
L

Ludii General Game System
for Modeling, Analyzing, and
Designing Board Games

Cameron Browne, Éric Piette,
Matthew Stephenson and Dennis J. N. J. Soemers
Maastricht University, Maastricht, Netherlands

Definition

The Ludii computer program is a complete gen-
eral game system for digitally modeling, analyz-
ing, and designing a wide range of games. These
include traditional tabletop games such as board
games and dice games, in addition to card games,
graph games, mathematical games, puzzles, sim-
ulations, and simple video games. Ludii supports
stochastic (chance) elements, hidden information,
adversarial and cooperative modes of play, and
any number of players from 1 to 16.

The system differs from existing general game
playing (GGP) programs in a number of ways. Its
underlying ludemic model allows a wider range of
games to be described more easily and succinctly
than other approaches, and it is intended as a tool
for game design as much as game playing. Ludii
belongs the “hybrid” class of GGP approaches
that allows extensible higher-level game descrip-
tions (Kowalksi et al. 2020).

The Ludii distribution comes with over 1000
predefined games and a number of default

artificial intelligence (AI) agents for playing and
analyzing these, in addition to new games
authored by users. An open Ludii AI API is pro-
vided to facilitate the system’s use as a platform
for general game-based AI research. Ludii’s Java
code base is freely available under a Creative
Commons (CC BY-NC-ND 4.0) license.

Ludii was developed as part of the European
Research Council (ERC) funded Digital Ludeme
Project with one of its primary purposes being for
the reconstruction of historical games from partial
rulesets based upon the available evidence
(Browne et al. 2019b). However, this is only one
application, and Ludii provides a range of features
intended to help the modern game designer pro-
totype, fine tune, and discover new designs.

The Ludii System

The Ludii system is based on the notion of the
ludeme, which can be described as a game related
concept or element of play that is relevant to the
equipment and/or rules of a game (Browne 2021).
Ludemes constitute the fundamental building
blocks of which games are composed.

Games are defined for Ludii as structured
ludeme trees in the form of LISP-like symbolic
expressions, according to a custom grammar that
constitutes the Ludii Game Description Language
(L-GDL). For example, the game Tic-Tac-Toe can
be defined as follows:

© Springer Nature Switzerland AG 2023
N. Lee (ed.), Encyclopedia of Computer Graphics and Games,
https://doi.org/10.1007/978-3-319-08234-9_486-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-08234-9_486-1&domain=pdf
https://doi.org/10.1007/978-3-319-08234-9_486-1


(game "Tic-Tac-Toe"
(players 2)
(equipment {

(board (square 3))
(piece "Disc" Each)

})
(rules

(play (move Add (to (sites
Empty))))
(end

(if
(if Line 3)
(result Mover Win)

)
)

)
)

This ludemic model for describing games
allows a wide range of games to be described
simply and succinctly. The fact that ludemes
encapsulate key game concepts makes such
descriptions highly conducive to automated
manipulations such as the evolution of new
games from existing rulesets (Browne 2009).

Architecture
Figure 1 shows an overview of the main compo-
nents of the Ludii system. Additional information
on the relevant modules are provided in the fol-
lowing sections.

The game description (written using the
L-GDL) is initially passed into the Grammar mod-
ule, which first expands and parses the game
description to check that it is syntactically valid.
Once this initial check is done, the game descrip-
tion is then compiled, transforming it into its
internal logic format within the Core module.
This internal logic contains all the relevant infor-
mation about the game, including the equipment,
rules, and supplementary metadata. The metadata
provides additional information about the game
which is not related to how it is played. This
includes textual information about the game –
such as its rules, author, and historical details –
but also graphical information about how the
game should be visualized.

The rules section of the Core module is then
used by the Manager module, which is responsi-
ble for coordinating the moves of the game. This
module takes input from either a human user, via

the Player module, or an Agent, via the AI
module.

The equipment section of the Core module is
used by the ViewController module, which is
responsible for constructing the relevant graphics
for the containers and components used in the
game (view) as well as how interface inputs
should be converted into game moves
(controller). Any graphical options specified in
metadata are also used by the view section of the
ViewController module, to supplement or over-
ride what is defined in the equipment. For exam-
ple, a metadata line could be added to the game
that changes the size of a piece or the color of the
board.

The Player module displays the visuals pro-
vided by the ViewController module to the user.
When the user interacts with these visuals, the
controller converts these inputs into a logical
move and sends this to the Manager module.
The Player module provides different visuals and
interaction handling depending on if the user is
operating on their own local version of Ludii
(desktop) or the remote website version (web).
Once the Manager module verifies that this
move is valid, it is passed to the Core module,
where the state of the game is updated.

