Statistical Model Checking meets GDPR.*

1[0000—0002—7357—705X] < <71 2[0000—0002—5953 —3384
[I, Kim G. Larsen?l],
0000—0003—2287—8925)

Eduard Baranov
and Axel Legay'!

! Université Catholique de Louvain
firstname.lastname@uclouvain.be
2 Aalborg University
kgl@cs.aau.dk

Abstract. Software systems are incorporated into various aspects of
human society. However, their integration brings a set of challenges, es-
pecially when software operates on personal data. The systems must be
correct and provide the desired functionality while maintaining privacy
and security of personal data. Verification techniques can support soft-
ware system development and provide mathematical evidence of their
correctness and security.

This work considers two recent applied and collaborative national/EU
projects from different domains. Both projects involve processing personal
data and sharing it among multiple individuals and organizations. There-
fore, ensuring security and data privacy guarantees, as mandated by the
General Data Protection Regulation (GDPR), is crucial. We explore the
applicability of formal methods and demonstrate the utility of Statistical
Model Checking to ensure security and privacy in real-world projects.
The goal is to validate specific aspects of GDPR compliance for both
projects.

Keywords: Statistical Model Checking - UPPAAL - GDPR

1 Introduction

In recent years software systems have been incorporated into almost every aspect
of human society offering various improvements including efficiency augmentation,
management simplification, and easier collaboration between different solutions or
organisations. However, in many cases the development of such systems must be
rigorous, the systems have to guarantee the satisfaction of a set of requirements. A
classic example is critical systems: the consequences of error can be catastrophic.
Yet in last years another set of requirements has become extremely important:
security and privacy of personal data.

An immense number of software systems collect or process personal data.
For example, healthcare systems work with medical data, Enterprise Resource

* This work was supported by Walloon Region (Belgium) projects DeepConstruct
(Convention n°8560) and Cyber Excellence (Convention n°2110186) and the Villum
Investigator Grant S40S.

Planning systems store official documents including personnel identity documents.
Unfortunately, data leaks caused by design issues, bugs in software, or system
configurations became commonplace affecting millions of people. For example, in
2019 an error in APT of the third largest Indian mobile operator exposed personal
data of 300 million customers [2]. In 2020, badly designed coronavirus app in
Slovakia was exposing data of almost 400000 users [3]. To reduce the risk of
data leaks, correctness and security checks are necessary for a large spectrum of
systems.

Data privacy guarantees are also required for legal reasons. In 2016 EU
adopted (effective from 2018) a General Data Protection Regulation (GDPR)
on information privacy [1]. GDPR imposes a set of requirements on systems
processing personal data, in particular it requires to minimize the collected data
and to utilise security measures for data protection. Several other countries such
as Australia, India, Japan, etc. have adopted similar regulations.

Additional challenge arises from the movement towards distributed systems.
Different parts of the system can be developed and maintained in different
locations, sometimes in different countries. Data can be divided and stored in
several organisations, while its processing might be performed by yet another
organisation. Both distributions make data transfer inevitable. From the security
and the data privacy perspective, such distributed setup requires to verify not
only each component or data storage, but the system as a whole including all
communication channels and interactions.

In this work we present our experience in providing data privacy guarantees in
two projects from two domains, healthcare and construction. The first project is
EU Horizon 2020 project Serums® [24]. The project goal is to improve healthcare
provision in Europe through the proposal of a secure and transparent data sharing
platform able to ensure privacy when accessing patient data [23]. Data sharing
aspect is the centre of Serums. For example, a person travelling to another country
might require medical services during the trip. The establishment of a correct
diagnosis and the quality of a suggested treatment can require knowledge of a
patient’s medical history. Serums proposed a system for medical data sharing
where a user can control the shared data by setting up access rules. Data privacy
guarantees are extremely important not only for legal purposes but for user trust
as well.

The second project is DeepConstruct® from the construction domain. Its goal
is to build a management system for activities, equipment, and documents. The
system facilitates the collaboration and information exchange between multiple
organisations. In addition, the system automatically manages the communica-
tions with the government agencies providing them legally required documents
and collecting their feedback. From the data protection perspective, correct
access control is mandatory: DeepConstruct operates with fiscal information and
personal documents, such as passports, work permissions, and diplomas.

