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Abstract

Pension funds and insurers face di�culties in hedging their longevity

risk, which is the uncertainty of how long their clients will live. A possible

solution could be using longevity-linked securities to transfer some of this

risk to other parties. However, these securities may not match the actual

mortality rates of the insurer's clients, resulting in a potential loss due to

basis risk. In this paper, we measure this basis risk through the pricing

of a longevity derivative under Solvency II. We also compare this method

with other common pricing methods in �nance. We explore and evaluate

di�erent hedging strategies for insurers, using a multi-population model

derived from a two-dimensional Hull and White model that captures the

dynamics of mortality over time.
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1 Introduction

Annuity providers, such as insurers and pension funds, are exposed to increased
longevity risk. This risk can be broken down into two types of risks: unsystem-
atic and systematic. Unsystematic longevity risk refers to a possible adverse
development of the policyholder's longevity. According to the law of large num-
bers, unsystematic longevity risk can be eliminated by increasing the portfolio
size. In contrast, systematic longevity risk refers to the risk associated with the
overall mortality improvement across the whole population. This risk cannot
be diversi�ed by increasing the portfolio size but can be mitigated by entering
longevity-linked securities, such as survivor bonds, q-forwards, S-forwards, or
S-swaps (Blake et al. [5], Dowd et al. [14], Barrieu and Veraart [2], Levantesi
and Menzietti [20], and Zeddouk and Devolder [34]). Some of these �nancial
instruments have been traded over-the-counter (OTC), but because of pricing
di�culties and the fact that these products only allow for partial hedging of
the systematic longevity risk (leaving a residual amount of risk, known as basis
risk), they are not widely traded in the �nancial market. The payo�s of these
�nancial instruments are determined by longevity indices based on one or more
reference populations (e.g., the national population). Therefore, the longevity
experience of the annuity provider's population may not coincide with the ref-
erence population (see for example Li and Hardy [21] and Coughlan et al. [11]).

The importance of the basis risk induced by the mismatch between the refer-
ence population and the insurer's population depends on di�erent factors, such
as demographic di�erences (e.g., age pro�le, sex, socio-economic status), the
volatility of the portfolio to be hedged in comparison with the reference popu-
lation, and the di�erence between the payo� structures of the hedging tool and
the insurer's portfolio (Li et al. [22]).

Many authors have focused on the evaluation of the basis risk. For in-
stance, De Rosa et al. [8] provided a model for assessing longevity basis risk,
exploring its e�ect on the hedging strategies of pension funds and annuity
providers. Haberman et al. [16] and Villegas et al. [30] proposed a two-population
mortality projection model for assessing demographic basis risk. Additionally,
Plat [27] proposed a stochastic model for the spread between reference and the
smaller population, that allowed insurers to evaluate mortality rates and assess
the basis risk; Cairns and El Boukfaoui [10] developed a framework for mea-
suring the impact of a hedge on regulatory or economic capital that considered
basis risk (See also Coughlan et al. [11], Dahl et al. [7], Li and Hardy [21], Ngai
and Sherris [26], Tzeng et al. [29], and Li and Luo [23]).

Speci�cally, Zhou and Li [36] presented the basis risk as a �customised surplus
swap� in addition to standardised �nancial instruments. However, the manage-
ment and the pricing of this swap are based on mutualisation and reinsurance's
classical principles without a risk premium (diversi�cation argument) or refer-
ences to �nancial valuation.

The main contribution of our paper is to extend this approach by associ-
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ating the basis risk with the payo� of a longevity-linked OTC security, called
S-exchange. We price this derivative under Solvency II using the Cost-of-Capital
approach in a continuous time framework. Thus, we liken this basis risk to the
S-exchange, whose price corresponds to the hedging cost of this risk.

To achieve this goal, we developed a model capable of describing the mortal-
ity of the reference and the insurer's populations. Many authors have proposed
stochastic multi-population models for mortality, such as Bayraktar and Young
[3], Barbarin [1] and Dahl et al. Dahl et al. [6]. Moreover, some continuous-time
models such as the general multi-population mortality surface model proposed
by Jevti¢ and Regis [19], and the multi-cohort models used by De Rosa et al. [8]
and Sherris et al. [28], have emerged recently.

Our mortality model needed not only to forecast mortality, but also to en-
able the valuation of longevity derivatives. Therefore, a�ne models are good
candidates because they meet these criteria (Huang et al. [17] and Xu et al.
[32]). In addition to their proven robustness in terms of mortality prediction
(Luciano and Vigna [24], and Zeddouk and Devolder [33]), a�ne models have
the advantage of facilitating the pricing of longevity derivatives and enabling
the adoption of the pricing framework developed in �nance for the valuation
of �nancial assets. Thus, we used a one-cohort a�ne model that we redesigned
into a multi-population model.

Speci�cally, we used the Hull and White process in our framework to provide
di�erent multi-population models, depending on eventual di�erences between
the reference population and the insurer's population.

Our other contribution consists in providing fair prices for the proposed
hedging instrument (in closed form when possible), using the Cost of Capital
method (COC), which aligns with the directives of Solvency II. In addition,
we used other classical pricing approaches for comparison. Then, depending on
the insurer's strategy and risk aversion, we provided di�erent hedging options
using longevity derivatives. The modelling and pricing framework proposed in
this paper o�er hedgers various strategies to reduce or completely cover their
exposure to longevity risk.

This paper is organised as follows: In Section 2, we propose a multi-population
model to describe mortality for the reference and insurer's population. In Sec-
tion 3, we brie�y de�ne the S-forward contract and its pricing, then in Section
4, we de�ne the S-exchange contract and provide closed-form formulas of its
price under some classical �nancial pricing approaches, as well as the Cost of
Capital approach. In Section 5, we investigate three special cases to model the
insurance population's mortality. Then, in Section 6, we present a numerical
illustration of the prices using Belgian data. We provide sensitivity tests related
to the di�erent parameters in Section 7, and propose di�erent longevity hedging
strategies in Section 8. Finally, Section 9 concludes the paper.
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2 Multi-population modelling in continuous time

In order to assess the basis risk, we need to use a model able to capture mortality
trends in both the reference population and the insurer's population, whose
risk is to be hedged. We model mortality for a given population using a single
explanatory variable, the intensity of mortality µx at age x de�ned by:

µx = lim
4→0

P[x < T̄ ≤ x+4 | T̄ > x]

4
, (1)

where T is a random variable that represents the future lifetime of an individual.

Within the framework of our study, we model the intensity of mortality
µx(t) that represents the intensity of mortality for an individual aged x + t at
time t, as a continuous stochastic process, de�ned in the real world probability
(Ω,F ,P) and adapted to its natural �ltration (Ft)0≤t≤T . Thus, µx+t is written
as: µx(t, ω), with ω an event of the space of probability (Ω,F ,P).

Therefore, the starting point of our modelling is to describe the dynamics
of the mortality through the speci�cation of a stochastic di�erential equation
(SDE). Afterwards, we focus on the survival process, that represents the index
at time t of an individual initially aged x, alive at time t, and surviving T − t
years more. For one individual, the survival index is de�ned as follows:

I(x+ t, T − t) = e−
�T
t µx(u,ω)du. (2)

2.1 Assumptions

2.1.1 Mortality assumptions

In our setting, we have chosen a stochastic continuous-time model to describe
mortality evolution of a given population, to bene�t from the pricing framework
used in �nance. Among these approaches, we considered an a�ne model, whose
general formula is given by:

dµx(t) = (f1(t) + f2(t)µx(t))dt+
√
f3(t) + f4(t)µx(t)dw(t), (3)

where f1(t), f2(t), f3(t), f4(t) are deterministic functions, and w(t) a standard
Brownian motion under the real world probability measure P.

