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Abstract	30	

This	article	presents	a	computational	 implementation	for	the	Vector-based	Graphic	Statics	(VGS)	31	

framework	making	it	an	effective	CAD	tool	for	the	design	of	spatial	structures	in	static	equilibrium	32	

(VGS-tool).	The	paper	introduces	several	key	features	that	convert	a	purely	theoretical	graph	and	33	

geometry	 based	 framework	 into	 a	 fully	 automated	 computational	 procedure,	 including	 the	34	

following	new	contributions:	a	general	algorithm	for	constructing	3-dimensional	 interdependent	35	

force	 and	 force	 diagrams;	 the	 implementation	 of	 a	 procedure	 that	 allows	 the	 interdependent	36	

transformation	of	both	diagrams;	an	approach	to	apply	specific	constraints	to	the	computationally	37	

generated	 diagrams;	 the	 integration	 of	 the	 algorithms	 as	 a	 plug-in	 for	 a	 CAD	 environment	38	

(Grasshopper3D	of	Rhino3D).	The	main	features	of	the	proposed	framework	are	highlighted	with	a	39	

design	case	study	developed	using	the	newly	introduced	CAD	plug-in	(namely	the	VGS-tool).	This	40	

plugin	uses	synthetic-oriented	and	 intuitive	graphical	representation	to	allow	the	user	 to	design	41	

spatial	structures	in	equilibrium	as	three-dimensional	trusses.	The	goal	is	to	facilitate	collaboration	42	

between	structural	engineers	and	architects	during	the	conceptual	phase	of	the	design	process.	43	

44	
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	46	

1.	Introduction	47	

1.1	Graphic	statics	and	structural	design	48	

	 Graphic	 statics	 provides	 intuitive	 methods	 to	 design	 efficient	 and	49	

elegant	structures.	It	involves	the	use	of	form	and	force	diagrams,	with	50	

the	 former	 representing	 the	 geometry	 of	 a	 structure	 in	 static	51	

equilibrium	and	the	 loads	acting	on	 it	and	 the	 latter	representing	 the	52	

equilibrium	 of	 forces	 for	 each	 node	 of	 the	 structure	 (Rankine,	 1858;	53	

Maxwell,	1864;	Culmann,	1866;	Cremona,	1872).	The	graphical	nature	of	54	

the	 two	 diagrams	 offers	 a	 visual	 and	 intuitive	 understanding	 of	 the	55	

relationship	between	form	and	forces	in	a	structure,	which	facilitates	the	56	

structural	 design	 process	 (Zalewski	 and	 Allen,	 1998).	 Swiss	 engineer	57	

Robert	 Maillart,	 amongst	 others,	 used	 graphic	 statics	 to	 design	 new	58	

structural	forms	such	as	the	Chiasso	shed	in	1924	(Zastavni,	2008),	the	59	

Salginatobel	Bridge	 in	1929	 (Fivet	and	Zastavni,	 2012),	 and	 the	Vessy	60	

Bridge	 in	 1936	 (Zastavni	 et	 al.,	 2014).	 Moreover,	 contemporary	61	

structural	 engineers	 such	 as	 Jurg	 Conzett,	 Joseph	 Schwartz	 and	 Bill	62	

Baker	from	Skidmore	Owings	&	Merril	(Beghini	et	al.,	2014)	have	utilized	63	

this	 approach	 in	 their	work.	 In	 recent	 years,	 comprehensive	 research	64	

has	 been	 conducted	 to	 extend	 graphic	 statics	 to	 the	 third	 dimension	65	

(Jasienski	et	al.,	2014).	In	this	context,	two	formulations	of	the	problem	66	

have	been	mainly	pursued:	 the	polyhedron-based	 (Konstantatou	et	al.,	67	

2018;	Akbarzadeh,	2016;	Lee,	J.,	2019)	and	the	vector-based	(D’Acunto	et	68	

al.,	 2019)	 approaches.	 One	 of	 the	 main	 reason	 to	 pursue	 the	69	

development	of	vector-based	graphic	statics	in	3D	is	that	the	graphical	70	

forms	 the	 human	 perceives	 more	 accurately	 are	 points	 and	 linear	71	

elements,	including	their	position,	lengths	and	angles	(Mackinlay,	1986).	 	72	

1.2	Problem	statement	and	objectives	73	

Implementing	3D	graphic	statics	within	a	computational	environment	74	

has	 the	 potential	 to	 provide	 an	 invaluable	 resource	 for	 the	 design	 of	75	

spatial	 structures	 in	 static	 equilibrium.	 Such	 projects	 are	 under	76	

development	for	the	polyhedron-based	approach,	 including	Polyframe	77	

(Nejur	and	Akbarzadeh,	2021),	compas_3GS	(Lee	et	al.,	2018)	and	3DGS	78	

(Milošević	and	Graovac,	2023).	 	79	

Within	the	domain	of	vector-based	graphic	statics,	the	algebraic	graph	80	

approach	 (Van	 Mele	 &	 Block,	 2014;	 Alic	 and	 Åkesson,	 2017)	 was	81	

computationally	 implemented	 but	 it	 only	 addresses	 the	 case	 of	 2D	82	



structures	 whose	 form	 diagrams	 have	 underlying	 planar	 graphs,	 i.e.,	83	

graphs	that	can	be	drawn	on	the	plane	without	edge	intersections.	 	84	

In	the	3D	case,	a	vector-based	force	diagram	can	be	readily	assembled	85	

by	manual	 constructions	 using	 iterative	 simple	 geometric	 operations	86	

within	a	3D	software	environment	for	a	given	form	diagram	(Jasienski	et	87	

al.,	 2016;	D’Acunto	 et	 al.,	 2019).	However,	 this	 procedure	 requires	 the	88	

user	 to	 have	 a	 specific	 knowledge	 and	 is	 very	 time-consuming	 for	89	

complex	 structures.	An	even	minor	modification	of	 the	 initial	 setup	–	90	

such	 as	 changes	 in	 the	 topology	 of	 the	 structure,	 applied	 loads	 or	91	

position	 of	 supports	 –	 almost	 always	 implies	 the	 entire	 new	92	

reconstruction	of	the	diagrams.	This	shortcoming	renders	the	manual	93	

approach	 inconvenient	 for	 the	 design	 of	 complex	 3D	 structures,	94	

especially	 in	 the	 conceptual	 design	 phase	 when	 several	 design	95	

variations	are	usually	tested.	Some	unpublished	partial	computational	96	

workflow	existed	but	were	case-specific	and	not	fully	automated.	 	97	

1.3.	Contribution	98	

This	 paper	 introduces	 a	 new	 computational	 framework	 for	 the	99	

automated	construction	of	vector-based	interdependent	form	and	force	100	

diagrams	for	any	2D	and	3D	pin-jointed	truss	structures	with	planar	or	101	

non-planar	 underlying	 graphs.	 Two	 alternative	 algorithms	 are	102	

developed	(namely	the	MED	and	the	QUAD)	for	the	assembly	of	the	force	103	

diagram.	 In	 the	 non-planar	 case,	 each	 algorithm	 corresponds	 to	 a	104	

different	 strategy	 for	 the	 automated	 planarization	 of	 the	 underlying	105	

graph	of	the	form	diagram,	thus	leading	to	different	configurations	of	the	106	

force	diagram	since	 there	 is	no	unique	way	 to	planarize	a	non-planar	107	

graph.	108	

The	paper	also	presents	the	implementation	of	these	algorithms	into	a	109	

grasshopper3D	plugin.	Some	new	features	such	as	the	form	finding	of	110	

new	structures	at	equilibrium	are	presented	for	the	first	time.	 	111	

1.4	Content	112	

This	article	is	organized	as	follows.	Section	2	briefly	highlights	the	key	113	

features	 of	 the	 theoretical	 background	 upon	 which	 the	 presented	114	

computational	 implementation	 is	 based.	 Section	 3	 describes	 the	115	

computational	process,	from	the	general	scheme	to	the	core	steps	of	the	116	

procedure.	Section	4	represents	the	main	contribution	of	this	research	117	

and	describes	the	algorithm	that	planarizes	non-planar	graphs,	which	is	118	

necessary	 to	 construct	 the	 force	 diagrams.	 Section	 5	 presents	 the	119	

integration	 of	 the	 computational	 procedure	 as	 a	 plugin	 in	 the	 CAD	120	

environment	 of	 Grasshopper3D	 in	 Rhino3D	 (McNeel,	 2023).	 Finally,	121	

Section	 6	 illustrates	 the	 potential	 of	 the	 proposed	 computational	122	

framework	for	structural	design	with	a	case-study.	123	

1.5	Notation	124	

For	a	given	structure	in	static	equilibrium,	three	classes	are	used	in	the	125	

proposed	computational	 framework	 to	represent	 the	structure’s	 form	126	

(F),	force	(F*)	and	topological	(T)	diagrams,	the	latter	corresponding	to	127	

the	underlying	graph	of	F.	TP	refers	 to	a	planar	embedding	(i.e.	plane	128	

graph)	of	T;	if	T	is	non-planar,	it	is	first	planarized	into	a	planar	graph	129	

through	a	computational	routine.	The	index	c	denotes	a	graph	generated	130	

in	 the	 computational	 environment.	 The	 index	 i	 designates	 an	131	

intermediary	 version	 of	 the	 graph	 (Ti)	 that	 is	 modified	 during	 an	132	

iterative	loop.	Tmc	and	Trc	are	the	result	of	splitting	the	graph	Tc	in	two	133	

graphs,	one	being	the	maximum	planar	graph,	the	other	being	the	graph	134	

containing	 the	 remaining	 edges.	 The	 notation	 used	 to	 describe	 the	135	

constituting	elements	of	 the	 three	 classes	T,	 F	 and	F*	 is	presented	 in	136	