Grammar
The custom Ludii Grammar is an Extended
Backus-Naur Form (EBNF) style grammar
consisting of a set of production rules used to
generate game descriptions. The grammar is gen-
erated automatically from the Ludii code base
using a class grammar approach in which all
keywords, rules, and instantiations are derived
directly from their corresponding Java classes
(Browne 2016).

This approach provides a 1:1 correspondence
between the L-GDL and the underlying Java code
at all times, effectively making the Ludii Gram-
mar a snapshot of the current class hierarchy and
making the system easily extensible. New func-
tionality can be added by simply implementing
the relevant Java classes, which will then be auto-
matically incorporated into the grammar the next
time that Ludii is launched.

2 Ludii General Game System for Modeling, Analyzing, and Designing Board Games



Each game description is contained in a plain
text file with *.lud extension. When a game
description is loaded into the Ludii system, the

following steps are performed to compile the
description into an executable Game object, as
shown in Fig. 1:

Ludii General Game System for Modeling, Analyzing, and Designing Board Games, Fig. 1 Architecture
overview of the Ludii general game system

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 3



1. Expand: The game description is expanded
into a plain text string to resolve certain meta-
language features and decorations.

2. Parse: The resulting string is parsed for cor-
rectness according to the current Ludii
Grammar.

3. Compile: The Java classes corresponding to
the game description keywords are recursively
instantiated with the specified parameters to
produce an executable Game object in Java
bytecode.

Internal Model
The game representation and the transitions
between states are described in the following
sections.

Game Representation
A game is defined as a 4-tuple of ludemes:

• Players: provides the information about the
players (number of players, direction of each
player, ...).

• Mode: corresponds to the game control and
describes if the game is played alternatingly
or simultaneously.

• Equipment: describes all the information
about the containers used in the game (boards
and hands) as well as the components (i.e., the
game pieces).

• Rules: describes the initial state, how different
components interact with each other, what
moves can be made, and the conditions to
reach a terminal state.

Figure 2 shows the components of a game in
Ludii.

State Representation
A Ludii game state s encodes which player is to
move in s as well as which player was moving in
the previous state and which player is going to
move in the next state.

Each container of a game is modeled as a
graph defined by a set of cells C, a set of
vertices V, and a set of edges E. Each playable

location l ¼ hci, ti, si, lii is specified by its con-
tainer c ¼ hC, V, Ei, a site type ti �.

� {Cell, Vertex, Edge}, a site index si� 0, and
a level li� 0. Every location specifies a type of site
in a specific container at a specific level. Each
container of the game has its state representation
called container state.

A container state cs is implemented as a col-
lection of data vectors for each playable site. The
different data vectors are:

• what[l]: The index of the component at l, or 0 if
there is no component.

• who[l]: The index of the owner of the compo-
nent at l, or 0 if there is no component.

• count[l]: The number components (of a single
type) at l.

• state[l]: The local state of the component at l, or
0 if there is no component.

• value[l]: The value of the component at l, or
0 if there is no component.

• rotation[l]: The rotation index of the compo-
nent at l, or 0 if there is no component.

Different representations are implemented to
minimize the memory footprint and to optimize
the time needed to access necessary data for rea-
soning on any game. These representations are:

• Flat state: For games played on one single site
type without stacking.

Game

Players Mode

Equipment Rules

Ludii General Game System forModeling, Analyzing,
and Designing Board Games, Fig. 2 The game
components

4 Ludii General Game System for Modeling, Analyzing, and Designing Board Games



• Graph state: For games played on multiple site
types without stacking.

• Stack state: For stacking games played on one
single site type.

• Graph Stack state: For stacking games played
on multiple site types.

• Deduction Puzzle state: For puzzles
corresponding to a Constraint Satisfaction
Problem (Piette et al. 2019).

Figure 3 shows the relations between the dif-
ferent state representations. Thanks to these dif-
ferent state representations, Ludii is able to model
a very large set of various games. Figure 4 shows
an overview of the Ludii games library (1019
games in version 1.3.0).

Trial and State Transitions
A Ludii successor function is given by T :

S∖Sterð Þ � A 7! S, where S 6is the set of all the
Ludii game states, Ster the set of all the terminal
states, and A the set of all possible lists of actions,
where a single list of actions is a move that a
player can select. Given a current state
s� S∖Ster, and a list of atomic actions A ¼
ai½ ��A, T computes a successor state s0 � S.
A trial t is a sequence of states si and action

lists Ai : s0, A1, s1, . . ., sf�1, Af, sf such that f � 0,
and for all i � {1, . . ., f},

• The played action list Ai is legal for the mover
(si � 1).

