
Improving the Agility of BGP
Routing

Thomas Wirtgen

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

October 2023

ICTEAM
Louvain School of Engineering
Université catholique de Louvain

Louvain-la-Neuve
Belgium

Thesis Committee:
Pr. Charles Pecheur (Chair) UCLouvain/ICTEAM, Belgium
Pr. Cristel Pelsser UCLouvain/ICTEAM, Belgium
Pr. Etienne Rivière (Secretary) UCLouvain/ICTEAM, Belgium
Pr. Marco Chiesa KTH, Sweden
Pr. MatthiasWählisch TU Dresden, Germany
Pr. Olivier Bonaventure (Advisor) UCLouvain/ICTEAM, Belgium

Improving the Agility of BGP Routing
by Thomas Wirtgen

© Thomas Wirtgen 2023
ICTEAM
Université catholique de Louvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

This work was partially supported by a F.R.S-FNRS FRIA scholarship (Fund
for Research training in Industry and Agriculture).

“Sometimes we do get taken by surprise.
For example, when the Internet came

along, we had it as a fifth or sixth priority.”

– Bill Gates, 1998

Abstract

The Border Gateway Protocol (BGP) is the key protocol for interconnecting
networks on the Internet, enabling its basic functionality. Its origins date back
to the early days of the Internet, in 1989.

In the following decades, the Internet has evolved significantly and is now
an integral part of economic and social life. However, the design of the BGP
protocol no longer meets modern needs. Although efforts to enhance the
protocol over time, certain elements of its design are resistant to change, due
to its critical role in the Internet infrastructure.

This thesis aims to redesign BGP routing by focusing on three key aspects
of modern routing protocols. First, it explores the possibility of allowing net-
work operators to update their routers, freeing them from vendor constraints
that inhibit protocol innovation. By introducing the eBPF virtual machine into
BGP implementations, network operators gain the ability to design custom
features without relying on the IETF or router vendors.

Second, the thesis deals with the modernization of BGP message transport.
While the TCP protocol was once sufficient to ensure reliable transmission of
routing messages, it now suffers from a number of limitations including its
lack of security features. Since 2021, a new transport protocol called QUIC has
been standardized by the IETF. QUIC combines new features like connection
migration and stream multiplexing with the security features of TLS and the
reliability of TCP. The thesis demonstrates the advantages of using QUIC and
its characteristics for routing protocols.

The third and final part focuses on improving the security of BGP routing.
By default, BGP assumes that advertised routes are usable and accessible in the
data plane without verification, which is often a false assumption. To overcome
this problem, we propose a system to validate and ensure the reachability of
BGP-learned routes in the data plane.

i

Preamble

The Internet has become an important element of our society, evolving from
its origins as an academic research network to a vital component of the global
economy and human interaction. In 2023, it is estimated that 66% of the world’s
population will be using the Internet to access a wide range of resources, with
an average number of 3.6 Internet-connected devices per capita [Cis20].

With over 80,000 Autonomous Systems (ASes) facilitating connectivity
[Hus23b], the Internet continues to expand, enabling more people to be con-
nected andmore services to emerge. To communicate with each other, network
equipment suppliers such as Cisco, Nokia and Juniper offer routers that require
manual configuration. Correctly configured, these routers exchange routing
information to enable communication between networks, enabling them to
share internal policies and configure parameters according to specific needs.

To ensure interoperability between routers from different vendors, stan-
dardized routing protocols such as BGP (Border Gateway Protocol), OSPF
(Open Shortest Path First), IS-IS (Intermediate System to Intermediate System)
or EIGRP (Enhanced Interior Gateway Routing Protocol) are used. These pro-
tocols, standardized by organizations such as the Internet Engineering Task
Force (IETF), form the basis for cooperation between routers. However, these
protocols were established, in the late 1980s, before the exponential growth
of the Internet. The evolving requirements of modern routers do not match
their initial design. As a result, the evolution of distributed routing is slow for
historical reasons, and it takes a long time to introduce new features.

Although suggestions, improvements and additions to these protocols are
proposed every year, some intrinsic aspects of the design cannot be easily
corrected. Routers of the 1980s did not have the computing power to integrate
advanced technologies for disseminating routing information. As a result,
compromises were made, and this ossification became the norm for routers
willing to participate to the Internet.

The objective of this thesis is to reassess the architecture of distributed
routing protocols and update them to align with current technologies and
requirements. More specifically, this thesis focuses on BGP, which is the key
routing protocol on the Internet. BGP facilitates the exchange of routing
information between Internet sub-networks and also plays a crucial role in
the dissemination of this information within each sub-network, which gives it
considerable importance in the Internet ecosystem.

iii

iv Preamble

The contributions of this thesis are outlined as follows:

■ Bringing routing protocol implementation extensibility with plugins.

Routing protocol implementations are generally managed by router ven-
dors. They are mainly closed source and therefore do not offer network
operators the possibility to evolve them. This constraint strongly limits
the operators on what they can deploy in their network whose needs
are constantly evolving. In addition, the introduction of a new func-
tionality in a protocol requires long steps that slow down innovation.
For all implementations to be interoperable, the functionality must first
be standardized by the Internet Engineering Task Force (IETF), which
often takes time, and then vendors must implement, test and deploy it
on their operating systems.
We propose a new approach that allows network operators to extend
a specific implementation of a routing protocol themselves through
plugins. The plugins can extend the protocol and modify the proto-
col’s internal routines through a simple API. We modified the BGP and
OSPF implementations of FRRouting, an open-source implementation
of several routing protocols, to demonstrate the applicability of such an
approach.

■ Designing a routing protocol to be extensible, regardless of the underlying
implementation.

We have shown that it is possible to augment an implementation of
a routing protocol with plugins that network operators develop and
inject into their routers. However, this approach has a major limitation.
An operator typically has various routers from different vendors with
different operating systems. This means that the underlying implemen-
tation of a routing protocol is also different. A plugin developed for
one implementation will not work in another implementation of the
same routing protocol. Nevertheless, all implementations must at least
respect the routing protocol standard. It is therefore possible to abstract
the core data structures and routines that each implementation must
maintain to comply with the standard
We propose an approach to abstract a routing implementation and thus
allow a once-written plugin to be executed on any implementation of
a routing protocol. To demonstrate the feasibility of this approach,
we prototype xBGP, a vendor-neutral API that exposes the key data
structures and functions of any BGP implementation. To show that the
multi-vendor approach is possible, we adapt two open-source BGP im-
plementations to make them xBGP compatible and demonstrate several
use cases that work on both implementations.

Preamble v

■ Modernizing the transport of routing messages.

BGP uses plain TCP connections to exchange routing messages. How-
ever, TCP does not have strong security features. To address this, the
IETF and operators have standardized authentication methods like TCP-
MD5 or TCP-AO, and other techniques to protect against various types
of attacks. Recently, the QUIC protocol has been standardized, which
has shown that a transport protocol can be both secure and efficient.
QUIC is being rapidly adopted by the use of HTTP/3 and DNS over
QUIC.

We are looking into how a secure transport protocol like QUIC can lever-
age routing protocols. By using QUIC, we not only secure the exchange
of routing information but also make BGP more flexible. We have added
QUIC to the open-source BIRD routing daemon to demonstrate this flex-
ibility. We show that using BGP over QUIC is more flexible than using
plain TCP. With BGP over QUIC, we can establish BGP connections
as needed without compromising the security of routing information.
BGP over QUIC also improves remote blackholing services and makes
it easier to support complex BGP filters.

■ Securing and making the protocol aware of its environment.

BGP is a fragile routing protocol since it is based on an implicit system
of trust between the Autonomous Systems (AS) participating in the
exchange of routes on the Internet. Any router can announce the routes
it wants without being the owner. Due to the lack of a validation system
for the announcements made by BGP routers, a series of RFCs published
after the release of BGP have partially solved this problem by introducing
the Resource Public Key Infrastructure (RPKI).

We aim to complement the security mechanisms of BGP by introducing
a new active control system. We propose to validate BGP paths in the
dataplane. We extend the BGP implementation of FRRouting (an open
source Internet routing protocol suite) to demonstrate the feasibility
of our approach. Finally, we discuss the potential of an active system
in a routing protocol to both secure BGP announcements and improve
the routing decision. We believe that augmenting a routing protocol by
using data plane metrics can lead to better route propagation.

vi Preamble

The thesis is structured in five parts:

■ Part I introduces the key concepts of routing in the context of the
Internet (Chapter 1 (Introduction)).

■ Part II tackles the programability of routing protocols and proposes
a technique to enable a network operator to program their routers. It
contains the following chapters:

– Chapter 2 (Motivations) motivates the need for programability
in routing protocols.

– Chapter 3 (Augmenting BGP with Plugins) discusses the ex-
tension of a routing protocol implementation using plugins.

– Chapter 4 (xBGP) explores the concept of using the same plugin
on different implementations of a same routing protocol.

■ Part III proposes to explore the new possibilities offered to routing
protocols by using a secure transport protocol to exchange routing
messages. In particular:

– Chapter 5 (Replacing TCP with QUIC) proposes the replace-
ment of TCP, the transport protocol used by BGP, with QUIC.

■ Part IV focuses on the aspect of combining control-plane and data-
plane information to provide a better routing service. The first step is
performed with:

– Chapter 6 (Securing BGP routes in the data-plane) which
examines an approach to secure BGP routes through secure hand-
shake establishments in the data plane.

■ Part V concludes this thesis with:

– Chapter 7 (Future work) which addresses some of the future
research questions raised throughout this thesis.

– Chapter 8 (Conclusion) which concludes this thesis.

Preamble vii

Bibliographic notes

This thesis led to the publication of, and is based on, the following works:

Conference Publications

1. T.Wirtgen, C. Dénos, Q. De Coninck, M. Jadin, and O. Bonaventure. “The
Case for Pluginized Routing Protocols”. In: 2019 IEEE 27th International
Conference on Network Protocols (ICNP). IEEE. 2019, pp. 1–12. doi: 10.
1109/ICNP.2019.8888065.

2. T. Wirtgen, T. Rousseaux, Q. De Coninck, N. Rybowski, R. Bush, L.
Vanbever, A. Legay, and O. Bonaventure. “xBGP: Faster Innovation in
Routing Protocols”. In: 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). Boston, MA: USENIX Association,
Apr. 2023, pp. 35–50. isbn: 978-1-939133-27-4. url: https://www.
usenix.org/conference/nsdi23/presentation/wirtgen.

Workshop Publications

1. T. Wirtgen, Q. De Coninck, R. Bush, L. Vanbever, and O. Bonaventure.
“xBGP: When You Can’t Wait for the IETF and Vendors”. In: Proceedings
of the 19th ACM Workshop on Hot Topics in Networks. HotNets ’20.
Virtual Event, USA: Association for Computing Machinery, 2020, pp. 1–
7. isbn: 9781450381451. doi: 10.1145/3422604.3425952. url: https:
//doi.org/10.1145/3422604.3425952.

■ Received the 2021 ietf/irtf Applied Networking Research Prize
(anrp).

2. T. Wirtgen and O. Bonaventure. “A First Step towards Checking BGP
Routes in the Dataplane”. In: Proceedings of the ACM SIGCOMM Work-
shop on Future of Internet Routing & Addressing. FIRA ’22. Amsterdam,
Netherlands: Association for Computing Machinery, 2022, pp. 50–57.
isbn: 9781450393287. doi: 10.1145/3527974.3545723. url: https:
//doi.org/10.1145/3527974.3545723.

Posters and Demos

1. T. Wirtgen, N. Rybowski, C. Pelsser, and O. Bonaventure. “Routing over
QUIC: Bringing transport innovations to routing protocols”. In: Poster
Session of the 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, 2023.

https://doi.org/10.1109/ICNP.2019.8888065
https://doi.org/10.1109/ICNP.2019.8888065
https://www.usenix.org/conference/nsdi23/presentation/wirtgen
https://www.usenix.org/conference/nsdi23/presentation/wirtgen
https://doi.org/10.1145/3422604.3425952
https://doi.org/10.1145/3422604.3425952
https://doi.org/10.1145/3422604.3425952
https://doi.org/10.1145/3527974.3545723
https://doi.org/10.1145/3527974.3545723
https://doi.org/10.1145/3527974.3545723

Acknowledgments

The completion of this thesis would not have been possible without the help
of several people whom I would like to thank.

First and foremost, my academic and professional career has been largely
guided by the unfailing support and advice of Professor Olivier Bonaventure,
my advisor. His unshakeable faith in my abilities and his constant advice
transformed my aspirations into concrete achievements. I credit him for
allowing me to carry out all of the contributions presented in this thesis.

I am also deeply grateful to Quentin De Coninck for his exceptional men-
torship. He guided me not only through my master’s thesis, but also through
most of my doctoral training. Our in-depth discussions and the scrutiny of
my results have greatly enhanced my competences as a researcher.

I would like to expressmy gratitude to themembers ofmy thesis committee:
Matthias Wählisch, Marco Chiesa, Cristel Pelsser, Etienne Rivière and Charles
Pecheur. Their helpful comments during my private defense greatly enhanced
the quality of my thesis. I am grateful for their participation in my committee
and for the time they spent reading and reviewing my work in detail.

This thesis is also the fruit of collaborations with other people whom I
would like to thank: Quentin De Coninck, Mathieu Jadin, Cyril Dénos, Nicolas
Rybowski, Tom Rousseaux, Randy Bush, Laurent Vanbever, Cristel Pelsser and
Axel Legay.

I am grateful to my former IP Networking Lab colleagues – Viet-Hoang
Tran, Fabien Duchêne, Mathieu Jadin, Florentin Rochet, Tom Barbette, Quentin
De Coninck, Maxime Piraux, François Michel, Louis Navarre and Nicolas Ry-
bowski. Our many discussions and interactions indirectly played an important
role in the elaboration of the ideas and concepts presented in this thesis.

I would like to express my deep gratitude to INGI’s administrative and
technical staff, and in particular to Vanessa Maons for her invaluable help with
all administrative and logistical matters, to Sophie Renard for her invaluable
help with accounting, and to Nicolas Detienne and Anthony Gégo for their
exemplary responsiveness to my sometimes far-fetched technical requests.

Finally, over the last few years, I have been fortunate to enjoy the unfailing
support and encouragement of my family and friends. Although they may
not have understood all the subtlety of my work, their support has been the
cornerstone that has enabled me to complete this thesis.

Thomas Wirtgen
October 4, 2023

ix

Contents

Abstract i

Preamble iii

Acknowledgments ix

Table of Contents xi

I Background 1

1 Internet Routing 3
1.1 The High-Level Organization of the Internet 3
1.2 IP Routing . 5
1.3 IP Routers . 9
1.4 The Transport of Routing Messages 12
1.5 Inter-domain routing with the Border Gateway Protocol (BGP) 13
1.6 Routing Security . 21

1.6.1 Securing the transport of routing messages 22
1.6.2 Securing the authenticity of routing messages 25

1.7 Beyond traditional distributed routing 30

II Bringing innovation back in routing with truly extensible
protocols implementations 33

2 The Need of Extensibility in Routing Protocols 35

3 Extending routing protocol implementations with plugins 41
3.1 The eBPF environment . 42
3.2 Pluginizing a Routing Protocol 44

3.2.1 Pluginizing FRRouting 46
3.2.2 Executing a Plugin Inside the eBPF VM 48
3.2.3 Memory Management 49
3.2.4 Pluginizing the OSPF Daemon 50
3.2.5 Pluginizing the BGP Daemon 51

xi

xii Contents

3.3 Use Cases . 52
3.3.1 Monitoring routing protocols 52
3.3.2 More flexible OSPF route computation 53
3.3.3 More flexible BGP filters 55
3.3.4 Pluginizing the BGP Decision Process 59

3.4 Related Work . 60
3.5 Conclusion . 61

4 xBGP: Faster Innovation in Routing Protocols 63
4.1 Architecture . 66

4.1.1 The xBGP API . 69
4.1.2 Executing xBGP programs 70
4.1.3 Adding xBGP to BGP implementations 71
4.1.4 Augmenting the xBGP Virtual Machine 74

4.2 Ensuring the safety of xBGP programs 75
4.2.1 Proving xBGP Programs’ Termination 78
4.2.2 Enforcing Operator-Imposed Restrictions 79

4.3 Overhead of the current xBGP prototype 79
4.4 Use Cases . 82

4.4.1 Customer Selecting Routes 83
4.4.2 Detecting BGP Zombies 84
4.4.3 Monitoring the BGP Routing Decision 85
4.4.4 Measuring BGP Route Propagation Times 86
4.4.5 BGP in data centers . 87
4.4.6 Validating BGP Prefix Origins 88
4.4.7 Filtering Routes Based on IGP Costs 90

4.5 Related Work . 90
4.6 Conclusion . 92

III Revisiting the Transport Layer Used by Routing Proto-
cols 95

5 The Benefits of Secure Transport for Routing Protocols 97
5.1 The QUIC Transport Protocol 99
5.2 Motivations . 100
5.3 QUIC for routing protocols . 101

5.3.1 QUIC transport features 101
5.3.2 QUIC improves Security 103

5.4 Prototyping Routing over QUIC 104
5.4.1 Architecture . 104
5.4.2 Performance considerations 106

Contents xiii

5.4.3 Experimental evaluation setup 107
5.5 BGP over QUIC . 108

5.5.1 Dynamic reconfiguration of eBGP sessions 108
5.5.2 On-demand BGP over QUIC sessions 112
5.5.3 Improved Blackholing service 113

5.6 Related Work . 116
5.7 Conclusion . 116

IV Making a BGP data-plane “aware” 119

6 Checking the Reachability of BGP Routes Using the Dataplane121
6.1 Motivations . 123
6.2 BGP routes reachability in the dataplane 124
6.3 A First Prototype . 129
6.4 Discussion . 134
6.5 Related Work . 136
6.6 Conclusion . 137

V Future Directions and Conclusion 139

7 Discussion & Future Directions 141

8 Conclusion 147

Part I

Background

1

Internet Routing 1
In this chapter, we discuss the network concepts and protocols necessary to
understand this thesis. Specifically, this chapter explains how to transmit data
between the nodes that are part of the Internet. We begin by introducing the
high-level architecture of the Internet in Section 1.1. Next, Section 1.2 explains
the basics of routing, the process that enables to deliver data to the right
Internet destination. We continue in Section 1.3 by explaining the operation
of a router, which is the main component of the Internet. We then explain
in Section 1.4 that routers exchange their routing knowledge using a routing
protocol. The Border Gateway Protocol (BGP), which is the focus ofmost of this
thesis, will be explained in Section 1.5. BGP was originally designed without
much emphasis on security. Since its standardization, additional security
extensions have been proposed. In Section 1.6, we discuss the main security
measures implemented to protect routing information from manipulation or
misconfiguration. Finally, in addition to BGP, which is a decentralized protocol,
there are also centralized approaches to routing. Section 1.7 discusses the
main centralized solutions that are currently in use.

1.1 The High-Level Organization of the Internet

In today’s networks, devices exchange data with each other by using a common
infrastructure. The most basic form of network infrastructure is the Local
Area Network (LAN). It allows multiple devices to connect and communicate
with each other within a small physical area, such as a home or office. In a
LAN, devices can communicate directly with each other through a cable or
wireless connection, without needing to go through an intermediate device.
Numerous local networks can be created within the same company. For
example, one can have a dedicated LAN for each type of service, thus separating
devices of different natures. To enable communication between different
LANs, an intermediate device called a switch is used. However, LANs are
limited in scope and cannot provide connectivity between networks that are
physically separated. A router is then required to enable communication
between different LANs.

A router forwards data between networks. It uses routing protocols to
determine the best path for the data to take through the network. Routers

3

4 Chapter 1. Internet Routing

are an essential part of modern networks and use algorithms, called routing
protocols, to communicate information about the network topology to other
routers. They use this information to build a routing table, which contains
information about the best path to take to reach a particular destination.

There are three main types of routing protocol: distance-vector, link-state
and path-vector. Each type has its own advantages and limitations, and is
adapted to particular networks and environments. For example, distance-
vector protocols are simpler and less CPU-intensive. This makes them suitable
for smaller networks. In contrast, link-state protocols are more complex, but
provide more precise information about the network topology.

Routing protocols are fundamental to modern networks. They enable
communication between devices on different networks. Choosing the right
protocol can have a significant impact on network performance and reliability.
Hence, network administrators and engineers need to be aware of the strengths
and weaknesses of different protocols.

Routing protocols also play an important role in enabling the Internet to
function as a global network. Internet Service Providers (ISPs) interconnect
their networks using routers, creating a sequence of connected networks
spanning the globe. When a device on one network wants to communicate
with a device on another network, data must be routed through multiple
routers along the path to its destination. Routing protocols are responsible for
determining the best path to take through the network, based on factors such
as link capacity, congestion levels, and network topology.

There are different types of provider: some operate globally, others nation-
ally or regionally, and still others locally, with limited access to the Internet.
In general, local providers rely on other ISPs, or their own provider, to enable
their end users to connect to the network.

In some cases, ISPs choose not to establish direct links with each other
due to geographic constraints. In these cases, they rely on Internet Exchange
Points (IXPs) to facilitate peering connections. IXPs are physical locations
where various network operators, including ISPs, can exchange data directly
with each other. These points are designed to provide a more efficient and
direct method of exchanging traffic, eliminating the need to route all data
through a third-party network. By relying on IXPs, networks can establish
peering links and exchange data directly, without the need for direct physical
connections. Without IXPs, if two networks are not directly connected, traffic
would have to traverse intermediate networks, which may imply additional
latency. By connecting to an IXP, ISPs can thus reduce the cost of exchanging
traffic and improve the performance of their networks by reducing the number
of network hops required to reach their destination. IXPs also increase network
resiliency, as they provide an alternative path for traffic if one of the ISPs’
links fails. IXPs are typically located in major cities around the world and can

1.2. IP Routing 5

range in size from small regional exchanges to large international hubs. They
are managed by neutral organizations that ensure fair and open access to all
participating networks.

1.2 IP Routing

The Internet depends on network infrastructure and routing protocols to
function, but that is not enough to establish full connectivity between two
hosts. Today, the Internet is built upon the Internet Protocol (IP) [Inf81; HD98].
Every device willing to connect to the Internet possesses a unique address of
either 32 bits (IPv4 [Inf81]) or 128 bits (IPv6 [HD98]), enabling it to send and
receive packets.

IPv4 and IPv6 addresses are represented in a way that is easier for humans
to remember, rather than writing them in binary format. An IPv4 address
is represented by four 4-byte decimal numbers ranging from 0 to 255. For
example, the IPv4 address 192.0.2.42 is actually treated by a network node
as the binary address 11000000 00000000 00000010 00101010. By contrast,
an IPv6 address is longer than an IPv4 address and follows a different notation.
It consists of eight 16-bit fields separated by colons. Each field represents a
valid hexadecimal number between 0 and ffff. For example, an IPv6 address
may look like this:

2001:0db8:0000:0000:0000:0000:0000:c0de

This representation is written in an “exploded” notation. This means that all
fields of the IPv6 address are displayed. However, To simplify and shorten
IPv6 addresses, a shorthand notation "::" is used. This notation removes
consecutive null hexadecimal fields (0 or 0000), reducing the address’s textual
length and saving space. Additionally, leading zeroes at the beginning of a
16-bit field can be omitted since they do not provide additional information.
By applying these optimizations, the previous IPv6 address can be rewritten
as 2001:db8::c0de.

Note that the shorthand notation “::” in an IPv6 address must only be
used once. For example, in the address 2001:db8::cafe::c0de, we cannot
determine the exact number of null fields between the two “::” notations,
as this is ambiguous. Therefore, 2001:db8::cafe::c0de is not a valid IPv6
address.

To transmit data, the sending device breaks it down into smaller units
known as packets. Each packet is marked with a source IP address, indicating
the end host that initiated it, as well as a destination IP address representing the
intended recipient. Since end users are typically not directly linked, packets
are forwarded through intermediate routers. These routers pass the packets
along to the next router in the path until they ultimately reach their intended

6 Chapter 1. Internet Routing

1

2

3

4A

B

Figure 1.1: Example of a simple network topology.

destination. This process of sequentially routing packets from one router to
another is known as IP forwarding.

When a router receives a packet, it checks the destination IP address to find
out where to send it next. This may be another router or the final destination.
To do this, the router must know the next node or “next hop” to contact. This
process of finding the appropriate next hop is known as routing and is usually
done using a routing protocol.

One way to establish routes in a network is to manually configure each
router with static routes to each destination. However, this approach has
limitations. First, it lacks scalability, as networks often consist of thousands
of devices. Configuring routes individually on each router is error-prone and
unmanageable on a human scale. Second, static routing does not automatically
handle link failures. If a link between two routers experiences a problem,
packets will continue to be routed through that link since the route remains
configured. This is why dynamic methods are prefered. They use dynamic
routing protocols that quickly detect failures in order to reroute traffic over
other valid and usable links. These protocols automatically discover the paths
to each destination, using algorithms that aim to select the available shortest
path.

Consider the network topology described in Figure 1.1. The routers are
represented by a number in a blue circle and the end hosts by a letter in a gray
square. To establish a connection between A and B, several paths are available.
For example, a valid path is as follows: A → 1 → 3 → 4 → B. This path is not
optimal, there is a shorter path that only passes through node 2. Algorithms
such as Dijkstra [Dij59] or Bellman-Ford [Bel58] can be used to determine
the ideal path, creating the shortest path from any router to each destination.
The notion of the shortest path is specific to each ISP, some determine the
path according to their routing policies, others according to the capacity of
the links between the routers, or according to the network load.

Typically, ISPs use a shortest path algorithm to calculate routes based on

1.2. IP Routing 7

the metric they wish to optimize. However, when it comes to inter-ISP routing
on the Internet, other methods are needed to learn the paths due to the sheer
size of the Internet.

As of this writing, there are over 80,000 interconnected ISPs [Hus23b]. Even
with a conservative estimate of 10 routers per ISP (which is unrealistic because
ISPs often have a larger number of routers [MMD22; Spr+04]), the Dijkstra and
Bellman-Ford algorithms would have to handle over 800,000 nodes. This poses
significant computational and memory management challenges. In addition,
each ISP defines its own routing policies, which can lead to conflicting routing
decisions and difficulties in reaching agreements between ISPs.

For example, one operator may prioritize minimizing the geographic dis-
tance traveled within its network, while another operator may focus on min-
imizing the load on its links. This may result in fewer optimal paths from
the other operator’s perspective. Such discrepancies in routing objectives can
make the routing agreement between different ISPs more complex and difficult
to resolve.

To address these challenges, the entire ISP network is treated as a unified
entity. Each ISP knows how to reach all other ISPs, but does not have detailed
information about the internal architecture and routing policies of individual
ISPs. Therefore, to enable communication between different ISPs, inter-ISP
routing algorithms consider each destination within an ISP as part of a larger
group referred to as a “prefix”, which greatly reduces the computation and
amount of state stored per router when computing the shortest path for each
ISP.

Figure 1.2 provides an overview of the routing structure found on today’s
Internet. Each ISP consists of interconnected routers connected to one or more
LANs. In our simplified model, we assume that the end hosts connected to a
router belong to the same LAN, as shown in Router 8 of ISP 2. Within each
ISP, one or several Interior Gateway Protocols (IGPs) are used, tailored to the
specific routing policies of that ISP. This allows for seamless communication
between all routers and end hosts within the ISP.

To facilitate communication between ISPs, a specialized routing protocol
called Border Gateway Protocol (BGP) [RHL06] is used. BGP treats each ISP as
a collective entity or aggregate, which simplifies the process of discovering and
establishing connections with all other ISPs on the Internet. Unlike the routing
protocols used for internal communication within an ISP, BGP is specifically
optimized to handle the current scale of the Internet. More details on BGP
will be provided in the 1.5 section.

8 Chapter 1. Internet Routing

4

6 7

8

9

10

2 3

5 1

Internet

ISP 1 ISP 3

ISP 2

Figure 1.2: Example of a simplified model of the Internet.

IP Prefixes

A routing protocol is responsible for discovering the paths to each IP address
within a network. In the case of IPv6, if we consider addresses as indistinguish-
able entities, there could be about 2128 (approximately 1038) different routes.
However, it is practically impossible for routers to manage and maintain such
many routes. To solve this problem, routers use route aggregation by grouping
IP addresses with the same prefix into a single routing entry.

For example, consider the IPv6 prefix aa:bbbb:cccc::/48, which encom-
passes all IPv6 addresses sharing the first 48most significant bits (i.e., 280 ≈ 1024
IPv6 addresses). Therefore, aa:bbbb:cccc::1 and aa:bbbb:cccc::ffff both
belong to the same IP prefix. These prefixes are used as the basis for routing
information exchanged between routers. By using IP prefixes, inter-ISP rout-
ing becomes more scalable and reduces the amount of state maintained per
router.

ISPs obtain specific IP prefixes, from organizations supervised by the In-
ternet Assigned Numbers Authority (IANA). These IP prefixes are distributed
to ISPs via regional Internet registries (RIRs) such as RIPE NCC or APNIC.
Each ISP can receive one or several IP prefixes from these RIRs. For ex-
ample, in Figure 1.2, ISP 1 can receive 198.51.100.224/27, ISP 2 receives
198.51.100.160/27 and ISP 3 receives 198.51.100.32/27. Within their
respective networks, ISPs allocate these prefixes to their individual nodes

1.3. IP Routers 9

CLI GUINetConf

Static Protocol 1 Protocol n

Routing Information Base (RIB)

Forwarding Information Base (FIB)

eth0

eth1

eth2

eth3

eth4

eth5

Switching

Fabric

Management Information Base (MIB)

Management

Plane

Control

Plane

Data

Plane

....

IP

Traffic

Incoming

Routing

Messages

IP

Traffic

Outgoing

Routing

Messages

Operator

configures

Figure 1.3: High-level architecture of a traditional IP router. It can bemodeled
in three layers: management, control and data.

according to their own needs. Routing protocols use these prefixes to deter-
mine the appropriate path to forward data to a specific ISP on the Internet.
When a packet originating from the Internet has the destination address of
198.51.100.225, which is within the IP prefix assigned to ISP 1, the routing
protocol can choose between two paths to forward this packet. The first path
is via ISP 3, and the second path is via ISP 2.

1.3 IP Routers

A traditional IP router can be represented as in Figure 1.3. The architecture of
such a router can be divided into three main layers.

The management-plane. The management plane allows network opera-
tors to configure and control the behavior of their routers. Using the router’s
built-in operating system, operators can fine-tune various parameters, enable
specific routing protocols, add static routes, or set up filters to regulate the
distribution of IP prefixes on the network.

The command line interface (CLI) is a commonly used method to interact
with routers. It provides operators with a simple syntax for communicating
and configuring desired parameters. The CLI is accessible via a console port
directly connected to the router or via protocols such as Telnet [PR83] or

10 Chapter 1. Internet Routing

SSH [LY06] when remote access is required.
However, for large networks, manually configuring each router becomes

a tedious and error-prone task. To simplify this process, router vendors often
include additional interfaces to automate the configuration procedures. This
is the case with the Network Configuration Protocol (NetConf) [Enn+11],
which allows devices to be configured using the YANG data model. With
NetConf, configuration installations, changes and deletions can be automated,
simplifying router management.

Network operators also need continuous monitoring and analysis of their
network and equipment. Routers have built-in monitoring solutions that pro-
vide valuable information about network performance. These solutions offer
a variety of statistics, including CPU and memory usage, network protocol
events, interface status, number of packet transfers, and more. Operators
can retrieve this information using protocols such as SNMP (Simple Network
Management Protocol) [Fed+90] or IPFIX (Internet Protocol Flow Informa-
tion Export) [ACT13] to effectively monitor and analyze the network and its
devices.

The control-plane. Once the router is configured, the control plane comes
into action, retrieves the router’s configuration and begins to discover the paths
to each IP prefix. The protocols enabled on this plane are used to populate the
Routing Information Base (RIB), which contains the routes the router should
follow to reach each prefix. The operator has the option of manually adding
static routes to the RIB using the Static routing process. While this manual
configuration of the routing table has its limitations, it can be useful in certain
situations. For example, in small networks with a single exit path, it may be
more advantageous to set up a static route rather than relying on a dynamic
routing protocol.

Various dynamic routing protocols can be enabled on the control plane,
including OSPF [Moy98], BGP [RHL06], RIP [Mal98], EIGRP [Sav+16] or IS-
IS [ISO]. OSPF allows for the exchange of routes within the same network,
such as an ISP or a cloud service provider. Other protocols such as RIP, EIGRP
and IS-IS, also known as Interior Gateway Information (IGP) protocols, are
used to exchange information within the same network. The choice of protocol
depends on the requirements of the operator and the size of the network. Each
protocol has its own way of exchanging routing information.

OSPF and IS-IS are classified as link-state protocols, in which routers
exchange adjacency information to establish a connectivity map. Among
other things, this information indicates which router interface is connected
to another router interface. In contrast, RIP is a distance vector protocol, in
which routers calculate the distance towards an IP prefix based on the distance
shared by the router that provided the information.

1.3. IP Routers 11

There are also hybrid protocols such as EIGRP, which combine elements
of both distance vector and link state protocols in their operation.

To exchange routes between different domains or subnets, the Border
Gateway Protocol (BGP) is widely used on the Internet. As of February 2023,
BGP facilitates the exchange of over 1.2million IPv4 and IPv6 prefixes [Hus23a].
Because of the large number of routes it manages, BGP is neither a distance
vector nor a link state protocol. Simply announcing a distance, as in distance
vector protocols, would cause convergence problems. Flooding routers with
detailed adjacency information, as in link-state protocols, would be impractical
in terms of memory usage. Instead, BGP is a path vector protocol. It announces
the path (i.e., the ordered sequence of subnets to follow) to a prefix, which the
router uses to determine the best route to the destination IP prefix.

The data-plane. The data-plane is probably the most important component
of an IP router because it is responsible for forwarding IP packets. It uses
the information provided by the routing protocols in the RIB to calculate the
Forwarding Information Base (FIB). The FIB is designed to be implemented
at the hardware level, enabling fast lookup of information. In general, each
FIB entry represents the best route for a specific IP prefix and includes the
next hop through which the packet should be routed. However, in some
situations, the routing protocol of the control-plane identifies several best
routes having the same cost. In this case, the router adds all these routes to
the FIB and forwards packets to the destination using these different paths.
This technique is called Equal-Cost Multi-Path (ECMP) routing. To determine
which path to choose for packet forwarding, a simple method would be to
alternate between the available paths, ensuring an equal distribution of packets
over all paths. However, this approach is not suitable for reliable transport
protocol such as TCP. In fact, when several paths are used for the same
TCP connection, packets belonging to a single TCP flow may be rearranged,
potentially causing packets to arrive at their destination out-of-order. This
problem can have various consequences. First, it can lead to an increase in
latency, as TCP has to wait for out-of-order packets to be reassembled before
transmitting them to the application. Second, it can lead to unnecessary packet
retransmissions. Missing packets can be misinterpreted by the receiver as
a packet lost, triggering retransmissions. Finally, TCP’s congestion control
mechanisms can be disrupted. Some congestion control algorithms rely on
packet loss as a signal to adjust the transmission rate of TCP segments. Packet
reordering can lead to indications of spurious packet loss. To solve this problem,
the router uses a hash function to select the path the packets should take.
This hash function will be used to compute a hash value based on various
information contained in the packet such as the source and destination IP
addresses, source and destination port numbers, and the protocol used. The

12 Chapter 1. Internet Routing

formula is then:

hash(IPsrc, IPdst, Portsrc, Portdst, Protocol) mod N

Where N represents the number of equal-cost paths. The efficient calculation
of this hash function has been the subject of research in the literature [Hop00].
By applying this formula, all packets belonging to a specific flow will sys-
tematically take the same path, effectively mitigating the above-mentioned
problems.

In some cases, the FIB may contain overlapping IP prefixes. For example,
consider the IPv4 prefixes (𝑎) 192.0.2.0/24 and (𝑏) 192.0.2.128/25. If an
IP packet has a destination address of 192.0.2.250, both prefixes contain
forwarding information. To resolve this ambiguity, routers use a longest prefix
matching policy. In the given example, prefix (𝑏) 192.0.2.128/25would take
precedence over prefix (𝑎) 192.0.2.0/24 due to its longer matching length.

In addition, the data plane incorporates mechanisms for implementing
queuing policies to prioritize certain packets over others. For example, packets
carrying real-time video or voice data require low latency and therefore receive
higher priority than packets involved in long file downloads. This prioritization
of packets is a basic example of quality of service (QoS) mechanisms.

Finally, the data plane supports filtering capabilities based on access con-
trol lists (ACLs) defined in the management plane. ACLs specify rules that
determine whether a router should forward or block packets based on their
addresses or ports. By applying ACLs, routers can implement security policies
and control traffic flow.

1.4 The Transport of Routing Messages

The Internet infrastructure and routers allow the exchange of data between
hosts, but they do not guarantee a perfect reception of the data. Various
factors can cause packets to be corrupted, duplicated, lost or misdelivered.
Electromagnetic interference, limited router processing capacity, intentional
packet discarding, and rerouting over multiple paths can all contribute to these
problems. To ensure reliable transmission of data between hosts, a reliable
transport protocol is required.

Transport protocols manage the transmission of data and ensure reli-
able, lossless and in-order delivery. The Transmission Control Protocol (TCP)
[Pos81] is a widely used transport protocol that provides this reliability. It
ensures that data sent from the source is received correctly by the destination,
even in the presence of network imperfections. Other reliable transport proto-
cols include the Stream Control Transmission Protocol (SCTP) [Ste07] or the
QUIC protocol [IT21].

1.5. Inter-domain routing with the Border Gateway Protocol (BGP) 13

Routing protocols, which use the same infrastructure as the end hosts, are
also affected by network imperfections. Even when two routers are directly
connected, there is always a risk of packet corruption or loss during transit,
especially when the routers span several continents. Therefore, routing proto-
cols also need a reliable transport mechanism to exchange routing information.
However, many routing protocols do not use TCP for historical and resource
limitation reasons.

Protocols such as IS-IS and OSPF use their own reliable transport protocol
implemented on top of the network protocol. These protocols handle imperfec-
tions in the network infrastructure and provide a reliable exchange of routing
information. The use of custom transport protocols was necessary in the past
when routers had limited computing power and memory, making it expensive
to maintain TCP sessions.

In the case of RIP, which has been standardized for IP networks, the
protocol uses the User Datagram Protocol (UDP) [Pos80] instead of TCP. UDP
does not allow for a reliable and orderly data exchange like TCP. However, for
sending small amounts of data, UDP is suitable because it imposes less overhead
in terms of CPU and memory costs for routers. RIP was also standardized
when routers had stronger resource constraints than today, making UDP an
appropriate choice as a transport protocol for routing messages.

In contrast, the BGP protocol, relies primarily on TCP as the default choice
for reliable transport. TCP was widely available on routers at the time of
BGP’s initial implementation, making it an appropriate choice. Although the
original RFC1105 [LR89] for BGP states that “any reliable transport protocol
may be used”, TCP became the de facto standard and no extensions have been
standardized to use a different transport protocol than TCP since then.

1.5 Inter-domain routing with the Border Gateway Protocol
(BGP)

In the context of the Internet, the Border Gateway Protocol (BGP) [RHL06] is
the primary protocol used to exchange routing information between networks,
called Autonomous Systems (AS). An AS represents a collection of devices
in specific IP prefix ranges, governed by one or more entities with shared
routing policies. Examples of ASes include French cloud providers like OVH
and network operators like Belnet, which connects Belgian universities and
some public services.

The main purpose of BGP is to provide connectivity between ASes on the
Internet. BGP works as a path vector protocol, where edge routers within
ASes exchange information about the paths they know to specific IP prefixes.
This information is transmitted in the form of an AS path, which is an ordered
list of ASes that IP packets must traverse to reach the destination IP prefix.

14 Chapter 1. Internet Routing

Import Filter

Route

Modifier

Import Filter

Route

Modifier

Import Filter

Route

Modifier

RIB

All acceptable

routes

BGP Decision

Process

Export Filter

Route

Modifier

Export Filter

Route

Modifier

Export Filter

Route

Modifier

Forwarding Information Base (FIB)

adj-RIB-in adj-RIB-out

adj-RIB-out

adj-RIB-out

adj-RIB-in

adj-RIB-in

Best

route per

IP prefix

Loc-RIB

BGP

Peer 1

BGP

Peer 2

BGP

Peer n

BGP

Peer 1

BGP

Peer 2

BGP

Peer n

Figure 1.4: High-Level Architecture of a BGP Router.

In addition to the AS path, BGP allows for the exchange of attributes that
provide more detailed information to determine the best route to each IP prefix
based on the routing policies of each AS. Routers participating in the BGP
protocol can learn multiple routes to a particular IP prefix. However, each
BGP router selects and shares only the best route with its BGP neighbors.

By exchanging routing information and AS-Paths, BGP enables intercon-
nectivity between ASes, which allows IP packets to be routed over the Internet.

The Organization of a BGP router

The architecture of a BGP implementation in an IP router, as described in
RFC4271 and depicted in Figure 1.4, includes several steps in route processing.
These steps can be summarized as follows:

In the first step, each router sends its best route for each IP prefix in a BGP
Update message to its BGP neighbors. These routes are received and stored in
the routing table “Adj-RIB-in” (Adjacent Routing Information Base-In). The
Adj-RIB-in contains all the unmodified routes received from BGP neighbors.

The routes in the Adj-RIB-in are then subject to a series of filters defined
by the network operator. These filters are used to enforce routing policies and
ensure that only acceptable routes are considered. During this step, routes
can be modified, for example, by assigning them a higher preference or by
manipulating their attributes.

After passing through the filters, the acceptable routes are stored in the
routing table, known as the Routing Information Base (RIB). The RIB contains

1.5. Inter-domain routing with the Border Gateway Protocol (BGP) 15

all the routes that the local BGP router has determined to be acceptable based
on the routing policies and modifications applied.

In a second step, the BGP router initiates the BGP decision process to
select the best route for each IP prefix. This process involves comparing
route attributes, such as AS-Path length, origin and other configurable BGP
attributes. After this step, only the best route for each IP prefix is selected and
stored in the Loc-RIB (Local Routing Information Base).

Finally, in the third step, the BGP router announces the best selected route
for each known prefix to its neighboring routers. Before being advertised, the
routes can be subject to another set of export filters, which can modify the
route attributes. These export filters can be used for various purposes, such as
traffic engineering. Routes that are modified and granted by the export filters
are stored in the “Adj-RIB-Out” (Adjacent Routing Information Base-Out) and
are eventually sent to other BGP routers on the network.

Not all routers keep separate Adj-RIB-in or Adj-RIB-out tables because of
performance or memory limitations, but these tables are helpful for specific
enhancements and functionalities like graceful restart [Rek+07]. Also, to
optimize memory usage, routes are not duplicated in all tables. Instead, only
one copy of the route is kept and each table references it with its own data,
including changes made by import or export filters.

The Type of BGP Sessions

BGP can be used in two ways: external BGP (eBGP) and internal BGP
(iBGP). First: eBGP is used to announce routes between different autonomous
systems (ASes). ASes use eBGP sessions to exchange routing information with
neighboring ASes. These eBGP sessions are typically established between
routers located at the edge of the ASes. Routes learned from eBGP sessions
are stored in routing tables and can be further processed and selected as the
best routes.

Second: iBGP is used within an AS to propagate external routes learned by
eBGP to all routers in the AS. For a full-routing table such as those found on the
Internet, it is not possible to re-announce them in a link-state or distance vector
protocol. These protocols simply could not handle the load. The BGP standard
specifies that routers must not redistribute routing information received from
one internal peer to another internal peer. Therefore, all routers willing to
participate in the iBGP network should be connected in a full-mesh topology.
In a full-mesh iBGP configuration, each router in the AS establishes a direct
iBGP session with all other routers in the AS. This ensures that all routers
in the AS have consistent routing information. However, configuring and
maintaining a full-mesh iBGP can be impractical and difficult to scale as the
number of routers increases. For a network with 𝑛 routers, the operator must

16 Chapter 1. Internet Routing

maintain 𝑛 (𝑛−1)
2 iBGP sessions. In practice, the operator must configure all

routers; hence it must apply (𝑛 − 1) iBGP configurations per router, therefore
𝑛(𝑛 − 1) iBGP configuration to build the iBGP full mesh.

To address scalability issues, the concept of route reflection (RR) was
introduced [CBC06]. In a route reflection configuration, one or more routers
act as route reflectors. These route reflectors receive routes from their iBGP
peers and reflect these routes to other iBGP routers, called clients. In the iBGP
full mesh, routes learned over one iBGP session should not be reanounced on
another iBGP session to avoid control-plane loops. However, a route reflector
can readvertise iBGP routes to another iBGP client. Hence, to avoid loops in
the distribution of routing information within the iBGP configuration, two
new attributes are introduced:

■ Originator-Id: This attribute is added by the first route reflector that
reflects a route. TheOriginator-Id is set as the router ID of the reflector.
When a router receives a route with its own Originator-Id, it knows
that the route has already been reflected in its own AS and can discard
it to avoid routing loops.

■ Cluster-List: This attribute is a list of route reflectors that have re-
flected the route. This attribute is used to identify loops in the iBGP
configuration. If a route reflector sees its own Cluster-Id in the list, it
knows that the route has already passed through it and can be dropped
to avoid loops.

By using the Originator-Id and Cluster-List attributes, iBGP imple-
mentations can ensure loop-free distribution of routing information while
reducing the number of iBGP sessions required in the network.

The Type of BGP Messages

The BGP protocol uses different types of messages to communicate information
about routing and informative events to other BGP routers.

■ Open. This message is sent to establish the BGP connection after the
TCP connection has been opened. It contains basic information about
the router, such as BGP version, AS number, router ID and hold timer.
It can also contain optional parameters for negotiating certain BGP
extensions, such as graceful restart [Rek+07], route refresh [Che00] or
extended BGP messages [BPW19].

■ Keepalive. This message is sent periodically by the BGP router once
the BGP session has been opened. Its main purpose is to maintain the

1.5. Inter-domain routing with the Border Gateway Protocol (BGP) 17

BGP connection up. If the router does not receive a BGP Keepalive
message within the period agreed when the connection was established
with the hold timer, the session is considered lost.

■ Update. This is the most important message, as it contains information
about the routes reachable by the BGP router. It can also be used to
delete routes when a router can no longer reach them, or to modify
routes that have already been advertised.

■ Notification. This message is sent before a BGP session is closed.
It contains information enabling the remote router to understand why
the BGP connection is closed. Possible reasons are errors in the BGP
connection, such as a malformed BGP message, insufficient resources
or an administrative shutdown initiated by the network operator.

