding to Tmc at the first iteration), adding

s back edges from Tirc (corresponding to Trc at the first iteration) so that

ss9 Tic is still planar and eventually contains all the initial edges of T. The

Is Tc planar? Yes 0 main challenge is defining how the edges of Tirc should be intersected
31 with the ones in Ti;, aiming to generate the least intersections possible.
No sz This issue can be regarded as finding the shortest path (in terms of
Algorithm for H
finding maximal w3 visited vertices) between the two extremities vx and vy of the edge exy

planar graph Divide Tc in Tmc and Tre ]

(24.1): EIM s+ that is added back from Tirc to the embedded graph Ti. It can be

s regarded as the path that passes by the smallest number of faces (a face

L Define Tic as Tme j : s being a closed cell of the graph). The Dijkstra algorithm is used to find
37 this sequence Pieast (Dijkstra, 1959).
Tic (Tmc + add back edges e, e, ,.e, ;.e,,.e,.e, )
Shortest path Pleast = Dijkstra(Vx,Vy,Tic)
H Vi

list of intersection
vertices

&ubdivision of edges of Tic part of the patlﬂ

(a)

Update Tre (removing intersected edges)

Update Tic (adding subdivided edges) ‘

IsTre={}?

Yes

Plane graph Tpc

(b)

368 Fig. 11: Non-planar topological graph Tic composed of Tmc+Trc (thinner lines)

360 resulting from EIM (left), and the resulting planar graph from the QUAD algorithm
a4s Fig. 10: QUAD algorithm, overview of the algorithm 370 Tpc (right). The edges that were added back from Trc are represented in thin

371 dotted lines.

s This procedure planarizes the graph T creating auxiliary cycles of force
a2 4.2.1. Iterative intersection

so  vector as quads (DAcunto et al. 2019) which can be seen as a 3D

I

extension of Bow, 1873. It mainly consists in adding a new auxiliary s Once the shortest path Pieast = Dijkstra (v, vy, Tic) is determined, the

s+ auxiliary intersection vertices can be found on the edges of Tic. The
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intersections will split the edge ean separating two adjacent faces that
are successive parts of the path. A new vertex labelled n; (i being a
numerical index) dividing eav € Tic and exy € Trc is introduced,
resulting in two new pair of edges (€a-b+, €a-b++) and (exy+, exy++). The force
cycle corresponding to the new vertex n; is thus composed of the four
forces vectors (€abs, €ab++, €xy+, €xy++) and is, therefore, a quadrilateral
cycle in F* Each iteration ends when Tic is updated containing all the
edges going from the two vertices that were added back from Ty, while
staying a planar graph. The vertex ni is considered in the next iteration
as part of Ti, and the newly introduced edges can be intersected as any
other edge of the graph. When all the edges of Trc have been added into
Tic, the updated graph includes all edges of T and is still planar. This
resulting graph is Tpc. The algorithmic implementation of this process
takes benefit of algebraic calculation (face adjacency matrix) and is

outlined in the Code Snippet 1.

Data:
Tic: (TiclEiCl Vicr Fic)

Tmc: (TmclEmCJ Vmc' ch)

Tre: (€[5 € T,) in which i and j are the index of the extremes of
el’;.
rc

rc . : ;
piZ;: A path comprises a sequence of f.. e;5; issupposed to cross over

and cutthe e;; € E[¢; into the segments Eff’j following the p[*;.
Mgdj: The face adjacency matrix of Fj,.

ET¢;: The set of edges subdivided from e,

Adding EJ%;

1<, according to the p[<;.
to Ej isthesamewithadding e/°; backto T, andkeep
the graph Ty, still planar.
Eisf’j: The set of edges from E;. and subdivided by e[*; into segments
{e;p, s e;p}.
Input: Timg, Trc
Output: Tpe
Tic < Tne
foreach e/; in T,.:

M,fdfT,'c. CreateFaceAdjMatrix();

fi€ « Ty. GetAdjacentFace(vy);

fji" « T GetAdjacentFace(v));

P« (%

pirf]v «— M({dj'

ShortestPath[ﬁiC.ﬁC];
E[S; « pi<;. SplitEdge(e]));

E®

7, < pi<;. SplitEdge(E[j|e;c € Ey);

Tic- Eic. Remove(e;.);

Tic- Eic- AddRange(E” {e,”, ..., e]"});
Tyc. Ec. AddRange(E[ {e”,, ..., e}? });

end

Tic- Eic. UpdateWith(E;.)

