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What is an ejector?
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Primary nozzle

Secondary inlet

Mixing pipe Diffuser

• Aeronautics (air)
• Refrigeration (CO2)
• Desalination (steam)
• Process industry, power generation, …



What are the modelling options?
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0D: global balances

Fast

Only global information

Calibration

1D: a compromise

Local information

Fast

Calibration (2D effects)

Complex

2/3D: classic CFD

Detailed flow field

No calibration

Computational cost

Meshing and modelling



Dividing 
streamline

The 1D ejector model in this work
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Constraints:

Which values of                lead to a 
good match with experiments or CFD? 

Conservation of mass, momentum and energy for each stream:

Shear Wall friction

Fluid: ideal gas
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A general framework for calibration

General formulation 1D ejector model
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Physical model

Closure relation

Data (experiments, high-fidelity CFD)

Physical model

Closure relation

Data

Question: how to find the function    ?

Calibration problem

Question: how to find the weights     ?

Parametrize    with weights      (linear, ANN, …)

“Physics-constrained machine learning”



Physics-constrained machine learning for calibration
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Option 1: a set of reference parameters     are available:

The model is not involved: “physics-separated” approach

Option 2: penalize directly on the state

The model is involved: “physics-integrated” approach

Physical model

Closure relation

Data (experiments, high-fidelity CFD)

Any derived variable from the state can be used,
at any position     , by adapting       (also sparse measurements).

Option 3: Combine the previous options

Calibration problem

Question: how to find the weights     ?



The physics-separated approach

8[1] Parish E. J., Duraisamy K., A paradigm for data-driven predictive modeling using field inversion and machine learning. Journal of computational physics (2016).

Reference parameters 
Easy to train
Free choice of regressor
Need dense data
Unaware of the model



The physics-integrated approach
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[2] Holland J. R., Baeder J. D., Duraisamy K., Field inversion and machine learning with embedded neural networks: Physics-consistent neural network training. AIAA Aviation Forum (2019). 
[3] Sirignano J., MacArt J. F., Freund J. B., DPM: A deep learning PDE augmentation method with application to large-eddy simulation. Journal of Computational Physics (2020).
[4] MacArt J. F., Sirignano J., Freund J. B., Embedded training of neural-network subgrid-scale turbulence models. Physical Review Fluids (2021).

Aware of the model
Free choice of regressor
Data from any (sparse)

Potentially difficult to train
More expensive and complex

source, any quantity

Sensitivity of the model with 
respect to the parameters

computation of the gradient



The two approaches can be combined

10

Reference parameters (from step I)
Aware of the model
Free choice of regressor
Need dense data
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Practical working equations of the 1D ejector model
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Dividing 
streamline

Desired form: Conservation of mass, momentum and energy for each stream:

Shear Wall friction



From 2D axisymmetric CFD to 1D reference data
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Dividing streamline
1D reference data through integration:

Equal static pressure 
is a valid assumption

Converging total pressure 
due to momentum exchange

Oscillations from 
the shock train



Contents

• A general framework for machine learning-based calibration

• Application to a 1D ejector model
• Working equations & reference data

• Physics-separated approach

• Physics-integrated approach

• Conclusion

14



Results of the physics-separated approach (step I)
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From the governing equations:

from the post-processed CFD

Candidate function:



Results of the physics-separated approach (step II)
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Candidate function:



Results of the physics-separated approach (flow field)
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Mismatch 
by 0.1 bar

The 1D model represents a cross-sectional average of the 2D / 3D flow field.
The physics-separated approach provides a good initial calibration
A mismatch on the state variables is possible (the training is unaware of the model).
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Results of the physics-integrated approach
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The initial weights        come from the physics-separated approach

A difference by a factor two at the outlet!



Results of the physics-integrated approach (flow field)
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Matching
pressure

The physics-integrated approach refined the previous calibration on all variables!

Previous result (physics-separated)New result (physics-integrated)
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Mismatch 
by 0.1 bar

Physics-constrained machine learning for calibration
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Physics-separated calibration

Easy to train
Guides the choice of the regressor
Need dense data
Unaware of the model



Physics-constrained machine learning for calibration
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Physics-separated calibration: “first guess”

Matching 
pressure

Easy to train
Guides the choice of the regressor
Need dense data
Unaware of the model

Physics-integrated calibration: “refinement”

Aware of the model
More complex to train

The combination of both is most convenient!



A 1D ejector model with two streams
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Dividing 
streamline

Highly interpretable
Accurate versus area-averaged CFD
Cheap (seconds versus days for CFD)
Needs calibration

Conservation of mass, momentum and energy for each stream

Accurate representation of area-averaged CFD



Ongoing work
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Extend the ejector model to handle choked flow



Ongoing work
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Extend the ejector model to handle choked flow

Explore the adjoint method to compute the gradient



Ongoing work
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Extend the ejector model to handle choked flow

Explore the adjoint method to compute the gradient

Link the shear coefficient to flow variables
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