In the initial design of the BGP protocol, these four message types had been
defined. The BGP protocol is designed to be flexible, which means that it can
support the addition of new message types through future extensions. How-
ever, since the time of writing this thesis, only one new BGP message type has
been standardized. This newmessage type is called theBgpRoute-Refresh
message [Che00]. It allows the router to ask its neighbor to re-announce the
routes stored in the Adj-RIB-out, which are maintained specifically for the
related router.

BGP Route Attributes

In addition to the AS-Path, each BGP route is advertised with attributes that
allow routing policies to be applied and enforced. The BGP standard defines
several attributes which are divided into several categories:

■ TheWell-known mandatory attributes. These attributes are essen-
tial and must be processed and included by every BGP router when it
advertises routes. The AS-Path, which indicates the ordered list of ASes
that a route takes, is one such attribute. Other required attributes are
Origin, which indicates whether the route was learned from an IGP,
EGP, or other source, and Nexthop, which indicates the next router to
forward IP packets to the advertised IP prefix.

■ TheWell-known discretionary attributes. This type of attribute is
understood by all BGP implementations, but they are not required to be
present in every BGP route.

■ Optional attributes. BGP is a flexible protocol that supports the ad-
dition of new extensions, including new attributes. However, not all

18 Chapter 1. Internet Routing

routers support the same set of features. As a matter of fact, some
attributes defined in these extensions cannot be recognized by the im-
plementation. Hence, to allow the exchange of these attributes, BGP
allows them to be defined as optional. There are two types of optional
attributes. First, there are transitive optional attributes. If a router
receives an attribute of this type but does not recognize it, it will still
accept it and pass it on to other BGP routers. Conversely, there are
non-transitive optional attributes. If the implementation does not
recognize it, the attribute will not be forwarded to other routers and
will be removed from the original route.

The BGP Decision Process

This is probably the most important mechanism in BGP since it is in charge
of selecting the best routes. The router applies a list of methodical rules to
differentiate the routes to the same IP prefix. If a rule fails to make a decision,
the router proceeds to the next rule and so on until a single route is chosen
among all the available ones. We detail each of these rules in the order they
are applied by BGP. Over time, other rules have been added to the original
BGP decision process thanks to the introduction of new extensions. To not
complicate the process, the explanation only covers the original set of rules
defined during its standardization.

1. Ignore routes with unreachable Nexthop.

This first step checks the reachability of the Nexthop specified in the
BGP update messages. BGP checks whether the Nexthop address is
found in the routing table and can be reached. This means that there
must be at least one valid route in the routing table that can reach the
specified Nexthop.

The Nexthop can be reached in a number of ways, including a directly
connected route, a static route or a route learned from the IGP. If the
address of the Nexthop is not accessible on the basis of the routing
information available, BGP does not take it into account in the decision
process.

This behavior is important to avoid traffic blackholing, where packets
are lost or discarded without reaching their intended destination. By
ensuring that only routes whose Nexthop is reachable are taken into
account, BGP guarantees that traffic is routed along valid and functional
paths.

2. Prefer routes with the highest Local-Pref.

1.5. Inter-domain routing with the Border Gateway Protocol (BGP) 19

The Local-Pref attribute is a numerical value assigned by the network
operator to indicate the preference for a specific route over others. This
attribute is not transmitted over eBGP sessions. Instead, it is a local
attribute used within an autonomous system (AS) and between iBGP
sessions. It plays a significant role in determining the egress link, which
determines the AS to which IP packets will be forwarded.

For instance, when an operator receives the same route from both an
American AS and a European AS, it may prefer one over the other. The
Local-Pref attribute allows operators to exert control over which route
is favored for outgoing traffic. By assigning a higher Local-Pref value to
a particular route, the operator indicates a stronger preference for that
route and influences the traffic flow accordingly.

3. Select the route with the shortest AS-Path.

The AS-Path refers to the sequence of ASes that a BGP route traverses
from its origin to the destination. BGP prefers routes that have a shorter
AS-Path, as it signifies fewer AS hops or intermediate networks to
reach the destination. This rule aligns with the principle of efficiency, as
shorter AS-Paths generally indicate a more direct and optimal routing
path.

By prioritizing routes with shorter AS-Paths, BGP aims to minimize
the number of ASes traversed and reduce potential points of failure or
congestion along the route.

4. Prefer routes with the lowest Origin

The Origin attribute is represented by a numeric value and provides
information about the origin of a BGP route. Specifically, it indicates
whether the route originated from an IGP (Interior Gateway Protocol),
EGP (Exterior Gateway Protocol), or if the origin is unknown.

■ Routes with an Origin value of 0 indicate that they originated
from the IGP.

■ Routes with an Origin value of 1 indicate that they were learned
from the EGP.

■ Routes with an Origin value of 2 indicate that no information
about their origin is available (Unknown).

In accordance with this rule, BGP favors routes that originate from the
IGP (Origin value of 0) over routes learned from the EGP (Origin value
of 1). Additionally, routes with an unknown origin (Origin value of 2)
are considered less favorable compared to those with a known origin.

20 Chapter 1. Internet Routing

This rule prioritizes the selection of routes that have a clear and trusted
origin within the network.

5. Prefer routes with the lowestMulti-Exit-Discriminator (Med)

TheMed is a numeric value used to differentiate routes originating from
the same AS. In situations where multiple links exist between ASes, the
same routes may be advertised on those links. TheMed value is used to
indicate the ingress preference to the neighboring AS.

Preferring the lowest Med value may be counterintuitive. However,
the Med attribute was originally designed to reflect the IGP distance to
the destination. A lower Med value means that the IGP distance to the
destination is shorter.

However, because of the convergence problems it can cause, such as
oscillations [GW02a], some network operators choose to disable the
use of the Med attribute. Its behavior can be unpredictable and lead to
routing instability. For this reason, some BGP implementations disable
theMed attribute by default.

The use of the Med attribute is optional and depends on the network
operator’s configuration and preferences.

6. Prefer routes learned from an eBGP session to an iBGP session.

Operators generally favor fast forwarding of packets in transit to their
destination. This approach, often referred to as “hot potato,” aims to
minimize transit time and reduce the number of intermediate routers
involved in forwarding packets.

By favoring routes learned over eBGP sessions, which are established
with neighboring AS, over routes learned over iBGP sessions within
the same AS, operators can quickly forward packets in transit to exter-
nal networks. This minimizes the equipment required for routing and
promotes efficient and direct routing paths.

The goal of this rule is to speed up the delivery of traffic by quickly
forwarding it to external networks, allowing faster transit through the
network and reducing unnecessary internal hops.

7. Prefer routes with the lowest IGP metric to the BGP Nexthop

The motivation is the same as for the previous rule. Network operators
prefer to forward packets using routes within their own AS which
have the lowest IGP metric value when it concerns packets to external
destinations. This preference for low IGP metric routes ensures that
packets are forwarded as fast as possible to other ASes. This is essentially

1.6. Routing Security 21

a strategy to optimize internal routing within an ASwhen external traffic
is involved.

8. Prefer routes learned by the lowest Router-Id

The Router-Id is a unique identifier associated with each BGP router
in the network. It is an arbitrary value selected by the network operator
and typically corresponds to one of the IPv4 addresses assigned to the
router. The Router-Id is encoded as a 32-bit value.

While this rule does not directly apply a routing policy, it serves as
a fallback mechanism to break any remaining ties when other rules
cannot differentiate between routes. By selecting the route with the
lowest Router-Id, BGP ensures a definitive choice among competing
routes.

Choosing the lowest Router-Id is only considered as a last resort, typi-
cally when no other decision criteria can determine the best route.

9. Prefer routes received from the peer with the smallest IP address.

The penultimate rule may not decide the route. In the case of iBGP
sessions, where routes are exchanged within the same AS, this rule
helps determine the preferred route when other criteria have not been
sufficient. BGP relies on the IP address of the router that sent the route
as a final deciding factor.

By comparing the IP addresses, BGP can identify the route associated
with the router having the smallest IP address among its peers.

This rule is effective in distinguishing between routes because each
BGP neighbor is assigned a unique IP address. It serves as a last-resort
measure to select the “best” route when all other decision criteria have
been exhausted.

1.6 Routing Security

Given the current size of the Internet, routing incidents, whether uninten-
tional or malicious, are common and can disrupt a significant portion of the
network. The importance of routing security has increased dramatically as the
Internet has evolved from a small network to a tool that complements our daily
lives. To address this issue, several collectives and initiatives have emerged,
such as the Mutually Agreed Routing Security Standards (MANRS)1. MANRS
brings together Internet service providers, Internet exchange points (IXPs),

1https://www.manrs.org/

https://www.manrs.org/

22 Chapter 1. Internet Routing

cloud service providers, and other stakeholders to establish best practices for
securing routing on the Internet.

A notable initiative of MANRS is the development of an interactive website
that allows users to view routing incidents occurring on the Internet each
month2. This site provides valuable information on the frequency and impact
of routing incidents. In May 2023, more than 1,500 routing incidents have
been reported, highlighting the importance of the problem.

This section outlines the various methods an operator can use to prevent
routing issues. There are two key aspects of routing security: transport security
and the integrity and authenticity of the content of routing messages. Taking
these aspects into account helps prevent routing problems and improves the
overall security of the Internet’s routing infrastructure.

1.6.1 Securing the transport of routing messages

In shared environments such as Internet Exchange Points (IXPs), routers from
different Autonomous Systems (AS) operate in an uncontrolled and untrusted
environment. This introduces risks of router misconfiguration or malicious
activity that can compromise BGP sessions between routers. Similarly, IGP
protocols within internal networks may also be vulnerable to malicious attacks.
To address these concerns, this section focuses on the main methods used to
secure the transport of routing messages.

TCP Reset. One possible attack is the TCP Reset attack, described in RFC
3360 [Flo02]. In this attack, an attacker can maliciously reset the BGP session
between two other routers and establish a new unauthorized session with one
of the affected routers.

Routing Message Authentication. To secure the transport of routing
messages, the protocols themselves do not provide encryption for data sent
between routers. Instead, the data is transmitted in clear text but authenticated
using a pre-shared key and a cryptographic function called HMAC (Hash-based
Message Authentication Code) [KBC97]. OSPF uses HMAC-SHA [Fan+09],
while IS-IS uses HMAC-MD5, [Man+09]. In this process, the contents of
the routing message and the pre-shared key are hashed using the specified
cryptographic function. The resulting hash is stored in a specific field of
the routing message. When it receives the message, the destination router
performs the same calculation and compares the calculated hash with the one
included in the routing message. If they match, the message is considered
authenticated and accepted.

2https://observatory.manrs.org/#/overview

https://observatory.manrs.org/#/overview

1.6. Routing Security 23

In the case of BGP, the approach is different because TCP provides in-
herent support for authenticating TCP segments. BGP routers can configure
the TCP stack to authenticate the transport using mechanisms such as TCP-
MD5 [Hef98], or TCP-AO (TCP Authentication Option) [TBM10]. With these
mechanisms, it is not necessary to modify the content of the BGP messages.
BGP routers simply configure the TCP stack to authenticate TCP segments.

The HMAC authentication technique for routing messages does have
certain drawbacks that need to be considered. First, one major concern is the
obsolescence of the MD5 algorithm, which has been deemed insecure since
2004 [WY05]. Using MD5 for authentication can no longer guarantee strong
cryptographic security. Therefore, relying on MD5 for HMAC authentication
in routing protocols poses a significant risk.

Second, in the case of IGP protocols such as OSPF and IS-IS, all routers
in the network may share the same pre-shared key, which increases the risk
of key leakage or compromise. If the shared key falls into the wrong hands,
it can lead to unauthorized access and manipulation of routing information,
which can cause serious disruptions. Of course, operators can use a different
key for each pair of routers in the network. This approach ensures that even
if one key is compromised, it will not affect the security of other router pairs.
However, managing and maintaining a separate key for each router pair in a
very large network can become unscalable and administratively burdensome.

The management overhead includes securely distributing and updating the
keys across all routers, ensuring that keys are properly stored and protected,
and handling key rotation or revocation when necessary. With a large number
of routers, these tasks can become complex and time-consuming for network
operators.

To address scalability issues, network operators can opt for hierarchical
key approaches. In these approaches, routers are organized into groups or
domains, and a different key is used for each group rather than for each pair
of routers. Network operators have various solutions at their disposal to ease
the deployement of a such strategy, such as Vault by HashiCorp [Has15] or
Oracle Key Vault [Ora15]. This reduces the number of keys to manage while
providing a reasonable level of security. Each router in a group shares the
same group key, simplifying key distribution and management.

Another approach to scalability is to use key management protocols, such
as the Internet Key Exchange (IKE) protocol [FK11], which automates the
key establishment and distribution processes. These protocols provide secure
and efficient key exchange mechanisms, reducing the administrative burden
associated with managing individual keys for each router pair.

Last, for a considerable period of time, TCP-MD5 [Hef98] was the only
available option for authenticating BGP sessions. However, TCP-AO was intro-
duced as an alternative in 2010 [TBM10]. Unfortunately, it took a significant

24 Chapter 1. Internet Routing

amount of time for vendors to implement TCP-AO in their operating systems.
Only in 2020 did vendors like Nokia, Juniper, and Cisco begin supporting
TCP-AO in their systems [Ael20]. This delayed implementation meant that
network operators had limited options for securing BGP sessions during that
time.

Although there are many cryptographic methods for authenticating rout-
ing messages, the evolution of routers is slow and does not necessarily include
all features. The support for new features designed to improve BGP security
is dependent on their implementation by router vendors, as well as by the
operators who need to use them in their networks.

Secure Tunnels. By encapsulating OSPF routing messages in these secure
tunnels, operators can ensure that the information exchanged between routers
remains confidential, protected from eavesdropping and unauthorized routing
message injection. IPSec [FK11] and Wireguard [Don17], two widely adopted
protocols for secure tunnels in network environments, provide strong en-
cryption, authentication and key management features. The use of encrypted
tunnels is particularly prevalent in multi-site ASes that are not directly con-
nected to each other. In such scenarios, routing messages must traverse the
Internet, which presents potential security risks. By leveraging encrypted
tunnels, network operators can mitigate these risks and ensure confidentiality
and integrity of routing messages as they traverse untrusted networks.

Data-plane protections. In addition, there are security features available
in the data plane that use IP or Ethernet filters. These filters allow operators to
restrict routing sessions to specific authorized addresses. By configuring fire-
walls, operators can ensure that only a selected portion of their infrastructure
is allowed to establish connections with their routers. This practice enhances
security by limiting access to trusted entities and minimizing the possibility
of unauthorized routing sessions.

However, this approach is not resilient. If a network failure disables the
interfaces authorized by the filters, control messages may not be received,
as they may be blocked on other interfaces due to the filters. It is therefore
essential to use filters with caution, considering all possible failure cases.

Setting the Time To Live field. Routing sessions typically take place over
point-to-point (P2P) links, where two directly connected routers establish
a direct communication path without passing through other routers. The
Generalized TTL Security Mechanism (GTSM) [Pig+07] exploits this feature
to improve routing security. According to GTSM, routing messages must
have a Time To Live (TTL) value of 255. The TTL is an 8-bit field in the IP

1.6. Routing Security 25

header [Inf81] that decreases by 1 as the packet is transmitted by each router.
If the TTL reaches 0, the router discards the packet. By setting the TTL to the
maximum value of 255, routers can determine whether a packet came directly
from the P2P link or was received from another source. If a router receives
an IP packet with a TTL less than 255, it indicates that the packet was not
sent directly from the neighboring router and should be discarded for security
reasons.

1.6.2 Securing the authenticity of routing messages

When a router receives a routing message announcing a new IP prefix, it is
not certain that the route is valid and has not been changed in transit. In the
context of an IGP, where routing is limited to a single AS, the network operator
has control and knowledge of the network, which reduces the risk of route
falsification. However, in the case of an EGP, such as BGP, no assumption can
be made about the legitimacy of an AS. The remainder of this section discusses
the major threats that can arise when exchanging BGP routes and the security
measures that can be applied.

Route Origin Hijacking Every year, ASes deliberately or accidentally
advertise IP prefixes that do not legitimately belong to them. A notable incident
occurred in 2008 when Pakistan Telecom blocked access to YouTube for the
entire Internet, falsely claiming, for censorship purposes, that its AS was the
legitimate owner of the prefix containing YouTube’s DNS servers.

The lack of a mechanism to certify the legitimacy of BGP route adver-
tisements is a significant challenge to routing robustness. A single compro-
mised AS can potentially disrupt the entire routing system. To address this
problem, the BGP protocol relies on the Resource Public Key Infrastructure
(RPKI) [LK12] for resource certification. RPKI allows an AS to cryptograph-
ically authenticate its ownership of resources, thus providing assurance to
BGP routers.

RPKI is based on the X.509 certificate system [CCI89; Boe+08], which
includes additional fields to represent network resources. X.509 certificates use
asymmetric cryptography [DH76] and contain a public key and information
about the certificate holder, called the “subject name.” These certificates can
be customized with different fields encoded in ASN.1 format [CCI84; CCI88].
Certificate generators such as OpenSSL [The03] allow the inclusion of specific
information, such as IP addresses or alternative domain names, as described
in §4.2.1.6 of RFC5280 [Boe+08].

Certificates are used to verify the authenticity and integrity of information
exchanged over networks. The information contained in a certificate is signed
using the private key of a trusted Certificate Authority (CA), and the signature

26 Chapter 1. Internet Routing

Root CA’s

Private Key

signature

public key

Root CA

signature

public key

Intermediate CA

signature

public key

my-site.be

Intermediate CA’s

Private Key

signs signs signs

verified by

Figure 1.5: Example of certificate chaining.

is stored in the certificate itself. The best-known certification authorities in
the web world are GlobalSign, Digicert and Verisign, which are called “Root
CAs”.

In practice, not all certificates are issued directly by these root CAs. In-
stead, they delegate the certification process to sub-certifying entities, such
as the company or organization that owns the resource to be signed, or a
subcontractor. This forms a certification chain, as shown in Figure 1.5. For
example, the certificate of a website such as my-site.be can be signed by one
or more intermediate certification authorities, which are themselves signed
by the root certification authority.

When a web browser connects to a website, it receives the website’s
certificate from the server and begins validating the certificate chain. The
browser verifies the signatures of all certificates using the public key associated
with the private key that signed each certificate. The browser also verifies
other critical information contained in the certificate, e.g., the validity date
of the certificate, the domain name, etc. This validation process continues
until it reaches the root certification authority. If all signatures are valid
and the certificate information is verified, the certificate is considered valid.
This ensures that the web client is communicating with the intended website
(my-site.be) and not a malicious site.

Root certification authorities, which are trusted authorities, have self-
signed certificates. This means that the private key associated with the public
key of the certificate is used to sign the certificate itself. To allow browsers to
verify certificates, root certificate authorities are embedded in the web client or
operating system. This prevents the installation of malicious root certificates.
However, users must trust their web browser or operating system, as trust in
root certificate authorities is inherited from these software platforms.

Unlike the web world where servers are authenticated, BGP focuses on
authenticating IP resources and ASes. The certification chain and actors
involved in BGP authentication are therefore different. In the context of BGP,
the Resource Public Key Infrastructure (RPKI) is currently used to certify the

1.6. Routing Security 27

signature

public key

AS X

CA

signature
ROA

signature

public key

RIR

IP Prefix / AS

signature

public key

AS X

EE

verified by

Figure 1.6: Chain of trust for ROAs.

route origin, ensuring that the advertised IP prefix is originated from the
legitimate AS that holds it.

The certification chain in BGP authentication involves the use of Route Ori-
gin Authorizations (ROAs) [LKK12] that are digitally signed and authenticated.
ROAs are files formatted in the Cryptographic Message Syntax (CMS) [Hou09]
using ASN.1. Figure 1.6, similar to Figure 1.5, illustrates the certification chain
used for the digital signing and authentication of resources.

In the ROA certification chain, the ROA containing an Internet resource
is signed by the End Entity (EE) X.509 certificate from the AS that owns the
resource. The EE certificate is specifically used for signing objects like ROAs
and is not used for signing other certificates. The rest of the certification
chain remains the same, where intermediate CAs owned by the AS sign the
EE certificate, and the root CAs sign the intermediate CA certificates.

The Regional Internet Registries (RIRs), like RIPE NCC, APNIC, and AFRI-
NIC, maintain the root CAs of the RPKI system. Their management and
maintenance are the key element to the RPKI system.

Each RIR maintains its own database for the IP resources it manages. For
example, if a Belgian university wants to participate in the RPKI system, its
route origin authorizations (ROAs) will be likely signed by the RIPE NCC, the
RIR responsible for managing Internet resources in Europe.

The RIRs are considered trusted anchors and provide repositories where
signed objects are accessible. These repositories are available using proto-
cols such as remote synchronization (rsync) [TM96] or the more recent RPKI
Repository Delta Protocol (RRDP) [Bru+17]. To reconstruct the complete RPKI
database, which contains all RPKI objects for the entire Internet, one would
have to contact the repositories of all RIRs. However, using a BGP router to
perform this task is not ideal. Signature verification involves computation-
ally intensive cryptographic algorithms for which routers are generally not
optimized.

To solve this problem, RPKI caches are distributed throughout the Internet.
These caches are dedicated servers that store copies of signed objects. Routers

28 Chapter 1. Internet Routing

can query these cache servers to verify BGP advertisements. RPKI cache
servers have three main roles. First, they obtain copies of all signed objects
from the repositories. Second, they perform the objects’ validation by verifying
their signatures up to the root CA. Third, when the cryptographic objects have
been validated, the RPKI cache builds a trust base that contains for each IP
prefix, the originating AS.

Finally, to transmit the trust base of the RPKI cache to the BGP router,
the RPKI system uses the RPKI to Router (RTR) protocol [BA17]. RTR is a
lightweight protocol used for communication between a BGP router and an
RTR enabled server (i.e., the RPKI cache). Once a connection is established,
the RTR server sends the router the trust base, which contains validated <AS,
IP prefix> pairs. The RTR protocol supports various communication protocols
such as SSH or TCP.

When a BGP router receives a BGP advertisement, it checks whether the
<AS, IP prefix> pair in the update matches an entry in the trust database. BGP
announcements can be classified into three states. The first state is Valid,
which means that the advertisement has been cryptographically verified and
matches an entry in the trust database. The second state is Invalid, which
means that the prefix was found in the database, but no <AS, IP prefix> entry
matches the BGP advertisement. The third state is Unknown, which means
that no <AS, IP prefix> pair was found in the trusted database.

The RPKI ROA validation specification does not specify how the router
should react to Invalid or Unknown prefixes. The specific actions taken by
the router in these cases are determined by the network operator’s policies. As
a general rule, Invalid prefixes are rejected because they do not have a valid
match in the trust database. Unknown prefixes, on the other hand, are often
accepted but assigned a lower Local-Pref, in the hope that another valid <As,
Ip prefix> advertisement will match the trusted database and be preferred.

AS-Path Manipulation While route origin validation provides a way to
verify the legitimacy of the origin of IP prefixes in BGP advertisements, it
does not completely solve all the problems associated with BGP. One such
problem is AS-Path manipulation, where intermediate ASes can be modified
to divert or disrupt traffic. To solve this problem, BGPSec [LS17] introduces
cryptographic signing of the whole BGP path.

In the traditional BGP protocol, when a router announces a route to its
neighbor, it includes its ownAS and the neighbor’s AS in theAS-Path attribute.
In the BGPSec protocol, this AS-Path attribute is replaced by the BGPSec-
Path attribute, which contains a cryptographic signature. The AS originating
a BGP announcement signs the current BGPSec-Path with its private key.
The public key corresponding to the signing AS is published in the RPKI
certificates, which are part of the RPKI system.

1.6. Routing Security 29

When a router receives a BGP advertisement with the BGPSec-Path at-
tribute, it can validate the signatures in the attribute. By checking the entire
path, including all involved ASes, the router can determine the legitimacy of
the advertisement. If the signatures are valid for the entire path, the advertise-
ment is considered legitimate and can be accepted.

For BGPSec to provide robust security, a global participation is fundamen-
tal. This means that all BGP routers on the Internet must support the BGPSec
extension [LGS13]. Router vendors must also ensure that their hardware is
capable of supporting BGPSec and operators must update their routers ac-
cordingly. In addition, operators must publish their certificates in the RPKI
databases. These requirements imply a significant change in the way BGP
announcements are currently handled on the Internet.

Route Leaks BGP peering links between ASes are primarily established
through political and commercial agreements. The most common type of
agreement is based on the “provider-client” principle. In this case, the provider
AS is responsible for announcing all the routes it knows to its clientAS. On the
other hand, the client AS only announces its own prefixes and those learned
by its own clients to the provider.

In some cases, two ASes have a mutual agreement and share links, forming
a shared link relationship. In this case, both ASes advertise their own routes
and those learned by their respective clients.

However, sometimes an AS mistakenly announces routes that are beyond
its intended scope, which is called a route leak [Sri+16]. Route leaks are
typically caused by configuration errors in the import and export filters of
routers.

Currently, there is no concrete standard for protecting against route leaks.
However, there are two main approaches to solve this problem.

The first approach involves the use of monitoring tools that track changes
in BGP (Border Gateway Protocol) announcements in real time. If a route leak
is detected, the monitoring tool immediately informs the network operator.
The operator can then take manual action to manage the incident and quickly
remedy the problem.

The second approach, currently being standardized by the IETF, uses RPKI
to detect route leaks. In addition to ROA records, a new cryptographic object
called ASPA (Autonomous System Provider Authorization) is integrated into
the RPKI system [Azi+23b; SA23; Azi+23a]. The ASPA object allows ASes to
specify which other ASes are authorized to advertise their routes. When a
route is advertised, the BGP router compares the AS-Path received and checks
the validity of each AS pair against the ASPAs.

30 Chapter 1. Internet Routing

1.7 Beyond traditional distributed routing

In the previous sections, we discussed existing distributed routing protocols,
such as BGP, OSPF, ISIS, and EIGRP, which play a key role in enabling the
Internet to learn and distribute network routes. These protocols have been
widely adopted and are responsible for network connectivity and reachability.

However, one of the limitations of these traditional routing protocols is
their rigid and inflexible nature. They have evolved over time and have become
somewhat “ossified”, meaning that they have reached a stable state and are
resistant to significant change or modification. The ossified nature of these
protocols can be attributed to their wide deployment, interoperability consid-
erations, and the need for backward compatibility. As a result, introducing
substantial changes or new features into these protocols can be difficult and
time-consuming. Network operators may face limitations when attempting to
implement advanced routing policies, fine-grained control, or dynamic net-
work behavior that goes beyond the capabilities provided by these protocols.

To address these limitations and enablemore flexible networkmanagement,
researchers and industry professionals have explored alternative approaches
such as Software-Defined Networking (SDN) [McK+08]. SDN decouples the
control-plane from the data-plane, allowing operators to centrally control and
program their networks through a software-based controller. This provides
greater flexibility, programmability and the ability to define network behavior
based on specific requirements.

In the SDN architecture, the control plane is centralized on a device called
a controller. This controller maintains a global view of the network and
communicates with the network devices, which act as specialized switches
with only data plane functionality, meaning that they are only able to forward
packets. The controller interacts with the switches through an API such as
OpenFlow [McK+08], which allows it to define forwarding rules and manage
network behavior.

Centralizing the control plane simplifies network management compared
to traditional distributed routing protocols. The controller can perform ad-
vanced routing operations and implement custom policies that go beyond the
limitations of distributed protocols. For example, SDNs enable the implemen-
tation of per-flow security policies and dynamic load balancing.

Despite the benefits of SDN, its widespread deployment remains limited
in ISP networks. The introduction of SDNs into networks presents challenges
in terms of scalability and resiliency. Because the controller is responsible for
the entire network, it can be overloaded when managing large-scale networks
with thousands of switches. In addition, the controller becomes a single point
of failure, as the operation of the network depends entirely on its availabil-
ity. Finally, in some network configurations, the SDN controller may have a

1.7. Beyond traditional distributed routing 31

different view of the network than the routers. For example, in Hybrid SDN
approaches [VVB14], one part of the network operates according to SDN prin-
ciples, while another part relies on traditional distributed networking methods.
When a failure occurs on either side of the network, effective coordination
between these two parts may be limited, resulting in prolonged downtime.

Addressing scalability and resiliency issues is an ongoing area of re-
search and development in SDN. Various techniques, such as distributed
controllers [BSM18], fault-tolerant designs [Bot+14] and robust deployment
of Hybrid SDN [ARS18] are being explored to mitigate these issues and make
SDN a more practical and robust solution for network management.

Part II

Bringing innovation back in
routing with truly extensible
protocols implementations

33

The Need of Extensibility
in Routing Protocols 2
During the last decades, the requirements imposed on enterprise and Internet
Service Providers (ISP) networks have changed drastically. The first enterprise
networks simply provided a “best effort” service and were not attached to
a public network. Today’s enterprise networks need to support Quality of
Service [EF10] and include security feature to protect them from attacks
originating from the Internet. ISP networks also face similar problems, but
at a much larger scale [Hus98; Dav04]. Internet traffic continues to grow
quickly and ISP networks need to scale to sustain the load. Indeed, ISPs are
continuously challenged by their users and customers to provide value-added
services that go beyond best-effort connectivity. Among others, these new
services include traffic engineering techniques to prioritize some flows over
others and improve network load, fast reroute mechanisms to swiftly retrieve
connectivity upon failures, or anycast routing. In addition, ISPs are trying to
improve their internal operations in order to provide an ever better service
to their customers. This can be done by implementing a monitoring system,
re-architecting or tuning the internal network.

To cope with these changing requirements, network operators are forced
to innovate. Innovation is defined by the Merriam-Webster dictionary as
the introduction of something new. As an extension, we can define network
innovation as the introduction of new features inside an enterprise or ISP
network. The introduction of a new feature is often done in three phases:
𝑑𝑒𝑠𝑖𝑔𝑛, 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 and 𝑑𝑒𝑝𝑙𝑜𝑦. During the 𝑑𝑒𝑠𝑖𝑔𝑛 phase, the network opera-
tors propose new abstract solutions and evaluate them. One of the proposed
solutions is then implemented before being deployed it in the network after
successful tests in labs.

Innovation almost always requires the extension of routing protocols. And
among all protocols, the Border Gateway Protocol (BGP) is probably the most
used one given its flexibility: for many network operators, BGP has become a
true “Swiss-army knife”. Originally designed to distribute interdomain routes,
BGP has been extended several times to support different types of services
[KKC12; RR06].

While extending BGP is possible, it is certainly not easy, for two main rea-
sons. First, ISP networks often include routers from different vendors [Van+13;

35

36 Chapter 2. The Need of Extensibility in Routing Protocols

0 2 4 6 8 10

Standardization Delay (Years)

0.0

0.5

1.0

C
D
F

Figure 2.1: Delay between the publication of the first IETF draft and the
published version of the last 40 BGP RFCs in 2020.

Dav04]. This diversity is inherent and required for technical, safety, economic
reasons, and the type of use. The characteristics of a software-based virtual
router used in a datacenter are different from those of an access router that
connects a remote branch office or a backbone router that supports hundreds
of terabits/sec of traffic. Unfortunately, this diversity means that operators can
only use the intersection of the features set across all their routers, hindering
flexibility. Also, some vendors only supply certain types of routers (e.g., access
or backbone ones). To prevent problems from software bugs, some operators
connect important customers to two routers from different vendors to ensure
that they would not fail at the same time. From an economical viewpoint,
sourcing the network vendors from different manufacturers increases the
competition among them.

Second, it can take years for even a subset of the vendors to implement new
features as these need to be first standardized by the Internet Engineering Task
Force (IETF). Many view this as a form of ossification of the routing protocols.
As an illustration, Figure 2.1 depicts the delay between the moment the IETF
working group responsible for the BGP routing protocol (IDR) started to work
on a new feature and its actual RFC publication. This delay includes the time
required to document two independent and interoperable implementations as
required by the IETF Routing Area. We see that the median delay before RFC
publication of BGP extensions is 3.5 years, and that some features required up to
ten years before being standardized1. This long delay has also been confirmed
by another study [McQ+21]. This is only the tip of the iceberg, though: only a
small subset of the BGP extensions proposed by network operators have been
discussed and later adopted by the IETF.

Another difficulty for our network operator is that each vendor has a
different configuration language. BGP can be tuned using various access lists,
filters, but they are all specific to each vendor. Some network operators have

1Note that this delay ignores the time elapsed between the initial idea and its first adoption
by the working group, making the actual delay even longer.

37

developed tools to automatically translate the most frequent BGP configura-
tions in different vendor languages [Got+03], but these tools do not support
all BGP knobs. The vendor-neutral management interfaces developed within
the IETF starting from SNMP [HH06] to the YANG models used by netconf
[Jet+21; Qu+21] only support a subset of the router features.

Frustrated by these delays and the difficulty to innovate in networks,
researchers have argued for Software-Defined Networks (SDN) [McK+08] for
more than a decade. Instead of relying on a myriad of distributed protocols and
features, SDN assumes that switches and routers expose their forwarding tables
through a standardized API. This API is then used by logically centralized
controllers to “program” routers and switches. By using centralized controllers
that program flow-tables on the network switches and routers, researchers and
network operators can implement a wide range of services that are difficult to
support with traditional routing protocols (see the references cited by Kreutz
et al. [Kre+14] for a long list of examples). Some companies rely on SDN for
parts of their network [Jai+13], but SDN has not replaced traditional routing
protocols like BGP and OSPF/IS-IS.

While SDN has enabled countless new research works [FRZ14; Kre+14], it
has not been widely adopted by ISPs. One of the main hurdles is that deploying
SDN requires a major network overhaul, both at the control-plane level, to
deploy scalable and robust logically-centralized controllers, and at the data-
plane level, to deploy compatible network devices. Thus far, only large cloud
providers managed to perform this overhaul [Jai+13; Hon+13].

Of course, instead of relying on commercial routers, network opera-
tors could decide to adopt open-source implementations of routing proto-
cols [CZN20; Fou17; HHK03; The] running on servers or custom hardware
[Mica]. A network operator could for instance fork a BGP implementation to
add a desired feature. Maintaining this fork requires a lot of software devel-
opment effort, though. Such an approach is feasible for large cloud providers
[Sin+21] but not for ISPs. Another approach is to use a modular routing im-
plementation to take full control of the protocol. The network operator is
responsible for the entire routing implementation. Unfortunately, it is too
difficult to maintain and evolve because the network operator must have a
complete understanding of the routing protocol and must have software pro-
gramming skills, which they often do not have. To provide flexibility in the
administration and automation of their routers, some router vendors have
added a Python interpreter to their operating systems [Jun21]. However,
the interpreter only handles the administration part of the router and does
not provide an interface to add or modify protocol features. Finally, in the
late 1990s, active networks were proposed as a solution to bring innovation
back within networks [TW96]. Several architectures were proposed to enable
routers to execute bytecode encoded inside packet headers. Prototypes were

38 Chapter 2. The Need of Extensibility in Routing Protocols

developed [Ten+97], but active networks were not adopted by industry [Cal06].
Indeed, the use of active networks with centralized approaches or descriptive
configuration languages [Cae+05; GS05] is not possible in today’s Internet,
as autonomous systems still use decentralized protocols to establish peering
links. Therefore introducing arbitrary operations directly into the network
poses a serious security problem that needs to be solved.

The Difficulty of Deploying New Features in a Network

In practice, deploying a new service inside a large ISP network can be difficult.
As previously explained, such a network is rarely composed of homogeneous
routers produced by the same manufacturer. Still, these different routers
support the same packet format (IP) and implement the same standardized
routing protocols (OSPF [Moy91], BGP [RL94]).

To illustrate the difficulty of deploying extensions and new services to
routing protocols, let us look back at the evolution of several BGP and OSPF
extensions whose deployment has been documented.

The BGP communities [TSR06] play an important role in scaling BGP
routing policies by enabling network operators to tag routes and then apply
the same policies to the routes that carry a given tag. Various use cases of this
attribute have been documented [DB08; Gio+17; Str+18]. This BGP attribute
was designed when BGP used AS numbers encoded as a 16-bits integer and
the high-order bits of the BGP communities contain an AS number. As BGP
evolved to support 32-bits AS numbers [VC12], it became necessary to support
wider BGP communities. Since 2009, the new ISPs receiving 32 bits AS numbers
by default were unable to define their own BGP communities according to the
existing standard [TSR06]. Several encoding for BGP communities that support
32-bit AS numbers were proposed since 2002 [And+10; Ras+18]. Unfortunately,
discussions did not converge within the IETF and it took more than fifteen
years to finally agree on the BGP Large Communities specification [Hei+17].
The redaction of this document took less a than year, probably a record for
the IETF and implementations were released in the following two years2. The
first ISP that received a 32-bits AS number in 2009 had thus to wait more than
a decade to be able to use its assigned BGP communities.

Another example is the BGP extensions to support the traffic engineering
performance metrics [Gin+19]. The development of these extensions started
in 2013 [Wu+13]. Six years later, it was supported by only two vendors3.

2See http://largebgpcommunities.net/implementations/ for a detailed description of
these implementations.

3See https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-te-pm-bgp%20imple
mentations.

http://largebgpcommunities.net/implementations/
https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-te-pm-bgp%20implementations
https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-te-pm-bgp%20implementations

39

A third example is the so-called add-path BGP extension [Wal+16] that
enables a router to send several paths towards the same prefix over a single
BGP session. The first discussions for this extension started in 2002 [Wal+02]
and the IETF approved it in 2016. The first implementations were reported in
2011 and then mainly in 20144.

A fourth example is the OSPFv3 LSA extensions [Lin+18] that extend
the LSA format by encoding the existing OSPFv3 LSA information in Type-
Length-Value (TLV). Thanks to these TLVs, it becomes easier to use OSPFv3
to flood other types of information than those covered by the standardised
LSAs. The first discussions on this extension started in 2013 and only two
implementations have been confirmed5.

These examples show that while standardised routing protocols have clear
benefits in terms of interoperability, it often takes half a decade or more before
network operators can deploy new network services that require protocol
extensions. Large companies like Facebook have reacted by implementing
their own proprietary routing protocol [Has+], but there are no indications of
its adoption outside Facebook.

In the two following chapters, we propose a compromise that combines
the flexibility of SDN, enabling network operators to implement their own
code, with the benefits of distributed routing protocols, without the need
for hardware support by relying on specialized switches as required with
SDNs. We focus on BGP, but the solution that we propose is applicable to
other routing protocols with some implementation effort. Similarly to what
OpenFlow [McK+08] achieved, we believe that programmable distributed
routing protocols have the potential to open up many promising avenues for
research, while being fundamentally more practical and deployable.

4See https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-add-paths%20imple
mentations.

5See https://trac.ietf.org/trac/ospf/wiki/draft-ietf-ospf-ospfv3-extend%2
0implementations

https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-add-paths%20implementations
https://trac.ietf.org/trac/idr/wiki/draft-ietf-idr-add-paths%20implementations
https://trac.ietf.org/trac/ospf/wiki/draft-ietf-ospf-ospfv3-extend%20implementations
https://trac.ietf.org/trac/ospf/wiki/draft-ietf-ospf-ospfv3-extend%20implementations

Extending routing
protocol implementations
with plugins

3

i This chapter is largely based on the paper T. Wirtgen, C. Dénos, Q.

De Coninck, M. Jadin, and O. Bonaventure. “The Case for Pluginized

Routing Protocols”. In: 2019 IEEE 27th International Conference on
Network Protocols (ICNP). IEEE. 2019, pp. 1–12. doi: 10.1109/ICNP.
2019.8888065.

Network operators typically depend on commercial implementations of
closed-source routing protocols, mainly because they can obtain support and
updates from the vendor in the case of issues. These implementations are like
black boxes in that their inner workings are hidden and only configurable
and accessible via router interfaces such as the command line interface (CLI),
SNMP or NetConf.

Consequently, operators are limited to the predefined functions and con-
figurations provided by the router vendor. They cannot modify or customize
the underlying protocol code, which prevents them from adapting routing
protocols to their specific needs or exploring new approaches to improve their
network. In addition, the lack of a standardized mechanism for modifying
or extending protocols worsen the situation. Network operators have to go
through a complex and cumbersome process to propose changes through orga-
nizations such as the IETF (Internet Engineering Task Force). This challenging
process further complicates the already time-consuming task of introducing
improvements or innovation in routing protocols.

As a result, the potential for innovation within networks is severely lim-
ited, as the lack of flexibility throttles innovation and prevents operators from
taking advantage of emerging technologies or adapting to changing network
needs. They are faced with the inherent limitations of existing protocol im-
plementations, unable to explore alternative routing strategies or integrate
state-of-the-art solutions that could optimize network performance, enhance
security, or enable more efficient traffic management.

To solve this problem, the first part of this thesis’s section aims to explore
the possibility of dynamically extending a routing protocol implementation

41

https://doi.org/10.1109/ICNP.2019.8888065
https://doi.org/10.1109/ICNP.2019.8888065

42 Chapter 3. Extending routing protocol implementations with plugins

with executable code written by the operator. We use a virtual machine based
on eBPF, capable of executing code written in the C programming language.

The rest of this chapter is organized as follows. We first start to explain
the eBPF environment in Section 3.1. We then propose three main contribu-
tions:

■ First, we propose in Section 3.2 to organize the implementations of rout-
ing protocols so that a network operator can extend the implementations
used on her routers to support new protocol features.

■ Second, we demonstrate that such an architecture can be implemented
in the OSPF and BGP daemons of FRRouting in Section 3.2.1.

■ Third, we demonstrate in Section 3.3, several use cases showing the
benefits of our proposed implementation architecture.

We continue by exploring the related work of network programability in
Section 3.4. We finally, conclude this chapter in Section 3.5.

3.1 The eBPF environment

This section provides a brief explanation of eBPF and how it enhances the
flexibility of routing protocol implementations. eBPF, or extended Berkeley
Packet Filter, is a versatile technology that allows custom code to run securely
within the Linux kernel through the eBPF virtual machine (VM), enabling
flexibility and safe execution.

eBPFwas originally developed specifically for the Linux kernel. It is built by
extending BPF (Berkeley Packet Filter), a lightweight virtual machine used for
simple rule-based network packet filtering [MJ93]. The idea of extending BPF
emerged in 2014 when Linux developers were looking to reduce the amount
of code interpreted in Lua [Fle17]. Leveraging its design closely aligned with
x86_64 processors, the current version of eBPF was introduced in version
3.15 of the Linux kernel [Sta14a]. Essentially, eBPF allows user-space code to
run in the kernel environment. Programs are written in a restricted subset of
the C programming language and can be dynamically loaded and executed
without the need to recompile the kernel or reboot the system. In addition,
eBPF programs can also be written in Rust [MK14] using the redbpf tool
chain [fon18], enabling memory-safe programming [Jun+17]. The use of Rust,
with its interesting safety properties, could make it possible to run extensions
in the kernel without having to go through the eBPF verifier, which tends to
severely restrict the set of programs allowed to run in kernel-space [Jia+23a].

When a user program is loaded into the kernel, it is compiled into eBPF
bytecode, which serves as a low-level representation of the program instruc-
tions. The eBPF virtual machine consists of several components, including

3.1. The eBPF environment 43

a verifier, a just-in-time (JIT) compiler and an execution environment. The
verifier ensures the security and correctness of eBPF programs by performing
a static analysis of the bytecode, checking for invalid instructions, memory
access and security violations. Once verified, the JIT compiler translates the
eBPF bytecode into optimized, platform-specific native machine code. Finally,
the eBPF program runs in the runtime environment, which provides access to
kernel data structures and functions via predefined helpers. Example of these
helpers for the Linux Kernel can be found on the Linux User’s manual [Lin22].
These helpers enable the program to interact with various kernel subsystems,
such as the network, file systems and process management. In addition, the
eBPF program can generate events such as tracepoints or user-defined probes,
(e.g., eBPF raw tracepoints [Sta18] with eBPF BTF (BPF Type Format) [KaF18]
which enables the portability of eBPF programs) facilitating the monitoring
and analysis of kernel behavior.

eBPF is a useful tool for efficiently monitoring and manipulating kernel
events, including system calls, network packets and file operations [Cas+20;
Jia+23b; Zho+22; Zho+23]. It is also used for debugging, profiling and secu-
rity analysis [DSM19]. In addition, eBPF programs can implement advanced
routing mechanisms, improve packet processing speed and enforce security
policies [Jad+22; Bon+22; Ber+18a]. The sandbox environment in which eBPF
programs operate ensures their isolation from the rest of the kernel, preventing
security failures, vulnerabilities or crashes. This characteristic makes eBPF
suitable for a wide range of applications [SAD22].

Although originally designed to run custom code in the Linux kernel, eBPF
has been extended to other environments, including user-space programs and
other operating systems. Projects such as Cilium [Iso17] and XDP [Høi+18]
use eBPF to implement high-performance network filters and bypass the Linux
networking stack respectively with user space programs. These programs
exploit eBPF to intercept and modify network traffic without requiring privi-
leged access to the kernel. In addition, the eBPF ecosystem provides libraries
and tools that enable developers to write and run eBPF programs on various
platforms, such as Windows, macOS and FreeBSD. Furthermore, due to its
GPL license, the eBPF VM has been extracted from the Linux kernel and made
available as a user-space library called uBPF [IO 18]. This makes it possible to
integrate the eBPF VM into user-space routing protocol implementations.

The introduction of the uBPF virtual machine opens up new possibilities
for using eBPF technology beyond the Linux kernel. As an example, uBPF
is also the VM used by Microsoft to obtain eBPF support in the Windows
kernel [Micb]. Moreover, by integrating uBPF into user-space routing protocol
implementations, developers can exploit the flexibility and power of the eBPF
virtual machine to incorporate eBPF programs into routing protocols. This
enables new approaches that will be discussed in more detail in this chapter

44 Chapter 3. Extending routing protocol implementations with plugins

CLI NetConf SNMP

FIB

Routing

Messages

Figure 3.1: Current routing protocol implementations.

and in Chapter 4.

3.2 Pluginizing a Routing Protocol

In this section, we propose a new technique to extend and enhance routing
protocols and their implementations. From a high-level viewpoint, an im-
plementation of a routing protocol can be represented as in Figure 3.1. The
implementation is modeled as a Finite State Machine (FSM) that exchanges
routing messages with other routers. The RFCs describe in detail how and
when protocol implementations should send and react to specific packets. This
FSM can be configured through the command line interface, SNMP MIBs or
NetConf and compute routing tables that are pushed in the FIB. This represen-
tation can be seen as a blackbox model, since the network operator is limited to
configuring the routing protocol using the interfaces provided by the network
vendor. In general, the network operating system is closed and cannot be
modified, which means that operators cannot change the FSM. Hence, with
this blackbox model, any extension of the protocol requires a replacement of
the FSM by the network vendor.

