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Abstract. This article presents new contributions for Remote Access
Trojan (RAT) analysis using symbolic execution techniques. The first
part of the article identifies the challenges in the application of such an
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lenges. The second part of the article presents a practical analysis of
samples from known RAT families with the help of the SEMA toolchain.
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1 Introduction

According to Dataprot [16], in 2022, 560 000 new pieces of malware were de-
tected daily. The increasing number of critical infrastructures relying on digital
resources exposes society more and more to malware-related threats. It is thus
important to develop techniques to detect and classify malware. Scanning a file
for specific signatures common to malware provides a means of malware detec-
tion. Signatures help identify malware and classify them into malware families.

In the past, signatures have been represented by strings and byte sequences.
Initial malware detection only required the static identification of these elements
directly in the file, which could be completed without executing the malware
(see [33]). Malware writers have easily circumvented this static approach by of-
fering obfuscation techniques [27]. Tools like Ghidra [23] allow for an improved
understanding of the functioning of a binary by reverse-engineering. However,
static analysis is no longer sufficient for malware detection [3]. Contrary to the
static approach, dynamic analysis consists in executing a binary in a controlled
or test environment (e.g., a ’sandbox’). This form of execution makes it possible
to reveal and monitor the behavior of the malware without harm to the host
system. For example, such an approach can identify the malware signature as
a succession of system calls [4, 11], monitor the malware’s behavior, and detect
how the malware would adversely interact with the host system. Unfortunately,
malware can often detect that it is running in test environments. When this hap-
pens, the malware hides its behavior so that it is (falsely) considered benign [6].
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Dynamic analysis is equally ineffective when analyzing malware designed to in-
teract with the network environment. In this case, malware detection requires
either access to the network (which is dangerous) or imitation of the behavior
of the network in the protected execution environment [18] (which can be pro-
hibitively resource-intensive). This situation is particularly problematic when
analyzing Remote Access Trojan (RAT) malware [35] given most RAT malware
is designed to be deployed in a network environment.

Performing analyses manually takes significant time but can offer detailed
information about the behavior and impact of the malware. Of course, automated
analyses are faster and scale better [36]. Unfortunately, this form of analysis could
miss malware information. For example, an automated analysis often focuses
on one execution path occurring in a specific environment. Moreover, malware
developers are continuously developing new ways to evade detection tools [2].

Symbolic analysis [17,31] solves most of the previously identified issues. Sym-
bolic analysis works with a symbolic mathematical representation of the different
values that each variable can take during a piece of malware’s execution. This
approach permits multiple explorations of various sets of paths at each execu-
tion step. Procedures testing the safety properties of very complex systems first
promoted symbolic analysis [17]. Along with learning algorithms, malware de-
tection processes now widely use symbolic analysis [22,26,30]. Symbolic analysis
allows learning algorithms to create more general signatures thanks to a better
exploration of the different behaviors of a piece of malware. Analysts can apply
symbolic analysis, often with other tools, to observe, analyze, and understand
new malware families [10,25].

In [7], the authors use an extension of angr to analyze a RAT of the Enfal
family. They demonstrate that it is possible to use symbolic analysis to discover
all the commands supported by the RAT and to identify the behavior associated
with these commands. The authors point out that obtaining this information
is less time-consuming when symbolic analysis is deployed in comparison to a
manual static analysis. However, their approach focuses on a single binary. The
authors of [7] do not generalize their approach or apply it to different malware
from different families. Another issue unaddressed by [7], is the need to auto-
matically generate actionable reports of what is observed during their analysis.
Because symbolic analysis can explore all the commands of the RAT, automated
reporting would facilitate the quick comparison of different malware. Automated
reporting could also aid in more efficiently analyzing the evolution of a malware
family over time. In [12], the authors complement their previous work with the
reconstruction of a C2 server for a Remote Access Trojan which can then be
used to perform in-vivo analysis. Their approach uses symbolic execution on the
full software stack to record interesting traces in the command processing loop,
considerably increasing execution time. Their approach also requires an analyst.

