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Abstract

In this paper we develop new tensor methods for unconstrained convex optimization,
which solve at each iteration an auxiliary problem of minimizing convex multivariate
polynomial. We analyze the simplest scheme, based on minimization of aregularized
local model of the objective function, and its accelerated version obtained in the
framework of estimating sequences. Their rates of convergence are compared with the
worst-case lower complexity bounds for corresponding problem classes. Finally, for
the third-order methods, we suggest an efficient technique for solving the auxiliary
problem, which is based on the recently developed relative smoothness condition
(Bauschke et al. in Math Oper Res 42:330-348, 2017; Lu et a. in SIOPT 28(1):333—
354, 2018). With this el aboration, the third-order methods become implementable and
very fast. The rate of convergence in terms of the function value for the accelerated

third-order scheme reaches the level O (k%) where k is the number of iterations.

Thisis very close to the lower bound of the order O k—15 , Which is also justified in

this paper. At the same time, in many important cases the computational cost of one
iteration of this method remains on the level typical for the second-order methods.
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1 Introduction

Motivation In the last decade, we observe an increasing interest to the complexity
analysis of the high-order methods. Starting from the paper [31] containing the first
global rate of convergence of Cubic Regularization of Newton Method, it became
more and more common to provide the second-order methods with the worst-case
complexity bounds on different problem classes (see, for example, [5,11,12]). New
efficiency measurementsin thisfield naturally generated a new spectrum of questions,
starting from the possibilities to accelerate the second-order methods (see [27]) up
to the lower complexity bounds (see [1,2,13,18]) and attempts of constructing the
optimal methods [24].

Another possibility of accelerating the minimization processes consists in the
increase of the power of oracle. The idea of using the high-order approximations in
Optimizationisnot new. Initially, such approximationswere employed in the optimal -
ity conditions (see, for example [22]). However, it seems that the majority of attempts
of using the high-order tensorsin optimization methodsfailed by the standard obstacle
related to the enormous complexity of minimization of nonconvex multivariate poly-
nomials. To the best of our knowledge, the only theoretical analysis of such schemes
for convex problems can be found in an unpublished preprint [3], which is concluded
by a pessimistic comment on practical applicability of these methods. For noncon-
vex problems, several recent papers [8-10,14] contain the complexity analysis for
high-order methods designed for generating points with small norm of the gradient.
For the auxiliary nonconvex optimization problem, these methods need to guaran-
tee a sufficient level for the first-order optimality condition and the local decrease of
the objective function. However, for nonconvex functions even this moderate goal is
difficult to achieve.

The key observation, which underlies al results of this paper, is that an appro-
priately regularized Taylor approximation of convex function isaconvex multivariate
polynomial. Thisisindeed avery natural property sincethisregularized approximation
usually belongs to the epigraph of convex function. Thus, the auxiliary optimization
problem in the high-order (or tensor) methods becomes generally solvable by many
powerful methods of Convex Optimization. Thisfact explainsour interest to complex-
ity analysis of the simplest tensor scheme (Sect. 2), based on the convex regularized
Taylor approximation, and to its accelerated version (Sect. 3). The latter method is
obtained by the technique of estimating functions (see [25-27]). Thereforeit is sim-
ilar to Algorithm 4.2 in [3]. The main difference consists in the correct choice of
parameters ensuring convexity of the auxiliary problem. We show that this algorithm

converges with the rate O((%) erl), where k is the number of iterations and p is the
degree of the tensor.
In the next Sect. 4, we derive lower complexity bounds for the tensor methods. We

3p+l
show that the lower bound for the rate of convergence is of the order O (%) 2

Thisresult isbetter than the bound in [1] and coincide with the bound in [2]. However,
it seemsthat our justification is simpler.
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Implementable tensor methods in unconstrained convex... 159

For practical implementations, the most important results are included in Sect. 5,
where we discuss an efficient scheme for minimizing the regularized Taylor approxi-
mation of degreethree. Thisauxiliary convex problem can betreated in the framework
of relative smoothness condition. The first element of this approach was introduced
in [4], for generalizing the Lipschitz condition for the norm of the gradient. In [21] it
was shown that the same extension can be applied to the condition of strong convexity.
This second step is important since it leads to linearly convergent methods for func-
tions with nonstandard growth properties. The auxiliary problem with the third-order
tensor isagood application of thistechnique. We show that the corresponding method
converges linearly, with the rate depending on an absolute constant. In the end of
the section, we argue that the complexity of one iteration of the resulting third-order
scheme s often of the same order asthat of the second-order methods.