We envision a different implementation model. From a high-level view-
point, our model is represented in Figure 3.2. We introduce three main modifi-
cations compared to the blackbox model. First, the protocol implementation
provides a simple API that contains a set of functions that expose the proto-
col state. For example, an OSPF implementation typically includes functions
to add or remove LSAs from the link state database, a BGP implementation
includes functions to parse and encode BGP messages. Our second modifica-
tion is that we allow the FSM that implements the protocol to be extended
by adding one or more states, adding one or more transitions or replacing
existing transitions. Figure 3.2 shows the FSM that enables the core part of
the routing protocol in black and two extensions in red and blue. Our third
modification is that we introduce plugins. A plugin is some executable code
which can be executed inside a routing protocol implementation. A plugin

3.2. Pluginizing a Routing Protocol 45

Pl
ug

in
s

CLI NetConf SNMP

FIB

Routing

Messages

API

Figure 3.2: Our proposed routing protocol implementations can be extended
by using plugins that modify the FSM and use the API.

can use the functions provided by the protocol API and extend the FSM. These
plugins enable network operators to design their own extensions to routing
protocols and deploy them in their networks without having to wait for their
standardization and adoption by multiple router vendors.

In SDN networks, operators can implement new services as software
running on a centralized controller that interacts with the network devices
through the Openflow protocol [McK+08]. SDN controllers support different
programming languages and a range of services have been implemented on
them [Kre+14]. A network operator who wants to deploy a new service as a
plugin would like to implement it once and deploy it on all routers inside her
network.

Our deployment model has several important consequences on the im-
plementation of our plugins. First, it must be possible to execute a plugin on
different types of routers that use different CPU models. This implies that
either a plugin will be written using a programming language which can be
interpreted by the protocol implementation or that it will be compiled into
bytecode which is supported by a Virtual Machine that is included in the
protocol implementation. Second, OSPF and BGP daemons are always active
and it should be possible to extend them without restarting them. Third, since
a plugin runs inside the OSPF/BGP daemon, there is a risk that an incorrect
plugin could jeopardize the protocol state or even crash it. To cope with
these three requirements, we compile the plugins into eBPF bytecode that is
executed by a virtual machine that we include in the protocol implementation.

We provide more details on how we extended one implementation of
BGP and OSPF to support plugins in the next sections. We first describe the
key points of our solution in Section 3.2.1. We detail the management of the
memory in Section 3.2.3. We then provide the details related to the OSPF and
BGP daemons in Sections 3.2.4 and 3.2.5.

46 Chapter 3. Extending routing protocol implementations with plugins

3.2.1 Pluginizing FRRouting

To demonstrate the feasibility of this approach, we apply it to the OSPF and
BGP daemons of FRRouting1. FRRouting (FRR) is an IP routing protocol suite
for Linux and Unix platforms which includes protocol daemons for BGP, IS-IS,
LDP, OSPF, PIM, and RIP. It was forked fromQuagga and is actively maintained.
We used FRRouting version 6.

To alter the behavior of both OSPF and BGP, we rely on a user-space
implementation of the eBPF [Fle17] virtual machine called uBPF [IO 18] that
we linked to the FRRouting daemons. The main advantage of this virtual
machine is that it supports the same bytecode as the eBPF virtual machine
that is included in the Linux kernel, by definition. It can thus benefit from
the different tools that have been written to compile bytecode for the Linux
kernel. The uBPF VM can load executable eBPF bytecodes and either interpret
them or compile them to x86_64 assembly with its own JIT compiler. Like the
eBPF VM of the Linux kernel, it includes a verifier that checks the validity of
the loaded bytecode. The uBPF verifier checks (1) all instructions are valid
opcodes, (2) there is an exit instruction, (3) there is no forbidden operations
such as division by zero, writes to read-only registers or invalid jumps, and (4)
the memory accesses remain either in its stack or a provided memory area.

Now that the routing daemon includes the uBPF virtual machine, we need
to discuss how the daemon must be restructured to enable it to be extended
by using plugins. An implementation is organized as a series of functions that
process and send packets as well as compute routing tables. These functions
are the concrete implementations of specific states of the FSM protocol in a
programming language such as C. Henceforth, to enable the modification of
the protocol, we use these functions and make them pluginizable. These
serve as insertion points where a network operator can decide to attach
plugins compiled in eBPF.

More precisely, one plugin is associated with one routing function and is
subdivided in three different parts, called anchors, offering a fine granularity
on the code injection location. Consider the original function 𝑓 . The anchors
are illustrated in Figure 3.3 and are defined as follows.

■ PRE: the eBPF code is executed just before running the body of the
function 𝑓 . This anchor can for example be used to load required data
inside the plugin or for monitoring purposes. For example, the PRE
anchor can monitor the FSM state transition to track the progress of
the protocol. Any number of bytecodes can be attached in this mode.
They are then executed in a non-deterministic order, but they always
terminate before the actual call of function 𝑓 . Bytecodes attached at PRE

1See https://frrouting.org

https://frrouting.org

3.2. Pluginizing a Routing Protocol 47

f
u
n
c
t
i
o
n
𝑓

(a) Classical FRR function.

PRE

f
u
n
c
t
i
o
n
𝑓

R
E
P
L
A
C
E

POST

(b) Insertion Point.

Figure 3.3: Insertion points for eBPF Plugins inside routing functions.

anchors only have read-only access to the routing daemon variables. If
no eBPF code is present, this insertion point resumes to a no-op.

■ REPLACE: the eBPF bytecode is executed instead of the original code
of the function 𝑓 . Only one bytecode can be attached in this mode,
and the absence of injected code reduces the REPLACE mode to the
original implementation of the function 𝑓 . This implies that a network
operator can dynamically replace one of the functions of the underlying
implementation in deployed routers. Bytecodes in REPLACE anchors
have read and write accesses to the routing daemon variables. This
enables plugins to change key protocol algorithms such as the shortest
path computation in the OSPF protocol by including custom network
metrics. REPLACE can also be used to suggest new protocol features
by redefining the definition of BGP import and export filters. BGP
implementations typically propose a domain-specific language (DSL)
to design filters, but lack flexibility when designing complex filters.
Traditional routing protocol implementations cannot rely on other types
of information that the DSL proposes. eBPF can overcome this limitation
since it has access to the arguments of the protocol function containing
more information than a DSL might propose.

■ POST: this mode is similar to the PRE one, except that the eBPF code
is executed just after running the body of the function 𝑓 , just before
returning to the function it was called from. Bytecodes attached at POST
anchors only have read-only access to the routing daemon variables. As
PRE function, the POST anchor can be used to monitor the time taken
by protocol functions such as compute time of the Dijkstra algorithm in

48 Chapter 3. Extending routing protocol implementations with plugins

OSPF. In this case, both PRE and POST are required to track the time
when the function starts and ends.

Each pluginizable function has a name that uniquely identifies it. Such
convention allows network administrators to easily attach and remove their
eBPF scripts in a key-value data structure. Furthermore, such human-readable
identifiers provide a convenient interface to dynamically change the plugins
attached to the routing daemon without rebooting it. However, this latter
method is effectively too restrictive, because routing sessions and routing
tables must then be recomputed from scratch. Furthermore, reconfiguration
can lead to unauthorized and unnecessary traffic shifts and, in some cases,
can even cause instabilities within the network. The literature has shown that
network reconfiguration is a computationally difficult problem, falling into
the NP-Complete or NP-Hard category, depending on the specific constraints
within the network and the routing protocol chosen [SSV22]. A tool such as
Snowcap [SBV21] or Chameleon [Sch+23] can be used and adapted for plugins
to enable their incremental installation on network routers with minimal
impact. The problem of network reconfiguration is in itself a large topic,
which is beyond the scope of this thesis.

An eBPF plugin is composed of one or more bytecodes that are attached
to a specific insertion point. These bytecodes are called pluglets and a plugin
can thus contain several pluglets. A given implementation might expose many
pluginizable functions. A plugin is defined in a description file listing each
ELF file containing the eBPF bytecode and its corresponding function with its
insertion point. The network administrator can load it through a command line
interface (CLI). Several plugins can co-exist within a routing daemon. To be
executed, pluglets require a VM. The current uBPF implementation provides
an API to create a VM containing the loaded eBPF bytecode to execute it.
However, such VM can only contain one bytecode at a time. Furthermore,
with uBPF there is no API to update the code attached to a VM. The code
replacement is nevertheless a required feature to dynamically update plugins,
which is important for routing protocol daemons that never terminate. To
solve these problems, we extend the API to manage multiple plugins. In fact,
we create a specific instance of uBPF machine which is in charge of only one
pluglet. Several of these VMs can be attached to a routing daemon at a given
time. These multiple VMs are stored into a map, each being associated to a
plugin. This map is, of course, accessible through our extended uBPF API
inside the routing daemon.

3.2.2 Executing a Plugin Inside the eBPF VM

The VM has two modes of executing eBPF bytecode: interpreted and JIT (Just-
In-Time) compilation. In the interpreted mode, the VM reads and executes

3.2. Pluginizing a Routing Protocol 49

each eBPF assembly instruction without converting it into machine language
beforehand. Instead, the eBPF program is executed within another program
integrated in the routing daemon. To achieve this, it emulates an “eBPF
processor” to execute the program, keeping the eBPF code isolated from the
rest of the daemon. Even if the eBPF code fails, it will not affect its execution.

The JIT compilation mode directly translates eBPF instructions into ma-
chine code understood by the CPU. Instead of interpreting the instructions,
the VM converts them into assembly code that can be directly executed by
the CPU. This mode is faster because there is no intermediary step, but it can
be risky as the code is directly executed by the CPU. The eBPF program can
potentially cause issues like accessing unauthorized memory or crashing the
process.

Typically a JIT compiler defers the compilation of eBPF bytecode until it
can generate optimized machine code that takes into account the program’s
current execution. Machine code is generated while the eBPF program is
running. However, the JIT compiler integrated in the uBPF VM is basic and
can only compile the entire eBPF bytecode before execution.

3.2.3 Memory Management

One of the motivations for using VMs is their isolation from the routing
daemon they are attached to. In addition, the eBPF instruction set is quite
small and simple, making it easier to control their operations. However,
plugins may require more information from the implementation than the initial
arguments provided to the VM. To exchange information with the routing
daemon, FRRouting registers a set of functions that are made accessible to
the uBPF VM, and therefore the plugins. As both pluglets and FRRouting are
written in C language, plugins could theoretically access any memory location
within the routing daemon. In practice, this could create stability problems if
badly written eBPF code tries to access invalid memory locations. Furthermore,
it would make plugins very dependent on the FRRouting internals that may
change over time. To ensure the stability of the executable that combines the
routing daemon and the eBPF plugins, we leverage the uBPF VM to control
the memory that a given plugin can access. This is done through different
techniques.

First, the routing daemon exposes through an API a set of getter and setter
functions to access the main data structures (packets, LSDB for OSPF, RIB
for BGP, etc.) maintained by the routing daemon. These functions are part
of the modified routing daemon. They also verify the validity of their input
parameters.

Second, the different pluglets composing a given plugin may need to
collaborate together by exchanging information. Each pluglet is supported

50 Chapter 3. Extending routing protocol implementations with plugins

Stack

Heap (virtual)

pluglet 1 memory

Stack

Heap (virtual)

pluglet 2 memory

Stack

Heap (virtual)

pluglet 3 memory

plugin 2 heap

(64KB)

Daemon memory

plugin 1 heap

(64KB)

Figure 3.4: The two pluglets of the left plugin share the same heap while the
pluglet of the right plugin uses a separate heap.

by one instance of the uBPF VM and has its own stack. To address this
requirement, FRRouting keeps a dedicated context for each plugin. Thanks
to this context, we can associate a plugin-specific heap that is shared among
the different pluglets that compose a plugin. These pluglets can allocate
and free memory in their shared heap by using functions that are similar to
malloc(3) and free(3). This is illustrated in Figure 3.4. As we want to keep
control on the memory used by the plugins, we do not directly expose the
associated functions of the C library. Rather, we reimplement some of them
like memcpy(3), malloc(3) and free(3) and expose them to the uBPF VMs.
In addition, the API of the routing daemon provides functions for pluglets to
map an area of the plugin heap to a plugin-specific identifier. Such mechanisms
enable collaborative pluglets to retrieve a precise memory area while providing
isolation between plugins.

3.2.4 Pluginizing the OSPF Daemon

The previous sections described the generic techniques that are required to
add plugins to a routing daemon. In addition, the routing daemon also needs
to expose specific OSPF functions that the plugins can use. We briefly describe
these OSPF functions and the insertion points in this section.

The insertion points of an OSPF daemon are the protocol functions where
eBPF plugins can be attached. These insertion points depend on the features
that eBPF plugins need to support. Our prototype includes several insertion
points. We briefly describe some of them. The SPF_CALC insertion point corre-
sponds to the function that computes the shortest paths. The OSPF_SPF_NEXT
insertion point corresponds to a function which is part of the SPF calculation

3.2. Pluginizing a Routing Protocol 51

process that implements Section 16.1 of the OSPF specification [Moy98]. The
HELLO_SEND insertion point corresponds to the function that sends Hello pack-
ets. The LSA_FLOOD insertion point corresponds to the function that floods
the received LSAs. The ISM_CHANGE_STATE insertion point corresponds to
the function that is called when an interface changes the state of its Interface
State Machine.

The OSPF API also exposes some functions to the plugins. First, we expose
functions used to get/set some OSPF internal structures. For example, the get_
ospf_area function is used to get a copy of an OSPF area structure from OSPF
while set_ospf_area can be used to set an OSPF area structure to a desired
value. Such functions are provided for most of the important structure main-
tained by OSPF. We also expose functions from the implementation that can
be useful for plugins. Examples of such functions are plugin_ospf_flood_
through_area that allows flooding an LSA through an area and plugin_
ospf_lsa_install that allows installing an LSA in the router’s LSDB.

3.2.5 Pluginizing the BGP Daemon

The BGP daemon is also extended similarly. We add insertion points on
functions receiving BGP messages from neighbors, on filters and inside the
decision process. We also expose specific functions to the plugins that are
executed by the uBPF VM.

Our BGP API exposes two types of functions to the eBPF plugins. First,
there are functions to access/modify some elements of the data structures
maintained by the BGP daemon. For example, get_cmp_prefixes is used
to retrieve two prefixes received during the BGP decision process. The first
one is a prefix received from the remote peer when it has sent a BGP Update
message. The second prefix is one prefix already present in the Adj-Loc-RIB.
The get_attr_from_prefix returns the attribute structure related to the
prefix sent by a remote peer. The as_path_from_prefix function returns the
AS path related to a prefix while the get_attr_from_path_info returns all
the attributes of the update passed as argument. The get_community_from_
path_info extracts the BGP community structure associated with a given
path.

Our BGP API also includes functions that manipulate and compare BGP
messages or their attributes. These functions are typically used by the BGP
decision process and will be used for one of our use cases. Example functions
include aspath_cmp that compares two AS paths (i.e. their length and the ASes
they contain), aspath_count_hops that returns the number of ASes contained
in a given path, similar functions for the MED or other BGP attributes or the
peer_sort which determines whether a peer is an eBGP or an iBGP neighbor.

52 Chapter 3. Extending routing protocol implementations with plugins

3.3 Use Cases

In this section, we describe four examples showing how network operators and
researchers can leverage the proposed plugins to extend a routing protocol.

First, we demonstrate in Section 3.3.1 that we can use plugins to extract
and expose internal protocol information for monitoring. Second, we show in
Section 3.3.2 plugins changing the protocol packet format and its interpretation
in the OSPF route computation. Third, we show in Section 3.3.3 plugins
describing more expressive BGP filters. Fourth, we demonstrate in Section
3.3.4 that plugins can also modify the BGP decision process.

3.3.1 Monitoring routing protocols

One of the most popular use cases for eBPF in the Linux kernel is to monitor
various events that occur inside the kernel in an efficient and non-intrusive
manner. Similarly, we added monitoring facilities to the BGP and OSPF imple-
mentations in FRRouting.

To illustrate the monitoring capabilities of our proposed plugins, we have
designed and implemented both a BGP and an OSPF monitoring daemons that
interact with plugins running on the routing daemons and export statistics
using IPFIX [ACT13]. Those statistics are aggregated by the daemons and
exported to an IPFIX collector.

To monitor the BGP routing daemon, we implemented several BGP plugins
that are attached at PRE anchors at several insertion points. Some of these
plugins monitor specific BGP messages. For example, our plugin monitoring
the Open messages, used to start a BGP session, is composed of 50 lines
of C code and uses 16 API helper calls. Similar plugins are provided for
the Keepalive and Update messages. Besides monitoring the received BGP
messages, one plugin also measures the time required to run the BGP decision
process. We have also implemented plugins that track specific IP prefixes or
analyze the received AS Paths to enable the operator to provide more detailed
statistics. Finally, we built plugins in charge of both monitoring withdrawn
and rejected routes. The last one provides the reason of the rejection decided
by BGP import filters. We study the performance impact of these plugins in
Section 3.3.3.

We also implemented similar plugins to monitor OSPF. These plugins are
inserted at the PRE and POST anchors of different insertion points. With
plugins shorter than 10 lines of code, we can monitor things such as the
execution time of the SPF calculation process, the number of Hello packets
sent or the LSAs flooded by a router.

3.3. Use Cases 53

3.3.2 More flexible OSPF route computation

One of the benefits of our proposed plugins is that it is possible to extend the
routing protocol. As an illustration, we implement a new type of OSPF LSA
and update the shortest path computation algorithm. This idea is similar to
the flexible IGP algorithm standardized by the IETF [Pse+23] in February 2023.
We do not adopt the syntax proposed by the IETF standard, but the idea is
similar.

We first define a new OSPF LSA (type 13). This LSA is similar to the
normal router LSA (type 1), except that we associate an additional metric (as
an integer) to each link. We use this additional metric to represent the color
of each link. This plugin is implemented by using about 100 lines of code and
is inserted in the SPF_CALC insertion points. This LSA is then flooded inside
the network.

Our second plugin is attached at the REPLACE anchor of the OSPF_SPF_
NEXT insertion point. It modifies the ospf_spf_next() function which im-
plements Section 16.1 of the OSPF specification [Moy98]. In this function,
the LSDB is represented as a directed graph. The ospf_spf_next() function
examines the links in the LSAs of the first vertex from the candidates’ list.
Then it updates the list of candidates with any vertices that are not already
on the list. If a lower-cost path is found to a vertex already present in the
candidate list, it stores the new cost. We rewrite this function as an eBPF
plugin to support color constraints. For each router LSA that is examined, we
check if there is a corresponding (same router-ID) LSA of type 13 in the LSDB.
If yes, we check for each link the color of the link. If it is green, we continue
normally, if it is red, we ignore the link. This plugin is implemented in about
160 lines of C code.

As an illustration of the utilization of this new LSA, we simulated the
network topology shown in Figure 3.5. In this network, all the links have a
cost of 100. With the standard Dijkstra algorithm, router R1 uses its direct
link to reach both R2 and R3. With our type 13 LSA, R1 advertises a different
color (red) for the directed link between itself and R3. This LSA is flooded in
the network and our second plugin running on the different routers computes
the routing tables without considering the red link. In this configuration, R1’s
routing table forwards packets destined to R3 via R2. On the other hand, R3
continues to use its direct link to reach R1.

To evaluate the performance of these OSPF plugins, we loaded the OSPF
router with the topology of the GTS Central Europe network from the Internet
Topology Zoo [Kni+11]. It contains about 150 nodes and the same number
of edges. This is one of the largest topologies from this public dataset which
makes it a good candidate to evaluate this plugin overhead.

We used this experimental setup to evaluate the memory and CPU con-

54 Chapter 3. Extending routing protocol implementations with plugins

R2 R3

R1

Area 0

100

100100

Figure 3.5: Simple OSPF network.

sumption of our plugins. For this, we consider three different versions of
the OSPF daemon: (𝑖) the vanilla OSPF daemon from FRRouting version 6,
(𝑖𝑖) our flexible OSPF daemon but without any plugin and (𝑖𝑖𝑖) our flexi-
ble OSPF daemon with two plugins installed (the two plugins that allow
changing the Dijkstra computation using our new type of LSA). Looking at
the memory consumption, we observe that without plugins, our flexible
OSPF daemon consumes 4.93 MBytes of memory while the vanilla one only
consumes 4.85 MBytes. This difference is due to the additional data structures
required to support the management of the plugins. With the two plugins
loaded, the memory consumption grows to 5.23 MBytes. The difference be-
tween the flexible OSPF without plugins and the one with plugins is due to
several reasons. First, a 64 KBytes heap is dedicated to each plugin when it
starts. This heap remains allocated for the future executions of the plugin.
Second, the bytecodes of the plugins consume between 1 and 10 KBytes per
plugin. Third, when bytecodes are injected, the implementation stores some
more metadata related to it and the uBPF VM also maintains data related to
the VM state. All this together leads to about 300 KBytes of overhead for two
plugins. This seems reasonable for today’s routers.

To evaluate the CPU cost of the plugins, we focus on the computation of
the shortest paths, which is the most important algorithm used by an OSPF
daemon. To measure the CPU time required to compute the shortest path,
we rely on the following experiment. We start the router under test, let it
download the entire LSDB from its neighbor and measure the time required
to compute the shortest path after the full transfer of the LSDB. Figure 3.6
provides the CPU times measured over 50 different runs with four variants of
our flexible OSPF daemon. Our baseline is the vanilla OSPF daemon which
takes on average 5.34 msec to compute the shortest paths. Our flexible OSPF
daemon takes roughly 5.49 msec without plugins and 5.51 msec with the

3.3. Use Cases 55

vanilla pluginized

no plugins

pluginized

monitor SPF

interpreted

pluginized

modify SPF

interpreted

pluginized

modify SPF

jitted

5

6

7

8

T
i
m
e
(
m
s
)

SPF time

Figure 3.6: SPF execution times over 50 runs on the emulated 150 nodes GTS
Central Europe topology.

monitoring plugins.
The eBPF plugins can either be interpreted or compiled by the JIT compiler

of the uBPF VM. The plugin that supports our Type 13 LSA inside the shortest
path computation is composed of about 160 lines of C code. It is executed
for each node/edge visited during the shortest path computation. When this
plugin is interpreted, the shortest path computation increases up to 7.3 msec.
However, once the plugin is compiled by the JIT, the shortest path computation
time drops to 5.66 msec and thus the overhead remains small compared to
vanilla OSPF.

3.3.3 More flexible BGP filters

FRRouting, like most BGP implementations, supports a range of import and
export filters. A network operator can write access-lists that define the list
of prefixes which are accepted/rejected. It is also possible to specify a prefix-
list which can also match on the prefix length. FRRouting also supports
filters that match on the AS-Path and route-maps which can match on other
attributes such as BGP Communities, the origin of a route, the peer that
announced a route. Such filters are widely used by network operators [FB05]
and some router configurations contain thousands or tens of thousands of
lines of configuration files to specify them.

Although route-maps are the most flexible BGP filters, their configuration
might become cumbersome and complex [FB05]. Our proposed eBPF plugins
enable network operators to write filters in C code which is much more
expressive than the ad-hoc languages that have been defined by router vendors

56 Chapter 3. Extending routing protocol implementations with plugins

to support filters. Furthermore, such eBPF filters could access to additional
information, such as the current state of the protocol.

The filtering process is supported per peer and per prefix and defined in a
single function inside FRRouting. We added an insertion point for the eBPF
virtual machine inside this function. However, there are situations where an
operator could want to attach several eBPF plugins to this filtering process.
Given that the order of the application of the filter functions can be important
for the decision of the filter, we allow the network operator to specify the
order in which different REPLACE plugins will be executed for this filtering
function.

An eBPF plugin for the filtering function can return three different results:
FILTER_DENY if the filter has decided to reject the route, FILTER_ACCEPT if the
filter has decided to accept the route and BGP_CONTINUE if the next filter needs
to be applied. The uBPF virtual machine executes the different BGP plugins in
the order specified by the network operator when it loaded them and stops the
processing as soon as one of them returns FILTER_DENY or FILTER_ACCEPT.

We previously mentioned that a filter could modify protocol variables. As
for traditional filters, the virtual machine enables an eBPF filter to modify
attributes such as the local-preference, the MED, the AS-PATH (for path
prepending for example), BGP communities, etc. The eBPF filters can also read
the current RIB of the BGP router. This could bring new filter possibilities
based on the RIB content like inserting a prefix if another is present or missing.

Another advantage of eBPF filters is that it becomes easy to manipulate
BGP communities. Many network operators use BGP communities for a wide
range of purposes [DB08]. Measurements indicate that BGP routers rarely
remove the BGP communities that upstream routers attached. This increases
the size of the BGP routing tables and the memory consumption on routers and
opens a range of operational problems [Str+18]. With eBPF, the programmer

Table 3.1: Data about eBPF plugins for the decision process.

eBPF
Function

API
Calls

eBPF
Insts LoC

Local Pref 21 85 51
As Path 19 91 52

MED
Check 25 147 58

IGP
Weight 76 338 134

Router
ID cmp 26 110 54

3.3. Use Cases 57

defines which communities to match without maintaining complex route-maps
that are sometimes hard to read and difficult to manage. An eBPF filter can
easily add, delete and compare BGP Communities since the filter is written in
C and has more flexibility than the router Domain-Specific language (DSL).

We developed several BGP import filters as eBPF plugins to illustrate the
flexibility of our proposed architecture and evaluate the performance impact
of these new filters. Our first plugin is used as an import filter. It simply parses
the AS-Path as only accepts the routes advertised by an odd-numbered AS.
This filter only requires 5 lines of C code. We do not expect that network
operators would want to use it in their network, but we use it as a simple
benchmark to evaluate the performance impact of the eBPF plugins.

Our second eBPF plugin is more useful for network operators. The BGP
routing tables in the default-free Internet continue to grow. Recent data
shows that routers of Route-View project need to carry more than 1.2M
routes [Hus23a]. Recent routers can easily handle such large routing tables,
but many smaller ISPs and enterprise networks still use older routers that
have limited memory. On such routers, it makes sense to only accept a subset
of the routes to avoid overflowing the available memory. Many ISPs use filters
to block IPv4 prefixes that are too long (e.g., /24) [Upa; Cit+10]. However,
these filters block some legitimate prefixes. Measurement studies have shown
that a small fraction of the ASes that advertise prefixes are responsible for the
pollution of the BGP routing tables by advertising many more specific prefixes
that are covered by a less-specific one [Cit+10]. Some ASes advertise both a
/20 IPv4 prefix and all the /24 subprefix that it contains. Our second eBPF
plugin automatically detects those ASes that de-aggregate their large prefix
and only accepts the first 4 more specific prefixes that are included inside a
larger one that is already included in the router’s RIB. This eBPF plugin is
implemented using 19 lines of C code. When a BGP route is received, the
eBPF plugin verifies whether it is already covered by a less specific prefix that
already includes 4 more specific prefixes. If so, the route is rejected, otherwise
it is accepted. Of course, this plugin can introduce BGP routing problems, such
as routing loops, particularly if the initial selection of the first four prefixes
by all routers on the network differs. Even if the four prefixes are identical,
as routers converge in an unpredictable order, the network can be unstable
during the convergence. Solving this convergence problem is beyond the
scope of this thesis.

To evaluate the performance of these two filters, we consider the simple
scenario shown in Figure 3.7. Router R1 uses exabgp to inject a BGP routing
table 2 containing 200K entries to router R over an eBGP session. Router R
uses different versions of FRRouting. The host running router R is equipped

2For this evaluation, we rely on the BGP routing table from Spotify’s super-smash-brogp
project, see https://github.com/spotify/super-smash-brogp.

https://github.com/spotify/super-smash-brogp

58 Chapter 3. Extending routing protocol implementations with plugins

R1 R

Figure 3.7: Network topology used to evaluate the performance of the BGP
filters implemented as eBPF plugins.

0 5 10 15 20 25

Time (seconds)

0

20

40

60

80

100

P
r
o
c
e
s
s
e
d
R
o
u
t
e
s
(
%
)

Without plugins

Filter out odd ASes routes

Limit redundant routes

Monitoring activated

Figure 3.8: Performance of the BGP filters implemented as eBPF plugins and
executed in interpreted mode.

with an Intel(R) Core(TM) i3 CPU 540 @ 3.07GHz running Linux kernel 5.0.13,
12GB of RAM and one 1 Gbps NIC.

Our baseline for the evaluation of the performance impact of the eBPF
filters is the utilization of FRRouting without any filter. We add to FRRouting
an eBPF plugin that monitors the insertion time of each prefix in the router FIB.
Using this plugin, we plot on Figure 3.8 (dotted blue curve) the time required
to process the BGP updates received from R1. The green curve shows the time
required to process the same BGP updates with our second eBPF plugin that
filters the more specific prefixes. This filter rejects 13k of the 200k routes and
only increases the processing time by 5.4%. The eBPF filter that rejects the
routes advertised by an odd-numbered AS processes all the BGP routes in only
12.23 seconds, but it rejects half of them. Since it rejects many routes, the BGP
daemon has to perform less computation than when there is no plugin.

The dotted magenta curve on Figure 3.8 shows the time required to pro-
cess all the BGP updates sent by R1 without any filter but with the 7 eBPF
monitoring plugins described in Section 3.3.1 installed.

3.3. Use Cases 59

3.3.4 Pluginizing the BGP Decision Process

Our last use case is the BGP decision process. This is a key part of the BGP
daemon that controls the selection of the best path towards each destination
prefix. Network operators use various techniques to influence the selection of
these best paths [FBR03; Quo+03; Tei+04]. Some routers can be configured to
skip some steps of the BGP decision process or slightly modify their behavior
[FR07]. For example, many BGP implementations support a configuration
parameter to always compare the MED attribute even between routes that
were received from different peers.

In the FRRouting BGP daemon, the decision process is implemented as
a single function (bgp_path_info_cmp). We refactor the FRRouting code to
organize this function such that it now calls one specific function per step of
the BGP decision process. Each of these steps is then implemented as a separate
function. These functions are all implemented following the same pattern.
They compare a new path with the best one that is already present in the BGP
routing table. If the new path is strictly better based on the attributes that
are compared in this step of the decision process, then the function returns
BGP_COMP_SPEC_2. If the best current path is strictly better than the new
one, the function returns BGP_COMP_SPEC_1. If the two paths are equivalent
according to the attributes considered in this step of the decision process, then
the return value of the function returns the next step that needs to be executed.
This makes it possible to fully customize the BGP decision process, not only
replacing one step with another, but changing the order of the rules of the
BGP decision process.

Thanks to the utilization of eBPF plugins, network operators can easily
tune the BGP decision process of their routers. Many network operators use
BGP communities to tag the Point of Presence (PoP) or the city where a given
route was learned [DB08]. We leverage this to implement a variation on hot-
potato routing that uses the geographical distance between PoPs to prefer
one route over the other. Each PoP is encoded as a BGP community and our
eBPF plugin contains a table with the latitudes and longitudes of all the PoPs
of the ISP. When two routes are compared, the eBPF plugin computes the
distance between them based on the geographical coordinates of the PoPs
where they were received and always prefers the closest one. This eBPF plugin
is implemented in 148 lines of C code.

To evaluate the cost of using eBPF plugins within the BGP decision process,
we reimplement all the steps of the decision process as plugins. In FRRouting
version 6, there are 14 different steps in the decision process. The eBPF plugin
that supports the local-pref attribute requires 51 lines of code. This is one
of the simplest steps of the BGP decision process. The most complex eBPF
plugin is the one that compares the IGP cost towards the BGP nexthop. This

60 Chapter 3. Extending routing protocol implementations with plugins

R1 R R2

Figure 3.9: Network lab used to evaluate the pluginized BGP decision process.

eBPF plugin is implemented using 134 lines of C code. We do not expect
that network operators will replace all the steps of the BGP decision process
with eBPF plugins, but use this as our worst-case scenario to evaluate the
performance penalty of these eBPF plugins.

We consider the network shown in Figure 3.9. Router R1 sends a full BGP
routing table containing 200k routes. Once router R has accepted all the routes
announced by R1, router R2 starts to announce exactly the same routes. Every
route sent by R2must be evaluated by all the steps of the BGP decision process
on router R that eventually prefers the new one because of its router-id, i.e.
the last step of the BGP decision process.

We consider different variants of our modified version of FRRouting and
measure the execution time of the BGP decision process to fully process routes
sent by R2. As for evaluating filter performances in Section 3.3.3, we use the
same eBPF plugin that monitors the insertion time of each re-advertised prefix
in the router FIB. With the vanilla BGP daemon, the dotted blue curve of
Figure 3.8 shows that it takes on average 17.5 seconds to accept all the routes
sent by router R2 and install them in the FIB of router R. If we use our modified
version of FRRouting that supports eBPF plugins but do not install any of
them, router R needs up to 28 seconds to install all the routes sent by R2 in its
FIB. Finally, when all the steps of the BGP decision process are implemented
as plugins, router R needs almost 34.8 seconds to install the same number of
routes in its FIB. We instrumented our code to analyze the reason for this high
cost of the pluginized BGP decision process and have identified that the simple
linked-list used by the memory allocator of our prototype was the culprit.
In the upcoming chapter (Chapter 4), a more efficient version of the plugin
memory allocation is proposed to address this problem.

3.4 Related Work

Based on feedback from their customers, router vendors have implemented
various techniques to control the operation of routing protocols. The Com-
mand Line Interface (CLI) is the classical way for network operators to tune the
configuration of the routing protocols running on their routers. Some also rely
on SNMPMIBs to gather statistics and some simple configuration tasks [HH06;
Joy+06]. Over the years, router vendors have added new techniques to enable
their customers to interact with the router software. Some vendors provide

3.5. Conclusion 61

scripting facilities [LS16; Cis11] and the industry is now heading towards the
utilization of Yang models [CCL19]. However, these approaches do not enable
network operators or researchers to extend the underlying protocols.

The eBPF virtual machine has been introduced in the Linux kernel a few
years ago. It is now mainly used for configuration and monitoring purposes
[FC19]. Looking at the networking use cases, eBPF is used to provide fast
programmable data packet processing [Gre+05], improve firewalls [Ber+18b],
implement network services [Mia+18], support IPv6 extensions [XDB18],
extend TCP [TB19] or implement Multipath TCP schedulers [Frö+17]. We are
not aware of applications of eBPF to routing protocols.

In the late nineties active networks were proposed as a solution to bring in-
novation back inside the network that was perceived as being ossified [TW96].
Most of the work in this area focused on the possibility of placing bytecode
inside network layer packets. This bytecode was then executed by virtual
machines running on routers. The idea of placing code inside packets was not
adopted by industry [Cal06], but P4 [Bos+14] could be considered as a modern
variant of this idea. In the control plane, researchers built upon this idea
to propose new solutions such as the 4D architecture [Gre+05], the Routing
Control Platform that centralizes routing [Cae+05] or Metarouting [GS05]
that proposed to open the definition of routing protocols using a declarative
language.

Although the eBPF plugins proposed in this chapter were applied to BGP
and OSPF, the same technique could be used with other control plane proto-
cols. There are several ongoing efforts to develop new routing protocols that
could benefit from such plugins. Some examples include Facebook’s Open/R
routing platform [Has+] or the protocols that are being designed within the
LSVR [Pat+23], RIFT [Prz+23] or BABEL [CS21] IETF working groups.

3.5 Conclusion

In this chapter, we have presented a way for network operators to improve
their routing protocols without depending on router vendors. To achieve
this, we have integrated a lightweight virtual machine (VM) that uses the
eBPF instruction set with a customized runtime environment dedicated for
the routing protocols. By integrating this VM with BGP and OSPF, operators
can dynamically run their own plugins without having to reboot or recompile
the routing protocol implementation. This means they can easily extend and
update the router with new features, or make modifications to existing ones.
To demonstrate the feasibility of this approach, we first integrated the modified
eBPF VM in FRRouting, an open-source implementation of routing protocols
and second, we have implemented different use cases in both OSPF and BGP.
For OSPF, we have developed advanced monitoring capabilities and a more

62 Chapter 3. Extending routing protocol implementations with plugins

flexible and efficient route calculation method by “coloring” links in LSAs.
On the BGP side, we have shown that it is possible to implement complex
import/export filters using only a few lines of C code, and that the BGP decision
process can be modified.

The solution described in this chapter is specifically designed for FRRouting
version 6, which limits its applicability to operator networks using routers from
different vendors. In the following chapter, we will develop our solution to
ensure compatibility between different platforms, making it platform agnostic.

xBGP: Faster Innovation
in Routing Protocols 4
i This chapter is largely based on the work T. Wirtgen, T. Rousseaux,

Q. De Coninck, N. Rybowski, R. Bush, L. Vanbever, A. Legay, and

O. Bonaventure. “xBGP: Faster Innovation in Routing Protocols”. In:

20th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 23). Boston, MA: USENIX Association, Apr. 2023,

pp. 35–50. isbn: 978-1-939133-27-4. url: https://www.usenix.
org/conference/nsdi23/presentation/wirtgen. This thesis’
author’s contributions involves all the work discussed in this chap-

ter. The two first authors contributed equally on the verification

part of xBGP programs. This chapter will primarily focus on the

verification aspects that the thesis’ author worked on. Additional

aspects related to the verification can be found in the corresponding

paper.

In the previous chapter, we discussed the process of extending a routing
protocol implementation using eBPF. This was a first step towards realizing our
vision where network operators use plugins to extend their distributed routing
protocols. However, it is important to note that this method is tailored to a
specific implementation of BGP (or OSPF). Consequently, any modification or
update to the internal structure of this implementation may cause previously
developed plugins incompatible. This limitation is due to the fact that the
integration of our eBPF virtual machine relies heavily on existing functions
and data structures in this particular implementation.

Furthermore, as mentioned in Chapter 2, networks are generally composed
of routers from different vendors, each with their own BGP implementations.
Relying on a single implementation is impractical, as it does not take into
account the diversity of routers and their distinct protocol implementations.
If operators were to adopt the plug-in approach explained in Chapter 3, they
would have to create separate plugins for routers from different vendors. This
approach is cumbersome and unsuitable for large-scale networks.

Given these considerations, it becomes clear that a more flexible and
scalable solution is needed to accommodate the diverse nature of network
environments. It is imperative to reevaluate the plugin approach to ensure
compatibility between specific implementations, and to take into account

63

https://www.usenix.org/conference/nsdi23/presentation/wirtgen
https://www.usenix.org/conference/nsdi23/presentation/wirtgen

64 Chapter 4. xBGP: Faster Innovation in Routing Protocols

the heterogeneous landscape of router vendors and their respective protocol
implementations. By taking a broader perspective, we can develop adaptable
solutions that support networks with routers from different vendors without
compromising scalability and efficiency.

In this chapter, we argue for a much lighter weight and practical approach
to network control plane programmability by allowing the network operators
to easily extend the distributed routing protocols that they already use, no matter
what implementation is used on the router. Our new approach, which we call
xBGP, is inspired by the success of the extended Berkeley Packet Filter (eBPF)
in Linux [Gre19; Gre+05] and Windows [Micb]. In xBGP, different BGP imple-
mentations expose an API and an in-protocol VM with a custom instruction
set to access and modify the intrinsic protocol functions and memory. Thanks
to this API and the VM, the same code can be executed on different implemen-
tations. Note that the instructions set and the in-protocol VM still need to be
adopted and implemented by each vendor, but this is a one-time effort, instead
of a per-feature effort.

Naturally, opening up BGP implementations to external programs opens
the door to many (research) questions: Which API should BGP expose? How to
implement this API efficiently orWhat about the correctness and the safety of
these extensions? We answer these questions in this chapter and make four
main contributions.

First, we introduce the xBGP API which defines a set of functions that
expose the key functions and data structures that should be supported by
an extensible BGP implementation. As network operators often use network
equipment from multiple vendors, it would be ideal if the same bytecode could
be executed on different routers. This was not yet possible with the prototype
of Chapter 3. In different domains, browser vendors have agreed on supporting
the WebAssembly virtual machine in their browsers [Haa+17] and operating
systems vendors have agreed on using the POSIX API. We present our API in
Section 4.1 and describe how we modified two different BGP implementations,
BIRD and FRRouting, to support xBGP.

Second, network operators cannot take the risk of running xBGP exten-
sions that could jeopardize the correct operation of their routers. In the
previous chapter, we saw that operators can inject arbitrary plugins into their
BGP or OSPF implementation. However, these plugins run the risk of causing
router failures. This risk is considered unacceptable, as routers are expected to
generally run continuously without interruption. Network operators, notably
in enterprise and ISP networks, usually test new versions of the router operat-
ing systems in their labs before deploying them in production networks. These
tests are intended to prevent problems when new versions of the software are
deployed in production. They typically run for days or weeks and are only used
before major upgrades. With protocol plugins, i.e., network stack implementa-

65

tions that are dynamically extensible through platform-independent bytecode,
network operators will operate in a more agile manner. They could change
deployed plugins on a daily basis. However, they are unlikely to perform
manual tests with such plugins. A better approach would be to use automated
tools that leverage formal methods to validate that the plugins are correct. The
Linux kernel, which also includes an eBPF virtual machine, solves this problem
by strictly limiting the memory area that eBPF programs can access and the
number of instructions that they execute. The latter limitation is removed in
our VM version to support more complex use cases. Researchers have recently
proposed software tools that rely on formal methods to validate such eBPF
code [Ger+19]. Pluginized QUIC [De +19], which applies a similar idea to ex-
tend the QUIC protocol also uses verification technique to prove than plugins
terminate. This is a first step for the validation of plugins. We then present in
Section 4.2 a complete validation workflow that enables operators to validate
that their extensions correctly terminate, do not interfere with the memory of
the host implementation, produce syntactically valid BGP messages, or only
use the xBGP API functions authorized by the network operator. We envision
this workflow to become one element of the qualification tests that operators
already carry out before deploying any new BGP feature in their network.

Third, plugin performance should be as close as possible to the performance
of native code, but this performance gain should not come at the expense of
the safety guarantees. One possible direction to improve performance is to try
to extract as much performance as possible from our modified eBPF virtual
machine that runs in userspace. One of the performance bottlenecks of the
prototype of Chapter 3.2 is the memory accesses that are audited by our virtual
machine to prevent out-of-bound memory accesses. These checks consume
CPU time and affect performance. One possibility to reduce them would
be to develop a plugin compiler that ensures that JITed plugins only access
authorized memory areas. Such tools exist for standard executables [Pan+19].
Another approach utilized in xBGP, involves the use of our validationworkflow
verifier. The need for runtime checks is eliminated as memory accesses are
verified in advance. We demonstrate the practicality of xBGP in Section 4.3
by measuring its overhead compared to native implementations. Even for
complex extensions (re-implementing BGP Route Reflection), our benchmarks
show that the overhead of xBGP is always under 13%, a reasonable value given
the flexibility benefits.

Fourth, we showcase the practicality of xBGP in Section 4.4 by implement-
ing eleven use cases with xBGP in which we extend BGP to: support a new
BGP attribute; introduce new selection rules; restrict the set of paths it can
compute; detect unused routes (zombies); or monitor BGP operations. Each
use case involves the same xBGP bytecode running on both FRRouting and
BIRD.

66 Chapter 4. xBGP: Faster Innovation in Routing Protocols

4.1 Architecture

At a high level, xBGP enables network operators to customize or extend any
compatible BGP implementation by injecting and directly executing xBGP pro-
grams. As an illustration, we consider how to expand a BGP implementation to
support a new BGP attribute, GeoLoc, that stores the geographic location (i.e.,
longitude and latitude) where each BGP route was learned. Among others, this
attribute can be used to adapt router decisions, e.g., by filtering away routes
learned more than 𝑥 kilometers away. Supporting such an attribute has been
discussed within the IETF but never standardized [CSR16]. Yet, large-scale ISPs
reportedly use iBGP filters [VCD14] to achieve the same effect. Using iBGP
filters is risky though as doing so can lead to permanent oscillations [VCD14].

To implement the GeoLoc extension, we need to support several operations
in a BGP implementation. (1) When a route is received over an eBGP session,
the router adds a new attribute, Geo_Originator that contains the geographic
coordinates of the router that learns the BGP route in an import filter. (2)
If the BGP route already contains the Geo_Originator attribute, the router
needs to decode it. (3) When exporting the route to another peer, the router
can use the Geo_Originator attribute to filter routes that are too far away.
(4) To be usable by other iBGP peers, the attribute needs to be added to the
BGP Update message.

To add this extension, we need to understand how BGP implementations
are designed. There are many ways to organize a BGP implementation. Each
implementer selects a particular software architecture and the associated data
structures based on their own requirements. However, all BGP implementa-
tions must adhere to the protocol specification [RHL06]. This specification
defines the format of the BGP messages, an abstract BGP Finite State Ma-
chine that manages each BGP session, and also an abstract workflow and data
structures that describe how BGP update and withdrawal messages should be
processed. This workflow is illustrated in black in Figure 4.1.

Starting from the left, a received BGPmessage is stored in the Adj-RIB-in1.
It then passes through the import filters that may decide to discard themessage
or modify attributes such as local-pref. If the route is accepted by the import
filters, it is inserted in the Loc-RIB. The Loc-RIB contains all the BGP routes
accepted by the router. The BGP decision process extracts from the Loc-RIB
the best routes that are placed in the RIB. These routes then pass through the
export filters before being advertised over BGP sessions.

Going back to our GeoLoc extension, we can see that it can be added to
the different parts of the BGP workflow. (1) needs to be added to the part that

1Some implementations do not explicitly maintain a separate Adj-RIB-{in,out} to reduce
their memory consumption and store everything in the Loc-RIB. We ignore this implementation
detail in this chapter.

4.1. Architecture 67

xBGP

Program

VM

xBGP

Program

VM

xBGP

Program

VM

xBGP

Program

VM

xBGP Virtual Machine Manager

xBGP API

Adj-RIB

IN

Loc-RIB
Adj-RIB

OUT

E
x
p
o
r
t
F
i
l
t
e
r
s

I
m
p
o
r
t
F
i
l
t
e
r
s

BGP Decision

Process

Background

Tasks

FIB

BGP

Msgs

from

Peers

BGP

Msgs

to Peers

Data Plane

BGP Control Plane

5

2 4
3

6

1

Figure 4.1: An xBGP compliant implementation exposes the abstract BGP
data structures defined in RFC4271 through a generic API and uses libxbgp’s
Virtual Machine Manager to attach the bytecode that implements extensions
to specific insertion points (green circles).

parses a BGP attribute. (2) and (3) must be designed as import and export
filters respectively. And (4) will be added to the serialization part of the BGP
implementation. The question now is how to add those subcomponents to the
main BGP implementation. To answer this, we defined the insertion points
depicted in Figure 4.1 with the green circles on which functionalities can be
added or modified. These insertion points correspond to the major BGP events.
It is now easy to add the four components of our simple extension to the BGP
implementation in their respective insertion points. (1) is attached to the BGP_
RECEIVE_MESSAGE 1⃝ insertion point. First, it queries the BGP neighbor’s table
and determines the type of the eBGP session. Then, it retrieves the contents
of the received BGP update in network byte order. Finally, it attaches the
new GeoLoc attribute to the route. The second program (2) is attached to the
BGP_INBOUND_FILTER 2⃝ insertion point. It retrieves the router coordinates
from the router configuration to add them to the attributes of the route. The
program (3) attached to the BGP_OUTBOUND_FILTER 4⃝ retrieves the neighbor
information and the GeoLoc attribute to check if the route can be advertised
to the peer. Finally, the fourth program (4) is attached to the BGP_ENCODE_

68 Chapter 4. xBGP: Faster Innovation in Routing Protocols

MESSAGE 5⃝ insertion point. It uses the BGP GeoLoc attribute received over
an iBGP session decoded by the first program and sends it to the peer.