Table	 1,	 as	 well	 as	 their	 structs	 and	 attributes,	 constituting	 the	 data	137	

structure	of	the	algorithms	presented	in	this	contribution.	The	graphical	138	

convention	for	tension,	compression	and	external	forces	is	illustrated	in	139	

Fig.	1.	140	

	141	

Table	1:	Algorithmic	Data	structure	&	notation.	142	

Class	 Structs	 Attributes	
Form	diagram	
F	

Vertices	 𝑉!	 ID	 𝑖 … 𝑗	
Coordinate	 𝑉!|[𝑋, 𝑌, 𝑍]	

Edges	 𝐸!"#$ 	 Adjacency	 [𝑖 − 𝑗]	
Duplicate	Identity	 	 𝑘	
Type	 Inner	Force	 −1/1	

External	Force	 0	
Force	magnitude	 𝑓	
Correspondence	 {[𝑞, 𝑝, 𝑘]… }	

Force	diagram	
F*	

Vertices	 𝑉%	 ID	 𝑞 …𝑝	
Coordinate	 𝑉%|[𝑋, 𝑌, 𝑍]	

Edges	 𝐸%"&$ ∗	 Adjacency	 [𝑞 − 𝑝]	
Duplicate	Identity	 𝑘	
Type	 Inner	Force	 −1/1	

External	Force	 0	
Edge	Length	 |𝑓| ∗ 𝑠𝑐𝑎𝑙𝑒	
Correspondence	 [𝑖, 𝑗, 𝑘]	

Cycles	of	force	vectors	 <Vi>*	 ID	 i…j	
Topological	
diagram	 	
T	

Cycles	 <Vi>	 Embed	Edge	Order	 𝑣!|{𝐸!"#$ … }	
Cycle	of	auxiliary	vertices	 <ni>	 Embed	Edge	Order	 𝑛!|{𝐸!"#$ … }	
Assemble	Sequence	 {𝑣!,… }	 Cycle	ID	 <vi>	or	<ni>	

Related	Edge	 𝑣!	𝑡𝑜	𝑣#|𝐸!"#$ 	

143	



Fig.	1:	(a)	3D	form	diagram	F	of	a	self-stressed	octahedron;	(b)	Plane	graph	Tp	(in	colours);	(c)	individual	closed	cycles	of	force	vectors	representing	the	static	equilibrium	of	144	

each	node	in	the	self-stressed	tetrahedron.	(d)	3D	force	diagram	F*.	 	 Structural	members	that	are	in	compression	are	in	blue,	those	in	tension	are	in	red.	 	145	

	146	

2.	Theoretical	background	 	147	

2.1	Vector-based	graphic	statics	148	

The	computational	framework	presented	in	this	paper	is	based	on	the	149	

vector-based	graphic	statics	approach,	which	was	initially	introduced	by	150	

Maxwell	(1864).	In	this	approach,	the	equilibrium	of	the	forces	acting	on	151	

a	node	Vi	of	F	is	represented	by	a	close	cycle	of	force	vectors	<Vi>*	in	F*.	152	

Moreover,	for	each	pair	of	opposite	forces	acting	within	the	same	edge	153	

Ei-j	of	F,	two	opposite	force	vectors	exist	in	F*,	each	belonging	to	distinct	154	

closed	cycles	of	force	vectors	<Vi>*	and	<Vj>*.	When	two	such	opposite	155	

force	vectors	overlap	in	F*,	a	force	edge	Ei-j*	replaces	them	(D’Acunto	et	156	

al.,	2019).	The	diagrams	are	reciprocal	in	the	special	case	that	F	and	F*	157	

have	 an	 equal	 number	 of	 edges	 (Crapo,	 1979).	 Otherwise,	 non-158	

overlapping	force	vectors	exist	(Jasienski	et	al.,	2016),	and	the	diagrams	159	

are	not	reciprocal	(Fig.	2)	160	

	161	

2.2	Assembly	of	the	force	diagrams:	a	graph	theory-based	approach	162	

The	 general	 approach	 to	 constructing	 F*	 is	 to	 derive	 the	 underlying	163	

graph	T	of	F	and	use	its	planar	embedding	Tp	and	its	corresponding	dual	164	

graph	 as	 a	 reference	 for	 generating	 F*.	 Depending	 on	 how	 T	 is	165	

planarized	 into	Tp	 (Tarjan,	 1970;	 Beneke	 and	 Pippert	 ,	 1978;	 Brandes,	166	

2000;	Buchleim	et	al.,	2013),	different	configurations	of	F*	are	available,	167	

each	 characterized	 by	 a	 specific	 organization	 of	 the	 cycles	 of	 force	168	

vectors	 within	 the	 diagram	 (D’Acunto	 et	 al.	 2019).	 A	 possible	 way	 to	169	

manually	 generate	 a	 plane	 graph	 TP	 of	 T	 is	 to	 successively	 split	 its	170	

crossing	edges	and	 reconnect	 them	 to	one	or	more	newly	 introduced	171	

auxiliary	vertices	vDi	while	fulfilling	the	static	equilibrium	of	every	node	172	

of	the	structure	(D’Acunto	et	al.	2019).173	

174	

	175	

Fig.	 2:	 Externally	 loaded	 octahedron:	 (a)	 Form	Diagram	F	 (b)	 plane	 graph	Tp;	 (c)	 3D	 force	 diagram	F*.	 F	 and	 F*	 are	 not	 reciprocal	 diagrams	 because	 the	 initial	 graph	176	

corresponding	to	the	structure	T	is	not	planar.	The	non-overlapping	vectors	can	be	identified	as	those	vectors	represented	twice	in	(c).	177	



3	Computational	implementation	 	178	

3.1	Overview	of	the	computational	setup	179	

This	 section	 outlines	 the	 full	 computational	 implementation	 of	 the	180	

theoretical	framework	briefly	introduced	in	Section	2,	namely	the	VGS	181	

algorithm.	A	general	scheme	is	presented	in	Fig.	3,	and	the	algorithm's	182	

main	 steps	 are	 described	 in	 section	 3.	 The	 tool’s	main	 function	 is	 to	183	

generate	 automatedly	 interdependent	 form	 and	 force	 diagrams	 for	 a	184	

given	 arbitrary	 2D	 or	 3D	 structure	 with	 applied	 forces	 in	 static	185	

equilibrium.	 	186	

Fig.	3:	Overview	of	the	general	algorithmic	procedure	(VGS	algorithm)	that	187	

automatedly	generates	interdependent	form	and	force	diagram	from	a	given	188	

structural	model.	189	

The	 preliminary	 step	 is	 to	 provide	 a	 geometry,	 supports	 and	 forces	190	

(external	or	internal)	that	together	compose	a	valid	discrete	structural	191	

model.	192	

The	first	step	of	the	algorithm	is	to	generate	a	form	diagram	F	based	on	193	

the	 input	 geometry,	 supports	 and	 forces.	 If	 the	 structural	 model	194	

provided	 in	 the	 initial	 setup	 is	 not	 in	 static	 equilibrium,	 a	 numerical	195	

solver	will	calculate	the	magnitude	of	the	 internal	and	external	 forces	196	

(see	section	3.2).	 	197	

The	second	step	involves	finding	an	ordered	sequence	for	the	edges	of	198	

each	vertex	that	will	compose	the	force	diagram	(see	section	3.3).	Two	199	

alternative	planarization	algorithms	that	are	necessary	to	perform	this	200	

task	are	detailed	in	section	4.	 	201	

Thanks	 to	 these	 two	sets	of	data,	 an	assembly	procedure	generates	a	202	

force	diagram	F*	corresponding	to	the	previously	defined	form	diagram	203	

F	(see	section	3.4).	 	204	

Eventually,	the	two	diagrams	are	made	interdependent	from	each	other	205	

through	 numerical	 methods.	 This	 allows	 the	 user	 to	 apply	 specific	206	

transformations	and	constraints	 to	one	of	 the	diagrams	and	assess	 in	207	

real	time	how	it	affects	the	other	diagram	(see	section	5.3).	208	

3.2.	Evaluation	of	the	equilibrium	209	

The	 equilibrium	 of	 the	 structure’s	 nodes	 and	 the	 calculation	 of	 the	210	

