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This article introduces a new class of di�usive processes with rough mutually excit-
ing jumps for modeling �nancial asset returns. The novel feature is that the memory
of positive and negative jump processes is de�ned by the product of a dampening
factor and a kernel involved in the construction of the rough Brownian motion. The
jump processes are nearly unstable because their intensity diverges to +∞ for a brief
duration after a shock. We �rst infer the stability conditions and explore the features
of the dampened rough (DR) kernel, which de�nes a fractional operator, similar to the
Riemann-Liouville integral. We next reformulate intensities as in�nite-dimensional
Markov processes. Approximating these processes by discretization and then consid-
ering the limit allows us to retrieve the Laplace transform of asset log-return. We
show that this transform depends on the solution of a particular fractional integro-
di�erential equation. We also de�ne a family of changes of measure that preserves
the features of the process under a risk-neutral measure. We next develop an econo-
metric estimation procedure based on the peak over threshold (POT) method. To
illustrate this work, we �t the mutually exciting rough jump-di�usion to time series
of Bitcoin log-returns and compare the goodness of �t to its non-rough equivalent.
Finally, we analyze the in�uence of roughness on option prices.

Keywords: self-exciting process, Epidemic Type Aftershock Sequence (ETAS), jump-
di�usion, fractional Brownian motion, Riemann-Liouville fractional integral.

1 Introduction

The propensity of �nancial price jumps to cluster is abundantly documented in the literature.
The phenomenon is speci�cally studied and evidenced by Yu [38] and Maheu and McCurty [30]
who respectively examine DJIA and individual stocks returns. More recently, Aït-Sahalia et al.
[2] explore international equity market indices on a daily basis and conclude that jump clustering
over time is a strong e�ect for equity market indices.

This phenomenon of jump clustering raises questions about the relevance of classical jump-
di�usion dynamics for modeling asset prices. Unsurprisingly, a recent strand of the literature
has made signi�cant e�orts to develop quantitative methods for modeling jump clustering and
investigating its implications for asset or option pricing. A natural way to capture the clustering
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of jumps is by using self-exciting point processes, where the jump arrival intensity depends on
the number and sometimes the size of previous shocks on asset log-returns, as shown in Hainaut
and Moraux [20]. This approach is closely related to Hawkes self-exciting processes (see Hawkes
[25, 26]), which are also commonly used for modeling high-frequency data. Readers interested
in high-frequency applications may refer to Giot [15], Bowsher [6], Chavez-Demoulin and McGill
[7], Bacry et al. [4], Da Fonseca and Zaatour [10] or Hainaut and Goutte [19], for more recent
contributions. Aït-Sahalia and Jacod [3] examine whether such tick data models are compatible
with the typical macroscopic continuous-time approaches. The literature on �nancial applica-
tions of self-exciting processes is extensive, and for a detailed review, we recommend Hawkes [28].

In a standard self-exciting model, the jump intensity increases after a shock and revert next
to a baseline level. The speed of reversion is determined by a memory kernel. This category
of model is also called �Epidemic Type Aftershock Sequence� (ETAS) and is used for modelling
earthquakes as in Hawkes and Oakes [27]. In the most common speci�cation, the memory kernel
is exponentially decreasing. In this particular case, the jump process is Markov, and we can rely
on Itô's calculus to �nd an analytical expression for its Laplace transform. In a more general
setting, we lose the analytical tractability o�ered by stochastic calculus, except for moments or
asymptotic properties. For instance, Muzy et al. [32] derive the moments of stationary pro-
cesses and study their limit behavior. Stabile and Torrisi [36] study the asymptotic behavior of
non-stationary Hawkes process. Cristofaro et al. [9] propose a fractional di�erential equation
that governs the intensity rate of self-exciting process by using the Caputo fractional derivative.
Hainaut [21] �nds the Laplace transform of self-exciting claims processes for memory kernels
that possess a closed-form inverse Fourier transform.

Recently, Jaisson and Rosenbaum [29] observed that nearly unstable Hawkes processes �t high-
frequency �nancial time series well. Under certain conditions, this unstable process asymptot-
ically behaves as a Brownian Volterra process with a kernel, k(u) = uα−1Eα,α(−uα), where
α ∈ (0, 1] and Eα,α is the two-parameter Mittag-Le�er function. Based on this, Chen et al. [8]
and Habyarimana et al. [18] use this kernel for de�ning a fractional Hawkes process. This kernel
diverges at zero but the jump process remains stable. In this paper, we incorporate a mutually
exciting process with a kernel that diverges at zero to a di�usion, drawing direct inspiration from
the literature on fractional Brownian motions and from Hainaut et al. [23].

The fractional Brownian motion (fBm) has dependent increments, unlike the Brownian mo-
tion (Bm). This dependence is quanti�ed by the Hurst index, denoted as H ∈ (0, 1). A value of
H greater (or lower) than 1/2 corresponds to positive (or negative) correlation between incre-
ments. For H =1/2, we obtain the Bm with independent increments (for details, see Hainaut
[22], chapter 6). FBm's with H < 1/2 exhibit highly volatile sample paths and are referred to
as 'rough' for this reason. At time t > 0, the rough fBm can be expressed as the sum of two
integrals, one over (−∞, 0) and the other over (0, t), with respect to a Bm. The second term is∫ t
0

(t−s)α−1

Γ(α) dWs where α ∈ (0, 1] and Wt is a Bm. This integral remains well-de�ned even when

the rough kernel uα−1

Γ(α) , diverges as u approaches 0. It is also used as an approximation for a
rough fBm. In this article, we refer to it as the 'rough Brownian motion' to distinguish it from
the true rough fractional Brownian motion for clarity.

FBm's and rough Bm have recently garnered signi�cant attention in the literature. Guo et
al. [16] conducted an analytical and numerical study of the fractional Langevin equation driven
by fractional Brownian motion. Zeng et al. [39] addressed the stability problem of the fractional
order Black-Scholes model driven by fractional Brownian motion. Gatheral et al. [14] proposed
a model in which the variance of log-prices is ruled by a rough Bm. Xu and Zhou [37] evaluated
perpetual American put options when the underlying asset price follows a sub-mixed fBm. The
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properties of the rough Heston model, which is based on the rough Bm, are studied by El Euch
and Rosenbaum [11] and [12]. They formulated the process characteristic function with fractional
Riccati equations.

In this study, we combine a di�usion and a bivariate jump process for both positive and negative
shocks with mutual excitation. A noteworthy feature is that the kernels of the jump processes
exhibit roughness akin to that of a fractional Brownian motion (fBm) but are dampened by an
exponentially decaying function to ensure their stability. This novel process, referred to as the
'mutually exciting rough jump-di�usion' (MERJD), o�ers several interesting features for mod-
eling high-frequency or highly volatile assets, such as cryptocurrencies. First, in Section 2, we
demonstrate that the dampened rough (DR) kernel is a Sonine function, and as a result, it has
a conjugate kernel. This property enables us to derive analytical expressions for expected inten-
sities and establish the stability conditions of the bivariate jump process. The MERJD also has
an equivalent in�nite-dimensional Markov representation, presented in Section 3. By discretizing
this representation, we can approximate the Laplace transform of the MERJD. Considering the
limit of the �nite-dimensional approximation leads to the Laplace transform of the MERJD in
Section 4. In a manner similar to El Euch and Rosenbaum [12], this transform depends on the
solution of a fractional di�erential equation (FDE). This FDE involves an operator based on the
DR kernel, similar to the left fractional Riemann-Liouville (RL) integral. As detailed in Section
5, there exists a family of changes of measure that preserve the characteristics of the process
under a risk-neutral measure, making the MERJD well-suited for pricing �nancial derivatives.
In Section 6, we demonstrate that the log-likelihood of rough mutually exciting jump processes
has a closed-form expression. This is combined with a POT method for estimating MERJD
parameters using time series data of hourly Bitcoin returns. We conclude with an analysis of the
impact of roughness on option prices.

2 A dampened rough kernel

We consider an asset price process, denoted by (St)t≥0 de�ned on a probability space Ω endowed
with the natural �ltration (Ft)t≥0 of all processes involved in the dynamic of St and with a

probability measure P. The log-return Xt = ln St
S0

is ruled by a mutually exciting rough jump-
di�usion (MERJD) that is de�ned as follows

Xt =

(
µ− σ2

2

)
t+ σWt +

2∑
j=1

(
L
(j)
t − µj

∫ t

0
λ(j)s ds

)
, (1)

where
(
L
(1)
t

)
t≥0

and
(
L
(2)
t

)
t≥0

are respectively positive and negative point processes, with in-

tensities
(
λ
(1)
t

)
t≥0

and
(
λ
(2)
t

)
t≥0

. (Wt)t≥0 is a Brownian motion and µ, σ ∈ R. µ1 ∈ R+ and

µ2 ∈ R− are respectively the expected jumps of L
(1)
t and L

(2)
2 . These point processes are the sum

of random increments, denoted by J
(1)
k and J

(2)
k ,

L
(j)
t =

N
(j)
t∑

k=1

J
(j)
k , j = 1, 2 .

where
(
N

(j)
t

)
t≥0

is the number of shocks observed up to time t. The statistical distributions of

J
(j)
k ∼ J (j) for j = 1, 2, are noted m(j)(·). J (1) and J (2) are respectively de�ned on (R+,B (R+))
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and (R−,B (R−)). The jump expectations are µj = E
(
J (j)

)
and the moment generating functions

are

Jj(ω) = E
(
eωJ

(j)
)
, (2)

for j = 1, 2.

