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Abstract

Background: In the recent past, wearable devices have been used for gait rehabilitation in patients with

Parkinson's disease. The objective of this paper is to analyze the outcome of a wearable hip orthosis whose

assistance adapts in real time to the patient's gait kinematics via adaptive oscillators. In particular, this study

focuses on a metric characterizing natural gait variability, i.e., the level of long-range autocorrelations (LRA) in

series of stride durations.

Methods: Eight patients with Parkinson's disease (Hoehn and Yahr stages 1-2.5) performed overground gait

training three times per week for four consecutive weeks, assisted by a wearable hip orthosis. Gait was assessed

based on performance metrics such as the hip range of motion, speed, stride length and duration, and the level

of LRA in inter-stride time series assessed using the Adaptive Fractal Analysis. These metrics were measured

before, directly after, and one month after training.

Results: After training, patients increased their hip range of motion, their gait speed and stride length, and

decreased their stride duration. These improvements were maintained one month after training. Regarding

long-range autocorrelations, the population's behavior was standardized towards a metric closer to the one of

healthy individuals after training, but with no retention after one month.

Conclusion: This study showed that an overground gait training with adaptive robotic assistance has the

potential to improve key gait metrics that are typically a�ected by Parkinson's disease and that lead to higher

prevalence of fall.

Trial registration: ClinicalTrials.gov Identifer NCT04314973. Registered on 11 April 2020.
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1 Introduction

Gait disorders cause major issues for patients with

Parkinson's disease, starting in the early stages of the
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disease [1]. In particular, patients may have a hypoki-

netic gait, characterized by a slower gait speed and

shorter stride length [2]. These gait disorders are as-

sociated with upcoming falls [3]. Indeed, the risk of

falling is twice as likely in patients with Parkinson's

disease as in age-matched healthy individuals [4]. This

can lead to a fear of falling in some patients, which

induces them to decrease their physical activities, and

thus a�ects their independence and quality of life [5].

There exist several physical therapies in order to de-

lay and/or mitigate the impact of these motor disor-

ders, ranging from regular physiotherapy to dance [6].

Taking advantage of advances in research on robot-

assisted gait training for other pathologies, the last

decade has also seen the emergence of studies on the

rehabilitative e�ects of these therapies on the gait of

patients with Parkinson's disease. In these studies, pa-

tients were trained with a robot moving their legs fol-

lowing a stereotyped kinematic pattern. These studies

used treadmill exoskeletons, such as the Lokomat®

(Hocoma, Zurich, Switzerland), or end-e�ector sys-

tems, such as the Gait Trainer GT1 (Reha-Stim,

Berlin, Germany) or the G-EO (Reha Technology,

Olten, Switzerland). They showed an increase in gait

speed [7�19], in stride length [7, 8, 10, 12, 13, 15�17]

and in cadence [8, 12, 13, 17], as well as a decrease

in motor symptoms [8, 11�14, 19] and an increase in

endurance [9, 16, 18, 19]. Some of these improvements

were maintained between one and six months after

training [8, 9, 14, 16]. Some hypotheses on how these

therapies in�uence these gait metrics have been put

forward. Firstly, it could act as an external rhythmic

cue on which patients can focus, thus compensating

for the defective internal rhythm of the basal gan-

glia. Secondly, the repetition of gait-like movements

might enhance the activation of automatic spinal con-

trol of locomotion. Finally, robot-assisted gait training

also induces an increased physical activity, therefore

strengthening the lower-limb muscles of patients as

well as their cardiovascular status [20,21].

More recently, studies have been conducted with

wearable exoskeletons that can be used in more eco-

logical environments, such as the hip orthosis SMA

(Honda R&D, Tokyo, Japan), or the knee orthosis

Keeogo Rehab� (B-Temia, Quebec, Canada). A train-

ing of 10 overground sessions with the hip orthosis

improved gait endurance, metabolic cost and motor

symptoms of patients [22]. On the other hand, with the

knee orthosis, patients improved their cognitive and

physical functions while wearing it, but they did not in-

crease their gait speed after training [23]. These wear-

able devices o�er the advantage of enabling to study

their e�ects outside a treadmill, which has been shown

to signi�cantly in�uence the way people walk [24].