Inthelast Sect. 6 we discuss the presented results and mention the open problems.

Notations and generalities In what follows, we denote by E a finite-dimensional
real vector space, and by E* its dual spaced composed by linear functions on E. For
such afunction s € E*, we denote by (s, x) itsvalue at x € E. Using a self-adjoint
positive-definite operator B : E — E* (notation B = B* > 0), we can endow these
spaces with conjugate Euclidean norms:

IxIl = (Bx,x)¥2, xeE, [gll. = (g, B 1g)¥2, geE*

Sometimes, intheformulasinvolving productsof linear operators, it will be convenient
totreat x € E asalinear operator from R to [E, and x* asalinear operator from E* to
R. Inthiscase, xx* isalinear operator from E* to £, acting as follows:

xx*)g =(g,x)x € E, geE*

For asmooth function f : dom f — R with convex and open domaindom f C E,
denote by V f(x) its gradient, and by V2 (x) its Hessian evaluated at point x €
dom f C E. Note that

Vfix) e E*, V2f(x)h € E*, xedomf, hek.
In what follows, we often work with directional derivatives. For p > 1, denote by
DPf(x)[ha, ..., hp]

the directional derivative of function f at x along directionsh; € E,i = 1,..., p.
Notethat DP f (x)[-] isasymmetric p-linear form. Its normis defined in the standard
way:

IDPf() = max {DPf(x)[hy,....hpl: [hill <1 i=1..., p}. (1.1)
hy,....hp
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160 Y. Nesterov

For example, for any x € dom f and hy, ho € E, we have
Df (x)[h1] = (Vf(X), h1), D2f(x)[h1, ha] = (V2f(x)hy, hy).

Thus, for the Hessian, our definition corresponds to the spectral norm of self-adjoint
linear operator (maximal module of all eigenvalues computed with respect to operator
B).

If dl directionshy, ..., hp arethe same, we apply notation

DPf(x)[h]P, heE.
Then, Taylor approximation of function f () a x € dom f can be written asfollows:

f(x+h) = & p(h) +o(h]|P), x+hedomf,

def P i
Py p(y) = FO+ X 7D fly—xI', yeE.

Note that in general, we have (see, for example, Appendix 1in[30])

||Dpf(x)||:mhaxHDpf(x)[h]p‘: ||h||51}. (12)
Similarly, since for x,y € dom f being fixed, the form DPf(X)[-,...,-] —
DPf(y)[., ..., ]is p-linear and symmetric, we aso have

IDPf () — DPF(y)l| = max | |DPfeolhIP — DP ()il : [l <1}
(1.3
Inthis paper, we consider functionsfrom the problem classes F ,, which are convex
and p times differentiable on [E. Denote by L j its uniform bound for the Lipschitz
constant of their pth derivative:
IDPf(x) — DPf(YIl < Lplx—yll, x,yedomf, p=>1 (14)
Sometimes, if an ambiguity can arise, we us notation L p( f).

Assuming that f € Fp and L < 400, by the standard integration arguments we
can bound the residual between function value and its Taylor approximation:

1Y) — PupW)] < iy — XIPTL X,y € dom f. (15)

If p > 2, then applying the same reasoning for functions (V f (-), h) and (V2 f (-)h, h)
with direction h € E being fixed, we get the following guarantees:
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Implementable tensor methods in unconstrained convex... 161

IVE(y) = VOx pWlle < ZFlly — XIIP, (L6)
IV2£(y) = V20x (W)l < i lly — XIIP L, (17

which are valid for al x, y € dom f.

2 Convex tensor approximations
In our methods, we use the following power prox function
dp(0) = $IXIP, p=2. (2.1)
Note that
Vdp(x) = [IX[P~?Bx,
V2dp(x) = (p — 2)[IX[IP~*Bxx*B + ||x||P~?B (2:2)
> [Ix[IP~2B.

All results of this paper are based on the following observation. From now on, for
the sake of simplicity, we assume that dom f = E.

Theorem 1 Let f € Fpwith p> 2and L < +o0. Thenfor any X, y € E we have
V2£(y) < V20 p(y) + -ty 1y — X[IP1B. (23)
Moreover, for any M > Lpandany x € E, function®

Q. pM(Y) = Pxp(Y) + g dpr1(y —X) (2.4)

is convex and

f(y) < Qxpm(y), yekE. (2.5)
Proof Let usfix arbitrary x and y fromdom f. Thenfor any direction h € E we have

(V2E(y) — V20y p(yDh,h) < [[V2f(y) — V2D p(Y)] - [Ih]|?