An a�ne model facilitates obtaining an explicit formula of the survival in-
dex, and therefore the price of the longevity derivative in closed form. We chose
in particular the Hull and White model (HW), which is a cohort mortality
model1 since Zeddouk and Devolder [33] showed that this model is suitable for
describing the intensity of mortality of the Belgian population. In fact, they
presented a comparison between di�erent a�ne processes such as Ornstein Uh-
lenbeck, Feller, Vasiçek and CIR extended models, and showed (using di�erent

1This model describes how the mortality of an individual aged x at time t evolves over
time, rather than modelling age-period mortality like in the Lee-Carter and CBD models.
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tests such as goodness-of-�t testing and backtesting) that the HW model gives a
very accurate prediction of the survival function. In addition, the HWmodel was
also used by Zeddouk and Devolder [34] for mortality to price Survival-forwards
and Survival-swaps.

As mentioned in the introduction, many models have been proposed in the
literature to represent the mortality evolution of two or more populations (Vil-
legas et al. [30]). But the majority of the models proposed are based on discrete-
time stochastic mortality models such as the Lee-Carter model.

For both the reference population and the insurer's population, we consider
two di�erent correlated HW models as described in Subsections 2.2 and 2.3.

2.1.2 Financial assumptions

� The spot interest rate r(t) is deterministic.

� P (t, T ) = e−
� T
t
r(s)ds is the price at time t of a zero coupon bound with

maturity T .

� There is no counterparty default risk.

2.2 Reference population model

The mortality intensity of the reference population follows the HW model:

dµx(t) = (ξ(t)− bµx(t))dt+ σdw(t), (4)

where b > 0 is the mean reversion rate, σ > 0 is the volatility of the process,
w(t) is a Brownian motion under the real-world measure P and ξ(t) represents
the mean reversion level. The initial condition is denoted µx(0) = µ0.

ξ(t) is chosen such that it follows the well known Gompertz formula:

ξ(t) = AeBt,

where A > 0 is the baseline mortality and B > 0 is the senescent component.

The reason behind the choice of the HW model for mortality and ξ(t) as a
long term target was discussed in detail by Zeddouk and Devolder [33].

From short calculation, at time 0 we get:

µx(t) = µ0e
−bt +

A

b+B
(e−Bt − e−bt) + σe−bt

� t

0

ebudw(u). (5)

The HW model being a�ne, the expectation of the survival index related to
the reference population is directly given by (Du�e et al. [15]):

EP(I(x+ t, T − t) | F t) = eα(t,T )−β(t,T )µx(t), (6)
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where α(t, T ) and β(t, T ) are given by (see for instance Zeddouk and Devolder
[33]):


α(t, T ) = A

b [e−bT e
(B+b)T−e(B+b)t

B+b − eBT−eBt
B ]− σ2

2b2 [ 1b (1− e−b(T−t))− T + t]

− σ2

4b3 (1− e−b(T−t))2

β(t, T ) = 1
b (1− exp(−b(T − t)).

(7)

2.3 Insurer's population model

As we have mentioned previously, we use the HW model also to describe the
mortality intensity of the insurer's population:

dµ′x(t) = (ξ
′
(t)− b

′
µ′x(t))dt+ σ

′
dw

′
(t), (8)

where the initial condition is µ′x(0) = µ′0. ξ
′
(t) is a time-dependent function,

and we assume that it also follows the Gompertz model:

ξ′(t) = A′eB
′t,

A
′
, B

′
, b

′
, σ

′
are positive numbers, and w

′
(t) is a standard Brownian motion

under the real probability measure P.
The expectation of the survival index related to the insurer's population is

given by:

EP(Iins(x+ t, T − t) | F t) = eα
′(t,T )−β′(t,T )µx

′(t), (9)

where α′(t, T ) and β′(t, T ) are given by:


α′(t, T ) = A′

b′ [e−b
′T e(B

′+b′)T−e(B
′+b′)t

B′+b′ − eB
′T−eB

′t

B′ ]− σ′2

2b′2
[ 1
b′ (1− e

−b′(T−t))− T + t]

− σ′2

4b′3
(1− e−b′(T−t))2

β(t, T ) = 1
b′ (1− exp(−b′(T − t)).

(10)

The insurer's population being a subpopulation of the reference population,
we assume that the two populations are dependent. Therefore, the Brownian
motions w(t) related to the reference population and w′(t) related to the in-
surer's population are correlated.

Using the Cholesky decomposition for correlated Brownian motions we have:

w
′
(t) = ρw(t) +

√
1− ρ2w̃(t), (11)

where ρ is the correlation coe�cient: ρ · t =Cov(w(t),w
′
(t)). w(t) and w̃(t) are

two independent Brownian motions. Formula (8) then becomes:

dµ′x(t) = (ξ
′
(t)− b

′
µ′x(t))dt+ σ

′
(ρdw(t) +

√
1− ρ2dw̃(t)). (12)
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2.4 The spread between the reference and the insurer's
population

In order to model a two population situation, it is natural to look at the spread
θx(t) between the two mortality intensities (see for instance Villegas et al. [30]).
In our setting we get:

dθx(t) = dµ
′
x(t)− dµx(t)

= (ξ′(t)− ξ(t)− b′µ′x(t)− bµx(t))dt+ (σ
′
ρ− σ)dw(t) + σ

′√
1− ρ2dw̃(t)).

If b′ = b, the spread follows also a HW process with a mean-reverting target
ξ′(t)− ξ(t).

The spread is then given by:

dθx(t) = (ξ′(t)− ξ(t)− bθx)dt+ (σ
′
ρ− σ)dw(t) + σ

′√
1− ρ2dw̃(t)). (13)

2.4.1 Particular case 1: independence between the mortality spread
and the reference population

Villegas et al. [30] have assumed independence between the reference population
and the spread.

In our model, this spread at time t is given by:

θx(t) = µ
′

x(t)− µx(t)

= µ′0e
−bt − µ0e

−b′t +
A

′

b′ +B′ (e−B
′
t − e−b

′
t)

− A

b+B
(e−Bt − e−bt) + σ

′
ρe−b

′
t

� t

0

eb
′
udw(u)

− σe−bt
� t

0

ebudw(u) + σ
′√

1− ρ2 e−b
′
t

� t

0

eb
′
udw̃(u). (14)

Let us remark that the spread can be seen as the payo� of a swap of the
mortality intensities.

We can see from formula (14) that µx(t) and θx(t) can be independent under
the following condition:

σ
′
ρe−b

′
t

� t

0

eb
′
udw(u)− σe−bt

� t

0

ebudw(u) = 0, (15)

which means:

σ
′
ρe−b

′
t

� t

0

eb
′
udw(u) = σe−bt

� t

0

ebudw(u). (16)

Therefore, a su�cient condition to satisfy the independence assumption is:
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{
σ

′
ρ = σ

b
′

= b.
(17)

The expression of the insurer's mortality intensity (12) then becomes:

dµ′x(t) = (ξ
′
(t)− bµ′x(t))dt+ σdw(t) + σ̃dw̃(t), (18)

with w and w̃ are independent and σ̃ = σ′
√

1− ρ2.

σ̃ represents the volatility of the extra noise related to the insurer's popula-
tion.