• States are updated: si ¼ T si�1,Aið Þ.
• Only sf may be terminal: s0, . . . , sf�1

� � \
S ter ¼ ;.

When a new state si þ 1 is reached after apply-
ing Ai selected from the list of legal moves for a
state si, Ludii computes the new list of legal
moves of si þ 1 and stores them in the trial for
any caller to access them quickly without needing
to compute them again.

A trial is over when all players are inactive and
associated with a rank. The outcome of the game
corresponds to the ranking of the players.

In short, a trial t provides a complete record of
a game played from start to end, including all the
moves made stored in a list. Any reasoning on any
game can be parallelized using separate trials per
thread. All the data members of a game are con-
stant and can therefore be shared between threads.
A thread will be able to use a trial t to compute
any playout from any state.

In Ludii, a single object called Context is used
to store references to the game, the state represen-
tation s, and the trial t. For any operation such as
computing the graph of a container, computing the
initial state s0, or computing the legal moves for a
state s, Ludii evaluates a tree of ludemes by call-
ing a method eval(context) to evaluate it
according to the current state. The Context also
contains the random number generator used for
any stochastic operations in the corresponding
trial and the value of the model – alternating or

State
�interface�

ContainerState

DeductionPuzzle

DeductionPuzzleLarge

Flat

Graph

Stacks

GraphStacks

Ludii General Game
System for Modeling,
Analyzing, and
Designing Board Games,
Fig. 3 The different state
representations

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 5



simultaneous – used to apply moves or compute
the legal moves in a specific game state.
Alternating-move models expect only a single
player to select a move at a time, whereas
simultaneous-move models expect all active
players to select a move at every time step, and
simulations simply apply all legal moves automat-
ically. More details about the internal model can
be found in Piette et al. (2021).

Board Representation
In Ludii, the board shared by all players is
represented internally as a finite graph defined
by a triple of sets G ¼ V,E,Ch i in which V is a
set of vertices, E a set of edges, andC a set of cells.

For example, Fig. 5a shows a game with pieces
played on the vertices, edges, and cells of the
board graph. Figure 5b shows a board game
played only on the cells but in which pieces may
stack.

In any given game, a component (or a stack of
components) can be placed on any location
corresponding to a graph element and a level.

Two different graph elements can have differ-
ent relations: Adjacent, Orthogonal, Diagonal,
Off Diagonal, or All. The complete definition of

each of these relations is provided in Browne et al.
(2021). These relationships are summarized for
the regular tilings in Table 1.

Ludii supports the following direction types:

• Intercardinal directions: N, NNE, NE,

ENE, E, ESE, SE, SSE, S, SSW, SW,

WSW, W, WNW, NW, and NNW.

• Rotational directions: In, Out, CW

(clockwise), and CCW (counterclockwise).
• Spatial directions for 3D games: D, DN,

DNE, DE, DSE, DS, DSW, DW, DNW

and U, UN, UNE, UE, USE, US, USW,

UW, and UNW.
• Axial directions subset (for convenience):

N, E, S, and W.
• Angled directions subset (for convenience):

NE, SE, SW, and NW.

Each graph element has a corresponding set of
absolute directions and relative directions to asso-
ciated graph elements of the same type. Absolute
directions can be any of the above direction types
in addition to any relation type (Adjacent,

Ludii General Game System for Modeling, Analyzing, and Designing Board Games, Fig. 4 Some example
visualizations of games from the Ludii Library

6 Ludii General Game System for Modeling, Analyzing, and Designing Board Games



Ludii General Game System for Modeling, Analyzing, and Designing Board Games, Table 1 Relations for the
regular tilings

Relation Square Triangular Hexagonal

All

Adjacent

Orthogonal

Diagonal

Off-Diagonal

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 7



Orthogonal, Diagonal, Off Diago-

nal, or All).
Relative directions from an element are defined

by the direction in which a component is facing,
the number of rightward steps of the component,
and the graph relation to use at each step
(Adjacent by default). Relative directions are:
Forward, Backward, Rightward,

Leftward, FR, FRR, FRRR, FL, FLL,

FLLL, BR, BRR, BRRR, BL, BLL, or

BLLL.