In the numerical illustration, we examine a MERJD with positive and negative exponentially
distributed jumps. The probability density functions (pdf's) of J (1) and J (2) are in this case
respectively equal to

m(1)(z) = ρ1e
−ρ1z1{z≥0} , m

(2)(z) = −ρ2e−ρ2z1{z≤0} . (3)

where ρ1 ∈ R+ and ρ2 ∈ R−. For this choice of density, µj =
1
ρj

and Jj(ω) =
ρj

ρj−ω for j = 1, 2,

with ω < ρ1 and ω > ρ2.

The intensities depend on the past realizations of the counting processes
(
N

(j)
t

)
t≥0

for j = 1, 2

as follows: (
λ
(1)
t

λ
(2)
t

)
=

(
λ
(1)
0

λ
(2)
0

)
+

(
η11 η12
η21 η22

)( ∫ t−
0 e−β(t−s) (t−s)α−1

Γ(α) dN
(1)
s∫ t−

0 e−β(t−s) (t−s)α−1

Γ(α) dN
(2)
s

)
(4)

where α ∈ (0, 1], β , ηi,j ∈ R+ for i, j ∈ {1, 2}. The stability conditions of these processes are

discussed in Proposition 4. The functions k(u) = e−βu uα−1

Γ(α) is referred to as the 'memory �kernel�.

This is the product of a dampening term, e−βu, and the rough kernel, uα−1

Γ(α) . This kernel is called

�rough� because its is involved in the construction of the rough Brownian motion (rBm). This

rBm is de�ned as an integral
∫ t
0

(t−s)α−1

Γ(α) dWs where (Ws)s≥0 is a Brownian motion. As explained
in the following paragraphs, the dampening factor is necessary to prevent the divergence of inten-
sities. When α = 1, we obtain a standard bivariate Hawkes process with an exponential kernel.
We assume that the dampening and roughness parameters (β and α) are the same for positive
and negative jumps. While this assumption may seem restrictive, it is necessary to maintain
analytical tractability in subsequent developments.

Before further studying the properties of the MERJD, we focus on the features of the dampened
rough kernels. They belong to the class of Sonine functions [35] and they de�ne operators similar
to left fractional Riemann-Liouville integrals (de�ned in Equation 62 of Appendix A).

De�nition 1. The kernel k(u) ∈ L1
loc(R+) is a Sonine function if there exists a conjugate kernel

l(u) ∈ L1
loc(R+) such that ∫ t

0
l(t− u) k(u) du = 1 , ∀t > 0. (5)

Let ϕ ∈ L1(R+) , the Sonine operators associated to k(u) and l(u) are de�ned as

(Kϕ)(t) =

∫ t

0
k (t− u)ϕ (u) du , ∀t ≥ 0, (6)

(Lϕ)(t) =

∫ t

0
l (t− u)ϕ (u) du , ∀t ≥ 0.

We observe a similarity between the Riemann-Liouville integral and (Kϕ) (t) =
∫ t
0 e

−β(t−u) (t−u)α−1

Γ(α) ϕ(u)du

(
Iα0+ϕ

)
(t) =

∫ t

0

(t− u)α−1

Γ(α)
ϕ(u) du , (7)
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The operator K is called the tempered Riemann-Liouville (RL) integral in the literature. Meer-
schaert et al. [31] study the properties of this operator and of the tempered fractional di�usion.

Remark that kernels k(u) and l(u) are necessary unbounded as u → 0. Therefore, we need
to establish conditions on the kernel to ensure the existence of the integral of Lp functions. The
kernel k(u) can be expressed as

k(u) =
g(u)

u1−α
, u > 0 , sup

u≥0
|g(u)| <∞ ,

where g(u) = 1
Γ(α)e

−β u is bounded over R+. From the Hardy-Littlewood [24] Sobolev inequality,

a su�cient condition is then α < 1/p. In this case, the operator acts from Lp(R), 1 < p < 1/α
into Lq(R) where 1/q = 1/p − α. Throughout the remainder of this article, we consider L1-
integrands which ensures that Kϕ is well de�ned for α ∈ [0, 1). We refer to Samko and Cardoso
[34] for the necessary conditions of the existence of other integrals with general Sonine kernels.

We denote by (Lϕ) (z) =
∫∞
0 e−zuϕ(u) du, the Laplace transform of a function, ϕ ∈ L1(R+).

By direct calculation, we determine the Laplace transform of the kernel:

(Lk) (z) =
1

(β + z)α
. (8)

By Laplace rule for convolution, we �nd that the Laplace transform of the tempered RL integral
of a function ϕ(t) is

(L (Kϕ)) (s) =
L (ϕ) (s)

(β + z)α
. (9)

Furthermore, the Sonine condition (5) is rewritten in terms of Laplace transforms of k(·) and
l(·):

(Lk) (z) (Ll) (z) =
1

z
. (10)

This last relation allows us to prove the next result.

Proposition 1. The conjugate kernel l(·) of k(·) satisfying condition (5), is given by

l(u) = βα +
α

Γ(1− α)

∫ ∞

u

e−βs

s1+α
ds . (11)

Proof. We check that the Laplace transform of l(·) satis�es the condition (10). We �rst integrate
by parts the integral in Eq. (11):

α

∫ ∞

u

e−βs

s1+α
ds = e−βuu−α − β

∫ ∞

u
e−βss−α du .

(Ll) (z) is next rewritten as the sum:

(Ll) (z) = βα
∫ ∞

0
e−zudu+

1

Γ(1− α)

∫ ∞

0
e−(z+β)uu−αdu (12)

− β

Γ(1− α)

∫ ∞

0

∫ ∞

u
e−βse−zus−α ds du .

After a change of variable v = (z + β)u, we obtain that∫ ∞

0
e−(z+β)uu−αdu = (z + β)α−1Γ(1− α) .
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Using the Fubini's theorem, we change the order of integration in the last integral of Equation
(12). We deduce that ∫ ∞

0

∫ ∞

u
e−βse−zus−α ds du

=
1

z

∫ ∞

0
e−βss−α ds− 1

z

∫ ∞

0
e−(β+z)ss−α ds

=
βα−1

z
Γ(1− α)− (β + z)α−1

z
Γ(1− α) .

Combining previous results allows us to �nd that the Laplace transform of the conjugate kernel
of k(·) is (Ll) (z) = (β+z)α

z , which satis�es the condition (10).

The tempered RL integral (Kϕ)(t) admits an inverse operator, comparable to a fractional
derivative.

Proposition 2. The inverse operator of the tempered RL integral K, is the derivative of its

conjugate kernel. For ϕ ∈ L1 (R+), it is equal to(
K−1ϕ

)
(t) =

d

dt
(Lϕ) (t) (13)

=
d

dt

∫ t

0
l (t− u)ϕ (u) du .

This inverse operator is referred to as �tempered RL derivative�.

Proof. This result is a consequence of the Sonine condition. We apply the operator L to Kϕ and
switch the order of integration. If we do the change of variable v = s− u, we have

(LKϕ) (t) =

∫ t

0
l(t− s)

∫ s

0
k(s− u)ϕ(u) du ds

=

∫ t

0
ϕ(u)

∫ t−u

0
l(t− s)k(s− u) ds du

=

∫ t

0
ϕ(u)

∫ t−u

0
l(t− u− v)k(v) dv du .

From the Sonine condition (5), the inner integral is equal to 1. Deriving both sides with respect
to t, leads to the conclusion, K−1ϕ = d

dt (Lϕ).

The tempered RL integral and derivative will be later involved in the construction of the
Laplace transform of the MERJD, in Section 4. Before doing so, we determine the expected
intensities from which we infer conditions of stability.

Proposition 3. Let us note uj(t) = E0

(
λ
(j)
t

)
for j = 1, 2. The expected intensities at time

t ≥ 0 conditional on the �ltration F0, are given by

E0

(
λ
(1)
t

λ
(2)
t

)
=

(
λ
(1)
0

λ
(2)
0

)
+

(
η11 η12
η21 η22

)(
(Ku1) (t)
(Ku2) (t)

)
.

where (Ku1) (t) and (Ku2) (t) are equal to(Ku1) (t) =
∫ t
0

(
λ
(1)
0 + η12 (Ku2) (s)

)
e−β(t−s)(t− s)α−1Eα,α (η11(t− s)α) ds ,

(Ku2) (t) =
∫ t
0

(
λ
(2)
0 + η21 (Ku1) (s)

)
e−β(t−s)(t− s)α−1Eα,α (η22(t− s)α) ds ,

(14)

and Eα,α(·) is the two parametric Mittag Le�er function (see Appendix for de�nition and prop-

erties).
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Proof. From Eq (4) and by de�nition of the tempered RL integral, we have(
u1(t)
u2(t)

)
=

(
λ
(1)
0

λ
(2)
0

)
+

(
η11 η12
η21 η22

)(
(Ku1) (t)
(Ku2) (t)

)
. (15)

From Eq. (9), the Laplace transform of Kuj , for j = 1, 2, is equal to (s+ β)−α Uj(s) where
Uj(s) =

∫∞
0 e−s tuj(t) dt. Therefore, the Laplace transform of the system (15) is equal toU1(s) =

λ
(1)
0
s + η11 (s+ β)−α U1(s) + η12 (s+ β)−α U2(s) ,

U2(s) =
λ
(2)
0
s + η21 (s+ β)−α U1(s) + η22 (s+ β)−α U2(s) .