Under this condition, the variance of the spread is given by:

Var
(
θx)(t) = Var

(
σ′
√

1− ρ2e−bt
� t

0

ebudw(u)
)

= σ′
2
(1− ρ2)e−2bt Var

(� t

0

ebudw(u)
)

=
σ′

2
(1− ρ2)e−2bt

2b
(e2bt − 1)

=
σ̃2

2b
(e2bt − 1). (19)

The limit of the spread's variance when t −→ +∞ is:

lim
t−→+∞

Var(θx(t)) =
σ′

2
(1− ρ2)

2b

=
σ̃2

2b
. (20)

Under the independence assumption, the spread has a bounded variance
that has the form of Vasicek's variance. However, since the two models do not
have the same target, the spread's expectation E(θx) is not zero. Therefore, the
mortality intensities of the two populations converge weakly in long-term.

2.4.2 Particular case 2: same mean reversion rate for the two popu-
lations

We can choose a more general model than (18), without imposing the indepen-
dence assumption between the mortality spread and the reference population,
but keeping only the second condition of (17) (b = b′) in order to keep a HW
structure for the spread (see (13)).

dµ′x(t) = (ξ
′
(t)− bµ′x(t))dt+ σ′dw′(t)

= (ξ
′
(t)− bµ′x(t))dt+ σdw(t) + σ̃dw̃(t), (21)
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where:
σ′ =

√
σ2 + σ̃2 + 2ρ̃σσ̃. (22)

We denote by ρ̃ the correlation coe�cient between w and w̃:

ρ̃ · t = Cov(w(t), w̃(t)).

In this case, the spread's variance limit is also given by (20).

3 S-forward pricing

3.1 Description of the product

A Survival forward (or S-forward2) is an agreement between two counterparties
to exchange at a future date T (the maturity of the contract), an amount equal
to the realized survival rate of a given population cohort (�oating leg), in re-
turn for a �xed survival rate agreed at the inception of the contract (�xed rate
payment).

For easiness of representation, we consider the notional amount equal to one
monetary unit. The payo� of the S-forward is then given by:

Payoff(T ) = I(x, T )−
T
p̂
x
, (23)

where I(x, T ) is the realized survival rate, and
T
p̂
x
is a �xed survival rate of

an individual aged x at time 0 to be alive at age x+ T (F0 measurable). With
this derivative, the insurer can hedge the longevity risk by being the �xed leg
payer of an S-forward: if the realized survival rate is higher than the �xed
rate at the maturity of the contract, he gets a positive payment which can be
used to compensate the higher longevity risk arising from annuity contracts.
However, the realized survival rate is usually computed based on the reference
population. Hence, by using this derivative, only a portion of the systemic risk
can be covered, letting the insurer exposed to the basis risk.

3.2 Pricing of the product

Many authors have shed light on pricing longevity-linked securities using meth-
ods typically used in quantitative �nance, such as risk-neutral, Sharpe ratio, and
Wang approaches Barrieu and Veraart [2]. These techniques can be adapted to
price longevity-linked securities. However, they require assessment of longevity
risk parameters (market price of longevity risk (risk-neutral approach), Sharpe
coe�cient (Sharpe method) or Wang coe�cient (Wang approach)). This assess-
ment is challenging due to the lack of data in the longevity derivatives market.

2The concept of S-forward was �rst introduced in Life and Longevity Markets Association
(LLMA), 2010
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In the new regulatory context of Solvency II, another approach is to be more
consistent with the corresponding valuation. Therefore, some authors have intro-
duced a new methodology inspired by Solvency II: pricing longevity derivatives
using the Cost of Capital approach. A version of this method was proposed
by Levantesi and Menzietti [20] in a discrete time model, and another version
was presented by Zeddouk and Devolder [34] in continuous time models.

The Cost of Capital method is based on linking the price of longevity deriva-
tives with the capital the insurer should hold to cover unexpected losses. Ac-
cording to Solvency II, insurance liabilities that cannot be hedged should be
computed as the sum of the best estimate (BE) plus a risk margin (RM), which
is the potential cost of transferring insurance obligations to a third party if the
insurer fails. The RM at time 0 is determined by the Cost of Capital approach
based on the future remunerations on the successive SCR:

RM0 = C%

T−1∑
i=0

SCRi |0 P (0, i+ 1), (24)

where SCRi |0 is the estimation at time 0 of the solvency capital required to
cover with 99.5% probability the unexpected losses for year i, and C is the Cost
of Capital rate (6% in Solvency II). P (0, i+ 1) is the discount factor.

The price at time 0 is then given by:

VCOC(0, T ) = BEP
0 +RM0. (25)

Namely, to lower exposure to longevity risk the insurer can buy an S-forward
contract and consequently, the corresponding SCR can be mitigated, or even
reduced to zero if the longevity risk is completely covered, as can the corre-
sponding RM. Moreover, this approach has the advantage to be parametrised
by the Cost of Capital rate, which is �xed by regulation (currently 6% in Sol-
vency II). In contrast to classical pricing methods, in which the risk premium
parameters must be calibrated, this legal and unique cost-of-capital rate acts as
a benchmark.

4 S-exchange pricing

4.1 Description of the product

In this paper, we focus on covering the residual basis risk, by using another
derivative called � S-exchange contract�. In the literature, the price of longevity
derivatives is usually computed without taking into account the basis risk. In
this Section, we evaluate this risk, and determine the price of a �nancial tool
that allows for the protection against it.

De�nition

An S-exchange forward is an agreement between the insurer and an investor to
exchange at a future date T (the maturity of the contract), an amount equal
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to the realised survival rate of a given reference population, i.e the longevity
index, in return for the realised survival rate of the insurer's cohort population.
For easiness of representation, we consider the notional amount equal to one
monetary unit. The payo� at maturity T of the S-exchange forward is then
given by:

Payoff(T ) = I(x, T )ins − I(x, T ), (26)

where I(x, T )ins = e−
� T
0
µ′
x(s)ds is the realized survival rate of an individual

from the insurer's cohort population in a model to be speci�ed, and I(x, T ) =

e−
� T
0
µx(s)ds the longevity index of the reference population in a model to be

speci�ed.

4.2 The pricing under classical �nancial methods

When it comes to hedging longevity basis risk, to date, most longevity market
transactions have been customised swaps that allow risk transfer to a coun-
terparty with a relatively high cost. In contrast, the standardised longevity
securities based on a given published longevity index that tracks the mortality
experience of a reference population, have higher potential to develop market
liquidity and become viable longevity risk transfer instruments. The main reason
being the complexity of the quanti�cation and the evaluation of basis risk.

Some classical pricing approaches used in �nance to evaluate �nancial se-
curities can also be used for longevity derivatives. However, in the longevity
context, these methods may not appropriate: these approaches require an impor-
tant amount of data for calibration, which can be challenging in an incomplete
market. Moreover, these methods are not necessarily consistent with Solvency
II.

The Cost of Capital approach resolves this issue: in addition to being consis-
tent with Solvency II, this method is parametrised by one variable that is �xed
by regulation. Still, we consider some of these classical pricing approaches for
comparison purposes.

In this Section, we compute the S-exchange prices under the following three
pricing methods, often used in quantitative �nance:

� Risk-neutral approach (Cairns et al. [9])

� Wang transform (Wang [31])

� Sharpe ratio (Milevsky et al. [25])

The aim is to compare the results found with these classical methods to those
found with the COC method, as developed in Section 4.3.
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4.2.1 Risk-neutral method

Under the risk-neutral probability measure Qλ, the price of an S-exchange con-
tract at time t is given by:

VQλ(0, T ) = P (0, T )[EQλ(Iins(x, T )− I(x, T ))] (27)

= P (0, T )( eα
′
Qλ (0,T )−β′

Qλ(0,T )µ′Qλ
x (0) − eαQλ (0,T )−βQλ (0,T )µ

Qλ
x (0)).