Game Logic
The logic of an L-GDL game (Piette et al. 2021) is
computed from its rules, ludeme which is defined
by the following ludemes which correspond to
different rule types:

1. meta,
2. start,
3. play,
4. end.

For example, the following L-GDL code
describes the Game of the Amazons (Amazons:
ludii.games/details.php?keyword ¼ Amazons)
with an additional swap rule (a rule that allows
the second player to swap colors after the first
move to reduce any first move advantage). This
game is used as example in the next sections.

(game "Amazons"
(players 2)
(equipment {

(board (square 10))
(piece “Queen” Each
(move Slide (then (moveAgain)))
)
(piece "Dot" Neutral)

})
(rules

(meta (swap))
(start {

(place "Queen1"
{"A4" "D1" "G1" "J4"}
)

(place "Queen2"
{"A7" "D10" "G10" "J7"}

)
})
(play

(if (is Even (count Moves))
(forEach Piece)
(move Shoot (piece "Dot0"))

)
)
(end

(if
(no Moves Next)
(result Mover Win)

)
)

)
)

Metarules
In Ludii, a metarule, defined with the ludeme
meta, is a global rule applied in each state

Ludii General Game System for Modeling, Analyzing, and Designing Board Games, Fig. 5 A game played on
vertices, edges, and cells (a) and a game played only on cells (b)

8 Ludii General Game System for Modeling, Analyzing, and Designing Board Games



s reached after applying the move decided by the
player. That rule can modify the state s or can
add/remove some moves from the list of legal
moves. In the Game of the Amazons, the swap
rule is defined using the metarule (swap) (line 12).
Here, after the first player has finished their turn,
the second player has one more legal move allo-
wing them to swap with the other player. The
metarules are optional.

Starting Rules and Initial State
When a game is creating after being compiled, the
state s�1 corresponds to all the variables set to
their default values and no piece placed in any
playable location. The starting rules (lines 13–20)
of the Game of the Amazons are used to place the
queens on the expected locations to create the
initial state. These rules define a list of movements
A0 applied to the state s�1 to build s0. The starting
rules are optional.

Playing Rules and Move Generation
The playing rules of a game describe how to
generate the legal moves of the mover for any
current state si. These legal moves are defined in
the Play ludeme through its Moves ludemes. The
playing rules of the Game of the Amazons are
described in lines 21–26.

At each state si, the Moves ludeme used to
describe the playing rules are evaluated according
to the state and return a list of k legal moves
M : hm1, . . ., mi, . . ., mki stored in the trial t.
As described in Section, the transition between
two successive states si and siþ1 is possible as a
sequence of atomic actions Ai applied to si. Such a
sequence ismodeled as amovem : ha1, . . ., ai, . . .,
ani, where n is the number of actions in Ai..

An atomic action a is the only operator able to
modify the state after its creation. Consequently,
when a player selects their movem from the list of
legal moves available in the trial for the state si,
this state is updated by applying successively each
atomic action in the list of actions composing the
move m.

Ending Rules and Terminal States
The ending rules describe when and how play can
terminate for one or more of the players. In the

Game of the Amazons, the ending rule (lines
27–32) checks whether the next player has no
legal moves; if this is the case, the game is over
and the current player wins.

In Ludii, any conditions to reach an ending
state are described in the ending rules, followed
by the description of the outcome of at least one
player. In games with two players or fewer, an
ending rule describes a terminal state ster, but for
games with more players, the game can continue
if play did not yet terminate for at least two of the
players.

Functions
All the ludemes defining the rules are functions
that are evaluated according to a state s returning a
specific type of data. Five types of functions exist
in Ludii:

• Moves functions return a list of moves. The
Moves ludemes starting by (move ...) describes
a decision move, all the other Moves ludemes
are effect moves. To make the computation of
the legal moves efficient, the effect moves
which have to be applied before the decision
action ad are distinguished from those that
have to be applied after, corresponding to the
consequences of the decision and described
using the ludeme (then ...). Due to that distinc-
tion, only the non-consequence moves are fully
evaluated during the computation of the legal
moves, and the consequences are evaluated
only when a specific move has been selected
to be applied by the player. In the context of the
slide movement of the Game of Amazons, the
effect Moves ludeme (moveAgain) is evalu-
ated when a slide move is decided, setting the
next player be the current mover.

• Arithmetic functions return one or many
numerical values. The arithmetic functions
are composed of many different functions
according to the type of numerical values
returned (array, integer, range, or real). As
examples, the ludemes (count Sites “Board”)
and (count Players) return the number of sites
in the board, and the number of players,
respectively.