3 www.serums-h2020.org
4 www.multitel.be/projets/deep-construct

From the perspective of our projects, we are focused on a data sharing aspect.
According to Article 5 of GDPR, the systems must ensure ”appropriate security
of personal data, including protection against unauthorised or unlawful processing
and against accidental loss” and demonstrate compliance with the requirement.
Article 25 requires protection by design and by default, so that security is
considered during the whole system life cycle. Security measures have to be
considered at the system design level as well. Thus, verification is an important
element of checking data security at the design level and its demonstration with
mathematical evidence of the result. In addition, Article 25 requires minimal
necessary accessibility of the data by default. For our projects this requirement
can be formulated as follows:

Property 1. The access to a newly created document with user’s personal data
is limited to the user and a person or an organisation responsible for the user.

In case of Serums, access could be granted by default to a personal doctor and
a hospital where the data is stored. For DeepConstruct that would be a company
the user is working at and a manager of a construction site. The introduction
of security measures against unauthorised access is required by Article 32. In
particular, personal data should not be shared with other persons without the
individual’s intervention. However, legal obligations allow the processing and
sharing as stated in Article 6. For example, worker documents must be approved
by Social Security, thus the documents must be shared with them. As a result,
there is a need not for a general consent for data sharing but for a fine-grained
access control. This gives us the following property for verification:

Property 2. Without legal obligation data cannot be accessed by users or
organisations unless the access has been granted by the data owner.

Several GDPR articles impose a set of regulations for transferring data to
third countries, but such scenarios are not considered in the projects, therefore
we leave them out of the scope of this work.

Data privacy is an important property and multiple techniques can be applied
to ensure its satisfaction. Various testing methods are extremely useful for checking
system’s implementation. Considering the protection by design required by GDPR
Article 25, formal methods and, in particular, model checking are extremely
helpful to ensure correctness of system’s design and to provide mathematical
evidence for the result. Different techniques can be used for the verification,
however exhaustive model checking can terminate on a small much simplified
subsystem, the check of the complete system is infeasible [8]. Therefore, we
decided to apply Statistical Model Checking (SMC) that is a simulation-based
technique with high scalability. SMC can be efficiently used with highly detailed
models of complete systems.

There exist a few works that formalise and verify systems compliance with
some parts of GDPR. In [32], authors with the help of legal experts built a UML
model of the GDPR requirements. Another set of rules representing the entire set
of regulations has been created in RIO logic in [12]. However, in both works the

application of the defined rules to the compliance checking is left as a future work.
Authors of [11] built a UPPAAL model of a simple online shop and formulated the
properties checking the presence of user’s consent and encryption for data transfer.
In [10] smart contracts have been used to monitor the presence of consent and
encryption during data transfer for IOT devices. A runtime monitoring of GDPR
compliance is proposed in [4].

In this work we are providing the experience of checking GDPR compliance
focusing on the data sharing aspect. We are considering a fine-grained access
control rather than a general consent to do anything with the personal data. We
show the formalisation and verification of the Properties 1 and 2 within two
projects, Serums and DeepConstruct.

The paper is structured as follows. We start with background information on
Statistical Model Checking in Section 2. Then we provide details on the systems
designed for each project and their models in Section 3. Properties and details of
their checking are described in Section 4. Section 5 concludes the paper.

2 Background

Formal methods is a set of techniques capable of verifying system properties
and providing mathematical evidence of the result. They have been applied in
multiple projects, e.g. [25,16,27,21,14]. Model checking is one of the formal
methods utilising a formal representation of a system which is called a model.
One of the common representations is based on transition systems [5] containing
a set, of systems’ states and a set of transitions describing how the states can be
changed during the system execution. Properties to be verified require a formal
representation as well. They are usually expressed with one of the temporal
logics [7] which extend Boolean logic with temporal operators allowing reasoning
on sequences of events.

Statistical Model Checking (SMC) [22,28,17,29, 30] is a verification method
combining ideas from classical model checking and statistics. While exhaustive
model checking explores the full state-space of the model that is susceptible
to a state-space explosion problem, SMC uses simulations for the state-space
exploration. The core idea of SMC is to run a large number of simulations on
which a property under validation is checked and to use statistical methods to
compute the probability of the property being satisfied. Confidence level of the
result is a parameter that can be selected at the beginning of the verification.
Being simulation-based, SMC verification with high degree of confidence is fast
and requires a small amount of memory, as a result it scales to real-world projects.
Multiple projects in different areas used SMC for verification, e.g. [9, 13, 20, 26,
31, 33].