magnitude	 of	 the	 internal	 forces	 are,	 by	 default,	 solved	 geometrically	211	

node-by-node	or	numerically	after	setting	up	the	equilibrium	matrix	of	212	

the	 structure	 (D’Acunto	 et	 al.,	 2019).	However,	 this	 initial	 information	213	

could	also	be	provided	by	other	equilibrium	solvers	and	 form-finding	214	

tools.	It	should	also	be	noted	that	solving	the	equilibrium	problem	is	not	215	

a	 strict	 prerequisite	 to	 assembling	 form	 and	 force	 diagrams.	 On	 the	216	

contrary,	 the	 VGS-tool	 introduces	 the	 possibility	 to	 enforce	 the	 static	217	

equilibrium	of	an	arbitrary	structure	by	relying	on	the	transformation	218	

function	(see	Section	5.3).	219	

3.3	Finding	the	order	of	force	vectors	in	the	force	cycles	constituting	F*	 	220	

For	a	given	F,	 this	part	of	the	algorithm	provides	the	specific	order	of	221	

force	vectors	used	to	construct	the	closed	cycles	of	forces	vectors	<Vi>*	222	

constituting	 F*.	 The	 algorithm	 uses	 the	 Boyer-Myrvold	 script	 for	223	

planarity	 testing	 (Boyer	 and	 Myrvold,	 2004).	 First,	 the	 graph	 Tc	 is	224	

generated	 from	 T.	 To	 this	 end,	 all	 the	 edges	 and	 vertices	 of	 F	 are	225	

identified	and	stored	in	a	list	of	lists	composed	of	a	list	of	the	vertices	226	

and	 after	 one	 list	 per	 vertex	 containing	 all	 its	 edges.	 When	 external	227	

forces	(i.e.	applied	forces	and	support	forces)	exist,	a	new	vertex	VE	 is	228	

created,	and	new	edges	connecting	VE	to	the	nodes	(Jasienski	et	al.	2016)	229	

where	the	external	forces	are	applied	are	added	to	the	list	of	edges.	After	230	

that,	the	planarity	check	algorithm	is	performed	on	Tc.	If	Tc	is	not	planar,	231	

a	specific	planarization	algorithm	(based	on	the	choice	made	by	the	user	232	

–	see	Section	4)	is	implemented	to	modify	the	graph	Tc	iteratively	(Tic)	233	

until	it	is	converted	into	a	planar	graph	Tpc.	From	Tpc,	a	list	of	clockwise-234	

ordered	 edges	 can	 be	 extracted	 for	 each	 node	 of	 the	 structure.	235	

Retrieving	this	 information	is	equivalent	to	defining	the	dual	graph	of	236	

Tpc,	 which	 corresponds	 to	 the	 underlying	 graph	 of	 F*.	 The	 lists	 of	237	

clockwise-ordered	 edges	 are	 subsequently	 used	 by	 an	 algorithm	 to	238	

assemble	the	cycles	of	force	vectors	and,	eventually,	the	entire	F*	(see	239	

Section	3.4.).	240	

	241	



Fig.	4:	Algorithm	to	find	the	order	for	edges	of	F*	(see	section	3.3).	242	

	243	

	244	

3.4.	Assembly	procedure	245	

After	all	the	cycles	<Vi>*	of	F*	have	been	determined,	a	specific	sequence	246	

for	 assembling	 them	 is	 required	 to	 construct	 a	 complete	 F*.	 This	247	

sequence	 is	 composed	 of	 vertices	 of	F	 Seq	 =	 {...,Vk,Vj,…}	 fulfilling	 the	248	

condition	that	the	two	adjacent	cycles	of	force	vectors	<Vk>*	<Vj>*	share	249	

at	least	one	edge,	which	is	made	of	two	opposite	force	vectors	that	refer	250	

to	 the	 same	 edge	 of	 F.	 This	 problem	 could	 be	 summarized	 as	 such:	251	

finding	a	one-way	path	that	visits	once	all	the	vertices	of	the	plane	graph	252	

Tpc.	253	

The	 method	 developed	 to	 solve	 this	 problem	 uses	 an	 elimination	254	

procedure	 that	 is	 illustrated	 in	 Fig.	 5.	 The	 algorithm	works	with	 the	255	

adjacency	 matrix	 of	 the	 graph	 Tpc	 and	 always	 starts	 from	 the	 least	256	

connected	 vertex	 (i.e.	 the	 vertex	 that	 counts	 the	 least	 row	 element	257	

number	 in	 the	 adjacency	 matrix).	 The	 procedure	 repeats	 as	 follows.	258	

After	a	vertex	vn	is	added	to	the	sequence,	for	all	the	related	vertices	that	259	

are	connected	to	vn	the	adjacent	element	in	their	rows	is	removed.	The	260	

next	vertex	is	selected	in	the	rows	of	vn,	fulfilling	the	criteria	of	having	261	

the	least	count	of	the	row	elements	of	the	vertex	connecting	to	vn.	262	

In	some	cases,	a	one-way	path	that	connects	all	the	vertices	of	a	graph	263	

cannot	 be	 established	 due	 to	 its	 topology,	 resulting	 in	 a	 gap	 in	 the	264	

assembly	 sequence.	 This	 happens	 if	 the	 selected	 vertex	 has	 no	 row	265	

element	because	of	 the	previous	elimination	process.	 In	 this	 case	 the	266	

algorithm	starts	from	another	vertex	that	is	connected	to	a	vertex	which	267	

was	selected	in	the	previous	iteration.	The	elimination	procedure	then	268	

carries	on	until	all	the	vertices	of	the	graph	have	been	selected.	 	269	

	270	

 271	

Fig. 5: Assembly procedure. (a) Tp with the sequence of the assembly procedure represented by a grey arrow, with the order corresponding to the number at each 272	

vertex. The adjacency matrix is represented on the right (b, c, d) with the elimination procedure in colour.  273	

	274	

	 	275	



4.	Algorithm	for	the	planarization	of	the	topological	graph	276	

The	 present	 section	 describes	 the	 algorithm	 for	 the	 automated	277	

planarization	of	the	topological	graph	of	the	structure.	Two	variations	of	278	

the	 algorithim	are	presented,	 namely	 the	QUAD	 (Section	4.2)	 and	 the	279	

MED	 (Section	 4.3).	 For	 both,	 the	 presented	 approach	 relies	 on	 an	280	

incremental	 process	 that	 starts	 from	a	 reduced	planar	 subgraph	 (the	281	

maximal	planar	graph	–	see	Section	4.1.1)	that	is	successively	enlarged	282	

to	 correspond	 to	 a	 suitable	Tpc	 (meaning	 that	 this	 planar	 embedding	283	

contains	 all	 the	 initial	 edges	 of	 T).	 Hence	 the	 algorithmic	284	

implementation	 processes	 in	 an	 opposite	 manner	 compared	 to	 the	285	

theoretical	procedure	(resumed	in	Section	2).	Irrespective	of	the	specific	286	

procedure	 that	 is	 used,	 the	 result	 is	 a	 suitable	 planar	 graph	Tpc	 that	287	

contains	all	the	required	information	to	assemble	the	force	diagram	F*.	288	

Each	 algorithm	 leads	 to	 a	 different	 type	 of	 configuration	 of	 force	289	

diagram	that	can	prove	more	visually	adequate	for	different	structural	290	

typologies.	 The	 definition	 of	 this	 algorithm	 is	 key	 to	 the	 present	291	

contribution	since	it	determines	the	resulting	configuration	of	F*.	 	 	292	

	293	

Fig.	6.	Comparison	of	the	planarized	topological	graph	and	the	corresponding	form	diagram	for	the	Force	diagram	F	presented	in	Figure	1	(a)(c)(e):	general	procedure	(Tp	(a)	294	

and	F*	(b)	and	(b’)),	QUAD	algorithm	procedure	(Tpc’	(c)	and	F*’(d)	and	(d’)’),	MED	algorithm	procedure	(Tpc’’(e)’	and	F*’’	(f)	and	(f’)).The	two	last	lines	of	figures	represent	295	

different	views	of	the	resulting	force	diagram	(middle	line	is	top	view,	bottom	line	is	side	view)	296	