Moreover, they allow to be used not only in rehabilita-

tion protocols, but also for assistance, since they open

the perspective to be worn in everyday life, at least for

the most a�ected patients.

This wearability is particularly interesting in the as-

sessment of the level of long-range autocorrelations

(LRA) in series of stride durations. The presence of

LRA in these series captures that the duration of the

current stride statistically depends on all those that

happened in the past [25]. The precise origin of the

presence of LRA in the locomotor system is still de-

bated. Several studies hypothesized that it may arise

from the complex coordination and interaction of var-

ious components and subsystems within this system,

acting at di�erent time scales [26, 27]. Moreover, this

system being redundant, i.e., its components can be

used interchangeably for the same task [27], it is adapt-

able and robust to both internal and external distur-

bances, such as minor variations in the walking surface
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or natural neuromuscular noise [28]. As a complemen-

tary perspective to this statement, Dingwell and col-

leagues proposed the Goal Equivalent Manifold frame-

work [29], which suggests that there are countless ways

to modulate a step by varying features such as gait

speed, step length, or duration. Humans can there-

fore adjust their walking features from stride to stride

to achieve speci�c goals while enhancing task perfor-

mance, such as maintaining constant walking speed

on a treadmill [29, 30] or a constant gait cycle timing

when walking to the rhythm of a metronome [29].

LRA is thus a key property of biological series and

has been proposed as a marker of gait instability in the

particular case of locomotion. Indeed, several studies

have reported a decreased level of LRA in series of

stride durations of elderly walkers [31] and patients

with Parkinson's disease [32] as compared to a control

group, re�ecting a more random temporal organiza-

tion of their walking pattern [32,33]. Moreover, it has

been demonstrated that this metrics is in�uenced by

the walking support (i.e., overground vs. treadmill) in

patients with Parkinson's disease, with the treadmill

acting like an external pacemaker regulating the leg

movement timing [34, 35]. This further highlights the

importance of using wearable devices when assessing

the presence of LRA in series of stride durations.

Two recent modeling studies [36, 37] predicted that

an oscillators-based wearable hip orthosis would in-

crease the level of LRA towards the level of healthy

walkers in series of stride durations of patients with

Parkinson's disease. A subsequent study [38] analyz-

ing the e�ect of such an orthosis on healthy people

aged over 55, corresponding to the mean age of on-

set of Parkinson's disease [39], showed that it can im-

prove gait metrics such as the hip range of motion, gait

speed, stride length and cadence, without impacting

the level of LRA. These metrics are precisely among

those deteriorated by Parkinson's disease and are as-

sociated with an increased risk of falling [3].

Therefore, the purpose of the present paper is to as-

sess the e�ects of robot-assisted gait training in pa-

tients with Parkinson's disease, using a wearable de-

vice relying on an algorithm adapting in real time to

the patient's kinematics. This study is the �rst to in-

vestigate the e�ect of an assistance based on adaptive

oscillators on patients a�ected by this disease after

overground gait training. This allows measuring the

impact of this assistance in a semi-ecological condi-

tion, and to leverage this condition to assess a critical

marker of gait a�ected by this disease, i.e., the level of

LRA in series of stride durations.

2 Methods

2.1 Participants

Eight patients with Parkinson's disease participated in

this study. They were recruited according to the follow-

ing inclusion criteria: positive diagnosis according to

the UK Brain Bank Criteria, modi�ed Hoehn & Yahr

(H&Y) scale between 1 and 3, a minimum of 24/30

on the Mini-Mental State Examination (MMSE), and

no contraindication to physical exercising. Medication

was stable for the four weeks preceding the study, and

was maintained throughout the study. One participant

was treated with Deep Brain Stimulation. The study

took place at the Mounier Sports Center (Brussels,

Belgium) between February 2022, the date of �rst in-

clusion, and November 2022, the date of last follow-up

visit. Clinical characteristics and anthropometrics data

of patients are displayed in Table 1.