Aa.7

L _
o lly = xIPHihg2,

1 In our notation, the approximation function in [3] was chosen as ®x p(y) + %dpﬂ(y — X). Thus, we
cannot guarantee that this polynomial is convex.
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162 Y. Nesterov

and thisis (2.3). Further,

2.3 L
0 < V2f(y) = V20up(y) + gylly — xIP'B
< V20 p(y) + g lly — x|IP'B

2.2
< V20, p(y) + %Vzdpﬂ(y = X)

2.4
e VZQX, p.M(Y).

Thus, function Qx p m(-) is convex. Finaly,

1.5

FY) = Pep(y) + (P + Ddpra(y — x)

IA

IA

Dy p(Y) + Hdpsa(y — %)

IA

Qx, p,Mm(Y).

The statements of Theorem 1 explain our interest to the following point:
Tp.m (x) € ANy p.w (y) 2.6)
with M > L 5. We are going to use such points for solving the problem
fo = anEiIQ f(x), (2.7)

starting from some point Xo € IE, where f € Fpand L p < +o00. Weassumethat there
exists at least one solution x, of this problem and that thelevel setsof f are bounded:

max ||X —X|| < D < 4o0,
xeL(Xp)

L) E (xeE: f(x) < fxo). (2.9)
In this case, in view of (2.5), the level sets of function Qy p m(-) are also bounded.
Therefore, point T = Ty m(X) is well defined. It satisfies the following first-order
optimality condition:

Vo p(T) + gy I T = XIP71B(T —x) = 0. (2.9)
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Implementable tensor methods in unconstrained convex... 163

Multiplying this equality by T — x, we get
g IT = XIPTE = (VO p(T), x = T). (2.10)

Denoterp m(X) = [[X — Tpm ()|

Lemmal Foranyx € Eand M > L, we have

f(Tp,m (X)) < mm { f(y) + (p+1).” ly — XII"’“} (2.12)
IV £ (Tpm Ol < PR X = Tom ()11P, (2.12)
| 2
(VE Tom (). X = Tom(0) = U8 DIV T (Tom (O + St Ea 0.
(2.13)

First two inequalities of thislemma are already known (see, for example, [8]). We
provide them with a simple proof for the reader convenience.

Proof Denote T = Tp m(X) andr = ||x — T||. Then,

2.5
i = mi _BM g Pt
() = min@ypm(y) = min {@py) + 2 ly - xIP

15 pM+Lp
_ p+1
= min{ )+ fEne Iy - 1P+

and thisisinequality (2.11). Further,

16
IVF(T) = Vo p(Ml = SprP. (214)

Therefore, we get the following bound:

IVEMIe = IVET) = VOx p(T)llx + IVx, p(T)llx

2. 14)
<7 P [V p(T)])s

29 /L
= (F’!)WL(leT!)rp’

which leadsto (2.12). Finally,

2.9 214 |
IVET) + MEBT =0l S IVET) = Vo oMl < iy P
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164 Y. Nesterov

Squaring both sides of this bound, we get:

M2 _ L%Hrzl’
[(p-D1? — [(p-DN?’

—1
IV £ (D2 + B (VM) T —x) +

and thisis (2.13). O

Corollary 1 For any x e Eand M > L, we have

(VE(Tpm), X — Tp.m(X) > %[MZ—LZJ%HVHTW(XDH* (2.15)

11 1
wherec(p) = [p+1] [((p—D!P.
Proof Indeed, in view of inequality (2.13), we have the following bound:

(VE(T),x=T) = 2 + bz,

_ M2-L2
wherea = B |V (Tp mODI2, b = gyt T = b 00, ad e = B3 Note
that
L ofa _ a\TiHe hieg
min {2 + bre} = (L+ o) (2) 77 briv.
It remains to substitute in this bound the values of our parametersa, b, and «. O

Let us estimate now the rate of convergence of the following process:

| X1 = Tpm(x), t=0] (2.16)

where M > L. Thus, in view of Theorem 1, point x1 is asolution to the auxiliary
convex problem (2.6).

