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Abstract—This letter focuses on extremum seeking (ES)
controllers with adversarial attacks in the form of decep-
tion signals. While a persistent attack in a feedback con-
troller may be difficult to identify or mitigate, for a broad
class of algorithms it suffices to achieve mitigation “suffi-
ciently often” in order to preserve the stability properties
of the system. In this letter, we explore for the first time
the resilience properties of ES controllers with respect to
a class of persistent multiplicative attacks that are pur-
posely designed to destabilize optimization-based feed-
back controllers. By leveraging Lyapunov-based arguments
for switching systems and singular-perturbation theory
for hybrid dynamical systems, we characterize a family
of persistent multiplicative attacks under which gradient-
based ES, Newton-Like ES, and Accelerated gradient ES
controllers provably preserve their stability properties.

Index Terms—Extremum seeking, switching systems,
cyber-security.

I. INTRODUCTION

SELF-TUNING control methods and gradient-free
optimization algorithms have been adopted in many

engineering applications, ranging from process control, traffic
systems, and multi-agent systems. Extensive efforts have
focused on extremum seeking (ES) control thanks to its
practical success and theoretical guarantees; see [1]–[6]. ES
is a gradient-free optimization method that combines probing
input signals with output-feedback information to regulate
a dynamical system to the extremum of an unknown cost
function. However, as illustrated in the left plot of Fig. 1, in
practice, the physical process and the different components
of the controller might be connected by means of different
communication links that can be prone to cyberattacks.
Nevertheless, while the resilience and robustness properties
of different control systems under attacks have been recently
studied in the literature, see, e.g., [7]–[10], in the context of
ES they remain mostly unexplored.
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In this letter, we study the resilience properties of ES
controllers aiming to minimize an unknown cost function
φ : R

n → R that is accessible only via its evaluations. We
focus on controllers described by the equations:

ẋ = F(x, ξ), u = x + aμ̂, a > 0, (1)

where x ∈ R
n is the main state of the ES controller,

F : R
n × R

n → R
n describes the optimization dynamics

of the controller, ξ ∈ R
n is an auxiliary state that repre-

sents an estimate of the gradient (or higher derivatives) of
φ, and μ̂ ∈ R

n is a periodic probing signal. Under a nom-
inal operation, ES controllers have been extensively studied;
see [1]–[3], [5], [6], [11]. In contrast to these results, in this
letter we consider a situation where the controller is subject to
external attacks that persistently modify the estimated gradient
ξ , generating a deceptive signal ξ̂ ∈ R

n, defined as follows:

ξ̂ =
{

Qsξ, without attack, i.e., Qs := In,
Quξ, under attack, i.e., Qu := diag(q1, . . . , qn),

(2)

where diag(q1, . . . , qn) represents a diagonal matrix with
entries given by the vector [q1, . . . , qn]� ∈ R

n. Such type of
deceptive signals can easily destabilize a gradient-based con-
troller. In this letter, we consider a general class of deception
attacks characterized by matrices Qu that satisfy, for a given
pair (q,N) ∈ R>0 × Z≥1, the following Three Properties:

1) ∀ i, qi can take values in a finite set {qi,1, . . . , qi,N}.
2) ∀ i, |qi| ≤ q, where 0 < q < ∞.
3) ∃ i, such that qi ≤ 0.
We denote by Qu the set of all matrices Qu that satisfy the

Three Properties. This model is quite general, and it captures
classes of multiplicative attacks that can persistently mod-
ify the sign and/or the magnitude of the estimated gradient
of φ, including signals that effectively vanish the gradient,
i.e., qi = 0, ∀ i, or completely deceive the gradient, i.e.,
qi = −1, ∀ i. Similar types of attacks have been extensively
studied in the cyber-physical security literature [4]–[6], [10]–
[17], particularly in the context of Denial of Service (DoS) or
jamming attacks; see [7] and references therein.

The design and analysis of resilient control algorithms oper-
ating under jamming and communication drops was studied
in [12]. In [13], an event-triggered controller with stabil-
ity guarantees for systems under DoS attacks was presented.
Jamming in networks was investigated in [14] and references
therein. For matrices Qu with non-zero diagonal entries, the
model (2) captures deception attacks [7], which were the focus
of [15] and [16]. Recent works have investigated the security
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Fig. 1. ES controller under persistent gradient deception. The system
is modeled as a switched system with unstable modes.

of distributed optimization under Byzantine attacks [17]–[19].
A similar model was considered in [10] for sub-gradient meth-
ods, and in [9] for centralized optimization under DoS attacks.
However, to the best of our knowledge, the study of ES
controllers under attacks remains completely unexplored.