Rearranging terms, allows us to express U1(s) and U2(s) as follows
U1(s)
(s+β)α

=
λ
(1)
0
s

1
((s+β)α−η11)

+ η12
((s+β)α−η11)

U2(s)
(s+β)α

,

U2(s)
(s+β)α

=
λ
(2)
0
s

1
((s+β)α−η22)

+ η21
((s+β)α−η22)

U1(s)
(s+β)α

.
(16)

Given that
Uj(s)
(s+β)α

= L (Kuj) (s) and L
(
e−βttα−1Eα,α(±ηtα)

)
(s) = 1

(s+β)α∓η
we obtain the

system (14).

The intensities are by construction unstable since the DR kernel diverges at origin. The next
proposition presents the conditions that ensure the existence of counting processes.

Proposition 4. If the parameters de�ning λ
(1)
t and λ

(2)
t ful�ll the following three conditions

βα > η11 , βα > η22 ,
(βα − η11) (β

α − η22) > η12η21 ,
(17)

the expected intensities admit limits when t→ ∞, that are:(
λ
(1)
∞

λ
(2)
∞

)
= lim

t→∞
E0

(
λ
(1)
t

λ
(2)
t

)
=

 λ
(1)
0 (βα−η22)βα+η12λ

(2)
0 βα

(βα−η11)(βα−η22)−η12η21
λ
(2)
0 (βα−η11)βα+η21λ

(1)
0 βα

(βα−η11)(βα−η22)−η12η21

 . (18)

Proof. From Equations (16), we deduce that the Laplace transform U1(s) of E0

(
λ
(1)
t

)
is equal

to

U1(s)

(s+ β)α
=

λ
(1)
0

s ((s+ β)α − η11)
+

η12λ
(2)
0

s ((s+ β)α − η11) ((s+ β)α − η22)

+
η12η21U1(s)

((s+ β)α − η11) ((s+ β)α − η22) (s+ β)α
.

If we isolate U1(s), the Laplace transform of E0

(
λ
(1)
t

)
is

U1(s) =
λ
(1)
0 ((s+ β)α − η22) (s+ β)α + η12λ

(2)
0 (s+ β)α

s (((s+ β)α − η11) ((s+ β)α − η22)− η12η21)
.

According to the �nal value theorem, if (Lf)(s) is the Laplace transform of f(t) , then lims→0+ s(Lf)(s) =
f(∞) if all poles of s(Lf)(s) are in the left half-plane. This property allows us to retrieve λ

(1)
∞ :

lim
t→∞

u1(t) = lim
s→0+

sU1(s)

=
λ
(1)
0 (βα − η22)β

α + η12λ
(2)
0 βα

(βα − η11) (βα − η22)− η12η21
.

λ
(2)
∞ is obtained in the same manner. By de�nition, these expectations must be positive and

bounded and therefore conditions (17) must be ful�lled.
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By construction, the MERJD is not a Markov process.However, we can represent the model as
an in�nite-dimensional Markov process because the power xα−1 has an integral representation.
This step is detailed in the next proposition.

Proposition 5. For j = 1, 2, let us consider a family of auxiliary jump processes Z
(j,ξ)
t , indexed

by ξ ∈ R+ :

Z
(j,ξ)
t =

∫ t

0
e−(β+ξ)(t−s)dN (j)

s . (19)

Let us denote γ(dξ) := ξ−α

Γ(1−α)dξ for ξ ≥ 0. The intensities λ
(j)
t are expressed as integrals of

Z
(j,ξ)
t with respect to γ(dξ):(

λ
(1)
t

λ
(2)
t

)
=

(
λ
(1)
0

λ
(2)
0

)
+

(
η11 η12
η21 η22

)( 1
Γ(α)

∫∞
0 Z

(1,ξ)
t γ(dξ)

1
Γ(α)

∫∞
0 Z

(2,ξ)
t γ(dξ)

)
. (20)

Proof. We check by direct integration that xα−1 is the following integral

xα−1 =

∫ ∞

0
e−xξ ξ−α

Γ(1− α)
dξ .

By construction, the process Z
(j,ξ)
t is an Ornstein-Uhlenbeck jump process, reverting toward 0

and ruled by the dynamic

dZ
(j,ξ)
t = −(β + ξ)Z

(j,ξ)
t dt+ dN

(j)
t . (21)

This process has a �nite expectation for all ξ ∈ R+. Furthermore the integrands in the next
Equation being bounded functions, we can use the �rst version of the Fubini's theorem (see e.g.
Theorem 64, p207 of Protter [33]) for semimartingales to express the intensities as:(

λ
(1)
t

λ
(2)
t

)
=

(
λ
(1)
0

λ
(2)
0

)
+

(
η11 η12
η21 η22

)( ∫ t−
0

∫∞
0 e−(ξ+β)(t−s) ξ−α

Γ(1−α)dξ dN
(1)
s∫ t−

0

∫∞
0 e−(ξ+β)(t−s) ξ−α

Γ(1−α)dξ dN
(2)
s

)

=

(
λ
(1)
0

λ
(2)
0

)
+

(
η11 η12
η21 η22

)( 1
Γ(α)

∫∞
0 Z

(1,ξ)
t γ(dξ)

1
Γ(α)

∫∞
0 Z

(2,ξ)
t γ(dξ)

)
. (22)

From Equation (21), we check that Z
(j,ξ)
t is the sum of Z

(j,ξ)
u for t ≥ u and of stochastic integral

from u to t with respect to N
(j)
s :

Z
(j,ξ)
t = Z(j,ξ)

u e−(β+ξ)(t−u) +

∫ t

u
e−(β+ξ)(t−s) dN (j)

s . (23)

Injecting this in Equation (22) allows us to rewrite λ
(j)
t as the sum of λ

(j)
u and of linear combi-

nations of integrals from u to t with respect to N
(j)
s and γ(dξ):(

λ
(1)
t

λ
(2)
t

)
=

(
λ
(1)
u

λ
(2)
u

)
+

(
η11 η12
η21 η22

) ∫ t
u e

−β(t−s) (t−s)α−1

Γ(α) dN
(1)
s∫ t

u e
−β(t−s) (t−s)α−1

Γ(α) dN
(2)
s

 (24)

+

(
1

Γ(α)

∫∞
0 Z

(1,ξ)
u

(
e−(β+ξ)(t−u) − 1

)
γ(dξ)

1
Γ(α)

∫∞
0 Z

(2,ξ)
u

(
e−(β+ξ)(t−u) − 1

)
γ(dξ)

)]
.
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We infer that the in�nite-dimensional process (Yt)t≥0 :=

((
λ
(j)
t

)
j=1,2

,
(
Z

(j,ξ)
t

)
j=1,2 , ξ∈R+

,
(
N

(j)
t

)
j=1,2

)
t≥0

can be rewritten for u ≤ t as the sum of Yu and a vector of increments depending only of evolu-
tion of (Yt)t≥0 between u and t. Therefore, there exists a probability measure P on the domain
of (Yt)t≥0 such that

P(Yt ∈ B | Fu) = P(t− u, Yu, B) ,

and the process is Markov. A similar rewriting of a non-Markov Hawkes process is used in
Hainaut [21] for kernels having a spectral representation. The main di�erences with this article
are that the considered kernels do not diverge at the origin and that equivalent processes to

Z
(j,ξ)
t are de�ned in the complex plane. This method is also used in [1] for approximating rough

volatility models.

3 Finite-dimensional approximation

In this section, we approximate the integral in (20) on a �nite grid of processes Z
(j,ξ)
t . This

method allows us to �nd the Laplace transform of the log-return (Xt)t≥0, using Itô's calculus.
For this purpose, we approach γ(·) by a discrete measure on a �nite numbers of atoms. We

consider a partition E(n) := {0 < ξ
(n)
0 < ξ

(n)
1 < ... < ξ

(n)
n < ∞}. The mid point of the interval

(ξ
(n)
l , ξ

(n)
l+1) is

bl =
ξ
(n)
l + ξ

(n)
l+1

2
, l ∈ {0, ..., n− 1} (25)

The mass of atoms at bl, is de�ned as the integral of γ(·) over the interval :

wl =

∫ ξ
(n)
l+1

ξ
(n)
l

γ(dz) , l ∈ {0, ..., n− 1} . (26)

If δbl is the Dirac measure located at point bl, the discrete measure γn(·) approximating γ(·) is
de�ned as

γn(dξ) =

n−1∑
l=0

wlδbl(ξ) dξ.

In a similar manner to [5], the partition E(n) satis�es three conditions:

1. limn→∞ ξ
(n)
0 = 0 and limn→∞ ξ

(n)
n = ∞,

2. limn→∞max |ξ(n)i+1 − ξ
(n)
i | = 0,

3. E(n) ⊂ E(n+1).

Proposition 6. Under assumptions (1)-(2)-(3), a non-negative and convex function g(.), γ−integrable,
is such that

lim
n→∞

∫ ∞

0
g(ξ)γn(dξ) =

∫ ∞

0
g(ξ)γ(dξ) ,

and the convergence is monotone increasing.

The sketch of the proof is provided e.g. in [5]. We note Z̃
(j,l)
t := Z

(j,bl)
t for j = 1, 2 and

l = 1, ...n− 1. Each Z̃
(j,l)
t is mean reverting and ruled by the SDE

dZ̃
(j,l)
t =

(
− (β + bl) Z̃

(j,l)
t

)
dt+ dÑ

(j)
t j ∈ {1, 2},

9



where Ñ
(j)
t is the counting process in the �nite-dimensional model. Its intensity, noted λ̃

(j)
t , is

the sum of Z̃
(j,l)
t , weighted by the mass of atoms:(

λ̃
(1)
t

λ̃
(2)
t

)
=

(
λ̃
(1)
0

λ̃
(2)
0

)
+

(
η11 η12
η21 η22

)( ∑n−1
l=0

wl
Γ(α) Z̃

(1,l)
t∑n−1

l=0
wl

Γ(α) Z̃
(2,l)
t

)
.