UpPAAL [15] and its SMC extension UPPAAL SMC [18] are efficient tools for
modelling and verification. Systems are modelled with a network of stochastic
timed automata. Transitions in automata are equipped with a set of labels
controlling its behaviour: guards enabling or disabling the transition depending
on the current evaluation of variables, simple C-like functions updating the

variables during the state change, and channels that are used for synchronisation
between automata. Transitions of multiple automata labelled with the same
channel are synchronised. Note that for UpPAAL SMC only broadcast channels
can be used. Shared variables are used for data transfer between automata. To
model several automata with identical behaviour, for example users of the system,
UpPPAAL defines a model with a set of templates. Each template can instantiate
one or several automata which share common behaviour but act independently
during simulation. This feature simplifies modelling of different scenarios, for
example the number of users can be easily changed.

For the specification of properties UPPAAL SMC uses queries written with
an extension of Metric Interval Temporal Logic (MITL). Its SMC engine runs a
large number of simulations and checks queries on each of trace. Basic temporal
operators are [0 p and ¢ p checking that p holds in all or at least one state
in the trace respectively. There several types of queries supported by UPPAAL
SMC. The first query type computes a probability of a property to be satisfied.
It is specified with a formula Pr[# < N| F, where F is a property specified
with MITL, N is a maximal trace length and # indicates that trace length is
computed as a number of transitions taken rather than elapsed time. The result
of such query would be an interval [x — €,z + €] with a confidence «, where ¢
and « are selected parameters. Another query type that we use in this work
computes an expected value of an expression Fxpr and is specified with a formula:
E[# < N, X] Expr, where N is a maximal trace length and X is a number of
simulations. We used an expression max : wvar that returns a maximal value
of a variable var encountered during the simulation. This request is useful to
determine which trace length is sufficient for multiple expected visits of a system
part that is currently being checked.

3 Modelling Systems

Architectures in both SERUMS and DeepConstruct projects consist of several
components interacting with each other and with users. Their modelling is
straightforward: behaviour of each component is modelled with one or several
automata and their interactions are modelled with channels and shared variables.
Users are included in the model; several templates are created for modelling
different user roles in the systems. In this section we provide a brief description
of models created for the two projects.

3.1 Serums model

Serums addresses the need to securely share medical data to allow healthcare
provision across different healthcare providers. The high-level architecture of
the Serums platform is shown in Fig. 1. Smart Health Centre System (SHCS)
is a central component managing interactions between users and other compo-
nents. In order to interact with the system, users have to sign-up and login.
An authentication component is responsible for these interactions and is built

Serums platform Medical Data
e . sources
. PPt @_@ Blockchain _—+ —
Patients - (77 component : - —
X ; ' > — E (Access Rules)y;) g
M L=k . T +
] = , ; R (1]
Healthcare m =) @1 1
Professionals ~ : Smart Health = e .
: Centre System ’ [22~2] Data Lake
- L > (SHCS) \J Component
: = l Authentication Hs’”/'ta: : af’e’(’f 1:':- g
- lea eCcor 3
Q Component SPHE = -

Fig.1: Serums architecture [8].

from two sub-components, front-end and back-end. The former interacts with
users and controls the execution of authentication steps while the latter performs
background checks and is not supposed to interact with users directly. Patients
can specify who could access their data via fine-grained access rules that are
stored and managed in smart contracts in a Blockchain component. For example,
access to general information such as name and blood type can be granted to all
medical personnel while specific test results can be visible to the treating doctor
only. Healthcare professionals® can request patients’ data. Such requests are first
transferred to the Blockchain component in order to verify access level. If some
data is allowed to be retrieved, the request is passed to a Data Lake component
that is responsible for collecting and processing of requested patient’s data from
connected hospitals.

During the project we built a model of the Serums system and continuously
evolved it following the introduction of new features to the system. The model
has 11 templates: 7 are modelling Serums components and the remaining 4
represent users of the system and hospitals. There are multiple users and hospitals
interacting with the system, therefore there are multiple automata in the model
instantiated from their templates.

Fig. 2 shows the automaton for the central Serums component SHCS mediating
between users and the rest of the platform. Component’s behaviour can be
summarised with several sequences of interactions starting from the state in the
centre of the automaton. The left part of the figure corresponds to the login
procedure that starts with a request from a patient or a doctor and checks the
presence and the validity of an authentication token. If the check fails, the user
is transferred to the Authentication component. The right part of the figure is
responsible for the creation and modification of access rules: user requests are

5 In the remainder of the paper we would reference healthcare professionals as doctors.

shared_fr_di = current_id,
shared_token_fr_d = currentwT,

current_user_type ==1
shared_fr_diz =1 bl o

shared_ir_pifcurrent_id] = decode(shared_fr_d))

Forward_Receive_SPHR2

Request_SPHR_Patient

df] 1=-1
phili?