Contributions: The contribution of this letter is threefold.
First, we propose a new set-valued model of persistent,
non necessarily periodic, multiplicative attacks against ES
algorithms, which generalizes existing classes of jamming
attacks studied in the literature of cyber-security. Such types
of attacks are difficult to mitigate due to their lack of
periodicity and predictability. Second, we present the first
stability analysis of averaging-based ES dynamics operating
under persistent deceptive attacks of the form (2). In partic-
ular, by using Lyapunov-based tools for Hybrid Dynamical
Systems [4], [20], we characterize an entire family of per-
sistent attacks under which the stability properties of the ES
controllers are preserved. This characterization is provided for
three common types of ES dynamics: (a) Gradient descent-
based ES [1], [2], [21], (b) Newton-Like ES [3], [5], and
(c) Accelerated gradient ES [6]. Our results reveal the effect
of the parameters of the cost function on the resilience proper-
ties of the controllers. Moreover, we uncover novel trade-offs
between fast convergence and resilience to attacks in nominal
and accelerated ES algorithms. Finally, we present the first sta-
bility result for controllers that continuously switch between
Gradient ES and Newton-Like ES, a result that may be of
independent interest.

II. PRELIMINARIES

Given a compact set A ⊂ R
n and a vector z ∈ R

n, we let
|z|A := mins∈A |z − s|, where |z| denotes the Euclidean norm
of z. We use S

1 := {z ∈ R
2 : z2

1 + z2
2 = 1} to denote the

unit circle in R
2, and T

n := S
1 × S

1 × . . . × S
1 to denote

the nth Cartesian product of S
1. For a set X and A ⊆ X, we

denote the set indicator function by IA : X → {0, 1}, where
IA(x) = 1 if x ∈ A, and IA(x) = 0 if x /∈ A. Given two vectors
p1, p2 ∈ R

n, we use (p1, p2) = (p�
1 , p�

2 )
� to denote their

concatenation. In this letter, we deal with algorithms modeled
as hybrid dynamical systems (HDS) [20], of the form

p ∈ C, ṗ ∈ F(p), p ∈ D, p+ ∈ G(p), (3)

where p ∈ R
n is the state, F : R

n ⇒ R
n is the flow map,

G : R
n ⇒ R

n is the jump map, C ⊂ R
n is the flow set, and

D ⊂ R
n is the jump set. We note that solutions p to (3) are

defined on hybrid time domains, denoted by dom(p), and we
refer to [20, Ch. 2] for a precise definition. Given a compact set
A ⊂ C ∪ D, system (3) is said to render A uniformly globally
asymptotically stable (UGAS) if there exists a class KL func-
tion β (see [20, Definition 3.38]) such that every solution of (3)
satisfies |p(t, j)|A ≤ β(|p(0, 0)|A, t+ j) for all (t, j) ∈ dom(p).

We also consider ε-parametrized HDS of the form

p ∈ C, ṗ ∈ Fε(p), p ∈ D, p+ ∈ G(p), (4)

where ε > 0. For this system, a compact set A ⊂ C is said to
be Semi-Globally Practically Asymptotically Stable (SGPAS)
as ε → 0+ if there exists a class KL function β such that
for every δ0 > ν > 0 there exists ε∗ > 0 such that for all
ε ∈ (0, ε∗) every solution of (4) with |p(0, 0)|A ≤ δ0 satis-
fies |p(t, j)|A ≤ β(|p(0, 0)|A, t + j) + ν, ∀ (t, j) ∈ dom(p).
The notion of SGPAS can be extended to systems that depend
on multiple parameters ε = [ε1, ε2, . . . , ε�]�. In this case, and
with some abuse of notation, we say that the system (4) renders
the set A SGPAS as (ε�, . . . , ε2, ε1) → 0+, where the param-
eters are tuned in order, starting from ε1; see also [6], [11]
for a similar definition.

III. MODEL AND MAIN RESULTS

We begin by characterizing the class of static plants that we
consider in this letter.

Assumption 1: The function u �→ φ(u) is strongly con-
vex with minimizer u∗ ∈ R

n, and it is twice continuously
differentiable with Lipschitz continuous gradient.

By Assumption 1, there exist κ, � > 0 such that κ2 |u−u∗|2 ≤
φ(u)−φ(u∗) ≤ �

2 |u−u∗|2 for all u ∈ R
n. These constants will

play an important role in our results. Note that Assumption 1
is standard in ES; see [1], [3], [5], [6] and [11].