To be able to dynamically augment the BGP implementation, the four
xBGP programs are executed inside a Virtual Machine and are attached to
specific insertion points in the BGP implementation. An xBGP program is
composed of eBPF bytecode executed by a user space virtual machine that
is included in any xBGP compliant implementation. Thanks to this eBPF
virtual machine, the same xBGP program can be executed on the CPUs used
by different router platforms.

An xBGP program is not a standalone executable that performs computa-
tions autonomously. It can interact with the underlying BGP implementation,
access its data structures, and call some of its functions. In contrast with oper-
ating system kernels such as Linux, FreeBSD or macOS that expose a similar
POSIX interface, there is no standard API for BGP implementations. xBGP
must then propose a common API to support several BGP implementations.
If we take our extension, when the GeoLoc program has finished decoding
the Geo_Originator attribute, it must update the BGP route stored in the
BGP implementation. Thus, our extension needs to fetch or set data from the
host implementation. For this, the BGP implementation must propose a set
of functions, the xBGP API [Wira], which enable the interactions between
the extension and the internal data structures. For example, with a call to the
function set_attr, the extension can add a new attribute to the BGP route
being processed.

An important data structure of a BGP implementation is its Routing Infor-
mation Base (RIB). It contains the routes selected by the BGP decision process
and pushed in the Forwarding Information Base (FIB). The BGP RIB stores, for
each known destination prefix, its BGP route containing its BGP attributes,
including its AS-path and the address of the BGP next hop. The RIB also
contains information from the intradomain routing protocol such as the cost
to reach each next hop. BGP implementations use various data structures to
store their RIB. Some implementations simply store the BGP attributes as they
were received from the wire like BIRD [CZN20]. Others use a specific structure
for each type of attribute as FRRouting [Fou17]. To ensure that the same xBGP
program can be executed on any compliant implementation, xBGP defines
its own representation for IP prefixes, next hops, and BGP attributes. For the
latter, xBGP simply relies on the wire format [RHL06]. xBGP also defines a
neutral representation of the BGP neighbor’s table. With these representa-
tions, xBGP programs can access the data structures of the underlying BGP
implementation. When required, xBGP converts the internal representation
to its own format before returning data to xBGP programs and vice versa.

The remaining of this section describes the composition of the xBGP API
enabling xBGP programs to interact with BGP implementations in Section 4.1.1.

4.1. Architecture 69

Section 4.1.2 shows how we execute an xBGP program inside the BGP imple-
mentation. We explain in Section 4.1.3 which challenges we faced to make
two different BGP implementations, BIRD and FRRouting, xBGP compatible.
Finally, we briefly discuss the modifications made to the eBPF Virtual Machine
to support xBGP in Section 4.1.4.

4.1.1 The xBGP API

Besides some utility functions (memory management, conversion between
network and host byte orders, simple math functions, etc.), most of the xBGP
API is specific to BGP [Wira].

To modify internal BGP data structures, xBGP programs rely on getters
and setters to access data structures stored on the host implementation. This
ensures (𝑖) an isolation layer between the host and the xBGP program and (𝑖𝑖) a
uniformmethod of accessing data regardless of the BGP implementation. These
functions convert the internal representation into a universal one understood
by xBGP programs. In addition, extension codes require access to the BGP
internal state (e.g., list of peers, the route attributes, the route next hop).
Hence, xBGP requires BGP implementations to provide routines translating
their internal data structures into xBGP ones. These include getters and
setters to access/modify a BGP route including its attributes, next hop and
the data that identifies a BGP peer. We also provide functions to iterate the RIB.
These enable searching for a route other than those provided by the insertion
points, and therefore for searching routes already installed in the BGP routing
table.

Existing router OSes do not provide a common way to access internal rout-
ing data. The xBGP API provides functions to access IGP data, e.g., to retrieve
the next hop for routes and use them in use cases described in Section 4.4.

An xBGP program can deliberately send a custom BGP message to any
peer it wants. Instead of relying on an insertion point to generate the message,
the xBGP API contains functions to send BGP messages allowing a program
to send an urgent message like a BGP notification because the xBGP program
detected a problem with a given peer.

To access non-standard data such as the geographic coordinates of the
router, an extension code may require additional configuration. One approach
is to directly include the data inside the code of the xBGP program. However,
this is not scalable if the operator wants to deploy it on a large number of
routers. This induces a recompilation of the code for each of its router. Instead,
the xBGP API proposes to the network operator to include a configuration
data part in a structured textual file accompanying xBGP programs called
manifest. The xBGP program uses it later to retrieve what it needs. This extra
configuration part is not directly accessible to the xBGP program but can be

70 Chapter 4. xBGP: Faster Innovation in Routing Protocols

accessed through a set of API functions.
Finally, xBGP programs can be executed as background tasks 6⃝ that are

called when a timer expires. These tasks are not triggered by a specific BGP
event like an insertion point but are rather executed when a timer expires.
Background tasks are only used for processes that do not interact with the
BGP workflow. Each task controls its timer and xBGP deliberately restricts
one timer per task to avoid timer explosions. However, the task may ask to
queue forever as long as the BGP router is alive. This is particularly interesting
for xBGP programs that make routine maintenance such as checking for the
validity of routing information (e.g. route leaks), refreshing the RPKI cache
or aggregating routes to reduce the routing table size, for example. Each
background task is executed in a dedicated thread to allow the original BGP
implementation to run in parallel. If the xBGP program must access or update
data, the xBGP API must be thread safe. This constraint must be respected
when implementing the xBGP API.

4.1.2 Executing xBGP programs

An xBGP program is a set of eBPF bytecodes, either attached to different inser-
tion points or executing background tasks. Each xBGP bytecode has its own
dedicated memory, including a stack and a heap that are automatically freed
after execution. This memory isolation between extension codes is guaranteed
by the eBPF virtual machine. This ensures that orthogonal extensions will not
interfere with each other. Yet, xBGP programs may need to keep persistent
storage or to exchange data between the different bytecodes that compose a
program. For this, the xBGP API provides a key-value store that is similar to
the BPF maps used in the Linux kernel.

Each xBGP implementation includes userspace eBPF virtual machines that
are controlled by a manager. The Virtual Machine Manager (VMM) attaches
bytecode with an associated virtual machine to one specific insertion point
exposed by the host implementation. Each xBGP program includes a manifest
listing the extension codes and their insertion point. Different extension
codes can be attached to the same insertion point, and the manifest defines in
which order they are executed. The manifest also lists the different xBGP API
functions that the bytecode may use.

An xBGP program can be attached at different insertion points, i.e., specific
code locations in a BGP implementation from where the program can be called.
These insertion points correspond to specific operations that are performed
during the processing of BGP messages, enabling xBGP programs to modify
the router’s behavior. xBGP defines six generic insertion points (green circles
in Fig. 4.1) based on the original definition of BGP [RHL06]. The sixth insertion
point is dedicated for background tasks.

4.1. Architecture 71

By default, the VMM only runs one xBGP program per insertion point.
xBGP programs must explicitly tell the host implementation to run the next
xBGP program (if any) through the next() function. This mechanism avoids
executing useless code. For example, if we attach two xBGP programs that
parse different BGP attributes into the insertion point that processes a single
BGP attribute, and the first program successfully parses the message, there is
no need to run the second one.

4.1.3 Adding xBGP to BGP implementations

To demonstrate the feasibility of xBGP, we have adapted two open-source
implementations: BIRD v2.0.7 [CZN20] and FRRouting v7.3 [Fou17].
Adding the xBGP API. Implementing the API induced a total of 400 and
589 additional lines of code [Wirb] on BIRD and FRRouting, respectively. The
difference between both is their internal representations of the BGP data struc-
tures. The xBGP functions that deal with BGP messages and attributes always
manipulate them in network byte order (xBGP’s neutral representation), per-
forming the translation to the storage format used by the implementation if
required. FRRouting uses an internal representation that is different from our
neutral one. We thus had to implement several functions to do the conversion
between the two representations. Another difference is the handling of BGP
attributes. BIRD includes a flexible API to manage BGP attributes. xBGP
simply extends this API. FRRouting does not include such an API, so we had
to implement one to be able to manipulate BGP attributes in BGP updates.

Integrating libxbgp. libxbgp is a portable library, implemented as 432
lines of header code, which consists of two parts: (𝑖) the utility functions of
the xBGP API; and (𝑖𝑖) the VMM. The VMM is in charge of executing the right
extension code, according to the state of the host implementation. This layer
acts as a multiplexer. To include xBGP operations, the BGP implementation
calls the VMM to execute the associated extension codes. Then, the VMM
proceeds as follows. It first checks if there are attached extension bytecodes
to the called xBGP operation. If not, the VMM executes the default function
provided by the implementation. Otherwise, it runs the first extension code
mentioned in the manifest. Two outcomes are possible. First, the extension
code provides a result for the operation and the VMM returns the output to
the caller. Second, the extension code delegates the outcome to another one
by calling the special next() function. In that case, the VMM checks whether
there are remaining codes in the ordered queue. If there are, the VMM runs
the next extension code in its virtual machine. Otherwise, the behavior of
the xBGP operation falls back to the default function provided by the BGP
implementation. For instance, two extensions can attach bytecode to the BGP_
RECEIVE_MESSAGE operation that processes their own dedicated BGP attribute,

72 Chapter 4. xBGP: Faster Innovation in Routing Protocols

calling next() once they are done.
Technical challenges. While adding the xBGP API and integrating libxbgp,
we encountered some interesting technical issues. To successfully use the
xBGP API, data must be available when the function is called. In some cases,
data in the host implementation was not available when the insertion point
was called to execute the extension code. For example, in FRRouting, export
filters are applied to a set of peers sharing the same type of outbound policies.
This set is not passed to the code checking the outbound policies but is required
to implement the helper function that retrieves data about the BGP peers of
the router. We had to write 5 extra lines of code to get the set of peers before
calling the insertion point. Also, some data structures were not flexible enough
to fully support the xBGP API such as the function that adds or modifies a
new attribute to a BGP route. However, the internals of FRRouting do not
allow adding unsupported attributes that are not defined by any standard (e.g.,
ORIGINATOR_ID). We rewrote this part of FRRouting. To address those issues,
we had to add 30 and 10 lines of code to FRRouting and BIRD respectively.

Each API function is called within a context of execution. This context is
hidden within the extension code but visible in the host BGP implementation.
This makes it possible to control which extension code has called the function.
The context is also used to retrieve variables that cannot be directly used
inside the extension code. For example, if an extension code needs to allocate
extra memory (ephemeral or not), the ephemeral memory is also automatically
freed when the extension code terminates its execution. Similarly, the context
enables helper functions to access data structures that are out of the extension
code’s scope. For instance, a dedicated helper function enables an extension
to add a new route to the RIB. When setting an insertion point, the BGP
implementation can pass a set of arguments. While some are visible inside
the extension code, others are not. The RIB function leverages such hidden
arguments to access the data structure while being transparent to the extension
code.
Limitation of xBGP. To better understand what can and cannot be done
with xBGP, we analyzed the complete list of RFCs, which defines extensions
to BGP, that have been published since the publication of RFC4271 [RHL06].
The RFCs can be classified into two different types. (1) The RFCs that modify
the original definition of RFC 4271 (6 RFCs) and (2) those that add features
on top of BGP (30 RFCs). For (1), xBGP cannot be used to implement these
types of RFCs because it requires a direct modification of the underlying
BGP implementation. For example, increasing the internal buffer size of the
BGP message size [BPW19] is not feasible with xBGP. For (2), xBGP can be
used. However, it turns out that our current prototype focuses only on the
messages that BGP speakers exchange once the session is established (BGP
Updates and BGP Withdraw). Not all session-level extensions to BGP can

4.1. Architecture 73

be handled by xBGP. For example, our current prototype cannot extend the
BGP Open or BGP Route-Refresh [Che00] message. However, xBGP contains
a generic insertion point, DECODE_BGP_MSG, that can handle future types of
BGP messages. If the underlying BGP implementation does not support route
refresh, we can implement it as an xBGP program. Modifying xBGP to allow
it to support the session level could be implemented at a later time, but xBGP
cannot change the architectural design of the underlying implementation.
This is an important limitation of our solution. For example, no xBGP program
can increase the size of the BGP transmit and receive buffers as defined in the
corresponding RFC [BPW19]. The internal structure of an implementation
cannot bemodified on the fly by a program since the definition of the structures
is strongly integrated in the program binaries.

In addition to the limitation of the features that can be implemented, xBGP
focuses mainly on the internal network, we assume that the network operator
enables the necessary xBGP programs on the relevant routers. However, if
the BGP routers decode an unknown message, it will be silently discarded and
will not harm the router but will compromise the other router’s computation.
BGP capability negotiation messages can be exchanged to indicate whether
the extension implemented by the xBGP program is supported by both routers
implied in the BGP session. Capability support is beyond the scope of this
thesis.

Another limitation of the prototype lies in the way background xBGP
programs are executed. Since the insertion point of the background process
runs in its own thread, it is possible for an xBGP program to run simultane-
ously in the main thread and in the thread of xBGP background programs
which can create race conditions. To prevent this, all insertion points are
secured by a mutex, ensuring that only xBGP programs linked to a particular
insertion point execute before moving on to another. This mutex mecha-
nism effectively manages the execution of xBGP programs, preventing the
simultaneous execution of multiple xBGP programs from different insertion
points. Although this method is simple, first it considerably limits interaction
between the two threads and second, mutexes imposes a notable overhead
on the performances. If the main thread receives a large number of events
from the control plane, it has to wait for all background programs to finish,
which can cause instabilities in the network. However, background processes
are supposed to be executed by the operator infrequently and outside busy
periods. This limitation can be resolved in a future version of the prototype
by modifying the implementation’s internal data structures so that they can
be used more efficiently with multiple threads. For example, the BIRD devel-
opers have started to revise their implementation to support the execution of
multiple threads in parallel [Mat21].

Finally, an operator can inject several xBGP programs for the same in-

74 Chapter 4. xBGP: Faster Innovation in Routing Protocols

sertion point. However, this flexibility introduces the possibility of conflicts
between these programs. For example, let us consider two xBGP programs
operating as import filters, where one rejects prefixes more specific than those
already present in the RIB, and the other sets a lower local preference for
those same prefixes. In this scenario, a conflict arises: one of the plugins
wants to accept prefixes, while the other wants to reject them. This creates
a non-deterministic behavior that depends on the order in which the plug-
ins are executed. The current prototype does not have the ability to detect
conflicts between two xBGP programs sending contradictory information. To
mitigate the risk of contradictory programs being injected, a possible first step
would be to implement advanced program verification methods to monitor
the interactions and behaviors of xBGP programs in relation to each other.

4.1.4 Augmenting the xBGP Virtual Machine

xBGP uses the same uBPF virtual machine as the solution presented in chap-
ter 3 to run xBGP programs. However, uBPF alone lacked some of the func-
tionality required by xBGP. To remedy this, we made changes to the uBPF
VM to meet the specific needs of xBGP.

■ The first change was to enable the execution of the next() function. In
more recent versions of the Linux kernel’s eBPF virtual machine, tail
calls can be executed, enabling one xBGP program to call another one.
However, this functionality was not present in the version of uBPF we
relied on, so we implemented it ourselves.

■ Second, when examining the next() function, we can notice that it did
not accept an argument to request the execution of the next eBPF byte-
code. Instead, the function is called with a hidden argument containing
the execution context. When an API function xBGP is called, the VM
also passes this hidden argument to it, enabling the API function to
identify the bytecode that made the call and take appropriate action.
For the next() function, the hidden argument is used to call the next
correct bytecode to be executed.

■ Third, Section 4.2 discusses offline software verification methods to
check memory access. However, our modified version of the uBPF VM
already includes memory checks at runtime. Therefore, we modify it to
enable or disable memory checks at runtime.

■ In addition, we introduced controls within the virtual machine to reg-
ulate the API functions callable from xBGP programs. If the virtual
machine detected an unauthorized call, it refuses to load the program

4.2. Ensuring the safety of xBGP programs 75

xBGP
Program

xBGP
Program

Annotated

Manifest

+

T2

Sea

Horn

CBMC

Pass

All

clang
xBGP
Store

xBGP Toolchain

Untrusted Trusted

Verifiers

Figure 4.2: High-level view of the xBGP verification toolchain.

and the operator is informed via the logging system of the BGP imple-
mentation.

■ Another enhancement consists of adding support for read-only global
variables, which were not initially supported by the virtual machine.

■ Finally, we extended support to recent versions of the clang compiler, as
the eBPF bytecode produced by these versions was incompatible with
the VM version used previously.

4.2 Ensuring the safety of xBGP programs

From an operator’s viewpoint, injecting an xBGP program is always risky
since the program will be executed within the BGP implementation. A bug or
a malicious code contained in the xBGP program can cause a router to crash. A
simple approach would consist of letting the VMMmonitor their execution and
stop them in case of error. This could be too late for errors that could disrupt
BGP sessions. Network operators typically need some safety guarantees from
the xBGP program. The Linux kernel copes with a similar problem by using a
custom online verifier [Sta14b] that checks different aspects of eBPF programs
before they are injected into the kernel.
Verifying xBGP programs. xBGP also relies on verification techniques to
ensure that programs can be safely injected. However, instead of developing
a custom verifier [Ger+19], we (𝑖) establish a list of properties that an xBGP
program should respect to be considered as safe and (𝑖𝑖) we build a toolchain
embedding three existing and well-tested software verification tools allowing
the verification of our properties. Our xBGP toolchain receives the xBGP

76 Chapter 4. xBGP: Faster Innovation in Routing Protocols

programs as input. They consist of C code that uses the xBGP API and a
manifest provided by the network operator containing the configuration data.
This code is by nature untrusted andmust bemanually augmentedwith various
annotations providing hints to the code verifiers, given the specificities of each
one. Such annotated extensions can then enter the xBGP toolchain which
executes in parallel each verifier. The bytecode is produced only if the code
passes all of them. Once the bytecode is generated, it is added to the integrated
xBGP store. A network operator can safely select and load xBGP programs
coming from this store. We expect that initially each ISP will have its own
store. Later, third parties or router vendors could also develop their own stores.
We consider this toolchain as trusted, i.e., we select a particular compiler,
clang, and specific verifiers, all considered as correct. Therefore, we do not
need to reason about the produced bytecode and ignore problems such as
handling maliciously formatted bytecode.
Embedded verification tools. The whole xBGP toolchain, illustrated in
Figure 4.2, is designed to prevent four types of problems that a program can
cause. First, if an xBGP program enters an infinite loop, it will block the
underlying BGP implementation. We use the Terminator 2 (T2) automated
termination checker [CPR06] to verify the termination of xBGP programs.

The second set of problems concerns the way in which xBGP programs
interact with the memory of the underlying BGP implementation. As the C lan-
guage is permissive, it is prone to memory errors. Bugs such as buffer overflow
and use-after-release can lead to failures in BGP implementations. Initially,
the xBGP prototype automatically inserted memory check instructions into
the bytecode of the xBGP program to check memory bounds. However, this
approach had its limitations, as it added extra instructions for the CPU to exe-
cute. To overcome this, we opted for an offline approach using CBMC [KT14]
and SeaHorn [Gur+15] to check memory-related properties without the need
for additional instructions.

The third type of problem is related to xBGP and BGP themselves. xBGP
programs can create new BGP attributes or messages that are sent over a BGP
session. xBGP programs have two functionalities: sending BGP messages
and modifying BGP routes. We verify that the syntax of the generated BGP
messages adheres to standards and ensure correct formatting of BGP messages.
We use SeaHorn to verify that the BGP messages emitted by xBGP programs
are fully compliant with the BGP RFCs and that their return values respect
the xBGP requirements.

Finally, operators may want to be able to impose restrictions on the xBGP
functions and data structures that a given xBGP program can use. For example,
a customer filter should only be able to set a local-pref value in a chosen
range and to change nothing else. So it could never add a new BGP attribute to
a route it filters. These restrictions are enforced with (𝑖) SeaHorn that checks

4.2. Ensuring the safety of xBGP programs 77

Property Verifier Type
Termination T2 Safety
Reads/Writes within
xBGP program’s memory space CBMC Safety

No buffer overflow, use after
free memory, invalid read, etc. CBMC Safety

All strings must be
null terminated SeaHorn Safety

Correct size/buffer combination SeaHorn Safety
RFC-compliant syntax
of BGP attributes SeaHorn BGP

Valid return value SeaHorn Safety
Checking attribute reads/writes SeaHorn BGP
Checking API function
accesses libxbgp

Safety
+ BGP

Call the next() function to
trigger the next xBGP program SeaHorn Safety

Table 4.1: Properties that xBGP programs must satisfy.

the validity of the arguments of the API functions and (𝑖𝑖) libxbgp which
restricts the available API functions at loading time.

To be considered valid, any xBGP program must satisfy the properties
listed in Table 4.1. If every xBGP bytecode satisfies this list, the router is
guaranteed (𝑖) not to crash and (𝑖𝑖) to still follow the definition of the protocol.
These properties ensure the local stability of each router. Ensuring the global
stability of BGP [GW99; MWA02; GW02a; GW02b] is a problem that goes
beyond the scope of this thesis.
Verification macros. Because of their diversity, the verification tools do not
offer a common way to annotate programs. In the case of xBGP, this would
mean annotating the plugin 3 times with different annotations and running
the 3 tools manually. For a network operator, manually using several tools can
be a long, tedious, and error-prone process. To ease the annotation process,
we define a set of multipurpose macros PROOF_INSTS_*() abstracting the an-
notation syntax of the verifiers. Those are only expanded if the corresponding
verifier is invoked. When the extension programs are compiled for routers,
the annotations are not expanded and thus will not interfere with the normal
BGP execution. Figure 4.3 shows an example of such verification macro.

Aside from the verifier syntax abstraction, we mainly bring two contribu-
tions. First, we define a set of macros helping network operators to verify the
properties listed in Table 4.1. Network operators can use them to annotate
their xBGP programs. The macros are translated to their corresponding anno-
tation to the right software verifier. For example, a network operator can use
the BUF_CHECK_*macros to verify if the BGP attributes sent to a BGP peer are

78 Chapter 4. xBGP: Faster Innovation in Routing Protocols

buf [0] = a t t r i b u t e −> f l a g s ;
buf [1] = a t t r i b u t e −>code ;
buf [2] = a t t r i b u t e −> l eng t h ;
buf [3] = a t t r i b u t e −>da t a ;

CHECK_ORIGIN(buf); / / macro

(a) Annotated Code.

a s s e r t (buf [0] == ATTR_TRANSITIVE) ;
a s s e r t (buf [1] == ORIGIN_ATTR_ID) ;
a s s e r t (buf [2] == 1) ;
a s s e r t (((buf) [3] == 0 | | \

(bu f) [3] == 1 | | \
(bu f) [3] == 2))) ;

(b) Expanded Code (verifier).

Figure 4.3: Example of a verification macro that checks the origin attribute
of a BGP route. The macro can be extended or not according to its use. (a) is
the original source code and (b) is the code viewed by a verifier.

formatted as stated in the RFCs.
Second, we set up a verification toolchain that automatically performs

verification on the xBGP programs. It automatically and transparently calls all
the verification tools and verifies the annotations contained in the source code
of the programs. If all properties are satisfied, the system stores the verified
plugins in a “plugin store”, which the programmer or network operator can
use to inject into their routers. The routers will only accept plugins that have
been verified and signed by the plugin store.

Those macros, in conjunction with our verification toolchain, allow a
complete abstraction of the verification process. This makes the usage of
xBGP simpler for network operators. The entire set of verification macros is
defined in the corresponding publication [Wir+23a].

The remainder of this section focuses in more detail on two aspects of the
verification that the xBGP toolchain uses: T2 and the dynamic verification
performed by libxbgp at runtime. For more details on Seahorn and CBMC,
please refer to the corresponding publication [Wir+23a].

4.2.1 Proving xBGP Programs’ Termination

T2 (TERMINATOR 2) is a program analysis tool for termination [CPR06]
and temporal property [Bro+16] verification. We were successfully able to
prove the termination of every xBGP program that implements the use cases
defined in this chapter. Table 4.3 reports the total time taken by the verification
toolchain to verify all the properties defined for the xBGP programs, including
the termination checks. However, to check the termination we had to slightly
modify the source code since some specific features of the C language were
not supported by the prover. First, when using fixed-width integer types
(e.g., uint8_t), T2 was not able to generate the proof of termination. We had
to convert those types to their primitive type. Second, all the loops of the
program must be explicitly bounded. For example, if the xBGP program needs
to parse a BGP attribute, we must explicitly bound it to 4096 iterations, the

4.3. Overhead of the current xBGP prototype 79

maximum size of a BGP message [RHL06]. Third, T2 does not handle bit shift
operations. To solve this issue, we encapsulated the bit shift computation in a
non-deterministic function. This is a function that is not defined in the source
code of the xBGP program but simply tells T2 that it returns an arbitrary
integer value that T2 can handle. Such non-deterministic function is also
considered to terminate by T2.

4.2.2 Enforcing Operator-Imposed Restrictions

Thanks to the manifest, the operator can list the xBGP API functions and
the data structures that each xBGP program can use. Imagine a filter that
only checks the validity of the route without modifying any data related to
this route. To decrease the risk of introducing bugs in xBGP programs, the
operator can restrict the set of API functions the program can call. In this
example, the filter should have a read-only view, and thus should not call any
function altering BGP data structures.

To settle this, we implemented a permission manager inside libxbgp that
verifies, at load time, the functions that a given xBGP program calls according
to its manifest. Just before being loaded, libxbgp checks the xBGP bytecode
to look for unauthorized API function calls.

Network operators use BGP communities [DB08; Str+18] to enable their
customers to activate specific features such as setting local-pref, AS-path
prepending, or selective advertisements on a per-route basis. With xBGP
they could provide even more advanced services. Imagine you are a network
provider that proposes to attach filters developed by its clients to their eBGP
sessions. You define a set of BGP attributes the client can modify such as MED,
local-pref, etc. When they use communities, operators establish policies on
the attributes which can be modified in a BGP route. For example, they define
ranges of possible values for the local-pref attribute [DB08]. To modify
an attribute for a route, an xBGP program calls the set_attr API function.
When the xBGP toolchain processes such a program, SeaHorn verifies if the
arguments of the API functions respect the policies defined in the manifest,
i.e., if both the argument to change and its new value are legitimate. This is
done by adding assertions in the source code of the xBGP program supplied
by the customer.

4.3 Overhead of the current xBGP prototype

Using xBGP in BGP implementations brings flexibility for network operators
since they can use a simple abstraction to program their router. However, this
flexibility has a price in terms of performance. To evaluate the overhead of
libxbgp, we consider three different features that are already implemented

80 Chapter 4. xBGP: Faster Innovation in Routing Protocols

Upstream DuT Downstream

Figure 4.4: Simple network used for xBGP evaluations.

in both native FRRouting and BIRD to have a fair comparison with xBGP.
The first is a simple filter adding an arbitrary MED value to all exported
routes. The second provides support for extended communities [TSR06]. The
third is a complete implementation of Route Reflection [CBC06]. While we
expect operators to mostly develop simple plugins such as the first two, the
Route Reflection extension demonstrates the of flexibility xBGP by covering
the whole BGP workflow described in Section 4.1. Furthermore, since Route
Reflection is supported by both FRRouting and BIRD, this extension enables
us to compare the overhead of an xBGP implementation with native ones.

To evaluate the performance impact of xBGP, we use the simple network
described in Figure 4.4. We measure the delay between the first BGP update
sent by the Upstream router and the last update received by the Downstream
one. This reflects the time needed for the Device under Test (DuT) router to
process the routes sent by the Upstream router. The Upstream andDownstream
routers are running an unmodified implementation of BIRD v2.0.8 while the
DuT router is running the xBGP version of BIRD or FRRouting according to
the test. The DuT router is running an Intel® Xeon® X3440 @2.53GHz with
16 GB of RAM, Linux kernel v5.15.29 and Debian 11.

The Upstream router sends a full routing table from a recent RIPE RIS
snapshot (rrc0, June 3, 2021, at 4:15 PM) containing 873k IPv4 routes and 120k
IPv6 routes. We consider multiple executions of the BGP daemon located in
the DuT router. Table 4.2 shows the relative performance impact of running
the extensions with xBGP programs compared to their native implementation
in both BIRD and FRRouting. For each xBGP compatible implementation, we
run 10 times the xBGP programs and compute the convergence time. The
convergence time is the time between the first BGP update message received
from Upstream to DuT and the last BGP update message sent from router DuT
to Downstream.

Before even loading any xBGP extension, bringing support xBGP in a
BGP implementation involves an initial overhead. More specifically, the host
implementation must first construct the argument to be passed to the xBGP
program, then request the execution of the corresponding insertion point, and
finally execute the xBGP termination routine. These additional steps increase
the total number of instructions to be executed compared to the native non-
xBGP implementation. To quantify the cost of adding libxbgp takes to BIRD
and FRRouting, we ran both implementations of 𝑥BIRD and 𝑥FRR without

4.3. Overhead of the current xBGP prototype 81

Use Case Processing Time
xFRR xBIRD

No xBGP program +1.05% +1.6%
Filter Set MED +6.67% +2.59%

Extended
Communities +5.93% -0.67%

Route Reflection +12.97% +7.43%

Table 4.2: Performance impact of running xBGP programs to 𝑥BIRD and
𝑥FRR.

plugins and compared them to their non-xBGP compatible versions. Making
both implementations of xBGP compatible adds a cost in the convergence time
of 1% and 1.6% in FRR and BIRD respectively.

We now consider the MED filter (one insertion point) and the extended
communities (two insertion points) extensions. When implemented as xBGP
programs, these slightly increase the convergence time compared to their
native version. The Just-In-Time compiler used inside the virtual machine
does not optimize as efficiently as the one producing x86_64 native code. In
particular, computation-intensive bytecode involving additions, subtractions,
and multiplications take 50% more time to run than native code. This overhead
is even worse when considering division and modulo operations.

Yet, we observe a higher convergence time increase for FRRouting than
BIRD. By analyzing the execution of each xBGP bytecode with a code profiler,
we identified two main reasons for this difference. First, to communicate with
the host implementation, the xBGP program must pass through a dedicated
xBGP API. For security reasons and because of the internals of libxbgp, the
data of the host implementation are first translated into a neutral represen-
tation, then copied into a dedicated memory area, accessible in writing and
reading by the bytecode. Translation and copying play an important role in
the execution of a plugin but are needed to run the same xBGP program in
several BGP implementations. BIRD internally uses data structures that are
closer to the xBGP neutral representation than the FRRouting ones, hence in-
volving less translation overhead. Second, FRRouting and BIRD have different
internal architectures. The interactions between the libxbgp API and the BGP
implementations are different. FRRouting is less flexible as its implementation
is not designed to be quickly extended with new functionalities. While in
BIRD, most of the insertion points map to a specific place, in FRRouting some
insertions points must be repeated at different code places, involving up to
four times more xBGP program calls than using BIRD.

We now consider the Route Reflection extension covering the whole BGP
workflow. Supporting this feature requires a list of all iBGP client peers.

82 Chapter 4. xBGP: Faster Innovation in Routing Protocols

Use Case C
LoC

eBPF
Insts

Total
Verif

Time(s)
Geo TLV (§4.1) 388 1340 664
MED Filter (§4.3) 55 149 79
Extended Communities (§4.3) 196 322 86
Route Reflection (§4.3) 509 3853 27
Route Selection (§4.4.1) 62 148 27
Zombie Detection (§4.4.2) 1071 5697 277
Decision Monitor (§4.4.3) 306 437 29
Propagation Time (§4.4.4) 560 805 73
Valley Free (§4.4.5) 143 960 182
Prefix Origin (§4.4.6) 150 661 57
IGP Data (§4.4.7) 36 149 3

Table 4.3: Verification of the xBGP programs supporting our use cases.

Routers’ implementations use their dedicated CLI syntax to define all their
iBGP client peers. libxbgp does not have access to this CLI configuration
since it is implementation-dependent. Instead, it relies on its configuration
data within the manifest that can be accessed at any time by the xBGP program.
The topology used is the same as that described in Figure 4.4. The Upstream
and Downstream routers are Route-Reflector (RR) clients of the DuT router,
which acts as the RR. On average, BIRD’s convergence time is 7.5% slower
than the native code while FRRouting’s one is 13% slower. The previous
elements still hold to explain the difference between BIRD and FRRouting. In
particular, there are more calls to xBGP programs in FRRouting due to its code
architecture than in BIRD (BGP_ENCODE_MESSAGE is called 4 times more), and
the translation time to convert data structures is non-negligible in FRRouting
(up to 40% overhead for the import filter). Still, the performance overhead of
xBGP remains within acceptable bounds.

4.4 Use Cases

Section 4.1 presented the GeoTLV feature to demonstrate that xBGP programs
can create new attributes that influence the router. Section 4.3 presented the
MED filter, extended communities, and route reflection to make a performance
comparison. This section presents other use cases, which are not implemented
natively in FRRouting and BIRD. They illustrate the advantages of xBGP for
various classes of problems that operators want to solve. It is true that the
features of this section could be implemented in any BGP implementation
without xBGP. However, feature support depends on the pace of implementa-
tion by all vendors. Thanks to the xBGP design, an operator can quickly design

4.4. Use Cases 83

AS 2

Transit 1

Transit 2AS 1

Destination

Figure 4.5: Path Diversity in a Network.

its features and introduce them into the network before they are implemented
by the vendor. xBGP is the first step to bring extensibility to the network.
The first use case defines an xBGP program (Section 4.4.1) to influence the
decision process and the import and export filters from the BGP client point
of view. The second use case detects zombie routes (Section 4.4.2). These are
routes that are installed in the routing table but are no longer reachable. Third,
operators always try to understand the state of their network to improve it as
much as possible. We present two use cases (Section 4.4.3 and 4.4.4), where
BGP is monitored using communities. The fifth use case is related to route
filtering in data-centers (Section 4.4.5). It demonstrates that xBGP can provide
a programmable interface to design complex import and export filters. Our
sixth xBGP program (Section 4.4.6) gives another example of a special filter
that checks the origin of a route. Finally, our seventh use case (Section 4.4.7)
shows that an xBGP compatible implementation can leverage IGP information
to make routing decisions.

Table 4.3 reports the size of the xBGP bytecode, the number of lines of
code and the time taken to validate every xBGP program according to the
properties defined in Section 4.2.

4.4.1 Customer Selecting Routes

A BGP router only selects one route for each prefix even though it learns
multiple routes. As a result, it will only send one route to each BGP neighbor,
which decreases the path diversity. Consider Figure 4.5 to illustrate the situ-
ation. AS1, a multihomed stub network having peering links with Transit 1

and AS2. We are interested in the propagation of the routes to the destination
network depicted in gray. To maximize path diversity in AS1, it should learn
the purple path from AS2 to leverage the two different transits. However, AS1
cannot influence the decision process of AS2’s routers.

Enabling the dissemination of multiple routes can bring several benefits

84 Chapter 4. xBGP: Faster Innovation in Routing Protocols

such as load-balancing [LT21], avoiding route oscillation [GW02a] and faster
local recovery upon a network failure [SB10]. With xBGP it becomes possible
to influence the border router to announce the route the client prefers. To
design such an xBGP program, all edge routers must enclose their BGP client
to one Virtual Routing and Forwarding table (VRF) [Van09]. All the routes
learned from all neighbors will be exported to the main BGP-VPN RIB’s router
and then exported to the VRF of each client so that they can have a full view
of the routes. Since all clients are in their respective VRFs, the BGP decision
process is different for each of them and can therefore be influenced by an
xBGP program that decides which route to advertise.

We designed a simple xBGP program that randomly selects one of the
available routes in the VPN RIB thanks to the xBGP API function get_vrf. It
demonstrates that xBGP allows the operator to create a customized and more
powerful route selection compared to the traditional router CLI. Accessing the
VPN RIB through a simple router configuration is something that cannot be
done with traditional BGP implementations. Furthermore, an xBGP program
has access to the entire BGP route and the internal data structure of the BGP
router. xBGP therefore provides greater flexibility compared to the classical
CLI.

We were successfully able to check the termination with T2, the C errors
with CBMC, its compliance to the xBGP return values. We also verified that
the program does not use API functions altering the BGP internal state.

4.4.2 Detecting BGP Zombies

When a route becomes unavailable, a BGP router sends a withdraw message
to all its peers. Because of software bugs [Fon+19], it may happen that one
of these BGP peers fails to process such a withdraw message. As a result, the
route is still considered reachable by the failed router. This is an operational
problem because the withdrawal is not propagated, and part of the network
still believes that the route is available. If packets still follow this zombie route,
they will be blackholed. Measurements indicate that these zombie routes are
common and affect many ASes [Ong+21].

To detect persistent zombie routes, we designed an xBGP program that
is executed periodically. It uses the timestamp of the arrival of a route in
the RIB to detect the routes that are older than 𝑥 days. Our threshold is
arbitrarily fixed to a day. Our xBGP program is configured to be executed
during themaintenance window. It parses the entire BGP RIB thanks to the API
functions *_rib_iterator. If a route is older than the configured threshold,
it is flagged as a possible zombie. To confirm the status of the route, the
router needs to request it again from the peer that announced it. This could
be done with standardized mechanisms such as Graceful Restart [Rek+07]

4.4. Use Cases 85

or Route Refresh [Che00; PCV14]. However, those two approaches require
the remote router to announce again its entire BGP routing table. For the
sake of performance, we decided to only ask the remote peer to reannounce
the routes flagged by the xBGP program. We introduce a new type of BGP
message called BGP Refresh. It contains a list of prefixes that the router wants
to confirm. The peer receiving the BGP Refresh message will announce a
withdraw or an update message if the routes are not available anymore or still
in its BGP routing table respectively. xBGP allows sending BGP messages via
the schedule_bgp_message API function.

It is difficult with a traditional BGP implementation to detect such a zombie
route. Indeed, there is no mechanism to analyze and perform an action accord-
ing to the state of the BGP routing table. To include this feature, the network
operator must convince each router vendor to add this feature into its imple-
mentation. This use case demonstrates that xBGP can outperform the current
configuration method that is proposed in classical BGP implementation.

This xBGP program successfully passes the T2 and CBMC verifications.
As it manages BGP messages, we verified their compliance to the RFC. We also
checked that the size of the buffers announced to the API function matches
their real size. This xBGP program is an example of functionality that cannot
be performed using the traditional router CLI while the router is running.

4.4.3 Monitoring the BGP Routing Decision

Currently, if a network operator would like to debug its BGP routers, they
only have monitoring information from the routers they directly control. This
is due to the fact that the traditional BGP specification only provides the
exchange of local routing information but does not provide any abstraction
to send monitoring information about the routing process. Yet, a support of
a dedicated monitoring channel has been proposed [Sha+11] but this is still
not implemented on all vendor’s routers. More recently, the BGP Monitor-
ing Protocol (BMP) [SFS16] enables a BGP router to establish a connection
with another BGP router to collect a wide range of metrics. However, two
notable limitations need to be taken into account. First, BMP does not offer
sufficient flexibility to monitor fine-grained parameters, potentially limiting
the information that can be monitored. Second, operators may be reluctant
to export a monitoring interface to another operator because of concerns
about exposing sensitive information. Indeed, they cannot fully control what
BMP transmits to another AS router. In our solution, a BGP router can ask its
neighbor to give different metrics such as its number of reachable prefixes, its
Adj-Rib-In, its current state, etc. By implementing an xBGP program to collect
specific metrics, the network operator is able to provide only the information
requested by another operator, thus avoiding the exposure of unrelated data.

86 Chapter 4. xBGP: Faster Innovation in Routing Protocols

In addition, the use of verification tools can serve to reinforce this concept by
ensuring that data does not inadvertently leak extraneous information.

Some router vendors actually provide commands to retrieve the local state
of a router. However, information is restricted to the router view only and does
not include the status of routers that are outside the operator’s management
scope. Having statistics from other routers could bring new possibilities. For
example, if an operator encounter routing problems or suboptimal routing,
they can use these statistics to pinpoint which specific BGP path selection
criteria are causing the issues. For example, if the length of the AS-Path is
causing problems, they may need to check their BGP connections and routing
policies. This can be done by adjusting the local preference value or using
AS-Path prepending to achieve their routing goals.

We leverage xBGP to instrument the BGP implementation to retrieve at
which step of the BGP decision process the route has been chosen. Each time
it runs, an xBGP program retrieves the reason of the decision in the process.
It can be retrieved through the arguments passed to the xBGP program. To
inform other BGP routers, this information is added as a BGP community
when sent to other BGP speakers. This is done by the API function set_
attr_to_route. This way, other routers can parse and use this information to
adapt their routing strategies. This xBGP program also collects statistics about
the other steps of the BGP decision. Each time a route is selected, the xBGP
program increments an internal counter. It repeats the operation for each
decision step. When a route is sent to any peer, these statistics are attached
as a community. The BGP router receiving the statistics can have a broader
view of the current routing table of its peer. As this information cannot be
obtained via the router’s conventional command line interface (CLI), this new
approach can facilitate more accurate routing decisions. It enables network
operators to efficiently monitor, troubleshoot, optimize and plan their BGP
routing with greater granularity. Indeed, this new form of active monitoring
extends the capabilities of traditional monitoring tools such as BMP, SNMP,
etc., as these tools do not modify the BGP messages they transmit to BGP
neighbors. As a result, network operators now have access to valuable external
information that was previously inaccessible to them, enhancing their network
management capabilities.

This xBGP program successfully passes all the verifiers. Since it handles
the BGP community attribute, we also verified that the format is respected
according to the corresponding RFC.

4.4.4 Measuring BGP Route Propagation Times

For mission critical systems, the convergence time of a routing protocol is
an important metric. It helps to better understand what could be the cause

4.4. Use Cases 87

of a slow convergence. Discussions with network operators indicate that
commercial router vendors provide undocumented CLI commands to access
profiling points. However, this profiling information is local to each router. It
could be useful to exchange such information within an entire network. This
could open new opportunities to better understand the current state of the
network. One example of such monitoring is the time taken by a BGP route
to traverse an AS. To support such monitoring information, BGP must be
augmented to add in each route its arrival time at each AS border router. Our
xBGP program defines a new non-transitive BGP attribute, called RECEIVED_
TIME. It adds this attribute when a route is received over an eBGP session
(thanks to the set_attr xBGP API function family). It traverses the AS with
the BGP route until it reaches an edge router. The RECEIVED_TIME attribute
is removed when the associated route is sent over an eBGP session and the
border router computes the difference between its current NTP time and the
one of the attribute. As for the previous use case, exchanging such monitoring
information is not currently feasible with traditional routers. These two use
cases show that xBGP can perform a new type of activemonitoring by exposing
the internal data of the BGP implementation itself to inform the other neighbor
of the current BGP routing state.

4.4.5 BGP in data centers

Although BGP was designed as an interdomain routing protocol, it is now
widely used as an intradomain routing protocol in data centers [LPM16]. This
is mainly because BGP scales better since it does not rely on flooding in contrast
with OSPF or IS-IS. Another benefit of BGP is its ability to support a wide
range of configuration knobs and policies. However, BGP suffers from several
problems that force the network operators to tweak their BGP configurations
[LPM16]. These tweaks make BGP configurations complex and more difficult
to analyze and validate [Bec+17b]. To illustrate this complexity, let us consider
the data center shown in Fig. 4.6. Routers S1 and S2 are the Spine routers, L10
. . . L13 the leaf routers, and T20 . . . T23 the top-of-the rack routers. In such
a data center, there is no direct connection between the routers at the same
level in the hierarchy. Data center operators usually want to avoid paths that
include a valley (e.g., L10→ S1→ L11→ S2). To achieve this, they usually run
eBGP between routers, but configure the same AS number on S1 and S2 (even
if these routers are not directly connected). Similarly, L10 and L11 (resp. L12
and L13) use the same AS number. With this configuration, when S2 receives
a BGP update with an AS-Path through S1, it recognizes its AS number and
rejects the route. This automatically blocks paths that include a valley and
also helps to prevent path hunting.

Unfortunately, using the same AS number on separate routers can cause

88 Chapter 4. xBGP: Faster Innovation in Routing Protocols

L10 L11

T20 T21 T22 T23

L12 L13

S1 S2Level 0

Level 2

Level 1

Figure 4.6: A simple data center.

problems. First, operators can no longer look at the AS Paths to troubleshoot
routing problems since different routers use the same AS number. Second, by
prohibiting valley-free paths, the operator implicitly agrees to partition the
network when multiple failures occur. Consider again Figure 4.6. If both links
L10-S1 and L13-S2 fail, then the only possible path between L10 and L13 is
L10→ S2→ L12→ S1→ L13. If the same AS number is used on S1 and S2,
this path will never be advertised.

With xBGP, a network operator can use different AS numbers for their
routers and implement specialized filters on the spine and leaf routers. For
example, if S1 and S2 are both connected to transit providers and can reach
the same prefixes, then L10 should never reach S2 via S1 and L11. However,
this path should remain valid if the final destination is a prefix attached below
L13.

To implement such a filter, we load a manifest containing every eBGP
session from a router of level 𝑖 to a router of level 𝑖 + 1 in a pair having
the following form: (𝐴𝑆𝑙𝑖 , 𝐴𝑆𝑙 (𝑖+1)). For each route, the filter checks each
consecutive pair of the AS-Path. If a pair of this manifest is included in the
AS-Path, the filter rejects the route since it is not valley-free.

This xBGP program successfully passes T2 and CBMC checks. SeaHorn
confirms its xBGP compliance relative to its use of the API functions and the
return values.

4.4.6 Validating BGP Prefix Origins

The interdomain routing system is regularly affected by disruptions caused
by invalid BGP advertisements originated from ISPs. Examples include the
AS7007 incident in 1997, the announcement of a more specific prefix covering
the YouTube DNS servers by Pakistan Telecom in 2008, or BGP prefixes leaked
by Google in 2017 that disrupted connectivity in parts of Asia. These problems

4.4. Use Cases 89

and many similar ones were caused by configuration errors.