The next corollary states the convergence of λ̃
(j)
t to λ

(j)
t .

Corollary 1. Under the assumptions of Proposition 6, it holds for t ≥ 0 that limn→∞ λ̃
(j)
t (ω) =

λ
(j)
t (ω), almost surely.

Proof. Let us consider �xed sample paths Ñ
(j)
s (ω) for s ∈ [0, t] where ω ∈ Ω. Thus,

Z̃
(j,ξ)
t (ω) =

∫ t

0
e−(β+ξ)(t−s) dÑ (j)

s (ω)

is a positive function of ξ and is decreasing and convex since

∂

∂ξ
Z̃

(j,ξ)
t (ω) ≤ 0 ,

∂2

∂ξ2
Z̃

(j,ξ)
t (ω) ≥ 0 .

Therefore, from Proposition 6,∫ ∞

0
Z̃

(j,ξ)
t (ω)γn(dξ) →

∫ ∞

0
Z

(j,ξ)
t (ω)γ(dξ) ,

with N
(j)
s (ω) = Ñ

(j)
s (ω).

The in�nitesimal dynamics of jump intensities are then equal to(
dλ̃

(1)
t

dλ̃
(2)
t

)
=

(
η11 η12
η21 η22

)(
−

n−1∑
l=0

wl (β + bl)

Γ(α)

(
Z̃

(1,l)
t

Z̃
(2,l)
t

)
dt+

n−1∑
l=0

wl

Γ(α)

(
dÑ

(1)
t

dÑ
(2)
t

))
.(27)

In the discrete framework, the approximate log-return, denoted
(
X̃t

)
≥0

is driven by the following

SDE:

dX̃t =

(
µ− σ2

2

)
dt+ σdWt +

2∑
j=1

(
dL̃

(j)
t − µj λ̃

(j)
t dt

)
. (28)

Applying Itô's lemma to S̃t = S0e
X̃t , allows us to show that the approximate asset price follows

a geometric dynamic:

dS̃t

S̃t
= µdt+ σdWt +

2∑
j=1

((
eJ

(j) − 1
)
dÑ

(j)
t − µkλ̃

(j)
t dt

)
. (29)

The next proposition provides the Laplace transform of the approximate MERJD conditional
on the �ltration of Ft, in terms of backward ordinary di�erential equations (ODE's). To clarify
developments, we adopt bold symbols for all vectors, i.e.

λ̃t =

(
λ̃
(1)
t

λ̃
(2)
t

)
, Z̃

(l)
t =

(
Z̃

(1,l)
t

Z̃
(2,l)
t

)
, η.,j =

(
η1j
η2j

)
.
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Proposition 7. Let ω ∈ R+. The Laplace function of the MERJD log-return X̃t at time t,
conditional on Ft, is given by the following expression

E
(
e−ωX̃s | Ft

)
= exp

(
q0(s− t) + qλ(s− t)⊤λ̃t +

n−1∑
l=0

wl

Γ(α)
ql(s− t)⊤Z̃

(l)
t − ωX̃t

)
(30)

where

q0(s− t) = −ω
(
µ− σ2

2

)
(s− t) + ω2σ

2

2
(s− t) , (31)

and vector of functions qλ(u), ql(u) : R+ → R2, solve ODE's:
d q

(j)
λ (u)

du = ωµj +
(
Jj(−ω) exp

(∑n−1
l=0

wl
Γ(α)

(
η⊤.,jqλ(u) + q

(j)
l (u)

))
− 1
)
,

d q
(j)
l (u)

du = − (β + bl)
(
q
(j)
l (u) + η⊤.,jqλ(u)

)
.

(32)

with the initial conditions q
(j)
λ (0) = 0 and q

(j)
l (0) = 0 for j ∈ {1, 2} and l = 0, ..., n−1. We recall

that Jj(.) is the mgf of jump sizes as de�ned in equation (2).

Proof. We denote by f

(
t, X̃t, λ̃t,

(
Z̃

(l)
t

)
l=0,...,n−1

, L̃t

)
, the Laplace transform E

(
e−ωX̃s | Ft

)
.

f(·) being a conditional expectation, it is also a martingale and E (df | Ft) = 0. From Itô's
lemma, we infer that f(·) satis�es a stochastic di�erential equation (SDE):

0 = ∂tf +

(
µ− σ2

2
− µ1λ̃

(1)
t − µ2λ̃

(2)
t

)
∂X̃f +

σ2

2
∂X̃X̃f (33)

−
n−1∑
l=0

(β + bl)
(
Z̃

(1,l)
t ∂

Z̃
(1,l)
t

f + Z̃
(2,l)
t ∂

Z̃
(2,l)
t

f
)

−
n−1∑
l=0

wl (β + bl)

Γ(α)

2∑
j=1

(
ηj1Z̃

(1,l)
t + ηj2Z̃

(2,l)
t

)
∂λ̃(j)f +

2∑
j=1

λ̃
(j)
t

∫ ∞

0
f

(
t, λ̃t +

∑n−1
l=0 wl

Γ(α)

(
η1j
η2j

)
,
(
Z̃

(j,l)
t + 1

)
l
, X̃t + z

)
− f(.)m(j)(dz)

As all processes are a�ne, we make the Ansatz that f(·) is an exponential a�ne function of the
type

f(·) = exp

(
q0(s− t) + qλ(s− t)⊤λ̃t +

n−1∑
l=0

wl

Γ(α)
ql(s− t)⊤Z̃

(l)
t − ωX̃t

)
. (34)

The partial derivatives of f(·) with respect to state variables are given by

∂Z̃(j,l)f = f
wl

Γ(α)
q
(j)
l (s− t) ,

∂λ̃j
f = f q

(j)
λ (s− t) ,

∂X̃f = −ωf , ∂X̃X̃f = ω2f ,

whereas, the derivative of f with respect to time is equal to

∂tf(·) = f(·)

(
∂tq0(s− t) + ∂tqλ(s− t)⊤λ̃t +

n−1∑
l=0

wl

Γ(α)
∂tql(s− t)⊤Z̃

(l)
t

)
.
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Under the assumption (34), the jump terms in Equation (33) are developed in the following way:

f

(
t, λ̃t +

∑n−1
l=0 wl

Γ(α)

(
η1j
η2j

)
,
(
Z̃

(j,l)
t + 1

)
l
, X̃t + z

)
− f(·) =

f(.)

(
exp

(
n−1∑
l=0

wl

Γ(α)

(
η⊤.,jqλ(s− t) + q

(j)
l (s− t)

)
− ωz

)
− 1

)
.

From previous equations, we infer that q0(·) , qλ(·) and ql(·) satisfy:

0 = ∂tq0(s− t) + ∂tqλ(s− t)⊤λ̃t +
n−1∑
l=0

wl

Γ(α)
∂tql(s− t)⊤Z̃

(l)
t − ω

(
µ− σ2

2

)

+
ω2σ2

2
−

n−1∑
l=0

(β + bl)wl

Γ(α)

(
Z̃

(1,l)
t q

(1)
l (s− t) + Z̃

(2,l)
t q

(2)
l (s− t)

)
−

n−1∑
l=0

(β + bl)wl

Γ(α)

2∑
j=1

(
ηj1Z̃

(1,l)
t + ηj2Z̃

(2,l)
t

)
q
(j)
λ (s− t) + ω

2∑
j=1

λ̃
(j)
t µj +

2∑
j=1

λ̃
(j)
t

(∫ ∞

0
exp

(
n−1∑
l=0

wl

Γ(α)

(
η⊤.,jqλ(s− t) + q

(j)
l (s− t)

)
− ωz

)
− 1m(j)(dz)

)
.

Grouping and cancelling terms independent of state variables leads to the expression (31) for

q0(·). Cancelling terms multiplying Z̃
(j,l)
t give us for j = 1, 2,

0 =
wl

Γ(α)
∂tq

(j)
l (s− t)− wl (β + bl)

Γ(α)

×
(
η1jq

(1)
λ (s− t) + η2jq

(2)
λ (s− t) + q

(j)
l (s− t)

)
,

that is the second equation in (32). The �rst equation in (32) is obtained by cancelling terms

multiplying λ̃
(j)
t .

The next corollary states that functions ql(u) admit an integral representation.

Corollary 2. The function q
(j)
l (u) solving the ODE's in Equation (32) are equal to

q
(j)
l (u) = −

∫ u

0
(β + bl) e

− (β+bl) (u−v)η⊤.,jqλ(v) dv , j = 1, 2. (35)

This result is checked by deriving the expression of q
(j)
l (u) with respect to u. In this way, we

�nd the �rst ODE in (32). In Hainaut ([22], Chapter 5), the characteristic function of a non-
Markov Hawkes process is retrieved by considering the limit of the partition E(n). We cannot
apply the same approach for the dampened rough kernel. The reason is that the limit of the sum
of wl, involved in Equation (32), is not de�ned when n→ ∞:

lim
n→∞

n−1∑
l=0

wl

Γ(α)
=

1

Γ(α)

∫ ∞

0

ξ−α

Γ(1− α)
dξ = ∞ .