2.2 Procedure

For each patient, the entire protocol lasted eight weeks.

It began with a �rst evaluation session (T0), consist-
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Table 1 Characteristics of the study population; H&Y stands

for the Hoehn and Yahr scale, and ∗ for the patient implanted

with Deep Brain Stimulation.

Patient Age Gender Weight H&Y Most a�ected

(kg) side

#1 76 M 83 2 Left

#2∗ 67 M 79.5 2.5 Right

#3 69 M 70.5 2.5 Left

#4 73 F 53.5 1 Left

#5 57 M 93 2 Right

#6 76 M 83.5 2 Right

#7 72 M 83 2 Left

#8 75 M 79.5 2 Left

ing in evaluating their motor disorders through the

MDS-Uni�ed Parkinson's Disease Rating Scale (MDS-

UPDRS) part III score, also allowing the identi�cation

of the side most a�ected by the disease for each patient,

and their cognitive state through the MMSE, both as-

sessed by a neurologist. Then, the balance functions

were evaluated using the Balance Evaluation Systems

Test (Mini-BESTest), assessed by a physiotherapist.

Moreover, patients were asked to walk at their com-

fortable speed in a sports hall, following a rectangular

path of 7 m × 12 m with rounded corners in order to

have the most steady gait for LRA assessment. Walk-

ing sessions were performed in a quiet environment so

as not to increase the attentional cost of walking [32].

Patients performed several laps during 8 min. Speed

steadiness was veri�ed by timing the time taken by

the subject to complete each lap, and delivering qual-

itative instructions to adapt walking speed if needed.

During this walking session, patients wore a motion

capture system (MVN Awinda, Xsens, Enschede, the

Netherlands) composed of eight IMUs, allowing to re-

construct the movement of their hips as explained

in section 2.4. They also wore inertial measurement

units (IMUs, NGIMU, x-io Technologies, Bristol, UK),

placed just above the lateral malleolus of both ankles,

with their x-axis oriented in the direction of walk-

ing. These were used to obtain the sagittal angular

Figure 1 The Active Pelvis Orthosis (IUVO, Pisa, Italy) worn

by one of our patients.

velocities for calculating series of stride durations, as

explained in section 2.3. Finally, patients were asked

to complete a questionnaire at home about their con-

�dence in performing daily activities without losing

balance, assessed through the Activities-speci�c Bal-

ance Con�dence (ABC) scale.

Thereafter began an intervention phase, consisting of

three training sessions a week during four weeks, sim-

ilar to what has already been done in previous studies

as summarized in [21]. During these 12 sessions, pa-

tients walked with a bilateral wearable Active Pelvis

Orthosis (APO, IUVO, Pisa, Italy, Figure 1) during 5

to 8 min, after a short period where they can adapt

their gait to the device's assistance. This orthosis is

controlled by an algorithm relying on adaptive oscilla-

tors, such that it continuously synchronizes with the

recorded hip trajectories, and adapts to changes in

these signals [40]. In brief, this control framework does
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not impose the patient to follow a prescribed kine-

matic pattern, but rather delivers a torque that tends

to attract the patient's hips towards their own pre-

dicted trajectory, estimated in the future by a pre-

scribed phase lead ∆φ. The torque provided by the

orthosis is thus given by [41]:

T = k(x̂(φ+∆φ)− x̂(φ)) (1)

where k is a tunable virtual sti�ness [Nm/rad], φ is

the gait phase estimated by the oscillators [% of gait

cycle], ∆φ is the tunable phase lead [% of gait cy-

cle], and x̂(φ) [rad] is the hip position estimated by

the oscillators (see [42, 43] for further details). In this

study, the virtual sti�ness was adjusted according to

the weight of the subject, i.e., so that the peak torque

delivered at the hip was equal to 0.1 Nm/kg, corre-

sponding to a comfortable and safe level of assistance

as reported in [44]. This value was determined during

the �rst training session, and then maintained constant

throughout the following sessions. The phase lead ∆φ

determining how far in advance the signal of the hip

is predicted for computing the injected torque was set

to 10% of gait cycle.