To cope with these (mainly manual) errors, network operators and the IETF
developed three types of solutions. First, they enhanced the address registries
to include cryptographically signed certificates that associate IP prefixes to
origin ASes. This is the basis for the Resource Public Key Infrastructure (RPKI).
Thanks to the RPKI, an operator can verify whether 𝐴𝑆𝑥 is a valid originator
for prefix 𝑝1. Second, the SIDR working group developed techniques to allow
a router to query the RPKI to validate the origin of the routes that it receives
[HM12]. The work on validating the origin of prefixes started in 1999 [Lyn99],
the first RFC was adopted in 2012. It is slowly being deployed [Reu+18;
Chu+19]. This approach is now being extended to also use the RPKI to validate
other elements of the AS-Path [Azi+20]. However, this approach has not yet
been implemented in most BGP routers. The third long-term solution, which
should also cope with malicious BGP hijacks, will be to extend BGP to carry
digital signatures inside the BGP messages [LS17]. This extension is far from
being deployed.

To illustrate the flexibility of xBGP, we consider a RPKI-based route origin
validation variant. The network operator includes in the configuration data
of the manifest all prefixes it knows the origin. We assume the operator has
themself validated the ROA (Route Origin Authorizations) signatures before
generating the file. This file is used by the xBGP program each time a BGP
route is received by a peer to check if the origin AS of the route matches the
one contained in the file.

To evaluate the performance of our prefix origin validation, we use the
same testbed as in Section 4.3 except that we use eBGP sessions for links L1
and L2. Our DuT does not implement the RPKI-Rtr protocol [BA13; Wäh+13]
but loads configuration data that considers 75% of the injected prefixes as valid.
For this test, our extension code checks the validity of the origin of each prefix
but does not discard the invalid ones.

We compare our extension codes running on BIRD and FRRouting to their
native implementations without any prefix validation. We do not compare
our solution with the RPKI-Rtr protocol since we do not totally implement
the RPKI protocol. We only check the origin of the route. It takes up to 12%
and 14% more time to converge a complete routing table by running the prefix
validation plugin for xFRR and xBIRD respectively. The difference in execution
between the two implementations is also explained by the difference in the
internal representation of the data structures used.

The termination and absence of C errors were proved with T2 and CBMC.
SeaHorn also confirms that the xBGP program does not write any data in the
memory of the host implementation and its compliance on the return values.

90 Chapter 4. xBGP: Faster Innovation in Routing Protocols

4.4.7 Filtering Routes Based on IGP Costs

Since the xBGP API provides access to the data structures maintained by a
BGP implementation, network operators can leverage it to implement new
filters. As a simple example, consider an ISP having a worldwide presence that
wants to announce to its peers the routes that it learned in the same continent
as the advertising BGP. This policy can be implemented by tagging routes with
BGP communities on all ingress routers and then filtering them on export.
While being frequently used [DB08], this solution is imperfect. Consider an
ISP having two transatlantic links terminated in London, UK, and Amsterdam
in The Netherlands. This ISP has a strong presence in Europe and two links
connect the UK to other European countries. If these two links fail, packets
between Germany and London will need to go through Amsterdam, the USA,
and then back to the UK. When such a failure occurs, the ISP does not want
to advertise the routes learned in the UK to its European peers. With BGP
communities, it would continue to advertise these routes after the failure.

Using the xBGP API, the operator could implement this policy as follows.
First, they configures the IGP cost of the transatlantic links at a high value, say
1000 to discourage their utilization. Second, they implements a simple export
filter that checks the IGP cost of the next-hop before announcing a route. The
complete source code of such a filter is shown in Listing 4.1. It is attached to
the BGP_OUTBOUND_FILTER 4⃝ insertion point. If the IGP cost to the BGP next
hop distance is acceptable, the function calls the special function next(). This
informs the VMM to execute the next bytecode attached to the insertion point.
If the extension code is the last to be executed, the insertion point proposes to
fall back to the native code. To reject the route, the extension code returns the
special value FILTER_REJECT to the host implementation.

For this xBGP program, we used SeaHorn to ensure return values were
meaningful to libxbgp. T2 and CBMC are also used to check the termination
and the absence of any C errors. We also verify that the xBGP program has
only a read-access to the host implementation.

4.5 Related Work

Protocol programmability. In the late nineties active networks were pro-
posed as a solution to bring innovation back inside the network that was
perceived as being ossified [TW07]. Most of the work in this area focused on
the possibility of placing bytecode inside network layer packets. PLAN [TW02],
ANTS [WGT98] and router plugins [Dec+98] are examples. In the control
plane, researchers built upon this idea to propose new solutions such as the
4D architecture [Gre+05], the Routing Control Platform that centralizes rout-
ing [Cae+05] or Metarouting [GS05] that proposed to open the definition of

4.5. Related Work 91

uint64_t export_igp(bpf_full_args_t *args UNUSED) {
struct ubpf_nexthop *nexthop = get_nexthop(NULL);
struct ubpf_peer_info *peer = get_peer_info();
if (peer->peer_type != EBGP_SESSION) {

next(); // Do not filter on iBGP sessions
} if (nexthop->igp_metric <= MAX_METRIC) {

next(); // the route is accepted by this filter;
} // next filter will decide to export route
return FILTER_REJECT;

}

Listing 4.1: An example of export filter rejecting BGP routes having a too
large IGP nexthop metric.

routing protocols using a declarative language. While these previous works
propose configuration languages or centralized approaches to deal with net-
work programmability, xBGP relies on an existing decentralized control plane
protocol onwhich an operator can add its new functionality to locally influence
the routing.

Bringing flexibility to an implementation of a network protocol has been
studied in the literature. Researchers have proposed using extension codes to
extend transport protocols like STP [Pat+03], QUIC [De +19] and the FRRout-
ing implementation of OSPF and BGP in Chapter 3.2. However, the architecture
of these pluginized approaches is close to the internal architecture of a single
protocol implementation and does not offer the flexibility to pluginize differ-
ent implementations of the same protocol. xBGP goes one important step
further by enabling very different implementations to execute the same xBGP
program. xBGP tries to determine what all implementations of a protocol have
in common to try to find a common usable interface.

To ease the automation and the configuration of their devices, routers
vendors added scripting languages that enable the network operator to execute
recurrent tasks [BDL10]. However, this acts as a simple shell that cannot be
used to extend the router implementation. Other vendors integrated the
python language into their router OS [Jun21] to perform automation task
more easily, such as configuring the router or executing a monitoring routine
when a particular event occurs.

Reducing the BGP implementation to its minimum has been studied with
CoreBGP [Whi20]. However, it only manages the basic BGP Finite State
Machine on which plugins written in the Go language are inserted. The
remainder of the BGP logic such as sending BGP messages or managing the
routing table is passed to the plugins. CoreBGP plugins react to an FSM events
while xBGP programs react to protocol events defined by the insertion points
depicted in Figure 4.1.

92 Chapter 4. xBGP: Faster Innovation in Routing Protocols

XORP [HHK03; Han+05] was introduced to propose an open-source soft-
ware router platform. This solution has been designed to allow researchers to
easily develop their own extensions to a routing protocol. Other open-source
routing stacks have been developed such as Quagga [Ish+], FRRouting [Fou17]
or BIRD [CZN20]. While these open-source stacks allow modifying the source
code of the routing software, xBGP goes one step further by introducing a
simple API to interact with the routing software. There is no need to look
directly in the code of the implementation to understand how to integrate an
extension. Anyone who wants to add their own extension will interact with
the router through xBGP. Throughout this chapter, we demonstrated that an
xBGP extension code written only once can be successfully executed by two
open-source routing stacks, FRRouting and BIRD.

Virtual Machines. libxbgp is based on a user-space implementation of
the kernel eBPF VM [IO 18]. In recent years, Linux kernel developers have
integrated a virtual machine called eBPF [Sta15] which enables programs to
inject executable bytecode at specific locations inside the kernel. It was initially
targeted at monitoring kernel operations [Gre+05], but also for fast packet
processing [Gre+05]. Researchers have used eBPF to support networking
programming with IPv6 Segment Routing [XDB18] and extend TCP [TB19].
Other frameworks could have been used such as WebAssembly [Haa+17] or
Lua [Ier16] that is widely used in industrial systems. Using another type of
VM can be studied to measure its performance and its relevance to routing
protocols.

Verification tools. The PDS (Plugin Distribution System) [Ryb+21] pro-
vides secure verification and distribution of extension code for Pluginized
QUIC [De +19]. It allows the automation of different types of verification for
several extension codes at the same time. Our xBGP toolchain includes more
verifiers and checks more properties. While the PDS uses a Merkel tree to
secure the distribution of plugins, the xBGP toolchain simply keeps them in a
store that is used by the network operator.

4.6 Conclusion

We presented xBGP, a new paradigm that enables network operators to in-
novate in routing protocols. xBGP allows them to write their extensions or
modifications in the form of an xBGP program that can be executed inside the
protocol implementation. This programmability could help network opera-
tors innovate with existing distributed routing protocols as Software Defined
Networking lead to the development of programmable switches. Our solution
has been proposed for BGP but could also be adapted to support other routing
protocols. We further introduced the xBGP toolchain that allows operators
to annotate xBGP programs to verify their safety. It checks if the xBGP pro-

4.6. Conclusion 93

gram meets the local properties of the router such as the termination, the
memory constraints and if the xBGP program meets the definition of BGP. If
it passes the verification step, the xBGP program can be safely added to the
BGP implementation and is guaranteed not to corrupt the router. Finally, we
demonstrated xBGP’s capabilities by proposing several use cases that have
been implemented with our solution. Among them, xBGP enables the operator
to add new attributes to a BGP route, implementing complex filters, allowing a
client to influence the BGP decision process and executing background tasks.

Part III

Revisiting the Transport Layer
Used by Routing Protocols

95

The Benefits of Secure
Transport for Routing
Protocols

5

i At the time of writing, the work presented in this chapter is unpub-

lished yet.

Part II of this thesis focused on improving routing protocols by using a
virtual machine to introduce extensions in the protocol. This is one approach
to enable operators to achieve protocol extensibility.

In routing protocols, the transport of routing messages is an important
aspect that requires improvements and innovation. This part of the thesis
therefore aims to enhance the transport of routing messages within routing
protocols. These messages play a crucial role in sharing information about
best routes to specific IP prefixes. To guarantee the reliability of this infor-
mation exchange, a reliable transport protocol is essential. However, since
the standardization of routing protocols in the late 1980s, there has been little
innovation in this domain. During that time, security was not a major con-
cern, as the Internet was mainly used for research purposes and had limited
commercial impact. Moreover, the limited hardware resources of routers at
that time restricted the adoption of other reliable transport protocols and the
implementation of secure routing sessions.

Intra-domain routing protocols such as IS-IS and OSPF have their own
customized transport protocols for reliable delivery over point-to-point links
or local area networks (LAN). However, their current reliable transport mecha-
nisms are not very efficient. They rely heavily on timers to avoid overwhelming
neighboring routers. While this limited form of flow control may have been
effective in the past, modern routers are more efficient and capable of han-
dling higher volumes of routing messages. As a result these timers and this
basic flow control slow down the exchange of link state packets. The IETF
is currently investigating mechanisms to speed up the flooding [Dec+23] of
IS-IS link-state packets. Also, informal discussions took place on the IETF
mailing lists to propose replacing the IS-IS transport layer with TCP [SV18].
However, such change raised several problems. First, routers have to use a
TCP/IP stack to exchange routing information. Second, there were concerns

97

98 Chapter 5. The Benefits of Secure Transport for Routing Protocols

about head-of-line blocking. Pending prefixes in the TCP stream will not be
processed until the last lost message has been retransmitted, which slows
down network convergence.

When the Border Gateway Protocol (BGP) was designed, TCP was chosen
as the transport protocol because of its well-established nature. Since BGP uses
TCP, it automatically benefits from decades of TCP optimizations. Although
it is possible to replace TCP with an equivalent protocol, a full evaluation of
such a replacement has not yet been carried out to the best of our knowledge.
Nevertheless, BGP over TCP also suffers from certain limitations. It lacks the
security features needed to protect BGP sessions from various attacks [Mur06].

In this chapter, we propose to replace BGP transport with QUIC [IT21], a
secure UDP-based stream protocol that features both reliable transport mech-
anisms and end-to-end data encryption. While the original work mentioned
in this chapter also covers transport layer replacement in IGPs, this chapter
focuses exclusively on BGP. More detailed information on OSPF transport
layer replacement can be found in the corresponding work [Wir+23b].

The chapter is then organized as follows:

■ We start explaining QUIC in Section 5.1 and by motivating in Section 5.2
the need to replace the transport protocols used by the routing protocols.

■ In Section 5.3, we discuss the potential advantages of using QUIC as the
transport layer for routing protocols, such as improved security and the
introduction of new transport features.

■ Section 5.4 provides insights on the of BGP over QUIC prototype. We
also discuss performance considerations and the evaluation setup used
for the rest of the chapter. The next section presents several use cases
enabled by QUIC that we evaluated.

■ In Section 5.5, we show how QUIC can improve the flexibility of BGP:

– First, we detail how embedding additional routing information in
X.509 certificates can facilitate secure session configuration.

– Second, we discuss how QUIC enables on demand BGP session
establishments.

– Third, we show that leveraging QUIC features allow improved
blackholing services.

■ We then overview in Section 5.6 the related works.

■ Finally, we conclude this chapter in Section 5.7.

5.1. The QUIC Transport Protocol 99

TCP

TLS

QUIC

Congestion control

Reliable data stream

Congestion control

Reliable data stream

Stream Multiplexing

TLS 1.3

UDP

IP

Application

Application

Figure 5.1: Comparison of TCP+TLS and QUIC network stacks.

5.1 The QUIC Transport Protocol

Before explaining why QUIC can be used to transport routing protocols, we
briefly introduce this protocol in this Section.

Originally developed by Google [Ros13], then standardized by the IETF
in May 2021 [IT21], QUIC has gained in popularity and is increasingly used
on the Internet. Major service providers such as Cloudflare, Google and OVH
offer various services using QUIC [Zir+21].

Figure 5.1 describes the QUIC protocol in the network stack, with a com-
parison with a TCP+TLS stack. Like TCP, QUIC is designed for reliable data
exchange, with built-in congestion control mechanisms. However, QUIC goes
further than TCP by integrating functionality for several layers of the net-
work stack. It operates on top of UDP [Pos80] and directly incorporates TLS
1.3 [Res18] encryption, thereby reducing latency during connection establish-
ment in comparison to the combination of TCP and TLS. Developing QUIC
on top of UDP and the integration of encryption enhances the robustness of
the protocol, making it more resistant to existing Internet middleboxes and
ossification. QUIC is generally1 implemented as a user-space library, providing
greater flexibility and enabling faster evolution of the protocol compared to
TCP, which is implemented in kernel space. Another notable feature of QUIC
is its ability to perform multiplexing, similar to HTTP/2 [BPT15]. Within a
single QUIC connection, multiple QUIC streams can be established. Despite
its advantages, HTTP/2 faces a major problem: Head-of-Line (HoL) blocking.
This problem arises because HTTP/2 relies on a single TCP connection to

1Although QUIC was originally conceived as a user-space protocol, some libraries such as
MsQuic [Mic19] provide QUIC support in the Windows kernel.

100 Chapter 5. The Benefits of Secure Transport for Routing Protocols

handle all its HTTP/2 streams. When a packet is lost in one HTTP/2 stream,
data transmission in the other streams is interrupted until the lost packet is
retransmitted and received. As a result, data destined for the application has
to wait for retransmission, resulting in delays.

QUIC, on the other hand, eliminates the problem of HoL blocking. It
achieves this by implementing per-flow congestion control mechanisms, rather
than applying congestion control to the entire QUIC connection. With this
approach, if a packet is lost in one stream, only that specific stream is affected,
allowing data in other streams to continue to be transmitted. By solving the
HoL blocking problem, the stream multiplexing functionality of QUIC is an
improved version of the one used in HTTP/2.

QUIC also tackles the problem of NAT rebinding. In the TCP protocol, a
connection is identified by its 4-tuple (IPsrc, IPdst, Portsrc, Portdst).
However, when a NAT device [HS99] decides to modify its mapping table, the
4-tuple observed by the two endpoints may change, resulting in ambiguity in
the association of network segments with the corresponding TCP flow. With
QUIC, this problem is solved by eliminating the 4-tuple dependency and using
a "Connection_ID" field instead. This field enables QUIC to determine the
appropriate connection for data processing, thus avoiding the complications
associated with NAT rebinding.

5.2 Motivations

Internet routing protocols are a key component of the Internet control plane.
Using these protocols, routers exchange information that enables them to
compute their routing tables. On today’s Internet, BGP [RHL06; WMS04] is
the protocol used to exchange routes between ASes.

From a security viewpoint, however, BGP has severe limitations. The
original version of BGP-4 [RL95] did not discuss security issues. Over the years,
basic security features were added to the protocol. The standard technique to
secure the exchange of BGP messages between peers is to agree on a shared
password and use TCP-MD5 [Hef98] or TCP-AO [TBM10] to authenticate each
TCP packet with a hash. While some vendors allow using IPSec to protect
BGP sessions [Jun22], this technique is not frequently deployed [FLM08]. BGP
can be targeted by different types of attacks [Mur06]. In particular, a BGP
session that does not use authentication can be shutdown by attackers who
are able to send spoofed TCP RST [ZMW07]. Operators prevent these attacks
on eBGP sessions by forcing the TTL to 255 [Pig+07]. For iBGP sessions, they
usually rely on packet filters to block spoofed packets targeted at their routers.
More secure BGP extensions have been proposed [LS17], but they are far from
being deployed despite recent progress on the deployment of the Resource
PKI [Chu+19].

5.3. QUIC for routing protocols 101

During the last years, secure transport protocols made a lot of progress
with the standardization of TLS 1.3 [Res18] and QUIC [IT21]. While QUIC was
designed to improve web performance [Lan+17], it starts to be used by other
applications such as DNS [Kos+22; HDM22] or live media transport [Cur+23].
In this Chapter, we explore the benefits that QUIC could bring to routing
protocols. For this, we extend the BIRD routing daemon to exchange BGP
messages over QUIC. QUIC obviously provides stronger security mechanisms
than TCP. We test different use cases with our prototype implementation.
We show that surprisingly the main benefits come from the ability of using
certificates. Thanks to these certificates, routers can safely accept new BGP
sessions from distant routers. This enables very interesting use cases that we
discuss in this chapter.

5.3 QUIC for routing protocols

QUIC is a protocol that spans several layers. It integrates transport mecha-
nisms over UDP, authentication and data encryption with TLS1.3 [Res18] and
advanced transport features such as the support for multiple streams. In this
section, we present the key features of QUIC and their applicability to BGP
starting from the transport features. We also discuss possible improvements
to QUIC tailored to routing applications.

5.3.1 QUIC transport features

QUIC is implemented as a user space library. From an operational point
of view, this allows router vendors to easily integrate the transport protocol
into their software with limited dependencies on the operating system. There
are many open-source and mature QUIC implementations [Clo; Mic19; IET]
using different programming languages.

Fragmentation and packet reordering. QUIC being a transport protocol,
it efficiently handles data fragmentation and packet reordering. Offloading
the entire transport of the routing protocols greatly simplifies the protocol’s
specification and allows one to focus on routing and not on transporting
variable length messages.

Stream multiplexing. QUIC supports multiplexing by creating parallel
streams that carry messages. This feature implies that it is possible to prioritize
some data over others. In an ISP network, not all IP prefixes are equal. Some
prefixes such as those corresponding to DNS resolvers, CDN servers or popular
destinations carry much more data than many distant prefixes. If a route
change affects one of these prefixes and others, the routing message carrying

102 Chapter 5. The Benefits of Secure Transport for Routing Protocols

the change of the important prefix could be delayed by the transmission of
other messages. Router vendors already support the prioritization of the
insertion of specific prefixes in the FIB. With QUIC, information about these
critical prefixes could be placed in separate streams to ensure that they are
not delayed, for improved BGP convergence [Bre+20]. A recent IETF draft
discusses the usage of one QUIC stream per address family in BGP [Ret+23].

QUIC provides efficient per flow control and congestion control mech-
anisms. Thanks to QUIC’s flow control capabilities, it can enable certain
streams to be given priority over others. For example, in the context of BGP,
one might consider a dedicated flow for BGP control messages (e.g., such as
BGP notifications and OPEN messages) and separate streams for BGP route
updates. By assigning a higher priority to the control message stream, we can
emphasize its criticality relative to other flows. QUIC facilitates the prioritiza-
tion of streams according to their importance, providing the application with
a way to accomplish this task.

QUIC connections canmigrate. An important feature of QUIC is its ability
to survive to IP address changes. This feature was designed for mobile devices
equipped with Wi-Fi and cellular interfaces. On such devices, it is essential to
preserve the connection even if an interface fails. QUIC allows such a device
to migrate its connections from one network interface to another without
disruption. This feature can also be useful for routers that have multiple
interfaces. Since TCP does not support connection migration, today’s best
current practice is to advertise a loopback interface on each router and use this
interface to establish the iBGP sessions. With QUIC, these loopback interfaces
are not required anymore since a QUIC connection can survive as long as
one of the router’s interfaces remains active. Currently, QUIC only allows the
client (i.e., the router that initiated the QUIC connection) to migrate [IT21].
Ongoing work on Multipath QUIC [Liu+23; PB22] is the first step to enable the
two peers involved in the same QUIC connection, i.e., either the client or the
server, to migrate connections. Exposing additional IP addresses to connect
to the server is a first requirement. But the client must do the same, and a
coordination system with a new QUIC extension must be set up to launch the
migration.

Native support to check that sessions remain alive. To support fast
reroute, modern routers use BFD [KW10] to detect link and router failures.
Since BFD can be implemented on the line cards, it will still be used by routing
protocols running over QUIC. When BFD is used, the BGP Keepalive messages
allow verifying that the routing process is still correctly working.

5.3. QUIC for routing protocols 103

QUIC already supports the PING frame to maintain a QUIC connection
alive. However, the QUIC design allows more flexibility. New QUIC frames
can be added to easily support future extensions. Such an enhanced PING
frame could periodically prompt the routing daemon to respond to requests
from the QUIC stack. If the daemon responds, QUIC generates an enhanced
reply PING frame and sends it to the remote end. The frame also functions as
an indicator of whether the protocol is actively responding and continuing its
usual operation. Hence, application keepalives can be offloaded to the QUIC
stack, which simplifies the design of the routing protocols.

5.3.2 QUIC improves Security

Router authentication. TLS supports two types of certificates: the classical
server certificates used by web servers and the client certificates. Client
certificates are typically used to support enterprise VPN services using TLS
or DTLS. Routing over QUIC leverages these certificates to provide a strong
authentication of all routers. Each router is configured with a unique certificate
assigned by the network operator. Thanks to these certificates, routers can
easily authenticate the BGP sessions established by their peers. Coupled
with QUIC, this provides much stronger authentication than the hash-based
techniques used by BGP. Note that the certificates used by the routers do not
necessarily need to be provided by an independent certification authority. For
iBGP over QUIC, the certificates are used by routers managed by the network
operator. For eBGP over QUIC, it would be useful to have a public certification
authority, possibly related to the RPKI, that certifies the AS number authorized
to announce IP prefixes [LK12]. A resource owner could register certificates
for its routers. Then, a router belonging to ASx could use its certificate to
confirm its identity when establishing an eBGP session with a peer.

Countering BGP attacks with spoofed packets. BGP is vulnerable to
attacks where spoofed RST, FIN or malicious data are injected to force the
termination of a TCP connection [Mur06]. With BGP over QUIC, these attacks
become almost impossible. To inject a packet in a QUIC connection, an attacker
needs to predict the current QUIC connection identifier. This is feasible if
the attacker is able to observe the connection packets, but peers can mitigate
the attack by regularly changing their connection identifiers in the encrypted
payload [IT21]. A packet with an invalid connection identifier is simply
dropped. The next step for the attacker is to predict the packet number which
is part of the encrypted header. An attacker cannot easily determine this
number even by capturing packets. To inject data the attacker would then
need to predict the encryption and authentication keys that were negotiated
using Diffie-Hellman during connection establishment. Injecting QUIC packets

104 Chapter 5. The Benefits of Secure Transport for Routing Protocols

is thus much more difficult than injecting TCP packets. Furthermore, routers
can still use techniques such as access lists and GTSM [Pig+07] to restrict the
packets that reach routers.

A router does not become a public QUIC server. Despite using QUIC
to support BGP, a router does not become a public QUIC server that accepts
any connection. Current routers are protected using access lists and rate
limits. The same will apply to QUIC based routers. In addition, QUIC uses
a connection identifier to identify a QUIC session between two endpoints.
This identifier is arbitrarily chosen by both parties. To avoid potential attacks
overloading QUIC with connection requests, the connection identifier could
be generated using a “secret” known only to the routers. When it receives a
connection request, the QUIC server can check whether the connection ID
was generated using the secret before processing the request. If the connection
ID is not based on the secret, the request is rejected.

5.4 Prototyping Routing over QUIC

In this section, we present an overview of Routing over QUIC (RoQ) and our
prototype implementation. RoQ’s objective is to replace the transport protocol
used in routing protocols with QUIC. In this section, we describe how we
integrate QUIC into BGP, evaluate the performance of the transport layer
replacement, and present the experimental setup used to evaluate the use
cases discussed in subsequent sections.

5.4.1 Architecture

Routing daemons use the system API of the operating system to access the
corresponding transport protocol functions. To program an application that
needs to access a transport protocol, the POSIX/BSD socket API is commonly
used as the primary abstraction. However, TCP, IP, and Ethernet are protocols
that are usually implemented in the kernel, whereas QUIC is a user-space
protocol that is typically provided as a library. This difference in implementa-
tion implies that the API offered by different QUIC libraries to the application
may vary from one implementation to another, in contrast to other transport
protocols.

Our goal is to reduce the dependence of routing protocols to their transport
layer. We demonstrate the feasibility of this approach by designing a socket
API that abstracts the primary features of transport protocols. As a result,
routing protocols can more easily switch between different transport protocols
without the need for significant modifications. We believe that this will help
improve the performance and reliability of routing protocols in the long run.

5.4. Prototyping Routing over QUIC 105

Socket API

QUIC

BGP

Network

Socket API

QUIC

BGP

Network

Transport

Session

Figure 5.2: The routing protocol uses the QUIC stack to transport their routing
messages.

Since the transport layer is separated from the routing protocol’s base code,
maintenance becomes easier and allows a faster evolution. The IETF TAPS
working group also works on alternative transport architectures [Pau+23].

Figure 5.2 illustrates the architecture of our prototype. The routing proto-
cols, like BGP, communicate directly with the transport layer via the socket
API. For this chapter, we focus on QUIC, but other protocols exposing the
same characteristics, as described in Section 5.3, could similarly be integrated.
The transport layer establishes a transport session to facilitate the exchange
of messages between two routing protocol instances. Ultimately, BGP should
be considered as a mechanism for synchronizing routes between numerous
routers, with no transport layer awareness.

Our QUIC socket API is composed of 4737 Lines of Code (LoC) and sup-
ports picoquic [Hui22]. picoquic is a QUIC implementation that includes
a range of diverse features that are defined by the QUIC standard [IT21], as
well as extensions that are currently being discussed within the IETF. This
includes support for multipath [Liu+23]. Given its extensive range of features,
picoquic presents a suitable choice for researchers and developers who want
to experiment with the latest extensions of the QUIC protocol.

We created the socket API and integrated it into the BIRD [CZN20] routing
stack, making it available for the routing protocols supported by BIRD. BIRD
runs on various operating systems such as BSD variants and Linux. To achieve
cross-platform compatibility, BIRD developed an abstraction layer on the
socket interface provided by the OS. This abstraction enables the creation
of different socket types, including TCP, UDP, and Raw IP. Using our QUIC
socket API is straightforward; it only requires adding a few lines of code to
BIRD since it closely resembles the BSD socket interface. We had to adapt
some of BIRD’s socket functions, such as open, close, read, write, etc. The
decision to use a socket API for QUIC aimed at minimizing modifications to
the BIRD code base. The total modification required in BIRD to support our

106 Chapter 5. The Benefits of Secure Transport for Routing Protocols

R3 R2

R1GoBGP

Figure 5.3: Test topology to evaluate BGP over QUIC.

QUIC socket API consisted of only 759 LoCs.

5.4.2 Performance considerations

Transitioning from an insecure protocol to QUIC introduces new security
features, which will be discussed in Section 5.5. However, this may affect the
performance of the transport layer since it adds the overhead of encrypting and
decrypting data. Also, it is worth noting that our socket API is implemented
as an overlay on top of picoquic, which may introduce additional delays.
These delays may impact the overall performance of the transport, but they
are not directly related to QUIC. It is important to keep in mind that our
implementation is primarily focused on the security aspects of the transport,
rather than performance optimizations. Other studies have focused specifically
on the performance of QUIC and may provide more in-depth analysis on its
performance characteristics [Shr+21; YB21; Jae+23].

BGP over QUIC. To assess the performance impact of the new transport
stack on BGP, we create a network topology with four routers: R1, R2, R3, and
GoBGP. As depicted in Figure 5.3, R1, R2, and R3 are connected in a triangle,
while GoBGP is connected to R1. The GoBGP implementation [Fuj+23] is fed
with a full routing table from a RIPE RIS snapshot of rrc002 dated from 23
November 2022 at 8 a.m. and establishes a BGP over TCP session with R1. In
total, 970k IPv4 routes and 171k IPv6 routes are injected on R1. The GoBGP
instance was run on a different server than the three Rx routers. When R1
receives the routes from the GoBGP node, it starts to propagate them to R2,
then in turn R2 sends the routes to R3. Finally, R3 reannounces the routes to
R1. R1 monitors all BGP update messages received from R3. R1 is configured
to not send announcements to R3. Routers R1, R2, and R3 are configured to
establish a QUIC or TCP transport session depending on the experiment. We
measure the time taken for each prefix to be fully propagated, i.e., from router
R1 to R2, R3, and then back to R1. The results, depicted in Figure 5.4, show
that using QUIC does not significantly delay the propagation of BGP routes
compared to TCP, despite the added security benefits of QUIC.

2See: https://data.ris.ripe.net/rrc00/

https://data.ris.ripe.net/rrc00/

5.4. Prototyping Routing over QUIC 107

0 50 100 150 200

Prefix Installation Duration (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

TCP

QUIC

Figure 5.4: Time to install each prefix in the RIB of all BGP routers in the
network.

5.4.3 Experimental evaluation setup

Realistically evaluating implementations of routing protocols at scale is not
an easy task. Previous work showed that simulation is not yet practicable at
large scale [RB22]. Each evaluation discussed in this document is performed
on network topologies emulated on a cluster of four servers.

Hardware setup. Two servers embed dual Intel(R) Xeon(R) Gold 5317
CPU @ 3.00GHz (12 cores each) and the two remaining embed dual Intel(R)
Xeon(R) CPU E5-2687W v3 @ 3.10GHz (10 cores each). They are all connected
together via a gigabit switch.

Software setup. Each server runs Ubuntu 22.04. Hyperthreading is disabled
and all the CPU cores except one per server are isolated3. Hence, the kernel
runs on a single core while the others are dedicated to our emulated network
nodes. The network nodes are modeled as network namespaces (netns) asso-
ciated with two dedicated physical cores. We ensure that each pair of cores
lies on the same socket to reduce the risk of contention due to cache accesses.
Routing processes are launched in their associated netns and pinned to a first
dedicated physical core. As our prototypes also embed a QUIC server with
its own I/O loop, the server process is pinned to the second physical core.
With that model, each server emulates a maximum of nine routers. The links
are emulated either as virtual Ethernet interfaces pairs if the adjacent nodes
are on the same server, or as a dedicated VLAN when the adjacent nodes are
located on different servers. The VLANs are enforced at the interface level on

3This setup is performed with the Linux kernel configuration argument isolcpus.

108 Chapter 5. The Benefits of Secure Transport for Routing Protocols

the switch. Hence, the packets are not broadcasted on the bridge. Each virtual
link is configured with a one-way delay of 10ms.

5.5 BGP over QUIC

In this section, we present some benefits of using BGP over QUIC. We show
(Section 5.5.1) that by embedding additional information in the X.509 certifi-
cates, network operators can autoconfigure services they propose at client-side.
Hence, this solves manual BGP configuration burden and failures resulting
from erroneous configurations. This improved flexibility is illustrated with
two use cases. We first leverage secure connections offered by QUIC to dynam-
ically contact routers in remote ASes (Section 5.5.2). We show that an edge
router can establish an eBGP session without being manually configured by a
network operator, to respond to an unusual network event. The second use
case (Section 5.5.3) is related to improved BGP blackholing service. Thanks
to the secure remote connection ability of QUIC, a client AS can establish a
multi-hop BGP session towards the remote blackholing service.

These use cases leverage QUIC for its ability to secure the BGP session.
The end-points are authenticated, and the communication is encrypted. The
authentication relies on certificates which we enrich to exchange session
information. These certificates are complementary to the resources protected
with the RPKI [LK12]. The former contributes to the security of the exchange
while the latter concerns the security of the resources, the origin ASes and
prefixes [LKK12], advertised in BGP.

5.5.1 Dynamic reconfiguration of eBGP sessions

An external BGP session (eBGP) is a session that is configured between two
routers belonging to two different ASes. These routers can be connected
through a directed link or attached to the same Internet eXchange Point (IXP).
There are two very common types of eBGP sessions: (𝑖) the sessions between a
customer and its provider and (𝑖𝑖) the sessions between shared-cost peers. To
activate an eBGP session, both network operators need to manually configure
the peering routers with the AS number of the peer, its IP address, the export
and import filters that need to be applied, . . . The configuration of these eBGP
sessions can be complex and a small error in one of the commands or its
parameters can result in what operator calls a fat-finger error. For example, if
a network operator types in the wrong IP prefix, they can announce one that
belongs to another network. Some of these errors are fixed quickly, others
last much longer, and some have had a huge impact on the global Internet
[MWA02; Tes+19; Nem+21].

In this section, we explore another approach to configure these eBGP

5.5. BGP over QUIC 109

sessions. Instead of relying exclusively on manual configurations, we leverage
the X.509 certificates that the routers exchange during the establishment of a
BGP over QUIC session. An X.509 certificate [Boe+08] used by HTTPS binds
a public key to a DNS name. This binding is signed by a public certification
authority. The X.509 certificate format [Boe+08] is flexible and companies
can deploy their own Public Key Infrastructure. To show the potential of
this approach, we implemented a prototype, as depicted in Figure 5.5. Our
prototype is written in 602 LoCs. We now discuss three use cases related to
three different contexts of use that can be exploited with our prototype.

eBGP prefix filters. On an eBGP session with a customer AS, network
operators usually configure an import filter [Ste06] that verifies that the cus-
tomer only announces its own prefixes or the prefixes of its own customers.
Many operators configure these filters based on the information stored in the
Internet Routing Registry databases. However, adding these filters on a per
eBGP session basis on each router can be cumbersome. Instead, we extend the
X.509 certificate with one field that lists all the prefixes that the owner of the
certificate is authorized to advertise. This certificate is issued by the provider
AS, e.g., through a web portal managed by the network operator. It is signed
by the certification authority of the provider AS.

To initiate an eBGP session with its provider, the client needs to use this
certificate. Upon validation of the certificate, the provider router extracts the
filter list and automatically configures its import filter. This is illustrated in
Figure 5.5. When our BGP over QUIC prototype accepts a BGP over QUIC
session, it validates the certificate and exports the contents of selected fields
through a Unix socket to a script that dynamically reconfigures the import
filters of the router and reloads the configuration. If a new prefix is assigned to
the customer, it needs to ask a new certificate from its provider and restarts the
BGP over QUIC session using the new certificate. Thanks to the BGP graceful
restart mechanism [Rek+07], it is worth noting that restarting the BGP session
and changing the QUIC certificate can be done without any impact on packet
forwarding.

eBGP open-peerings. This use case applies to the shared-cost eBGP ses-
sions and specifically to the network operators that have open peering policies
[LDD14; Lod+14]. These ASes are present at Internet eXchange Points and
accept to peer with any other AS. Usually, these operators ask their peer to
respect some requirements before configuring the eBGP session. For example,
they ask the peer to not modify the Next-Hop attribute, to only send traffic
destined to the AS, to not point a default route to the AS or not leak the route to

110 Chapter 5. The Benefits of Secure Transport for Routing Protocols

Remote

BGP Instance

Control

Script

CLI

Unix Control

Socket

Push Cert

Reload

Configuration

Transfert

Certificate

1

2

3

Figure 5.5: With BGP over QUIC, a router can automatically configure a BGP
session based on information contained in the X.509 certificate of the peer.

other ASes4. Currently, the open peering AS cannot verify these requirements
at BGP session establishment. The best they can do is monitoring the traffic a
posteriori.

To eliminate reliance on the fragile trust system between the two ASes,
the AS that accepts open peerings has the option to deploy a website. This
website would enable peers to request a peering session with the AS. They
would fill in certain fields such as the prefixes they wish to advertise, as well
as other options for establishing the peering.

When the request is validated, the peer receives an X.509 certificate that
authorizes it to establish a peering with the Open Peer AS (OP). The certificate
contains two routing-related parts. The first is the configuration that the peer
router must perform in its BGP router to establish a session with the open AS.
The second part is an encrypted field that contains the configuration of the
OP’s router that will be set once the BGP session is established. The field is
encrypted because it may contain sensitive data about the OP’s internal AS
network. The content of both encrypted and unencrypted fields can contain
various information such as the IP prefixes that will be advertised by the
peer, the export filter, the maximum number of prefixes to be advertised,
etc. The X.509 format is flexible enough to allow the addition of these new
routing-related fields.

During the BGP establishment process, the peer BGP router reads the
configuration that must be applied. When the session is correctly configured,
the peer initiates the QUIC connection by presenting its X.509 certificate to
the OP. Upon reception, the OP router reads and decrypts the field reserved

4See examples of those requirements here: https://openpeering.nl/

https://openpeering.nl/

5.5. BGP over QUIC 111

for them, applies the configuration and accepts the QUIC session.

BGP communities. This use case is about improvements of the traffic en-
gineering features offered by a provider to its client ASes. The best current
practice to allow a customer AS to request traffic engineering features from
its provider is to rely on BGP communities [LCT96]. These are opaque BGP
attributes that are only understood by the AS that defined their semantics.
They are used for various functions such as traffic engineering, limiting the
propagation of routes through certain regions of the world, etc. [DB08; KBS21].
In addition, some operators publicly disclose how to use BGP communities to
influence routing5. Unfortunately, BGP communities can also be used for ma-
licious purposes to trigger unexpected blackholing or perform DDoS [Str+18;
MP19; Bir+19].

We leverage the X.509 certificates to provide an alternative to these BGP
communities. The X.509 certificate used by BGP over QUIC can also contain
commands that configure the associated BGP session. A provider AS can
create a web portal where customers authenticate that allows them to request
specific traffic engineering configurations for some of their prefixes (e.g., set
different local-pref values for different prefixes, restrict the distribution of
some prefixes to parts of the provider network or its peers, etc.). Automated
validation of the requested actions can be applied before issuing the certificate.
This approach is more secure than the current BGP communities which are
not authenticated. The BGP commands that are placed in the X.509 certificates
are always provided by the network operator and not its customer. For more
specialized techniques, a network engineer could manually create the required
commands. The commands placed in the certificates can be validated by
verification tools [Bec+17a] before being included in the certificate.

Security Considerations It should be noted that the generated certificate
may potentially contain errors, whether intentionally or unintentionally intro-
duced by the operator. However, for the purposes of this work, we assume that
the certificate contains no errors and that it has been subjected to rigorous
testing before being deployed in a real environment.

In a future iteration of this work, it could be a better approach to de-
velop a system that automates the generation of certificate configurations
with minimal user intervention, incorporating a validation mechanism that
uses specialized tools such as Snowcap [SBV21], Chameleon [Sch+23] or Bat-
Fish [Fog+15]. These automated approaches would help improve the accuracy
and reliability of certificate configurations, reducing the risk of errors, transient

5See e.g., NTT BGP Communities: https://www.gin.ntt.net/support-center/polic
ies-procedures/routing/

https://www.gin.ntt.net/support-center/policies-procedures/routing/
https://www.gin.ntt.net/support-center/policies-procedures/routing/

112 Chapter 5. The Benefits of Secure Transport for Routing Protocols

states or policy violations in the deployment process.

5.5.2 On-demand BGP over QUIC sessions

BGP was designed under the assumption that eBGP sessions are configured
over a physical link and remain up as long as the link remains active. However,
there are many situations where it could be useful to create and terminate an
eBGP session in response to traffic load or external events such as link failures.

A first example relates to the IXP networks or other carrier-neutral network
facilities. While a small IXP can be composed of a simple L2 switch, large
IXPs are metropolitan L2 networks that are spread across multiple sites or
even multiple cities. At a high level, an IXP network can be thought of as a
large L2 network where ASes have one or more points of presence, either at
the same site or at different sites within the IXP network. Many IXPs also
offer additional services to their customers, from route servers [Jas+16] to the
ability to create VLANs or any other techniques that enable the creation of
a virtual L2 network across the IXP network6. Thanks to these techniques,
ISPs can create direct links over the IXP infrastructure to their peers, but
also some of their providers and customers. These L2 networks are also used
to support remote peering services [Gio+20; Cas+14]. Figure 5.6 shows an
example of such configuration. The IXP network attaches routers from a pair
of ASes to the same virtual L2 Network. The stub router will usually not
establish an eBGP session with every other router of its provider since this
service is often charged per eBGP session and in function of the bandwidth
used. However, there are situations where it is useful for the stub router to
create additional eBGP sessions with its provider. A first example is when the
provider needs to perform some maintenance on its router. In this case, the
stub router could establish an alternate eBGP session with another router of
the same provider over the IXP network. A second example is when the traffic
on the stub router increases. Instead of simply increasing the bandwidth to
the provider, it could be useful to create an additional session with another
router of the same provider. A third example are customer networks that need
additional capacity for small periods of time. For example, a stadium could
add more eBGP peering links when the stadium hosts an event and disable
them after the event [ER13]. With the X.509 certificates, a provider router can
safely accept a new eBGP session from another router of a customer AS since
this customer is authenticated by the certificates.

6See Equinix VLANs: https://docs.equinix.com/en-us/Content/Interconnection
/IX/IX-bilateral-peering.htm, BNIX: https://www.bnix.net/en/services/private
-vlan or DEC-IX VirtualPNI: https://www.de-cix.net/en/services/virtualpni

https://docs.equinix.com/en-us/Content/Interconnection/IX/IX-bilateral-peering.htm
https://docs.equinix.com/en-us/Content/Interconnection/IX/IX-bilateral-peering.htm
https://www.bnix.net/en/services/private-vlan
https://www.bnix.net/en/services/private-vlan
https://www.de-cix.net/en/services/virtualpni

5.5. BGP over QUIC 113

L2 Network

Provider

Customer

IXP
BGP

Session

Figure 5.6: The IXP network provides VLANs between pairs of ASes so that
they can directly create peering sessions.

5.5.3 Improved Blackholing service

Reconfiguring client routers is not the only service enabled byX.509 certificates.
X.509 certificates also allow improving the Remote Triggered Black Hole
(RTBH) service [Tur04]. RTBH is a method that consists in altering BGP
tables to counter Distributed Denial of Service (DDoS) attacks targeting client
networks. The undesired traffic is simply dropped before reaching the target
hosts. Unlike traditional reactive methods that filter traffic after it has reached
the target network or host, RTBH drops traffic at the edge of the provider
network. This filtering is built in two phases [Cis05]: a preparation phase
where the routers are configured with a route to be used for blackholing, and
the announcement to redirect the traffic to that route. This is when blackholing
takes place. First, a static null route is configured on one or several of the
provider’s routers called the blackhole routers. The packets towards this null
route or having this null route as their nexthop are discarded.

In the blackholing step, the announcement may come from inside the
network or cross AS boundaries. Inside the provider’s network, a BGP session
is established with a special router, called trigger router. When a DDoS attack
occurs, the customer router sends to the trigger router a BGP announcement
containing the address of the attack target and the destination of the null
route as its nexthop. This route is distributed in the provider’s network only.
When a router of the provider’s network receives a packet destined to the
target address, it automatically discards it. This allows the targeted network
or host to continue normal operations while the attack traffic is dropped as
closely as possible from its source.

It is also possible to communicate the need for blackholing across an ISP
border. Here, a BGP community triggers the installation of the null route.
Some operators or transit providers provide this blackholing service for their
customers, as illustrated in Figure 5.7. When a client AS detects a DDoS attack
and wishes to block all packets coming from this provider towards the target
address under attack, it informs the provider AS by re-announcing the route

114 Chapter 5. The Benefits of Secure Transport for Routing Protocols

Trigger
Router

Server Under

Attack

RTBH over
BoQ

Internet

RTBH over

classic BGP

Provider
AS

Client
AS

Figure 5.7: With traditional RTBH, blackholing information follows the BGP
paths up to a trigger router. With BGP over QUIC, a customer AS can directly
request a remote blackhole from distant ISPs.

with a special BGP community. This solution is widely used, but researchers
have shown that it suffers from several problems [Naw+19; MP19]. First, BGP
routes can be inadvertently or maliciously manipulated [AZV17; Cho+19].
Second, a third party AS can trigger such remote blackholing for particular
prefixes [Str+18].

By leveraging the certificates supported by BGP over QUIC, we propose
a new way for service providers to support RTBH. Instead of extracting the
RTBH information from the received BGP communities, an ISP could provide
RTBH for any AS or the customers of its customers. Consider a Tier-1 ISP
that carries a lot of traffic and wants to support RTBH. This ISP would first
issue certificates to the ISPs that subscribe to its RTBH service. This certificate
contains two information. First, the certificate lists the IP prefixes that the
customer of the RTBH service owns. Second, it contains the addresses of the
trigger router in the Tier-1 ISP.

When a customer network detects an attack that targets one of its IP
addresses, it can install an RTBH blackhole in one of its subscribed Tier-
1 RTBH services. To install the blackhole, the customer ISP dynamically
establishes a BGP over QUIC session with one of the trigger router of the
Tier-1 ISP. This process can be automated on the customer side since the
certificate contains the IP addresses of the Tier-1 trigger routers. When the
trigger router accepts the BGP over QUIC session, it verifies the certificate
and installs an import filter that matches only the customer’s prefixes. The
customer then announces the attacked IP address over the BGP over QUIC
session. The trigger router ensures that the address belongs to the customer’s
addresses listed in the certificate and installs the blackhole. The blackhole
lasts until either the customer withdraws the announcement on the BGP over
QUIC session or the session stops.