We introduce the market prices λ(t, µx(t)) associated with the longevity risk,
and we consider a model with a constant market price of risk λ(t, µx(t)) = λ.

Using the HW model for longevity, the intensity of mortality under the risk-
neutral measure for the reference population µQλ

x and the insurer's population

µ′
Qλ
x are given respectively by:

dµQλ
x (t) = (ξ(t)− bµQλ

x + σλ)dt+ σdw∗(t) (28)

dµ′
Qλ
x (t) = (ξ

′
(t)− b

′
µ′Qλx + σ′λ)dt+ σ′dw∗

′
(t). (29)

Using the HW model, the price becomes:

VQλ(0, T ) = P (0, T )( eα
′
Qλ (0,T )−β′

Qλ(0,T )µ′Qλ
x (0)− eαQλ (0,T )−βQλ(0,T )µ

Qλ
x (0)), (30)

where:
αQλ(0, T ) = A

b

[
e−bT e

(B+b)T−1
B+b

− eBT−1
B

]
− σ2

2b2

[
1
b
(1− e−bT )− T

]
− σ2

4b3
(1− e−bT )2 − λσ

b
(1− e−bT )

βQλ(0, T ) = 1
b
(1− e−bT ),

(31)

and


α′Qλ(0, T ) = A′

b′

[
e−b

′T e(B
′+b′)T−1
B′+b′ − eB

′T−1
B′

]
− (σ2+σ̃2+2ρ̃σ̃σ)

2b′2

[
1
b′ (1− e−b

′T )− T
]

− (σ2+σ̃2+2ρ̃σ̃σ)

4b′3
(1− e−b

′T )2 − λ
√
σ2+σ̃2+2ρ̃σ̃σ

b′ (1− e−b
′T ))

β′Qλ(0, T ) = 1
b′ (1− e−b

′T ).

(32)

4.2.2 Sharpe ratio method

The price of the S-exchange under the Sharpe approach is given by:

V
Sharpe

(0, T ) = P (0, T )(EP( I(x, T ))− EP( Iins(x, T )) (33)

+S
√

VarP(Iins(x, T )− I(x, T ))),

where S is the chosen �xed Sharpe ratio, and VarP(I(x, T )) is the variance of
the survival index. We have:

VarP(Iins(x, T )−I(x, T )) = EP[ Iins(x, T )−I(x, T )−EP( Iins(x, T )−I(x, T ))]2.
(34)
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4.2.3 Wang transform method

We now compute the S-exchange price under the Wang approach. The Wang
transform method is a distortion approach that is based on a distortion operator.
In insurance context this operator converts the best estimate of the survival
index into its risk equivalent using a speci�c price of risk. This procedure was
presented by Dowd et al. [14] as a pricing method used in the pricing of several
over-the-counter longevity swaps in practice, and used for instance by Denuit et
al. [13]. The Wang distortion risk measure is given by:

ρgδ(x) =

� ∞
0

gδ(F̄x(s))ds−
� 0

−∞
(1− gδ(F̄x(s)))ds, (35)

where x is a continuous random variable. F̄x(s) is its decumulative function,
and gδ is the distortion function associated with the distortion parameter δ and
given by:

gδ(s) = Φ(Φ−1(s) + δ), (36)

where Φ(.) is the cumulative standard normal distribution. We then have:

ρg
δ
(Iins(x, T )− I(x, T )) =

� ∞
0

Φ(Φ−1(F̄(Iins(x,T )−I(x,T ))(s)) + δ)ds (37)

−
� 0

−∞
(1− Φ(Φ−1(F̄(Iins(x,T )−I(x,T ))(s)) + δ))ds.

The price of the S-exchange is given by:

V
Wang

(0, T ) = P (0, T )[ρg
δ
(Iins(x, T )− I(x, T ))]. (38)

4.3 S-exchange pricing with COC approach

Let us now focus on the pricing, calibration and Solvency II consistency issues
raised in Subsection 4.2. The solution is based on linking the basis risk to a
longevity derivative that we price under the Cost of Capital approach, consistent
with Solvency II and whose parameter is �xed by the regulator.

This pricing approach can also be seen as a method that enables the esti-
mation of the maximum market price of longevity risk, depending on the risk
margin implicit within the calculation of the technical provisions as de�ned by
Solvency II (Levantesi and Menzietti [20]).

The price of the S-exchange contract at time 0 under the Cost of Capital
approach is given by:

13



Proposition:

VCOC(0, T ) = P (0, T )(EP(I(x, T )ins)− EP(I(x, T )))

+ 6%

T−1∑
i=0

VaR99,5%

[
ΨiI(x+ i, 1)ins − ΦiI(x+ i, 1)− Λi

]
× P (i, T )P (0, i+ 1), (39)

where:

Ψi = EP(I(x, i)ins)EP( I(x+ i+ 1, T − i− 1)ins)

Φi = EP(I(x, i))EP( I(x+ i+ 1, T − i− 1))

Λi = EP(I(x, i)ins)EP( I(x+ i, T − i)ins)
− EP(I(x, i))EP( I(x+ i, T − i)). (40)

Proof:

We recall that under the COC approach, the price of any product is given by
(Zeddouk and Devolder [34]):

VCOC(t, T ) = BEP
t +RMt, (41)

where BEP
t is the best estimate under the real-world measure, of the payo� of

the S-exchange at time t, and RMt the risk margin. The price of the S-exchange
at time 0 is given by:

VCOC(0, T ) = BEP
0 +RM0, (42)

where BEP
0 is as follows:

BEP
0 = P (0, T )(EP(I(x, T )ins)− EP(I(x, T ))). (43)

The risk margin is de�ned by the present value of the future remunerations on
the successive SCR:

RM0 = 6%

T−1∑
i=0

SCRi P (0, i+ 1). (44)

The future SCRi are random variables. To compute the initial RM we need to
use their estimation at time 0 denoted by SCRi |0. The risk margin at time 0
is then given by:

RM0 = 6%

T−1∑
i=0

SCRi |0 P (0, i+ 1). (45)
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The SCRi are given by:

SCRi = VaR99,5%[BEP
i+1P (i, i+ 1)−BEP

i ], (46)

where:

BEP
i+1 = (I(x, i+ 1)insEP( I(x+ i+ 1, T − i− 1)ins)

−I(x, i+ 1)EP( I(x+ i+ 1, T − i− 1)))P (i+ 1, T ), (47)

and

BEP
i = (I(x, i)insEP( I(x+ i, T − i)ins)

−I(x, i)EP( I(x+ i, T − i))))P (i, T ). (48)

The SCRi are then given by:

SCRi = P (i, T )VaR99,5%

[
I(x, i+ 1)insEP( I(x+ i+ 1, T − i− 1)ins)

−I(x, i)insEP( I(x+ i, T − i)ins)− I(x, i+ 1)EP( I(x+ i+ 1, T − i− 1))

+I(x, i)EP( I(x+ i, T − i)))
]
. (49)

Formula (49) is assumed to be equivalent to:

SCRi = P (i, T )VaR99,5%

[
I(x, i)(I(x+ i, 1)insE( I(x+ i+ 1, T − i− 1)ins)

−EP( I(x+ i, T − i)ins))− I(x, i)(I(x+ i, 1)(EP( I(x+ i+ 1, T − i− 1))

−EP( I(x+ i, T − i)))
]
. (50)

Then their estimations at time 0 are given by:

