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Abstract—In this paper, we consider a cooperative sensing
model for automotive urban scenarios studied within a stochastic
geometry framework. The street deployment is modelled by
means of a Poisson line process and the active roadside units
within each street via homogeneous Poisson point processes. The
RSUs located in proximity of the typical vehicle cooperate in
order to detect it in crossroad and non-crossroad situations,
improving the overall sensing performance. Multiple cooperation
schemes are analysed. The model is validated thanks to Monte-
Carlo simulations.

Index Terms—stochastic geometry, Poisson line process, auto-
motive scenario, radar, CoMP

I. INTRODUCTION

Sensing systems are a key technology for today and future
vehicles and smart cities, helping with tasks such as parking,
cruise control and the development of autonomous vehicles.
In smart cities, the detection of vehicles and the cooperation
between the user equipments and the infrastructure is crucial
to improve the safety of autonomous vehicles at crossroads.
To enhance the reliability of such technologies, cooperative
sensing is a promising solution in urban automotive scenarios.
The evaluation of the sensing performance achieved with and
without cooperation in such situations is therefore required.

In order to assess the performance of the network at
a large scale level, stochastic geometry has been used in
this work. It enables to obtain closed-form expressions for
performance metrics by averaging over realisations of random
point processes modelling the network nodes positions [1].
For radar applications in automotive scenarios, [2] evaluates
the performance achieved for different radar cross section
models. Multiple lanes are considered in [3] and [4], the
former considering front- and side-mounted radars with direc-
tional antenna patterns, and the latter taking into account the
interference from reflections on vehicles in the neighbouring
lanes. In these papers, Poisson Point Processes (PPP) are
usually chosen to model the nodes positions. Instead, [5] uses
a one-dimensional lattice, and [6], [7] use Matérn hard-core
processes, respectively in one or two dimensions. Fine-grained
analysis is applied in [8], [9] to evaluate the meta distribution
of the Signal to Interference plus Noise Ratio (SINR), enabling
to analyse the reliability of the detection at each individual
vehicle. Recently, joint radar and communication applications
have also been analysed. For automotive applications, [10] and
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[11] evaluate the cooperative detection range of the system,
respectively with spectrum allocation between both functions
or with joint systems.

In order to enhance the large-scale modelling of cities,
Poisson line processes have been recently introduced for
communication networks [12]–[14]. Additionally, to further
improve the network performance, Cooperative MultiPoint
(CoMP) joint transmission schemes have been introduced [15],
[16]. More specifically, for cooperative sensing, [17] evaluates
the sensing capabilities in a joint radar communication sce-
nario with three different cooperation rules, namely the OR,
Majority (MAJ) and AND rule. The spatial distribution of the
base stations follows a β-Ginibre point process to model the
repulsion behaviour.

To our best knowledge, the sensing performance obtained
with CoMP schemes in large-scale cities modelled with Pois-
son line processes have not yet been evaluated. Based on
the aforementioned works, the contributions of this paper are
summarised as follows:

• An automotive urban scenario is modelled using a poisson
line process. Multiple road side units cooperate to detect
successfully the typical node. The achieved performance
is obtained using stochastic geometry in crossroads with
an arbitrary number of roads, and validated through
Monte-Carlo (MC) simulations.

• Leveraging on [17], multiple cooperation schemes are
analysed for the cooperative sensing: the K rule (OR
rule if K = 1), the MAJ rule and the AND rule.

• Numerous interference sources are considered for each
cooperative RoadSide Unit (RSU), namely direct links,
reflections on the typical node and diffractions.

II. SYSTEM MODEL

A. Considered scenario

In the considered city, all the roads are modelled following
a Poisson Line Process (PLP) ΞR composed of multiple lines
Li ∈ R2. These lines are characterised by their perpendicular
distances yi ∈ [0,∞[ to the origin, and their angles θi ∈
[0, 2π[, as illustrated in [12]. The line L0 is an horizontal line
crossing the origin, i.e. y0 = 0 and θ0 = π

2 .
The typical vehicle is located at the origin of the line

L0. Since the performance at the typical vehicle is strongly
impacted by its location on the street, the overall metric
can be computed as a weighted average, depending on the
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probability to be located in an intersection with NR +1 lanes.
If NR = 0, there is no intersection. If NR > 0 instead, the lines
L1, ..., LNR are crossing the origin, i.e. yi = 0 ∀ i = 1, ..., NR.
The other perpendicular distances are distributed following
a 1D PPP Φy = {yNR+1, yNR+2, ...} ∈ R+ of density λy.
RSUs are then modelled on every line Li following a 1D PPP
Φvi of density λri. We assume that they are equipped with
omnidirectional antennas. The angles of all the lines except L0

are distributed following a Cox line process, meaning that they
are distributed uniformly in [0, 2π[. The Manhattan process
is obtained as a particular case of the Cox line process. We
consider that all RSUs at a distance lower than ρ in the lines
{L0, ..., LNR} are cooperating. The set of cooperating nodes
in road i is denoted Ci.