A. Hybrid Automaton With Monitoring States
To model the persistent deception attacks acting on the ES

controller, we model the attack as a switching signal t �→ Q(t)
taking values in the set Q := Qs ∪ Qu, where Qs := {In}
denotes the nominal operation (i.e., no attacks), and Qu is the
set of adversarial matrices that satisfy the Three Properties
listed in the introduction. Let N(s, t) denote the number of
switches of Q in the interval [s, t]. We assume that Q(t) sat-
isfies a standard average dwell-time condition (ADTC) of the
form N(s, t) ≤ η1(t − s) + N0, for all 0 ≤ s ≤ t, [20],
where N0 ∈ Z≥1 and η1 > 0. Further, let T(s, t) denote
the total activation time of the unstable modes during the
interval [s, t], i.e., T(s, t) = ∫ t

s IQu(Q(r))dr. Further, we
assume that Q satisfies a time-ratio constraint (TRC) of the
form T(s, t) ≤ η2(t − s) + T0, [4], where T0 ∈ R≥0 and
η2 ∈ [0, 1). Condition (TRC) imposes an upper bound on the
activation time of the adversarial modes in the set Qu, during
any interval [s, t]. To generate switching signals t �→ Q(t) that
satisfy both conditions (ADTC) and (TRC), we make use of
the following lemma, corresponding to [4, Lemma 7].

Lemma 1: Consider a set-valued HDS with state ϑ :=
(τ1, τ2,Q) ∈ R≥0 × R≥0 × Q, and hybrid dynamics:

ϑ ∈ CM := [0,N0] × [0,T0] × Q, (5a)⎛
⎝ τ̇1
τ̇2

Q̇

⎞
⎠ ∈ FM(ϑ) :=

(
[0, η1]

[0, η2] − IQu(Q)
0

)
, (5b)

ϑ ∈ DM := [1,N0] × [0,T0] × Q, (5c)⎛
⎝ τ

+
1
τ+

2
Q+

⎞
⎠ ∈ GM(ϑ) :=

(
τ1 − 1
τ2

Q\{Q}

)
, (5d)

where T0 ≥ 0, N0 ∈ Z≥1, η1 > 0, and η2 ∈ (0, 1). Then: (i)
for each solution ϑ of (5), the hybrid time-domain dom(ϑ)
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satisfies (ADTC)-(TRC); (ii) for every time-domain satisfying
(ADTC)-(TRC) there exists a solution of (5) with the same
time-domain.

B. Extremum Seeking Under Persistent Attacks
The ES algorithms that we consider in this letter make use

of a periodic probing signal that can be generated by dynamic
oscillators of the form:

ε2μ̇ = 2πRθμ, μ ∈ T
n, ε2 > 0, (6)

where Rθ ∈ R
2n×2n is block-diagonal with blocks Rθi :=

[0, θi;−θi, 0], and θi > 0. The odd components of the
solutions of system (6) can be computed as:

μi(t) = μi(0) cos

(
2π

ε2
θit

)
+ μi+1(0) sin

(
2π

ε2
θit

)
, (7)

for all i ∈ {1, 3, 5, . . .}, with μi(0)2 + μi+1(0)2 = 1, and we
define μ̂ := [μ1, μ3, μ5, . . . , μ2n−1]�.

Assumption 2: For all i, the parameters θi are positive
rational numbers, and θi �= θj, for all i �= j.

To facilitate our analysis, the ES algorithms shall also imple-
ment the following gradient and gradient-Hessian estimation
dynamics, with states ξ1 ∈ R

n and ξ2 ∈ R
n, respectively:

ε1ξ̇1 = −ξ1 + G(μ̂, u), ε1ξ̇2 = −H(μ̂, u)ξ2 + G(μ̂, u), (8)

where u is given by (1), ε1 is a tunable parameter satisfying
0 < ε2 � ε1, and where the mappings G : R

n ×R
n → R

n and
H : R

n × R
n → R

n×n are defined as G(μ̂, u) := 2
a μ̂φ(u), and

H is symmetric with entries satisfying the following equations:

Hii = 16

a2

(
μ̂2

i − 1

2

)
φ(u), Hij = 4

a2
μ̂iμ̂jφ(u), ∀ i �= j.

By using the formalism (3), and in particular, the hybrid
automaton (5), we can simultaneously study three different
types of ES controllers under gradient deception:

1) Gradient descent-based ES dynamics (GDES) [1], [21]:

C := R
n, ẋ = FQ(ξ1) := −kQξ1, (9)

2) Newton-Like ES dynamics (NLES) [3], [5]:

C := R
n, ẋ = FQ(ξ2) := −kQξ2, (10)

3) Hybrid Accelerated ES dynamics (HAES) [6]:

C := R
n × R

n × [δ,�], � > δ > 0, (11a)

(ẋ, ẏ, ż) = FQ :=
(

2
z (y − x),−2zkQξ1,

1
2

)
, (11b)

D := R
n × R

n × {�}, (11c)(
x+, y+, z+) = Gu(x) := (x, x, δ), (11d)

where (y, z) are extra auxiliary states, and the parameters
are selected such that �2 − δ2 ≥ 1

2kκ ; see [6, Th. 2].