i type =0
current_id = / defcurrent_id] = decode(shared_fr_d)
currentWT=patientsLoaded[]
current_user_type = 1

dd_rule
SubmitRuleSuccess

_receive_sphlcurrent]

loaded(current_id

T_pt_loaded[c]
1 patientsLoaded[current_id] = currentIWT AddRuleToDatalake

fr_de_ current_id] AddRuleToDatalakeDone ©
doctorsLoaded[current_id] = currentIWT

r_pt_submit_rule_done[current_i

ReceiveNewJWT
r_au_refresh_jwt_don

curentWT = shared_f_au,

shared_fr_dl = encodeavals(current_id, -1, 0)
sharedata(shared_fr_au)

Darseavals(shared_fr_pil)
current_user_type =1
i id =1,

Q sencveriour

current_val_1==-1

VerityswT

shared_fr_au= _dc Dpreg
current_id = RequestPrediction

NIDI>=0 RequestAccess
pLlogout]?

CuNTenuwT =-1,
current_id = -1
current_user_type =0 patientsLoaded[] = -1

urtent_val_L = shared
shared_fr_pt{current

rentd fr_ml_predict_dor
shared_fr_dclcurrent_id) = shaved_fr_r
ml_pre

=%
r_dc_logout[]?
CUNENtIWT = -1,
current_id =1,
doctorsLoaded[] =-1

dl_send_SPHR
shared_i_ml =decode(shared_fr_d)

Fig. 2: Serums automaton of the SHCS component.

forwarded to the Blockchain component, and the result is returned to the user.
The upper part performs requests for patient data. The request can be done by
a patient for his/her personal data (GDPR Article 15). Alternatively, a doctor
can request data for a patient. In both cases the Blockchain component checks
access rules and the Data Lake collects the allowed information. The remaining
transitions in the bottom correspond to logout procedures and doctors requesting
data access from a patient.

Other parts of the Serums systems have been modelled as well at different
level of abstraction. Blockchain has been abstracted to a blackbox, only its API
have been modelled while access rights have been represented by a matrix. The
Authentication component having a large number of different interactions has
more details in the model and includes 4 automata. Fig. 3 shows an automaton
for one user type representing a doctor. The left part of the automaton defines
different interactions related to authentication and the right part corresponds to
the data access operations.

3.2 DeepConstruct model

A goal of DeepConstruct is to build and verify a platform for managing personnel
and resources in the construction domain. It is a centralised solution with an
application server that performs most of the processing with a connected database.
Several interfaces are provided to the users: a connected web platform (CWP)

do_pga_request_inputfidj SEndGraph_pass

RequUestSPHR

RequestPassphrase de_pga_send_inputic]

fr_dc_request_sphr[id]:

shared_dc_pgalid] = -1 Gred_dc_pgalid] = passiyord
e StartRequestSPHR

RequesiPassphase? @)

de_pga_signu r_dc_enorfid]?

end_inputfid]
SendPassphrase Q)

0<=pt
shared_fr_dcfid] = pt,
current_val_1=pt

signup_donefid]? RequestPrediction
shared_dc_pgafid]
shared_dc_pgafid]
current_val_1 =0

=2 has, ue,
0. verf_code =-1

fi_dc_request_predict_done[id]?

fr_dc_request freflict[d]

current_)

SelectPassTlype fr_dc_errorfid]?

RequestPassType
de_pga_send_fnputid] O<=pt StartRequestPrediction

shared_fr_dcfid] = pt

SendPassType login_failed[id]?

jwi = -1

fr_dc_request_a

ssfid]:

‘j T 0<=pt
clid] shared_fr_dclid] = pt

dc_pga_requesy inputfid]?

shared_dc_pgalld] = usePass() © Reauestaccess

sgin_failedid]? fr_de_no_jwifid]? .
r_do_logout(id]
RequestPass Loadingwait

Init

—

verif_code = shared_au_dc[id]

de_pga_send_inputfid]

de_send_verif_emailid]?

dc_pga_login_donefia]?
SendPass jwt = shared_dc_pgalid]. Loading :
shared_fr_dcfid] = jwt shared_fr_dcfid] =jut

Fig. 3: Serums automaton of a doctor.

designed for organisation resource management and 3 mobile applications for
the on-site management of presence control and work updates. Several types
of users with different level of access are considered: a worker can manage and
update his/her data in a mobile application, an on-site manager can have some
access to the data of workers at the construction size, and a higher-level manager
or human resources can manage all the workers of the organisation and have
access to the CWP. In addition, the platform provides services for telemetry and
geolocation of vehicles and tools that are collected and stored in the database as
well as the automatization of interactions with external services such as Enterprise
Resource Planning systems and governmental services. High-level architecture of
DeepConstruct is shown in Fig. 4. One of the important features is an integration
with an optical character recognition (OCR) tool. All the documents can be
imported via scans or photos and OCR gathers data from the images. Document
sharing between organisations is set up by access rights: by default, only one
organisation can access a document and it can grant or revoke access to other
organisations.