B. Propagation models

With a linear path-loss model, the typical vehicle being
positioned at position (0, 0), we assume that the received
power at a node located at position z1 from a transmitter
located at position z2, potentially located in two different roads
forming an angle ψ with an intersection at position χ, can be
written as

P = κ g(z1, z2,χ, ψ)−α γ, (1)

where γ is an exponentially distributed random variable mod-
elling the small-scale fading of the link. The parameters κ, α
and the function g are set depending on the considered link.
For the useful radar echo, the transmitter is also the receiver,
and g(z1) = 2∥z1∥. For the interference, three different
interference types are considered (Figure 1):

1) The interference generated by direct links between dif-
ferent RSUs on the same road, so-called interference of
type I in this paper, for which g(z1, z2) =∥z1 − z2∥.

2) The interference generated by reflection on the typical
node, so-called interference of type II in this paper,

for which g(z1, z2, ψ) =
(

1+cosψ
2

)− νr
α

(∥z1∥+∥z2∥), as
proposed in [18]. The parameter νr defines the angular
beamwidth of the reflective contribution.

3) The interference generated by diffraction, so-called in-
terference of type III in this paper, for which the Berg
model [19] proposes g(z1, z2,χ, ψ) =∥z1 − χ∥+∥z2 −
χ∥+kb

(
2ψ
π

)νb
∥z1−χ∥∥z2−χ∥, where kb =

√
qbfc/c,

and νb and qb are empirical parameters.

III. MATHEMATICAL DEVELOPMENT

Let us denote respectively by Rji, IRji and Wji the power
of the radar echo, the total interference and the noise at the
cooperative RSU i located at position xji in the lane Lj of
the crossroad. This RSU performs a successful detection if the
SINR Rji/(IRji+Wji) is higher than a given SINR threshold
ηR. Therefore, its success probability is defined as

PSji(ηR) = P
(

Rji
IRji +Wji

≥ ηR

)
. (2)

Fig. 1. Different interference types affecting the cooperative RSUs. The
interference generated by direct links, reflection on the typical node and
diffraction are respectively drawn in blue, red and green. Note that the same
interference types occurs between different cooperative RSUs. The lanes are
linear with the PLP model and the lanes width is only illustrated for clarity.

Following the propagation models presented in Section II-B,
the radar echo power Rji is expressed as

Rji = κR |xji|−α γji. (3)

The total interference aggregates multiple interference sources:
1) The interference of type I and II from the RSUs in the

road j which are not cooperating:

IR1ji =
∑

k|zjk∈Φvj\Cj

(
κI|xji − zjk|−α γ(I)

1,jik (4)

+ κI (|xji|+ |zjk|)−α 1 (xjizjk > 0) γ
(II)
1,jik

)
.

The interference of type II only occurs when the coop-
erative and interfering RSUs are on the same side of the
typical node.

2) The interference of type I and II from the RSUs in the
road j which are cooperating:

IR2ji =
∑

k|xjk∈Cj\{xji}

(
κI|xji − xjk|−α γ(I)

2,jik (5)

+ κI (|xji|+ |xjk|)−α 1 (xjixjk > 0) γ
(II)
2,jik

)
.

If some mitigation mechanism is introduced between the
cooperative RSUs, this term can be reduced or deleted.