C. Main Results
The following theorem corresponds to the first main result

of this letter. It characterizes, for each ES algorithm, a broad
family of persistent deceptive attacks t �→ Q(t) under which
the controllers preserve their ability to solve the ES problem.
For the GDES and the NLES, we state the stability properties
with respect to the set (singleton) O := {u∗}, whereas for the
HAES we use O := {u∗} × {u∗} × [δ,�]. We also use the set

T := [0,N0] × [0,T0] ×Q to assert the stability properties of
the hybrid automaton (5).

Theorem 1: Consider the ES controllers with dynam-
ics (6), (8), (9)-(11), interconnected with the hybrid automa-
ton (5). Suppose that Assumptions 1-2 hold. Then, when
η1 > 0 and 0 < η2 < 1/(1 + γ ), the compact set
A := T × O × {0} × T

n is SGPAS as (ε2, a, ε1) → 0+,
where:

(a) For GDES and NLES: γ = q�/κ .

(b) For HAES: γ = 2�
δ

max{2,k�δ�q̄} max{1, 2
3 k�2�}

min{1,k�δκ} min{1,2kδ2κ} ,
where q̄ = max{2(2 + q), (5 + q)}, and (κ, �) satisfy the
inequality given by Assumption 1.

The result of Theorem 1 provides a novel characterization
of the resilience properties of ES algorithms under a broad
class of attacks. In certain cases, the sufficient conditions of
Theorem 1 can be shown to be also necessary, e.g., for the
GDES and the NLES with φ(u) = u2, and Qu = −In, the
controller becomes unstable when η2 ≥ 1/(1 + γ ).

Remark 1: For the GDES and the NLES, Theorem 1 can be
interpreted as follows: larger condition numbers �/κ require
less frequent attacks to guarantee SGPAS. For instance, when
φ is quadratic with Hessian matrix W, we have that γ =
qλmax(W)/λmin(W). Since this ratio is related to the eccen-
tricity of the sub-level sets of φ [22, Exercise 9.1], they serve
as a qualitative indicator of the resilience of the algorithms
under persistent deception attacks.

Remark 2: As shown in the proof of Theorem 1 (see Proof
of Lemma 3), when Qu := −In in the NLES, a tighter bound
for η2 can be derived. In particular, in this case one obtains
γ = 1, which leads to SGPAS whenever η2 <

1
2 , i.e., when

the activation time in the unstable mode Qu is less than 50%.
Interestingly, in this case the bound is independent of the
parameters (κ, �) of the cost function.

Remark 3: For HAES, Theorem 1 establishes a bound for
η2 that depends on: (i) the gain k and the parameters (κ, �) of
the cost, and (ii) the parameters (δ,�) describing the restarting
mechanism in (11c)-(11d). Moreover, when Qu = −In and
� > 1

2kδ� > κ , then γ = 48(�/κ)2(�/δ)3. Since γ ≥ 1,
the result establishes a trade-off between the fast convergence
of the HAES and the less conservative bound obtained for the
GDES, i.e., a persistent attack that might destabilize the HAES
may not necessarily destabilize the GDES or the NLES.

The previous remark suggests that in some cases it may be
of interest to switch between different nominal ES algorithms.
The next theorem addresses this case.

Theorem 2: Consider the ES controllers with dynam-
ics (6), (8), interconnected with the hybrid automaton (5),
where now Qu := {∅} and Qs := {System (9)}∪{System (10)},
i.e., switching between GDES and NLES. Let Assumptions 1
and 2 hold, and suppose Q = In, and η∗

1 is given by

η∗
1 = 2k min{1, κ}

log(max{1, �2})− log(min{1, κ2}) .

Then, whenever η2 = 0 and 0 < η1 < η∗
1 the compact set

A := T × {u∗} × {0} × T
n is SGPAS as (ε2, a, ε1) → 0+.

The result of Theorem 2 establishes a sufficient condi-
tion on how frequently the ES controller can switch between
nominal GDES and NLES in order to preserve SGPAS.
To the best knowledge of the authors, this result is also
new in the literature of ES, and it may be of independent
interest.
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IV. ANALYSIS

In this section, we present the proofs of Theorems 1
and 2. We first construct a unified model that formalizes
the interconnection between the ES controller and the Hybrid
Automaton. After this, we establish UGAS for the (averaged)
hybrid dynamics, and then we leverage singular perturbation
arguments in hybrid ES to finalize the claims.