Theorem 2 Let sequence {x; }t>0 be generated by method (2.16) asapplied to problem
(2.7). Thenfor all t > Owe have f (x;1+1) < f(x). At the same time,

p+1 p+1 P
f(x) — f, < D < (D (%1) L t>1
(p+1)'<1+(t (k) 7 )

(2.17)

Proof Inview of inequality (2.5), method (2.16) is monotone. Hence, for al t > Owe
have

Xt — X«|l < D. (2.18)
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Let us prove thefirst inequality in (2.17). First of al, let us estimate the difference
f(x1) — f.. We have

(211) i pPM+Lp (218) ML p+1
oyl PFL (PM+Lp)D
fo) "= min £+ TGPy — %ol P TS L D

and thisis (2.17) fort = 1.
Further, for any t > 1, we have

211 PM+Lp
PYT=p _ p+1
foeen = min{ £ + TP lly - xP7

(2.18 (PM+L ) DP+L

; _ PMrEp” ~  p+l
= arer[ltl{]l]{f(xt_'—a(x* X))+ i }

: _ _ (pM+Lp)DP+L p+l]
= aET('),nu{f(X‘) (100 = ) + (T ’

The minimum of the above objectivein o > 0 isachieved for

E i 217 1
o = (Hfoo=fopt \p o (_(fo)—fop! \p <2 1\P 1
* 7 \(pM+Lp)DP+1 — \(pM+Lp)DPHL = p+1 :

Thus, we conclude that

IA

M+Lp)DP+1
f(xi11) ™ a?)

Fow) = (fo0) = 1 — B

f o) — gz (f(x0) = ).

Denoting §; = f(x¢) — f,, we get the following estimate:

p+1

S — 41 >C8 ", t>1,

1

__p p! P — ivei ity i
whereC = i (W) . Thus, for ut = CP§;, the recursive inequality is
asfollows:

pil
pt— pegr = gyt t=1
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166 Y. Nesterov

Then,
p_ 1/p
11 _ Mtl *Mlt+1 - 1 . <Mt1/p _Mél/p (l+ Nt+1_ﬂt)1/p)
/‘LH/,?_ ﬂt/p #tigﬂt/p M[ﬁiﬂt/p M

1 ( 1/p 1/p ( Ht+1—Ht )) Mt —Ht4+1
> oW —u | + =
- T T t t T
l‘«tﬁiﬂt/p Pt Pﬂtutﬁ

p
This meansthat + > (ﬁ + ﬂ) . Note that
Mt ©y p

1
1 _ p+1((pM+Lp)Dp+l)p (2~217) lp(p—i—l)%l.

1 _ 1 _ ptl((pM+LpDP™
Mi/p - Cai/p p pI(Cf(x1)— fx)

Therefore,

_ 1\ P (pM+Lp)DP*L
St =C Pur = (%) % t

-p
p+1\P (pM+Lp)DPH (1 Bl
= (&) - Lp+1) 7 +15

M+Lp)DPH1 1\~ P
= %((p_l_l)l/p_kg_ﬁi) ,

and thisis (2.17). O

3 Accelerated tensor methods

In order to accelerate method (2.16), we apply a variant of the estimating sequences
technique, which becomes a standard tool for accelerating the usual Gradient and
Second-Order Methods (see, for example, [25-27]). In our situation, this idea can be
applied to tensor methods in the following way.

For solving the problem (2.7), we choose a constant M > L, and recursively
update the following sequences.

e Sequence of estimating functions
Yk (X) = Oe(X) + %dpﬂ(x —x), k=12 ..., (3.1)

where ¢k (X) arelinear functionsin x € [E, and C is a positive parameter.
e Minimizing sequence {Xk}2 ;-
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e Sequence of scaling parameters { A}p2 4

At B Ac+ae k=12 ...
For these objects, we are going to maintain the following relations:

1. * ;
Ric: Acfi) <y = QEW(X),

, k>1. (32
LY < Akf 0 + PEEEC A (x - x), VX € B
Let us ensure that relations (3.2) hold for k = 1. We choose
x1 = Tpm(X0), €1(x) = f(x1), xeE, A =1 (33)

Then vy = f(x1), so R} holds. On the other hand, in view of definition (3.1), we get
Y100 = f(x)+ 5dps1(X — Xo)

2.11) pM+L
= min[ f0) + {EnR 1Y = 5ol + Gipiatx — o),

and R? follows.
Assume now that relations (3.2) hold for some k > 1. Denote

vk = argmin yg(x).
xeE
Let uschoose someax > 0and M > L. Define

W = poas Yk = (L—a)Xk+akvk, X1 = Tpm(¥), 04

Vk+1(X) = Yi(X) + akl f 1) +(V F k1), X — Xeea) |-
Inview of Rﬁ and convexity of f, for any x € E we have

pPM+Lp+C

Yrp1(X) < Acf(X) + dpt1(X — Xo)

p!
+ay[ f (Xk1) + (VT (K1) X — Xg1)]
M+L,+C
< (Ac+a)fo0+ prdp+1(x ~ %),

and thisis REH. Let us show now that, for the appropriate choices of ax, C and M,
relation Ri., ; isalso valid.
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168 Y. Nesterov