SCRi |0 = P (i, T )VaR99,5%

[
EP(I(x, i)

ins)(I(x+ i, 1)insEP( I(x+ i+ 1, T − i− 1)ins)

−EP( I(x+ i, T − i)ins))− EP(I(x, i))(I(x+ i, 1)EP( I(x+ i+ 1, T − i− 1))

−EP( I(x+ i, T − i)))
]
. (51)

The SCRi |0 can be then written as:

SCRi |0= P (i, T ) VaR99,5%[ΨiI(x+ i, 1)ins − ΦiI(x+ i, 1)− Λi], (52)

where Ψi,Φi and Λi are constants given by:

Ψi = EP(I(x, i)ins)EP( I(x+ i+ 1, T − i− 1)ins)

Φi = EP(I(x, i))EP( I(x+ i+ 1, T − i− 1))

Λi = EP(I(x, i)ins)EP( I(x+ i, T − i)ins)
− EP(I(x, i))EP( I(x+ i, T − i)). (53)

Finally, the risk margin at time 0 is then equal to:

RM0 = 6%

T−1∑
i=0

VaR99,5%[ΨiI(x+ i, 1)ins −ΦiI(x+ i, 1)−Λi]P (i, T )P (0, i+ 1). (54)
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Remark 1 This framework can be extended to assess the basis risk of a portfolio
of individuals with di�erent ages. This case has been addressed in Zeddouk and
Devolder [35] who generalised the Cost of Capital approach to price a Global Sur-
vival forward contract (GS-forward), and thereby hedge the systematic longevity
risk for a portfolio of various generations while accounting for the eventual corre-
lation between their mortality probabilities. To capture the mortality correlation
between di�erent cohorts, they have considered a multi-cohort model based on
the Hull and White model.

In their approach, the correlations across generations are captured through
the introduction of inter-generational correlations with di�erent levels. These
correlations are based on the introduction of n risk factors modelled by indepen-
dent Brownian motions.

5 Trend and volatility e�ects on the insurer's pop-

ulation model

The mismatch between the insurer's population and the reference population
can have many reasons, such as the socio-economic conditions. In this spirit, and
based on the general formula (8), we can isolate the e�ects of the two main com-
ponents of the insurer's population model, by modifying the trend, the volatility
or both. In this Section, we consider b = b′, therefore we use formula (21) for
the insurer's mortality, together with formula (4) for the reference population.

1. First e�ect: the insurer's portfolio has the same mean structure as the
reference population (no di�erences in terms of general mortality pattern),
but its reduced size generates an extra volatility (extra-vol).

2. Second e�ect: the trend of the portfolio population is not similar to
the trend of the reference population (signi�cant di�erences in terms of
mortality pattern, for instance linked to special job conditions or because
of adverse selection issues). This can be translated into the model by
di�erent initial conditions and di�erent targets (constant shift).

3. Third e�ect: we combine the two e�ects (di�erence in terms of trends
and presence of an additional volatility).

5.1 Volatility e�ect (extra-vol)

Based on the general formula (21) of the insurer's population mortality, we can
have the �rst extra-vol case by taking the following assumption:

� The same mean structure assumption is translated by incorporating the
same trend as the reference population. That is, the following condition
should be satis�ed:

� A = A′

16



� B = B′

The insurer's population mortality under the extra-vol case is then given by:

dµ′x(t) = (ξ(t)− bµ′x(t))dt+ σdw(t) + σ̃dw̃(t), (55)

The expectation of the survival index related to the insurer's cohort is given
by:

EP(I(x+ t, T − t)ins) = eα
′
(t,T )−β

′
(t,T )µ′

x(t), (56)

α′(t, T ) and β
′
(t, T ) are given by:


α

′
(t, T ) = A

b

[
e−bT e

(B+b)T−e(B+b)t

B+b − eBT−eBt
B

]
− (σ2+σ̃2+2ρ̃σ̃σ)

2b2

[
1
b (1− e−b(T−t))− T + t

]
− (σ2+σ̃2+2ρ̃σ̃σ)

4b3 (1− e−b(T−t))2

β
′
(t, T ) = β(t, T ).

(57)

Let us look at the form of the spread between the two mortality intensities.
We denote this spread by θx(t), de�ned as the di�erence between the mortality
intensity of the insurer and the reference population. We have:

dθx(t) = dµ′x(t)− dµx(t)

= −b(µ′x(t)− µx(t))dt+ σ̃dw̃(t)

= −bθx(t)dt+ σ̃dw̃(t). (58)

The spread θx(t) given by (58) follows the Ornstein Uhlenbeck process, which
is mean-reverting to 0. Its variance is bounded by its asymptotic value:

lim
t−→+∞

Var(θx(t)) =
σ̃2

2b
. (59)

In this case, we have a real basis risk because the spread is stochastic. Let us
remark that the initial level of the two mortality intensities can be di�erent:
µx(0) 6= µ′x(0). We can also observe that, since the spread has a mean reversion
level equal to 0, and a bounded variance (formula (59)), there is no divergence
between the two populations as discussed, for instance by Villegas et al. [30]
and Li and Hardy [21].

5.2 Trend e�ect (constant shift)

In this case, the only di�erence between the reference and the insurer's popula-
tion mortality models is the drift. Therefore, and based on formula (21), this is
satis�ed when σ̃ = 0.

The insurer's intensity of mortality is then given by:

dµ′x(t) = (ξ′(t)− bµ′x(t))dt+ σdw(t). (60)
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In this case, the expression of α
′
(.) to put in formula (9) becomes:


α

′
(t, T ) = A′

b

[
e−bT e

(B′+b)T−e(B
′+b)t

B′+b − eB
′T−eB

′t

B′

]
− σ2

2b2 [ 1b (1− e−b(T−t))− T + t]

− σ2

4b3 (1− e−b(T−t))2

β
′
(t, T ) = β(t, T ).

(61)

The spread θx(t) between the mortality intensity of the reference population,
and the insurer's one in the constant shift case is given by:

dθx(t) = (ξ
′
(t)− ξ(t)− b(µ′x(t)− µx(t))dt

= (ξ′(t)− ξ(t)− bθx(t))dt. (62)

with θx(0) = µ′x(0)− µx(0).
In this case, we do not have a real basis risk since θx(t) is a deterministic mean-
reverting function without any noise.

5.3 Total e�ect (extra-vol and constant shift)

This case is the combination of the extra-vol and constant shift e�ects. The
insurer's intensity of mortality in this case is then given by:

dµ′x(t, T ) = (ξ′(t)− bµ′x(t))dt+ σdw(t) + σ̃dw̃(t). (63)

The spread θx(t) between the mortality intensity of the reference population
and the insurer's is given by:

dθx(t) = (ξ′(t)− ξ(t)− b(µ′x(t)− µx(t))dt+ σ̃dw̃(t)

= (ξ′(t)− ξ(t)− bθx(t))dt+ σ̃dw̃(t). (64)

θx(t) is a mean-reverting process to a �oating target ξ′(t)− ξ(t). In this case we
have three e�ects:

� Level e�ect: µ′x(0) 6= µx(0)

� Target e�ect: ξ′(t) 6= ξ(t)

� Volatility e�ect: presence of additional variance

In this case the expression of α
′
(.) is given by:

α
′
(t, T ) =

A′

b

[
e−bT

e(B
′+b)T − e(B

′+b)t

B′ + b
− eB

′T − eB
′t

B′

]
− (σ2 + σ̃2 + 2ρ̃σ̃σ)

2b2

[1

b
(1− e−b(T−t))− T + t

]
− (σ2 + σ̃2 + 2ρ̃σ̃σ)

4b3
(1− e−b(T−t))2. (65)
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6 Numerical illustrations

In this Section, we give the numerical results of the prices of di�erent S-exchange
contracts, using the COC method and the classical approaches for the Belgian
population. We use the following assumptions:

� An insurer with a portfolio of pure endowment contracts paying a lump
sum of 1e at maturity T in case of survival;

� N0=10 000 initial policyholders for each cohort;

� Individuals aged 65 or 70 years old in 2015;

� Payment of 1e to each policyholder alive at time T ;

� Calibration is based on projected data from the IA|BE [18] unisex pro-
jected generational mortality table.