21

22

428

429

430

432

438

439

440

441

Tic. Fic. UpdateWith(E;.)

Tpc « Tic

Code Snippet 01: QUAD algorithm

4.2.2. Force vectors corresponding to the labelled edges

As mentioned in the literature (DAcunto et. al, 2018), in graphic statics
to each edge of F correspond two opposite force vectors in F* belonging
to the two closed cycles of force vectors related to both extremity vertex
of the selected edge of F. In this case, an edge of F might appear in more
than two forces cycles, since it can be split again at each iteration
resulting for instance in (eij++, €ijs++) € (€ijtye, €ijs+++)|€ij € Tic. The
quadrilateral cycle <vpi> that are introduced with the present method
are always constituted of two pairs of opposite vectors. In this example,
the force vectors (eij++, €ij+++) from (eij+, eijr+++) and be calculated with
the rule of +vg(e;_j4) = —Vea(€i—j1)=+Vs(€i—jis) = —Vea(eijys) =

+v5¢(€i_j++4) - thelabel of the edge provide necessary information to

find the force vector of the segmented auxiliary edges of Tpc.

Fig. 12: Form diagram E Graph Tpc’ (and corresponding Force Diagram F*))
planarization procedure starting with Tmc generated by the EIM, Graph Tpc” (and
corresponding Force Diagram F*”) planarization procedure starting with Tmc
generated by the VIM.



w2 4.3. The MED procedure

Topological
Diagram Tc

Planarization Algorithm

Is T¢ planar?

No

Algorithm for
finding maximal
planar graph
(=4.1): EIM

Divide Tc in Tmc and Tre j

[ Define Tic as Tmc j
r—-[Shortest path Pleast = Dijkstra(Vx ,Vy,TicJ

list of crossing
vertices

Update Tic (adding segmented edges)
Update Tre (removing replaced edges)

No
IsTre={}?

Plane graph Tpc

44 Fig. 13 : MED procedure, overview of the algorithm.

s For this second algorithmic strategy, the developed method aims to
us add back edges from Trc to Tme without splitting the edges of Tmc. It takes
«7 the benefit of the existing vertices of the graph to subdivide the re-
us introduced edges from T Concretely, the edge re-introduced from Ty to

w9 Tme 1S decomposed as a series of edges visiting existing vertices of the

460

462

463

464

465

466

71

472

graph that are located on the shortest path between its two extremities
vertices.
4.3.1. Least edge splitting

The procedure to add edges from Tr to Tic consists in finding the

+ shortest path through the existing vertices of Ti.. For an edge ea.n(Va,vb)

s from Trc that is added back to Ti, The shortest path is found thanks to a

Dijkstra algorithm (Dijkstra, 1959) Pieast’(eab) = Dijkstra(va,vp,Tic) that
returns a list of vertices {va,vxvy...vv}. Tic is updated with all the edges
connecting a vertex to the next one in this list, labelled as {eij,ei;"eij"...}.
In this approach, a force vector is repeated more than twice in F* (which
is also the case for the QUAD algorithm described above). The number of
occurrences corresponds to the length of the list given by Pleast’(v) minus
one. In any case, this does not affect the equilibrium of the structure. The
planarity is eventually achieved because of the fundamental principle of
the MED algorithm. Since an edge is decomposed into a series of edges
connecting each time neighbour vertex, the consequence is that the

crossing of edges is avoided by definition.

Tic (Tmc + add back edges e, ;.e, ,.¢, ;.e,,.e,;.¢,)

VE

(b)

Fig. 14 : Non-planar topological graph Tic composed of Tmc+Trc resulting from
EIM (a), and the resulting planar graph from the MED algorithm Tpc (b). The edges
that were added back from Trc are represented in thin dotted lines.