Indeed, in view of R& and Lemma4in [27], for any x € E, we have
Yk = 0O + s dpra(X —X0) = Vi + mogy - (5)PHIX — w P
(3.5)
> A 000 + g - (3)PHIX = wil P

Denote yp = % - (3)P~L. Then,

Vi1 = QWEIIQ (Y (X) 4+ a[ f (k1) + (Vi) X — Xer 1)1}

3.5
> mm {Ak f(x0) + Yp X — vkl P 4 aw[ f (xir1)
p+1
+H(V T (Xky1), X — Xk+1)]}
> E(TEIQ {(Ak +aK) F (X)) + AV F (Xkr1), Xk — Xkr1)

X — vl PHE

Vp
Vv f —
+ak(V f (Xk11), X — Xkq1) + 0+1

3.4 .
oy min {Ak+l F(Xks1) + (V F (Xier1) . Arrt Vi — Ak — AXir1)

Yp 1
Vf (Xkt1), X — X X — vkl Pt
+a(V f (Xk+1) k1) + p+1I| vkl

= E(T!IQ {Ak+1 f(Xkt1) + Ak (V T (Xkt1), Yk — Xkt1)

Fa(V F (Xier1), X — vk) + X — UkIIpH}-

Vp
p+1
Further, if we choose M > L, then by inequality (2.15) we have

p-1 pt1
(V1) Yk — Xg1) = S2IMZ = L2120 ||V F () "

Hence, our choice of parameters must ensure the following inequality:

CP) a2 2,52 =
Ak+1—[|V| — Lol 2 VIl 4+ adV k), X — vk)

Vp
+
p+1

Ix — v| Pt > 0,

for al x € E. Minimizing this expression in x € E, we come to the following
condition:

p-1 § et
ISR IME - LE1® = o () 8"
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Substituting in thisinequality expressions for corresponding constants, we obtain

p+1

T3 1
177 p1 , 1
Ack1551 I:S+1] [((p—DI* : wIMZ— 1217 > L [p op— 1] 8"

After cancellations, we get

2 p+1
ol B (a8e) -2 WED Voo

For the sake of notation, let us choose

C=35/EmMm2-L3) 3.7)

Then, inequality (3.6) becomes simpler:

p+1
[ (p+hM2
A1 > 2 m ak (3.8)

Let us choose some « > 0 and define
Ay = LkPHL
(3.9
a = Akl — A= 2((k+ DPFHL—kPHD),

Note that for any k > 0, using trivial inequality (1 —7)P > 1— pr,0< 71 < 1,we
get

p 1 1 p
P -l kgpPtiogetl L
- AT = o P IRt = o e (ke 1=k (1 g

1
<o P (1+k+1) < a PI(1l+ p).

P+l ptl

1
Thus, Ayl > aP (ﬁ) ® a." . Now, if we choose
. 12
_ p+1| _4(p+HM 3.10
a=(p+1) [—M—MM _Lp)] : (3.10)

_ 1 (p—1)(M2-L2) | 2(p+D . . . -
theno P (14 p) = mrp , and inequality (3.8) is satisfied for all
k> 0.
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170 Y. Nesterov

Now we are ready to write down the accel erated tensor method. Define

(p—1(M?-L3) p+1

Accelerated Tensor Method

Initialization: Choose xg € E and M > L. Compute X1 = Tp m (Xo)-
DefineC = —1 / (g+i§(M2 %) and Y1 (X) = f(x) + %dp+l(x — Xo).

Iteration k, (k > 1):

A

1. Compute vk = arg min Yk (x) and choose yx = 5

X+ Al<+1 k-
2. Compute xk11 = Tp m(Yk) and update

Y1 (X) = Yk (X) + a[ f (Xkq1) + (VT (Xkg1), X = Xip1) ]

(3.12)

The above discussion proves the following theorem.

Theorem 3 Let the sequence {x};.~; be generated by method (3.12) as applied to the
problem (2.7). Then for any k > 1 we have:

P
M+Lp+C |  4prpm2 |2 1\ P+l
Fox) = Fo) < & (T |:(p(1’;2LM)2L%):| (%) Ixo — x*||P+L. (3.13)

Proof Indeed, we have shown that

2

R1L R
Acf () = Ui = At (x®) + 2MELpiC

o lIXo — x* | P

Thus, (3.13) follows from (3.11). O
Notethat the point vk can befound in (3.12) by aclosed-form expression. Consider
S = VEk(X).
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Sincefunction £ (-) islinear, thisvector isthe samefor all x € E. Therefore, the point
vk isasolution of the following minimization

i _C x — p+1
min { (s %) + gl — ol P}
The first-order optimality condition for this problem is as follows:
S+ §ilIx = ol Pt B(x — x0) = 0.