� The risk-less interest rate is considered constant (equals to 1%);

� We consider that A′ = g ·A with g > 0, and B′ = B.

� The parameters λ, S and δ have been chosen to be quite similar to the
values usually suggested in the literature (see for instance Barrieu and
Veraart [2], Cui et al. [12]). These parameters are reported in Table 1:

Parameter Values

λ -20%

S 10%

δ 10%

Table 1: The classical methods' parameter values.

We calibrate the HW model on projected mortality data for each cohort using
the Least Square Estimation. The optimal parameters are reported in Table 2:

Age µx(0) A B b σ

65 0.0105677 0.002398110 0.115379365 0.261814487 0.001864268

70 0.01608859 0.005079817 0.116501598 0.311927223 0.006213681

Table 2: Optimal parameter values for the survival function in the HW model.

It is noteworthy to mention that using a projected for calibration increases
the uncertainty, and using observed data would have been more reliable, but
as Plat [27] states:� there is not enough insurance portfolio speci�c mortality
data available to �t stochastic mortality models reliably�.
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We have followed the Luciano and Vigna [24] framework, who have also cal-
ibrated the data on UK projected table, and compared between calibrating
some stochastic time-continuous models on observed and projected data. They
have found that the volatility has lower values in the case of projected data,
however �this seems to indicate that, relying on the observed data, the future
evolution of the intensity of mortality for an individual aged x now (observing
his/her current force of mortality) presents low variability�.
Zeddouk and Devolder [33], have followed the same routine using the observed
Belgian mortality data and projected data from IA|BE, and have found the
same conclusions.

Therefore, although the data we used is taken from projected mortality ta-
bles and not from observed ones, the values of the parameter seem to be realistic
and fall within the usual values range. Overall, in practice, if the observed mor-
tality data is available, our framework can be used by a hedger who can directly
calibrate the multi-population model to the observed insureds' mortality data.

Zeddouk and Devolder [34] have computed the prices of the S-forward con-
tracts under the Cost of Capital and the classical approaches, using HW model
for mortality and the assumptions made in this paper. The prices as well as the
�xed legs are reported in Table 3:

Fixed leg COC Risk-neutral Sharpe Wang

x0 = 65, T = 5 0.94193 52.63125 55.24155 52.88389 52.88651

x0 = 65, T = 10 0.86580 88.39936 86.98154 88.89517 88.90408

x0 = 70, T = 5 0.91012 49.96718 55.95713 49.55169 49.57395

x0 = 70, T = 10 0.78655 61.52067 53.61137 59.66057 59.72016

Table 3: Fixed-legs and S-forward prices under the di�erent methods.

6.1 S-exchange prices in the extra-vol case

We determine the price of the di�erent S-exchange derivatives under the extra-
vol e�ect case using the following parameters:

� σ̃ = 20%σ

� ρ̃ = 0.5

� µ′x(0) = µx(0)

The main objective of the paper is to focus on the pricing framework and
not really on the calibration itself. Therefore, we have chosen these values for
illustration, and a stress test related to each of these values is provided in Section
7. This framework can be used by an insurer who can adjust these values, and
calibrate the multi-population model to his own mortality data.
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Our approach can be even more relevant in case the insurers' mortality
data is weak or not available, but also when this data is available: in this case,
the hedger can directly use the insureds' mortality for calibration, and derive
the extra volatility by comparing the volatilities of the two population. The
correlation can also be easily computed since the data for both population is
available.

By studying these parameters, the mortality model will fall in one of the
three possibilities we discuss in the paper, and therefore the insurer can observe
the volatility e�ect, trend e�ect or both (the total e�ect).

We report in Table 4 the di�erent S-exchange prices computed under the
extra-vol e�ect case:

COC Risk-neutral Sharpe Wang

x0 = 65, T = 5 2.48922 1.12973 0.88968 0.9315238

x0 = 65, T = 10 5.52361 1.41983 1.50233 1.232661

x0 = 70, T = 5 8.89376 3.72324 3.23218 3.006879

x0 = 70, T = 10 17.88005 4.97062 5.82333 6.06159

Table 4: Comparison between S-exchange prices under the di�erent methods,
extra-vol case.

6.2 S-exchange prices in the constant shift case

We consider the following parameters:

� g = 0.9

� µ′x(0) = g · µx(0)

COC Risk-neutral Sharpe Wang

x0 = 65, T = 5 49.48473 49.48929 49.47635 49.47637

x0 = 65, T = 10 105.8105 107.25240 107.27830 107.2784

x0 = 70, T = 5 80.38255 79.80213 79.743380 79.74367

x0 = 70, T = 10 170.68800 172.32610 172.47010 172.4728

Table 5: Comparison between S-exchange prices under the di�erent methods,
constant shift case.

Under this case, we get more or less the same S-exchange prices with the
four methods.
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6.3 S-exchange prices in the total e�ect case

We determine the price of the di�erent S-exchange derivatives under the total
e�ect case using the following parameters:

� σ̃ = 20%σ

� ρ̃ = 0.5

� g = 0.9

� µ′x(0) = g · µx(0)

Table 6 represents the di�erent S-exchange prices computed under the total
e�ect case:

COC Risk-neutral Sharpe Wang

x0 = 65, T = 5 51.95998 50.62522 53.42589 50.68662

x0 = 65, T = 10 111.19450 108.69150 116.88090 108.5659

x0 = 70, T = 5 88.37966 83.55947 86.51790 85.32901

x0 = 70, T = 10 188.27620 177.41610 188.85620 177.4802

Table 6: Comparison between S-exchange prices under the di�erent methods,
total e�ect case.

Comments:
The S-exchange prices given by Wang and risk-neutral approaches are more

or less similar. Overall, the Sharpe method provides the highest S-exchange
prices in comparison with the four methods. By comparing Tables 4,5 and 6 we
can also remark that the sum of the prices under the extra-vol and the shift
cases is very close to the price found under the Total e�ect case, which results
from the cumulative e�ects of the drift and the volatility.

Also, the price under the shift case is very high when compared to the extra-
vol e�ect, where more than 90% of the price under the total e�ect is linked
to the shift parameter g, and this can be explained by the small values of the
volatility σ.

7 Sensitivity test

In this Section, we perform a sensitivity test for the prices, best estimates and
risk margins computed under the COC approach. For each case, cohort and
maturity, we vary one parameter and consider other parameters �xed, and we
see how the price of the S-exchange contract under the COC method changes.
For illustration, we provide in the Appendix Section the sensitivity test for the
classical methods in the total e�ect case.
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7.1 Volatility e�ect

In this case, to compute the prices of the S-exchange contracts we have chosen
σ̃ = 20%σ and ρ̃ = 0.5. Now we use di�erent values of σ̃ and ρ̃, and see how the
price changes. The di�erent prices, BE and RM are reported in Tables 7, 8 and 9:

σ̃ ρ̃

10%σ 20%σ 30%σ 50%σ 0 0.5 1

x0 = 65, T = 5 1.2560 2.4892 4.2621 6.2730 2.3410 2.4892 2.7980

x0 = 65, T = 10 2.8349 5.5236 8.3154 13.9834 5.3298 5.5236 5.7838

x0 = 70, T = 5 4.2763 8.8937 15.3118 22.7217 7.5817 8.8937 9.5652

x0 = 70, T = 10 7.8704 17.8800 24.8066 47.9071 15.0588 17.8800 20.4783

Table 7: Price sensitivity test for σ̃ and ρ̃ parameters under COC approach,
extra-vol case.