Our work addresses these issues. This paper presents a generalization of sym-
bolic analysis techniques, accounting for the specific workflow of a RAT. For
example, we explore how to manage the command processing loop and compe-
tently handle time-consuming functions and external calls. We also propose how
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to implement our approach in SEMA [8], a toolchain for malware analysis based
on angr. Our approach includes, among other solutions, creating a database of
time-consuming functions, implementing more than 100 SimProcedures to tackle
the external system calls, and producing a report that focuses on Indicators of
Compromise (IoCs). Our implementations are publicly available [5]. We also
present a detailed analysis of a sample from the Warzone family and provide a
brief overview of our analysis of a MagicRAT sample. With this last analysis,
we show how symbolic analysis can be combined with static analysis.

2 Background

This section reviews concepts used in our work. We start with symbolic execu-
tion, which is a technique used to collect behaviors of a program. We then present
the tool SEMA (Symbolic Execution for Malware Analysis) to automatize mal-
ware analysis. Finally, we discuss Remote Access Trojan (RAT), malware that
can be used to gain remote control of a target computer.

Symbolic execution allows for the collection of a compact representation of
sets of behaviors of a binary without executing it. In contrast, a concrete ex-
ecution follows only one of many possible paths. While a concrete execution
directly updates the variables in memory, symbolic execution replaces variables
with symbolic values and saves the logical formulas defining those symbolic val-
ues. Symbolic execution abstractly executes a binary, considering multiple inputs
concurrently. When the execution flow meets a branch depending on a symbolic
value, it forks its current state of execution and continues with two different
paths. In many cases, symbolic execution has shown better results than static
and dynamic analysis for malware analysis [9, 10].

There are many challenges associated with symbolic execution. If the ap-
proach aims to explore all the possible execution paths, the situation can degen-
erate. Symbolic loops can generate an exponential number of paths [24]. This
leads to the well-known path explosion problem. Another issue is environmental
interaction; it is often difficult to symbolically interpret the output of exter-
nal (and therefore unknown) API calls according to their inputs, which leads
to the appearance of over-approximation. This necessitates improving approach
efficiency with the design of exploration methods and heuristics [30].

angr [31] is an open-source binary analysis tool that provides a symbolic exe-
cution framework. In angr, all information related to the current state of execu-
tion of a program are stored in a SimState and represented by symbolic bitvectors
(BVS). Relationships between BVS are represented by constraints from which
concrete values can be inferred. During the execution, applying instructions gen-
erates successor states from a SimState. SimProcedures manage external API
calls. SimProcedures are function summaries that reflect the effects of the calls
on the SimState.

SEMA (Symbolic Execution toolchain for Malware Analysis) [8, 9] is a new
angr-based tool that detects and classifies malware via symbolic execution and
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machine learning (see Figure 1). 1 The tool accepts ELF and PE executables.
2 SEMA takes binary files as input and performs symbolic execution with angr.
3 During the Symbolic Execution process, API calls and their corresponding

arguments are collected to create a System Call Dependency Graph (SCDG) [26]
that links calls based on their dependencies. The tool implements several Sim-
Procedures that are useful for malware analysis. Many of these SimProcedures
are not implemented in the standard angr framework. Others are also optimized
to improve the concretization of symbolic values, mainly of strings. This speeds
up the symbolic execution and makes the analysis of the traces more conve-
nient. SCDGs can be seen as an abstraction of malware signatures. 4 Machine
learning algorithms can use SCDGs to build models for malware detection and
classification [8, 9]. The machine learning models rely on graph mining through
gSpan [37], graph kernel and support vector machine, or deep learning models.
In this paper, we are particularly interested in extending the capabilities of angr
in SEMA. The tool implements useful heuristics for malware analysis, such as
path prioritization strategies to improve code coverage [9], loop handling [30],
optimized SMT solver strategies [30],... With these heuristics, we are able to
discover new addresses of the malware, avoid infinite symbolic loops, and effi-
ciently explore the program’s state space. SEMA also offers new angr plugins to
collect information about malware interactions with the system (e.g., accessed
environment variables, windows registries).
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Fig. 1. SEMA

RAT analysis RAT malware offers remote access control which allows for mul-
tiple transgressions including launching DDoS attacks or stealing sensitive infor-
mation. Having established persistence on the target computer, a RAT generally
sets up a connection to the Command & Control (C2) server to communicate
with an attacker. The RAT then enters a command processing loop where it
will poll the server for instructions from the attacker. When the RAT receives a
command from the attacker, it executes the corresponding function. The set of
possible commands depends on the family and version of the RAT. Commands
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can comprise keylogging, screen capture, execution of payloads, file ex-filtration,
etc. RATs are out of the scope of most automatic techniques in malware analysis
because they require network interaction to expose their malicious behavior.