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 9



• Logic functions return a Boolean value. The
most common logic functions start by (is ...),
such as (is Even (count Moves)), which returns
true if the number of moves played so far
is even.

• Region functions return one or many playable
sites. The most common region functions start
by (sites ...), such as (sites Board), which
returns a list of all the sites on the board.

• Direction functions return one or many abso-
lute directions. For example, (directions
{Rightward, Leftward}) is returning the abso-
lute directions corresponding to the right and
left of the current direction of a piece.

Ludii Player
The Ludii Player provides the graphical user inter-
face (GUI) aspect of Ludii. This includes both the
visuals and controls for playing games, as well as
additional software options to improve the user/
developer experience (e.g., remote online games,
a built-in editor, game analysis tools, advanced
graphical settings, etc.). This is something that is
either missing or severely lacking in most other
general game systems.

An example screenshot of the main Ludii
Player GUI is shown in Fig. 1. This example
demonstrates an in progress game of Shogi. The
left side of the player shows the current state of the
game board. The top right area of the player
displays details about each player, including who
is controlling them and the contents of their hand.
The bottom right area provides supplementary
information about the game, such as the moves
that have been made, ludeme description, agent
analysis results, etc. A range of menu options at
the top of the Ludii Player also provides many
other alternative features.

A few of the user-friendly features offered by
the Ludii Player, and their uses for research, are
now described. Firstly, being able to visually see
and play the games described using the L-GDL
makes testing and verifying the correctness of
game descriptions much easier. The benefit of
this point should not be understated, as there
have been several cases of games being described
for alternative systems which were later found to
be incorrect. Secondly, the heuristics and

strategies of agents can be easily viewed to see
their current performance and if there are any
obvious weaknesses in their behavior. Humans
can also play directly against agents to help deter-
mine if they are at a human-level playing strength.
Lastly, providing a user-friendly interface is more
inviting to the general public and encourages
other game design enthusiasts to create their own
games, leading to a larger range of games for
research purposes. Ludii currently includes over
1000 games which were created by members of
the general public, with new games being added
frequently.

User Interface
The Ludii Player provides the graphical user inter-
face (GUI) aspect of Ludii, including both the
visuals and controls for playing games. There
are currently two different version of the Ludii
Player: the Desktop Player, which is used when
running Ludii locally on any standard PC, and the
Web Player, which is used when interacting via
the Ludii Portal Website.

Ludii Desktop Player
An example screenshot of the Ludii Desktop
Player GUI is shown in Fig. 6. The left side of
the player shows the current state of the game
board. The top right area of the player displays
details about each player, including who is con-
trolling them and the contents of their hand. The
bottom right area provides supplementary infor-
mation about the game, such as the moves that
have been made, ludeme description, agent anal-
ysis results, etc. A range of menu options at the
top of the Ludii Desktop Player also provides
many other additional features, including but not
limited to:

• The ability to play remote games and tourna-
ments with other Ludii users online.

• A built-in editor for creating, modifying, and
saving Ludii game descriptions.

• Game analysis tools for evaluating and com-
paring games across a variety of metrics.

• Multiple graphical settings, such as anima-
tions, move highlighting, cell coordinates, etc.

10 Ludii General Game System for Modeling, Analyzing, and Designing Board Games



• The ability to select different game options and
rule sets.

Ludii Web Player
An example screenshot of the Ludii Web Player
GUI is shown in Fig. 7. This picture was taken
from a mobile smartphone device in portrait
mode. Other devices may arrange certain ele-
ments such as the player hands differently, but
are otherwise functionally identical. As can be
seen, the Web Player contains less features that
the Desktop Player, essentially only allowing the
user to play the game against other AI or human
opponents. The benefit of the web version, how-
ever, is that it can be played on almost any device
with an internet connection and does not require
the user to install Java beforehand.

Ludii Portal
Both the Ludii Web Player and the download link
for the Ludii Desktop Player can be accessed via
the Ludii Portal (ludii.games). This portal also
provides additional information about Ludii and
the games within it. Some of main web pages that
can be accessed from this portal include:

• The Ludii Game Library (ludii.games/library),
which displays images and category informa-
tion for all games within Ludii. Selecting a
game from this library will open a Web Player
instance of that game.

• The Ludii Downloads Page (ludii.games/
download), which contains links for down-
loading the Ludii Desktop Player, as well as
other Ludii documentation.

• The Game Concepts Search Page (ludii.games/
searchConcepts), which can be used to search
for games with a specific combination of over
700 defined concepts.