This intervention phase was followed by a second

evaluation session (T1), taking place one or two day(s)

after the last training session. During this session, the

same clinical tests as during the �rst evaluation ses-

sion were performed, with the exception of the MMSE.

This evaluation session was repeated after a four-week

wash-out period (T2).

2.3 Stride intervals computation

The series of stride durations were obtained in the

same manner as described in [38]. Brie�y, the sagit-

tal shank angular velocity was recorded at a sample

rate of 500 Hz using both IMUs, which include a 200

Hz antialiasing low-pass �lter on the gyroscope sig-

nals. A zero-crossings detection algorithm was used in

order to obtain inter-stride time series, i.e., the time

between two consecutive heel strikes of the same foot.

The maxima of the signal were �rst identi�ed. Then,

the �rst sign change occurring after each of these max-

ima was detected. Finally, a linear interpolation was

performed between both adjacent points to obtain the

most accurate zero crossing detection. When all these

events were detected, the inter-stride time series was

obtained by di�erentiating the series of these time-

stamped events.

Patients walked between 5 and 8 min for each ses-

sion, depending on their daily physical condition, fa-

tigue, and their gait speed. The �rst and last 10 strides

of the series were discarded, in order to restrict our

analysis to steady-state behavior only, with the objec-

tive to keep as many strides as possible, with a min-

imum of 256 as recommended in [45] for LRA assess-

ment. Only data from the most a�ected side were an-

alyzed. However, due to connection issues between the

IMUs and the computer, some trials displayed gaps in

the recorded data. This happened in three of the 24

evaluation sessions. In that case, data from the least

a�ected side were used.

2.4 Gait metrics

Regarding the evaluation sessions, several gait metrics

have been computed to study the e�ect of training

on the patient behavior. On the �rst hand, some spa-

tiotemporal gait metrics were computed. The walking

speed per lap was computed by dividing the lap dis-

tance (38 m) by the recorded time taken by subjects to

walk through each of them. The mean stride duration

over each lap was obtained from the inter-stride time

series, divided into laps thanks to the average mea-

sured time to make a lap. Finally, the average stride

length per lap was obtained by taking the product be-

tween the stride duration and the walking speed per

lap. The stride length and the walking speed were then
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normalized by the leg length of each subject.

On top of this, the hip motion was reconstructed

from the motion capture system signals. The ac-

celerometer and magnetometer signals from each IMUs

of the system, recorded at a sample rate of 100 Hz, were

used to determine the orientation and position of each

IMU relative to that of the pelvis. From these, the

movement of each lower-limb segment was obtained

and used to derive the hip angle signals, which were

low-pass �ltered at a cuto� frequency of 18 Hz. Finally,

the �exion-extension hip range of motion (ROM) was

computed as the di�erence between the highest and

the lowest value of this signal over a gait cycle. As for

the series of stride durations, only data from the most

a�ected side were analyzed. Data from two acquisitions

could not be reconstructed correctly (subjects #3 in

T1 and #6 in T2) and were thus withdrew from the

analyses.