4.1.	Preliminary	step	–	finding	the	maximal	planar	graph	297	

The	preliminary	step	for	both	QUAD	and	MED	procedures	is	to	298	

generate	the	maximal	planar	graph	of	Tc.	Indeed,	for	any	non-planar	299	

graph,	it	is	always	possible	to	find	a	planar	graph	that	is	a	subgraph	of	300	

it	(Harary,	1969).	The	computationally	generated	topological	graph	Tc	301	

is	consequently	split	into	two	graphs:	the	maximal	planar	graph	Tmc	302	

and	the	graph	containing	all	the	remaining	edges	Trc	so	that:	303	

Tc	=	Tmc	 ∪	 Trc.	304	

Two	different	algorithms	are	mainly	used	to	find	the	maximum	planar	305	

graph	(Tamassia,	2013):	namely	the	Vertex	Increment	method	(VIM)	and	306	

Edge	Increment	method	(EIM)	(Jayakumar	et	al.,	1989).	The	principles	of	307	

these	two	procedures	are	illustrated	in	Fig.	7.	 	308	

Both	methods	provide	a	planar	graph	Tmc	as	a	valid	solution	but	cannot	309	

ensure	 that	 it	 is	 the	 exact	 maximum	 planar	 graph	 (which	 is	 a	310	

nondeterministic	 polynomial-time	complete	 problem).	 The	 task	 has	 a	311	

complexity	of	O(n2)	at	worst	case	for	both	VIM	and	EIM.	In	the	scope	of	312	

the	present	research,	several	experiments	were	set	up	to	compare	their	313	

efficiency	in	the	context	of	the	VGS	algorithm.	Both	methods	were	tested	314	

on	randomly	generated	non-planar	graphs	T	=	Tp	∪	 Tr,	where	Tp	 is	a	315	

triangulated	planar	mesh	graph,	and	Tr	is	the	set	of	edges	added	to	make	316	

the	graph	non-planar	(see	Fig.	8).	 	317	

The	planarity	rate	is	defined	as:	318	

Rs	=	Tr.	 𝑹𝒔 = 𝐓𝒓. 𝑒𝑑𝑔𝑒𝑠_𝑐𝑜𝑢𝑛𝑡/𝑻. 𝑒𝑑𝑔𝑒𝑠_𝑐𝑜𝑢𝑛𝑡.	319	

Two	statistics	studies	are	carried	out	on	 𝑹𝒔 = 25%	 and	 𝑹𝒔 = 70%	 on	320	

graphs	 with	 incremented	 vertex	 number	 (20~100).	 The	 results	 are	321	

displayed	in	Fig.	9.	The	analysis	of	the	results	shows	that	EIM	is	more	322	

efficient	 than	VIM	on	planarizing	 the	graphs	 that	have	a	 low	 𝑹𝒔.	VIM	323	

works	 slightly	 better	 in	 the	 graphs	 that	 have	 a	 high	 𝑹𝒔 .	With	 all	 the	324	

above	results	 in	regard,	VGS-tool	 implements	EIM	by	default	to	fit	the	325	

most	case	for	better	planarization	efficiency	and	accuracy.	326	

The	EIM	starts	from	a	planar	subgraph	Timc	which	at	the	first	iteration	327	

only	 contains	 all	 the	 adjacent	 edges	 of	 the	 first	 vertex	 v0	 (and	 in	328	

presence	of	external	 forces	of	vE	as	well)	and	adds	one	vertex	at	each	329	

iteration.	At	an	iteration	resulting	in	Timc	being	not	planar	anymore,	the	330	

algorithm	will	check	all	the	adjacent	edges	to	the	edge	that	was	added	331	

and	find	the	most	edges	that	can	be	added	to	Timc	and	keep	it	still	planar.	332	

In	 each	 iteration,	 the	 identified	 edges	 will	 be	 added	 to	 Tirc	 and	333	

disregarded	for	the	other	vertices.	At	the	end	of	the	algorithm:	334	

Tirc	(=Trc)	U	Timc	(Tmc)	=	Tc.	335	

	336	

	337	

	338	

Fig.7	:	Principles	of	Vertex	Increment	method	(top)	and	Edge	increment	method	(bottom).	VIM	adds	back	each	edge	connected	to	the	same	vertex,	testing	if	the	graph	is	still	339	

planar	after	an	edge	is	added.	Then	the	procedure	goes	to	the	next	vertex.	EIM	adds	back	one	edge	after,	,	testing	if	the	graph	is	still	planar	after	an	edge	is	added	The	340	

intermediate	steps	are	represented	in	(a)	and	(b)	and	the	final	maximal	planar	graph	Tmc	are	represented	with	the	graph	of	remaining	edges	Trc	in	(c).		  341	



Fig.	8	:	Example	of	graphs	used	for	the	accuracy	test.	(a)	The	planar	triangulated	mesh	graph	Tp,	(b)	The	graph	T	=	Tp	U	Tr	(represented	in	magenta)	with	Rs	=	25%	(c)	the	342	

graph	T	=	Tp	U	Tr	(represented	in	magenta)	with	Rs	=	70%.	(b)	and	(c)	correspond	respectively	to	the	first	row	of	the	two	tables	in	Fig	9.	343	

	344	

	 Fig.	9:	 	 	 Results	of	the	experiment	comparing	the	efficiency	of	EIM	and	VEIM	for	25%	non-planar	edge	graph	(top-left)	and	70%	non-planar	edge	graph	(bottom-left).	345	

Graphical	results	of	the	experiment	comparing	the	efficiency	of	EIM	and	VEIM	for	20%	non-planar	edge	graph	(top-right)	and	70%	non-planar	edge	graph	(bottom-right).	 	 	346	



4.2	The	QUAD	procedure	347	

Fig.	10:	QUAD	algorithm,	overview	of	the	algorithm	348	

This	procedure	planarizes	the	graph	T	creating	auxiliary	cycles	of	force	349	

vector	 as	 quads	 (D’Acunto	 et	 al.	 2019)	 which	 can	 be	 seen	 as	 a	 3D	350	

extension	 of	Bow,	 1873.	 It	 mainly	 consists	 in	 adding	 a	 new	 auxiliary	351	

vertex	vDi	at	every	crossing	of	edges	 in	Tc,	 resulting	 in	 the	creation	of	352	

quadrilateral	auxiliary	cycles	<VDi>*	in	F*.	353	

As	 it	 is	 introduced	 in	 Section	 4.2.1,	 the	 initial	 graph	Tc	 is	 cut	 in	 two	354	

subgraphs	 (using	 the	EIM):	 a	maximum	planar	 subgraph	 Tmc	 and	 the	355	

resulting	 other	 subgraph	 Trc	 (meaning	 Tmc	 +	 Trc	 =	 Tc).	 The	 iterative	356	

process	modifies	Tic	(corresponding	to	Tmc	at	the	first	iteration),	adding	357	

back	edges	from	Tirc	(corresponding	to	Trc	at	the	first	iteration)	so	that	358	

Tic	 is	still	planar	and	eventually	contains	all	the	initial	edges	of	T.	The	359	

main	challenge	is	defining	how	the	edges	of	Tirc	should	be	intersected	360	

with	the	ones	in	Tic,	aiming	to	generate	the	least	intersections	possible.	361	

This	 issue	 can	 be	 regarded	 as	 finding	 the	 shortest	 path	 (in	 terms	 of	362	

visited	vertices)	between	the	two	extremities	vx	and	vy	of	the	edge	ex-y	363	

that	 is	 added	 back	 from	 Tirc	 to	 the	 embedded	 graph	 Tic.	 It	 can	 be	364	

regarded	as	the	path	that	passes	by	the	smallest	number	of	faces	(a	face	365	

being	a	closed	cell	of	the	graph).	 	 The	Dijkstra	algorithm	is	used	to	find	366	

this	sequence	Pleast	(Dijkstra,	1959).	 	367	

Fig.	11:	Non-planar	topological	graph	Tic	composed	of	Tmc+Trc	(thinner	lines)	368	

resulting	from	EIM	(left),	and	the	resulting	planar	graph	from	the	QUAD	algorithm	369	

Tpc	(right).	The	edges	that	were	added	back	from	Trc	are	represented	in	thin	370	

dotted	lines.	371	

4.2.1.	Iterative	intersection	372	

Once	 the	 shortest	 path	 Pleast	 =	 Dijkstra	 (vx,	 vy,	Tic)	 is	 determined,	 the	373	

auxiliary	 intersection	 vertices	 can	 be	 found	 on	 the	 edges	 of	Tic.	 The	374	



intersections	will	split	the	edge	ea-b	separating	two	adjacent	faces	that	375	

are	 successive	 parts	 of	 the	 path.	 A	 new	 vertex	 labelled	 ni	 (i	 being	 a	376	

numerical	 index)	 dividing	 ea-b	 ∈ 	 Tic	 and	 ex-y	 ∈ 	 Trc	 is	 introduced,	377	

resulting	in	two	new	pair	of	edges	(ea-b+,	ea-b++)	and	(ex-y+,	ex-y++).	The	force	378	

cycle	corresponding	to	the	new	vertex	ni	 is	thus	composed	of	the	four	379	

forces	vectors	 (ea-b+,	 ea-b++,	 ex-y+,	 ex-y++)	and	 is,	 therefore,	a	quadrilateral	380	

cycle	in	F*.	Each	iteration	ends	when	Tic	is	updated	containing	all	the	381	

edges	going	from	the	two	vertices	that	were	added	back	from	Trc,	while	382	

staying	a	planar	graph.	The	vertex	ni	is	considered	in	the	next	iteration	383	

as	part	of	Tic,	and	the	newly	introduced	edges	can	be	intersected	as	any	384	

other	edge	of	the	graph.	When	all	the	edges	of	Trc	have	been	added	into	385	

Tic,	 the	updated	 graph	 includes	 all	 edges	 of	T	and	 is	 still	 planar.	 This	386	

resulting	graph	is	Tpc.	The	algorithmic	implementation	of	this	process	387	

takes	 benefit	 of	 algebraic	 calculation	 (face	 adjacency	 matrix)	 and	 is	388	

outlined	in	the	Code	Snippet	1.	 	389	

	390	

_______________________________________________________________________	391	

Data:	 	392	

𝑇#$:	 (𝑇#$|𝐸#$ , 𝑉#$ , 𝐹#$)	 	393	

𝑇%$:	 (𝑇%$|𝐸%$ , 𝑉%$ , 𝐹%$)	 	394	

𝑇&$ :	 (𝑒#'(&$ ∈ 𝑇&$) 	 in	 which	 𝑖 	 and	 𝑗 	 are	 the	 index	 of	 the	 extremes	 of	395	