3) The interference of type II and III from the RSUs in
the road l ̸= j belonging to the crossroad which are not
cooperating:

IR3ji =

NR∑
l ̸=j

∑
k|zlk∈Φvl\Cj

(
κI µ(θj , θl) (|xji|+ |zlk|)−α

γ
(II)
3,jilk + κI B1(xji, zlk, θj , θl)

−α γ
(III)
3,jilk

)
, (6)

with

µ(θj , θl) =

(
1 + cos(ψjl(θj , θl))

2

)νr
, (7)

B1(xji, zlk, θj , θl) =

|xji|+ |zlk|+
(
2ψjl(θj , θl))

π

)νb
|xji||zlk|, (8)
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and ψjl being the angle between the roads j and l:

ψjl(θj , θl) =

∣∣∣∣θj − π

⌊
θj
π

+
1

2

⌋∣∣∣∣+ ∣∣∣∣θl − π

⌊
θl
π

+
1

2

⌋∣∣∣∣ .
(9)

4) The interference of type II and III from RSUs in the road
l ̸= j belonging to the crossroad which are cooperating:

IR4ji =

NR∑
l ̸=j

∑
k|xlk∈Cj

(
κI µ(θj , θl) (|xji|+ |xlk|)−α

γ
(II)
4,jilk + κI B1(xji, xlk, θj , θl)

−α γ
(III)
4,jilk

)
, (10)

with the functions µ and B1 defined above. Again, if
some mitigation mechanism is introduced between the
cooperative RSUs, this can be reduced or deleted.

5) The interference of type III from i RSUs in the road l ̸= j
not belonging to the crossroad:

IR5ji = (11)
∞∑

l=NR+1

∑
k|zlk∈Φvl

κI B2(xji, zlk, θj , θl, yl)
−α γ

(III)
5,jilk,

with the function B2 being the Berg distance defined
in Section II-B. The vectors z1 − χ and z2 − χ are
computed using the absolute positions of the two RSUs
and the absolute position of the intersection between the
two lanes. The angle between the two lanes is computed
based on the scalar product between these vectors.

In this paper, we consider the success probability achieved
by combining the decisions made by the cooperative RSUs.
At the central unit, the decisions are gathered to determine
if a target is detected successfully or not depending on the
adopted cooperation scheme: the K rule (equivalent to the OR
rule when K = 1), MAJ rule or AND rule. In the following,
let us denote by nj the number of cooperative RSUs in lane
j of the crossroad, and [n]j = nj . We will assume that
this number is known for each lane in the crossroad. The
total number of cooperative RSUs nT = n0 + ... + nNR is
therefore also known. In that case, the MAJ rule and AND
rule are respectively obtained by setting K =

⌈
nT

2

⌉
and

K = nT . Otherwise, the metric can be averaged: as the RSUs
are distributed following independent homogeneous PPPs on
the lanes, the joint probability density function of the numbers
of cooperative RSUs on each lane in the crossroad is given by

fn(n) =
(2λrρ)

nT

n0! . . . nNR !
exp (−2(NR + 1)λrρ) 1

(
n ∈ NNR+1

)
,

(12)
and the cooperative success probability is computed as
PS

(K)(ηR) =
∑

n fn(n) PS
(K)(ηR|n). In that case, the MAJ

rule and AND rule are not equivalent to the K rule since
with the K rule, K is constant whatever the total number
of cooperative RSUs. However, they are computed using the
K rule by modifying K depending on the total number of
cooperative RSUs.

With the K rule, the detection is successful if at least
K RSUs agree on the presence of a target. As in [17], the
cooperative success probability conditioned on the number of
cooperative RSUs is expressed as

PS
(K)(ηR|n) = (13)

E−\γ

 nT∑
k=K

(nT
k )∑

m=1

NR∏
j=0

nj∏
i=1

PS
δ
(m)
ji

ji (ηR)
(
1− PSji(ηR)

)1−δ(m)
ji

 ,
where E−\γ denotes the expectation over every random quan-
tity, except the small-scale fading coefficients of all the useful
radar echoes γ = {γji}j=0,...,NR

i=0,...,nj−1
, assumed to be independent

with each other. It takes into account every combination of K
or more than K RSUs detecting a target in the cooperative
set. The binary value δ(m)

ji defines if the cooperative RSU i
in the road j of the crossroad successfully performs or not
a detection for each considered combination m. In order to
simplify this expression, we have developed Lemma 1.