2.5 Long-range autocorrelations assessment

Regarding the evaluation sessions, a more complex

metric was also extracted from the series of stride du-

rations, i.e., the level of LRA in these series, charac-

terized by the fractal scaling exponent α. To compute

this exponent, we used the Adaptive Fractal Analy-

sis (AFA). This method is described in details else-

where [46, 47]. Brie�y, the integrated time series of

length N was divided into overlapping subseries of

length w. Second order quadratic polynomials were

then �tted to each subseries and pasted together to

obtain a globally smooth trend signal. The residual

variance F (w) of the di�erence between this global

trend and the original series was reported for several

subseries sizes w, ranging from 5 to the �rst power of 2

smaller than N/2. To obtain evenly spaced values of w

in a logarithmic scale, the range of log2(w) was divided

into a series of intervals of equal length with a step size

of 0.5, and the points falling within each interval were

averaged. This range of window sizes was determined

as the most appropriate to handle non-stationary time

series, i.e., with low frequency trends. Finally, the frac-

tal exponent α was obtained as the slope of the linear

regression of log2(F (w)) as a function of log2(w). A

value of α > 0.5 indicates the presence of long-range

autocorrelations in inter-stride time series [46].

2.6 Level of assistance

Since the assistive method based on adaptive oscilla-

tors constantly adapts to the patient behavior, it is

not possible to predict how much mechanical energy

will be delivered to the patient during each training

session. Therefore, this becomes a metric of interest

to be investigated. The orthosis behavior during train-

ing sessions was quanti�ed through signals acquired by

onboard sensors at 100 Hz. The hip �exion-extension

angle was recorded by an absolute encoder, and time-

di�erentiated to obtain the angular velocity. The in-

jected torque was indirectly quanti�ed by measuring

the deformation of a torsional spring embedded in the

device actuation chain [41]. The torque injected was

�rst normalized by the weight of each subject, then

divided into gait cycles using the maximum hip exten-

sion angle as separation between cycles. It was then

used to compute the energy injected to the hip per

cycle [J/kg]:

E =

∫
cycle

T ẋdt (2)

with T the injected torque [Nm/kg], and ẋ the hip

angular velocity [rad/s]. The maximal torque injected

at the hip per gait cycle was also analyzed.

2.7 Statistical analysis

Data were processed with Matlab version R2019a, and

statistical tests were performed in R version 4.2.2.

Statistics were performed on the spatiotemporal gait

metrics (one data point per lap), on the hip ROM (one

data point per gait cycle), and on the clinical scores
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(one data point per evaluation session). The three eval-

uation sessions were compared to each other via lin-

ear mixed-e�ects models �tted to the di�erent studied

metrics. These include �xed e�ects, capturing average

trends of the metric for each evaluation session, and

random e�ects, capturing the extent to which these

trends vary across participants [48]. It is particularly

interesting with patients with Parkinson's disease, who

generaly display heterogeneous behavior [49]. The lin-

ear mixed-e�ects model equation is given by:

Yi,j = γ0 + Ii + bXi,j + ϵi,j (3)

with Yi,j the gait metric for the ith subject and the

jth repetition (lap or cycle), γ0 a general intercept,

Ii a random intercept for each subject, b the regres-

sion coe�cient for the evaluation sessions, Xi,j the

evaluation sessions, and ϵi,j the residuals. An analy-

sis of variance was then performed on these models,

using a Kenward-Roger's approximation to degrees

of freedom [50]. If the p-value of this test was lower

than 0.05, Tukey's tests for multiple pairwise compar-

isons were performed, using the Benja-Hochberg cor-

rection [51]. The variances of these three sessions were

also compared with a Levene's test [52]. If signi�cant,

this test was followed by pairwise Levene's tests, and

a Benjamini-Hochberg correction was applied on the

resulting p-values.

Linear mixed-e�ects models were also used to assess

whether the evolution of maximal injected torque and

injected energy through trainings was signi�cant or

not, using the same equation as (3) with Xi,j being

the training sessions.

For graphical representation, the relative change in

spatiotemporal gait metrics and ROM was computed

by taking the di�erence between the values in T1 or T2

and T0, divided by the value in T0 and converted in

percentage. For these metrics, inter-subject variability

is represented through the standard error of the mean,

computed as the standard deviation divided by the

square root of the number of subjects.