3 Contributions to Symbolic Analysis of RATs

This section introduces improvements in symbolic execution to accelerate RAT
analysis. Figure 2 shows a RAT generic workflow to present improvements.
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Fig. 2. Workflow of the RAT with our improvements

First, the RAT usually tries to detect if it is running in a monitored environ-
ment (e.g., a ’sandbox’). If the RAT determines this to be the case, then it may
deploy evasion techniques. Each technique deployed will lead to the creation of a
new symbolic path 1 . Depending on the environment’s reaction, the RAT may
terminate its execution, generate a benign behavior, or continue its malicious ex-
ecution. If the RAT continues malicious execution, it executes several procedures
related to the initialization of the memory and some integrity checks 2 . These
procedures include, for example, the initialization of the allocated virtual mem-
ory to zero with a loop, or a CRC32 computation on the whole binary. These
procedures are generally present in all variants of the same RAT family [14]
and will not contain malicious actions useful in the identification or analysis of
new RATs. They can also hinder execution efficiency. As a result, these pro-
cedures should be circumvented before the application of symbolic analysis to
new candidates. The RAT will then establish persistence by modifying specific
Windows configuration files. For example, many RATs add a path to the registry
key HKCU\Software\Microsoft\Windows\CurrentVersion\Run. After this, the
RAT will initialize a connection with its C2 server and wait for commands 3 .
Managing the interaction with the C2 server is challenging. Ideally, all the com-
mands need to be explored by the symbolic exploration engine to discover all
the capabilities of the RAT. In addition, it is useful to understand the logic
behind the different commands (i.e., which command triggers which behavior)
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when analyzing the recorded network traffic. The SimProcedures of the external
calls present in the Commands 4 should be provided to the symbolic analyzer.

General methodology Our approach includes manually analyzing a RAT sam-
ple and identifying the challenges for its family. We then tackle challenges with
subsequently mentioned techniques that, once successful, are generic enough to
be generalized across samples.

Explore of the binary Several strategies exist to explore symbolic execution
paths efficiently. This includes breadth-first search and depth-first search. In [9],
the authors proposed a depth-first search procedure (CDFS) that explores paths
containing new instruction addresses. This algorithm is very effective when ex-
ploring the command processing loop 3 . Each new command of the processing
loop corresponds to a new path with addresses not yet visited. This exploration
method thus helps efficiently visit all possible commands between steps 3 and
4 of Figure 2. This technique also helps with evasion techniques. As seen in

Figure 2, evasion techniques often reuse the same address if they detect a Virtual
Machine 1 . A focus on new addresses leads to the malicious behavior.

Handle time-consuming functions Performing symbolic analysis requires
using a mathematical model that represents sets of executions. At each step, a
given instruction is applied to symbolic values represented by sets of constraints.
This computation takes more time than the dynamic execution, which applies
the instruction directly on concrete values [15, 38]. In some situations, such as
loops, the repetition of identical instructions severely impacts the computation
time. Our approach should manage such situations. As an example, consider a
function whose objective is to copy part of the memory from one location to
another. The code extracted from the binary by Ghidra is given in Listing 1.1.
We note that the more the size of the area under replication increases, the more
repetitively the code of the loop is executed. Avoiding this repetitive process in
the symbolic analysis is preferable to reduce time consumption.