• The Ludeme Tree Page (ludii.games/
ludemeTree), which displays an interactive
hierarchy tree for all the ludemes within the
L-GDL.

Artificial Intelligence
Ludii provides an API for game-playing agents
using any artificial intelligence (AI) techniques to
be developed and used to play any of Ludii’s
games from within its GUI-based player as well
as command-line programs and competitions
(Stephenson et al. 2019). The API for agents pro-
vides them with a forward model; given any
(current) game state, this may be used to generate

Ludii General Game System for Modeling, Analyzing, and Designing Board Games, Fig. 6 The graphical user
interface (GUI) of the Ludii Desktop Player for an in progress game of Shogi

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 11



lists of legal moves, generate successor states
resulting from the application of moves, query
whether or not a game state is terminal or any
rankings have already been determined, and so
on. This is similar to the API provided by the
General Video Game AI (GVGAI) framework
(Perez-Liebana et al. 2019) for its collection of
video games. This interface is sufficient for typi-
cal tree search algorithms as commonly used for
GGP, such as Monte-Carlo Tree Search (MCTS)
(Kocsis and Szepesvári 2006; Browne et al. 2012;
Coulom 2007). There is also support for tensor
representations of states and actions to be gener-
ated, the use of which has been demonstrated in a
bridge between Ludii and the Polygames
(Cazenave et al. 2020) framework of deep learn-
ing approaches for games. Various types of con-
straints can be specified for agents, such as
processing time per move, maximum iteration
count, and maximum search depth; different con-
straints may be more or less suitable for different
experiments or use cases.

Based on this interface, several standard algo-
rithms have already been implemented and
included directly in Ludii, as well as new tech-
niques developed and proposed specifically in the
context of DLP and Ludii. In GGP, one of the most
commonly used search algorithms is MCTS. Ludii
includes implementations of several variants and
common extensions, such as UCT (Browne et al.
2012), GRAVE (Cazenave 2015), MAST
(Finnsson and Björnsson 2008), Progressive His-
tory (Nijssen and Winands 2011), and NST (Tak
et al. 2012). It also includes training techniques and
variants of MCTS that are guided by trained fea-
tures, which are described in other publications
(Browne et al. 2019a; Soemers et al. 2020).

Another search technique implemented in
Ludii is αβ-search (Knuth and Moore 1975),
with MaxN (Luckhardt and Irani 1986), Paranoid
search (Sturtevant and Korf 2000), and BRS+
(Esser et al. 2014) extensions for games with
more than two players. Unlike MCTS, these tech-
niques require heuristic evaluation functions –
generally based on domain knowledge – to

Ludii General Game
System for Modeling,
Analyzing, and
Designing Board Games,
Fig. 7 Ludii Web Player
GUI for mobile devices,
showing Chess

12 Ludii General Game System for Modeling, Analyzing, and Designing Board Games



compare the “desirability” of various states.
A variety of heuristics, most of which were
found to be fairly generally useful across multiple
games (Browne 2009), are included in Ludii for
this purpose. Typical examples include a material
heuristic to count weighted sums of types of
pieces owned by players or terms that compute
proximity to board centers, corners, sides, and
so on.

Ludii Database
All relevant information about each official Ludii
game (i.e., those which are included within the
code Ludii software and repository) is stored
inside the Ludii Game Database (LGD). This
data can be decomposed into two main types,
game-related and evidence-related. The
evidence-related data is primarily stored only for
games that are relevant to the goals of the DLP. As
such, a large portion of games in the LGD does
not have any evidence-related information. As
this information is unlikely to be useful outside
of this archaeological context, this section will
focus primarily on the game-related data. This
game-related data can further be split into three
subsections: games, rulesets, and ludemes. Each
game can be thought of as being composed of one
or more rulesets, with each rulesets being made up
of multiple ludemes.

While the distinction between a game and a
ruleset is not exact, two sets of rules/equipment
can be considered different games if they come
from different places or existed in different time

periods. If they cannot be separated, however,
then they are considered different rulesets of the
same base game. This can lead to two rulesets of
the same game with very different rules/equip-
ment, such as two different sets of rules that
have been suggested for a historical game with
largely unknown rules. It can also lead to two
distinct games with very similar rules/equipment,
to consider the possibility that these games were
created independently in different places and
times.

A rough outline of the LGD structure is shown
in Fig. 8.