Thus, we get the following closed-form expression for its solution:

1
p! PRt
w=Xo— | ——=] B s
(cmf 1)

4 Lower complexity bounds for tensor methods
For constructing functions, which are difficult for all tensor methods, it is convenient

to assumethat E = E* = R", and B = I, the identity n x n-matrix. Thus, in this
section we work with the standard Euclidean norm

n ] 1/2
X = [Z<x<'>)2} , xeR"
i=1

For an integer parameter p > 1, define the following function:

noo
Np+1(X) = p%lz IXxO|PHL x e RN,
i=1

Clearly, np+1 € Fp. Onthe other hand, for any x and h € R", we have

n . .
DKnp1(0[hIK = (p++'_k), 3 xOPHKROK - if K is even,
i=1

n . . .
DKnp1()[h]K = (p++'_k), 3 IxOP=kx® hM)k if k is odd.
i=1

Therefore, for al x, y, and h from R", by Cauchy-Schwartz inequality we have

‘ 1/2
IDPp+1(0)[]P — DPypa(WNIP] < plix — Y| [ (h“bﬂ

n

i=1

4.1
= p!Ix =yl [IhiP.
Thus, Lp(1p+1) = p!.
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For integer parameter k, 2 < k < n, let usdefinethefollowing k x k upper triangular
matrix with two nonzero diagonals:

1-10 ... 0 11 1 1

0 1 -1... 0 01 1 1
Uk = , Ut =

0 0 .. 1 -1 00 1 1

0 0.. 0 1 00 0 1

Now we can introduce n x n upper triangular matrix Ax with the following structure;

(U« O
Ax = ( 0 |nk) .
Note that

I All? = max {| Ax|12 : [Ix]| < 1)
xeRN

1

k— n
= max [Z<x<i> —xTZ4 3 " x 2 x| < 1}

XeRN i i—k
k—1 ) . n )
< max 1 3 [20¢)2 4+ 2 #9)2] + 3 )2 - ) < 1
XeRN o i =k
—4 4.2)

Our parametric family of difficult functionsis defined in the following way:
fu(X) = npr1(AX) — (e1,Xx), 2<k=p, 4.3

wheree; = (1,0,...,0)T. Let us compute its optimal solution from the first-order
optimality condition
Al Vo1 (A = en.
Thus, Axxg =Yg, where y; satisfies equation Vnpi1(yy) = A[Tel = & def
<8< k), with & € RX being the vector of all ones, and On_x beng the origin in
nf
Rk,
Thus, in coordinate form, vector y; can be found from the following equations:
I DP 2y D =1, i=1,...k
1 OP2(yH D =0, i =k+1,...,n
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In other words, y;: = & and vector x = A& hasthe following coordinates:
O =k-i+1y, i=1...,n, (4.4)
where (7). = max{0, t}. Consequently,

ff = nps1(80 — (o1, %)) = g —k = — 28,

(4.5)

k
2 02 k(k+1) (2k+1 k+1)3
gl = 307 = MEgEeR < S,
1=

Let us describe now the abilities of tensor methods of degree p > 2 in generating
new test points. We assume that the response of oracle at point X € R" consistsin the
following collection of multi-linear forms:

f(x), DKfx[hK, k=1,...,p.

Therefore, we assume that the method is able to compute stationary points of the
following polynomial functions

P . . .
paym) = > aVD' f(x)[h] + y|h|™ (4.6)

i=1

with coefficientsa € RP, y > 0 and m > 1. Denote by I'x ¢ (a, y, m) the set of all
stationary points of this function. Then we can define the linear subspace

Sf()'():Lin(I‘)-(,f(a,y,m): acRP, y >0, m>1).

Our assumption about the rules of tensor methodsis as follows.

Assumption 1 Themethod generatesasequenceof test points {X }k=o satisfying recur-
sive condition

k

Xk+1 € Xo + ZSf(Xi), k=>0. 4.7)
i—0

Notethat for the absolute mgjority of thefirst-order, second-order, and tensor meth-
ods this assumption is satisfied.