1 int copy_mem(int dest_addr ,undefined *src_addr ,int length){
2 int offset;
3 if (length != 0) {
4 offset = dest_addr - (int)src_addr;
5 do {
6 src_addr[offset] = *src_addr;
7 src_addr = src_addr + 1;
8 length = length - 1;
9 } while (length != 0);

10 }
11 return dest_addr;
12 }

Listing 1.1. Exemple of function managing memory
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1 def copy_data(state):
2 return_addr = state.stack_pop ()
3 length = state.stack_pop ()
4 src_addr = state.stack_pop ()
5 dest_addr = state.stack_pop ()
6 data = state.memory.load(src_addr , length)
7 state.memory.store(dest_addr , data)
8 state.stack_push(dest_addr)
9 state.stack_push(src_addr)

10 state.stack_push(length)
11 state.stack_push(return_address)
12 return

Listing 1.2. Hook that replaces the time-consuming function

To address this problem, we manually identify the time-consuming functions in
one sample from a family. To do this, we monitor the symbolic execution and
identify the addresses where the execution stalls. We then manually extract the
behavior of each of these functions (e.g., with Ghidra) and create an equivalent
Python function. For example, the Python code in Listing 1.2 is equivalent to
the function in Listing 1.1. We verify that these models behave similarly to the
actual functions by testing them on different inputs and comparing the out-
puts. Creating these Python models manually is tedious and only applicable to
small and unobfuscated functions; it should be automated and generalized to all
types of time-consuming functions in future work. When analyzing a new sam-
ple from a previously evaluated family, our approach deploys a pattern-matching
algorithm to identify problematic functions found with manual identification in
other samples from the family, performing a replacement to avoid running a
symbolic execution on these functions.

Handle external calls and simulate interaction Thanks to SimProcedures
(see Section 2), our approach manages external calls to reflect their environmen-
tal modifications 4 . SimProcedures provide more visibility and control over
the inputs and outputs of the API calls [21]. For example, if a system call re-
ceives a pointer to a buffer as an argument, its content is automatically retrieved
from memory and saved for future analysis. SimProcedures also support the re-
striction of return values, helping to prioritize interesting paths and discard
unwanted paths (e.g., paths related to successful evasion techniques 1 are au-
tomatically avoided because they return values not related to any sandbox).
Finally, SimProcedures permit us to simulate network interactions. In Windows
binaries, network interactions and message communication happen through sys-
tem calls such as recv or InternetReadFile. Contrary to dynamic execution,
our approach does not require crafting concrete messages to trigger malware
behaviors. Instead, our approach returns a symbolic message from the SimPro-
cedures related to those system calls, permitting the automatic discovery of any
behavior that depends on the message.
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Produce reports Initially, SEMA stores all system calls and their arguments
found in the various execution traces in a json file. As already highlighted in
previous research [7], execution traces from symbolic execution are difficult for
analysts to interpret. That is why our improvements include the production of
a report that gathers structured information about the behavior of the analyzed
malware. More precisely, the report focuses on Indicators of Compromise (IoCs)
such as modifications in registry keys, creation of new files/processes, connec-
tion to specific IP addresses, etc. Analysts share these IoCs with the infosec
community to improve knowledge of malware behavior, incident response, and
remediation strategies [34]. In our tool, this information is automatically ex-
tracted from the aforementioned json file, selected based on a list of relevant
system calls [19]. Since the focus of this paper is RAT malware, a report on
the different commands available in the RAT is created as well 5 . By record-
ing which received message 3 corresponds to which execution path 4 , it is
possible to understand the relationship between the message and the associated
behavior (i.e., all system calls that occurred during the execution trace between
the receipt of two messages). For instance, if command 0x1 triggers the calls
CreateFileA and WriteFile, we can infer that command 0x1 corresponds to
the creation of a file on the host.

4 Experiments

In this section, we show how to use techniques introduced in Section 3 to obtain a
detailed analysis of different RATs families. We propose a detailed analysis of the
Warzone RAT and briefly discuss another family of interest. Before diving into
the analyses, we quickly show how our work improves on [7]. The experiments
presented in this section are performed on a computer with a 12th Gen Intel
Core i7-1255U × 12 and 16GB RAM running Ubuntu 20.04.5.