Nevertheless, we prove in the next section that the Laplace transform of the rough point process
seen from time t = 0, admits a closed form expression. To establish this result, we need additional
intermediate results.
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Corollary 3. The derivative of the function qλ solves the following equation:

dq
(j)
λ (s− t)

ds
= ωµj + E

(
e−ωJ(j)

)
exp

(
n−1∑
l=0

wl

Γ(α)

∫ s−t

0
e−(β+bl)(s−t−v)η⊤.,j

dqλ(v)

dv
dv

)
− 1 .(36)

Proof. As − 1
β+bl

d q
(j)
l (u)

du = q
(j)
l (u) + η⊤.,jqλ(u), the �rst ODE in (32) may be rewritten as

d q
(j)
λ (u)

du
= ωµj +

(
Jj(−ω) exp

(
−

n−1∑
l=0

wl

Γ(α) (β + bl)

d q
(j)
l (u)

du

)
− 1

)

Given that
dq

(j)
λ (s−t)

ds =
dq

(j)
λ (u)

du

∣∣∣∣
u=s−t

and
dq

(j)
l (s−t)

ds =
dq

(j)
l (u)

du

∣∣∣∣
u=s−t

, this is equivalent to

d q
(j)
λ (s− t)

ds
= ωµj +

(
Jj(−ω) exp

(
−

n−1∑
l=0

wl

Γ(α) (β + bl)

d q
(j)
l (s− t)

ds

)
− 1

)
. (37)

From the integral representation (35) of q
(j)
l (u), we infer that

q
(j)
l (s− t) = −

∫ s−t

0
(β + bl) e

− (β+bl) (s−t−v)η⊤.,jqλ(v) dv , j = 1, 2.

After the change of variable v = s− u, we rewrite q
(j)
l (s− t) as follows:

q
(j)
l (s− t) = −

∫ s

t
(β + bl) e

−(β+bl) (u−t)η⊤.,jqλ(s− u) du,

As qλ(0) = 0, the derivative of q
(j)
l (s− t) with respect to s is given by

dq
(j)
l (s− t)

ds
= −

∫ s

t
(β + bl) e

− (β+bl) (u−t)η⊤.,j
dqλ(s− u)

ds
du .

Doing a last change of variable, v = s− u, leads to Equation (36).

From this last proposition, we will infer the Laplace transform of the MERJD by considering
the limit.

4 Laplace transform of the MERJD log-return

We now have the necessary tools for computing the Laplace transform of the MERJD process,
Xt. The next proposition states that its initial value depends on a function solving a fractional
di�erential equation involving the tempered RL integral and derivative such as de�ned in Section
2.

Proposition 8. The Laplace transform of the log-return (Xs)s≥0, conditional on F0, for ω ∈ R+,

is equal to

Υs(−ω) := E
(
e−ωXs | F0

)
= exp

(
−
(
ω

(
µ− σ2

2

)
− ω2σ2

2

)
s+ qλ(s)

⊤λ0

)
, (38)

where q
(j)
λ (s) for j = 1, 2 solves a forward ODE:

dq
(j)
λ (s)

ds
= ωµj + Jj(−ω) exp

(
η⊤.,j

(
K
dqλ
ds

)
(s)

)
− 1 (39)
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with the initial condition q
(j)
λ (0) = 0 and where K

dq
(j)
λ
ds is the tempered Riemann-Liouville integral

of
dq

(j)
λ
ds : (

K
dq

(j)
λ

ds

)
(s) =

1

Γ(α)

∫ s

0

e−β (s−u)

(s− u)1−α

dq
(j)
λ (u)

du
du.

An equivalent representation is obtained by de�ning ψ(j)(s) :=

(
K

dq
(j)
λ
ds

)
(s). this function solves

the fractional di�erential equation(
K−1ψ(j)

)
(s) = ωµj + Jj(−ω) exp

(
η⊤.,k ψ(s)

)
− 1 , (40)

where
(
K−1ψ(j)

)
(s) =

dq
(j)
λ
ds (s) is the tempered Riemann-Liouville derivative of ψ(j)(s):

(
K−1ψ(j)

)
(s) =

d

ds

∫ s

0

(
βα +

α

Γ(1− α)

∫ ∞

s−u

e−βv

v1+α
dv

)
ψ(j) (u) du .

Proof. We consider the limit of the exponential term in Equation (36) when the size of the
partition E(n) tends to in�nity. By construction, the following limit is well de�ned and given by:

lim
n→∞

n−1∑
l=0

wl

Γ(α)

∫ s−t

0
e−(β+bl)(s−t−v)η⊤.,j

dqλ(v)

dv
dv

=
1

Γ(α)

∫ s−t

0

∫ ∞

0
e− ξ (s−t−v) γ(dξ)e−β (s−t−v)η⊤.,j

dqλ(v)

dv
dv

= η⊤.,j

∫ s−t

0

e−β (s−t−v)

Γ(α)(s− t− v)1−α

dqλ(v)

dv
dv .

At time t = 0, i.e. conditional on F0, we recognize the the tempered Riemann-Liouville of ∂sqλ:(
K
dqλ
ds

)
(s) =

∫ s

0

e−β (s−u)

Γ(α)(s− u)1−α

dqλ(u)

du
du , (41)

and combining Equations (36) and (41) leads to the fractional equation (39).

dq
(j)
λ (s)

ds
= ωµj + E

(
e−ωJ(j)

)
exp

(
η⊤.,j

(
K
dqλ
ds

)
(s)

)
− 1

Given that K−1Kϕ = ϕ, We immediately infer that ψ(s) =
(
K dqλ

ds

)
(s) and Equation (65).

When α → 1, the rough jump process converges toward a standard Hawkes process with an
exponential kernel. In this case, the tempered RL integral of dqλ

ds converges toward the following
integral

lim
α→1

(
K
dqλ
ds

)
(s) =

∫ s

0
e−β (s−u)dqλ(u)

du
du ,

and from Equation (36),
dq

(j)
λ
ds solves the integro-di�erential equation:

dq
(j)
λ (s)

ds
= ωµj + Jj(−ω) exp

(
η⊤.,j

∫ s

0
e−β (s−u)dqλ(u)

du
du

)
− 1 . (42)

14



In practice, we numerically solve Equation (39). We divide [0, s] in n subintervals [sk, sk+1] of

length ∆, for k = 0, ..., n− 1. We denote by g(k) := dqλ(s)
ds

∣∣∣
s=sk

, the derivative of qλ at time sk

and we next use an explicit approximation of the tempered RL fractional integral :

g(j)(k) = ωµj + E
(
e−ωJ(j)

)
exp

(
η⊤.,j
Γ(α)

k−1∑
u=0

e−β (sk−su)

(sk − su) 1−α
g(u)∆

)
− 1 . (43)

The recursion is initialized by setting g(j)(0) = ωµj+E
(
e−ωJ(j)

)
−1. We can utilize the previous

results to calculate the probability density function of the log-return (Xt)t≥0. Our approach
relies on a discrete fast Fourier transform (DFFT). We invert the characteristic function of the
process, which is the Laplace transform (38) evaluated on the imaginary axis. Let's denote the
characteristic function of Xs as Υs(iω) = E

(
ei ωXs | F0

)
for ω ∈ R. This function is also the

inverse Fourier transform of the probability density function (pdf) fXs (x) of Xs|F0. Therefore,
we can retrieve the density by computing the following integral (the Fourier transform, F [·], of
Υs(·)):

fXs (x) =
1

2π
F [Υs(iω)](x)

=
1

2π

∫ +∞

−∞
Υs(iω)e

−iωxdω . (44)

This integral is approximated by discretization with the DFFT algorithm recalled in Appendix
B.

5 Change of measure

To avoid arbitrage, derivatives valuation is conducted under an equivalent measure known as
the risk-neutral measure. Under this measure, discounted asset prices behave as martingales.
However, our model features market incompleteness due to the presence of multiple non-traded
risk factors. This incompleteness leads to the existence of various equivalent measures, all of
which could potentially serve as candidates for de�ning a risk-neutral measure.

We begin by considering changes of measure within the �nite-dimensional approximation pre-
sented in Section 3. Similar to the approach described in Section 4, the dynamics of the MERJD
under the transformed measure will be obtained by taking the limit of limn→∞ E(n). We focus
on a family of measure changes induced by exponential martingales in the form:

M̃t = exp

(
−1

2

∫ t

0
φ(s)2ds−

∫ t

0
φ(s)dWs

)
× (45)

exp

 2∑
j=1

[
ζjL̃

(j)
t + (1− Jj(ζj))

∫ t

0
λ̃(j)s ds

] ,

where φ(t) is a Ft-adapted process such that
∫ t
0 |φ(s)|

2 ds < ∞ and ζj ∈ R are such that
Jj(ζj) <∞ for j = 1, 2. Let us recall that the moment generating function of jumps is denoted

by Jj(ω) = E
(
eωJ

(j)
)
for j = 1, 2. We can check that M̃t is a local martingale. Using the Itô's

lemma allows us to infer that

dM̃t = −M̃tφ(t)dWt + M̃t

2∑
j=1

(1− Jj(ζj)) λ̃
(j)
t dt

+ M̃t

2∑
j=1

(
exp

(
ζjJ

(j)
)
− 1
)
dN

(j)
t .
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The expectation being null, E(dM̃t) = 0, the integral of dM̃t is a local martingale. We denote by
Q the measure de�ned by the change of measure (45). This new measure preserves the structure
of the MERJD.