Let us look at the consequences Assumption 1 in the case of minimization of
function fi(-). Denote

R ={xeR": xV=0i=k+1....,n, 1<k<n-1
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Lemma 2 Any tensor method satisfying Assumption 1 and minimizing function f;(-)
starting from the point xo = 0, generates test points {Xx }k=>0 satisfying condition

K
X+1 € ) S(x) € Rp,,, O0<k<t-1 (4.8)
=0

Proof Let us prove first that inclusion x € R} withk > 1implies St (x) € Ry, ;.

Indeed, sincematrix A; isupper triangular, thisinclusion ensuresthat y o Acx € RY.
Therefore, al derivatives of function f;(-) along direction h € R" have the following
form:

k
Dfe(x)[h] = Dnpsa(IAh] —h® = 2 diafe. Ay — h®,
|=

. k
D' fi () [h]* = DXnpri(MIADK = 3 dik(e, Ak, 2<k<np,
i=1

withcertaincoefficientsd; x,i = 1,...,n,k=1, ..., p. Thismeansthat thegradients
of these derivativesin h are as follows

VDfi(x)[h] =

k
i=

di1ATe —e,
1

k
VDK fr()[h]* = 3 kdi k(e, Ach)*ATg, 2<k<p,
i=1

Thus VDX fy(x)[h]€ € RY, , for al k, 1 < k < p. Hence, since the regularization
termin definition (4.6) isformed by the standard Euclidean norm, all stationary points
of thisfunction belong to Ry ;.

Now we can prove statement of thelemmaby induction. For k = 0, wehavexg = 0,
and therefore

Vii(xo) = —e;, D' f(xo)h] =0, i=1....p,

for al h € R". Consequently, stationary points of al possible functions ¢a,, m(-)
belong to RY implying S, (xo) = R]. Thus, x1 belongsto R by Assumption 1.

Assume now that all x; € RE, i =1,...,k, for somek > 1. Then, as we have
aready seen, S, (xi) € Ry, 1~ Hence, theinclusion (4.8) follows from Assumption 1.
]

Now we can prove the main statement of this section.
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Theorem 4 Let some tensor method M of degree p satisfies Assumption 1. Assume
that this method ensures for any function f e 7, with L 5((f) < +4-o0 the following
rate of convergence:

; Lplxo—x*||P*
Jnin 0 =t = =g 121 (4.9

where {Xy}k=0 IS the sequence of test points, generated by method M and x* is the
solution of the problem (2.7). Then for all t > 1 such that 2t + 1 < n we have

() < 2P 2t + 2)%%5* (4.10)

Proof Let us use method M for minimizing function f(x) = fo11(X). In view of
Lemma2, wehavex € R{ forali, 0 <i <t.However,

fara(x) = fi(x), Vx e R
At the sametime, for all X, y, h € R" we have

IDP far41()[M]P — DP fara(y)[h]P|
= |Dp77p+l(x)[A2t+lh]p - Dp77p+1(Y)[A2t+1h]p|

4.1

< pUX—ylllAzxs1h]P
4.2

< 2Pplix —yl.

Therefore, L p(f241) < 2Pp!, and we have

49 Lp(farsn)IX0—X5 4 1P Pt Sy
| p(T2t+1)1IX0—X5 14 2Ppl(2t+2)2
(p + 1) K(t) < 0212[ f(xk)_f2*t+1 = S(ft*_f2*t+1)

_ 2Pp@+23P
- 3(t+1) p -

5 Third-order methods: implementation details

Tensor optimization methods, presented in Sects. 2 and 3, are based on the solu-
tion of the auxiliary optimization problem (2.6). In the existing literature on the tensor
methods[6,7,20,32], it was solved by the standard local technique of Nonconvex Opti-
mization. However, now we know that by Theorem 1, this problem is convex. Hence,
it is solvable by the standard and very efficient methods of Convex Optimization.
Since we need to solve this problem at each iteration of the methods, its complexity
significantly affects the total computational time. Since the objective function in the
problem (2.6) is a convex multivariate polynomial, we there could exist some specia
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efficient algorithms for finding its solution. Unfortunately, at this moment the authors
failed to find such methods in the literature. Therefore, we present in this section a
specia approach for solving the problem (2.6) with the third degree Taylor approxi-
mation, which isbased on the recently devel oped optimization framework of relatively
smooth functions (see [4,21]).

Let usfix an arbitrary x € E. Consider the following multivariate polynomial of
degree three:?

Dy (h) = (VI (x), h) + (V2 (x)h, h) + D3 f (x)[h]3.

Since in this section we work only with third-order approximations, we drop the
corresponding index.