A. Unified Modeling Framework
Let σ := (ϑ,ψ), where ψ = x for GDES and the NLES,

and ψ = (x, y, z) for the HAES, and p0 = dim(ψ). First, we
define a set-valued map Fσ as follows

Fσ (σ, ξ1, ξ2) := FM(ϑ)× {FQ(ψ, ξ1, ξ2)}, (12)

where FM is given by (5b), and FQ is defined in
equations (9)-(11) for each of the ES dynamics. Next, we
define the set Cσ := CM ×C, where CM is defined in (5a) and
C is defined in equations (9)-(11) for each ES. Subsequently,
we define two set-valued mappings Gσ,1, Gσ,2 as follows:

Gσ,1(σ ) := GM(ϑ)× {ψ}, Gσ,2(σ ) := {ϑ} × {Gu(ψ)},(13)

where Gu(ψ) = x for GDES and NLES, and Gu is given
by (11d) for HAES. Next, we define two sets Dσ,1,Dσ,2 as
follows: Dσ,1 := DM × R

p0 , and Dσ,2 := CM × D, where
D is given by (11c) for HAES, and D := ∅ for GDES and
NLES. Using this construction, the closed-loop system (1)-(5)
can be modeled by a HDS with states (σ, ξ1, ξ2, μ), flow set
Cσ × R

n × R
n × T

n, continuous-time dynamics:

⎛
⎜⎝
σ̇

ξ̇1
ξ̇2
μ̇

⎞
⎟⎠ ∈

⎛
⎜⎜⎜⎝

Fσ (σ, ξ1, ξ2)
1
ε1

(−ξ1 + G(μ̂, x + aμ̂)
)

1
ε1

(−H(μ̂, x + aμ̂)ξ2 + G(μ̂, x + aμ̂)
)

1
ε2

2πRθμ

⎞
⎟⎟⎟⎠,

jump set Dσ × R
n × R

n × T
n, and discrete-time dynamics

(σ+, ξ+
1 , ξ

+
2 , μ

+) ∈ Gσ (σ )× {ξ1} × {ξ2} × {μ}, where

Gσ (σ ) :=
{

Gσ,1(σ ), if σ ∈ Dσ,1
Gσ,2(σ ), if σ ∈ Dσ,2
Gσ,1(σ ) ∪ Gσ,2(σ ), if σ ∈ Dσ,1 ∩ Dσ,2.

This map captures the jumps of the hybrid automaton
(i.e., switches of Q) and any intrinsic jump of the ES
controllers (9)-(11). Naturally, the solutions of this HDS are
not unique.

B. Averaging and Singular Perturbation Analysis
The previous HDS is in standard form to apply singular

perturbation theory for hybrid systems [23], where μ acts as
the fast state. By using the periodicity of (7), and standard
averaging arguments in ES, we compute the average dynamics
of the system by averaging the flow map along t �→ μ̂(t). By
direct computation, the average system has states (σ, ξ1, ξ2),
flow set given by Cσ × R

n × R
n, flow map given by1:⎛

⎝ σ̇ξ̇1
ξ̇2

⎞
⎠ ∈

⎛
⎝

Fσ (σ, ξ1, ξ2)
1
ε1
(−ξ1 + ∇φ(x)+ O(a))

1
ε1

(−∇2φ(x)ξ2 + ∇φ(x)+ O(a)
)
⎞
⎠, (14)

jump set given by Dσ × R
n × R

n, and jump map given by(
σ+, ξ+

1 , ξ
+
2

) ∈ Gσ (σ )× {ξ1} × {ξ2}. (15)

1We use the notation f (x) = O(g(x)) to denote that there exists c1 > 0 and
c2 > 0 such that |f (x)| ≤ c1|g(x)| for all |x| ≤ c2.

In turn, this HDS is also in standard form for the application
of singular perturbation theory, with the states (ξ1, ξ2) having
fast dynamics. To analyze this system, we first set O(a) = 0,
and we compute the reduced hybrid dynamics, which are
obtained by substituting ξ1 and ξ2 in the right-hand side of
σ̇ by their respective equilibrium points ξ∗

1 := ∇φ(x) and
ξ∗

2 = (∇2φ(x))−1∇φ(x), which are exponentially stable under
Assumption 1, uniformly in x. The resulting reduced dynamics
are given by

σ ∈ Cσ , σ̇ ∈ Fσ (σ,∇φ, (∇2φ)−1∇φ), (16a)

σ ∈ Dσ , σ+ ∈ Gσ (σ ), (16b)

where we recall that σ := (ϑ,ψ), with ψ = x for GDES and
NLES, and ψ = (x, y, z) for HAES.