𝑒#'(&$ .	396	

𝑝#'(&$ :	A	path	comprises	a	sequence	of	 𝑓#$ .	 𝑒#'(&$ 	 is	supposed	to	cross	over	397	

and	cut	the	 𝑒#$ ∈ 𝐸#'(#$ 	 into	the	segments	 𝐸#'(
)* 	 following	the	 𝑝#'(&$ .	398	

𝑀+,(
- :	The	face	adjacency	matrix	of	 𝐹#$ .	399	

𝐸#'(&$ :	 The	 set	 of	 edges	 subdivided	 from	 𝑒#'(&$ 	 according	 to	 the	 𝑝#'(&$ .	400	

Adding	 𝐸#'(&$ 	 to	 𝐸#$	 is	the	same	with	adding	 𝑒#'(&$ 	 back	to	 𝑇#$	 and	keep	401	

the	graph	 𝑇#$. 	 still	planar.	402	

𝐸#'(
)* :	The	set	of	edges	from	 𝐸#$	 and	subdivided	by	 𝑒#'(&$ 	 into	segments	403	

{𝑒/
)*, … , 𝑒0

)*}.	 	404	

Input:	Tmc,	Trc	405	

Output:	Tpc	406	

𝑇#$ ← 𝑇%$	407	

foreach	 𝑒#'(&$ 	 in	 𝑇&$:	408	

	 	 	 	 𝑀+,(
- =𝑇#$ . 𝐶𝑟𝑒𝑎𝑡𝑒𝐹𝑎𝑐𝑒𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥();	409	

	 	 	 	 𝑓##$ ← 𝑇#$ . 𝐺𝑒𝑡𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐹𝑎𝑐𝑒(v#);	410	

	 	 	 	 𝑓(#$ ← 𝑇#$ . 𝐺𝑒𝑡𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡𝐹𝑎𝑐𝑒(v();	411	

	 	 	 	 𝑃#'(&$ ← {};	412	

	 	 	 	 𝑝#'(&$ ← 𝑀+,(
- . ShortestPath(𝑓##$ ,𝑓(#$);	413	

	 	 	 	 𝐸#'(&$ ← 𝑝#'(&$ . 𝑆𝑝𝑙𝑖𝑡𝐸𝑑𝑔𝑒(𝑒#'(&$ );	414	

	 	 	 	 𝐸#'(
)* ← 𝑝#'(&$ . 𝑆𝑝𝑙𝑖𝑡𝐸𝑑𝑔𝑒(𝐸#'(#$ |𝑒#$ ∈ 𝐸#$);	415	

	 	 	 	 𝑇#$ . 𝐸#$ . 𝑅𝑒𝑚𝑜𝑣𝑒(𝑒#$);	416	

	 	 	 	 𝑇#$ . 𝐸#$ . 𝐴𝑑𝑑𝑅𝑎𝑛𝑔𝑒a𝐸#'(
)* {𝑒/

)*, … , 𝑒0
)*}b;	417	

	 	 	 	 𝑇#$ . 𝐸#$ . 𝐴𝑑𝑑𝑅𝑎𝑛𝑔𝑒a𝐸#'(&$ {𝑒#'1
)* , … , 𝑒%'(

)* }b;	418	

end	419	

𝑇#$ . 𝐸#$ . 𝑈𝑝𝑑𝑎𝑡𝑒𝑊𝑖𝑡ℎ(𝐸#$)	420	

𝑇#$ . 𝐹#$ . 𝑈𝑝𝑑𝑎𝑡𝑒𝑊𝑖𝑡ℎ(𝐸#$)	421	

𝑇*$ ← 𝑇#$	422	

	423	

Code	Snippet	01:	QUAD	algorithm	 	424	

4.2.2.	Force	vectors	corresponding	to	the	labelled	edges	425	

As	mentioned	in	the	literature	(D’Acunto	et.	al,	2018),	in	graphic	statics	426	

to	each	edge	of	F	correspond	two	opposite	force	vectors	in	F*,	belonging	427	

to	the	two	closed	cycles	of	force	vectors	related	to	both	extremity	vertex	428	

of	the	selected	edge	of	F.	In	this	case,	an	edge	of	F	might	appear	in	more	429	

than	 two	 forces	 cycles,	 since	 it	 can	 be	 split	 again	 at	 each	 iteration	430	

resulting	for	instance	in	(ei-j++,	ei-j+++)	 ∈	 (ei-j+,…,	ei-j++++)|ei-j	 	 ∈	 Tic.	The	431	

quadrilateral	cycle	<vDi*>	that	are	introduced	with	the	present	method	432	

are	always	constituted	of	two	pairs	of	opposite	vectors.	In	this	example,	433	

the	force	vectors	(ei-j++,	ei-j+++)	from	(ei-j+,	ei-j++++)	and	be	calculated	with	434	

the	rule	of	 +𝑣)2(𝑒#'(3) = −𝑣4,(𝑒#'(3)=+𝑣)2(𝑒#'(33) = −𝑣4,(𝑒#'(33) =435	

+𝑣)2(𝑒#'(333)…	 the	label	of	the	edge	provide	necessary	information	to	436	

find	the	force	vector	of	the	segmented	auxiliary	edges	of	Tpc.	437	

Fig.	12:	Form	diagram	F,	Graph	Tpc’	(and	corresponding	Force	Diagram	F*’)	438	

planarization	procedure	starting	with	Tmc	generated	by	the	EIM,	Graph	Tpc’’	(and	439	

corresponding	Force	Diagram	F*’’)	planarization	procedure	starting	with	Tmc	440	

generated	by	the	VIM.	441	



4.3.	The	MED	procedure	442	

	443	

Fig.	13	:	MED	procedure,	overview	of	the	algorithm.	 	444	

For	this	second	algorithmic	strategy,	the	developed	method	aims	to	445	

add	back	edges	from	Trc	to	Tmc	without	splitting	the	edges	of	Tmc.	It	takes	446	

the	 benefit	 of	 the	 existing	 vertices	 of	 the	 graph	 to	 subdivide	 the	 re-447	

introduced	edges	from	Trc.	Concretely,	the	edge	re-introduced	from	Trc	to	448	

Tmc	 is	 decomposed	 as	 a	 series	 of	 edges	 visiting	 existing	 vertices	 of	 the	449	

graph	that	are	 located	on	the	shortest	path	between	its	two	extremities	450	

vertices.	 	451	

4.3.1.	Least	edge	splitting	452	

The	 procedure	 to	 add	 edges	 from	Trc	 to	Tic	 consists	 in	 finding	 the	453	

shortest	path	 through	 the	existing	vertices	of	Tic.	 For	an	edge	ea-b(va,vb)	454	

from	Trc	that	is	added	back	to	Tic,	The	shortest	path	is	found	thanks	to	a	455	

Dijkstra	 algorithm	 (Dijkstra,	 1959)	 Pleast’(ea-b)	 =	 Dijkstra(va,vb,Tic)	 that	456	

returns	 a	 list	 of	 vertices	 {va,vx,vy…vb}.	Tic	 is	 updated	with	 all	 the	 edges	457	

connecting	a	vertex	to	the	next	one	in	this	list,	labelled	as	{ei-j’,ei-j’’,ei-j’’’…}.	458	

In	this	approach,	a	force	vector	is	repeated	more	than	twice	in	F*	(which	459	

is	also	the	case	for	the	QUAD	algorithm	described	above).	The	number	of	460	

occurrences	corresponds	to	the	length	of	the	list	given	by	Pleast’(v)	minus	461	

one.	In	any	case,	this	does	not	affect	the	equilibrium	of	the	structure.	The	462	

planarity	is	eventually	achieved	because	of	the	fundamental	principle	of	463	

the	MED	algorithm.	Since	an	edge	 is	decomposed	 into	a	series	of	edges	464	

connecting	 each	 time	 neighbour	 vertex,	 the	 consequence	 is	 that	 the	465	

crossing	of	edges	is	avoided	by	definition.	 	466	

Fig.	14	:	Non-planar	topological	graph	Tic	composed	of	Tmc+Trc	resulting	from	467	