Games
Each game entry in the LGD describes a specific
game (i.e., a single .lud game description) in
Ludii. Each of these game entries will also have
at least one ruleset associated with it, although it
can have more. Auxiliary metadata information
about each game is also stored, such as plain
English descriptions of the game and its rules,
any aliases, publication details, and so on.

Rulesets
A ruleset is a defined set of ludemes which
describe the specific rules and equipment that is
used to play a certain game. These rulesets could
be speculative in nature or can simply be a known
variant of an established game (e.g., the different
scoring systems for the game Go). Playing the
same game with a different ruleset can often lead
to different gameplay experiences. One ruleset

Game Rulesets Ludemes

Evidence

Description
+

Metadata

Ruleset A

Ruleset B

Ruleset C

Track

Step

Jump

Connect

Line

Game Evidence Ruleset Evidence Ludeme Evidence

Ludii General Game
System for Modeling,
Analyzing, and
Designing Board Games,
Fig. 8 Overview of the
main Ludii Game Database
groups and their
relationships

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 13



could make a game long and biased, with little
room for strategic play while another could pro-
vide the complete opposite. As a result of this
change, it is these rulesets that are evaluated and
analyzed when it comes to gameplay, rather than
the game itself.

Ludemes
A ludeme is single elemental building block of a
game. Multiple ludemes can be combined
together to create a description of a specific
piece of equipment or rule that a game uses.
Each ludeme is stored in the LGD and is associ-
ated with the rulesets which use it. If a game has
any ruleset that uses a particular ludeme, then by
extension, that game will also be considered as
using that ludeme.

Cross-References

▶Monte-Carlo Tree Search

References

Browne, C.B.: Automatic generation and evaluation of
recombination games. Phd thesis, Faculty of Informa-
tion Technology, Queensland University of Technol-
ogy, Queensland, Australia (2009)

Browne, C.: A class grammar for general games. In:
Advances in Computer Games, vol. 10068 of Lecture
Notes in Computer Science, pp. 167–182, Leiden
(2016)

Browne, C.: Everything’s a ludeme: well, almost every-
thing. In: Proceedings of the XIIIrd Board Game Stud-
ies Colloquium (BGS 2021), Paris (2021)

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowl-
ing, P.I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., Colton, S.: A survey of Monte Carlo
tree search methods. IEEE Trans. Comput. Intell. AI
Games. 4(1), 1–49 (2012)

Browne, C., Soemers, D.J.N.J., Piette, E.: Strategic fea-
tures for general games. In: Proceedings of the 2nd
Workshop on Knowledge Extraction from Games
(KEG), pp. 70–75 (2019a)

Browne, C., Soemers, D.J.N.J., Piette, È., Stephenson, M.,
Conrad, M., Crist, W., Depaulis, T., Duggan, E., Horn,
F., Kelk, S., Lucas, S.M., Neto, J.P., Parlett, D.,
Saffidine, A., Schädler, U., Silva, J.N., de Voogt, A.,
Winands, M.H.M.: Foundations of digital
archæoludology. Technical report, Schloss Dagstuhl
Research Meeting, Germany (2019b)

Browne, C., Piette, É., Stephenson, M., Soemers, D.J.N.J.:
General board geometry. In: Advances in Computer
Games (ACG 2021) (2021)

Cazenave, T.: Generalized rapid action value estimation.
In: Yang, Q., Woolridge, M. (eds.) Proceedings of the
Twenty-Fourth International Joint Conference on Arti-
ficial Intelligence (IJCAI 2015), pp. 754–760. AAAI
Press, Buenos Aires, Argentina (2015)

Cazenave, T., Chen, Y.-C., Chen, G.W., Chen, S.-Y., Chiu,
X.-D., Dehos, J., Elsa, M., Gong, Q., Hu, H., Khalidov,
V., Li, C.-L., Lin, H.-I., Lin, Y.-J., Martinet, X., Mella,
V., Rapin, J., Roziere, B., Synnaeve, G., Teytaud, F.,
Teytaud, O., Ye, S.-C., Ye, Y.-J., Yen, S.-J., Zagoruyko,
S.: Polygames: improved zero learning. ICGA J. 42(4),
244–256 (2020)

Coulom, R.: Efficient selectivity and backup operators in
Monte-Carlo tree search. In: van den Herik, H.J.,
Ciancarini, P., Donkers, H.H.L.M. (eds.) Computers
and Games, vol. 4630 of LNCS, pp. 72–83. Springer,
Turin, Italy (2007)