Proposition 9. For j = 1, 2,let us denote by Ñ
Q(j)
t the counting processes of intensity

λ̃
Q(j)
t = Jj(ζj)λ̃

(j)
t , (46)

We also de�ne random variables JQ(j), through their moment generating functions under the

measure Q:

J Q
j (ω) = EQ

(
eωJ

Q(j)
)

=
Jj(ω + ζj)

Jj(ζj)
, j = 1, 2 , (47)

and processes L̃
Q(j)
t =

∑Ñ
Q(j)
t

k=1 J
Q(j)
k . Under the measure Q, the dynamic of the log-return is ruled

by the following SDE

dX̃t =

(
µ− σ2

2
− σφ(t)

)
dt+ σdWQ

t + (48)

2∑
j=1

(
dL̃

Q(j)
t − µj

Jj(ζj)

∫ t

0
λ̃Q(j)
s ds

)
,

where dWQ
t = dWt + σφ(t)dt. Furthermore, the intensities λ̃

Q(j)
t are such that(

λ̃
Q(1)
t

λ̃
Q(2)
t

)
=

(
J1(ζ1)λ̃

(1)
0

J2(ζ2)λ̃
(2)
0

)
+

(
η11J1(ζ1) η12J1(ζ1)
η21J2(ζ2) η22J2(ζ2)

)( ∑n−1
l=0

wl
Γ(α) Z̃

Q(1,l)
t∑n−1

l=0
wl

Γ(α) Z̃
Q(2,l)
t

)
,

where Z̃
Q(j,l)
t =

∫ t
0 e

−(β+ξ)(t−s) dÑ
Q(j)
s .

Proof. M̃t is product of a Brownian and jump changes of measure. The impact of the Brownian
measure change on the drift of X̃t being standard, we set φ(t) = 0 and consider a change of

measure M̃t =
dQ
dP

∣∣∣
t
= exp (Yt) where

dYt =
2∑

j=1

(1− Jj(ζj)) λ̃
(j)
t dt+

2∑
j=1

ζj dL̃
(j)
t .

Under the Q-measure, the Laplace transform of X̃s conditional on Ft is equal to

EQ
(
e−ωX̃s | Ft

)
=

E
(

dQ
dP

∣∣∣
s
e−ωX̃s | Ft

)
dQ
dP

∣∣∣
t

= e−YtE
(
e−ωX̃s+Ys | Ft

)
.

We denote E
(
e−ωX̃s+Ys | Ft

)
by f

(
t, X̃t, λ̃t,

(
Z̃

(l)
t

)
l=0,...,n−1

, L̃t, Yt

)
. From Itô's lemma, f(·)
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satis�es the following stochastic di�erential equation (SDE):

0 = ∂tf +

(
µ− σ2

2
− µ1λ̃

(1)
t − µ2λ̃

(2)
t

)
∂X̃f +

σ2

2
∂X̃X̃f (49)

+∂Y f

2∑
j=1

(1− Jj(ζj)) λ̃
(j)
t −

n−1∑
l=0

(β + bl)

2∑
j=1

Z̃
(j,l)
t ∂

Z̃
(j,l)
t

f

−
n−1∑
l=0

wl (β + bl)

Γ(α)

2∑
j=1

(
ηj1Z̃

(1,l)
t + ηj2Z̃

(2,l)
t

)
∂λ̃(j)f +

2∑
j=1

λ̃
(j)
t ×

∫ ∞

0
f

(
t, λ̃t +

n−1∑
l=0

wlJk(ζk)

Γ(α)
η.,j ,

(
Z̃

(j,l)
t + 1

)
l
, X̃t + z, Yt + ζ1z

)
− f(.)m(j)(dz)

We do the Ansatz that f(·) is an exponential a�ne function of risk factors:

f(·) = exp

(
q0(s− t) + qλ(s− t)⊤

(
λ̃t ⊙J (ζ)

)
+

n−1∑
l=0

wl

Γ(α)
ql(s− t)⊤Z̃

(l)
t − ωX̃t + qY (s− t)Yt

)
,

where λ̃t ⊙ J (ζ) is the element-wise or Hadamard product of λ̃t and J (ζ) =(J1(ζ1),J2(ζ2)).
The partial derivatives of f(·) with respect to state variables are given by

∂Z̃(j,l)f = f
wl

Γ(α)
q
(j)
l (s− t) ,

∂λ̃j
f = Jj (ζj) f q

(j)
λ (s− t) ,

∂X̃f = −ωf , ∂X̃X̃f = ω2f ,

∂Y f = fqY (s− t) .

The derivative of f with respect to time is equal to

∂tf = f(·)

(
∂tq0(s− t) + ∂tqλ(s− t)⊤λ̃t ⊙J (ζ) +

n−1∑
l=0

wl

Γ(α)
∂tql(s− t)⊤Z̃

(l)
t + Yt∂tqY (s− t)

)
.

The jump terms in Equation (49) become for j = 1, 2:

f

(
t, λ̃t +

n−1∑
l=0

wl

Γ(α)
J (ζ)⊙ η.,j ,

(
Z̃

(j,l)
t + 1

)
l
, X̃t + z, Yt + ζ1z

)
− f(.) =

f(.)

(
exp

(
n−1∑
l=0

wl

Γ(α)

((
J (ζ)⊙ η.,j

)⊤
qλ(s− t) + q

(j)
l (s− t)

)
− ωz + ζjz qY (s− t)

)
− 1

)
.

Combining the previous equations in Equation (49) allows us to infer that ∂tqY (s − t) = 0 and
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qY (s− t) = 1. Therefore, q0(·) , qλ(·) and ql(·) satisfy the relation

0 = ∂tq0(s− t) + ∂tqλ(s− t)⊤λ̃t ⊙J (ζ) +
n−1∑
l=0

wl

Γ(α)
∂tql(s− t)⊤Z̃

(l)
t

+Yt∂tqY (s− t)− ω

(
µ− σ2

2
− µ1λ̃

(1)
t − µ2λ̃

(2)
t

)
+ ω2σ

2

2

+

2∑
j=1

(1− Jj(ζj)) λ̃
(j)
t −

n−1∑
l=0

(β + bl)wl

Γ(α)

(
Z̃

(1,l)
t q

(1)
l (s− t) + Z̃

(2,l)
t q

(2)
l (s− t)

)

−
n−1∑
l=0

(β + bl)wl

Γ(α)

2∑
j=1

Jj(ζj)
(
ηj1Z̃

(1,l)
t + ηj2Z̃

(2,l)
t

)
q
(j)
λ (s− t) +

2∑
j=1

λ̃
(j)
t ×

∫ ∞

0
exp

(
n−1∑
l=0

wl

Γ(α)

((
J (ζ)⊙ η.,j

)⊤
qλ(s− t) + q

(j)
l (s− t)

)
− ωz + ζjz qY (s− t)

)
− 1m(j)(dz)

After grouping terms, we infer that q0(s− t) is equal to Equation (31). Cancelling terms multi-

plying Z̃
(j,l)
t give us for j = 1, 2,

0 =
wl

Γ(α)
∂tq

(j)
l (s− t)− wl (β + bl)

Γ(α)

((
J (ζ)⊙ η.,j

)⊤
qλ(s− t) + q

(j)
l (s− t)

)
,

which corresponds to the second Equation (32) with parameters η⊤.,k elementwise multiplied by

J (ζ). Cancelling terms multiplying λ̃
(j)
t leads to

∂tq
(j)
λ (s− t) = −ωµj −

(
Jj(ζj − ω)

Jj(ζj)
exp

(
n−1∑
l=0

wl

Γ(α)

((
J (ζ)⊙ η.,j

)⊤
qλ(s− t) + q

(j)
l (s− t)

))
− 1

)
.

After a change of variable, u = s− t, we obtain

d q
(j)
λ (u)

du
= ωµj +

(
Jj(ζj − ω)

Jj(ζj)
exp

(
n−1∑
l=0

wl

Γ(α)

((
J (ζ)⊙ η.,j

)⊤
qλ(u) + q

(j)
l (u)

))
− 1

)
,

which is similar to the �rst Equation in (32). The Laplace transform EQ
(
e−ωX̃s | Ft

)
has there-

fore the same form as the one of E
(
e−ωX̃s | Ft

)
, provided in Proposition 7 with intensities (46),

jumps (47) for j = 1, 2.

When jumps are exponential random variables with pdf's of Equation (3), the distribution of
jumps under Q remains exponential as stated in the next corollary.

Corollary 4. If J (j) ∼ expo(ρj) then for ζ1 ∈ (−ρ1,+∞) and ζ2 ∈ (−∞,−ρ2), JQ(j) are

distributed as exponential random variable with parameters ρQj = ρj − ζj, under Q, for j = 1, 2.

This result is a direct consequence of Equation (47) and combined with Jj(ω) =
ρj

ρj−ω for

j = 1, 2, with ω ≤ ρ1 and ω ≥ ρ2. Another direct consequence of Proposition 9 is the possibility
to identify the familly of measure changes de�ning a risk neutral measure, i.e. a measure under
which the discounted asset price is a martingale. We consider a constant discount rate, denoted
by r ∈ R+.

Corollary 5. The equivalent measures Q de�ned by the change of measure (45) are risk neutral
if

φ(t) =
µ− r

σ
+

2∑
j=1

λ̃
(j)
t Jj(ζj)

(
E
(
eJ

Q(j)
)
− 1
)
− µj

∫ t
0 λ̃

(j)
s ds

σ
, (50)

where r is the discount rate.
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Proof. Replacing the expression (50) of φ(t) into the dynamic (48) of X̃t under Q, allows us to
infer that

dX̃t =

(
r − σ2

2

)
dt+ σdWQ

t +
2∑

j=1

(
dL̃

Q(j)
t − λ̃

Q(j)
t E

(
eJ

Q(j) − 1
)
dt
)
. (51)

If we remember that the asset price is S̃t = S̃0e
X̃t , using Itô's lemma leads to the following SDE:

dS̃t

S̃t
= rdt+ σdWQ

t +
2∑

k=1

[(
eJ

Q(k) − 1
)
dÑ

Q(k)
t − E

(
eJ

Q(k) − 1
)
λ̃
Q(k)
t dt

]
. (52)

Since EQ
(
dS̃t

S̃t

)
= rdt , the discounted price e−rtS̃t is a well martingale under Q and Q is risk

neutral.