4.1 The Enfal family from [7]

In [7], the authors present a manual analysis of a sample from the Enfal RAT
malware family via symbolic execution. The sample can be found on Malware-
Bazaar [1] with the md5 7296d00d1ecfd150b7811bdb010f3e58. The approach
used in that paper relies on the capacity of an analyst to identify the portion of
code that requires analysis. In practice, the analysis focuses on the extraction
of the communication protocol used by the malware. This analysis produces a
report that lists the different execution traces and the resulting API calls. From
this report, the authors extract the different commands that the RAT features.
In their work, the authors mention that their approach does not provide a clear
summary of the execution. The authors also claim that a generalization of their
approach may be hindered if each sample needs a different setup. Discovering the
right setup for each sample requires the intervention of an analyst, which takes
time. In this context, the authors raise the question of how one can minimize the
manual intervention required to analyze a malware sample. In our approach, we
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propose to mitigate the problems exposed in [7]. Our tool automatically parses
the execution traces to find predefined IoCs related to the malware’s behavior
(e.g., registry modification, file creation, network communication, etc.). We also
devise a number of automatic optimizations to improve the symbolic execution
and minimize manual interventions. We develop techniques that, once applied
to specific malware, can be automatically applied to similar samples from the
same family.

4.2 Warzone RAT

The Warzone malware is written in C++ and targets Windows users. The format
of the file is a 32-bit portable executable (PE). For simplicity, we focus on the
analysis of a sample that can be found on MalwareBazaar [1] with the MD5
93c5434350e0f5dc53a88202ee48e531. We successfully analyzed 35 samples of this
family due to improvements made for the first sample.

General workflow At the beginning of the execution, Warzone goes through
several time-consuming functions. Because these functions can considerably slow
down symbolic execution, they must be identified. Once the initialization is
complete, Warzone tries to become persistent by copying itself to the folder
C:\Users\User\AppData\Roaming. This path is then added to the registry key
HKCU\Software\Microsoft\Windows\CurrentVersion\Run. The execution con-
tinues with the privilege escalation. This process is performed differently depend-
ing on the host’s Windows version. The malware next ensures that it will escape
antivirus detection. Warzone achieves this by adding its name to the exclusion
list of Windows Defender. The malware then connects with its C2 server and en-
ters the command processing loop where it receives and executes the commands
sent by the attacker. There are more than 20 different commands ranging from
keylogging to shell execution. The communication between the victim and the
C2 server is encrypted with RC4 and the password "warzone160\x00".

Improved exploration Our first contribution is to compare the effect of differ-
ent symbolic exploration strategies. We observe that the CDFS strategy from [9]
greatly improves code coverage compared to classical DFS/BFS strategies. This
technique enables us to visit all the possible commands that the RAT features.
In comparison, we observe that with a DFS strategy, the execution will always
go depth-first and therefore get stuck in the infinite loop 4 . When using the
BFS method, the execution is slower because it explores many redundant paths.
For example, the exploration will create two branches to execute the privilege
escalation depending on the OS version of the host. After escalating privileges,
the rest of the execution of each branch will use the same instructions at the
same addresses. In practice, the situation repeats itself and creates an expo-
nential blow-up which impacts the execution time and the instructions that are
visited. The CDFS strategy [9] detects this situation and limits its exploration
to a single branch. Table 1 shows a comparison. In terms of analysis quality, the
technique from [9] identifies all the different commands and finds more system
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calls than BFS or DFS within the same time limit.

Method # of instructions visited # of blocks visited
CDFS 10264 2145
BFS 4141 1001
DFS 2828 644

Table 1. Code coverage for three different exploration method

User defined hooks Several hooks have been implemented to avoid the sym-
bolic exploration of time-consuming functions. Functions for Warzone that re-
quire management include data processing functions (as seen in Listing 1.1),
cryptographic routines (MurmurHash), and other time-consuming functions. These
functions are generic and are reused in other samples from the family. Hence,
our pattern-matching algorithm automatically finds the problematic functions in
other samples from the family and replaces them with previously created hooks.
Figure 3 represents the time (in logarithmic scale) spent in different parts of
the execution. The experiment was performed on three equivalent runs of 600
seconds. In the first run, which does not apply hooks, most of the execution
time is spent in cryptographic functions. In the second run, we see that the
execution gets trapped in the data processing functions if corresponding hooks
are not implemented. Finally, when all hooks are implemented, we see that the
time-consuming functions no longer have an impact on the execution.

without hooks all hooks except
data processing

functions

all hooks
implemented

100

101

102

tim
e 

(s
)

data processing functions
cryptographic functions
other time-consuming functions
rest of the execution