Esser, M., Gras, M., Winands, M.H.M., Schadd, M.P.D.,
Lanctot, M.: Improving best-reply search. In: van den
Herik, H., Iida, H., Plaat, A. (eds.) Computers and
Games. CG 2013, vol. 8427 of Lecture Notes in Com-
puter Science, pp. 125–137. Springer, Cham (2014)

Finnsson, H., Björnsson, Y.: Simulation-based approach to
general game playing. In: The Twenty-Third AAAI
Conference on Artificial Intelligence, pp. 259–264.
AAAI Press, Chicago, Illinois (2008)

Knuth, D.E., Moore, R.W.: An analysis of alpha-beta prun-
ing. Artif. Intell. 6(4), 293–326 (1975)

Kocsis, L., Szepesvári, C.: Bandit basedMonte-Carlo plan-
ning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou,
M. (eds.) Machine Learning: ECML 2006, vol. 4212
of Lecture Notes in Computer Science (LNCS),
pp. 282–293. Springer, Berlin, Heidelberg (2006)

Kowalksi, J., Miernik, R., Mika, M., Pawlik, W., Sutowicz,
J., Szykula, M., Tkaczyk, A.: Efficient reasoning in
regular boardgames. In: Proceedings of the 2020
IEEE Conference on Games, pp. 455–462. IEEE,
Osaka, Japan (2020)

Luckhardt, C.A., Irani, K.B.: An algorithmic solution of
n-person games. In: Proceedings of the Fifth AAAI
National Conference on Artificial Intelligence,
pp. 158–162. AAAI Press, Philadelphia, Pennsylvania
(1986)

Nijssen, J.A.M., Winands, M.H.M.: Enhancements for
multi-player Monte-Carlo tree search. In: van den
Herik, H.J., Iida, H., Plaat, A. (eds.) Computers and
Games (CG 2010), vol. 6515 of Lecture Notes in Com-
puter Science, pp. 238–249. Springer, Kanazawa,
Japan (2011)

Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R.D.,
Togelius, J., Lucas, S.M.: General video game AI: a
multitrack framework for evaluating agents, games,
and content generation algorithms. IEEE Trans.
Games. 11(3), 195–214 (2019)

Piette, C., Piette, É., Stephenson, M., Soemers, D.J.N.J.,
Browne, C.: Ludii and XCSP: playing and solving

14 Ludii General Game System for Modeling, Analyzing, and Designing Board Games

http://link.springer.com/search?facet-eisbn=978-3-319-08234-9&facet-content-type=ReferenceWorkEntry&query=Monte-Carlo Tree Search


logic puzzles. In: 2019 IEEE Conference on Games
(CoG), pp. 630–633 (2019)

Piette, É., Browne, C., Soemers, D.J.N.J.: Ludii game logic
guide. https://arxiv.org/
abs/2101.02120 (2021)

Soemers, D.J.N.J., Piette, É., Stephenson, M., Browne, C.:
Manipulating the distributions of experience used for
self-play learning in expert iteration. In: Proceedings of
the 2020 IEEE Conference on Games, Osaka, Japan,
pp. 245–252. IEEE (2020)

Stephenson, M., Piette, É., Soemers, D.J.N.J., Browne, C.:
Ludii as a competition platform. In: Proceedings of the

2019 IEEE Conference on Games (COG 2019),
pp. 634–641, London (2019)

Sturtevant, N.R., Korf, R.E.: On pruning techniques for
multi-player games. In: Proceedings of the Seventeenth
National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of
Artificial Intelligence, pp. 201–207. AAAI Press, Aus-
tin, Texas (2000)

Tak, M.J.W., Winands, M.H.M., Björnsson, Y.: N-grams
and the last-goodreply policy applied in general game
playing. IEEE Trans. Comput. Intell. AI Games. 4(2),
73–83 (2012)

Ludii General Game System for Modeling, Analyzing, and Designing Board Games 15

https://arxiv.org/abs/2101.02120
https://arxiv.org/abs/2101.02120

	486-1: 
	Ludii General Game System for Modeling, Analyzing, and Designing Board Games
	Definition
	The Ludii System
	Architecture
	Grammar
	Internal Model
	Game Representation
	State Representation
	Trial and State Transitions

	Board Representation
	Game Logic
	Metarules
	Starting Rules and Initial State
	Playing Rules and Move Generation
	Ending Rules and Terminal States
	Functions

	Ludii Player
	User Interface
	Ludii Desktop Player
	Ludii Web Player
	Ludii Portal
	Artificial Intelligence
	Ludii Database
	Games
	Rulesets
	Ludemes

	Cross-References
	References