C. Switching Optimization Dynamics
We now proceed to characterize the stability properties

of system (16). Since the compact set T is strong forward
pre-invariant under (5), it suffices to study the convergence
properties of ψ .

In the following lemmas, we assume that Assumption 1
holds.

Lemma 2: Consider the HDS (16) with Fσ as in (9) and
Gσ = x. Then, the set A = T × {u∗} is UGAS when-
ever η1 > 0 and 0 < η2 < 1/(1 + γ ), where γ is as in
Theorem 1-(a).

Proof: Consider the quadratic Lyapunov function V(x) =
1
2 |x − u∗|2. When Q = In, the time derivative of V satisfies
V̇(x) = −k(x − u∗)�Q∇φ(x) ≤ −κk|x − u∗|2, hence, V̇(x) ≤
−λsV(x), where λs = 2κk. Similarly, when Q ∈ Qu we obtain
V̇(x) ≤ k|x − u∗||Q||∇φ(x)| ≤ qk|x − u∗||∇φ(x)| ≤ q�k|x −
u∗|2, hence, V̇(x) ≤ λuV(x), where λu = 2q�k. Thus, λs

λs+λu
=

1
1+q �

κ

. The result follows by Lemma 6 in the Appendix with

ω = 1 and D = ∅. �
Lemma 3: Consider the HDS (16) with Fσ as in (10) and

Gσ = x. Then, the set A = T × {u∗} is UGAS when-
ever η1 > 0 and 0 < η2 < 1/(1 + γ ), where γ is as in
Theorem 1-(a).

Proof: Consider the Lyapunov function V(x) = 1
2 |∇φ(x)|2.

By Assumption 1, it satisfies κ2

2 |x − u∗|2 ≤ 1
2 |∇φ(x)|2 ≤

�2

2 |x − u∗|2. When Q = In, we have:

V̇(x) = −k∇φ(x)�∇2φ(x)[∇2φ(x)]−1∇φ(x) = −λsV(x),

where λs = 2k. Similarly, when Q ∈ Qu, we obtain

V̇(û) ≤ k|∇φ(x)||∇2φ(x)||Q||[∇2φ(x)]−1||∇φ(x)|,
≤ 2qk

�

κ
V(x) = λuV(x),

with λu = 2qk�/κ . Thus, λs
λs+λu

= 1
1+q �

κ

, and the result follows

by Lemma 6 with ω = 1 and D = ∅.
Lemma 4: Consider the HDS (16) with Fσ as in (11b) and

Gσ as in (11d). The set A := T × {u∗} × {u∗} × [δ,�] is
UGAS whenever η1 > 0 and 0 < η2 < 1/(1 + γ ), where γ is
as in Theorem 1-(b).

Proof: Consider the Lyapunov function presented in [6]:
V(ψ) = 1

4 |y − x|2 + 1
4 |y − u∗|2 + kz2(φ(x) − φ(u∗)). It was

shown in [6] that under Assumption 1 this function satisfies
c|ψ |2A ≤ V(ψ) ≤ c|ψ |2A, with c := 0.25 min{1, 2kδ2κ}, and
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c := 0.75 max{1, 2
3 k�2�}. When Q = In, it was also shown

in [6] that the following inequality holds

V̇(ψ) ≤ −ρ|ψ |2A ≤ −ρ
c

V(ψ) = −λsV(ψ), ∀ψ ∈ C, (17)

with ρ := 0.5 min{ 1
�
, 0.25kδκ} and

λs = 2

3�

min{1, kδ�κ}
max

{
1, 2

3 k�2�
} .

Similarly, when Q ∈ Qu the derivative of V satisfies:

V̇(ψ) ≤ 1

δ
|y − x|2 + k�

2

[
(4 + q)|y − x||∇φ(x)| . . .

+ q|y − u∗||∇φ(x)| + �|x − u∗|2
]
, ∀ ψ ∈ C.

Since |y − x| ≤ |y − u∗| + |u∗ − x|, it follows that

V̇(ψ) ≤ 1

δ
|y − x|2 + k��

2
max{2(2 + q), (5 + q)} . . .