Fig. 3. Execution time with and without hooks

Interaction and SimProcedures We have implemented all the SimProce-
dures that correspond to the system calls made by the RAT during its execu-
tion. This represents a substantial effort since more than 100 SimProcedures have
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been considered. As an example, the code provided in Listing 1.3 shows the Sim-
Procedure for the function GetVersionExA. This function is used to determine
the OS version, which is important in the selection of the privilege escalation
technique. The implementation is based on the information found in the Win32
API documentation. For instance, the variable MajorVersion can take different
values between 5 and 10 depending on the OS. In the SimProcedure, this is rep-
resented by creating a symbolic variable and applying constraints. Our strategy
in implementing SimProcedures is to limit the symbolic inputs and outputs to
what is specified in the Win32 API. We discard only the paths that would lead
to an error in real execution. In this way, we mitigate the path explosion problem
while preserving all paths that would be dynamically feasible.

1 class GetVersionExA(angr.SimProcedure):
2 def run(self , addr):
3 MajorVersion = claripy.BVS("MajorVersion" ,32)
4 self.state.solver.add(MajorVersion >= 5)
5 self.state.solver.add(MajorVersion <= 10)
6 self.state.memory.store(addr+0x4 , MajorVersion)
7 MinorVersion = claripy.BVS("MinorVersion" ,32)
8 self.state.solver.add(MinorVersion >= 0)
9 self.state.solver.add(MinorVersion <= 3)

10 self.state.memory.store(addr+0x8 , MinorVersion)
11 BuildNumber = claripy.BVS("BuildNumber" ,32)
12 self.state.memory.store(addr+0xc , BuildNumber)
13 PlatformId = claripy.BVV(2,32)
14 self.state.memory.store(addr+0x10 , PlatformId)
15 return 0x1

Listing 1.3. SimProcedure of GetVersionExA

The recv SimProcedure plays an important role in the execution of all the RAT
malware that communicates through this function. During analysis, a symbolic
buffer is created to represent the buffer returned by the recv function. This is
done in a way that permits the retrieval of the constraints that were applied to
the buffer. This helps deduce the concrete value of the buffer for each execution
trace and create a report on the commands that the RAT can receive.

Report extracted Each execution automatically produces two reports, one for
the commands and one for the IoCs. For each execution trace, the commands
report produces the command message that triggered this trace and the following
system calls. As an example, the first part of Listing 1.4 shows a piece of the
report that represents an execution trace. It corresponds to the command that
uninstalls the malware. This report supports the comparison of different samples
from the same family. If we analyze samples spread over a large time period, we
might see a growth in the number of commands in recent versus older malware.
The IoC report is divided into several categories. Each category represents a
potentially incriminating behavior. Listing 1.4 provides an excerpt of the IoC
report from the Warzone analysis. In Category "Network activity", we observe
that the address of the C2 server is "rtyui.nerdpol.ovh". This category also
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shows all the system calls that are used to communicate on the network. The
next category lists all the activities related to the registers. This is strategic
information, as the registers are often used by malware to create persistence. The
"Files" category lists all the system calls that concern files and directories. In this
example, we see that Warzone asks for a special folder to which it will copy itself
later. The categories "Processes" and "Command Line" retrieve information on
the processes created by the malware. Here we see that Warzone creates the
processes sdclt.exe and cmd.exe, used to escalate privileges in Windows.

1 RAT Commands:
2 * 0x9123b422d33a244e6018673
3 - RegDeleteKeyW
4 - GetModuleFileNameA
5 - CreateProcessA
6 - CloseHandle
7 - ExitProcess
8 [...]
9 Network activity:

10 - inet_addr(rtyui.nerdpol.ovh)
11 - ...
12 Registers:
13 - RegOpenKeyExW(Software\Microsoft\Windows\CurrentVersion\

Explorer\ZU6FTFTS7G)
14 - RegCreateKeyExA(Software\Classes\Folder\shell\open\command)
15 - ...
16 Files:
17 - SHGetSpecialFolderPathW(C:\Users\USERNAME\AppData\Roaming)
18 - ...
19 Processes:
20 - CreateProcessW(C:\ Windows\System32\cmd.exe)
21 - ...
22 Command line:
23 - ShellExecuteW(open , C:\ Windows\System32\sdclt.exe)
24 - ...