Similarly to the QUAD algorithm, the algorithmic implementation of
this process takes benefit of algebraic calculation (face adjacency matrix)

and is outlined in the Code Snippet 2.



w7 Data:

5 Tict (TiclEier Vie)

75 Tt (Tme|Emes Vine)
477 Trc:

478 eirfj.
= pi<;: A path comprises a sequence of vy . e/S; is supposed to be
rc

sp
: i)

«0 segmented into {ekn,...,e;lpfj} via {v, ..., v,} followingthe p

w1 Mgq;: The adjacency matrix of V.

rc

w2 E[;: The set of edges subdivided from e]; according to the p{<;. Adding

ws B[S to Ey isthe same with adding e]; backto T, and keep the graph
s T}, still planar.

485

(TyclefS;) inwhich i and j aretheindexofthe extremes {v;,v;} of

486 Input: Tmc' Trc

487 Output: Tpc

488 Tic «— Tmc
w Mgq;=T;.CreateVertexAdjMatrix();

wo foreach e[¢; in T,

491 Uiic, Ujic € Vic;

492 PIS; « Myy;. ShortestPath(v/,v/);
493 E{fj{effn, ...,ersnpij} «— plrf]SplLt(eff]
494 Tic. Ejc. AddRange(Eirfj);

w05 end

496 Tpc « Tic

197 Code Snippet 02: MED algorithm

498 4.3.2. Cycle organization

”y

499 While adding the segments of the edges {ej\ei",ei””’} to the vertices
s00 Vi,...,Vj, there is a principle to follow to keep the embedded graph Tic still
sor planar. It is known that Pieast’(eij) has determined the vertices that the
sz different segments of the edge{ei),e;”,e;””’} will connect. For instance, the
s vector ej” that would connect vx and vy is to be added into both vertices
s cycles: eij”(vy,vy)|{Cx Cy}. As it is ruled in the embedded graph, each node
sos has a clockwise sequence order, and thanks to this and the way edges are
sos inserted back in the graph, the latter doesn’t have an intersection among
so7 the edges (and thus stays planar). When the edge eij” is to be added in-
ss between the adjacent vertices {vivy} of the embedded graph, it is
soo important that in the two cycles Cy{...,€xy,...}, Cy{....€xy,...} the edge ey be

sio inserted invertedly in both sequences so that Ci{...,eij",exy,...} and Cy{... ,ex

511y, ei—j"...}.

siz Conceptual difference between QUAD and MED, the impact of the
sie algorithmic definition on the configuration of the resulting force diagram F*
515 Fig. 12 and 15 apply respectively the QUAD and MED algorithm to the

sic same case-study, i.e. the planarization of the topological graph T of an

IS

518

519

520

526

528

529

534

externally loaded octahedron. In both cases, the initial T = Tmc + Tic is

obtained after application of the EIM. The result of these two figures

illustrates very clearly the conceptual difference of both algorithms.
Because the information to assemble the force diagram F*is extracted

from the resulting Ty, it is expectable that they produce different

> typologies of F*. A comparison of fig 12 and 15 (left column) shows the
s consequence in F*. The “quads” can be easily identified in the drawings (c)
+ and (e) from Fig. 12 and are a direct consequence of the algorithmic

25 definition. In a similar way, the closed cycle of forces in the drawings (c)

and (e) from Fig. 15 can be identified and correspond directly to the
multiple edges connected at each vertex in the graph planarized by the
MED algorithm (respectively (b) and (d)).

Depending on the configuration of the initial form diagram E one of the
two algorithms can provide a more readable force diagram. The definition

of the planarization algorithm is thus crucial since it determines the

> configuration of F*, which visual aspect is central for graphic statics.