EIM	(a),	and	the	resulting	planar	graph	from	the	MED	algorithm	Tpc	(b).	The	edges	468	

that	were	added	back	from	Trc	are	represented	in	thin	dotted	lines.	 	469	

Similarly	to	the	QUAD	algorithm,	the	algorithmic	implementation	of	470	

this	process	takes	benefit	of	algebraic	calculation	(face	adjacency	matrix)	471	

and	is	outlined	in	the	Code	Snippet	2.	 	472	



	473	

Data:	 	474	

𝑇#$:	 (𝑇#$|𝐸#$ , 𝑉#$)	 	475	

𝑇%$:	 (𝑇%$|𝐸%$ , 𝑉%$)	 	476	

𝑇&$:	 (𝑇&$|𝑒#'(&$ )	 in	which	 𝑖	 and	 𝑗	 are	the	index	of	the	extremes	 {𝑣# , 𝑣(}	 of	477	

𝑒#'(&$ .	478	

𝑝#'(&$ :	 A	 path	 comprises	 a	 sequence	 of	 𝑣#$ .	 𝑒#'(&$ 	 is	 supposed	 to	 be	479	

segmented	into	 {𝑒#'1
)* , … , 𝑒%'(

)* }	 via	 {𝑣1, … , 𝑣%}	 following	the	 𝑝#'(&$ .	480	

𝑀+,(
5 :	The	adjacency	matrix	of	 𝑉#$ .	481	

𝐸#'(&$ :	The	set	of	edges	subdivided	from	 𝑒#'(&$ 	 according	to	the	 𝑝#'(&$ .	Adding	482	

𝐸#'(&$ 	 to	 𝐸#$	 is	the	same	with	adding	 𝑒#'(&$ 	 back	to	 𝑇#$	 and	keep	the	graph	483	

𝑇#$. 	 still	planar.	484	

	485	

Input:	 𝑇%$ , 𝑇&$	486	

Output:	 𝑇*$	487	

𝑇#$ ← 𝑇%$	488	

𝑀+,(
5 =𝑇#$ . 𝐶𝑟𝑒𝑎𝑡𝑒𝑉𝑒𝑟𝑡𝑒𝑥𝐴𝑑𝑗𝑀𝑎𝑡𝑟𝑖𝑥();	489	

foreach	 𝑒#'(&$ 	 in	 𝑇&$:	490	

	 𝑣##$ , 𝑣(#$ ∈ 𝑉#$;	491	

	 𝑝#'(&$ ← 𝑀+,(
5 . ShortestPath(𝑣##$ ,𝑣(#$);	492	

	 𝐸#'(&$ {𝑒#'1
)* , … , 𝑒%'(

)* } ← 𝑝#'(&$ . 𝑆𝑝𝑙𝑖𝑡(𝑒#'(&$ )	493	

	 𝑇#$ . 𝐸#$ . 𝐴𝑑𝑑𝑅𝑎𝑛𝑔𝑒a𝐸#'(&$ b;	494	

end	495	

𝑇*$ ← 𝑇#$	496	

Code	Snippet	02:	MED	algorithm	 	497	

4.3.2.	Cycle	organization	498	

While	adding	 the	segments	of	 the	edges	 {eij’,eij’’,eij’’’}	 to	 the	vertices	499	

vi,…,vj,	there	is	a	principle	to	follow	to	keep	the	embedded	graph	Tic	still	500	

planar.	 It	 is	 known	 that	 Pleast’(ei-j)	 has	 determined	 the	 vertices	 that	 the	501	

different	segments	of	the	edge{eij’,eij’’,eij’’’}	will	connect.	For	instance,	the	502	

vector	eij’’	that	would	connect	vx	and	vy	is	to	be	added	into	both	vertices	503	

cycles:	ei-j’’(vx,vy)|{Cx,	Cy}.	As	it	is	ruled	in	the	embedded	graph,	each	node	504	

has	a	clockwise	sequence	order,	and	thanks	to	this	and	the	way	edges	are	505	

inserted	back	in	the	graph,	the	latter	doesn’t	have	an	intersection	among	506	

the	edges	(and	thus	stays	planar).	When	the	edge	ei-j’’	 is	to	be	added	in-507	

between	 the	 adjacent	 vertices	 {vx,vy}	 of	 the	 embedded	 graph,	 it	 is	508	

important	that	in	the	two	cycles	Cx{…,ex-y,…},	Cy{…,ex-y,…}	the	edge	ei-j’’	be	509	

inserted	invertedly	in	both	sequences	so	that	Cx{…,ei-j’’,ex-y,…}	and	Cy{…	,ex-510	

y,	ei-j’’…}.	511	

	512	

Conceptual	 difference	 between	 QUAD	 and	 MED,	 the	 impact	 of	 the	513	

algorithmic	definition	on	the	configuration	of	the	resulting	force	diagram	F*	514	

Fig.	12	and	15	apply	respectively	the	QUAD	and	MED	algorithm	to	the	515	

same	 case-study,	 i.e.	 the	 planarization	 of	 the	 topological	 graph	T	 of	 an	516	

externally	 loaded	 octahedron.	 In	 both	 cases,	 the	 initial	T	 =	Tmc	 +	 Trc	 is	517	

obtained	 after	 application	 of	 the	 EIM.	 The	 result	 of	 these	 two	 figures	518	

illustrates	very	clearly	the	conceptual	difference	of	both	algorithms.	 	519	

Because	the	information	to	assemble	the	force	diagram	F*	is	extracted	520	

from	 the	 resulting	 Tpc,	 it	 is	 expectable	 that	 they	 produce	 different	521	

typologies	of	F*.	A	comparison	of	fig	12	and	15	(left	column)	shows	the	522	

consequence	in	F*.	The	“quads”	can	be	easily	identified	in	the	drawings	(c)	523	

and	 (e)	 from	 Fig.	 12	 and	 are	 a	 direct	 consequence	 of	 the	 algorithmic	524	

definition.	In	a	similar	way,	the	closed	cycle	of	forces	in	the	drawings	(c)	525	

and	 (e)	 from	 Fig.	 15	 can	 be	 identified	 and	 correspond	 directly	 to	 the	526	

multiple	edges	connected	at	each	vertex	 in	 the	graph	planarized	by	 the	527	

MED	algorithm	(respectively	(b)	and	(d)).	 	528	

Depending	on	the	configuration	of	the	initial	form	diagram	F,	one	of	the	529	

two	algorithms	can	provide	a	more	readable	force	diagram.	The	definition	530	

of	 the	 planarization	 algorithm	 is	 thus	 crucial	 since	 it	 determines	 the	531	

configuration	of	F*,	which	visual	aspect	is	central	for	graphic	statics.	 	532	

	533	

Fig.	15:	(a)	Form	diagram	F,	(b)	Graph	Tpc’	(and	(c)	corresponding	Force	Diagram	534	

F*’)	planarization	procedure	(QUAD)	starting	with	Tmc	generated	by	the	EIM,	(d)	535	

Graph	Tpc’’	(and	(e)	corresponding	Force	Diagram	F*’’)	planarization	procedure	536	

(QUAD)	starting	with	Tmc	generated	by	the	VIM.		 	537	



5.	The	VGS-tool,	implementation	of	the	VGS	algorithm	as	a	CAD	538	

plug-in	539	

5.1.	Implementation	 	540	

The	algorithms	presented	in	this	paper	are	implemented	into	the	VGS-541	

tool,	 a	 plugin	 for	 the	 CAD	 environment	 Grasshopper3D	 in	 Rhino3D	542	

(McNeel,	 2023)	 which	 is	 widely	 used	 by	 structural	 engineers	 and	543	

architects.	The	tool	is	written	in	C#	and	relies	on	two	main	libraries:	the	544	

MathNet.Numerics	(www.mathdotnet.com)	for	the	algebraic	operations	545	

and	the	C#	implementation	of	the	Boyer-Myrvold	algorithm	(Boyer	and	546	

Myrvold,	2004)	for	the	planarization	operations.	Some	specific	features	547	

of	the	VGS-tool	are	presented	in	sections	5.2	and	5.3	 	548	

	549	

5.2.	Real-time	transformation	of	form	and	force	diagrams	 	550	

The	 interdependence	 between	 form	 and	 force	 diagrams	 in	 graphic	551	

statics	 allows	 transforming	 one	 of	 the	 diagrams	 while	 directly	552	

evaluating	 the	 consequent	 transformation	 of	 the	 other	 diagram	553	

(D’acunto	et	al.,2017)	A	set	of	geometric	constraints	must	be	defined	to	554	

ensure	the	mutual	dependence	of	F	and	F*	and	thus	guarantee	the	static	555	

equilibrium	of	the	structure.	Corresponding	edges	in	the	two	diagrams	556	

(F	and	F*)	should	be	kept	parallel	to	each	other,	while	the	vectors	of	the	557	

non-overlapping	pairs	of	F*	(for	diagrams	F	with	underlying	non-planar	558	

graphs)	 should	 as	 well	 maintain	 an	 equal	 length.	 The	 simultaneous	559	

constraint	 transformations	 of	 F	 and	 F*	 can	 be	 achieved	 by	means	 of	560	

numerical	 simulations,	 such	 as	 the	 Kangaroo2	 (Piker,	 2023)	 plug-in	561	

used	within	 the	McNeel	Grasshopper3D	and	Rhino3D	(McNeel,	2023)	562	

native	environment.	Besides	the	integrated	constraints	defined	above,	563	

optional	 geometric	 constraints	 can	 be	 applied	 to	 F*	 and	 F	 to	 fulfil	564	