σ̃ ρ̃

10%σ 20%σ 30%σ 50%σ 0 0.5 1

x0 = 65, T = 5 0.0299 0.0654 0.1063 0.2045 0.0109 0.0654 0.1199

x0 = 65, T = 10 0.10628 0.2318 0.3768 0.7246 0.0986 0.2318 0.4251

x0 = 70, T = 5 0.2783 0.6072 0.9868 1.8978 0.1012 0.6072 1.1133

x0 = 70, T = 10 0.8530 1.8613 3.0249 5.8183 0.3101 1.8613 3.4128

Table 8: Best estimate sensitivity test for σ̃ and ρ̃ parameters under COC ap-
proach, extra-vol case.

σ̃ ρ̃

10%σ 20%σ 30%σ 50%σ 0 0.5 1

x0 = 65, T = 5 1.2260 2.4237 4.1558 6.0685 2.3301 2.4237 2.6780

x0 = 65, T = 10 2.7286 5.2917 7.9386 13.2588 5.1925 5.2917 5.3587

x0 = 70, T = 5 3.9979 8.2864 14.3250 20.8238 7.4805 8.2864 8.4518

x0 = 70, T = 10 7.0173 16.0186 21.7817 42.0887 14.7486 16.0186 17.0654

Table 9: Risk margin sensitivity test for σ̃ and ρ̃ parameters under COC ap-
proach, extra-vol case.

7.2 Trend e�ect

In this case, to compute the prices of the S-exchange contracts we have chosen
g = 0.9. We consider now di�erent values for g and see how the price changes.
The results are reported in the Tables 10, 11 and 12:
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g

0.5 0.7 0.9 1.1

x0 = 65, T = 5 250.2315 149.2817 49.4847 -49.0785

x0 = 65, T = 10 543.6788 321.6998 105.8105 -103.7540

x0 = 70, T = 5 411.7152 244.9485 80.3825 -78.1786

x0 = 70, T = 10 905.0097 526.3405 170.6880 -162.5489

Table 10: Price sensitivity test for g parameter under COC approach, constant
shift case.

g

0.5 0.7 0.9 1.1

x0 = 65, T = 5 249.9182 149.1292 49.4378 -49.16796

x0 = 65, T = 10 550.2550 325.7032 107.1109 -105.6799

x0 = 70, T = 5 405.1099 240.8466 79.5514 -78.8294

x0 = 70, T = 10 900.6148 527.4891 171.6711 -167.6422

Table 11: Best estimate sensitivity test for g parameter under COC approach,
constant shift case.

g

0.5 0.7 0.9 1.1

x0 = 65, T = 5 0.3133 0.1524 0.0468 0.0894

x0 = 65, T = 10 -6.5761 -4.0034 -1.3003 1.9259

x0 = 70, T = 5 6.6053 4.1018 0.8311 0.6508

x0 = 70, T = 10 4.3949 -1.1486 -0.9830 5.0932

Table 12: Risk margin sensitivity test for g parameter under COC approach,
constant shift case.

7.3 Total e�ect

In this case, to compute the prices of the S-exchange contracts, we have chosen
g = 0.9 , σ̃ = 20%σ and ρ̃ = 0.5. Let us now compute the price using di�erent
values of g, σ̃ and ρ̃, then we see how the price changes. The results are reported
in the Tables 13, 14, 15:
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g σ̃ ρ̃

0.5 0.7 0.9 1.1 10%σ 20%σ 30%σ 50%σ 0 0.5 1

x0 = 65, T = 5 253.0618 151.8753 51.9599 -46.4201 50.7853 51.9599 53.5352 56.3035 51.8764 51.9599 52.3302

x0 = 65, T = 10 548.6933 326.8021 111.1945 -98.6251 108.3595 111.1945 113.5351 119.6683 110.5150 111.1945 111.4551

x0 = 70, T = 5 424.6750 252.2611 88.3796 -70.4250 84.3369 88.3796 92.7267 103.0981 87.4360 88.3796 90.6162

x0 = 70, T = 10 927.0974 544.8262 188.2762 -148.6811 179.8440 188.2762 197.5176 218.0175 183.5376 188.2762 193.0048

Table 13: Price sensitivity test for g, σ̃ and ρ̃ parameters under COC approach,
total e�ect case.

g σ̃ ρ̃

0.5 0.7 0.9 1.1 10%σ 20%σ 30%σ 50%σ 0 0.5 1

x0 = 65, T = 5 249.9851 149.1950 49.5036 -49.1024 49.4680 49.5036 49.5448 49.6435 49.4489 49.5036 49.5585

x0 = 65, T = 10 550.5031 326.8020 107.3459 -98.6252 107.2186 107.3459 107.4928 107.8453 107.1500 107.3459 107.5417

x0 = 70, T = 5 405.7455 241.4701 80.1642 -78.2276 79.8323 80.1642 80.5473 81.4666 80.1503 80.1642 80.6749

x0 = 70, T = 10 902.7108 529.4879 173.5772 -165.8245 172.5446 173.5772 174.7687 177.6292 171.9880 173.5772 175.1659

Table 14: Best estimate sensitivity test for g, σ̃ and ρ̃ parameters under COC
approach, total e�ect case.

g σ̃ ρ̃

0.5 0.7 0.9 1.1 10%σ 20%σ 30%σ 50%σ 0 0.5 1

x0 = 65, T = 5 3.0801 2.6820 2.4562 2.6816 1.3173 2.4562 3.9903 6.6600 2.4275 2.4562 2.7717

x0 = 65, T = 10 -1.8093 0.8587 3.8486 6.8260 1.1409 3.8486 6.0423 11.8230 3.3649 3.8486 3.9133

x0 = 70, T = 5 18.9304 10.7905 8.2154 7.8026 4.5046 8.2154 12.1794 21.6314 7.2857 8.2154 9.9412

x0 = 70, T = 10 24.38662 15.3382 14.6990 17.1434 7.2994 14.6990 22.7488 40.3882 11.5489 14.6990 17.8388

Table 15: Risk margin sensitivity test for g, σ̃ and ρ̃ parameters under COC
approach, total e�ect case.

In general, the two populations may have di�erent speeds of reversion: the
insurer's population tends to be wealthier, which would imply a possibly slower
mean reversion. The e�ect of this di�erence can be measured by analysing the
sensitivity of the price with respect to the mean reversion rate parameter. As
we mentioned previously, in order to ful�l the independence assumption, the
mean reversion rate b in the population's force of mortality formula should be
the same as in the insurer's population formula. Namely, we should have b = b′.

In the Appendix Section we ignore this assumption, and perform a sensitivity
test on parameter b′.

8 Di�erent longevity hedging strategies

In this Section, we de�ne and compare di�erent longevity hedging strategies
using the Cost of Capital approach. For each strategy, we determine the Solvency
Capital Required that the insurer should hold to cover unexpected losses, as well
as the best estimate at time 0.
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Depending on his risk aversion, the insurer can choose to hold an SCR,
and/or to totally or partially hedge the longevity risk. More precisely, we com-
pare the following possible strategies:

1. The insurer can choose to hold an SCR, and not resort to the �nancial
market or reinsurance to hedge the longevity risk.