3 Results

Figure 2 From top to bottom: series of stride durations of a

healthy 62-year-old subject freely walking overground during a

pilot test, and patient #8 in T0, T1 and T2. The gray dashed

lines indicate the mean stride durations, and α is the fractal

exponent.

Series of stride durations of a healthy adult acquired

during a pilot test and of a representative patient with

Parkinson's disease in T0 and T1 are shown in Fig-

ure 2. As expected, the LRA level, i.e., α exponent,

is lower for the patient than for the healthy adult. It

can also be noted that the mean stride duration of the

patient decreased from T0 to T1. Figure 3 reports the

hip angle pro�le of a representative patient. It can be

observed that the ROM is larger in T1 and T2 than

in T0.
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Figure 3 Left hip angle pro�les for patient #1 in the three

evaluation sessions, with �exion (resp. extension) angles

indicated by positive (resp. negative) values. Signals were

time-normalized over the gait cycle. Solid lines represent the

mean and shaded areas represent the standard deviation over

all gait cycles.

These representative trends were further assessed at

the population level by running statistical tests. As-

sessment of spatiotemporal gait metrics (Figure 4a-c)

indicate an increase in gait speed and stride length

and a decrease in stride duration between T0 and T1

(p < 0.001) and T0 and T2 (p < 0.001). The hip ROM

(Figure 4d) also increased from T0 to T1 (p < 0.001)

and to T2 (p < 0.001). Note that linear mixed-e�ects

models are accounting for individual biases via the

term capturing random intercepts in Equation 3. Sta-

tistical tests are therefore robust even if some subjects

deviate from the group average.

In contrast, no signi�cant di�erence was found in the

mean level of LRA in the inter-stride time series, indi-

cated by the α exponent, between evaluation sessions

(Figure 5). However, the inter-subject variance in LRA

exponent during T1 was signi�cantly lower than in T0

(p < 0.01) and in T2 (p < 0.05). Concerning the in-

dividual evolution of this α exponent between T0 and

T1, �ve subjects with lower initial LRA levels had a

mean increase of 16% (#2, #3, #5, #6, #8), while

the three others had a mean decrease of 8% (#1, #4,

#7), as shown in Figure 5.

Regarding the behavior of the orthosis during the

training sessions (Figure 6), the maximal torque and

energy injected at the hip signi�cantly decreased

across training sessions (p < 0.001 for both metrics).

Finally, the ABC score was signi�cantly higher in T1

and T2 compared to T0 (p < 0.05), with a mean ± SD

score of 35.63 ± 9.64 (maximum possible is 45) in T0,

37.88 ± 8.01 in T1 and 38.25 ± 7.15 in T2. In contrast,

no signi�cant di�erence was found in the other clini-

cal metrics, i.e., neither in the MDS-UPDRS part III

score, even when divided into its Postural Instability

and Gait Di�culty and rigidity subscores, nor in the

Mini-BESTest score.

4 Discussion

Numerous studies have shown the bene�cial e�ects

of robot-assisted gait training, divided into 10-20 ses-

sions of 25-40 min over 4-5 weeks as reviewed by [21],

for improving spatiotemporal gait metrics in patients

with Parkinson's disease. They particularly showed

an increase in gait speed, stride length and cadence

[7�13,15�19]. These three metrics are connected since

the increase in gait speed can be enhanced by increas-

ing cadence, stride length, or both [13]. These results

are in accordance with those of the present study show-

ing an increase in gait speed, stride length and cadence

� equivalent to the observed decrease in stride duration

�, and we further showed that these positive outcomes

are maintained one month after the end of the train-

ing. Several hypotheses have been raised by previous

papers to explain these positive evolutions after train-

ing with robotic devices. First, Sale and colleagues [15]

suggested that these improvements were due to the in-

tense repetition of a stereotyped gait pattern, which in-
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Figure 4 Relative changes in (a) normalized gait speed, (b) stride duration, (c) normalized stride length per lap, and (d) hip ROM

per gait cycle, for T1 and T2 relative to T0. Squares represent the mean across patients and whiskers indicate standard error of the

mean. Each point corresponds to individual data of a given participant in a given lap or gait cycle. Signi�cance level: *** p ≤ 0.001.