specific	design	conditions.	Thanks	 to	 the	real-time	transformations	of	565	

form	 and	 force	 diagrams	 in	 the	 VGS-tool,	 the	 adjustment	 of	 the	566	

magnitude	and	direction	of	forces	in	vector-based	3D	force	diagrams	can	567	

be	used	as	an	active	operation	in	the	structural	design	process	as	well	as	568	

a	geometrical	 constraint	 regarding	 the	 structure	 itself.	An	example	of	569	

this	transformations	can	be	appreciated	in	Fig.	16	570	

	571	

Fig.	16:	Interdependent	real-time	transformation	of	form	diagram	F	(a)	in	dashed	572	

lines,	and	force	diagram	F*	(b)	in	dashed	line,	with	the	result	in	the	form	diagram	F	573	

(a)	in	colors,	and	in	the	force	diagram	F*	(b),	in	colors.	 	 	574	

5.3.	Form-finding	of	geometries	at	equilibrium	575	

As	explained	in	the	previous	sections,	for	a	given	structure	F	in	static	576	

equilibrium,	the	VGS-tool	can	automatically	produce	a	suitable	planarized	577	

version	of	the	underlying	graph	Tp	(see	Section	4)	that	is	used	to	generate	578	

the	closed	cycle	of	force	vectors	that	make	up	the	corresponding	vector-579	

based	force	diagram	F*.	By	imposing	specific	constraints	to	vector-based	580	

form	and	force	diagrams	–	i.e.	parallelism	between	corresponding	edges	581	

in	 the	two	diagrams	and	equivalence	 in	 length	and	parallelism	between	582	

duplicate	 edges	 in	 the	 force	 diagram	 –	 the	 two	 diagrams	 can	 undergo	583	

interdependent	 transformations	while	preserving	 the	static	equilibrium	584	

of	the	structure	(Section	5.2).	 	585	

Thanks	to	this	transformation	function,	the	VGS-tool	can	also	be	used	586	

to	impose	static	equilibrium	to	an	initial	form	diagram	F	that	is	not	already	587	

at	 equilibrium.	 In	 this	 case,	 a	 default	 distribution	 of	 tension	 and	588	

compression	forces	is	initially	assigned	to	the	edges	of	the	form	diagram	589	

F.	After	defining	a	planarized	version	of	Tp,	a	set	of	open	cycles	of	vectors	590	

based	 on	 the	 default	 distribution	 of	 forces	 is	 first	 generated.	 While	591	

imposing	the	transformations	mentioned	above,	it	simultaneously	forces	592	

the	vectors'	cycles	to	close.	The	force	vectors	are	consequently	iteratively	593	

modified	by	the	transformation	algorithm	by	changing	their	lengths	and	594	

lines	of	 action	until	 a	 valid	 vector-based	 force	diagram	F*	 is	 generated.	595	

Since	the	vector-based	diagrams	are	interdependent,	the	geometry	of	F	is	596	

simultaneously	modified	to	obtain	a	structure	in	static	equilibrium.	This	597	

feature	of	 the	VGS-tool	allows	to	solve	the	static	equilibrium,	but	 it	also	598	

makes	 it	 possible	 to	 find	 the	 form	 of	 structures	 in	 equilibrium	599	

independently	 of	 other	 structural	 form-finding	 tools.	 For	 instance,	 this	600	

feature	 can	 be	 very	 useful	 for	 the	 design	 of	 funicular	 and	 tensegrity	601	

structures	among	others.	It	can	also	be	used	to	solve	the	static	equilibrium	602	

of	a	given	structure	without	any	specific	equilibrium	calculation.	603	

Fig.	17:	Form-finding	of	a	tensegrity	structure.	(a)	the	initial	geometry	F0,	(b)	the	604	

form-found	Form	diagram	F	and	(c)	the	corresponding	force	diagram	F*.	605	

5.4.	Organization	of	the	VGS-tool	 	606	

The	plugin	is	organized	into	four	toolsets,	Assemble	structure,	Generate	607	

diagrams,	 Transformation	 Visualization.	 	 It	 covers	 the	whole	 general	608	

process	described	in	Section	3.1.	609	

	610	



Fig.	18:	Image	of	the	toolbar	of	the	VGS-tool	in	the	workspace	of	Grasshopper3D	–	611	

part	of	Rhino3D	(McNeel,	2023).	 	612	

The	first	part	(Assemble	structure)	includes	the	modules	that	allow	the	613	

assembly	 of	 the	 structural	 model	 consisting	 of	 the	 edges	 of	 the	614	

structures,	 the	supports,	 the	applied	 loads,	and	eventual	self-stress.	 If	615	

necessary,	 the	equilibrium	calculation	 is	performed	with	 the	Evaluate	616	

Equilibrium	module	with	a	numerical	solver.	 	617	

The	second	part	(Generate	diagrams)	is	the	core	of	the	tool.	It	assembles	618	

the	 form	 and	 the	 force	 diagrams.	 The	 main	 algorithm	 developed	 in	619	

Section	 4	 that	 planarizes	 the	 graph	 and	 assemble	 is	 contained	 in	 the	620	

“Assemble	Force	Diagram”	module.	 In	 the	 first	 release	of	 the	 tool,	 the	621	

user	 cannot	 choose	 the	 planarization	 algorithm.	 The	 script	 only	622	

implements	 the	 QUAD	 procedure	 (see	 Section	 4.2.2).	 Another	623	

functionality	 allows	 the	 user	 to	 planarize	 the	 graph	 manually	 and	624	

integrate	it	from	a	geometrical	drawing	in	the	rhinoceros	interface.	The	625	

generated	 force	 diagram	 gives	 the	 user	 the	 option	 to	 see	 the	 fully	626	

assembled	Force	diagram	(integrated	F*)	and	a	separate	view	of	each	627	

node's	force	cycles	(discrete	F*).	 	628	

The	third	part	(Modify	diagrams)	allows	the	user	to	modify	one	of	the	629	

diagrams	and	simultaneously	assess	the	resulting	modification	on	the	630	

other	diagram.	These	parts	make	use	of	the	numerical	solver	Kangaroo2	631	

(Piker,	2023)	 included	 in	Grasshopper3D	–	part	of	Rhino3D	version	7	632	

(McNeel,	2023).	 	 	633	

The	fourth	part	(Visualization)	 includes	the	modules	for	the	graphical	634	

visualization	 of	 the	 diagrams.	 It	 allows	 the	 user	 to	 modify	 the	635	

visualization	parameters	(line	thickness	with	respect	to	the	magnitude	636	

of	the	forces	and	the	label	size)	and	export	data.	637	

	638	

Fig.	19:	Image	of	an	entire	definition	of	a	structure	in	VGS-tool	in	the	workspace	of	grasshopper.	(a)	definition	of	structural	model	(yellow),	(b)	evaluation	of	equilibrium	(red),	639	

(c)	assembly	of	form	diagram	(light	green),	(d)	generation	of	force	diagram	(dark	green),	(e)	transformations	(blue),	(f)	visualization	of	the	results	(orange)	640	