F* F*

Fig. 15: (a) Form diagram F, (b) Graph Tpc’ (and (c) corresponding Force Diagram

s35 F*) planarization procedure (QUAD) starting with Tmc generated by the EIM, (d)

536

537

Graph Tpc” (and (e) corresponding Force Diagram F*”) planarization procedure
(QUAD) starting with Tmc generated by the VIM.
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5. The VGS-tool, implementation of the VGS algorithm as a CAD

539 plug-in
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5.1. Implementation

The algorithms presented in this paper are implemented into the VGS-
tool, a plugin for the CAD environment Grasshopper3D in Rhino3D
(McNeel, 2023) which is widely used by structural engineers and
architects. The tool is written in C# and relies on two main libraries: the
MathNet.Numerics (www.mathdotnet.com) for the algebraic operations
and the C# implementation of the Boyer-Myrvold algorithm (Boyer and
Myrvold, 2004) for the planarization operations. Some specific features

of the VGS-tool are presented in sections 5.2 and 5.3

5.2. Real-time transformation of form and force diagrams

The interdependence between form and force diagrams in graphic
statics allows transforming one of the diagrams while directly
evaluating the consequent transformation of the other diagram
(D’acunto et al,2017) A set of geometric constraints must be defined to
ensure the mutual dependence of F and F* and thus guarantee the static
equilibrium of the structure. Corresponding edges in the two diagrams
(F and F*) should be kept parallel to each other, while the vectors of the
non-overlapping pairs of F* (for diagrams F with underlying non-planar
graphs) should as well maintain an equal length. The simultaneous
constraint transformations of F and F* can be achieved by means of
numerical simulations, such as the Kangaroo2 (Piker, 2023) plug-in
used within the McNeel Grasshopper3D and Rhino3D (McNeel, 2023)
native environment. Besides the integrated constraints defined above,
optional geometric constraints can be applied to F* and F to fulfil
specific design conditions. Thanks to the real-time transformations of
form and force diagrams in the VGS-tool, the adjustment of the
magnitude and direction of forces in vector-based 3D force diagrams can
be used as an active operation in the structural design process as well as
a geometrical constraint regarding the structure itself. An example of

this transformations can be appreciated in Fig. 16

s72 Fig. 16: Interdependent real-time transformation of form diagram F (a) in dashed
s73 lines, and force diagram F* (b) in dashed line, with the result in the form diagram F
s74 (@) in colors, and in the force diagram F* (b), in colors.
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5.3. Form-finding of geometries at equilibrium

As explained in the previous sections, for a given structure F in static
equilibrium, the VGS-tool can automatically produce a suitable planarized
version of the underlying graph Tp (see Section 4) that is used to generate
the closed cycle of force vectors that make up the corresponding vector-
based force diagram F*. By imposing specific constraints to vector-based
form and force diagrams - i.e. parallelism between corresponding edges
in the two diagrams and equivalence in length and parallelism between
duplicate edges in the force diagram - the two diagrams can undergo

interdependent transformations while preserving the static equilibrium

s of the structure (Section 5.2).

Thanks to this transformation function, the VGS-tool can also be used
to impose static equilibrium to an initial form diagram F that is not already
at equilibrium. In this case, a default distribution of tension and
compression forces is initially assigned to the edges of the form diagram
F. After defining a planarized version of Tp, a set of open cycles of vectors
based on the default distribution of forces is first generated. While
imposing the transformations mentioned above, it simultaneously forces
the vectors' cycles to close. The force vectors are consequently iteratively

modified by the transformation algorithm by changing their lengths and

s lines of action until a valid vector-based force diagram F* is generated.

Since the vector-based diagrams are interdependent, the geometry of F is
simultaneously modified to obtain a structure in static equilibrium. This
feature of the VGS-tool allows to solve the static equilibrium, but it also
makes it possible to find the form of structures in equilibrium
independently of other structural form-finding tools. For instance, this
feature can be very useful for the design of funicular and tensegrity
structures among others. It can also be used to solve the static equilibrium

of a given structure without any specific equilibrium calculation.

Fy F F*

(a)

Fig. 17: Form-finding of a tensegrity structure. (a) the initial geometry F0, (b) the
form-found Form diagram F and (c) the corresponding force diagram F*.

5.4. Organization of the VGS-tool

The plugin is organized into four toolsets, Assemble structure, Generate
diagrams, Transformation Visualization. It covers the whole general

process described in Section 3.1.