A model of DeepConstruct platform has 14 templates including 3 types of
users, 3 mobile applications, and 2 external services. The majority of automata
are simple and do not involve complex behaviour since almost all interactions are
independent requests to the database via the application server. A more complex
communication sequence involves document recognition with OCR. A user can
upload an image or take a photo with one of the mobile apps, which in its turn
would connect to the OCR service (authentication is done with JWT), and the
recognised text would be validated and sent to the database. This sequence is
shown in the top-left part of the mobile application automaton in Fig. 5. Other
parts of the automaton correspond to the login procedure (right part) and time
sheets submission (bottom-left part).

a a

Connected Web » Q -
Platform
Maobile App

External Services
(Social Security, «——————» | Application Server | 4———» OCR
ERP.)

Q ;
Febton”
Location

Scanner

Fig. 4: DeepConstruct architecture.

4 Verification of GDPR Properties

Developed models allow us to perform formal analysis of the systems. We use
UppPAAL SMC for the verification in the Serums and DeepConstruct projects.
Contrary to the exhaustive model checking, SMC easily scales to large models.
Queries for UpPAAL SMC have to be expressed in MITL. In this work we
consider GDPR related properties, focusing on the ones defined in Section 1.
Both properties have been encoded with a set of queries. The structure of the
encoding in similar in the two projects, however there are differences in the final
formulas due to particularities of each project.

Property 1 verifying that by default personal data has minimal access rights
can be checked in two ways. The first option applicable to our models is to check
access rules. In the Serums project, access rules are stored in the Blockchain
component that is abstracted to a matrix. Since all data is stored in local hospital
databases rather than in the Serums platform, there is no notion of the new data
creation, therefore we check that for each patient p patient’s data can only be
accessed by the personal doctor before any access rule has been added by the
patient. The corresponding query is

Pr[# <= N] (O (p.rulesCreated > 0 || /\ ! blockchain.rules[p][d])),
d:D\p.doctor

where N is a desired length of a simulation trace, p is a patient, rulesCreated
is a counter incremented during an access rule creation, and the conjunction is
taken over all doctors in the system excluding the personal doctor of p.
Contrary to Serums, in DeepConstruct documents are stored in the central
database, therefore we check access rights after a new document is added to the

mob_app_sendDoc[gid]! SendimgToDB

SendimgToDBDone

mob_app_done[gid]? mob_app_done[gid]?
ocrtoken = shared_mob_app[gid

LoginzDB

mob_ocr_result[gid]?
shared_mob_app[gid]
ReceiveOCRRes

DocSubmitted

mob_ocr_fail[gid]?

mob_ocr_sendimage[gid]

u_mob_done_dpc[gid]

OCRImage

u_mob_submit_newDoc[gid]?
shared_moh_ocr(gid] = encode2Vals(shared_u_mob[gid} e

u_mob_done[gid]

u_mob_donelgid] u_mob_fail[gid]

SendTimesheetDone e

u_mob_mobileLogin[gid]?

u_mob_failgid] shared_mob_app(gid] = shared_u_mob[gid]

mob_app_done([gid]? SendTimesheetFail

SendTimesheetDB

u_mob_mobileLogout[gid]?

Init

u_mob_sendTimesheet[gid]?

mob_app_sendTimesheet[gid]! shared_moh_app[gid] = shared_u_mob(gid]

SendTimesheet

Fig. 5: DeepConstruct automaton of a main mobile application.

I - GloballD 1>=0 && getUserType(i) ==2
shared_hr_cwp[i] = encode2Vals(getUserCompany(i),shared_mob_app[ownid]),
regld =1,
allowed = getUserCompanyli) == getUserCompany(ownid)

DocumentAdded
PrepareRequestDoc
1>=0

i - GloballD
u_mob_done_doc[i]?
req =req +1,
hr_cwp_faillreqld]? L ownld =i
DocRequested
Init

hr_cwp_done[regld]? fequestSuccess

Fig. 6: Monitor automaton for DeepConstruct.

hr_cwp_requestDoc[reqgld]

system. Whenever a user creates a document, it is expected that only user’s
organisation can access the document by default. This can be checked with a

query

Pr[# <= N] (O ({db.NewDoc || /\ (c == getCompany(db.requestor)
c:Company

[| ! db.hasAccess(c,db.lastDoc)))),

where db is a database automaton, NewDoc is a state where a document is added,
getCompany is a function returning user’s company, hasDocAccess is a function
checking access right, and lastDoc is an id of the last document.