duced somatosensory cueing and stimulation. Ustinova

and co-workers [8] also stated that improvements of

these spatiotemporal gait metrics were due to the use

of the treadmill, being necessary with the Lokomat ex-

oskeleton, building upon results from other studies us-

ing a treadmill alone. Nevertheless, the present study

tends to show that it is possible to obtain equivalent

results after overground gait training with a compliant

orthosis that does not follow a stereotyped gait pat-

tern. We rather explained these improvements in gait

parameters by the increased ROM, which, to the best

of our knowledge, has never been reported in previous

studies. This increase could be due to the assistance

provided by the robot that compensates for a disease-

induced hip �exor muscle weakness [54]. Observing this

result is facilitated by the semi-ecological environment

used in our study, since the patients' hips kinemat-

ics were constrained neither by the environment nor

by the provided assistance. We hypothesize that this

larger hip ROM helped patients to increase their ca-

dence and stride length, and therefore their gait speed.

Interestingly, these changes in gait occurred even if

the maximal injected torque was moderate (about 0.1

Nm/kg, i.e., about 17% of what a healthy hip deliv-
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Figure 5 LRA level, characterized by α exponent, for the three evaluation sessions. Each gray line corresponds to the data from one

patient. Squares represent the mean across patients and whiskers indicate standard deviation across patients. The shaded area

corresponds to values of healthy walkers obtained by applying AFA on 10 series of 1024 points from [53]. Brackets indicate

signi�cant di�erences between standard deviation. Signi�cance levels: ** p ≤ 0.01, * p ≤ 0.05.

ers during overground walking [55]), and this torque

moreover decreased along training sessions. These im-

provements are very important in preventing falls for

patients with Parkinson's disease. Indeed, a decrease in

these gait metrics is considered as a marker of a higher

risk of falling [3]. An important caveat to this discus-

sion is that similar results could have been observed

after an equivalent amount of exercising without the

robot. This was not addressed in this study, since no

control group was included. Nevertheless, several stud-

ies involving control groups performing conventional

physiotherapy (i.e., joints mobilization, conventional

overground gait training, muscle stretching, ...) with

the same intensity as a robot-assisted group reported

larger e�ects with the latter as compared to the for-

mer group [13,14,16]. It is also interesting to mention

that some patients spontaneously reported that be-

ing assisted by a robot helped them and increased

their motivation. Indeed, some patients arrived at the

training session being tired, and the robotic assistance

encouraged them to carry on with the session until the

end.

Regarding the clinical metrics, only the balance

con�dence (ABC scale) decreased after training, and

this result was maintained after one month post-

training. This result was also reported in previous

articles [14, 56], and was associated with an improve-

ment in balance functions. Similar improvements in

balance were not identi�ed in our results through the

Mini-BESTest. Since the ABC scale is a subjective

one, this result shows that patients felt an improve-

ment in their self-perceived balance con�dence after

this robot-assisted gait training, although this was not

con�rmed by a measured improvement in their pos-

tural control assessed with the Mini-BESTest score.

This can be explained by the fact that both studies re-

porting increased balance functions involved patients

in more advanced stages (H&Y 2.5-4), thus having

more pronounced postural instability than those of
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Figure 6 Evolution of the injected (a) maximal torque and (b)

energy at the hip during training sessions. Squares represent

the mean across participants and whiskers indicate standard

error of the mean.Signi�cance level: *** p ≤ 0.001.

the present study. Another potential explanation for

the lack of balance improvement in this study is the

absence of body weight support, in contrast to previ-

ous studies reporting an improvement in this param-

eter. With body weight support, it was hypothesized

that patients can better regulate weight shifting dur-

ing walking [14,57]. On the other hand, the scale rating

the motor symptoms did not improve either. This is

probably because training with the orthosis was only

intended to impact the patients' gait, and not other

motor aspects of the disease assessed by the MDS-

UPDRS part III scale, such as rigidity, bradykinesia,

or tremor [56].