To demonstrate this enhanced RTBH service, we set up a small network

5.5. BGP over QUIC 115

Classic

RTBH

Secure

RTBH

40

60

80

100

T
i
m
e
(
m
s
)

Classic

RTBH

Secure

RTBH

42

43

Figure 5.8: Time to setup a blackhole for a prefix selected by a client.

depicted in Figure 5.7. When the operator detects a DDoS attack toward
one of its servers, it requests a router to announce the server’s address to be
blackholed. During this operation, several intermediate BGP nodes can be
present on the path between the trigger router of the provider and the router
requesting a blackhole. The advertisement may cross multiple ASes. With BGP
over QUIC RTBH version, the client AS directly establishes a QUIC session
with the trigger router. This prevents any manipulation of the announce-
ment [MP19] and avoids the need to propagate the blackholed route through
several intermediate BGP speakers, hence minimizing the propagation time of
the blackhole request.

Figure 5.8 shows our measurements of the duration required to enable the
blackholing service. That is, the delay from the instant the server announces
the blackholing to the moment the provider AS has enabled the null routes
on its edge router. We run the experiment 30 times for both the classical
and the QUIC-based RTBH. With classical RTBH, the median time to setup
the blackhole is 41.27ms, while with our QUIC-based RTBH, the setup time
is 41.26ms. One can note that QUIC-based RTBH is more stable than the
classical RTBH. Indeed, the variance and the outliers are reflecting the internal
processing of intermediate nodes. In the global Internet, this delay can be
much longer due to timers like MRAI [GB19; TUD07; FSR11]. With QUIC-
based RTBH, the propagation time is stable as the route is only announced to
the trigger router. Furthermore, the blackholing request is protected by the
QUIC session and cannot be modified.

BGP over QUIC opens a more secure way to support remote triggering
black holing (RTBH). This enhanced RTBH could be widely supported by large
ISPs to provide better reactions to the unfortunately frequent denial of service
attacks.

116 Chapter 5. The Benefits of Secure Transport for Routing Protocols

5.6 Related Work

The use of QUIC in BGP. The IETF has started to work on using QUIC to
carry BGP messages [Ret+23; RQT22]. Our implementation of BGP over QUIC
is partially aligned with this effort. At the time of writing, after discussion
with the draft authors and to the best of our knowledge, we are the first to
have an implementation of BoQ. The use cases described in this document go
beyond the current IETF discussions.

BGP over QUIC secures the exchange of messages and the certificates
authenticate the peers. Our BGP over QUIC prototype secures a BGP
session, whether it is a single hop or multi hop session. This means that an
external attacker cannot inject messages without knowing the encryption
key used for the session. Another effort has also focused on encrypting BGP
messages by directly modifying the protocol [SG96]. However, BoQ cannot
protect against the injection of false information by a malicious AS, such
as changing the AS path or the origin of an IP prefix. Other extensions,
such as BGPSec [LS17] and RPKI ROA [HM12], provide protection against
routing modifications by ASes. Several approaches have been proposed to
address this problem, including SPV [HPS04], soBGP [Whi03], S-BGP [KLS00],
PGBGP [KFR06], and IRV [Goo+03].

Secure tunnel protocols. Securing the transport of routingmessages can be
also made with IPSec [SK05; Ken05a; Ken05b] or any other secured tunneling
protocol such as Wireguard [Don17] or OpenVPN [Fei06]. These protocols
encapsulate routing messages in an encrypted payload. In the case of IPSec,
the Internet Key Exchange (IKE) [Kau05] protocol (𝑖) authenticates the two
parties with Pre Shared Keys (PSKs) or X.509 certificates and (𝑖𝑖) negotiate the
keys used to encrypt the payload. The routers can then securely send their
data as the encrypted tunnel provides authenticity, message replay prevention,
confidentiality and integrity. QUIC provides the same security guarantees
but reduces the configuration overhead, as there is no need to have an extra
protocol to encrypt and authenticate data.

5.7 Conclusion

In this Chapter, we have demonstrated the benefits that QUIC brings to BGP.
A first benefit is that this protocols become less susceptible to packet injection
attacks. The main benefits come from the ability to authenticate BGP sessions
using X.509 certificates.

We propose an advanced usage of X.509 certificates allowing the automa-
tion of critical configurations for which human errors have significant con-

5.7. Conclusion 117

sequences. In addition, thanks to the mutual authentication enabled by such
certificates we have demonstrated on-demand BGP sessions and improved
remote blackholing services. We have also shown that these certificates allow
to automatically and safely configure prefix filters and traffic engineering
features on ISP routers.

BGP over QUIC is another first step towards modernizing the Internet
routing protocols. We expect that new use cases will be developed in the
future and that other Internet control plane protocols could also benefit from
QUIC.

Part IV

Making a BGP data-plane
“aware”

119

Checking the Reachability
of BGP Routes Using the
Dataplane

6

i This chapter is largely based on the paper T.Wirtgen andO. Bonaven-

ture. “A First Step towards Checking BGP Routes in the Data-

plane”. In: Proceedings of the ACM SIGCOMMWorkshop on Future
of Internet Routing & Addressing. FIRA ’22. Amsterdam, Nether-

lands: Association for Computing Machinery, 2022, pp. 50–57. isbn:

9781450393287. doi: 10.1145/3527974.3545723. url: https:
//doi.org/10.1145/3527974.3545723.

The last contribution of this thesis explores the interactions between the
control-plane and the data-plane in routing protocols. Distributed routing
protocols use control-plane information to determine the optimal route for an
IP prefix. This information is then incorporated into the Routing Information
Base (RIB) and propagated to the Forwarding Information Base (FIB) to enable
packets to be forwarded. Each routing protocol, such as BGP, OSPF and IS-IS,
uses its own mechanisms for this purpose.

In the case of BGP, a set of control-plane attributes are used to discern and
differentiate routes. These attributes include factors such as AS-Path, next-hop
information, route origin and other policy-related criteria. By analyzing and
taking into account these attributes, BGP is able to make decisions about the
best path towards a given prefix. This attribute-based approach enables BGP
to support complex routing policies.

In contrast, the OSPF and IS-IS protocols take a different approach, relying
on manually defined weights assigned to each link. These weights serve as
metrics that contribute to the calculation of the Dijkstra algorithm. Dijkstra’s
algorithm computes the shortest path between routers, taking into account
the sum of the weights of the links connecting them. By assigning appropriate
weights to different links, network administrators can influence the routing
decisions made by OSPF and IS-IS, thus shaping the flow of traffic within the
network.

This thesis makes a first contribution to improving the interactions be-
tween the control-plane and the data-plane. By exploiting the information

121

https://doi.org/10.1145/3527974.3545723
https://doi.org/10.1145/3527974.3545723
https://doi.org/10.1145/3527974.3545723

122 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

contained in the data-plane, innovative approaches can be developed to im-
prove routing state. The aim is to enable more dynamic routing decisions
based on factors that go beyond traditional control-plane metrics or static
attribute values.

Routers usually transfer information from the control-plane to the data-
plane. Technologies or research results exploiting the opposite direction, i.e.,
from the data-plane to the control-plane are limited. Some IGP protocols, such
as EIGRP, use link load and reliability to calculate weight parameters. This
data is obtained from counters attached to router interfaces in the data-plane.
However, the interaction between the two planes is currently limited and lacks
flexibility.

Blink [Hol+19] is another example of work that merges the control and
data-planes. This approach relies on TCP measurements to identify link
failures and dynamically reconfigure routing to avoid sending packets over the
affected link. Blink’s prototype shows the effectiveness of its solution using
programmable switches, demonstrating its ability to quickly redirect traffic to
alternate paths.

Blink has focused on programmable switches, but not on distributed rout-
ing protocols, which are still widely used on the Internet. The integration of
the control-plane and the data-plane together in distributed routing protocol
allows for improved innovation in networks. We believe it would become pos-
sible to dynamically control and adjust network behavior based on real-time
data-plane conditions.

In this chapter, we tackle a fragment of the problem by developing a new
method to check the reachability of the routes announced by BGP. Instead
of directly inserting the route into the routing table, we first check whether
the route prefix is reachable in the data-plane. We ask the router to contact
a given destination in the prefix sent in the BGP Update. If this destination
is reachable, the route can be considered valid and thus can be added to the
routing table. We validate the feasability of the approach by conducting an
early evaluation in a small topology which also shows the impact on BGP
convergence.

Although the work presented in this chapter addresses only a small part
of the integration between the data-plane and the control-plane, it serves as
a practical demonstration of the feasibility and the potential of combining
them. The long-term objectives of this chapter are twofold. Firstly, to open
up new perspectives in this specific field. Secondly, to provide a basis for the
development of other tools and approaches to achieve routing that is fully
consistent with the environment in which it operates.

The remaining of this chapter is organized as follows:

■ Section 6.1 first provides motivations to secure BGP routes in the data

6.1. Motivations 123

plane.

■ Second, in Section 6.2, we describe a new architecture that can be used
to check if paths are reachable.

■ Then, in Section 6.3, to demonstrate that it is possible to add the intel-
ligence of the data-plane in the control plane, we implemented a new
route validation method in FRRouting, an open-source implementation
of BGP.

■ Fourth, we discuss the implications and new possibilities of using data-
plane information to influence routing in Section 6.4.

■ We finally present the related work in Section 6.5 and conclude this
chapter in Section 6.6.

6.1 Motivations

BGP was designed when the Internet was a research network [Jab15]. The
first BGP design did not include any security feature. The initial assumption
was that network operators could be trusted. Over the years, this assumption
appeared to be too optimistic. First, network operators, even trusted ones,
sometimes make mistakes. This is known as the fat-finger problem as ex-
plained in Section 5.5.1. Second, some network operators, either maliciously
or through attacks, have advertised IP prefixes that belong to other ASes
[Ser+18]. Researchers have identified various forms of such BGP hijacking
[Cho+19].

To cope with these difficulties, and after many debates, the Internet Engi-
neering Task Force (IETF) finally adopted the Resource Public Key Infrastruc-
ture (RPKI) model [BA13]. In a nutshell, the RPKI uses cryptography to create
certificates that bind an IP prefix to an AS number. The Regional Internet
Registries publish the RPKI certificates that indicate which AS can legitimately
announce a given prefix. Thanks to these certificates, when a BGP router
receives a new route, it can compare the origin of the route (i.e., the last AS in
the AS-Path) with the information contained in the certificate. If they match,
the router considers the route as valid, and it can be used and reannounced by
the router. Otherwise, the router may decide to discard the route. Researchers
and network operators have studied the deployment and the usage of the RPKI
during the last decade [Chu+19; Reu+18; Wäh+15].

While the RPKI is slowly getting deployed, it only allows a BGP router
to verify that a received route was announced by its legitimate origin AS.
The RPKI does not verify the entire AS-Path, although there are proposals to
perform such validation [Coh+16; Azi+20]. In the longer term, BGPSec should

124 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

improve [HB11] the security of interdomain routing, but its deployment has
not yet started.

6.2 BGP routes reachability in the dataplane

During a maintenance routine in an AS, accidental configuration errors can
disrupt connectivity. Configuration errors occur every day and can impact
many prefixes [MWA02]. All traffic passing through the misconfigured AS can
cause losses on the affected path and thus can blackhole traffic. When BGP
Updates are received from misconfigured routers, the route contained in the
update is by default considered to be reachable in the data plane. Therefore, the
route is a potential candidate for forwarding traffic, even if it is not reachable in
the dataplane. This example raises an interesting question: How can a router
validate the reachabilty of a route received from a peer? This is a complex
question because an IP prefix may contain addresses for endusers, servers or
even infrastructure such as routers. From the host viewpoint, a network prefix
is reachable if the host can exchange packets with one IP address belonging to
this prefix. It is important to note that simply receiving packets from sources
belonging to a given IP prefix does not guarantee the reachability of this prefix
since such packets could have been spoofed [Luc+19]. The host should receive
a reply to the packets that it sends. Several protocols can be used to elicit such
a reply from remote hosts: ICMP with ping or possibly traceroute, TCP or
even application-level protocols such as DNS.

Threat Model Checking the reachability of BGP routes should address the
following threat model. In a network environment where a specific AS lacks
control, an adversary has authority over routers and links outside the AS’s
jurisdiction. The adversary can also be anyone with access to the network,
who can send corrupted routing information, but also modify the behavior of
the data plane.

These adversaries can employ a variety of tactics, including deploying
Ethernet or IP filters in the data plane to block the forwarding of victim’s
packets through their network. In addition, they have the ability to engage
in activities such as eavesdropping on traffic, redirecting it to other network
paths or intentionally diverting it. In addition, they can modify packets in
transit and even launch Distributed Denial of Service (DDoS) attacks against
AS services. These DDoS attacks can potentially overwhelm AS network links
and equipment, rendering them inaccessible for legitimate use.

Furthermore, the attacker can manipulate BGP routers by sending falsified
information, thus deliberately blocking the victim’s traffic. Even in cases
where the attacker does not have direct control of a router, he can harm a
target AS router by forging BGP packets. To limit this latter type of attack,

6.2. BGP routes reachability in the dataplane 125

security measures already counter it. These measures include the use of
techniques such as GTSM [Pig+07] and the implementation of protocols such
as TCP-AO [TBM10] or TCP-MD5 [Hef98] to reinforce the security of BGP
communications. These measures reinforce the integrity of BGP messages and
protect the routing infrastructure against unauthorized injections.

The motivation for such actions by attackers may be economic or political,
aiming for example to prevent an autonomous system from accessing specific
services hosted elsewhere in the network [AP15].

The goal of our solution which will be described in this section, is to
improve the security of packet routing within the network, while ensuring
that control plane information remains usable in the data plane. In brief, our
method guarantees end-to-end connectivity. If a BGP route is announced in
the control-plane then it is reachable in the data-plane.

Based on this property, our solution defends against several types of attacks,
including blackhole attacks launched by a third-party AS or a compromised
router. These attacks block the forwarding along its intended path, preventing
other ASes from accessing the network. Our solution also provides protection
against equipment failures and Distributed Denial of Service (DDoS) attacks,
which can disrupt the forwarding capacity of network components.

In addition, our solution can be used to prevent attacks aimed at manipu-
lating Route Flap Damping (RFD) [VCG98] mechanisms or Minimum Route
Advertisement Interval (MRAI) [RHL06]1 timers. These attacks involve remov-
ing and re-advertising routes to trigger the router’s mechanism that blocks
installation of the route in the RIB while it is being received and considered
as the best route [SVG16]. These attacks can be prevented if the reachability
check is also performed on BGP withdrawals. If a route is announced to be
withdrawn but remains reachable on the data plane, the router should not
remove it from its Routing Information Base (RIB). If BGP withdrawals are
verified, our solution also counters attacks where a malicious AS replays or
suppresses withdrawals on an advertised route [MPE18]. Furthermore, our
solution provides safety against attacks where an attacker hijacks a prefix or
sub-prefix, as long as they do not redirect traffic to their intended destination,
commonly referred to as interception attacks.

Nevertheless, our solution does not check whether the path taken by the
data plane corresponds to the AS-Path as advertised in the control plane. In
other words, our approach does not prevent collusion attacks (also called
wormhole attacks) [Li+15; LHZ14] or any other form of attack aimed at divert-
ing the forwarding of packets from the route initially prescribed by the control
plane. The solution also provides no protection against an AS eavesdropping
on the end-to-end reachability check. For example, if an AS knows that checks

1See section 9.2.1.1 of RFC4271.

126 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

Transit AS

Stub

AS1

Stub

AS2

Reachability

Server

Reachability

Server

Tunnel

Path Reachability

Message

Figure 6.1: Architecture of the proposed solution.

are being performed on a particular port, it can accept the requests during the
reachability check and then set up IP filters to block normal traffic.

Design of the Solution To address our problem, a first possibility to val-
idate the reachability of a prefix is to send ping packets to one or more IP
addresses belonging to this prefix. Researchers and network operators fre-
quently use ping to verify that an IP address is reachable. However, ping has
two important limitations. First, for security reasons, only a small fraction of
the Internet hosts respond to ping packets. This means that finding reachable
IP addresses inside a prefix can be difficult, in particular for IPv6, even if there
are hit lists of pingable IPv4 [QHP13] and IPv6 hosts [Gas+18]. Second, ping
is not a secure protocol and spoofed replies are possible [ABD14]. Still, ping
has the advantage of being simple to use.

A better approach is to leverage secure protocols such as TLS [Res18]. If a
client can establish a TLS session with one IP address belonging to the prefix
of interest, then does this necessarily confirm that the prefix is reachable?
TLS was designed to allow clients to authenticate connections with a server
identified by a domain name. For this, TLS relies on X.509 certificates [Boe+08]
that securely bind a domain name with the server’s public key. In addition, the
Subject Alternative Name (SAN) extension for X.509 [Boe+08]2 certificates also
enables the generation of a TLS certificate to bind public keys to IP addresses.
SAN allows trusting a specific host contained in a destination prefix. X.509
certificates can therefore be used to confirm that the prefix is reachable.

With TLS certificates, we have a way to authenticate IP addresses. Now
we need to deploy a solution in the network to be able to use path reachability

2See section 4.2.1.6 of RFC5280.

6.2. BGP routes reachability in the dataplane 127

messages. A first possibility would be to integrate a TLS server in the routers
so that they can respond to TLS messages. Unfortunately, adding support for
TLS certificates in routers would require modifications to router operating
systems to include cryptographic mechanisms to validate TLS certificates.
Some routers deployed on the Internet are old and would not simply handle
the introduction of TLS. For more recent network hardware, the router itself
can run Virtual Machines (VM) to host small applications [Dev20], which
can be the ideal solution to include a TLS server in the router to validate
paths. Instead, to support a broader range of network devices, we can opt for
a decentralized solution as shown in Figure 6.1. A new type of service can be
introduced to verify BGP routes, we call it the Reachability Server (RS). The
network operator may decide to deploy several RSs to spread the verification
load across its network. In addition, to limit the number of verification carried
out by another network and thus avoid a possible DDoS, RSs could be located
behind a reverse proxy, protected by a Web Application Firewall (WAF) or a
classical firewall that limits the number of requests per IP prefix. Instead of
contacting an existing service inside the AS such as HTTP or DNS servers, the
RS can be added inside each AS so that routers can contact it to verify the prefix.
Each time a router receives a BGP Update, it will contact the RS to check if the
route is reachable in the dataplane. This RS brings several advantages. First, it
reduces the load on existing services. For example, an operator would not want
to have an additional load on its web server. Second, the service is dedicated
only for reachability and nothing more. Strong security policies can therefore
be applied to this dedicated server. However, this would require additional
coordination efforts between the network and the system team, as the routing
devices must interact with the infrastructure. It requires more configuration
to make the system work. Finally, the RS can be used as a cache that can speed
up BGP convergence when a router performs a cold start or when it receives a
large number of updates. If the route has already been validated by the RS, the
AS routers can query it to retrieve the information, thus avoiding recontacting
the target prefix with a new reachability message. In this scenario, the RS
is also in charge of performing the reachability verification such that it can
maintain its cache.

The proposed architecture is flexible, thanks to the introduction of the RS,
when the AS2 edge router, shown in Figure 6.1, sends a BGP Update with a
prefix, AS1 has several possibilities to verify the path. Either the AS1 edge
router asks its RS to perform the reachability check. On its side, AS2 can also
choose which device will respond to AS1’s reachability request. It can choose
to configure its router to respond to the request or to transfer the request to
the RS. If the router or RS of AS1 receives the response from whatever device,
the route is considered reachable and therefore can be inserted into the routing
table.

128 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

Using an external machine like the RS also brings disadvantages. When
the BGP router receives a route to a prefix and asks to the RS to contact a
destination within the target prefix, it has no routes to the corresponding
destination. As the router waits for the reachability message, it does not
install the route to its routing table. Hence, the RS cannot contact at all the
destination. Instead, the RS can tunnel the request to the AS1’s egress router
as shown in Figure 6.1. The AS1 edge router is responsible for decapsulating
the request and forwarding it to the target RS from the interface where it
received the route.

Now that we have TLS to authenticate prefixes, we need to modify the
implementations of BGP to ask them to verify the received paths before in-
tegrating them into the routing table. To have a deployable solution, it is
necessary to tell BGP the destination to be contacted by prefix in a secure
way. Adding a new BGP community or a new BGP attribute is not secure
because the messages can be intercepted. RPKI solves this problem. RPKI has
been deployed to authenticate some Internet resources such as Route Origin
Authorizations [LKK12] (ROAs). As of this writing, ROAs are the only RPKI
objects that are widely deployed. Other works propose adding new objects into
RPKI to enhance routing security [Azi+22; SsA20; SAM22]. We can imagine
extending RPKI by proposing a new RPKI object, the Route Prefix Reachability
(RPR) as described in Listing 6.1. The syntax used in the definition of the RPR
has been adapted from the definition of ROAs object [LKK12]. In a nutshell,
this extension of X.509 certificate contains a sequence of IP prefixes and a
list of IP addresses that represent the Reachability Servers to contact in order
to validate the IP prefixes. Just like ROAs, the RPR object will be pushed to
the global infrastructure so that all RPKI validators can use them. Since the
RPKI object is cryptographically signed, the IP addresses of the RSs included
in the certificate can be trusted. It is important to stress that the IP addresses
contained in the certificate must be valid for the IP prefix. This means that
the IP addresses must be included in the IP prefix. This prevents anyone from
validating the path of other ASes.

When the BGP router receives a route, just like the ROAs, it can decide
whether or not to contact the RPKI validator to obtain the IP addresses of the
RSs to contact to validate the BGP route. Depending on the configuration
chosen by the network operator, the router or the RS will make the request
to check if the IP prefix is accessible in the dataplane. With RPKI and the
establishment of a secure communication with the RS, the infrastructure
provides strong guarantees to find and contact the remote RS. It should be
noted that the RPKI should not be used to prove the identity of the RS [BH22].
This concern is addressed by the TLS stack with X.509 certificates, as is the case
for web server authentication. The Reachability Server will contain another
X.509 certificate that will only be provided for authentication when queried to

6.3. A First Prototype 129

R o u t e P r e f i x R e a c h a b i l i t y : : = SEQUENCE {
p f xRea chab l e SEQUENCE (SIZE (1 . .M)) OF IPAddress ,
i pAddrB locks SEQUENCE (SIZE (1 . .MAX)) OF

RPRAddressFamily }

RPRAddressFamily : : = SEQUENCE {
add r e s s F am i l y OCTET STRING (SIZE (2 . . 3)) ,
a d d r e s s e s SEQUENCE (SIZE (1 . .MAX)) OF RPRIPAddress }

RPRIPAddress : : = SEQUENCE {
add r e s s IPAddress ,
maxLength INTEGER OPTIONAL }

IPAddres s : : = BIT STRING

Listing 6.1: RPKI object related to the prefix reachability.

Import

Filter

Export

Filter

BGP

Decision

Process

Prefix
Anchor
Validator
Thread

Routes

From BGP

Peers

Routes

To BGP

Peers

Main BGP Thread

If the route is

marked for

validation

Dataplane

validation msg

Figure 6.2: Modified Architecture of BGP to include the Prefix Anchor Valida-
tor.

validate the paths. The certificates of the Reachability Servers will be signed
by a certification authority which could be one of the five Regional Internet
Registries (RIRs) and the IANA as the root certificate authority.

6.3 A First Prototype

We developed a first prototype in the BGP module of FRRouting v8.2.2 [Fou17]
with a Prefix Anchor Verifier (PAV). Our modification requires ∼1.1k lines of
C code. The remaining of this section explains the architecture of the Prefix
Anchor Validator we designed to validate the routes in the data plane.

Figure 6.2 shows the general architecture of our solution. The traditional
BGP workflow remains unchanged as the routes received from BGP neighbors

130 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

pass through the import filters first. If the import filters notice that a route
needs to be validated, it will be passed to another thread that will perform the
reachability check. As FRRouting does not parallelize the processing of BGP
Updates, we could not simply perform the check inside the BGP thread that
processes a BGP Update. Doing so would have dramatically slowed down the
processing of BGP routes since a route that needed to be validated would have
blocked the subsequent BGP routes in the same session until the completion
of the task. This thread can be modified later to add the communication with
an external RS. For simplicity, and for a first design, we deploy our solution
on the router. Once the prefix is validated or not, the validator asks the main
FRRouting thread to restart the BGP decision process in order to add or remove
the route processed by the validator.

Our Prefix Anchor Verifier implementation is flexible. The current imple-
mentation offers two types of path reachability but others can easily be added
in the future. The first uses a simple ping method. The router sends an ICMP
packet and expects to receive the response within a given time period. If no
response is received, the router repeats this process until the limit of retries
is reached. Although using a ping to validate a route is not secure, we still
decided to add this reachability method to our PAV to simplify the evaluation
of our proof of concept. We also provide a second type of reachability check
by using a TLS server. From a deployment perspective, this is much better
than a simple ping. With TLS, it is possible to authenticate the server we
are validating. To allow the router administrator to choose the reachability
method, we modified the FRRouting CLI to allow the setting of the entire
Prefix Anchor Verifier. Namely, the CLI allows the user to change the timeout
before considering that no response has been received or the number of prefix
reachability attempts.

Our implementation keeps a route that has not yet been validated in
the routing table with a NO EXPORT [LCT96] community. This well-known
community indicates that the router cannot propagate it to other neighboring
ASes. When the reachability process concludes, we either remove the route if
it could not be validated (rejection) or remove the NO EXPORT community and
trigger the BGP decision process (acceptation).

When a route is received, it must be ensured that the traffic can reach the
target prefix. This is done by choosing an address that is within the prefix
announced by the BGP route. In order to avoid choosing a random destination,
our first prototype asks each AS to add a large-community [Hei+17] that
contains the destination to contact in the prefix. The next prototype will be
based on RPKI certificates. But for now, we enable this information by using
large-communities as shown in Figure 6.3. Since a large-community value
can only contain 12 bytes, two namespace identifiers had to be reserved to
represent an IPv6 address. If path reachability is enabled on the router, the

6.3. A First Prototype 131

0 7 15 23 31

0xFFFF FFFE

High Order IPv6 bits

0xFFFF FFFF

Low Order IPv6 bits

or IPv4 address

Figure 6.3: Structure of the Large-Community used for Path Validation.

route −map p a t h _ r e a c h a b i l i t y pe rmi t 10
match path − r e a c h a b i l i t y no t r e qu e s t e d

!
route −map p a t h _ r e a c h a b i l i t y pe rmi t 20
match path − r e a c h a b i l i t y pending
s e t community a d d i t i v e no− expo r t

!
route −map p a t h _ r e a c h a b i l i t y pe rmi t 30
match path − r e a c h a b i l i t y v a l i d
s e t community a d d i t i v e 6 5 0 2 1 : 6

!
route −map p a t h _ r e a c h a b i l i t y deny 40

Listing 6.2: Example of using BGP Path Validation with the FRRouting CLI.

network operator can choose to install an import or export filter to check
whether a route should be verified with BGP path reachability. If the filter
matches the large-community, the router triggers a parallel thread that will
validate the route without disrupting the initial BGP workflow.

We have modified the FRRouting CLI to integrate the path reachabil-
ity to work with route-maps [Cis15]. Listing 6.2 shows an import filter
using the route-maps. In this example, the router will accept routes that
are path verified (valid), those which do not contain the large-community
values (notrequested) and those that are in the process of path reacha-
bility (pending). If the route cannot be validated, it is withdrawn (path_
reachability deny). However, completely removing the route from the
routing table is a difficult decision to take. In fact, it may happen that the route
can be reached after a certain time. To avoid this, the operator can always
import it into the routing table with the lowest possible local-pref to allow the
router to use another valid path instead.

To show the feasibility of this approach, we use a simple network to vali-
date BGP advertisements made by a BGP neighbor (C5) as shown in Figure 6.4.
The C5 router sends a routing table of 873k routes from a RIPE RIS snapshot
(June 3, 2021, at 4:15 PM). We modified this routing table to mark 2% of the
routes (18k) with a large-community to instruct the C4 router to validate the

132 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

C5

C3

C1

C4
Client

AS5

AS3

AS4

AS1

Figure 6.4: Simple network used for evaluations.

routes only for those prefixes. All routers except C4 run BIRD v2.0.9 [CZN20].
The C4 router is running our modified version of FRRouting v8.2.2 [Fou17]
to enable BGP to check the reachability of a route using the dataplane. The
C4 router is running an Intel® Xeon® X3440 @2.53GHz with 16 GB of RAM,
Linux kernel v5.15.29 and Debian 11.

We have configured C4 using local-pref so that all routes advertised by C3
are preferred to those advertised by C1.

To emulate failures in the dataplane when C4 validates routes, we decided
to install IP filters for the 18k prefixes on the C3-C5 link. These failures are
used to create unreachable paths in the dataplane. This way, C4 will detect
that the marked route passing through C3 should not be used. The C1-C5 link
does not contain any filter. Thus, for all the routes that need to be checked, C4
will decide to go through C1 since the other route does not let path reachability
messages through. Figure 6.5 shows the proportion of routes that pass through
C1. At the beginning, no route goes through C1 because C4 put a higher local-
pref for routes advertised by C3. Then, as the reachability check is performed,
the number of routes passing through C1 increases. Eventually, all the routes
that have been marked for path reachability pass through C1.

We observe that the routes are verified linearly. Since our prototype
validates one path at a time and thus only ping one route as it goes, reachability
check takes time. Nevertheless, it is possible to improve the speed of path
reachability by pinging faster. Tools such as ZMap [DWH13] have shown that
it is possible to ping the entire Internet very quickly.

Even with a faster option to validate paths, the validator will still be limited
by the time to contact a destination in the dataplane. Figure 6.6 shows the
Round-Trip Time (RTT) of 7k destinations scattered across the Internet. The
reachable destinations were retrieved from the CAIDA dataset [CAI22]. This
figure reflects the time BGP would take to validate a route with a validator
over the Internet. If the destination to contact is close, the reachability check

6.3. A First Prototype 133

0 1000 2000 3000

Time(s)

0.00

0.01

0.02

P
r
o
p
o
r
t
i
o
n
o
f
R
o
u
t
e
s

Via C1

Start Path Validation

Figure 6.5: Proportion of the destinations passing via C1.

0 100 200 300 400

RTT(ms)

0.0

0.5

1.0

C
D
F

Figure 6.6: RTT of 7k IPv4 destinations evenly distributed over the Internet.

will take less time. On the contrary, if the destination is far from the validator,
it will take more time to validate the prefix. However, it should be noted that
more than 50% of the destinations in the Internet have an RTT of more than
120 ms, which is long to validate a BGP route. From these numbers, it seems
clear that the time to validate a BGP route is increasing. However, this is the
price to pay to be sure that the prefix is reachable in the dataplane.

As paths are verified in the dataplane, routing traffic increases. Our early
experiments show that establishing a full TLS connection to transmit a 56-byte
payload takes about 3.2 KB of traffic. To make a comparison, we computed
the average BGP Update length that carries one IPv4 prefix. The BGP Update
message is generated from the same RIPE RIS snapshot used in this work.
In average, each BGP Update takes 185 bytes on the wire. There is clearly a
significant increase in traffic generated by the router interface performing the
path reachability. This will have an impact at cold boot when routers need to
learn all routes from their neighbors. However, after the initial convergence,
updates still occur, but at a slower rate. Recent reports [Geo22] show that
routers receive an average of 0.5 prefixes update per second. This additional
traffic due to path reachability check is therefore negligible compared to the

134 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

number of daily prefix updates.

6.4 Discussion

Throughout this Chapter, we propose to augment the routing decision with
information from the dataplane. We argue that the linking of both control
plane and dataplane can lead to a more accurate and finer-grained routing. In
this section, we first discuss the implication of using active probing to check
the reachability of a route. Then, we discuss the potential use of the data
collected from the dataplane to implement new routing decisions.

Beacons and prefix tests Some prefixes on the Internet are advertised for
analysis and testing purposes only [Mao+03]. Performing path reachability on
these routes is therefore meaningless since no services are expected to operate
in these special prefixes. The path reachability solution should therefore only
be executed on paths for which it is explicitly asked to validate the path. That
is, when sending a reachability message makes sense. To implement this idea,
an RPKI object that binds the prefix to a TLS server must be explicitly created.
This object indicates that the reachability check must be performed.

Detecting zombie routes and censorship A zombie route occurs when
a route is still considered reachable by some routers but removed by others.
This situation can occur due to a software bug where the BGP implementation
fails to process a BGP Withdraw [Ong+21]. This situation leads to network
degradation because part of the network will continue to use an unreachable
path, which can cause traffic blackholing. Our path reachability method could
periodically scan all destinations in the routing table to ensure that their routes
are still reachable. If the validator detects that a route is no longer reachable, it
will trigger an update by notifying its neighbors. Similarly, some ASes practice
censorship on the Internet. A famous example occurred in 2008, when Pakistan
Telecom announced the DNS YouTube prefix throughout the world [Gol14]
to censor the platform in the country. Recently, other countries used BGP
to censor part of the Internet [Sal+21]. Since this form of censorship is not
detected in the control plane, adding a path validator in BGP allows routers to
check if the prefix is reachable and thus prevents routers from propagating
hijacked prefixes to the world.

Reconcile ASes that want to check their respective prefixes at the same
time Let’s imagine two Stub networks, AS1 and AS2. These two ASes use
path reachability to ensure that there is a valid path between them. If both ASes
receive each other’s announcement at the same time, it will not be possible

6.4. Discussion 135

to perform path reachability, since the routing table of neither ASes have an
entry for the other AS. Then they have no way to return confirmation that
the path is valid. When a peering link between a stub and its provider is
formed, the provider will usually use an address belonging to the stub’s prefix.
Since the stub prefix is a subset of the provider’s addressing space, the address
chosen by the provider’s router is reachable from both AS1 and AS2. Using
the address of the provider’s router, AS1 and AS2 can use the path reachability
again. Back to Figure 6.1, to perform path reachability, AS1 and AS2 will need
to use the addresses associated to the green interfaces of their edge routers.

Application in transit networks Doing path reachability for transit net-
works has to be done with great care. If a transit AS considers the prefix not
reachable because of a TLS certificate incorrect configuration, no traffic will
transit through the AS for the prefix. This is an important decision for a large
transit AS to make. Currently, with origin validation (e.g., with RPKI), ASes
have the choice to decide whether or not to reject a prefix that is invalidated
by the RPKI validator. Path reachability can replicate the same behavior as
implemented for route origin validation. If the reachability check detects that
a path to a prefix is invalid, it should not necessarily be rejected. The operator
should have the option of inserting the path in the routing table in the hope
that another valid path will replace it as soon as possible.

Using other secure transport layer Throughout this chapter, we propose
to use TLS to validate BGP paths. To perform the verification, the router
exchanges only a few packets to check if the Reachability Server can respond to
the query. However, TLS requires a reliable connection to be used. Maintaining
a state to send only a few TLS data requires many resources that routers may
not have. Instead, other secure protocols such as DTLS [RM12] or QUIC [IT21]
can be used. These protocols are designed to secure data sent over an unreliable
datagram connection and are therefore a good alternative to a full TLS stack
for our use case. Since our prototype is quite flexible, changing the security
layer is not a problem since we do not depend on any specific features of TLS.
We use TLS only as a way to secure the data and authenticate the remote
device.

Path Validation deployment To deploy it, there are two steps to consider.
The first is to support path reachability in BGP through the new RPKI object
described in Section 6.2. The second is to set up the RS (or its equivalent on
the router) that allows reachability requests to be answered. These steps can
be performed in any order and incrementally without disrupting the path
reachability check operation.

136 Chapter 6. Checking the Reachability of BGP Routes Using the Dataplane

In addition, similar to the current ROA deployment, all ASes can choose
to enable Path Reachability check and integrate with other participating ASes.
The operator can decide whether or not to accept routes from ASes that have
not yet deployed an RPKI object related to path reachability.

6.5 Related Work

LIFEGUARD [Kat+12] actively monitors the network with traceroutes to
PlanetLab hosts [Chu+03] to catch failures. It is able to detect the exact
location of the failure in the network. When noticed, LIFEGUARD sends a
BGP advertisement with a modified AS-Path to invalidate the failed path and
force all routers in the network to select another reachable path in the data-
plane. When a failure is detected in AS1, BGP LIFEGUARD routers re-announce
their prefixes by appending AS1 in their AS-Path. When AS1 receives the
poisoned AS-Path, the BGP loop detection algorithm discards the path and thus
withdraws the route, forcing all downstream routers to change their routes.
With our BGP Path Reachability check, the routers reconfigure themselves
without poisoning the AS-Path information. This allows to be compliant with
recent RFC drafts that try to verify the AS adjacencies [SsA20] or the complete
AS-Path [LS17].

BGPsec [HB11], standardized by the IETF, verifies the complete AS-Path.
Before announcing a BGP Update, all routers sign their messages. The AS-Path
attribute is replaced by a new, more secure BGP attribute called "BGPsec Path".
Upon receiving the announce, any BGP router is guaranteed that the dataplane
will follow the control plane. While it verifies the integrity of the AS-Path, it
cannot prevent a network failure inside an AS. Furthermore, deploying BGPsec
is non-trivial and requires that all ASes participate in its deployment [LGS13].
Other studies have shown that it is still possible to create forwarding loops or
perform wormhole attacks with BGPsec enabled [LHZ14]. However, BGP Path
Reachabilty can be used in addition to BGPsec to make sure that the dataplane
will be able to forward packets on the path announced by BGP.

BGP Path-End Validation [Coh+16] is an alternative to BGPsec. It has
shown that by only ensuring that the last AS hop is valid, a comparable level
of security as BGPsec can be achieved even when BGP Path-End is not fully
deployed. There is no need to replace routers to deploy BGP Path-End since the
router does not need to compute cryptographic signatures in BGP messages.
They only need a new RPKI object to work. Just like BGPsec, BGP Path-End
validation only helps the control plane integrity but does not check the current
state of the dataplane. These verification techniques do not guarantee that the
path taken by the traffic will not result in losses or failures.

Instead of solving the security problems of BGP, SCION [Zha+11] proposes
a new Internet architecture to overcome the current limitations of BGP. SCION

6.6. Conclusion 137

uses a cryptographic authentication system to avoid configuration errors,
route leaks or prefix hijacking, thus ensuring connectivity in the dataplane.

Other tools to scan the Internet have been developed to examine the general
state of the network. Thunderping [Pad+19] or Trinocular [QHP13] detect
local and global problems respectively. Another tool uses RIPE Atlas [RIP23]
data to monitor the dataplane health [Fon+17]. By actively scanning the
reachable destinations, these tools are able to accurately detect problems in
the network. To improve the implementation of BGP path reachability, the
techniques developed in these tools could be used.

6.6 Conclusion

We introduced BGP Path Reachability, a new verification system to check if
a route is reachable in the dataplane. Before adding a route to the routing
table, it will first contact a specialized service responsible for responding to
the router’s request. With this method, routing errors due to misconfiguration
can be reduced because the router is now sure that the traffic can reach the
destination AS andwill not be discarded on the way. We have demonstrated the
feasibility of this approach by proposing a working prototype implemented in
the FRRouting suite. Finally, we discussed the possibility of bringing dataplane
information into the routing world. This would provide a more accurate view
of the network and therefore allow a more relevant and optimal path to be
chosen. Similarly, the control plane can be notified when an event occurs in
the dataplane to adapt the routing decision.

Part V

Future Directions and
Conclusion

139

Discussion & Future
Directions 7
Throughout this thesis, several potential research directions were opened up,
which could serve as a basis for future research. This chapter briefly introduces
future potential directions for the concepts discussed within this thesis.

Protocol Extensibility

In Part II of this thesis, we present xBGP, a new paradigm that enables net-
work operators to program their routers. With xBGP, operators can create
extensions that run on any routing protocol implementation. This opens up
many possibilities for improving and extending protocols in the future.

The design of future routing protocols. A first potential area for future
research is to explore how future protocols can take advantage of this scal-
ability and programmability. Most standardized protocols are designed by
committees. This process has advantages and drawbacks. By involving more
people in their design, the new protocols have a higher probability of meeting
the user/operator’s requirements. However, these committees sometimes tend
to over specify and add new features that require long discussions before
reaching an agreement. The design of an extensible routing protocol could be
done differently. A small committee could start with a small set of basic func-
tionalities, a virtual machine and a simple API. Based on these specifications,
the community could then openly develop extensions to meet their specific
requirements. Instead of trying to match all the expressed requirements, the
protocol designers would focus on getting the basic principles of the core
protocol right. If some of these extensions become popular or require better
performance than the one achievable with virtual machines, they could later
be included in a new version of the protocol.

Designing a protocol fully compatible with xBGP. A second area of
future research focuses on the design of BGP implementations that better
support xBGP. Currently, xBGP interfaces with BGP implementations such
as BIRD and FRRouting. However, modifications are required to make these
implementations compatible with xBGP, such as modifying internal function

141

142 Chapter 7. Discussion & Future Directions

signatures, addingmissing data to structures or including additional arguments
in functions. In addition, implementations must incorporate an overlay to
enable xBGP vendor-neutral data. This results in additional memory usage
and slower execution of xBGP programs.

One possible solution is to redesign the underlying protocol implementa-
tion to improve the efficiency of xBGP integration. This involves designing
the implementation so that it requires minimal code modifications to sup-
port xBGP and minimizes the transformation of structures passed to xBGP
programs.

Using other virtual machines. A third research direction is related to the
virtual machine used. eBPF was the most mature virtual machine during the
development of xBGP. However, other virtual machines such as WebAssembly
seem more promising and start to perform well. It might be interesting to see
the advantages of using them in the context of xBGP.

WebAssembly [Haa+17] does not have the same origins as eBPF, since
it was designed to program “high-performance” applications for the web.
AlthoughWebAssembly is not limited to the web, it is designed to achieve high
performance similar to native code, to guarantee security through validated
code execution in a secure, isolated environment, and to ensure portability
across hardware, languages and platforms.

Unlike eBPF, WebAssembly operates in a 32-bit address space. It has a
dedicated linear memory that cannot be escaped, in addition to a local stack.
A WebAssembly program also includes functions, tables and global variables
that can be accessed by other WebAssembly programs.

WebAssembly seems to be well suited to the requirements of an xBGP
program due to its memory isolation and programming interface characteris-
tics. In addition, the recent introduction of WASIX [Was23a], which makes it
possible to create fully POSIX-compliant applications, e.g., by implementing
part of the libc [Was23b], offers increased functionality for the development
of more sophisticated xBGP programs.

Using other programing language for xBGP programs In Chapter 4,
we explained that xBGP programs are written in C, which is considered as an
unsafe language. To address this concern, we used several software verification
tools to check unsafe aspects of the language. However, Rust, a relatively new
programming language, is gaining in popularity in recent years [Cor23]. When
a Rust program is compiled, it enforces that all references (unless explicitly
marked as unsafe) point to valid memory locations. By combining Rust’s
memory safety guarantee with WebAssembly’s features, it could become
possible to achieve robust memory guarantees for programs running in a
routing protocol implementation.

143

Leveraging Secure Transport

In Part III, we have demonstrated three new features that improve BGP. We
believe that using QUIC as the transport layer of routing protocols can bring
additional benefits to distributed routing protocols. Our current prototypes
are a first step to reach this goal. They open new directions that researchers,
network operators and eventually the IETF will need to explore. We discuss
some of these directions in this section.

A precise semantics for the BGP over QUIC certificates. Our BGP over
QUIC (BoQ) prototype uses some fields of the X.509 certificates to distribute
prefix lists, filters and other types of information. Network operators and the
IETF should discuss and agree on a semantics that defines the information
which can be exchanged inside the BGP over QUIC certificates. We showed
in Section 5.5.1 how X.509 certificates can be used to authenticate additional
routing information, especially in the case of open-peering policies. One
could extend such use case by embedding additional information. These
certificates could carry different types of information, from prefix lists to
traffic engineering requirements. For example, a field in the certificate could
indicate the type of peering (shared cost, client, open-peering, . . .) and the
router receiving such authenticated information could dynamically accept
or deny the connection request. Furthermore, edge routers of an AS could
automatically modify the configuration of their import and export filters
according to the requesting router type (stub, transit, . . .).

Certification authorities and revocation. Using X.509 certificates to sup-
port BGP will bring new operational concerns as for the current public key
infrastructure [For+03] and its certificate authorities. BGP over QUIC would
benefit from a public PKI, which could be built upon the RPKI [MK20], to
certify that a router belongs to a given AS. This PKI could be provided by
a coalition of an Internet Routing Registries (IRR) such as APNIC, AFNIC,
RIPE, . . .

Hence, BoQ could be directly integrated with existing RPKIs without
major infrastructure changes. Edge routers could dynamically verify, upon
connection initiation, that their peer effectively belongs to the expected AS.

When network operators start to use certificates, they also need to define
procedures to manage the expiration of the revocation of these certificates.
The procedures used for the web PKI might not all be applicable to certificates
used by routing protocols.

Another existing piece of PKI that could be reused as-is is the Online
Certificate Status Protocol (OCSP) [San+13]. This allows the management of
certificates lifetimes with Certificates Revocation Lists (CRLs). Routers could

144 Chapter 7. Discussion & Future Directions

directly verify, upon connection initiation, if the remote peer still has a valid
certificate. By revoking a router’s certificate, network operator could remove
routers or a whole peering region.

Path diversity strategies with xBGP. xBGP (Chapter 4) adds flexibility
to BGP by offering a common interface letting operators implement their
own BGP extensions. Such tool could be used to implement advanced path
selection policies as discussed in Section 5.5.2. However, this would require
porting xBGP over our BoQ prototype to benefit from QUIC since the current
version is built on top of a plain implementation of BGP. This problem can be
explored in a future BoQ prototype. Currently, if BoQ plans to use certificates
for a specific use case, it is mandatory that the semantics are understood by
the BGP implementation that receives the certificate. Consequently, the code
responsible for managing the directives described in the certificate must be
developed in the BGP implementation itself. This would be difficult to manage
as path selection policies may vary according to operators. With the aid of
xBGP, it is now conceivable that an X.509 certificate ships xBGP programs in
addition to the predefined directives listed in the certificate.

After receiving the certificate containing xBGP programs, a xBGP-compati-
ble router could inject them to be executed during the BGP session connecting
the two BGP speakers. This would grant significant flexibility in designing
use-cases that could be implemented using xBGP on top of BoQ, thus enabling
custom path selection by a remote AS.

Making routing protocol “data-plane” aware

The final contribution of this thesis (Part IV) focused on the verification of
BGP routes through the establishment of a secure handshake in the data-plane.
This approach is in line with the objective of improving the dynamicity of
the control-plane as a function of events occurring in the data-plane. In this
section, we examine some of these directions and considerations.

Augmenting the BGP Decision Process. The BGP decision process tra-
ditionally relies on control plane information to select the best route to a
destination. However, this approach often results in sub-optimal decisions.
Integrating data plane metrics, such as latency, into the decision process can
lead to more optimal path choices. Studies have shown that taking latency
into account can improve the decision for around 77% of prefixes [Nak+22].

Network providers often use virtual routing and forwarding tables (VRFs)
to segment a physical router into several virtual routers. This approach is
commonly adopted by operators to manage various customer services, par-
ticularly in cases where each customer has several remote sites linked only

145

by their network provider. By using VRFs, operators can maintain a logical
separation between different customers, allowing each customer to have its
own isolated routing environment. This enables efficient management and
control of customer-specific routing policies, guaranteeing secure and reliable
connectivity between the customer’s remote sites and their associated hosts.