× (|y − u∗||x − u∗| + |x − u∗|2),
for all ψ ∈ C, where we used the Lipschitz property of ∇φ.
Define η := max{ 1

δ
, k��

2 max{2(2+q), (5+q)}}. It then follows
that V̇(ψ) ≤ 1.5η(|y − u∗|2 + |x − u∗|2) = 1.5η|ψ |2A, for all
ψ ∈ Cu. By using the quadratic lower bound of V we obtain
V̇(ψ) ≤ 1.5 ηc V(ψ) = λuV(ψ), for all ψ ∈ Cu, which implies
that

λu = 1.5
η

c
= 4

3δ

max{2, k�δ�max{2(2 + q), (5 + q)}}
min

{
1, 2kκδ2

} .

On the other hand, it was shown in [6] that during jumps
triggered by ψ the Lyapunov function satisfies V(ψ+) ≤
exp (−γ̃ )V(ψ) = (1 − �)V(ψ), for all ψ ∈ Du, where γ̃
is given by γ̃ := 1 − δ2

�2 − 1
2kκ�2 , which satisfies γ̃ ∈ (0, 1)

whenever �2 − δ2 > 1
2kκ . The result follows by Lemma 6 in

the Appendix with ω = 1. �
The previous Lemmas 2–4 studied the stability properties

of system (16) when the switching occurs between an unstable
mode and a stable mode. The following lemma now focuses
on two stable modes. With some abuse of notation, we use
{1} and {−1} to indicate the two stable modes.

Lemma 5: Consider the HDS (16) with Fσ given by
F1(x) = −k∇φ(x), F−1(x) = −k(∇2φ(x))−1∇φ(x), and
Gu(ψ) = x. Then, the set A = T × {u∗} is UGAS whenever
η2 = 0 and 0 < η1 < η∗

1, where η∗
1 is as in Theorem 2.

Proof: We consider the Lyapunov function V1(x) = 0.5|x −
u∗|2 studied in Lemma 2, and the Lyapunov function V−1(x) =
0.5|∇φ(x)|2 studied in Lemma 3. It follows that V̇h ≤
−λsVh(x), for all h ∈ {−1, 1}, with λs = 2k min{1, κ}.
Moreover, Vg(x) ≤ ωVh(x), for all (g, h) ∈ {−1, 1}2, with
ω = max{1, �2}/min{1, κ2}. The result follows by Lemma 6
in the Appendix with η2 = 0, D = ∅.

Since Lemmas 2–5 have established UGAS for each of the
switching reduced average dynamics (16), the stability results
of Theorems 1-2 follow now by direct application of singular
perturbation theory for hybrid ES [6, Th. 7].

V. NUMERICAL EXAMPLES

Consider the cost function φ(u) = 2(u1−5)2+0.5(u2−10)2,
which satisfies Assumption 1 with κ = 1 and � = 4. We
implement the GDES, the NLES and the HAES under per-
sistent attacks modeled by the matrix Qu = −[1 0; 0 0], thus

Fig. 2. GDES under persistent gradient jamming.

Fig. 3. HAES and NLES under persistent gradient jamming.

only affecting the first component of ξ1. The left plot of Fig. 2
shows the resulting trajectories of the GDES with parameters
k = 0.1, η1 = 0.376, η2 = 0.25, τ1(0, 0) = τ2(0, 0) = 0,
1/ε1 = 0.9, a = 0.1, ε2 = 1×10−3, and frequencies satisfying
2πθ1 = 8.1 and 2πθ4 = 4.2. The inset shows the frequency of
the attacks, where mode 1 here represents no attack and mode
−1 represents an attack. It can be observed that, in spite of
the persistent attacks, the ES algorithm preserves its stability
properties. On the other hand, as shown in the right-plot in
black, when η2 = 0.55 (which does not satisfy the conditions
of Theorem 1) the ES becomes unstable.

In Fig. 3 we show the trajectories generated by the HAES
and the NLES. For the HAES, we used k = 0.1, η1 = 0.376,
η2 = 0.25, and τ1(0, 0) = τ2(0, 0) = 0, 1/ε1 = 0.9, a = 0.04,
ε2 = 1 × 10−3. For the NLES we used k = 0.1, η1 = 0.376,
η2 = 0.25, and τ1(0, 0) = τ2(0, 0) = 0, 1/ε1 = 0.9, a = 0.14,
and ε2 = 1 × 10−3.

VI. CONCLUSION

In this letter, we presented the first stability analysis
of averaging-based ES dynamics under persistent deception
attacks acting on the signals that provide estimations of the
gradient. These attacks generalize different types of jamming
signals studied in the literature, which include DoS attacks and
deception attacks. For three different ES algorithms we showed
that these types of attacks do not induce instability in the
system provided their persistency satisfies particular bounds
that depend on the unknown parameters of the cost functions.
Our results were also illustrated via numerical examples.