2. He can choose to only hedge a portion of the systemic longevity risk by
entering an S-forward, and hold the SCR corresponding to the basis risk.

3. In addition to the purchase of an S-forward, he can choose a total pro-
tection against the longevity risk by entering an S-exchange contract (as-
suming that such product is available in the �nancial market, or proposed
by an investor).

4. The insurer can choose a total protection without entering an S-forward
and an S-exchange, but simply by transferring the total longevity risk to a
reinsurer who accepts to take it. The cost of this protection is also assumed
to be computed using the Cost of Capital approach.

� Auto-protection: holding an SCR (S1)

In this strategy, the insurer manages himself the longevity risk by holding suc-
cessive annual Solvency Capitals following the directives of Solvency II. We
denote by

T
p̂
x
a �xed survival rate of an individual aged x at time 0 to be alive

at age x + T (F0 measurable). The premium paid by the insured is based on
this �xed rate.

The best estimate in this case is given at time 0 by:

BEP
0 = P (0, T )(EP(I(x, T )ins −

T
p̂
x
). (66)

The expression of the successive solvency capitals under the COC approach
is given by Zeddouk and Devolder [34]:

SCRi = V aR99,5%[BEP
i+1P (i, i+ 1)−BEP

i ], (67)

where:

BEP
i+1 = (I

ins

(x, i+ 1)EP( I
ins

(x+ i+ 1, T − i− 1)− T p̂x))P (i+ 1, T )

BEP
i = (I

ins

(x, i)EP( I
ins

(x+ i, T − i)− T p̂x))P (i, T ). (68)

Therefore, the estimation of SCRi |0 can be given by:

SCRi |0 = P (i, T )EP(I
ins

(x, i))[V aR99,5%(I
ins

(x+ i, 1))− EP( I
ins

(x+ i, 1))]

× EP( I
ins

(x+ i+ 1, T − i− 1)), (69)

and the hedging cost in this strategy is equal to 0.
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� Partial hedging: S-forward (S2)

The insurer choose to partially hedge the longevity risk (its systemic part),
by entering an S-forward. In this case, he should pay the price of the S-forward
(formula (42)), and hold the SCR to cover the eventual losses related to the basis
risk. The best estimate at time 0 is given by formula (43), and the estimation
of the SCRi at time 0 are given by formula (51).

� Total hedging: S-forward + S-exchange (S3)

In this strategy the insurer prefers not to hold the SCR, and to be totally
protected against the longevity risk. The cost of this protection is equal to the
sum of the S-forward and S-exchange contracts prices.

� Reinsurance (S4)

Instead of buying an S-forward and an S-exchange, the insurer can directly
resort to a reinsurer who accepts to totally cover the longevity risk. In this case,
the SCR is equal to 0. For example, if the reinsurer uses the COC approach to
compute the price of the total protection, the price of this protection should be
equal to:

VCOC (0, T ) = P (0, T ) (EP[ Iins(x, T )− T p̂x])

+ 6%

T−1∑
i=0

[EP(Iins(x, i))[V aR99,5%(Iins(x+ i, 1))− EP( Iins(x+ i, 1))]

× EP( Iins(x+ i+ 1, T − i− 1))P (0, i+ 1)P (i, T ). (70)

For illustration, we compute the di�erent hedging strategies in this Section
to compare the various strategies that re�ect the risk aversion of the insurer.

We use the same data considered in the numerical illustration part of Section
6. We restrict ourselves to two initial ages, 65 and 70 years old, for a maturity
of T = 5 years. Table 16 reports a comparison between the hedging strategies
under the COC approach:
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x0 = 65, T = 5 x0 = 70, T = 5

Price BE0 SCRt Price BE0 SCRt

S1 0 95.31299

t=0 17.03330

0 108.13463

t=0 68.72862

t=1 17.35925 t=1 69.15855

t=2 17.43082 t=2 69.21941

t=3 17.27303 t=3 68.94691

t=4 16.90103 t=4 68.35740

S2 52.63125 49.50369

t=0 4.98812

49.96718 80.16426

t=0 12.48208

t=1 7.82119 t=1 23.93022

t=2 8.53356 t=2 29.12340

t=3 10.54643 t=3 39.51281

t=4 13.38823 t=4 48.05535

S3 104.59125 0 0 138.34670 0 0

S4 100.38690 0 0 128.80417 0 0

Table 16: Comparing di�erent longevity hedging strategies using the COC ap-
proach.

� In case S1, the insurer does not buy any protection, but must hold the
SCRs corresponding to the longevity risk (the systemic and basis risks).
This strategy cost the insurer the expense of holding these SCRs (6% of
the SCRs), and the SCRs can be totally or partially lost if things go wrong.
In this strategy, however, the insurer is not exposed to credit risk.

� In case S2, the insurer enters into an S-forward contract, which is an
exchange-traded derivative based on the reference population index that
partially covers the insurer (systemic risk). Therefore, this insurer should
hold smaller SCRs (which can also be totally or partially lost) correspond-
ing to the remaining basis risk. In this strategy, the insurer is exposed to
credit risk, but it is limited since the risk is spread among a large number
of investors.

� In case S3, the insurer buys two protections: an S-forward contract from
the �nancial markets and an S-exchange derivative, which is a customised
contract (OTC). Hence, the insurer will be fully covered against the longevity
risk and will not need to set aside an SCR. The credit risk is more signi�-
cant in this case since it is related to the �nancial market (S-forward) and
the S-exchange's seller.

� In case S4, the insurer delegates the risk to a reinsurer, and as in case S3
there is no need to hold SCRs. The cost of this protection is also computed
using the Cost of Capital approach. This strategy represents the highest
credit risk since it is related to one entity.
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Besides S1, all other strategies the insurer might choose do not completely
mitigate the risk, as credit risk must be considered in the risk transfer decision.
Credit risk represents a state in which the counterparty (in our case, the �nancial
market or the reinsurer) is unable to ful�l its �nancial obligations in a timely
manner or at all. Neither the �nancial market nor the reinsurer is completely free
from default risk, and therefore, the insurer must hold a capital for this extra
credit risk. However, the level of this risk is more important for the reinsurer
than for the �nancial market. Assessment of this risk is beyond the scope of this
paper; we refer the interested reader to Bi�s et al. [4] for more details.

The choice of the best hedging strategy depends on the insurer's risk aver-
sion. Moreover, deciphering the best strategy in terms of cost is di�cult at time
0: if the insurer chooses S1 or S2, the cost of the hedging strategy will be known
only at maturity of the contract, since it depends on whether or not the SCRs
are used to cover the risk. For example, S1 would be better than S3 if the SCRs
are not needed; otherwise S1 would be more expensive than S3 and S4. Ad-
ditionally, from S1 to S3, the expectation of the cost (BEP

0+ Price) increases
since the expense increases the more the insurer seeks protection against the
longevity risk.

9 Conclusion

In this paper, we developed a continuous time framework to assess the basis risk
through the pricing of a longevity derivative. We proposed a bi-dimensional Hull
and White process that can capture mortality trends in the reference population
and in the insurer's population, whose risk is to be hedged. We associated the
basis risk with a longevity derivative called S-exchange that we priced under
the Cost of Capital method, which is consistent with Solvency II. We presented
this approach as a new benchmark and compared it with other classical pricing
methods. In addition, we proposed various hedging strategies depending on the
insurer's risk aversion. For further research, we could price non-linear longevity
derivatives, such as longevity options, using the same Cost of Capital philosophy.
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