By developing this concept further, we can consider integrating other
data-plane metrics, such as bandwidth throughput, to form multiple VRFs per
metric. For example, if an operator would like to maximize bandwidth for
specific prefixes, they can configure their BGP routers accordingly to reflect
this policy. Similarly, another operator can configure other prefixes associated
with video traffic to minimize latency. By doing so, the operator has the ability
to apply for a variety of routing policies that can be adjusted to optimize
network performance according to their specific needs.

With several optimized virtual routing tables at their disposal, the network
operator can selectively choose which routes to advertise and use for packet
transmission. In addition, a network can offer a service to its BGP peers by
enabling them to advertise their prefixes with a specific metric optimization
objective. This can be facilitated by using an arbitrary BGP community. For
example, a customer can send a BGP route with an arbitrary BGP community
to the data plane-aware provider, asking it to advertise the prefix on low
latency paths.

This introduces a new type of “control-plane-oriented Quality of Service
(QoS)”, which complements existing QoS techniques implemented in the data
plane. The combination of control plane and data plane QoS enables a more
comprehensive and customizable approach to network optimization.

Enabling fine-grained Traffic Engineering methods. BGP typically se-
lects for each destination a single next hop, or several ones in the case of ECMP
(Equal-Cost Multi-Path) routing. However, the same IP prefix can provide
access to different targets, such as services with specific requirements, e.g.,
low latency or low loss rate. With BGP alone, network operators cannot force
one exit path over another without resorting to complex traffic engineering
techniques. Depending on the exit AS or exit router, the choice of specific
paths may allow optimizing specific metrics, e.g., bandwidth, latency, etc.

BGP-Egress Peer Engineering (BGP-EPE) [Fil+21b] is a technique that
relies on Segment Routing over IPv6 (SRv6) [Fil+21a] to force the forwarding
path from a AS border router. When a BGP-EPE enabled router receives
a packet encapsulated in an SRv6 header, it can discriminate the path that
packets should take based on the Segment Identifier (SID).

By combining an approach that takes into account data-plane metrics with
BGP-EPE, network operators can forward data-plane traffic according to the
metric they wish to optimize. This integration enables more granular control

146 Chapter 7. Discussion & Future Directions

on routing decisions.

Using data-plane data to influence the control-plane. In our previous
discussion, we explored how information from the data-plane can inform BGP
route selection. Conversely, we can also use the reverse approach, where
events occurring in the data plane trigger notifications to the control plane for
problem resolution. For example, if we find that the latency of the currently
selected route exceeds a certain threshold, we can initiate a new route selection
by invoking the BGP decision process. This proactive approach enables the
control plane to dynamically adapt to changing data-plane conditions and
make more informed routing decisions to optimize network performance.

Conclusion 8
Distributed routing protocols, which constitute a large fraction of today’s
Internet control-plane, no longer fully meet the requirements of modern
networks. These protocols originated in the early days of the Internet, in the
late 1980s, and despite some extensions through RFC standardization over time,
they have become rigid and resistant to change. This lack of flexibility makes
it difficult to propose improvements or modify implementations. A notable
example of this ossification occurred in 2010 when several BGP routers on the
Internet crashed following a routing experiment conducted by a research team
at Duke University [RIP10]. The purpose of the experiment was to evaluate
the support for 32-bit AS numbers throughout the Internet.

This thesis aimed to improve distributed routing protocols by addressing
three key aspects that correspond to the current requirements of modern
networks.

In Part II, we focused on the programmability of routing protocols. Instead
of depending solely on router vendors, operators can dynamically modify
their routing protocols without having to reboot or recompile routers. To this
end, we have integrated an eBPF-based virtual machine into the BGP protocol
implementation, enabling the execution of arbitrary code written by a network
operator. We demonstrated the feasibility of this approach by implementing
various use cases using the eBPF virtual machine we integrated in BGP and
OSPF. Chapter 4 took the notion of programmable protocols a step further
by proposing the concept of xBGP, which enables programmability within
the BGP protocol itself, independently of the underlying implementation.
xBGP consists of (𝑖) a virtual machine, (𝑖𝑖) an API to communicate with the
host BGP implementation, and (𝑖𝑖𝑖) dedicated insertion points where xBGP
programs can be executed. With xBGP, a single plugin can be written once
can run on any xBGP-compatible BGP implementation. We have validated
this new approach by making two open-source BGP implementations, BIRD
and FRRouting, compatible with xBGP and by implementing use cases that
are difficult to reproduce on traditional BGP implementations.

Then, In the Part III, we focused on modernizing the transport of routing
messages. The BGP protocol currently relies on a raw TCP session to exchange
messages. However, we have shown that TCP presents several significant
problems when used in the context of the BGP protocol. The main problem is

147

148 Chapter 8. Conclusion

its lack of security, as it makes the BGP session vulnerable to potential attacks
that can lead to traffic disruptions, such as blackholing.

To solve this problem, we proposed replacing TCP by QUIC, a UDP-based
transport protocol. QUIC includes encryption and other features designed
to enhance those already integrated inside TCP. By using a secure transport
protocol like QUIC into BGP, we noticed a potential in the way QUIC authenti-
cates routers. Indeed, one notable advantage is that QUIC uses TLS 1.3, which
relies on X.509 certificates for authentication between parties involved in the
QUIC connection. By relying on these certificates, we have demonstrated
the ability (𝑖) to automatically reconfigure routers based on the information
provided by the certificates, (𝑖𝑖) to offer a more secure blackholing service
and (𝑖𝑖𝑖) to establish BGP sessions on demand according to load and network
status.

By replacing the transport layer of routing protocols with QUIC, we believe
that our results may encourage the IETF to move the ongoing BGP over QUIC
draft towards its standardization. This would allow researcher and protocol
designers to explore new routing approaches.

Finally, in Part IV we focused on a specific aspect of BGP route security.
When BGP announces routes, there is no guarantee that they can be reached
and used. This is because BGP relies solely on control-plane information to
determine the best route, without taking into account the current state of the
network. In Chapter 6, we developed a method for checking whether a BGP
route is reachable in the data-plane before adding it to the router’s routing
table and announcing it to other BGP speakers. We tested our approach in
FRRouting and carried out a simple experiment which showed that BGP no
longer selects unreachable routes in the data plane, thus ensuring connectivity
for all advertised prefixes. Naturally, this method slows down the routing
decision process, as our prototype needs to establish a secure exchange to
validate the routing. However, this delay is necessary to guarantee route
reachability.

This new approach represents a first step towards leveraging the potential
of integrating data-plane metrics into the control-plane. It demonstrates how
integrating these metrics can enhance the flexibility of the control-plane. In
Chapter 7, we presented various directions for future research and highlighted
unresolved questions in this area. The objective was to encourage other
researchers to build on the foundations laid by this work and delve deeper
into this subject.

Bibliography

[ABD14] L. Alt, R. Beverly, and A. Dainotti. “Uncovering network tarpits
with degreaser”. In: Proceedings of the 30th Annual Computer
Security Applications Conference. 2014, pp. 156–165.

[ACT13] P. Aitken, B. Claise, and B. Trammell. Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation. RFC 7011. Sept. 2013. doi: 10.17487/RFC7011.

[Ael20] M. Aelmans. The TCP Authentication Option (TCP-AO). 2020. url:
https:// conference.apnic.net/50/ assets/files/AP
CS790/The- TCP- Authentication- Option.pdf (visited on
06/22/2023).

[And+10] L. Andrew et al. “Flexible BGP Communities”. Internet draft,
draft-lange-flexible-bgp-communities-03, work in progress. Aug.
2010.

[AP15] G. Aceto and A. Pescapé. “Internet Censorship detection: A sur-
vey”. In: Computer Networks 83 (2015), pp. 381–421. issn: 1389-
1286. doi: https://doi.org/10.1016/j.comnet.2015.03.
008.

[ARS18] R. Amin, M. Reisslein, and N. Shah. “Hybrid SDN Networks: A
Survey of Existing Approaches”. In: IEEE Communications Surveys
& Tutorials 20.4 (2018), pp. 3259–3306. doi: 10.1109/COMST.
2018.2837161.

[Azi+20] A. Azimov, E. Bogomazov, R. Bush, K. Patel, and J. Snijders. Ver-
ification of AS_PATH Using the Resource Certificate Public Key
Infrastructure and Autonomous System Provider Authorization.
Internet-Draft draft-ietf-sidrops-aspa-verification-04. Work in
Progress. Internet Engineering Task Force, Mar. 2020. 12 pp.

[Azi+22] A. Azimov, E. Uskov, R. Bush, K. Patel, J. Snijders, and R. Housley.
A Profile for Autonomous System Provider Authorization. Internet-
Draft draft-ietf-sidrops-aspa-profile-07. Work in Progress. Inter-
net Engineering Task Force, Jan. 2022. 9 pp.

149

https://doi.org/10.17487/RFC7011
https://conference.apnic.net/50/assets/files/APCS790/The-TCP-Authentication-Option.pdf
https://conference.apnic.net/50/assets/files/APCS790/The-TCP-Authentication-Option.pdf
https://doi.org/https://doi.org/10.1016/j.comnet.2015.03.008
https://doi.org/https://doi.org/10.1016/j.comnet.2015.03.008
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/COMST.2018.2837161

150 BIBLIOGRAPHY

[Azi+23a] A. Azimov, E. Bogomazov, R. Bush, K. Patel, J. Snijders, and K.
Sriram. BGP AS_PATH Verification Based on Autonomous System
Provider Authorization (ASPA) Objects. Internet-Draft draft-ietf-
sidrops-aspa-verification-16. Work in Progress. Internet Engi-
neering Task Force, Aug. 2023. 23 pp.

[Azi+23b] A. Azimov, E. Uskov, R. Bush, J. Snijders, R. Housley, and B.
Maddison. A Profile for Autonomous System Provider Authoriza-
tion. Internet-Draft draft-ietf-sidrops-aspa-profile-16. Work in
Progress. Internet Engineering Task Force, July 2023. 14 pp.

[AZV17] M. Apostolaki, A. Zohar, and L. Vanbever. “Hijacking Bitcoin:
Routing Attacks on Cryptocurrencies”. In: 2017 IEEE Symposium
on Security and Privacy (SP). 2017, pp. 375–392. doi: 10.1109/SP.
2017.29.

[BA13] R. Bush and R. Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol. RFC 6810. Jan. 2013. doi: 10.17487/
RFC6810.

[BA17] R. Bush and R. Austein. The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 1. RFC 8210. Sept. 2017. doi:
10.17487/RFC8210.

[BDL10] R. Blair, A. Durai, and J. Lautmann. Tcl scripting for Cisco IOS.
Cisco Press, 2010.

[Bec+17a] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. “A general ap-
proach to network configuration verification”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Com-
munication. 2017, pp. 155–168.

[Bec+17b] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker.
“Network configuration synthesis with abstract topologies”. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 2017, pp. 437–451.

[Bel58] R. Bellman. “On a Routing Problem”. In: Quarterly of Applied
Mathematics 16.1 (Apr. 1958). Full publication date: APRIL, 1958,
pp. 87–90.

[Ber+18a] M. Bertrone, S. Miano, F. Risso, and M. Tumolo. “Accelerating
Linux Security with EBPF Iptables”. In: Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos. SIGCOMM
’18. Budapest, Hungary: Association for Computing Machinery,
2018, pp. 108–110. isbn: 9781450359153. doi: 10.1145/3234200.
3234228.

https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.17487/RFC6810
https://doi.org/10.17487/RFC6810
https://doi.org/10.17487/RFC8210
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3234200.3234228

BIBLIOGRAPHY 151

[Ber+18b] M. Bertrone, S. Miano, F. Risso, and M. Tumolo. “Accelerating
Linux Security with eBPF iptables”. In: Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos. ACM. 2018,
pp. 108–110.

[BH22] R. Bush and R. Housley. The ’I’ in RPKI Does Not Stand for Identity.
RFC 9255. June 2022. doi: 10.17487/RFC9255.

[Bir+19] H. Birge-Lee, L. Wang, J. Rexford, and P. Mittal. “Sico: Surgical
interception attacks by manipulating BGP communities”. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019, pp. 431–448.

[Boe+08] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D.
Cooper. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280. May 2008. doi:
10.17487/RFC5280.

[Bon+22] M. Bonola, G. Belocchi, A. Tulumello, M. S. Brunella, G. Siracu-
sano, G. Bianchi, and R. Bifulco. “Faster Software Packet Pro-
cessing on FPGA NICs with eBPF Program Warping”. In: 2022
USENIX Annual Technical Conference (USENIX ATC 22). Carlsbad,
CA: USENIX Association, July 2022, pp. 987–1004. isbn: 978-1-
939133-29-58.

[Bos+14] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. “P4:
Programming protocol-independent packet processors”. In: ACM
SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–
95.

[Bot+14] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira. “On the
Design of Practical Fault-Tolerant SDN Controllers”. In: 2014
Third European Workshop on Software Defined Networks. 2014,
pp. 73–78. doi: 10.1109/EWSDN.2014.25.

[BPT15] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540. May 2015. doi: 10.17487/RFC7540.

[BPW19] R. Bush, K. Patel, and D. Ward. Extended Message Support for BGP.
RFC 8654. Oct. 2019. doi: 10.17487/RFC8654.

[Bre+20] J. Brenes, A. García-Martínez, M. Bagnulo, A. Lutu, and C. Pelsser.
“Power Prefixes Prioritization for Smarter BGP Reconvergence”.
In: IEEE/ACM Transactions on Networking 28.3 (2020), pp. 1074–
1087. doi: 10.1109/TNET.2020.2979665.

https://doi.org/10.17487/RFC9255
https://doi.org/10.17487/RFC5280
https://doi.org/10.1109/EWSDN.2014.25
https://doi.org/10.17487/RFC7540
https://doi.org/10.17487/RFC8654
https://doi.org/10.1109/TNET.2020.2979665

152 BIBLIOGRAPHY

[Bro+16] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman.
“T2: temporal property verification”. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems. Springer. 2016, pp. 387–393.

[Bru+17] T. Bruijnzeels, O. Muravskiy, B. Weber, and R. Austein. The RPKI
Repository Delta Protocol (RRDP). RFC 8182. July 2017. doi: 10.
17487/RFC8182.

[BSM18] F. Bannour, S. Souihi, and A. Mellouk. “Distributed SDN Control:
Survey, Taxonomy, and Challenges”. In: IEEE Communications
Surveys & Tutorials 20.1 (2018), pp. 333–354. doi: 10.1109/COMST.
2017.2782482.

[Cae+05] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J.
van der Merwe. “Design and implementation of a routing control
platform”. In: Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation-Volume 2. USENIX
Association. 2005, pp. 15–28.

[CAI22] CAIDA. The CAIDAMacroscopic Internet Topology Data Kit - 2021-
03. 2022. url: https://www.caida.org/catalog/datasets/
internet-topology-data-kit (visited on 05/24/2022).

[Cal06] K. Calvert. “Reflections on network architecture: an active net-
working perspective”. In: ACM SIGCOMM Computer Communi-
cation Review 36.2 (2006), pp. 27–30.

[Cas+14] I. Castro, J. C. Cardona, S. Gorinsky, and P. Francois. “Remote
peering: More peering without internet flattening”. In: Proceed-
ings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies. 2014, pp. 185–198.

[Cas+20] C. Cassagnes, L. Trestioreanu, C. Joly, and R. State. “The rise of
eBPF for non-intrusive performance monitoring”. In: NOMS 2020
- 2020 IEEE/IFIP Network Operations and Management Symposium.
2020, pp. 1–7. doi: 10.1109/NOMS47738.2020.9110434.

[CBC06] E. Chen, T. J. Bates, and R. Chandra. BGP Route Reflection: An
Alternative to Full Mesh Internal BGP (IBGP). RFC 4456. July 2006.
doi: 10.17487/RFC4456.

[CCI84] CCITT. Message Handling Systems: Presentation Transfer Syntax
and Notation. Recommendations X.409. Oct. 1984.

[CCI88] CCITT. “Recommendation X.208, Specification of Abstract Syn-
tax Notation One (ASN.1)”. In: Data Communications Networks
Open Systems Interconnection (OSI) Model and Notation, Service
Definition, Blue Book. Vol VIII (Nov. 1988).

https://doi.org/10.17487/RFC8182
https://doi.org/10.17487/RFC8182
https://doi.org/10.1109/COMST.2017.2782482
https://doi.org/10.1109/COMST.2017.2782482
https://www.caida.org/catalog/datasets/internet-topology-data-kit
https://www.caida.org/catalog/datasets/internet-topology-data-kit
https://doi.org/10.1109/NOMS47738.2020.9110434
https://doi.org/10.17487/RFC4456

BIBLIOGRAPHY 153

[CCI89] CCITT. “Recommendation X.509, The Directory-Authentication
Framework, Blue-Book-Melbourne (1988), Fascicle VIII. 8: Data
Communication Networks: Directory”. In: International Telecom-
munications Union, Geneva, Switzerland (1989), pp. 127–141.

[CCL19] B. Claise, J. Clarke, and J. Lindblad. Network Programmability
with YANG. Addison-Wesley, 2019.

[Che00] E. Chen. Route Refresh Capability for BGP-4. RFC 2918. Sept. 2000.
doi: 10.17487/RFC2918.

[Cho+19] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill. “BGP hi-
jacking classification”. In: 2019 Network Traffic Measurement and
Analysis Conference (TMA). IEEE. 2019, pp. 25–32. doi: 10.23919/
TMA.2019.8784511.

[Chu+03] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman. “PlanetLab: An Overlay Testbed for
Broad-Coverage Services”. In: SIGCOMM Comput. Commun. Rev.
33.3 (July 2003), pp. 3–12. issn: 0146-4833. doi: 10.1145/956993.
956995.

[Chu+19] T. Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D. Choffnes,
D. Levin, B. M. Maggs, A. Mislove, R. v. Rijswijk-Deij, J. Rula,
et al. “RPKI is Coming of Age: A Longitudinal Study of RPKI
Deployment and Invalid Route Origins”. In: Proceedings of the
Internet Measurement Conference. 2019, pp. 406–419.

[Cis05] Cisco Systems, Inc. Remotely Triggered Black Hole Filtering – Des-
tination Based and Source Based. White paper. 2005.

[Cis11] Cisco. Cisco IOS Scripting with TCL Configuration Guide. https:
//www.cisco.com/c/en/us/td/docs/ios-xml/ios/ios_tcl/
configuration/12-4t/ios-tcl-12-4t-book/nm-script-
tcl.html. 2011.

[Cis15] I. Cisco Systems. Route-Maps for IP Routing Protocol Redistribution
Configuration. 2015. url: https://www.cisco.com/c/en/us/
support/docs/ip/border-gateway-protocol-bgp/49111-
route-map-bestp.html (visited on 05/20/2022).

[Cis20] Cisco. Cisco Annual Internet Report (2018–2023) White Paper. ht
tps://www.cisco.com/c/en/us/solutions/collateral/e
xecutive-perspectives/annual-internet-report/white-
paper-c11-741490.html. 2020.

https://doi.org/10.17487/RFC2918
https://doi.org/10.23919/TMA.2019.8784511
https://doi.org/10.23919/TMA.2019.8784511
https://doi.org/10.1145/956993.956995
https://doi.org/10.1145/956993.956995
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ios_tcl/configuration/12-4t/ios-tcl-12-4t-book/nm-script-tcl.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ios_tcl/configuration/12-4t/ios-tcl-12-4t-book/nm-script-tcl.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ios_tcl/configuration/12-4t/ios-tcl-12-4t-book/nm-script-tcl.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ios_tcl/configuration/12-4t/ios-tcl-12-4t-book/nm-script-tcl.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/49111-route-map-bestp.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/49111-route-map-bestp.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/49111-route-map-bestp.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

154 BIBLIOGRAPHY

[Cit+10] L. Cittadini, W. Muhlbauer, S. Uhlig, R. Bush, P. Francois, and
O. Maennel. “Evolution of internet address space deaggregation:
myths and reality”. In: IEEE Journal on Selected Areas in Commu-
nications 28.8 (2010), pp. 1238–1249.

[Clo] Cloudflare. “Quiche”. https://github.com/cloudflare/quic
he.

[Coh+16] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira. “Jumpstarting
BGP security with path-end validation”. In: Proceedings of the
2016 ACM SIGCOMM Conference. SIGCOMM ’16. Florianopolis,
Brazil: Association for Computing Machinery, 2016, pp. 342–355.
isbn: 9781450341936. doi: 10.1145/2934872.2934883.

[Cor23] J. Corbet. “A first look at Rust in the 6.1 kernel”. https://lwn.
net/Articles/910762/. Oct. 2023.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. “Terminator: beyond
safety”. In: International Conference on Computer Aided Verifica-
tion. Springer. 2006, pp. 415–418.

[CS21] J. Chroboczek and D. Schinazi. The Babel Routing Protocol. RFC
8966. Jan. 2021. doi: 10.17487/RFC8966.

[CSR16] E. Chen, N. Shen, and R. Raszuk. Carrying Geo Coordinates in
BGP. Internet-Draft draft-chen-idr-geo-coordinates-02. Work in
Progress. Internet Engineering Task Force, Oct. 2016. 9 pp.

[Cur+23] L. Curley, K. Pugin, S. Nandakumar, and V. Vasiliev. Warp - Live
Media Transport over QUIC. Internet-Draft draft-lcurley-warp-04.
Work in Progress. Internet Engineering Task Force, Mar. 2023.
30 pp.

[CZN20] CZ.NIC, z.s.p.o. “BIRD Internet Routing Daemon”. https://
gitlab.nic.cz/labs/bird. 2020. (Visited on 05/25/2022).

[Dav04] G. Davies. Designing and Developing Scalable IP Networks. John
Wiley & Sons, 2004.

[DB08] B. Donnet and O. Bonaventure. “On BGP communities”. In: ACM
SIGCOMM Computer Communication Review 38.2 (2008), pp. 55–
59.

[De +19] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson,
A. Legay, O. Pereira, and O. Bonaventure. “Pluginizing QUIC”. In:
Proceedings of the ACM Special Interest Group on Data Communi-
cation. 2019, pp. 59–74.

https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://doi.org/10.1145/2934872.2934883
https://lwn.net/Articles/910762/
https://lwn.net/Articles/910762/
https://doi.org/10.17487/RFC8966
https://gitlab.nic.cz/labs/bird
https://gitlab.nic.cz/labs/bird

BIBLIOGRAPHY 155

[Dec+23] B. Decraene, L. Ginsberg, T. Li, G. Solignac, M. Karasek, C. Bow-
ers, G. V. de Velde, P. Psenak, and T. Przygienda. IS-IS Fast Flood-
ing. Internet-Draft draft-ietf-lsr-isis-fast-flooding-03. Work in
Progress. Internet Engineering Task Force, Mar. 2023. 25 pp.

[Dec+98] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. “Router Plu-
gins: A Software Architecture for next Generation Routers”. In:
SIGCOMM Comput. Commun. Rev. 28.4 (Oct. 1998), pp. 229–240.
issn: 0146-4833. doi: 10.1145/285243.285285.

[Dev20] C. DevNet. Application Hosting. 2020. url: https://develope
r.cisco.com/docs/ios-xe/%5C#!application-hosting-
quick-start-guide/application-hosting-options (visited
on 05/24/2022).

[DH76] W. Diffie and M. Hellman. “New directions in cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654.
doi: 10.1109/TIT.1976.1055638.

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with
graphs”. In: Numerische Mathematik 1.1 (Dec. 1959), pp. 269–
271. issn: 0945-3245. doi: 10.1007/BF01386390.

[Don17] J. A. Donenfeld. “Wireguard: next generation kernel network
tunnel.” In: NDSS. 2017, pp. 1–12.

[DSM19] L. Deri, S. Sabella, and S. Mainardi. “Combining System Visibility
and Security Using eBPF”. In: Proceedings of the Third Italian
Conference on Cyber Security (ITASEC). ITASEC ’19. 2019, pp. 50–
62.

[DWH13] Z. Durumeric, E. Wustrow, and J. A. Halderman. “ZMap: Fast
Internet-Wide Scanning and Its Security Applications”. In: Pro-
ceedings of the 22nd USENIX Conference on Security. SEC’13. Wash-
ington, D.C.: USENIX Association, 2013, pp. 605–620. isbn: 978-
1-931971-03-4.

[EF10] J. W. Evans and C. Filsfils. Deploying IP and MPLS QoS for multi-
service networks: Theory and practice. Elsevier, 2010.

[Enn+11] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder. Network
Configuration Protocol (NETCONF). RFC 6241. June 2011. doi:
10.17487/RFC6241.

[ER13] J. Erman and K. K. Ramakrishnan. “Understanding the super-sized
traffic of the super bowl”. In: Proceedings of the 2013 conference
on Internet measurement conference. 2013, pp. 353–360.

https://doi.org/10.1145/285243.285285
https://developer.cisco.com/docs/ios-xe/%5C#!application-hosting-quick-start-guide/application-hosting-options
https://developer.cisco.com/docs/ios-xe/%5C#!application-hosting-quick-start-guide/application-hosting-options
https://developer.cisco.com/docs/ios-xe/%5C#!application-hosting-quick-start-guide/application-hosting-options
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/BF01386390
https://doi.org/10.17487/RFC6241

156 BIBLIOGRAPHY

[Fan+09] M. Fanto, R. Atkinson, M. Barnes, V. Manral, R. White, T. Li,
and M. Bhatia. OSPFv2 HMAC-SHA Cryptographic Authentication.
RFC 5709. Oct. 2009. doi: 10.17487/RFC5709.

[FB05] N. Feamster and H. Balakrishnan. “Detecting BGP configuration
faults with static analysis”. In: Proceedings of the 2nd conference
on Symposium on Networked Systems Design & Implementation-
Volume 2. USENIX Association. 2005, pp. 43–56.

[FBR03] N. Feamster, J. Borkenhagen, and J. Rexford. “Guidelines for in-
terdomain traffic engineering”. In: ACM SIGCOMM Computer
Communication Review 33.5 (2003), pp. 19–30.

[FC19] L. Fontana andD. Calavera. Linux Observability with BPF. O’Reilly,
2019.

[Fed+90] M. Fedor, M. L. Schoffstall, J. R. Davin, and D. J. D. Case. Simple
Network Management Protocol (SNMP). RFC 1157. May 1990. doi:
10.17487/RFC1157.

[Fei06] M. Feilner. OpenVPN: Building and Integrating Virtual Private Net-
works: Learn How to Build Secure VPNs Using This Powerful Open
Source Application. Packt Publishing, 2006. isbn: 190481185X.

[Fil+21a] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and
Z. Li. Segment Routing over IPv6 (SRv6) Network Programming.
RFC 8986. Feb. 2021. doi: 10.17487/RFC8986.

[Fil+21b] C. Filsfils, S. Previdi, G. Dawra, E. Aries, and D. Afanasiev. Seg-
ment Routing Centralized BGP Egress Peer Engineering. RFC 9087.
Aug. 2021. doi: 10.17487/RFC9087.

[FK11] S. Frankel and S. Krishnan. IP Security (IPsec) and Internet Key
Exchange (IKE) Document Roadmap. RFC 6071. Feb. 2011. doi:
10.17487/RFC6071.

[Fle17] M. Fleming. “A thorough introduction to eBPF”. In: Linux Weekly
News (Dec. 2017). https://old.lwn.net/Articles/740157/.

[FLM08] D. Ferguson, A. Lindem, and J. Moy. OSPF for IPv6. RFC 5340. July
2008. doi: 10.17487/RFC5340.

[Flo02] S. Floyd. Inappropriate TCP Resets Considered Harmful. RFC 3360.
Aug. 2002. doi: 10.17487/RFC3360.

[Fog+15] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. “A General Approach to Network
Configuration Analysis”. In: 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 15). Oakland,
CA: USENIX Association, May 2015, pp. 469–483. isbn: 978-1-
931971-218.

https://doi.org/10.17487/RFC5709
https://doi.org/10.17487/RFC1157
https://doi.org/10.17487/RFC8986
https://doi.org/10.17487/RFC9087
https://doi.org/10.17487/RFC6071
https://doi.org/10.17487/RFC5340
https://doi.org/10.17487/RFC3360

BIBLIOGRAPHY 157

[Fon+17] R. Fontugne, C. Pelsser, E. Aben, and R. Bush. “Pinpointing De-
lay and Forwarding Anomalies Using Large-Scale Traceroute
Measurements”. In: Proceedings of the 2017 Internet Measurement
Conference. IMC ’17. London, United Kingdom: Association for
Computing Machinery, 2017, pp. 15–28. isbn: 9781450351188. doi:
10.1145/3131365.3131384.

[Fon+19] R. Fontugne, E. Bautista, C. Petrie, Y. Nomura, P. Abry, P. Gonçalves,
K. Fukuda, and E. Aben. “BGP zombies: An analysis of beacons
stuck routes”. In: International Conference on Passive and Ac-
tive Network Measurement. Ed. by D. Choffnes and M. Barcellos.
Springer. Cham: Springer International Publishing, 2019, pp. 197–
209. isbn: 978-3-030-15986-3.

[fon18] foniod. “Rust library for building and running BPF/eBPFmodules”.
https://github.com/foniod/redbpf. 2018.

[For+03] D. W. S. Ford, D. S. Chokhani, S. S. Wu, R. V. Sabett, and C. (R.
Merrill. Internet X.509 Public Key Infrastructure Certificate Policy
and Certification Practices Framework. RFC 3647. Nov. 2003. doi:
10.17487/RFC3647.

[Fou17] T. L. Foundation. “FRRouting Project”. https://frrouting.
org/. 2017. (Visited on 05/25/2022).

[FR07] N. Feamster and J. Rexford. “Network-wide prediction of BGP
routes”. In: IEEE/ACM Transactions on Networking (TON) 15.2
(2007), pp. 253–266.

[Frö+17] A. Frömmgen, A. Rizk, T. Erbshäußer, M. Weller, B. Koldehofe,
A. Buchmann, and R. Steinmetz. “A programming model for
application-defined multipath TCP scheduling”. In: Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. ACM. 2017,
pp. 134–146.

[FRZ14] N. Feamster, J. Rexford, and E. Zegura. “The road to SDN: an intel-
lectual history of programmable networks”. In: ACM SIGCOMM
Computer Communication Review 44.2 (2014), pp. 87–98.

[FSR11] A. Fabrikant, U. Syed, and J. Rexford. “There’s something about
MRAI: Timing diversity can exponentially worsen BGP conver-
gence”. In: 2011 Proceedings IEEE INFOCOM. 2011, pp. 2975–2983.
doi: 10.1109/INFCOM.2011.5935139.

[Fuj+23] T. Fujita et al. “GoBGP”. https://github.com/osrg/gobgp. 2023.

https://doi.org/10.1145/3131365.3131384
https://github.com/foniod/redbpf
https://doi.org/10.17487/RFC3647
https://frrouting.org/
https://frrouting.org/
https://doi.org/10.1109/INFCOM.2011.5935139

158 BIBLIOGRAPHY

[Gas+18] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.
Strowes, L. Hendriks, and G. Carle. “Clusters in the expanse:
Understanding and unbiasing IPv6 hitlists”. In: Proceedings of the
Internet Measurement Conference 2018. 2018, pp. 364–378.

[GB19] A. García-Martínez and M. Bagnulo. “Measuring BGP Route Prop-
agation Times”. In: IEEE Communications Letters 23.12 (2019),
pp. 2432–2436. doi: 10.1109/LCOMM.2019.2945964.

[Geo22] Geoff Huston. The BGP Instability Report. 2022. url: https://b
gpupdates.potaroo.net/instability/bgpupd.html (visited
on 06/29/2022).

[Ger+19] E. Gershuni et al. “Simple and Precise Static Analysis of Untrusted
Linux Kernel Extensions”. In: PLDI’19. https://research.vm
ware . com / publications / simple - and - precise - static -
analysis-of-untrusted-linux-kernel-extensions. June
2019, pp. 1069–1084.

[Gin+19] L. Ginsberg, S. Previdi, Q. Wu, J. Tantsura, and C. Filsfils. BGP
- Link State (BGP-LS) Advertisement of IGP Traffic Engineering
Performance Metric Extensions. RFC 8571. Mar. 2019. doi: 10 .
17487/RFC8571.

[Gio+17] V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann,
andA. Berger. “Inferring BGP blackholing activity in the Internet”.
In: Proceedings of the 2017 Internet Measurement Conference. ACM.
2017, pp. 1–14.

[Gio+20] V. Giotsas, G. Nomikos, V. Kotronis, P. Sermpezis, P. Gigis, L.
Manassakis, C. Dietzel, S. Konstantaras, and X. Dimitropoulos.
“O peer, where art thou? Uncovering remote peering intercon-
nections at IXPs”. In: IEEE/ACM Transactions on Networking 29.1
(2020), pp. 1–16.

[Gol14] S. Goldberg. “Why is It Taking so Long to Secure Internet Rout-
ing?” In: Commun. ACM 57.10 (Sept. 2014), pp. 56–63. issn: 0001-
0782. doi: 10.1145/2659899.

[Goo+03] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. D. McDaniel, and
A. D. Rubin. “Working around BGP: an incremental approach
to improving security and accuracy in interdomain routing.” In:
NDSS. Vol. 23. 2003, p. 156.

[Got+03] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang. “Automated
provisioning of BGP customers”. In: IEEE network 17.6 (2003),
pp. 44–55.

https://doi.org/10.1109/LCOMM.2019.2945964
https://bgpupdates.potaroo.net/instability/bgpupd.html
https://bgpupdates.potaroo.net/instability/bgpupd.html
https://research.vmware.com/publications/simple-and-precise-static-analysis-of-untrusted-linux-kernel-extensions
https://research.vmware.com/publications/simple-and-precise-static-analysis-of-untrusted-linux-kernel-extensions
https://research.vmware.com/publications/simple-and-precise-static-analysis-of-untrusted-linux-kernel-extensions
https://doi.org/10.17487/RFC8571
https://doi.org/10.17487/RFC8571
https://doi.org/10.1145/2659899

BIBLIOGRAPHY 159

[Gre+05] A. Greenberg, G. Hjalmtysson, D. A.Maltz, A.Myers, J. Rexford, G.
Xie, H. Yan, J. Zhan, and H. Zhang. “A clean slate 4D approach to
network control and management”. In:ACM SIGCOMMComputer
Communication Review. CoNEXT ’18 35.5 (Oct. 2005), pp. 41–54.
issn: 0146-4833. doi: 10.1145/1096536.1096541.

[Gre19] B. Gregg. BPF Performance Tools. Addison-Wesley Professional,
2019.

[GS05] T. G. Griffin and J. L. Sobrinho. “Metarouting”. In:ACM SIGCOMM
Computer Communication Review 35.4 (Aug. 2005), pp. 1–12. issn:
0146-4833. doi: 10.1145/1090191.1080094.

[Gur+15] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. “The
SeaHorn verification framework”. In: International Conference on
Computer Aided Verification. Springer. 2015, pp. 343–361.

[GW02a] T. G. Griffin and G. Wilfong. “Analysis of the MED oscillation
problem in BGP”. In: 10th IEEE International Conference on Net-
work Protocols, 2002. Proceedings. IEEE. 2002, pp. 90–99.

[GW02b] T. G. Griffin and G. Wilfong. “On the correctness of IBGP config-
uration”. In: ACM SIGCOMM Computer Communication Review
32.4 (2002), pp. 17–29.

[GW99] T. G. Griffin and G. Wilfong. “An analysis of BGP convergence
properties”. In:ACM SIGCOMMComputer Communication Review
29.4 (1999), pp. 277–288.

[Haa+17] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D.
Gohman, L. Wagner, A. Zakai, and J. Bastien. “Bringing the web
up to speed with WebAssembly”. In: ACM SIGPLAN Notices 52.6
(June 2017), pp. 185–200. issn: 0362-1340. doi: 10.1145/3140587.
3062363.

[Han+05] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.
“Designing extensible IP router software”. In: Proceedings of the
2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. 2005, pp. 189–202.

[Has+] S. Hasan, P. Lapukhov, A. Madan, and O. Baldonado. “Open/R:
Open routing for modern networks”. https : / / code . fb . c
om / connectivity / open - r - open - routing - for - modern -
networks/.

[Has15] HashiCorp. Vault Project. 2015. url: https://www.vaultprojec
t.io/ (visited on 09/12/2023).

[HB11] G. Huston and R. Bush. “Securing BGP with BGPSec”. In: The
Internet Protocol Forum. Vol. 14. 2. 2011.

https://doi.org/10.1145/1096536.1096541
https://doi.org/10.1145/1090191.1080094
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3140587.3062363
https://code.fb.com/connectivity/open-r-open-routing-for-modern-networks/
https://code.fb.com/connectivity/open-r-open-routing-for-modern-networks/
https://code.fb.com/connectivity/open-r-open-routing-for-modern-networks/
https://www.vaultproject.io/
https://www.vaultproject.io/

160 BIBLIOGRAPHY

[HD98] B. Hinden and D. S. E. Deering. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460. Dec. 1998. doi: 10.17487/RFC2460.

[HDM22] C. Huitema, S. Dickinson, and A. Mankin. DNS over Dedicated
QUIC Connections. RFC 9250. May 2022. doi: 10.17487/RFC9250.

[Hef98] A. Heffernan. Protection of BGP Sessions via the TCPMD5 Signature
Option. RFC 2385. Aug. 1998. doi: 10.17487/RFC2385.

[Hei+17] J. Heitz, J. Snijders, K. Patel, I. Bagdonas, and N. Hilliard. BGP
Large Communities Attribute. RFC 8092. Feb. 2017. doi: 10.17487/
RFC8092.

[HH06] J. Haas and S. Hares. Definitions of Managed Objects for BGP-4.
RFC 4273. Jan. 2006. doi: 10.17487/RFC4273.

[HHK03] M. Handley, O. Hodson, and E. Kohler. “XORP: An open platform
for network research”. In: ACM SIGCOMM Computer Commu-
nication Review 33.1 (Jan. 2003), pp. 53–57. issn: 0146-4833. doi:
10.1145/774763.774771.

[HM12] G. Huston and G. G. Michaelson. Validation of Route Origination
Using the Resource Certificate Public Key Infrastructure (PKI) and
Route Origin Authorizations (ROAs). RFC 6483. Feb. 2012. doi:
10.17487/RFC6483.

[Høi+18] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller. “The EXpress Data Path:
Fast Programmable Packet Processing in the Operating System
Kernel”. In: Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies. CoNEXT
’18. Heraklion, Greece: Association for Computing Machinery,
2018, pp. 54–66. isbn: 9781450360807. doi: 10.1145/3281411.
3281443.

[Hol+19] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissic-
chio, and L. Vanbever. “Blink: Fast Connectivity Recovery Entirely
in the Data Plane”. In: 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 161–176. isbn: 978-1-931971-49-2.

[Hon+13] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. “Achieving high utilization with software-
driven WAN”. In: Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM. 2013, pp. 15–26.

[Hop00] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992. Nov. 2000. doi: 10.17487/RFC2992.

https://doi.org/10.17487/RFC2460
https://doi.org/10.17487/RFC9250
https://doi.org/10.17487/RFC2385
https://doi.org/10.17487/RFC8092
https://doi.org/10.17487/RFC8092
https://doi.org/10.17487/RFC4273
https://doi.org/10.1145/774763.774771
https://doi.org/10.17487/RFC6483
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.17487/RFC2992

BIBLIOGRAPHY 161

[Hou09] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652. Sept.
2009. doi: 10.17487/RFC5652.

[HPS04] Y.-C. Hu, A. Perrig, and M. Sirbu. “SPV: Secure Path Vector Rout-
ing for Securing BGP”. In: Proceedings of the 2004 Conference on
Applications, Technologies, Architectures, and Protocols for Com-
puter Communications. SIGCOMM ’04. Portland, Oregon, USA:
Association for Computing Machinery, 2004, pp. 179–192. isbn:
1581138628. doi: 10.1145/1015467.1015488.

[HS99] M. Holdrege and P. Srisuresh. IP Network Address Translator (NAT)
Terminology and Considerations. RFC 2663. Aug. 1999. doi: 10.
17487/RFC2663.

[Hui22] C. Huitema.Minimal implementation of the QUIC protocol. https:
//github.com/private-octopus/picoquic. 2022.

[Hus23a] G. Huston. Growth of the BGP Table - 1994 to Present. 2023. url:
https://bgp.potaroo.net/ (visited on 05/25/2023).

[Hus23b] G. Huston. The 32-bit AS Number Report. 2023. url: https://
www.potaroo.net/tools/asn32/ (visited on 09/13/2023).

[Hus98] G. Huston. ISP survival guide: strategies for running a competitive
ISP. John Wiley & Sons, Inc., 1998.

[Ier16] R. Ierusalimschy. Programming in Lua, Fourth Edition. Lua.Org,
2016. isbn: 8590379868.

[IET] IETF QUIC Working Group. “QUIC implementations”. https://
github.com/quicwg/base-drafts/wiki/Implementations.

[Inf81] Information Sciences Institute University of Southern California.
Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791.

[IO 18] IO Visor Project. “Userspace eBPF VM”. https://github.com/
iovisor/ubpf. 2018.

[Ish+] K. Ishiguro, T. Takada, Y. Ohara, A. D. Zinin, G. Natapov, and A.
Mizutani. Quagga software routing suite. https://www.nongnu.
org/quagga/.

[ISO] ISO. “"Intermediate system to Intermediate system intra-domain
routeing information exchange protocol for use in conjunction
with the protocol for providing the connectionless-mode Network
Service (ISO 8473)"”. ISO/IEC 10589:2002.

[Iso17] Isovalent, Inc. “eBPF-based Networking, Observability, Security”.
https://cilium.io/. 2017.

[IT21] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. RFC 9000. May 2021. doi: 10.17487/RFC9000.

https://doi.org/10.17487/RFC5652
https://doi.org/10.1145/1015467.1015488
https://doi.org/10.17487/RFC2663
https://doi.org/10.17487/RFC2663
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://bgp.potaroo.net/
https://www.potaroo.net/tools/asn32/
https://www.potaroo.net/tools/asn32/
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://doi.org/10.17487/RFC0791
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://www.nongnu.org/quagga/
https://www.nongnu.org/quagga/
https://cilium.io/
https://doi.org/10.17487/RFC9000

162 BIBLIOGRAPHY

[Jab15] P. Jabloner. The two-napkin protocol. Mar. 2015.

[Jad+22] M. Jadin, Q. De Coninck, L. Navarre, M. Schapira, and O. Bonaven-
ture. “Leveraging eBPF to Make TCP Path-Aware”. In: IEEE Trans-
actions on Network and Service Management 19.3 (2022), pp. 2827–
2838. doi: 10.1109/TNSM.2022.3174138.

[Jae+23] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle. “QUIC on
the Highway: Evaluating Performance on High-rate Links”. In:
2023 IFIP Networking Conference (IFIP Networking). 2023, pp. 1–9.

[Jai+13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S.
Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. “B4: Experience with
a globally-deployed software defined WAN”. In: ACM SIGCOMM
Computer Communication Review 43.4 (2013), pp. 3–14.

[Jas+16] E. Jasinska, N. Hilliard, R. Raszuk, and N. Bakker. Internet Ex-
change BGP Route Server. RFC 7947. Sept. 2016. doi: 10.17487/
RFC7947.

[Jet+21] M. Jethanandani, K. Patel, S. Hares, and J. Haas. BGP YANG Model
for Service Provider Networks. Internet-Draft draft-ietf-idr-bgp-
model-11. Work in Progress. Internet Engineering Task Force,
July 2021. 153 pp.

[Jia+23a] J. Jia, R. Sahu, A. Oswald, D. Williams, M. V. Le, and T. Xu.
“Kernel Extension Verification is Untenable”. In: Proceedings of
the 19th Workshop on Hot Topics in Operating Systems. HOTOS
’23. Providence, RI, USA: Association for Computing Machinery,
2023, pp. 150–157. isbn: 9798400701955. doi: 10.1145/3593856.
3595892.

[Jia+23b] J. Jia, Y. Zhu, D. Williams, A. Arcangeli, C. Canella, H. Franke,
T. Feldman-Fitzthum, D. Skarlatos, D. Gruss, and T. Xu. Pro-
grammable System Call Security with eBPF. 2023. arXiv: 2302.
10366 [cs.OS].

[Joy+06] D. Joyal, F. Baker, S. Giacalone, D. Joyal, and P. Galecki. OSPF
Version 2 Management Information Base. RFC 4750. Dec. 2006. doi:
10.17487/RFC4750.

[Jun+17] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. “RustBelt:
Securing the Foundations of the Rust Programming Language”.
In: Proc. ACM Program. Lang. 2.POPL (Dec. 2017). doi: 10.1145/
3158154.

https://doi.org/10.1109/TNSM.2022.3174138
https://doi.org/10.17487/RFC7947
https://doi.org/10.17487/RFC7947
https://doi.org/10.1145/3593856.3595892
https://doi.org/10.1145/3593856.3595892
https://arxiv.org/abs/2302.10366
https://arxiv.org/abs/2302.10366
https://doi.org/10.17487/RFC4750
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154

BIBLIOGRAPHY 163

[Jun21] Junos. “Junos PyEZ Developer Guide”. https://www.juniper.
net/documentation/en_US/junos-pyez/information-prod
ucts/pathway-pages/junos-pyez-developer-guide.html.
July 2021.

[Jun22] Juniper Networks. “IP Security for BGP”. https://www.juniper.
net/documentation/us/en/software/junos/bgp/topics/
topic-map/ip_security.html. Mar. 2022.

[KaF18] M. KaFai Lau. “bpf: btf: Introduce BPF Type Format (BTF)”. h
ttps://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=69b693f0aefa0ed521e8b
d02260523b5ae446ad7. Apr. 2018.

[Kat+12] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius, N.
Feamster, H. V. Madhyastha, T. Anderson, and A. Krishnamurthy.
“LIFEGUARD: Practical Repair of Persistent Route Failures”. In:
SIGCOMM Comput. Commun. Rev. 42.4 (Aug. 2012), pp. 395–406.
issn: 0146-4833. doi: 10.1145/2377677.2377756.

[Kau05] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306.
Dec. 2005. doi: 10.17487/RFC4306.

[KBC97] D. H. Krawczyk, M. Bellare, and R. Canetti.HMAC: Keyed-Hashing
for Message Authentication. RFC 2104. Feb. 1997. doi: 10.17487/
RFC2104.

[KBS21] T. Krenc, R. Beverly, and G. Smaragdakis. “AS-level BGP commu-
nity usage classification”. In: Proceedings of the 21st ACM Internet
Measurement Conference. 2021, pp. 577–592.