By construction, when the size n of the partition E(n) tends to +∞, the process X̃t converges
toward Xt. From Equation (51), we deduce that the MERJD, Xt, under the risk neutral measure
is the following sum:

Xt =

(
r − σ2

2

)
t+ σWQ

t +

2∑
j=1

(
L
Q(j)
t − µQj

∫ t

0
λQ(j)
s ds

)
, (53)

where µQj =
(
E
(
eJ

Q(j)
)
− 1
)
for j = 1, 2. The structure of Xt under Q and P are similar.

Therefore, the Laplace transform of the log-return under Q is provided by Proposition 8 with
updated parameters:

ΥQ
s (ω) := EQ (e−ωXs | F0

)
= exp

(
−
(
ω

(
r − σ2

2

)
− ω2σ2

2

)
s+ qQλ (s)

⊤λt

)
, (54)

where q
Q(j)
λ (s) for j = 1, 2 solves a forward ODE:

dq
Q(j)
λ (s)

ds
= ωµQj + J Q

j (−ω) exp

((
J (ζ)⊙ η.,j

)⊤(
K
dqQλ
ds

)
(s)

)
− 1 (55)

with the initial condition q
Q(j)
λ (0) = 0. Inverting the characteristic function by DFFT , as

explained in Section 4, allow us to retrieve the pdf of Xt under the risk neutral measure and to
price European options on the corresponding asset. The in�uence of roughness parameters, α
and β, on call prices is studied in Section 7.

6 Econometric estimation

Estimating the parameters of a MERJD is a challenging task since jumps are not directly ob-
servable. For this reason, we adopt a peak-over-threshold approach for detecting jumps, similar
to that in [13].

The discrete record of p asset log-returns, equally spaced with a lag ∆, is noted {x1,x1, x2, ..., xp}.
The times of observation are {s0, s1, ..., sp}. We assume that a jump occurs when the log-return
is above or below some thresholds. These thresholds are denoted by g(α1), g(α2) and depend
on two con�dence levels, α1 and α2. To de�ne thresholds, we �rst �t a pure Gaussian process:
xk ∼ µg∆+ σgW∆ to time-series. The unbiased estimators of µg and σg are:

µ̂g =
1

p∆

p∑
j=1

xj σ̂2g =
1

(p− 1)∆

p∑
j=1

(xj − µ̂g)
2 . (56)
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If Φ(.) denotes the cdf of a standard normal, g(α1), g(α2) are set to the α1 and α2 percentiles of
the Brownian motion: g(αi) = µ̂g∆+ σ̂g

√
∆Φ−1(αi) for i = 1, 2. The times of the kth jump of

L
(1)
t and L

(2)
t are :

τ
(1)
k = min{sj ∈ {s1, ..., sp} |xj ≥ g(α1) , sj ≥ τ

(1)
k−1} ,

τ
(2)
k = min{sj ∈ {s1, ..., sp} |xj ≤ g(α2) , sj ≥ τ

(2)
k−1} ,

where τ
(1)
0 = τ

(2)
0 = 0 and k ∈ N is bounded by p. The sample path of

(
N

(j)
t

)
t≥0

for j = 1, 2 are

approached by the following time series:

N (j)(si) = max{k ∈ N | τ (j)k ≤ si} , i = 1, ..., n.

The levels of con�dence, α1 and α2, are optimized such that the skewness and kurtosis of xi for
periods without jumps are close to those of a normal distribution. If the sets of times without
jump is noted T , parameter estimates of µ and σ areσ̂ = 1

(|T |−1)∆

∑
sj∈T

(
xj − 1

|T |∆
∑

si∈T xi

)2
,

µ̂ = 1
|T |∆

∑
sj∈T xj +

σ̂
2 .

We next �t the bivariate rough Hawkes process by log-likelihood maximization. We detail the
calculation of this log-likelihood. From Equation (4), the sample intensities are equal to

λ
(j)
t− = λ

(j)
0 +

2∑
k=1

 ηjk
Γ(α)

∑
τ
(k)
u <t

e−β(t−τ
(k)
u )(t− τ (k)u )α−1

 j = 1, 2 .

These realized intensities are involved in the calculation of the log-likelihood.

Proposition 10. We denote the Gamma incomplete function by Γ (α, x) =
∫∞
x e−uuα−1du. The

log-likelihood of a sample of observations over [0,S] is de�ned as:

lnL =

2∑
j=1

−
∫ S

0
λ(j)s ds+

N
(j)
S∑

k=1

log
(
λ
(j)
τk−

) , (57)

where the integral of the intensity is equal to

∫ S

0
λ(j)s ds = λ

(j)
0 S +

2∑
k=1

ηjk
βα

N
(k)
S∑

u=1

1−
Γ
(
α, β

(
S − τ

(k)
u

))
Γ(α)

 . (58)

Proof. From e.g. Embrechts et al. [13], the log-likelihood of the sample is given by Equation
(57). Using the expression (4) of λt and changing the order of integration, the integral of the
intensity becomes:∫ S

0
λ(j)u du = λ

(j)
0 S +

2∑
k=1

ηjk

∫ S

0

∫ u−

0
e−β(u−s) (u− s)α−1

Γ(α)
dN (j)

s du (59)

= λ
(j)
0 S +

2∑
k=1

ηjk

∫ S

0

∫ S

s
e−β(u−s) (u− s)α−1

Γ(α)
du dN (j)

s .
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The inner integrals are reformulated in terms of Gamma functions by a change of variable v =
β (u− s) ∫ S

s
e−β(u−s) (u− s)α−1

Γ(α)
du (60)

=

∫ ∞

s
e−β(u−s) (u− s)α−1

Γ(α)
du−

∫ ∞

S
e−β(u−s) (u− s)α−1

Γ(α)
du

=
β−α

Γ(α)

∫ ∞

0
e−vvα−1 dv − β−α

Γ(α)

∫ ∞

β(S−s)
e−vvα−1 dv

= β−α

(
1− Γ (α, β (S − s))

Γ(α)

)
Combining Equations (59) and (60) leads to the expression (58).

For comparison, we consider a bivariate Hawkes process with an exponential memory kernel:

λ
(j)
t = λ

(j)
0 +

2∑
k=1

ηjk

(∫ t−

0
e−β(t−s)dN (k)

s

)
.

The log-likelihood in this case, has the same form as Equation (57) with

∫ S

0
λ(j)u du = λ

(j)
0 S +

2∑
k=1

ηjk

N
(k)
S∑

u=1

(
1− e

−β
(
S−τ

(k)
u

))
. (61)

We recall that this corresponds to the rough model with α = 1. If we denote by ΘN , the set
of parameters of intensities, their estimates are obtained by maximization of the log-likelihood
(57):

Θ̂N = argmax
ΘN

lnL (ΘN ) .

The distribution m(j)(.) of jumps is �tted independently of counting processes. In absence of
jumps, the log-return has a normal distribution. If a single jump occurs over ∆, From Chapter
1 of Hainaut [22] Proposition 1.3, the pdf of the sum σW∆ + J (j) is equal to:

h(1)(z|σ, ρ1) = 1{z≥0}ρ1 exp

(
1

2
(ρ1σ)

2∆− ρ1z

)
Φ

(
z − ρ1σ

2∆√
∆σ

)
,

h(2)(z|σ, ρ2) = −1{z≤0}ρ2 exp

(
1

2
(ρ2σ)

2∆− ρ2z

)(
1− Φ

(
z − ρ2σ

2∆√
∆σ

))
.

where Φ(.) is the cdf of a standard normal random variable. If {J (j)
1 , ..., J

(j)

N
(j)
t

} for j = 1, 2 and

ΘJ are respectively the sample of jumps and the set of parameters of m(j)(.), estimates are found
by log-likelihood maximization:

Θ̂J = argmax
ΘJ

2∑
j=1

N
(j)
t∑

k=1

h(j)
(
J
(j)
k |σ̂, ρj

)
.

7 Numerical illustration

To illustrate this article, we �t the MERJD to time-series of hourly Bitcoin returns from the
9/2/2018 to 9/2/2023, traded in USD on the platform Gemini. The upper graph of Figure 1
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shows hourly returns and the lower plot displays Bitcoin prices. The bitcoin is traded 24h/24h
and the time interval between two successive observation is ∆ = 1/8760 year.
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Figure 1: Hourly log-returns of Bitcoin.

Table 1 reports the average and standard deviation of hourly log-returns, such as de�ned in
Equation (56). Jumps are detected with the POT method1 described in Section 6. The skewness
and kurtosis of log-returns for observations without jump are respectively equal to -9.19e-5 and
3.0002. The upper and lower thresholds are close to 1% in absolute values. The estimated
Brownian volatility is 0.38% per hour which is large but relevant for cryptocurrencies. Figure 2
shows the sample paths of intensities, reconstructed from jumps detected by the POT method.
Peaks of intensities correspond to large �uctuations of Bitcoin.

Parameters Values Parameters Values

g(α1) -0.9752% g(α2) 1.0001%

µ̂g∆ 0.0021% σ̂g
√
∆ 0.7974%

µ̂∆ 0.0082% σ̂
√
∆ 0.3830%

Table 1: Mean and standard deviation of hourly returns. Thresholds for the POT method.