Lemma 1: The polynomial of (13) can be developed as

nT∑
k=K

(nT
k )∑

m=1

NR∏
j=0

nj∏
i=1

PS
δ
(m)
ji

ji (ηR)
(
1− PSji(ηR)

)1−δ(m)
ji

=

2nT −1∑
m=1

a(m)
NR∏
j=0

nj∏
i=1

PS
b
(m)
ji

ji (ηR). (14)

In this expression, b(m)
ji is a binary value which varies for

each term of the summation over the 2nT − 1 binary words
b(m) = {b(m)

ij }j=0,...,NR
i=0,...,nj−1

of size nT which are non zero. If

the cardinality of b(m) is denoted by ∥b(m)∥1 = c(m), the
coefficient a(m) is computed as

a(m) =

(−1)c
(m)−K c(m) −K + 1

c(m)

(
c(m)

K − 1

)
if c(m) ≥ K,

0 otherwise.

Proof: This result is obtained by developing the product of
(14) and summing/subtracting the number of time each product
between the success probabilities of the cooperative RSUs ap-
pears. Every product containing the same number of elements
(related to the cardinality of b(m) defined as c(m)) is associated
with the same coefficient given by

∑c(m)−k
p=0 (−1)p

(
c(m)

cm−p
)
,

which leads to (1). ■

Hence, the cooperative success probability conditioned on
the number of cooperative nodes is expressed as

PS
(K)(ηR|n) =

2nT −1∑
m=1

a(m)E−\γ

NR∏
j=0

nj∏
i=1

PS
b
(m)
ji

ji (ηR)

 .
(15)

Let us denote by x = {xji}j=0,...,NR
i=0,...,nj−1

the positions of the

cooperative RSUs and θ = {θj}j=0,...,NR the angles of the
lanes in the crossroad. Proposition 1 provides the expression
of the expectation in (15).
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g
(m)
13 (x,θ) =

NR∏
j=0

exp

(
− λr

∫ ∞

−∞

(
1−

nj−1∏
i=0

1

1 +
b
(m)
ji ηRκI|xji−z|−α

κR|xji|−α

· 1

1 +
b
(m)
ji ηRκI(|xji|+|z|)−α

1(xjiz>0)

κR|xji|−α

NR∏
l ̸=j

nl−1∏
i=0

1

1 +
b
(m)
li ηRκIµ(θj ,θl)(|xli|+|z|)−α

κR|xli|−α

· 1

1 +
b
(m)
li ηRκIB1(xli,z,θj ,θl)−α

κR|xli|−α

)
dz

)
, (16)

g
(m)
2 (x) =

NR∏
j=0

nj−1∏
i=0

∏
k|xjk∈Cj\{xji}

1

1 +
b
(m)
ji ηRκI|xji−xjk|−α

κR|xji|−α

· 1

1 +
b
(m)
ji ηRκI(|xji|+|xjk|)−α

1(xjixjk>0)

κR|xji|−α

, (17)

g
(m)
4 (x,θ) =

NR∏
j=0

nj−1∏
i=0

NR∏
l ̸=j

∏
k|xlk∈Cl

1

1 +
b
(m)
ji ηRκIµ(θj ,θl)(|xji|+|xlk|)−α

κR|xji|−α

· 1

1 +
b
(m)
ji ηRκIB1(xji,xlk,θj ,θl)−α

κR|xji|−α

, (18)

g
(m)
5 (x,θ) = exp

−λy

∫ ∞

0

1− 1

2π

∫ 2π

0

exp

−λr

∫ ∞

−∞

1−
NR∏
j=0

nj−1∏
i=0

1

1 +
b
(m)
ji ηRκIB2(xji,z,θj ,θ,y)−α

κR|xji|−α

dz

 dθ

dy

 ,

(19)

g
(m)
W (x) =

NR∏
j=0

nj−1∏
i=0

exp

(
−
b
(m)
ji ηRW

κR|xji|−α

)
(20)

PS
(K)(ηR|n, x,θ) =

2nT −1∑
m=1

a(m) g
(m)
13 (x,θ) g(m)

2 (x) g(m)
4 (x,θ) g(m)

5 (x,θ) g(m)
W (x). (21)

Proposition 1: Assuming that the positions x of the cooperative
RSUs and the angles θ of the lanes in the crossroad are known,
the expectation of (15) is developed as

E−\γ

NR∏
j=0

nj∏
i=1

PS
b
(m)
ji

ji (ηR)

∣∣∣∣ x,θ

 =

g
(m)
13 (x,θ) g(m)

2 (x) g(m)
4 (x,θ) g(m)

5 (x,θ) g(m)
W (x), (22)

where the g functions are defined in (16)-(20).
Proof: Knowing that the small-scale fading coefficients are
independent and exponentially distributed, the expectation of
(15) is developed as