APPENDIX

Consider a HDS with state υ = (ϑ, (ζ, s)), where ϑ ∈ R
3

is defined in Lemma 1, ζ ∈ R
p, and s ∈ R; continuous-time

dynamics given by

υ ∈ CM × C, ϑ̇ ∈ FM(ϑ), ζ̇ = FQ(ζ, s), ṡ = ρ, (18)

where ρ > 0, FM:R3 ⇒ R
3, C := R

p × [s, s̄] with s̄ > s > 0;
discrete-time dynamics given by

υ ∈ D1 ∪ D2, υ+ ∈ G1,2(υ), (19)
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where D1 := DM × C, D2 := CM × D, D := R
p × {s̄}, DM and

CM are defined in (5), and

G1,2(υ) :=
{

G1(υ), if υ ∈ D1
G2(υ), if υ ∈ D2
G1(υ) ∪ G2(υ), if υ ∈ D1 ∩ D2,

(20)

with set-valued maps G1,G2 : R
4+p ⇒ R

4+p defined as
G1(υ) = GM(ϑ) × {ζ } × {s}, G2(υ) = {ϑ} × {G(ζ )} × {s},
where G : R

p → R
p, and GM is defined in (5d).

The following lemma is a modest extension
of [24, Proposition 2] and [4, Proposition 3] for switched
systems with unstable modes where the main state ζ
may also experience periodic jumps. In particular, when
D2 = ∅, the HDS (18)-(19) recovers the models of [24]
and [4, Sec. 5].

Lemma 6: Suppose that G and FQ are continuous functions
for each Q ∈ Q := Qs ∪ Qu ⊂ Z≥1, where (Qs,Qu) satisfy
Qs∩Qu = ∅, and Q is compact. Let ψ := (ζ, s) and A ⊂ C∪D
be compact. Suppose there exist continuously differentiable
functions VQ:(C ∪ D) → R≥0 such that:

1) There exists c1, c2 > 0 such that:

ec1 |ψ |2A ≤ VQ(ψ) ≤ ec2 |ψ |2A, ∀(ψ,Q) ∈ (C ∪ D)× Q.
2) There exists λs > 0 such that

〈∇VQs(ψ),FQs(ψ)〉 ≤ −λsVQs(ψ), ∀(ψ,Qs) ∈ C × Qs.

3) There exists λu > 0 such that

〈∇VQu(ψ),FQu(ψ)〉 ≤ λuVQu(ψ), ∀(ψ,Qu) ∈ C × Qu.

4) There exists ω ≥ 1 such that

VP(ψ) ≤ ωVQ(ψ), ∀(ψ,P,Q) ∈ (C ∪ D)× Q × Q.
5) There exists � ∈ (0, 1) > 0 such that

VQ(ψ
+)− VQ(ψ) ≤ −�VQ(ψ), ∀(ψ,Q) ∈ D × Q.

Then, if λs > η1 log(ω) + η2(λs + λu), the set T × A is
UGAS for the HDS (18)-(19).

Proof: Define τ := log(ω)τ1 + (λs + λu)τ2, and V(υ) =
VQ(ψ)eτ . Using (5b), it follows that during flows we have
τ̇ ∈ log(ω)[0, η1] + (λs + λu)([0, η2] − IQu(Q)) = [0, γ ] −
(λs+λu)IQu(Q), where γ := η2(λs+λu)+η1 log(ω). It follows
that if Q ∈ Qs and ψ ∈ C, then

V̇(υ) ≤ VQ(ψ)e
τ τ̇ − λsVQ(ψ)e

τ

≤ −(λs − γ )VQ(ψ)e
τ = −λV(υ), (21)

where λ := λs−γ > 0 whenever λs > η2(λs+λu)+η1 log(ω).
Similarly, if Q ∈ Qu and ψ ∈ C, then

V̇(υ) ≤ VQ(ψ)e
τ τ̇ + λuVQ(ψ)e

τ

≤ VQ(ψ)e
τ (γ − (λs + λu))+ λuVQ(ψ)e

τ ≤ −λV(υ).

During jumps of the form υ+ ∈ G2(υ), we have that

V(υ+) = VQ(ψ
+)eτ ≤ (1 − �)VQ(ψ)e

τ = (1 − �)V(υ).

for all υ ∈ D2. Similarly, since τ+ = τ−log(ω), during jumps
of the form υ+ ∈ G1(υ), we have:

V(υ+) = VQ+(ψ)eτ
+ ≤ max

Q+∈Q
VQ+(ψ)eτ e− log(ω)

≤ ωVQ(ψ)e
τ e− log(ω) = V(υ). (22)

for all υ ∈ D1. Combining inequalities (21)-(22), the result
follows by [20, Proposition 3.27]. �
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