Finally, the level of LRA in series of stride durations

of patients with Parkinson's disease was 0.66 ± 0.11

before training (Figure 5), which is lower than the one

of healthy walkers, i.e., 0.82 ± 0.04 as computed by

applying AFA on 10 series of 1024 strides from [53].

Having a decreased LRA level in series of stride dura-

tions indicates a more random temporal organization

of the series, which is thought to be a marker of gait

instability in pathological populations [32]. However,

in the present study, the level of LRA of patients did

not signi�cantly increase after the training sessions;

although individual data were more clustered around

a value of α exponent closer to the one of healthy

individuals. Indeed, the �ve subjects who displayed

the lowest level of LRA before training (T0) increased

it during the second evaluation session (T1). In con-

trast, this level slightly decreased or remained con-

stant for the three participants who had a high level

before training. These levels returned to, or exceeded,

their initial values in T2, indicating that there was no

training retention e�ect after one month. The models

described in [36, 37] predicted that the level of LRA

in series of stride durations should increase when the

subject is assisted by the device. The present results

suggest that a training with the device standardized

this level in patients with Parkinson's disease, by in-

creasing it for patients who had a lower initial one.

Further investigations should be conducted to assess

the potential rehabilitative e�ect of this observation,

and the consequence of the fact that it is not retained

in the longer term.

We did not �nd a relationship between the varia-

tion in the level of LRA and other metrics assessed

in this study. In particular, no correlation has been

found between the α exponent and the H&Y score,
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re�ecting the level of disease progression. This may

be because this study mostly included patients with a

moderate disease stage (H&Y 2-2.5), and is therefore

not capturing the whole spectrum of gait impairments

encountered in patients with Parkinson's disease. Fur-

ther experiments should be conducted on a wider range

of stages and on a larger number of patients to identify

whether a speci�c stage of the disease would better re-

spond to this therapy. Moreover, this di�erence across

patients' response to robot-assisted gait training can

have other origins than motor functions as assessed by

the H&Y scale. Indeed, because of the heterogeneity of

Parkinson's disease, every patient is not impacted in

the same way by the disease. There is a large variability

in symptoms and disease progression across individu-

als. This is due for example to genetic factors causing

patients to respond di�erently to the same drug [58],

or to a more active lifestyle slowing down the disease

progression [59]. All these di�erences have led clini-

cians to create di�erent sub-groups of patients, based

on age of onset, motor phenotype, nonmotor symp-

toms and genetic mutations. This heterogeneity of the

disease further emphasizes the importance of personal-

ized treatment for each patient [60]. The present study

suggests that robot-assisted gait training might lead

to di�erent e�ects regarding LRA as a function of the

patient pro�le. Further investigations should be con-

ducted to establish if this is connected to genetic or

behavioral markers.

Despite the small sample size of the present study,

these experiments highlighted interesting results for

mitigating gait disorders in patients with Parkinson's

disease. A larger and more diversi�ed sample (in terms

of H&Y stage and gender diversity) could help to show

an improvement in the level of LRA in series of stride

durations of these patients. Moreover, a longer training

period, or incorporating this device into weekly phys-

iotherapy sessions, might also induce an improvement

in this metric, and potentially longer-term retention

after training.

5 Conclusion

This study showed that an adaptive walking assistance

delivered by a wearable robot does improve several gait

metrics in patients with Parkinson's disease, such as

gait speed, stride duration and length, and hip ROM.

It also opened new research avenues for assessing the

e�ects of such assistance on the level of LRA in series

of stride durations, in order to identify which patient

pro�le might bene�t the most of this assistance, espe-

cially regarding this particular motor control metric.
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