E

NR∏
j=0

nj∏
i=1

exp

(
−
b
(m)
ji ηRIRji

κR |xji|−α

)
exp

(
−
b
(m)
ji ηRWji

κR |xji|−α

) .
The aggregate interference IRji can be split following the
five interference sources detailed in this section. In order to
simplify the expression, the expectations over the small-scale
fading coefficients are first applied separately on each term
since they are independent. Then, the Probability Generating
FunctionaLs (PGFL) over Φv0, ...,ΦvNR

are applied on IR1

and IR3 with the product on i inside the PGFL. Finally, for
IR5, a PGFL over Φy is first applied, then an expectation about
the angle of the lane outside the crossroad, and a PGFL over
the vehicles PPP of this lane. ■

The cooperative success probability conditioned on the

TABLE I
SIMULATION PARAMETERS.

Parameter Value

Roads density λy = 0.025 [m−1]
RSUs density λr = 0.05 [m−1]
Cooperative distance ρ = 50 [m]
Path-loss parameters κR = κI = 10−6, α = 2
Reflection parameters νr = 4
Diffraction parameters kb = 1.58 [m−1], νb = 1.5

With fixed n, x, θ (for Figure 2, top)
Number of lanes NR + 1 = 2
Lanes angles θ = {90°, 45°}
Coop. RSUs repartition n = {6, 4} (10 RSUs)

Coop. RSUs positions (1th lane) x0 = {−45,−21,−8,
3, 18, 34} [m]

Coop. RSUs positions (2nd lane) x1 = {−15, 6, 23, 32} [m]

number of cooperative RSUs is finally computed by averaging
(21) over the positions x of the cooperative RSUs and the
angles θ of the lanes in the crossroad.

IV. NUMERICAL ANALYSIS

In this section, the mathematical expressions of the coopera-
tive success probability are first validated with MC simulations
through a first scenario in which the number of cooperative
RSUs, their positions and the angles of the lanes in the cross-
road are known (Dirac delta distribution for these parameters
in Figure 2, top). Then, the cooperative success probability is
analysed through MC simulations in the general case where
all these parameters are unknown (Figure 2, bottom). The
characteristic parameters of the distributions are summarised
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no cooperation

Fig. 2. Success probability with (top) and without (bottom) fixed n, x, θ,
achieved by (i) the closest RSU in solid black, (ii) the cooperative RSUs with
the K rule in solid colors, (iii) the OR rule in dotted black, (iv) the MAJ rule
in dash-dotted black, and (v) the AND rule in dashed black. Crosses denotes
the results obtained for the top graph through Monte-Carlo simulations.

in Table I. In the first case where the scenario is fixed, since
the number of nodes has been fixed to 10, the AND rule is
equivalent to the K rule with K = 10, and the MAJ rule is
equivalent to the K rule with K = 5. This is not the case
when the scenario is not fixed anymore. However, the mean
number of cooperative RSUs is equal to 2(NR+1)ρ = 10, and
therefore the performances achieved with the AND and MAJ
rules are respectively close to the performances achieved with
the K rule, with K = 10 and K = 5. Compared to the case
without any cooperation, in which only the closest RSU detects
the target, the OR rule (and the K rule with K = {1, 2, 3}
for low SINR radar thresholds) enables to achieve a better
success probability. However, it is achieved at the price of a
higher false alarm probability. By contrast, the MAJ and AND
rules achieve lower success probabilities, but the number of
false alarms is reduced. The rule should be selected depending
on the requirements of the scenario: to achieve a low false
alarm probability, the AND rule (or rules with a high K/nT
ratios) should be selected. Contrariwise, the OR rule (or rules
with low K/nT ratios) should be preferred if detections are
critical. Nevertheless, for similar false alarm probabilities, the
cooperation enables to improve the detection performance.

V. CONCLUSION

In this paper, we studied the success probability of multiple
RSUs cooperating to make a decision using different schemes
in an automotive scenario modelled with a PLP. The model
was validated through simulations and showed that cooper-
ation helps to improve the sensing performance. However,
the cooperation rule should be chosen wisely depending on
the requirements in term of detection and false alarm prob-
abilities. Future work includes the optimisation of the RSUs
density, the evaluation of other performance metrics, as well

as comparisons with measurements or ray-tracing simulations
and the extension of the model for integrated sensing and
communication systems.
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