ZR B imw
vgs vgs vgs
3

1. Assemble Stru.. 2. Generate Diagrams - 3. Transformation 4

s11 Fig. 18: Image of the toolbar of the VGS-tool in the workspace of Grasshopper3D -
612 part of Rhino3D (McNeel, 2023).
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The first part (Assemble structure) includes the modules that allow the
assembly of the structural model consisting of the edges of the
structures, the supports, the applied loads, and eventual self-stress. If
necessary, the equilibrium calculation is performed with the Evaluate
Equilibrium module with a numerical solver.

The second part (Generate diagrams) is the core of the tool. It assembles
the form and the force diagrams. The main algorithm developed in
Section 4 that planarizes the graph and assemble is contained in the
“Assemble Force Diagram” module. In the first release of the tool, the

user cannot choose the planarization algorithm. The script only

(a) (b) (¢)

-

i i
Assemble Form Diagran]

Cn>

Generate the
structural model

Initial parameters - geometry
Curves (Crv), Points (pt),

Inputs for the
structural model

629

[=33+34+4]

implements the QUAD procedure (see Section 4.2.2). Another
functionality allows the user to planarize the graph manually and
integrate it from a geometrical drawing in the rhinoceros interface. The
generated force diagram gives the user the option to see the fully
assembled Force diagram (integrated F*) and a separate view of each
node's force cycles (discrete F¥).

The third part (Modify diagrams) allows the user to modify one of the
diagrams and simultaneously assess the resulting modification on the
other diagram. These parts make use of the numerical solver Kangaroo2
(Piker, 2023) included in Grasshopper3D - part of Rhino3D version 7
(McNeel, 2023).

The fourth part (Visualization) includes the modules for the graphical
visualization of the diagrams. It allows the user to modify the
visualization parameters (line thickness with respect to the magnitude

of the forces and the label size) and export data.

Visualize Diag

VGS Converged

[ FORCE DIAGRAM

=53]

Constrained
transformations of
both diagrams F & F*

Extract information
from Form Diagram F

Define constraints

630 Fig. 19: Image of an entire definition of a structure in VGS-tool in the workspace of grasshopper. (a) definition of structural model (yellow), (b) evaluation of equilibrium (red),
s40 (c) assembly of form diagram (light green), (d) generation of force diagram (dark green), (e) transformations (blue), (f) visualization of the results (orange)
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5.5. Case study

This section presents a conceptual design case study to demonstrate the
potential application of the proposed development to realistic design
scenarios. The structural concept for a stadium roof is laid out according
to a fictitious design scenario based on the Stadium in Braga by architect
Eduardo Souto de Moura and engineer Rui Patricio. Specifically, the
symmetric roof is placed only on the pitch's two longitudinal sides and
is conceived as a spatial tied-arch system. Both tied-arch systems work
as a unit since their ties are connected with horizontal cables that span
over the short side of the pitch. Each arch is connected to its
corresponding tie with x-braced cables and is furthermore stabilized
with additional x-braced cables that form a fagade-like cable-net on the
back side of the stands. The support points of the tied arch are 150 m
apart from each other. Only the self-weight of the arch and a constant
force of (3’000 kN) in the horizontal cables are considered during this

early-stage form finding.

659

669

A preliminary 3D form diagram Fe and the geometric constraints can be
seen in Fig. 20 (a) This first instance has been generated using the
Combinatorial Equilibrium Modelling (CEM) form-finding method
(Ohlbrock and DAcunto, 2020; Ohlbrock et al, 2017). Apart from the
equilibrium condition, which is a hard constraint in the CEM
formulation, additional constrained planes have been activated
(Pastrana et al. 2023) to keep the segmentation of the structure as
desired. It can be easily seen that the initial equilibrium state does not
fulfil the geometric constraints of the support points.

The VGS-tool has generated the corresponding force diagram F* based
on which the transformation module (using Kangaroo2) has been used
to transform the equilibrium state. Thus, the tool has been used to match
the given support points while keeping the corresponding edges in the
two graphs (Eij and Ei;*) parallel to each other and ensuring that the
vectors of the non-overlapping pairs of F* are kept parallel and equal in

length. The resulting form Fp and force diagram Fp* can be seen in Fig.
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20.