[Ken05a] S. Kent. IP Authentication Header. RFC 4302. Dec. 2005. doi: 10.
17487/RFC4302.

[Ken05b] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303. Dec.
2005. doi: 10.17487/RFC4303.

[KFR06] J. Karlin, S. Forrest, and J. Rexford. “Pretty Good BGP: Improving
BGP by Cautiously Adopting Routes”. In: Proceedings of the 2006
IEEE International Conference on Network Protocols. 2006, pp. 290–
299. doi: 10.1109/ICNP.2006.320179.

[KKC12] K. Kompella, B. Kothari, and R. Cherukuri. Layer 2 Virtual Private
Networks Using BGP for Auto-Discovery and Signaling. RFC 6624.
May 2012. doi: 10.17487/RFC6624.

[KLS00] S. Kent, C. Lynn, and K. Seo. “Secure Border Gateway Protocol
(S-BGP)”. In: IEEE Journal on Selected Areas in Communications
18.4 (2000), pp. 582–592. doi: 10.1109/49.839934.

https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/en_US/junos-pyez/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/ip_security.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/ip_security.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/ip_security.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69b693f0aefa0ed521e8bd02260523b5ae446ad7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69b693f0aefa0ed521e8bd02260523b5ae446ad7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69b693f0aefa0ed521e8bd02260523b5ae446ad7
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69b693f0aefa0ed521e8bd02260523b5ae446ad7
https://doi.org/10.1145/2377677.2377756
https://doi.org/10.17487/RFC4306
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4302
https://doi.org/10.17487/RFC4303
https://doi.org/10.1109/ICNP.2006.320179
https://doi.org/10.17487/RFC6624
https://doi.org/10.1109/49.839934

164 BIBLIOGRAPHY

[Kni+11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan.
“The internet topology zoo”. In: IEEE Journal on Selected Areas in
Communications 29.9 (2011), pp. 1765–1775.

[Kos+22] M. Kosek, T. V. Doan, M. Granderath, and V. Bajpai. “One to Rule
Them All? A First Look at DNS over QUIC”. In: Passive and Active
Measurement: 23rd International Conference, PAM 2022, Virtual
Event, March 28–30, 2022, Proceedings. Springer. 2022, pp. 537–
551.

[Kre+14] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. “Software-defined networking: A compre-
hensive survey”. In: Proceedings of the IEEE 103.1 (2014), pp. 14–
76.

[KT14] D. Kroening andM. Tautschnig. “CBMC–C boundedmodel checker”.
In: International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer. 2014, pp. 389–391.

[KW10] D. Katz and D. Ward. Bidirectional Forwarding Detection (BFD).
RFC 5880. June 2010. doi: 10.17487/RFC5880.

[Lan+17] A. Langley, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P.
Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, A. Riddoch,
W.-T. Chang, Z. Shi, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, and I. Swett. “The QUIC Transport Protocol:
Design and Internet-Scale Deployment”. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communi-
cation - SIGCOMM ’17. Los Angeles, CA, USA: ACM Press, 2017,
pp. 183–196. isbn: 978-1-4503-4653-5. doi: 10.1145/3098822.
3098842. (Visited on 11/08/2019).

[LCT96] T. Li, R. Chandra, and P. S. Traina. BGP Communities Attribute.
RFC 1997. Aug. 1996. doi: 10.17487/RFC1997.

[LDD14] A. Lodhi, A. Dhamdhere, and C. Dovrolis. “Open peering by Inter-
net transit providers: Peer preference or peer pressure?” In: IEEE
INFOCOM 2014-IEEE Conference on Computer Communications.
IEEE. 2014, pp. 2562–2570.

[LGS13] R. Lychev, S. Goldberg, and M. Schapira. “BGP Security in Partial
Deployment: Is the Juice Worth the Squeeze?” In: SIGCOMM
Comput. Commun. Rev. SIGCOMM ’13 43.4 (Aug. 2013), pp. 171–
182. issn: 0146-4833. doi: 10.1145/2534169.2486010.

https://doi.org/10.17487/RFC5880
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.1145/3098822.3098842
https://doi.org/10.17487/RFC1997
https://doi.org/10.1145/2534169.2486010

BIBLIOGRAPHY 165

[LHZ14] Q. Li, Y.-C. Hu, and X. Zhang. “Even rockets cannot make pigs
fly sustainably: Can BGP be secured with BGPsec”. In: Workshop
SENT’14, 23 February 2014, San Diego, USA, Copyright 2014 Internet
Society: Proceedings. Internet Society. 2014.

[Li+15] Q. Li, X. Zhang, X. Zhang, and P. Su. “Invalidating Idealized BGP
Security Proposals and Countermeasures”. In: IEEE Transactions
on Dependable and Secure Computing 12.3 (2015), pp. 298–311.
doi: 10.1109/TDSC.2014.2345381.

[Lin+18] A. Lindem, A. Roy, D. Goethals, V. R. Vallem, and F. Baker.OSPFv3
Link State Advertisement (LSA) Extensibility. RFC 8362. Apr. 2018.
doi: 10.17487/RFC8362.

[Lin22] Linux User’s Manual. bpf-helpers(7). Sept. 2022. url: https://
man7.org/linux/man-pages/man7/bpf-helpers.7.html
(visited on 09/13/2023).

[Liu+23] Y. Liu, Y. Ma, Q. D. Coninck, O. Bonaventure, C. Huitema, and M.
Kühlewind. Multipath Extension for QUIC. Internet-Draft draft-
ietf-quic-multipath-04. Work in Progress. Internet Engineering
Task Force, Mar. 2023. 30 pp.

[LK12] M. Lepinski and S. Kent. An Infrastructure to Support Secure Inter-
net Routing. RFC 6480. Feb. 2012. doi: 10.17487/RFC6480.

[LKK12] M. Lepinski, D. Kong, and S. Kent. A Profile for Route Origin
Authorizations (ROAs). RFC 6482. Feb. 2012. doi: 10 . 17487 /
RFC6482.

[Lod+14] A. Lodhi, N. Larson, A. Dhamdhere, C. Dovrolis, and K. Claffy.
“Using peeringDB to understand the peering ecosystem”. In: ACM
SIGCOMM Computer Communication Review 44.2 (2014), pp. 20–
27.

[LPM16] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for Routing in
Large-Scale Data Centers. RFC 7938. Aug. 2016. doi: 10.17487/
RFC7938.

[LR89] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). RFC
1105. June 1989. doi: 10.17487/RFC1105.

[LS16] J. Looney and S. Smith. Automating Junos Administration: Doing
More with Less. " O’Reilly Media, Inc.", 2016.

[LS17] M. Lepinski and K. Sriram. BGPsec Protocol Specification. RFC
8205. Sept. 2017. doi: 10.17487/RFC8205.

https://doi.org/10.1109/TDSC.2014.2345381
https://doi.org/10.17487/RFC8362
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://doi.org/10.17487/RFC6480
https://doi.org/10.17487/RFC6482
https://doi.org/10.17487/RFC6482
https://doi.org/10.17487/RFC7938
https://doi.org/10.17487/RFC7938
https://doi.org/10.17487/RFC1105
https://doi.org/10.17487/RFC8205

166 BIBLIOGRAPHY

[LT21] P. Lapukhov and J. Tantsura. Equal-Cost Multipath Considerations
for BGP. Internet-Draft draft-lapukhov-bgp-ecmp-considerations-
07. Work in Progress. Internet Engineering Task Force, June 2021.
7 pp.

[Luc+19] M. Luckie, R. Beverly, R. Koga, K. Keys, J. A. Kroll, and K. Claffy.
“Network hygiene, incentives, and regulation: deployment of
source address validation in the Internet”. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security. 2019, pp. 465–480.

[LY06] C. M. Lonvick and T. Ylonen. The Secure Shell (SSH) Transport
Layer Protocol. RFC 4253. Jan. 2006. doi: 10.17487/RFC4253.

[Lyn99] C. Lynn. X.509 Extensions for Authorization of IP Addresses, AS
Numbers, and Routers within an AS. Internet-Draft draft-clynn-
bgp-x509-auth-00. Work in Progress. Internet Engineering Task
Force, June 1999. 13 pp.

[Mal98] G. S. Malkin. RIP Version 2. RFC 2453. Nov. 1998. doi: 10.17487/
RFC2453.

[Man+09] V. Manral, M. Fanto, T. Li, R. White, R. Atkinson, and M. Bhatia.
IS-IS Generic Cryptographic Authentication. RFC 5310. Feb. 2009.
doi: 10.17487/RFC5310.

[Mao+03] Z. M. Mao, R. Bush, T. G. Griffin, and M. Roughan. “BGP Beacons”.
In: Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement. IMC ’03. Miami Beach, FL, USA: Association for
Computing Machinery, 2003, pp. 1–14. isbn: 1581137737. doi:
10.1145/948205.948207.

[Mat21] M. Matějka. BIRD Journey to Threads. Chapter 0: The Reason Why.
Mar. 2021. url: https://en.blog.nic.cz/2021/03/15/bird-
journey-to-threads-chapter-0-the-reason-why/ (visited
on 09/14/2023).

[McK+08] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peter-
son, J. Rexford, S. Shenker, and J. Turner. “OpenFlow: enabling
innovation in campus networks”. In: ACM SIGCOMM Computer
Communication Review 38.2 (2008), pp. 69–74.

[McQ+21] S. McQuistin, M. Karan, P. Khare, C. Perkins, G. Tyson, M. Purver,
P. Healey, W. Iqbal, J. Qadir, and I. Castro. “Characterising the
IETF through the Lens of RFC Deployment”. In: Proceedings of
the 21st ACM Internet Measurement Conference. IMC ’21. Virtual
Event: Association for Computing Machinery, 2021, pp. 137–149.
isbn: 9781450391290. doi: 10.1145/3487552.3487821.

https://doi.org/10.17487/RFC4253
https://doi.org/10.17487/RFC2453
https://doi.org/10.17487/RFC2453
https://doi.org/10.17487/RFC5310
https://doi.org/10.1145/948205.948207
https://en.blog.nic.cz/2021/03/15/bird-journey-to-threads-chapter-0-the-reason-why/
https://en.blog.nic.cz/2021/03/15/bird-journey-to-threads-chapter-0-the-reason-why/
https://doi.org/10.1145/3487552.3487821

BIBLIOGRAPHY 167

[Mia+18] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal.
“Creating complex network service with ebpf: Experience and
lessons learned”. In: High Performance Switching and Routing
(HPSR). IEEE (2018).

[Mica] Microsoft Azure. Software for open networking in the cloud. url:
https://sonicfoundation.dev/ (visited on 06/19/2023).

[Micb] Microsoft Corporation. eBPF for Windows. url: https://github.
com/microsoft/ebpf-for-windows (visited on 06/22/2023).

[Mic19] Microsoft. MsQuic: Cross-platform, C implementation of the IETF
QUIC protocol, exposed to C, C++, C# and Rust. 2019. url: https:
//github.com/microsoft/msquic (visited on 06/26/2023).

[MJ93] S. McCanne and V. Jacobson. “The BSD Packet Filter: A New
Architecture for User-Level Packet Capture”. In: Proceedings of
the USENIXWinter 1993 Conference Proceedings on USENIXWinter
1993 Conference Proceedings. USENIX’93. San Diego, California:
USENIX Association, 1993, p. 2.

[MK14] N. D. Matsakis and F. S. Klock. “The Rust Language”. In: Pro-
ceedings of the 2014 ACM SIGAda Annual Conference on High
Integrity Language Technology. HILT ’14. Portland, Oregon, USA:
Association for Computing Machinery, 2014, pp. 103–104. isbn:
9781450332170. doi: 10.1145/2663171.2663188.

[MK20] D. Ma and S. Kent. Requirements for Resource Public Key Infras-
tructure (RPKI) Relying Parties. RFC 8897. Sept. 2020. doi: 10.
17487/RFC8897.

[MMD22] E. Marechal, P. Mérindol, and B. Donnet. “ISP Probing Reduction
with Anaximander”. In: Passive and Active Measurement. Ed. by O.
Hohlfeld, G. Moura, and C. Pelsser. Cham: Springer International
Publishing, 2022, pp. 441–469. isbn: 978-3-030-98785-5.

[Moy91] J. Moy. OSPF Version 2. RFC 1247. July 1991. doi: 10.17487/
RFC1247.

[Moy98] J. Moy. OSPF Version 2. RFC 2328. Apr. 1998. doi: 10.17487/
RFC2328.

[MP19] L. Miller and C. Pelsser. “A Taxonomy of Attacks Using BGP
Blackholing”. In: Computer Security – ESORICS 2019. Ed. by K.
Sako, S. Schneider, and P. Y. A. Ryan. Cham: Springer Interna-
tional Publishing, 2019, pp. 107–127. isbn: 978-3-030-29959-0.

https://sonicfoundation.dev/
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/ebpf-for-windows
https://github.com/microsoft/msquic
https://github.com/microsoft/msquic
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.17487/RFC8897
https://doi.org/10.17487/RFC8897
https://doi.org/10.17487/RFC1247
https://doi.org/10.17487/RFC1247
https://doi.org/10.17487/RFC2328
https://doi.org/10.17487/RFC2328

168 BIBLIOGRAPHY

[MPE18] A. Mitseva, A. Panchenko, and T. Engel. “The state of affairs in
BGP security: A survey of attacks and defenses”. In: Computer
Communications 124 (2018), pp. 45–60. issn: 0140-3664. doi: htt
ps://doi.org/10.1016/j.comcom.2018.04.013.

[Mur06] S. L. Murphy. BGP Security Vulnerabilities Analysis. RFC 4272. Jan.
2006. doi: 10.17487/RFC4272.

[MWA02] R. Mahajan, D. Wetherall, and T. Anderson. “Understanding BGP
Misconfiguration”. In: Proceedings of the 2002 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer
Communications. Vol. 32. SIGCOMM ’02 4. Pittsburgh, Pennsyl-
vania, USA: Association for Computing Machinery, Aug. 2002,
pp. 3–16. isbn: 158113570X. doi: 10.1145/633025.633027.

[Nak+22] R. Nakamura, K. Shimizu, T. Kamata, and C. Pelsser. “A First
Measurement with BGP Egress Peer Engineering”. In: Passive and
Active Measurement. Ed. by O. Hohlfeld, G. Moura, and C. Pelsser.
Cham: Springer International Publishing, 2022, pp. 199–215. isbn:
978-3-030-98785-5.

[Naw+19] M. Nawrocki, J. Blendin, C. Dietzel, T. C. Schmidt, and M. Wäh-
lisch. “Down the black hole: dismantling operational practices of
BGP blackholing at IXPs”. In: Proceedings of the Internet Measure-
ment conference. 2019, pp. 435–448.

[Nem+21] E. N. Nemmi, F. Sassi, M. La Morgia, C. Testart, A. Mei, and
A. Dainotti. “The parallel lives of Autonomous Systems: ASN
Allocations vs. BGP”. In: Proceedings of the 21st ACM Internet
Measurement Conference. 2021, pp. 593–611.

[Ong+21] P. Ongkanchana, R. Fontugne, H. Esaki, J. Snijders, and E. Aben.
“Hunting BGP Zombies in the Wild”. In: Proceedings of the Ap-
plied Networking Research Workshop. ANRW ’21. Virtual Event,
USA: Association for Computing Machinery, 2021, pp. 1–7. isbn:
9781450386180. doi: 10.1145/3472305.3472315.

[Ora15] Oracle. Oracle Key Vault. 2015. url: https : / / www . oracle .
com/security/database-security/key-vault/ (visited on
09/12/2023).

[Pad+19] R. Padmanabhan, A. Schulman, D. Levin, and N. Spring. “Residen-
tial Links under the Weather”. In: Proceedings of the ACM Special
Interest Group on Data Communication. SIGCOMM ’19. Beijing,
China: Association for Computing Machinery, 2019, pp. 145–158.
isbn: 9781450359566. doi: 10.1145/3341302.3342084.

https://doi.org/https://doi.org/10.1016/j.comcom.2018.04.013
https://doi.org/https://doi.org/10.1016/j.comcom.2018.04.013
https://doi.org/10.17487/RFC4272
https://doi.org/10.1145/633025.633027
https://doi.org/10.1145/3472305.3472315
https://www.oracle.com/security/database-security/key-vault/
https://www.oracle.com/security/database-security/key-vault/
https://doi.org/10.1145/3341302.3342084

BIBLIOGRAPHY 169

[Pan+19] M. Panchenko, R. Auler, B. Nell, and G. Ottoni. “Bolt: a practical
binary optimizer for data centers and beyond”. In: Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization. IEEE Press. 2019, pp. 2–14.

[Pat+03] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and T. Stack. “Up-
grading Transport Protocols using Untrusted Mobile Code”. In:
ACM SIGOPS Operating Systems Review 37.5 (2003), pp. 1–14.

[Pat+23] K. Patel, A. Lindem, S. Zandi, and W. Henderickx. BGP Link-State
Shortest Path First (SPF) Routing. Internet-Draft draft-ietf-lsvr-
bgp-spf-22. Work in Progress. Internet Engineering Task Force,
Mar. 2023. 38 pp.

[Pau+23] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, and C. Perkins.
An Architecture for Transport Services. Internet-Draft draft-ietf-
taps-arch-17. Work in Progress. Internet Engineering Task Force,
Mar. 2023. 32 pp.

[PB22] M. Piraux and O. Bonaventure. Additional addresses for QUIC.
Internet-Draft draft-piraux-quic-additional-addresses-00. Work
in Progress. Internet Engineering Task Force, Oct. 2022. 7 pp.

[PCV14] K. Patel, E. Chen, and B. Venkatachalapathy. Enhanced Route
Refresh Capability for BGP-4. RFC 7313. July 2014. doi: 10.17487/
RFC7313.

[Pig+07] C. Pignataro, P. Savola, D. Meyer, V. Gill, and J. Heasley. The
Generalized TTL Security Mechanism (GTSM). RFC 5082. Oct. 2007.
doi: 10.17487/RFC5082.

[Pos80] J. Postel. User Datagram Protocol. RFC 768. Aug. 1980. doi: 10.
17487/RFC0768.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793. Sept. 1981. doi:
10.17487/RFC0793.

[PR83] J. Poster and J. Reynolds. Telnet Protocol Specification. RFC 854.
May 1983. doi: 10.17487/RFC0854.

[Prz+23] T. Przygienda, A. Sharma, P. Thubert, B. Rijsman, D. Afanasiev,
and J. Head. RIFT: Routing in Fat Trees. Internet-Draft draft-ietf-
rift-rift-17. Work in Progress. Internet Engineering Task Force,
Mar. 2023. 174 pp.

[Pse+23] P. Psenak, S. Hegde, C. Filsfils, K. Talaulikar, and A. Gulko. IGP
Flexible Algorithm. RFC 9350. Feb. 2023. doi: 10.17487/RFC9350.

https://doi.org/10.17487/RFC7313
https://doi.org/10.17487/RFC7313
https://doi.org/10.17487/RFC5082
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0854
https://doi.org/10.17487/RFC9350

170 BIBLIOGRAPHY

[QHP13] L. Quan, J. Heidemann, and Y. Pradkin. “Trinocular: Understand-
ing Internet Reliability through Adaptive Probing”. In: SIGCOMM
Comput. Commun. Rev. SIGCOMM ’13 43.4 (Aug. 2013), pp. 255–
266. issn: 0146-4833. doi: 10.1145/2534169.2486017.

[Qu+21] Y. Qu, J. Tantsura, A. Lindem, and X. Liu. A YANG Data Model for
Routing Policy. Internet-Draft draft-ietf-rtgwg-policy-model-31.
Work in Progress. Internet Engineering Task Force, Aug. 2021.
42 pp.

[Quo+03] B. Quoitin, C. Pelsser, L. Swinnen, O. Bonaventure, and S. Uhlig.
“Interdomain traffic engineering with BGP”. In: IEEE Communi-
cations magazine 41.5 (2003), pp. 122–128.

[Ras+18] R. Raszuk et al. “BGP Community Container Attribute”. Internet
draft, draft-ietf-idr-wide-bgp-communities-05, work in progress.
July 2018.

[RB22] N. Rybowski and O. Bonaventure. “Evaluating OSPF Convergence
with Ns-3 DCE”. In: Proceedings of the 2022 Workshop on Ns-
3. WNS3 ’22. Virtual Event, USA: Association for Computing
Machinery, 2022, pp. 120–126. isbn: 9781450396516. doi: 10 .
1145/3532577.3532597.

[Rek+07] Y. Rekhter, J. Scudder, S. R. Sangli, E. Chen, and R. Fernando.
Graceful Restart Mechanism for BGP. RFC 4724. Jan. 2007. doi:
10.17487/RFC4724.

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. Aug. 2018. doi: 10.17487/RFC8446.

[Ret+23] A. Retana, Y. Qu, J. Haas, S. Chen, and J. Tantsura. BGP over QUIC.
Internet-Draft draft-retana-idr-bgp-quic-01. Work in Progress.
Internet Engineering Task Force, Mar. 2023. 21 pp.

[Reu+18] A. Reuter, R. Bush, I. Cunha, E. Katz-Bassett, T. C. Schmidt, and M.
Wählisch. “Towards a rigorous methodology for measuring adop-
tion of RPKI route validation and filtering”. In: ACM SIGCOMM
Computer Communication Review 48.1 (2018), pp. 19–27.

[RHL06] Y. Rekhter, S. Hares, and T. Li. A Border Gateway Protocol 4 (BGP-
4). RFC 4271. Jan. 2006. doi: 10.17487/RFC4271.

[RIP10] RIPE Labs. “RIPE NCC and Duke University BGP Experiment”.
https://morse.colorado.edu/~epperson/courses/rou
ting- protocols/handouts/ripe- bgp- experiment- gone-
awry.pdf. Aug. 2010.

[RIP23] RIPE NCC. 2023. url: https://atlas.ripe.net/ (visited on
09/18/2023).

https://doi.org/10.1145/2534169.2486017
https://doi.org/10.1145/3532577.3532597
https://doi.org/10.1145/3532577.3532597
https://doi.org/10.17487/RFC4724
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC4271
https://morse.colorado.edu/~epperson/courses/routing-protocols/handouts/ripe-bgp-experiment-gone-awry.pdf
https://morse.colorado.edu/~epperson/courses/routing-protocols/handouts/ripe-bgp-experiment-gone-awry.pdf
https://morse.colorado.edu/~epperson/courses/routing-protocols/handouts/ripe-bgp-experiment-gone-awry.pdf
https://atlas.ripe.net/

BIBLIOGRAPHY 171

[RL94] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC
1654. July 1994. doi: 10.17487/RFC1654.

[RL95] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC
1771. Mar. 1995. doi: 10.17487/RFC1771.

[RM12] E. Rescorla and N. Modadugu. Datagram Transport Layer Security
Version 1.2. RFC 6347. Jan. 2012. doi: 10.17487/RFC6347.

[Ros13] J. Roskind. June 2013. url: https://blog.chromium.org/2013/
06/experimenting-with-quic.html (visited on 06/26/2023).

[RQT22] A. Retana, Y. Qu, and J. Tantsura. Use of Streams in BGP over
QUIC. Internet-Draft draft-retana-idr-bgp-quic-stream-02. Work
in Progress. Internet Engineering Task Force, May 2022. 11 pp.

[RR06] Y. Rekhter and E. C. Rosen. BGP/MPLS IP Virtual Private Networks
(VPNs). RFC 4364. Feb. 2006. doi: 10.17487/RFC4364.

[Ryb+21] N. Rybowski, Q. De Coninck, T. Rousseaux, A. Legay, and O.
Bonaventure. “Implementing the Plugin Distribution System”.
In: Proceedings of the SIGCOMM ’21 Poster and Demo Sessions.
New York, NY, USA: Association for Computing Machinery, 2021,
pp. 39–41. isbn: 9781450386296.

[SA23] K. Sriram and A. Azimov. Methods for Detection and Mitigation
of BGP Route Leaks. Internet-Draft draft-ietf-grow-route-leak-
detection-mitigation-09. Work in Progress. Internet Engineering
Task Force, July 2023. 10 pp.

[SAD22] H. Sharaf, I. Ahmad, and T. Dimitriou. “Extended Berkeley Packet
Filter: An Application Perspective”. In: IEEE Access 10 (2022),
pp. 126370–126393. doi: 10.1109/ACCESS.2022.3226269.

[Sal+21] L. Salamatian, F. Douzet, K. Salamatian, and K. Limonier. “The
geopolitics behind the routes data travel: a case study of Iran”.
In: Journal of Cybersecurity 7.1 (Aug. 2021). tyab018. issn: 2057-
2085. doi: 10.1093/cybsec/tyab018. eprint: https://acade
mic.oup.com/cybersecurity/article-pdf/7/1/tyab018/
39765655/tyab018.pdf.

[SAM22] J. Snijders, M. Abrahamsson, and B.Maddison. Resource Public Key
Infrastructure (RPKI) object profile for Discard Origin Authoriza-
tions (DOA). Internet-Draft draft-spaghetti-sidrops-rpki-doa-00.
Work in Progress. Internet Engineering Task Force, Mar. 2022.
13 pp.

https://doi.org/10.17487/RFC1654
https://doi.org/10.17487/RFC1771
https://doi.org/10.17487/RFC6347
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://doi.org/10.17487/RFC4364
https://doi.org/10.1109/ACCESS.2022.3226269
https://doi.org/10.1093/cybsec/tyab018
https://academic.oup.com/cybersecurity/article-pdf/7/1/tyab018/39765655/tyab018.pdf
https://academic.oup.com/cybersecurity/article-pdf/7/1/tyab018/39765655/tyab018.pdf
https://academic.oup.com/cybersecurity/article-pdf/7/1/tyab018/39765655/tyab018.pdf

172 BIBLIOGRAPHY

[San+13] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin,
and D. C. Adams. X.509 Internet Public Key Infrastructure On-
line Certificate Status Protocol - OCSP. RFC 6960. June 2013. doi:
10.17487/RFC6960.

[Sav+16] D. Savage, J. Ng, S. Moore, D. Slice, P. Paluch, and R.White. Cisco’s
Enhanced Interior Gateway Routing Protocol (EIGRP). RFC 7868.
May 2016. doi: 10.17487/RFC7868.

[SB10] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714.
Jan. 2010. doi: 10.17487/RFC5714.

[SBV21] T. Schneider, R. Birkner, and L. Vanbever. “Snowcap: Synthesizing
Network-Wide Configuration Updates”. In: Proceedings of the 2021
ACM SIGCOMM 2021 Conference. SIGCOMM ’21. Virtual Event,
USA: Association for Computing Machinery, 2021, pp. 33–49.
isbn: 9781450383837. doi: 10.1145/3452296.3472915.

[Sch+23] T. Schneider, R. Schmid, S. Vissicchio, and L. Vanbever. “Taming
the Transient While Reconfiguring BGP”. In: Proceedings of the
ACM SIGCOMM 2023 Conference. ACM SIGCOMM ’23. New York,
NY, USA: Association for Computing Machinery, 2023, pp. 77–93.
isbn: 9798400702365. doi: 10.1145/3603269.3604855.

[Ser+18] P. Sermpezis, V. Kotronis, A. Dainotti, and X. Dimitropoulos. “A
survey among network operators on BGP prefix hijacking”. In:
ACM SIGCOMM Computer Communication Review 48.1 (2018),
pp. 64–69.

[SFS16] J. Scudder, R. Fernando, and S. Stuart. BGP Monitoring Protocol
(BMP). RFC 7854. June 2016. doi: 10.17487/RFC7854.

[SG96] B. Smith and J. Garcia-Luna-Aceves. “Securing the border gate-
way routing protocol”. In: Proceedings of GLOBECOM’96. 1996
IEEE Global Telecommunications Conference. Vol. MiniConfInter-
net. 1996, pp. 81–85. doi: 10.1109/GLOCOM.1996.586129.

[Sha+11] R. Shakir, R. Raszuk, R. Shakir, and D. Freedman. BGP OPERA-
TIONALMessage. Internet-Draft draft-frs-bgp-operational-message-
00. Work in Progress. Internet Engineering Task Force, July 2011.
26 pp.

[Shr+21] T. Shreedhar, R. Panda, S. Podanev, and V. Bajpai. “Evaluating
QUIC Performance Over Web, Cloud Storage, and Video Work-
loads”. In: IEEE Transactions on Network and Service Management
19.2 (2021), pp. 1366–1381.

https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC7868
https://doi.org/10.17487/RFC5714
https://doi.org/10.1145/3452296.3472915
https://doi.org/10.1145/3603269.3604855
https://doi.org/10.17487/RFC7854
https://doi.org/10.1109/GLOCOM.1996.586129

BIBLIOGRAPHY 173

[Sin+21] R. Singh, M. Mukhtar, A. Krishna, A. Parkhi, J. Padhye, and D.
Maltz. “Surviving switch failures in cloud datacenters”. In: ACM
SIGCOMM Computer Communication Review 51.2 (2021), pp. 2–9.

[SK05] K. Seo and S. Kent. Security Architecture for the Internet Protocol.
RFC 4301. Dec. 2005. doi: 10.17487/RFC4301.

[Spr+04] N. Spring, R. Mahajan, D.Wetherall, and T. Anderson. “Measuring
ISP topologies with Rocketfuel”. In: IEEE/ACM Transactions on
Networking 12.1 (2004), pp. 2–16. doi: 10.1109/TNET.2003.
822655.

[Sri+16] K. Sriram, D. Montgomery, D. R. McPherson, E. Osterweil, and
B. Dickson. Problem Definition and Classification of BGP Route
Leaks. RFC 7908. June 2016. doi: 10.17487/RFC7908.

[SsA20] J. Snijders, stucchi-listsglevia.com, and M. Aelmans. RPKI Au-
tonomous Systems Cones: A Profile To Define Sets of Autonomous
Systems Numbers To Facilitate BGP Filtering. Internet-Draft draft-
ietf-grow-rpki-as-cones-02. Work in Progress. Internet Engineer-
ing Task Force, Apr. 2020. 10 pp.

[SSV22] T. Schneider, R. Schmid, and L. Vanbever. “On the Complexity
of Network-Wide Configuration Synthesis”. In: 2022 IEEE 30th
International Conference on Network Protocols (ICNP). Oct. 2022,
pp. 1–11. doi: 10.1109/ICNP55882.2022.9940325.

[Sta14a] A. Starovoitov. “Rework/Optimize internal BPF interpreter’s in-
struction set”. https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed
331a275e9bf5a49e6d0fd55dffc551b8. Mar. 2014.

[Sta14b] A. Starovoitov. “The Linux kernel static checker”. https://
github.com/torvalds/linux/blob/master/kernel/bpf/
verifier.c. Sept. 2014.

[Sta15] A. Starovoitov. “BPF-in-kernel virtual machine”. In: Linux Kernel
Developers’ Netconf (2015).

[Sta18] A. Starovoitov. “bpf: introduce BPF_RAW_TRACEPOINT”. https
://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=c4f6699dfcb8558d138fe838f741b
2c10f416cf9. Mar. 2018.

[Ste06] R. Steenbergen. “IRR Power Tools - A utility for managing Inter-
net Routing Registry (IRR) filters”. Presented at NANOG36 https:
//archive.nanog.org/meetings/nanog36/presentations/
steenbergen.pdf. 2006.

https://doi.org/10.17487/RFC4301
https://doi.org/10.1109/TNET.2003.822655
https://doi.org/10.1109/TNET.2003.822655
https://doi.org/10.17487/RFC7908
https://doi.org/10.1109/ICNP55882.2022.9940325
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bd4cf0ed331a275e9bf5a49e6d0fd55dffc551b8
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c4f6699dfcb8558d138fe838f741b2c10f416cf9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c4f6699dfcb8558d138fe838f741b2c10f416cf9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c4f6699dfcb8558d138fe838f741b2c10f416cf9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c4f6699dfcb8558d138fe838f741b2c10f416cf9
https://archive.nanog.org/meetings/nanog36/presentations/steenbergen.pdf
https://archive.nanog.org/meetings/nanog36/presentations/steenbergen.pdf
https://archive.nanog.org/meetings/nanog36/presentations/steenbergen.pdf

174 BIBLIOGRAPHY

[Ste07] R. R. Stewart. Stream Control Transmission Protocol. RFC 4960.
Sept. 2007. doi: 10.17487/RFC4960.

[Str+18] F. Streibelt, F. Lichtblau, R. Beverly, A. Feldmann, C. Pelsser, G.
Smaragdakis, and R. Bush. “BGPCommunities: EvenmoreWorms
in the Routing Can”. In: Proceedings of the Internet Measurement
Conference 2018. IMC ’18. ACM. Boston, MA, USA: Association
for Computing Machinery, 2018, pp. 279–292. isbn: 978-1-4503-
5619-0. doi: 10.1145/3278532.3278557.

[SV18] H. Smit and G. V. de Velde. IS-IS Flooding over TCP. Internet-
Draft draft-hsmit-lsr-isis-flooding-over-tcp-00. Work in Progress.
Internet Engineering Task Force, Oct. 2018. 14 pp.

[SVG16] Y. Song, A. Venkataramani, and L. Gao. “Identifying and Ad-
dressing Reachability and Policy Attacks in ’Secure’ BGP”. In:
IEEE/ACM Transactions on Networking 24.5 (2016), pp. 2969–2982.
issn: 10636692. doi: 10.1109/TNET.2015.2503642.

[TB19] V.-H. Tran and O. Bonaventure. “Beyond socket options: making
the Linux TCP stack truly extensible”. In: 2019 IFIP Networking
Conference (IFIP Networking). IEEE. 2019, pp. 1–9. doi: 10.23919/
IFIPNetworking46909.2019.8999401.

[TBM10] D. J. D. Touch, R. Bonica, and A. J. Mankin. The TCP Authentication
Option. RFC 5925. June 2010. doi: 10.17487/RFC5925.

[Tei+04] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford. “Dynamics of
Hot-Potato Routing in IP Networks”. In: Proceedings of the Joint
International Conference on Measurement and Modeling of Com-
puter Systems. SIGMETRICS ’04/Performance ’04. New York, NY,
USA: Association for Computing Machinery, 2004, pp. 307–319.
isbn: 1581138733. doi: 10.1145/1005686.1005723.

[Ten+97] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,
and G. J. Minden. “A survey of active network research”. In: IEEE
communications Magazine 35.1 (1997), pp. 80–86.

[Tes+19] C. Testart, P. Richter, A. King, A. Dainotti, and D. Clark. “Profiling
BGP serial hijackers: capturing persistent misbehavior in the
global routing table”. In: Proceedings of the Internet Measurement
Conference. 2019, pp. 420–434.

[The] The OpenBSD Project. “OpenBGPD”. http://openbgpd.com/.
[The03] The OpenSSL Project. “OpenSSL: The Open Source toolkit for

SSL/TLS”. www.openssl.org. Apr. 2003.
[TM96] A. Trigell and P. Mackerras. rsync: An open source utility that

provides fast incremental file transfer. June 1996.

https://doi.org/10.17487/RFC4960
https://doi.org/10.1145/3278532.3278557
https://doi.org/10.1109/TNET.2015.2503642
https://doi.org/10.23919/IFIPNetworking46909.2019.8999401
https://doi.org/10.23919/IFIPNetworking46909.2019.8999401
https://doi.org/10.17487/RFC5925
https://doi.org/10.1145/1005686.1005723
http://openbgpd.com/
www.openssl.org

BIBLIOGRAPHY 175

[TSR06] D. Tappan, S. R. Sangli, and Y. Rekhter. BGP Extended Communities
Attribute. RFC 4360. Feb. 2006. doi: 10.17487/RFC4360.

[TUD07] R. Teixeira, S. Uhlig, and C. Diot. “BGP Route Propagation be-
tween Neighboring Domains”. In: Proceedings of the 8th Inter-
national Conference on Passive and Active Network Measurement.
PAM’07. Louvain-la-Neuve, Belgium: Springer-Verlag, 2007, pp. 11–
21. isbn: 9783540716167.

[Tur04] D. Turk. Configuring BGP to Block Denial-of-Service Attacks. RFC
3882. Oct. 2004. doi: 10.17487/RFC3882.

[TW02] D. Tennenhouse and D. Wetherall. “Towards an active network
architecture”. In: Proceedings DARPA Active Networks Confer-
ence and Exposition. 2002, pp. 2–15. doi: 10.1109/DANCE.2002.
1003480.

[TW07] D. L. Tennenhouse and D. J. Wetherall. “Towards an Active Net-
work Architecture”. In: 37.5 (Oct. 2007), pp. 81–94. issn: 0146-4833.
doi: 10.1145/1290168.1290180.

[TW96] D. L. Tennenhouse and D. J. Wetherall. “Towards an active net-
work architecture”. In:ACM SIGCOMMComputer Communication
Review 26.2 (1996), pp. 5–17.

[Upa] G. R. Upadhaya. “Best practices for ISPs”. http://www.pch.net/
resources/tutorial/ispbcp.

[Van+13] Y. Vanaubel, J.-J. Pansiot, P. Mérindol, and B. Donnet. “Network
fingerprinting: TTL-based router signatures”. In: Proceedings of
the 2013 conference on Internet measurement conference. 2013,
pp. 369–376.

[Van09] L. Vanbever. “Customized BGP Route Selection Using BGP/MPLS
VPNs”. In: Routing Symposium, Cisco Systems. 2009.

[VC12] Q. Vohra and E. Chen. BGP Support for Four-Octet Autonomous
System (AS) Number Space. RFC 6793. Dec. 2012. doi: 10.17487/
RFC6793.

[VCD14] S. Vissicchio, L. Cittadini, and G. Di Battista. “On iBGP routing
policies”. In: IEEE/ACM Transactions on Networking 23.1 (2014),
pp. 227–240.

[VCG98] C. Villamizar, R. Chandra, and D. R. Govindan. BGP Route Flap
Damping. RFC 2439. Nov. 1998. doi: 10.17487/RFC2439.

[VVB14] S. Vissicchio, L. Vanbever, and O. Bonaventure. “Opportunities
and Research Challenges of Hybrid Software Defined Networks”.
In: SIGCOMM Comput. Commun. Rev. 44.2 (Apr. 2014), pp. 70–75.
issn: 0146-4833. doi: 10.1145/2602204.2602216.

https://doi.org/10.17487/RFC4360
https://doi.org/10.17487/RFC3882
https://doi.org/10.1109/DANCE.2002.1003480
https://doi.org/10.1109/DANCE.2002.1003480
https://doi.org/10.1145/1290168.1290180
http://www.pch.net/resources/tutorial/ispbcp
http://www.pch.net/resources/tutorial/ispbcp
https://doi.org/10.17487/RFC6793
https://doi.org/10.17487/RFC6793
https://doi.org/10.17487/RFC2439
https://doi.org/10.1145/2602204.2602216

176 BIBLIOGRAPHY

[Wäh+13] M. Wählisch, F. Holler, T. C. Schmidt, and J. H. Schiller. “RTR-
lib: An Open-Source Library in C for RPKI-based Prefix Origin
Validation”. In: Presented as part of the 6th Workshop on Cyber
Security Experimentation and Test. 2013.

[Wäh+15] M. Wählisch, R. Schmidt, T. C. Schmidt, O. Maennel, S. Uhlig, and
G. Tyson. “RiPKI: The tragic story of RPKI deployment in the
Web ecosystem”. In: Proceedings of the 14th ACM Workshop on
Hot Topics in Networks. 2015, pp. 1–7.

[Wal+02] D. Walton et al. “Advertisement of Multiple Paths in BGP”. Inter-
net draft, draft-walton-bgp-add-paths-00, work in progress. May
2002.

[Wal+16] D. Walton, A. Retana, E. Chen, and J. Scudder. Advertisement
of Multiple Paths in BGP. RFC 7911. July 2016. doi: 10.17487/
RFC7911.

[Was23a] Wasmer Inc. “WASIX”. https://wasix.org/. May 2023.

[Was23b] Wasmer Inc. “wasix libc implementation for WebAssembly”. htt
ps://github.com/wasix-org/wasix-libc. May 2023.

[WGT98] D. Wetherall, J. Guttag, and D. Tennenhouse. “ANTS: a toolkit
for building and dynamically deploying network protocols”. In:
1998 IEEE Open Architectures and Network Programming. 1998,
pp. 117–129. doi: 10.1109/OPNARC.1998.662048.

[Whi03] R.White.Deployment Considerations for Secure Origin BGP (soBGP).
Internet-Draft draft-white-sobgp-bgp-deployment-01. Work in
Progress. Internet Engineering Task Force, June 2003. 12 pp.

[Whi20] J. Whited. “CoreBGP - Plugging in to BGP”. https://github.
com/jwhited/corebgp. July 2020.

[Wira] T. Wirtgen. xBGP API documentation. https://github.com/
pluginized-protocols/xbgp_plugins/blob/master/xbgp_
compliant_api/xbgp_plugin_api.h.

[Wirb] T. Wirtgen. xBGP source code. https://github.com/pluginiz
ed-protocols/libxbgp.

[WMS04] R. White, D. McPherson, and S. Sangli. Practical BGP. Addison
Wesley Longman Publishing Co., Inc., 2004.

[Wu+13] Q. Wu et al. “BGP attribute for North-Bound Distribution of
Traffic Engineering (TE) performance Metrics”. Internet draft,
draft-wu-idr-te-pm-bgp, work in progress. Oct. 2013.

https://doi.org/10.17487/RFC7911
https://doi.org/10.17487/RFC7911
https://wasix.org/
https://github.com/wasix-org/wasix-libc
https://github.com/wasix-org/wasix-libc
https://doi.org/10.1109/OPNARC.1998.662048
https://github.com/jwhited/corebgp
https://github.com/jwhited/corebgp
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/xbgp_plugins/blob/master/xbgp_compliant_api/xbgp_plugin_api.h
https://github.com/pluginized-protocols/libxbgp
https://github.com/pluginized-protocols/libxbgp

BIBLIOGRAPHY 177

[WY05] X. Wang and H. Yu. “How to Break MD5 and Other Hash Func-
tions”. In: Advances in Cryptology – EUROCRYPT 2005. Ed. by
R. Cramer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 19–35. isbn: 978-3-540-32055-5.

[XDB18] M. Xhonneux, F. Duchene, and O. Bonaventure. “Leveraging
eBPF for programmable network functions with IPv6 Segment
Routing”. In: Proceedings of the 14th International Conference on
emerging Networking EXperiments and Technologies. CoNEXT ’18.
ACM. Heraklion, Greece: Association for Computing Machinery,
2018, pp. 67–72. isbn: 9781450360807. doi: 10.1145/3281411.
3281426.

[YB21] A. Yu and T. A. Benson. “Dissecting performance of production
QUIC”. In: Proceedings of the Web Conference 2021. 2021, pp. 1157–
1168.

[Zha+11] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen. “SCION: Scalability, Control, and Isolation on Next-
Generation Networks”. In: 2011 IEEE Symposium on Security and
Privacy. 2011, pp. 212–227. doi: 10.1109/SP.2011.45.

[Zho+22] Y. Zhong, H. Li, Y. J. Wu, I. Zarkadas, J. Tao, E. Mesterhazy, M.
Makris, J. Yang, A. Tai, R. Stutsman, andA. Cidon. “XRP: In-Kernel
Storage Functions with eBPF”. In: 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). Carlsbad,
CA: USENIX Association, July 2022, pp. 375–393. isbn: 978-1-
939133-28-1.

[Zho+23] Y. Zhou, Z. Wang, S. Dharanipragada, and M. Yu. “Electrode:
Accelerating Distributed Protocols with eBPF”. In: 20th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 23). Boston, MA: USENIX Association, Apr. 2023, pp. 1391–
1407. isbn: 978-1-939133-33-5.

[Zir+21] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and G.
Carle. “It’s over 9000: Analyzing Early QUIC Deployments with
the Standardization on the Horizon”. In: Proceedings of the 21st
ACM Internet Measurement Conference. IMC ’21. Virtual Event:
Association for Computing Machinery, 2021, pp. 261–275. isbn:
9781450391290. doi: 10.1145/3487552.3487826.

[ZMW07] Y. Zhang, Z. M. Mao, and J. Wang. “Low-Rate TCP-Targeted DoS
Attacks Disrupts Internet Routing”. In: Proceedings of 14th Annual
Network & Distributed System Security Symposium (NDSS). 2007.

https://doi.org/10.1145/3281411.3281426
https://doi.org/10.1145/3281411.3281426
https://doi.org/10.1109/SP.2011.45
https://doi.org/10.1145/3487552.3487826

	Abstract
	Preamble
	Acknowledgments
	Table of Contents
	I Background
	Internet Routing
	The High-Level Organization of the Internet
	IP Routing
	IP Routers
	The Transport of Routing Messages
	Inter-domain routing with the Border Gateway Protocol (BGP)
	Routing Security
	Securing the transport of routing messages
	Securing the authenticity of routing messages

	Beyond traditional distributed routing

	II Bringing innovation back in routing with truly extensible protocols implementations
	The Need of Extensibility in Routing Protocols
	Extending routing protocol implementations with plugins
	The eBPF environment
	Pluginizing a Routing Protocol
	Pluginizing FRRouting
	Executing a Plugin Inside the eBPF VM
	Memory Management
	Pluginizing the OSPF Daemon
	Pluginizing the BGP Daemon

	Use Cases
	Monitoring routing protocols
	More flexible OSPF route computation
	More flexible BGP filters
	Pluginizing the BGP Decision Process

	Related Work
	Conclusion

	xBGP: Faster Innovation in Routing Protocols
	Architecture
	The xBGP API
	Executing xBGP programs
	Adding xBGP to BGP implementations
	Augmenting the xBGP Virtual Machine

	Ensuring the safety of xBGP programs
	Proving xBGP Programs' Termination
	Enforcing Operator-Imposed Restrictions

	Overhead of the current xBGP prototype
	Use Cases
	Customer Selecting Routes
	Detecting BGP Zombies
	Monitoring the BGP Routing Decision
	Measuring BGP Route Propagation Times
	BGP in data centers
	Validating BGP Prefix Origins
	Filtering Routes Based on IGP Costs

	Related Work
	Conclusion

	III Revisiting the Transport Layer Used by Routing Protocols
	The Benefits of Secure Transport for Routing Protocols
	The QUIC Transport Protocol
	Motivations
	QUIC for routing protocols
	QUIC transport features
	QUIC improves Security

	Prototyping Routing over QUIC
	Architecture
	Performance considerations
	Experimental evaluation setup

	BGP over QUIC
	Dynamic reconfiguration of eBGP sessions
	On-demand BGP over QUIC sessions
	Improved Blackholing service

	Related Work
	Conclusion

	IV Making a BGP data-plane ``aware''
	Checking the Reachability of BGP Routes Using the Dataplane
	Motivations
	BGP routes reachability in the dataplane
	A First Prototype
	Discussion
	Related Work
	Conclusion

	V Future Directions and Conclusion
	Discussion & Future Directions
	Conclusion