An alternative way to check Property 1 is to attempt to request data before
making modifications to the access rules. This can be done by adding a ”monitor’
automaton that detects the addition of a new data and attempts to access it as
one of the users. An example of the automaton for DeepConstuct is shown in
Fig. 6. At the end of the document creation, the automaton remembers its owner

)

and then selects a user at random and sends a request to retrieve the document.
The RequestSuccess state is reached if the document have been received. We
check the query Pr{# <= N] (¢(mon.RequestSuccess && | mon.allowed))
where allowed is a boolean variable with the expected access right. It is possible
to select users that are not supposed to have the access and check the reachability
of the RequestSuccess state. In Serums, the corresponding automaton sends a
set of requests at the beginning of the simulation.

Note that the first type of queries without the additional monitor only checks
the correct access rights but not the privacy of the data. Indeed, it is necessary
to ensure that the system respects access rules and it is not possible to violate
them. This is guaranteed if the Property 2 checking the access control is satisfied.
For the verification we add a query per user that can request some data; the
query checks data received by the user. In case of Serums we have the queries
with the following structure:

Pri# <= N] (O (ld.ReceiveSPHR || (d.data! = —1 &&
blockchain.rules[getOwner(d.data)][d]))),

where d is a doctor, ReceiveSPHR is a state after receiving data, comparison
with —1 checks that the received data is not empty, and getOwner function
returns the patient to which the data belongs. In case of a patient’s request,
instead of access rules we check that the patient is the owner of the data. In
addition, we check that granted access allows the user to receive data by checking
reachability of such state:

Pr{# <= N] (¢ (d.ReceiveSPHR && (d.data! = —1))).

Note that we do not add a constraint with access rule since the state can only
be reached with granted access assuming that the preceding query is verified.
Queries for DeepConstruct are similar and can be obtained by replacing automata
names, states, and the access rule format with the corresponding values.

The queries above cover access control for the requests sent by official API and
check the correctness of the system under verification. However, security aspect
must also be considered. We need to check that malicious users that are not
restricted with normal behaviour cannot access personal data. For this verification
we make two assumptions. The first one is that no one has unauthorised access to
the personal data outside of the system under verification, for example physical
access to its database. Indeed, any security measure in the system would not
be able to prevent such access. The second assumption is that authentication
credentials are not leaked. If this assumption is violated, a malicious user can
login with leaked credentials and access personal data.

In order to add security checks to the verification process, we added malicious
users or attackers to the models. For example, such user would attempt to login
to the system without knowing correct credentials. A corresponding query to
check that such user cannot access any data is a simple reachability of a state
of successful login to the system. Another part of verification is related to the

utilisation of "internal” API, i.e. non-public communication endpoints used for
interaction between different components. In our projects, systems are distributed
and part of the communication goes not inside an internal network but through
internet, therefore such endpoints can potentially be discovered. Therefore, it is
important to check that the components perform sender authentication. Attacker
models for this part of verification attempt to send requests to such endpoints
(we add a transition to the recipient automaton to synchronise with the attacker
request). As for a previous attacker, a query checks reachability of the state
where some data is received. This part of the verification is especially important
for Serums since the Blockchain component storing access rules and the Data
Lake component collecting data can have different locations. In DeepConstruct
due to its centralised architecture, there are only a few internal endpoints to
check.

We checked the desired properties in the projects with the formalised queries.
To find out the required simulation trace length, we added simple counters that are
incremented an action important for the verification is taken (e.g. rulesCreated
in the query for Property 1 or req variable in Fig. 6) and checked a query

E[# <= N; X] (max : counter),

which outputs an expected value of the counter at the end of the trace of length
N after X simulations. We used X = 100. By testing various lengths, we note how
often the actions are taken and select trace length accordingly. For our projects
traces of lengths between 10000 and 20000 (depending on a query) were considered
sufficient. Another technique we used during verification is modification of the
initial state of the system. For example, for the GDPR, properties we assumed
that all users are initially logged in to the systems, thus making the transitions
corresponding to data creation and access to appear earlier in simulations.