Listing 1.4. Report on discovered commands and IoCs

4.3 MagicRAT

We analyzed a sample of the MagicRAT family, a malware attributed to the
North Korean Lazarus group. The sample can be found on MalwareBazaar with
the MD5: b4c9b903dfd18bd67a3824b0109f955b. Cisco Talos [32] recently dis-
covered it. MagicRAT (written in C++, compiled as a 64-bit PE file) uses the
widespread and trusted QT graphical framework. This significantly increases the
size and complexity of the binary. Since the binary of the RAT is complex and
large, we performed the analysis with a combination of Ghidra and SEMA.

General workflow With symbolic analysis, we found that the malware starts
with an initialization phase of its parameters. Then it creates and hides its config-
uration inside a file called \ProgramData \WindowsSoftwareToolkit\visual.
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1991-06.com.microsoft_sd .kit from the legit QSettings class. The configu-
ration is composed of three strings that start with the common prefix "LR02DPt22R".
During the execution, this prefix is removed from each string. The remaining part
of the string is then decoded to obtain the C2 URLs ("LR02DPt22R<url_i_encode
d_in_base64>"). By inspecting the result of the symbolic execution, we were
able to retrieve the IP from the string. This allows for threat hunting and forensic
analysis of these sources. We then used Ghidra to identify places where suspicious
strings (e.g., "cmd.exe /c bcdedit") are exploited. This speeds up workflow de-
duction. With our analysis, we observe that MagicRAT uses the task scheduler
to execute itself at 10:30 a.m. each day. It also hides in a fake "Onedrive" short-
cut in the startup folder of the victim. Its command processing loop is simple;
it mainly manipulates victims’ files (rename, delete, and move). MagicRAT can
also execute terminal commands on the victim to collect information which is
sent to the attacker in a file named "zero_dump.mix". Finally, the sample has a
self-deletion procedure contained in a ".bat". We now show the implementation
contributions that allow us to achieve this result.

User defined hooks The QT framework requires specific CPU features for the
execution which can be checked with the assembly instruction "cpuid". angr
does not handle this instruction. Thus, we implement a special hook called
"CPUIDHook". This is an advantage when compared to dynamic analysis because
our approach works independently of the real CPU used.

Improved exploration. The QT framework contains code that is not relevant
for symbolic analysis but can hinder effectiveness. The logging process of QT
induces an exploration of benign behavior associated with different environmen-
tal variables. Using Ghidra, we identify 17 QT environment variables associated
with such optional behavior. By setting values for these variables, we avoid ex-
amining these behaviors and improve the efficiency of the analysis that would
otherwise time out before discovery of the malicious behavior.

Interaction and SimProcedures All API calls present in the command loop
are implemented in SEMA. This includes Windows structures containing file
information such as _BY_HANDLE_FILE_ INFORMATION, which contains file meta-
data, or VS_VERSIONINFO, which gives the version of the file. We have also imple-
mented file mapping. This typically starts with a call to CreateFileMappingW
to create a handle for the mapping of an input file. MapViewOfFile then maps
the content of the file to the memory region.

5 Conclusion and Future Work

We have demonstrated how symbolic analysis can help understand the work-
flow of RATs by proposing new heuristics implemented in SEMA and by using
a combination of manual and automatic actions. While our work significantly
improves the analysis of challenging malware such as RATs, more remains to be
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done. Our approach reduces the cost of symbolic execution by identifying and
replacing bottleneck functions. Our pattern-matching approach, while efficient,
is prone to syntactic obfuscation. This process could improve with more reliance
on obfuscation-resilient semantic functionality identification as in [28]. The bot-
tleneck functions could also be automatically identified with the use of machine
learning as in [20]. Monitoring specific symbolic values (e.g., values related to
interaction with the network) could also enhance exploration techniques [13,29].
Finally, we will integrate our contributions into the machine learning malware
detection process introduced in [26] and implemented in SEMA. In particular,
we intend to improve detection and classification of RAT malware families on a
larger scale.
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