The setup has been used to evaluate two alternative solutions in a
further step. The first alternative was triggered through the idea to
adapt the forces in the tie to be closer in magnitude to the ones in the
arch. Consequently, the force diagram Fc* undergoes a local

transformation (in the y-direction). At the same time, the shape of the

arch Fc and the tie pre-dominantly reacts with a change in the other two

F

750 m

150.0 1

683

684

685

dimensions (in the x- and z-directions).

A second alternative was generated through a targeted change in the
horizontal forces in the cables. More specifically, the forces have been
increased by 40%. Consequently, the force diagram F4* undergoes a
local transformation (in the x-direction), resulting in a tie geometry Fa

with a larger sag (in the x-direction).

F*

F*
P O OO
\ \ I/ /Y
\

7/ \ 17V,
Py \\ I v
s \\ 14/

4
/ \\ /
L/ g \ /)
/”
A N\
7
= (/) 1 \\\
72 / 3
“ / 'y { N
2/7 i \\
77/ . AVAIl \\!
Al \

37 Fig. 20: Case study: structural design of a stadium roof. (a) initial Form diagram F with corresponding force diagram F* seen from two different points of view. (b) the first
ess transformation leads to the merging of the support points (c) the second transformation equalizes the forces in the main cable and in the arch..(d) the third and last
630 transformation increases the forces in the horizontal cables over the pitch.



eo0 Fig. 21: Case study: structural design of a stadium roof. Left: view from top; right, view from under the structure.
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6. Conclusions

This paper introduced a novel graphic statics computational
implementation for the automated generation of vector-based form and
force diagrams for both 2D and 3D structures. The “global” algorithm
can solve any structure typology in static equilibrium, mixing both
tension and compression elements that are either externally loaded or
self-stressed.

The contribution develops in detail two novel algorithms that planarize
the topological diagram so that a force diagram for a structure with a
non-planar underlying graph can be assembled. The associated data
structure implemented in the computational procedure enables dealing
effectively with structures composed of a large number of elements.
Furthermore, the paper explained a method allowing real-time
transformations of form or force diagrams using the numerical
simulation Kangaroo library. This feature that was first introduced in
D’acunto et al, 2017 can either facilitate the modification of an initial
force diagram to fulfil specific geometrical requirements allowing the
designer to evaluate in real time the consequences of such modifications
in terms of force magnitudes, orientation, and distribution. It can also
be used to modify the forces to attain specific goals in terms of directions,
intensity, distribution, and structural behaviour (tension/compression),
while visualizing the affected geometry in real-time. Some sets of
specific constraints can also be applied to this transformation regarding
the form and force diagram (geometrical domains, maximal or minimal
values of lengths/force intensities/...). Additionally it can be used to

solve the static equilibrium of a given structure, which also proves useful

to form-find geometries at equilibrium.

7. Limitations and future work

Further investigation will focus on three main topics.
First, the visualization of 3D diagrams on a flat screen always represents
a difficult task. Future developments will focus on integrating specific

visual effects that help the user to read more directly the depth of the

754

755

756

diagram and consequently perceive better the length and angles of the
vectors. Integrating specific visualisation using augmented reality could
be of great use to address this issue as well in the next steps.

Secondly, tailored force diagram configurations for specific structural
typologies will be defined and implemented into the VGS-tool. At this
stage of the research, the paper presented two algorithms (the QUAD
and the MED) that both generate different arrangements of force
diagrams. An area of future research is to focus on specific assemblies of
force diagrams based on a hierarchical organization. This could help the
user to activate specific sub-parts. That is first related to more
theoretical/fundamental research before its algorithmic
implementation (i.e. related to graph theory and planarizing methods).
Moreover, an extra algorithm that scans the structures and identifies
typologies and/or hierarchy of its arrangement could be introduced
before the planarization of the graph. The results would then inform the
planarization process to choose between one of the available
planarization algorithms in which the process is specifically developed
for such typology.

Eventually the overall algorithmic procedure will be monitored and
benchmarked to look for optimization. Nevertheless, the presented
framework gives efficient results and computing times that are more
than acceptable for the user. A more thorough set of tests recording
performance with slightly different variants in implementation of the

planarization algorithm will help identify how to improve the

performance of the algorithm.
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