On a laptop with i7-8650U CPU, each query check takes about 1 minute on
DeepConstruct model and about 4 minutes on Serums model with a confidence
0.999. For both project the verification required just 50MB of RAM. Note that
exhaustive model checking would quickly run out of any reasonable amount of
memory on such big models. UPPAAL SMC returns an interval for the probability
of the property to be satisfied. The interpretation of the result depends on a
property type. For safety queries such as ones used to check Property 1, the
interval must have the right bound equal to 1 in order to be considered satisfied.
A different result would mean that there has been at least one simulation on
which the query was violated. For liveness queries checking reachability of some
state the interval must not be close to 0, so that at least one simulation reached
the state.

For the security part of the verification, we found a potential issue in one of the
early designs of the Serums system. A data request had been split into two steps:
at the first step access rights were requested from the Blockchain component,
and the response was added to the second request to the Data Lake component.
If an attacker has had a capability to request the Data Lake component directly,
it would have had possible to forge the Blockchain response and to obtain access

to all data. In the latter versions, the Data Lake component was responsible for
the access rights requests, thus removing the possibility to forge the Blockchain

reply.

5 Conclusion

While software systems aim to improve human society, their utilisation of personal
data is inevitable. Therefore, verification becomes an essential part of software
development to ensure correctness of systems and privacy of data. Regulations
such as GDPR impose legal requirements to the software systems. In this work
we showed how part of the requirements can be formalised with temporal logic.
In particular we focus on properties related to data access and sharing. Statistical
Model Checking being an efficient methodology can be applied to perform the
verification on real-world projects and provide statistical guarantees of the result.
For the future work we are going to explore the applicability of hyperproperties
[19,6] for the verification of GDPR requirements. Hyperproperties reason on
sets of traces and can be used to express properties such as anonymity and
side-channel information leakage. This may lead to a higher coverage of GDPR
by Statistical Model Checking.

References

1. Regulation 2016/679 of the european parlament and of the council (general data
protection regulation) (2016), https://eur-1lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679

2. Indian airtel: Bug meant users’ personal data was not secure (2019), https://www.
bbc.com/news/world-asia-india-50641608

3. Critical vulnerability in my ezdravia application (2020), https://nethemba.
com/sk/kriticka-zranitelnost-v-aplikacii-moje-ezdravie-unik-databazy-
pacientov-testovanych-na-covid-19/

4. Arfelt, E., Basin, D., Debois, S.: Monitoring the gdpr. In: Computer Security—
ESORICS 2019: 24th European Symposium on Research in Computer Security,
Luxembourg, September 23—-27, 2019, Proceedings, Part I 24. pp. 681-699. Springer
(2019)

5. Arnold, A.: Finite transition systems - semantics of communicating systems. Prentice
Hall international series in computer science, Prentice Hall (1994)

6. Arora, S., Hansen, R.R., Larsen, K.G., Legay, A., Poulsen, D.B.: Statistical model

checking for probabilistic hyperproperties of real-valued signals. In: Legunsen, O.,

Rosu, G. (eds.) Model Checking Software - 28th International Symposium, SPIN

2022, Virtual Event, May 21, 2022, Proceedings. Lecture Notes in Computer Science,

vol. 13255, pp. 61-78. Springer (2022)

Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

8. Baranov, E., Bowles, J., Given-Wilson, T., Legay, A., Webber, T.: A secure user-
centred healthcare system: Design and verification. In: 10th International Sympo-
sium From Data to Models and Back (2021)

9. Baranov, E., Given-Wilson, T., Legay, A.: Improving secure and robust patient
service delivery. In: Leveraging Applications of Formal Methods, Verification and
Validation: Verification Principles. pp. 404-418. Springer (2020)

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Barati, M., Rana, O., Petri, 1., Theodorakopoulos, G.: Gdpr compliance verification
in internet of things. IEEE access 8, 119697-119709 (2020)

Barati, M., Theodorakopoulos, G., Rana, O.: Automating gdpr compliance verifi-
cation for cloud-hosted services. In: 2020 International Symposium on Networks,
Computers and Communications (ISNCC). pp. 1-6 (2020)

Bartolini, C., Lenzini, G., Santos, C.: An agile approach to validate a formal
representation of the GDPR. In: Kojima, K., Sakamoto, M., Mineshima, K., Satoh,
K. (eds.) New Frontiers in Artificial Intelligence - JSAI-isAI 2018 Workshops,
JURISIN, AI-Biz, SKL, LENLS, IDAA, Yokohama, Japan, November 12-14, 2018,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 11717, pp. 160—
176. Springer (2018)

Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstrac-
tion and model-checking of large heterogeneous systems. International Journal on
Software Tools for Technology Transfer 14(1), 53-72 (2012)

ter Beek, M.H., Borédlv, A., Fantechi, A., Ferrari, A., Gnesi, S., Léfving, C., Maz-
zanti, F.: Adopting formal methods in an industrial setting: the railways case. In:
International Symposium on Formal Methods. pp. 762-772. Springer (2019)
Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: Formal methods
for the design of real-time systems. pp. 200-236. Springer (2004)

Cerone, A., Elbegbayan, N.: Model-checking driven design of interactive systems.
Electronic Notes in Theoretical Computer Science 183, 3-20 (2007)

D’Argenio, P.R., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for
lightweight verification of markov decision processes. Int. J. Softw. Tools Technol.
Transf. 17(4), 469-484 (2015)

David, A., Larsen, K.G., Legay, A., Mikuéionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. International Journal on Software Tools for Technology Transfer 17(4),
397-415 (jan 2015)

Dobe, O., Schupp, S., Bartocci, E., Bonakdarpour, B., Legay, A., Pajic, M., Wang, Y.:
Lightweight verification of hyperproperties. In: André, E., Sun, J. (eds.) Automated
Technology for Verification and Analysis - 21st International Symposium, ATVA
2023, Singapore, October 24-27, 2023, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 14216, pp. 3-25. Springer (2023)

Ellen, C., Gerwinn, S., Franzle, M.: Statistical model checking for stochastic hybrid
systems involving nondeterminism over continuous domains. International Journal
on Software Tools for Technology Transfer 17(4), 485-504 (2015)

Harrison, M.D., Masci, P., Campos, J.C.: Formal modelling as a component of user
centred design. In: Federation of International Conferences on Software Technologies:
Applications and Foundations. pp. 274-289. Springer (2018)

Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic
model checking. In: Proceedings of the 5th International Conference on Verification,
Model Checking, and Abstract Implementations, LNCS, vol. 2937, pp. 73-84.
Springer Berlin Heidelberg (2004)

Janjic, V., Bowles, J., Vermeulen, A., et al.: The serums tool-chain: Ensuring
security and privacy of medical data in smart patient-centric healthcare systems.
In: 2019 IEEE Int. Conf. on Big Data. pp. 2726-2735 (December 2019)

Janjic, V., Vinov, M., Given-Wilson, T., Legay, A., Blackledge, E., Arredouani,
R., Stylianou, G., Huang, W., Bowles, J.K.F., Vermeulen, A.F., Silvina, A., Belk,
M., Fidas, C., Pitsillides, A., Kumar, M., Rossbory, M.: The SERUMS tool-chain:
Ensuring security and privacy of medical data in smart patient-centric healthcare
systems. In: Baru, C.K., Huan, J., Khan, L., Hu, X., Ak, R., Tian, Y., Barga, R.S.,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Zamiolo, C., Lee, K., Ye, Y.F. (eds.) 2019 IEEE International Conference on Big
Data (IEEE BigData), Los Angeles, CA, USA, December 9-12, 2019. pp. 2726-2735.
IEEE (2019)

Jetley, R., Iyer, S.P., Jones, P.: A formal methods approach to medical device
review. Computer 39(4), 61-67 (2006)

Kalajdzic, K., Jégourel, C., Lukina, A., Bartocci, E., Legay, A., Smolka, S.A., Grosu,
R.: Feedback control for statistical model checking of cyber-physical systems. In:
International Symposium on Leveraging Applications of Formal Methods. pp. 46-61.
Springer (2016)

Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling and
validation of rate-adaptive pacemakers. In: 2014 IEEE International Conference on
Healthcare Informatics. pp. 23-32. IEEE (2014)

Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
International Conference on Runtime Verification. pp. 122-135. Springer (2010)
Legay, A., Lukina, A., Traonouez, .M., Yang, J., Smolka, S.A., Grosu, R.: Statistical
model checking. In: Computing and Software Science, pp. 478-504. Springer (2019)
Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: 17th International Conference on Computer Aided Verification, LNCS,
vol. 3576, pp. 266-280. Springer Berlin Heidelberg (2005)

Ter Beek, M.H., Legay, A., Lafuente, A.L., Vandin, A.: A framework for quantitative
modeling and analysis of highly (re) configurable systems. IEEE Transactions on
Software Engineering 46(3), 321-345 (2018)

Torre, D., Soltana, G., Sabetzadeh, M., Briand, L.C., Auffinger, Y., Goes, P.: Using
models to enable compliance checking against the gdpr: An experience report. In:
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS). pp. 1-11 (2019)

Zuliani, P.: Statistical model checking for biological applications. International
Journal on Software Tools for Technology Transfer 17(4), 527-536 (2015)