1R code available on request.
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Figure 2: Sample paths of intensities λ
(1)
t and λ

(2)
t .

The parameter estimates of the bivariate rough jump process are provided in Table 2. The α
determines the level of roughness and is around 0.90. The dampening parameter, β is close to
182. The matrix of ηi,j provides valuable insights into self and mutual excitations between shocks.
Negative jumps exhibit self-excitation (η̂22 = 87.13) but are nearly una�ected by positive jumps,
as η̂21 is nearly null. In contrast, positive shocks tend to be triggered by negative jumps (η̂11 =
48.68). In practice, this contagion can be explained by bounce trading strategies. Additionally,
the level of self-excitation for positive jumps is almost half that of negative ones (η̂11=48.68

whereas η̂22= 87.13). The baseline intensity of negative jumps, λ̂
(2)
0 , is twice as high as that of

positive shocks, λ̂
(1)
0 .However, the asymptotic expected intensities are similar, with both positive

and negative jumps expected to occur at a rate of close to 500 times per year. In absolute values,
the average sizes of positive and negative jumps are comparable, approximately ±1.7%.

Parameters Values Parameters Values

α̂ 0.9061 β̂ 181.7853

η̂11 48.6850 η̂12 48.9050

η̂21 2.0365 η̂22 87.1365

λ̂
(1)
0 53.8714 λ̂

(2)
0 101.8721

λ
(1)
∞ 488.9064 λ

(2)
∞ 505.8213

Log-lik. rough Hawkes process, L(Θ̂N ) : 28046.24

ρ̂1 59.4260 ρ̂2 -57.8427

Log-lik. jumps : 15 458.44

Table 2: Parameter estimates, rough jump process.

We compare the bivariate rough jump process to its non-rough version (α = 1) with parameters
in Table 3. The dampening factor, β and levels of self-excitation, η11 and η22, are higher in this
last model. Similar to the rough process, we observe a one-way contagion of negative jumps
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on positive ones. Baseline intensities and asymptotic expected intensities are comparable to
those of the rough jump process.To assess the relevance of the rough jump model, we perform
a log-likelihood ratio test. Under the assumption that α = 1, the log of the squared ratio of
likelihoods,

2
(
lnL(Θ̂N )− lnL(Θ̂h

N )
)
∼ χ2

1

is (asymptotically) a chi-square random variable with one degree of freedom. Using the �gures
reported in Tables 2 and 3, we calculate a p-value of 0.0382%. This result con�rms that the
rough jump model l provides a better goodness of �t compared to its non-rough version.

Parameters Values Parameters Values

α̂ 1.0000 β̂ 221.0378

η̂11 107.089 η̂12 90.60763

η̂21 0.0416 η̂22 174.0245

λ̂
(1)
0 38.0073 λ̂

(2)
0 106.9566

λ
(1)
∞ 473.9214 λ

(2)
∞ 503.2868

Log-lik. Hawkes process, L(Θ̂h
N ) : 28 039.94

Table 3: Parameter estimates, bivariate (non-rough) Hawkes process.

To assess the contribution of jump components to the total volatility of log-return, we set σ
to zero. To estimate any potential bias induced by the DFFT, we also cancel the drift by setting
µ = 0. Table 4 presents expectations, standard deviations and 5%-95% percentiles of Xt under
these conditions for various maturities, with all other parameters equal to their estimate from
Table 2). These calculations are performed using the DFFT algorithm outlined in Appendix
B, with xmax = 2.2 and M = 210. We observe a slight bias of 0.20% for the log-return, which
theoretically should have zero expectation. Increasing the value of M reduces the bias but
prolongs computation time and requires adjusting xmax to keep ∆ω small enough. The standard
deviation of Xt ranges from 18% for a one-month horizon up to 41.2% for a half-year horizon.
The 90% con�dence interval of Xt is broad and expands to [−70%, 65%] for a time horizon of 6
months. These statistics con�rm that the jump component of Xt signi�cantly contributes to the
overall log-return volatility.

Days Expectation
Standard percentiles
deviation 5% 95%

30 0.002 0.180 -0.32 0.269
60 0.002 0.262 -0.458 0.398
90 0.002 0.315 -0.548 0.484
180 0.002 0.412 -0.703 0.652

Table 4: Statistics of Xt, without Brownian activity and no drift (σ = 0 and µ = 0). DFFT with
M = 210 components (and xmax = 2.2).

To understand the impact of rough jumps on derivatives, we value European call options
using the DFFT and calculate their implied volatility by inverting the Black & Scholes formula.
Once more, we set the Brownian volatility and drift to zero to speci�cally examine the jump
components of the log-return. The risk free rate is also set to zero. Options are valued with
the parameters of Table 2. We assume that S0 = 100 and consider strikes K from 50 to 150.
Expiration dates ranges from 1 to 6 months.
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Figure 3: Implied volatility surfaces of European call options (σ = 0 and µ = 0).

The upper left plot of Figure 3 shows the surface of implied volatilities. They ranges from
61.39% to 195.58% for deep 'out of' and 'in the' money options. The implied volatility generated
by jumps seems broad but it is relevant with the history of market data. The implied volatility
generated by jumps appears wide in range, but it aligns with historical market data. For context,
the BitVol index, which measures the expected 30-day implied volatility in Bitcoin, �uctuates
between 60% and 100%, with a peak reaching 168% on March 17, 2020. The upper right plot
of Figure 3 illustrates 3 months implied volatilities for an α increased and decreased by 5%.
Decreasing this parameter enhances the roughness of the bivariate jump process, resulting in
higher implied volatilities. Conversely, increasing the dampening parameter, β, accelerates the
reversion of intensities to their baseline values and subsequently reduces implied volatilities, as
shown in the left lower plot of Figure 3. The last plot reveals that increasing the parameters of
self and mutual excitations, contributes to higher implied volatilities.

8 Conclusions

This paper introduces a novel jump-di�usion process, the MERJD, featuring mutual excitation
between positive and negative jumps, governed by a dampened rough (DR) memory kernel. This
process exhibits several interesting properties for modeling asset returns with high volatility, par-
ticularly in the context of cryptocurrencies.

Even though the memory kernel diverges at zero, the process remains stable under mild condi-
tions. The MERJD can be represented as an in�nite-dimensional Markov process. By considering
the limit of a �nite approximation of this process, we can obtain the Laplace transform of the
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MERJD. Given that the DR kernel is a Sonine function, we can de�ne a fractional operator that
resembles the Riemann-Liouville derivative. The Laplace transform of the MERJD can then be
reformulated in terms of a solution to a fractional di�erential equation (FDE) using this new
operator. This FDE can be solved numerically.

The MERJD is well-suited for pricing derivatives. We have de�ned a family of changes of mea-
sure that preserve the characteristics of the process and determined the conditions under which
the new measure is risk-neutral. Numerical analysis indicates that the degree of roughness, as
de�ned by α, signi�cantly increases implied volatilities. In contrast, the dampening parameter
β, accelerates the reversion of jump intensities to their baseline values, thereby reducing implied
volatilities.

The MERJD can also be utilized for risk management purposes, as parameters under the real
measure can be estimated using a peak-over-threshold method. This is feasible because the
log-likelihood of the bivariate rough jump process has an analytical expression. The numerical
illustration highlights the MERJD's capacity to evaluate price jumps in volatile assets, such as
Bitcoin.

Appendix A. Mittag Le�er function

The Mittag-Le�er functions with one and two parameters are respectively de�ned by

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
,

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
,

where α > 0 and β ∈ C. The function u(x) = Eα(ηx
α) is closely related to fractional calculus

when α ∈ (0, 1). We denote by Iα0+u is the following Riemann-Liouville fractional integral

(
Iα0+u

)
(t) =

1

Γ(α)

∫ t

0

u(s)

(t− s)1−αds . (62)

The left Riemann-Liouville derivative, denoted by Dα
0+u(t), is the derivative of I

1−α
0+ u(t):

(
Dα

0+u
)
(t) =

d
(
I1−α
0+ u

)
(t)

dt
=

1

Γ(1− α)

d

dt

∫ t

0

u(s)

(t− s)α
ds ,

and is such that Dα
0+I

α
0+u(t) = u(t). The solution of the fractional integral/di�erential equations(

Dα
0+u

)
(t) = η u(t)

is precisely the function u(x) = Eα(ηx
α). In this article we also use the relation

dEα( ηx
α)

dx
= ηxα−1Eα,α( ηx

α) . (63)

From the Laplace's transform of Eα(±xα),

L (Eα(±xα)) :=
∫ ∞

0
e−zxEα(±xα) dx =

zα−1

zα ∓ 1
, (64)

(see Goren�o et al. [17], pages 40 and 41), we infer that

L (Eα(±ηxα)) =
zα−1

zα ∓ η
. (65)
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Appendix B. Fast Fourier's transform

Let M be the number of steps used in the Discrete Fast Fourier's Transform (DFFT) and
∆x = 2xmax

M−1 , be a step of discretization. Let us denote ∆ω = 2π
M ∆x

and ωj = (j − 1)∆ω for

j = 1, ...,M + 1. The pdf of Xs at points xk = −M
2 ∆x + (k − 1)∆x for k = 1, ...,M are

approached by

fXs (xk) =
2

M ∆x

M∑
j=1

δjΥs (iωj) exp (i ((k − 1)π)) (66)

× exp

(
−i(k − 1)(j − 1)

2π

M

)
,

whereδj =
(
1
2

)1{j1=1} + 1{j ̸=1} and Υs(ω) = E
(
eωXs | F0

)
.
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