5.5.	Case	study	641	

This	section	presents	a	conceptual	design	case	study	to	demonstrate	the	642	

potential	 application	of	 the	proposed	development	 to	 realistic	 design	643	

scenarios.	The	structural	concept	for	a	stadium	roof	is	laid	out	according	644	

to	a	fictitious	design	scenario	based	on	the	Stadium	in	Braga	by	architect	645	

Eduardo	 Souto	 de	 Moura	 and	 engineer	 Rui	 Patricio.	 Specifically,	 the	646	

symmetric	roof	is	placed	only	on	the	pitch's	two	longitudinal	sides	and	647	

is	conceived	as	a	spatial	tied-arch	system.	Both	tied-arch	systems	work	648	

as	a	unit	since	their	ties	are	connected	with	horizontal	cables	that	span	649	

over	 the	 short	 side	 of	 the	 pitch.	 Each	 arch	 is	 connected	 to	 its	650	

corresponding	 tie	with	 x-braced	 cables	 and	 is	 furthermore	 stabilized	651	

with	additional	x-braced	cables	that	form	a	façade-like	cable-net	on	the	652	

back	side	of	the	stands.	The	support	points	of	the	tied	arch	are	150	m	653	

apart	from	each	other.	Only	the	self-weight	of	the	arch	and	a	constant	654	

force	of	(3’000	kN)	in	the	horizontal	cables	are	considered	during	this	655	

early-stage	form	finding.	656	

A	preliminary	3D	form	diagram	Fa	and	the	geometric	constraints	can	be	657	

seen	 in	 Fig.	 20	 (a)	 This	 first	 instance	 has	 been	 generated	 using	 the	658	

Combinatorial	 Equilibrium	 Modelling	 (CEM)	 form-finding	 method	659	

(Ohlbrock	 and	 D’Acunto,	 2020;	 Ohlbrock	 et	 al.,	 2017).	 Apart	 from	 the	660	

equilibrium	 condition,	 which	 is	 a	 hard	 constraint	 in	 the	 CEM	661	

formulation,	 additional	 constrained	 planes	 have	 been	 activated	662	

(Pastrana	 et	 al.	 2023)	 to	 keep	 the	 segmentation	 of	 the	 structure	 as	663	

desired.	It	can	be	easily	seen	that	the	initial	equilibrium	state	does	not	664	

fulfil	the	geometric	constraints	of	the	support	points.	 	665	

The	VGS-tool	has	generated	the	corresponding	force	diagram	F*,	based	666	

on	which	the	transformation	module	(using	Kangaroo2)	has	been	used	667	

to	transform	the	equilibrium	state.	Thus,	the	tool	has	been	used	to	match	668	

the	given	support	points	while	keeping	the	corresponding	edges	in	the	669	

two	graphs	(Ei-j	 and	Ei-j*)	parallel	 to	each	other	and	ensuring	 that	 the	670	

vectors	of	the	non-overlapping	pairs	of	F*	are	kept	parallel	and	equal	in	671	

length.	The	resulting	form	Fb	and	force	diagram	Fb*	can	be	seen	in	Fig.	672	



20.	673	

The	 setup	 has	 been	 used	 to	 evaluate	 two	 alternative	 solutions	 in	 a	674	

further	 step.	 The	 first	 alternative	 was	 triggered	 through	 the	 idea	 to	675	

adapt	the	forces	in	the	tie	to	be	closer	in	magnitude	to	the	ones	in	the	676	

arch.	 Consequently,	 the	 force	 diagram	 Fc*	 undergoes	 a	 local	677	

transformation	(in	the	y-direction).	At	the	same	time,	the	shape	of	the	678	

arch	Fc	and	the	tie	pre-dominantly	reacts	with	a	change	in	the	other	two	679	

dimensions	(in	the	x-	and	z-directions).	 	680	

A	second	alternative	was	generated	 through	a	 targeted	 change	 in	 the	681	

horizontal	 forces	 in	the	cables.	More	specifically,	 the	forces	have	been	682	

increased	 by	 40%.	 Consequently,	 the	 force	 diagram	 Fd*	 undergoes	 a	683	

local	transformation	(in	the	x-direction),	resulting	in	a	tie	geometry	Fd	684	

with	a	larger	sag	(in	the	x-direction).	685	

	686	

Fig.	20:	Case	study:	structural	design	of	a	stadium	roof.	(a)	initial	Form	diagram	F	with	corresponding	force	diagram	F*	seen	from	two	different	points	of	view.	(b)	the	first	687	

transformation	leads	to	the	merging	of	the	support	points	(c)	the	second	transformation	equalizes	the	forces	in	the	main	cable	and	in	the	arch..(d)	the	third	and	last	688	

transformation	increases	the	forces	in	the	horizontal	cables	over	the	pitch.	689	



Fig.	21:	Case	study:	structural	design	of	a	stadium	roof.	Left:	view	from	top;	right,	view	from	under	the	structure.690	

6.	Conclusions	691	

This	 paper	 introduced	 a	 novel	 graphic	 statics	 computational	692	

implementation	for	the	automated	generation	of	vector-based	form	and	693	

force	diagrams	 for	both	2D	and	3D	structures.	The	“global”	algorithm	694	

can	 solve	 any	 structure	 typology	 in	 static	 equilibrium,	 mixing	 both	695	

tension	and	compression	elements	that	are	either	externally	loaded	or	696	

self-stressed.	 	697	

The	contribution	develops	in	detail	two	novel	algorithms	that	planarize	698	

the	topological	diagram	so	that	a	 force	diagram	for	a	structure	with	a	699	

non-planar	 underlying	 graph	 can	 be	 assembled.	 The	 associated	 data	700	

structure	implemented	in	the	computational	procedure	enables	dealing	701	

effectively	with	structures	composed	of	a	large	number	of	elements.	 	702	

Furthermore,	 the	 paper	 explained	 a	 method	 allowing	 real-time	703	

transformations	 of	 form	 or	 force	 diagrams	 using	 the	 numerical	704	

simulation	Kangaroo	 library.	This	 feature	 that	was	 first	 introduced	 in	705	

D’acunto	et	al.,	2017	 can	either	 facilitate	 the	modification	of	an	 initial	706	

force	diagram	 to	 fulfil	 specific	geometrical	 requirements	allowing	 the	707	

designer	to	evaluate	in	real	time	the	consequences	of	such	modifications	708	

in	terms	of	force	magnitudes,	orientation,	and	distribution.	It	can	also	709	

be	used	to	modify	the	forces	to	attain	specific	goals	in	terms	of	directions,	710	

intensity,	distribution,	and	structural	behaviour	(tension/compression),	711	

while	 visualizing	 the	 affected	 geometry	 in	 real-time.	 Some	 sets	 of	712	

specific	constraints	can	also	be	applied	to	this	transformation	regarding	713	

the	form	and	force	diagram	(geometrical	domains,	maximal	or	minimal	714	

values	 of	 lengths/force	 intensities/…).	 Additionally	 it	 can	 be	 used	 to	715	

solve	the	static	equilibrium	of	a	given	structure,	which	also	proves	useful	716	

to	form-find	geometries	at	equilibrium.	717	

	718	

7.	Limitations	and	future	work	 	719	

Further	investigation	will	focus	on	three	main	topics.	720	

First,	the	visualization	of	3D	diagrams	on	a	flat	screen	always	represents	721	

a	difficult	 task.	Future	developments	will	 focus	on	 integrating	specific	722	

visual	effects	that	help	the	user	to	read	more	directly	the	depth	of	the	723	

diagram	and	consequently	perceive	better	the	length	and	angles	of	the	724	

vectors.	Integrating	specific	visualisation	using	augmented	reality	could	725	

be	of	great	use	to	address	this	issue	as	well	in	the	next	steps.	 	726	

Secondly,	 tailored	 force	 diagram	 configurations	 for	 specific	 structural	727	

typologies	will	be	defined	and	 implemented	 into	 the	VGS-tool.	At	 this	728	

stage	of	 the	research,	 the	paper	presented	 two	algorithms	(the	QUAD	729	

and	 the	 MED)	 that	 both	 generate	 different	 arrangements	 of	 force	730	

diagrams.	An	area	of	future	research	is	to	focus	on	specific	assemblies	of	731	

force	diagrams	based	on	a	hierarchical	organization.	This	could	help	the	732	

user	 to	 activate	 specific	 sub-parts.	 That	 is	 first	 related	 to	 more	733	

theoretical/fundamental	 research	 before	 its	 algorithmic	734	

implementation	(i.e.	related	to	graph	theory	and	planarizing	methods).	735	

Moreover,	 an	 extra	 algorithm	 that	 scans	 the	 structures	 and	 identifies	736	

typologies	 and/or	 hierarchy	 of	 its	 arrangement	 could	 be	 introduced	737	

before	the	planarization	of	the	graph.	The	results	would	then	inform	the	738	

planarization	 process	 to	 choose	 between	 one	 of	 the	 available	739	

planarization	algorithms	in	which	the	process	is	specifically	developed	740	

for	such	typology.	 	741	

Eventually	 the	 overall	 algorithmic	 procedure	 will	 be	 monitored	 and	742	

benchmarked	 to	 look	 for	 optimization.	 Nevertheless,	 the	 presented	743	

framework	 gives	 efficient	 results	 and	 computing	 times	 that	 are	more	744	

than	 acceptable	 for	 the	 user.	 A	more	 thorough	 set	 of	 tests	 recording	745	

performance	with	 slightly	different	variants	 in	 implementation	of	 the	746	

planarization	 algorithm	 will	 help	 identify	 how	 to	 improve	 the	747	

performance	of	the	algorithm.	 	 	748	

	749	
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