Recall that D3 f (x)[hy, ho, ha] is a symmetric trilinear form. Hence, D3 f (x)
[h1, ho] € E* is a symmetric bilinear vector function, and D3f (x)[h] is a linear
function of h € E, whose values are self-adjoint linear operators from E to E* (as
Hessians).

Denote p(h) = 1D3f (x)[h]3. Then we can define its gradient and Hessian as
follows:

vp(h) = 3D3f(x)[h,hl, V2p(h) = D3f(x)[h]. (5.1)
In this section, our main class of functionsis F3, composed by convex functions,
which are three times continuously differentiable, and for which the constant L3 is

finite. As we have shown in Theorem 1, our assumptions imply interesting relations
between derivatives. Let us derive a consequence of the matrix inequality (2.3).

Lemma3 For anyh € E and t > 0O, we have
—1v2f(x) — SL3lhI?B = D3f(x)[h] < 2V2f(x) + SL3|hI?B. (5.2)
Consequently, for any h, u € E, we get
D3f (x)[h, u, u] < 2L3(VZf ()u, u)2|uj|h]. (5.3)
Proof Letusfix arbitrary directionsu, h € E. Then, in view of relation (2.3) we have
0 < (V2f(x+hyu,u) < (V2&u(hyu, u) + 3La|h|?||ul?
= ((V2f(x) + D3 (x)[h]u, u) + 3Ls|lh|?|u|?

Thus, replacing h by th with ¢ > 0 and dividing the resulting inequality by =, we get

—(D3f (x)[hJu, u) < 1(V2f(x)u, u) + SLah|2]ul|?.

2 We drop the index in this notation since from now on we always have p = 3.
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And thisis equivalent to the left-hand side of matrix inequality (5.2). Its right-hand
side can be obtained by replacing h by —h, which gives

(D3f(0[hIu, u) < 2(V2f0u, u) + SLs|Ih]Z|ull?.
Minimizing the right-hand side of thisinequality in =, we get (5.3). O
Let uslook now at our auxiliary minimization problem:

Q) € dy(h) + Mdah) — min, (5.4)
€

where dz(h) = %1||h||4. In view of Theorem 1, function Qx m () is convex for
M = 7215 (5.5)
with z > 1. For any h € E, we have
V2 m(h) = V2f(x) + D3f(x)[h] + ¥ v2ds(h)

5.2
> (1— HV2E(x) + % V2da(h) — 5L3|Ih|?B

2.2
T @ HvEeeo + Mpev2dm),

Let px(h) = (1 — 1)(V2 £ (x)h, h) + Y=L2d,(h). Then, we have proved that
V2Qx.m(h) = V2py(h), hek. (5.6)
On the other hand,
V2Qxm(h) = V2f(x) + D3f(x)[h] + % V2da(h)

5.2
< 1+ HV2Ex) + ¥ v2da(h) + SLs)h)2B

22
O 14 HVaf ) + MErbay2g,h)

5.5 . T(r—
2 (E1) (@- HV2Ee0 + “5Pev2dy(hy )
= HV2x(h).
Thus, we have proved the following lemma.
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Lemma4 Let M = 2Lz with ¢ > 1. Then function Qy v (-) satisfies the strong
relative smoothness condition

VZpx(h) = V2 m(h) < k(©)VZpx(h), heE, (5.7)
with respect to function px(-), where « () = £

Asitisshownin[21], condition (5.7) allowsto solve problem (5.4) very efficiently
by akind of primal gradient method. In accordanceto this approach, we need to define
the Bregman distance of function py(-):

By (U, ) = px(v) — px(U) — (Vpx(U), v — U)
= 30— V2T 0 —u), v —u) + "5 Lafg, (u, v),
and iterate the process

N1 = argmin {(VQx.m(hi), h —hy) + «(7) By, (i, h)) .

In our case, this method has the following form:

ho =0,
hk+1 = argmin {(VQx,M(hk), h — hy)
hek
171
+“2“ [;(sz(x)(h—hk), h—hy)+7 L34, (hk, h)] } k>0. (5.8)

In accordance to Theorem 3.1 in [21], the rate of convergence of this method is as
follows:

-1rl g2 i1 4
QX,M(hk) _QX,M(h*) < ﬁpx(ho,h*) _ 2 [T<V f(X)h*,h*)+4L3||h*H ]

()1 ()1 . (59

where h,, isthe unique optimal solution to problem (5.4).

Aswecan see, thealgorithm (5.8) isvery fast. Itslinear rate of convergence depends
only on absolute constant ¢ > 1, which can be chosen reasonably close to one for
allowing faster convergence of the main tensor methods (2.16) and (3.12). Let us
discuss two potentially expensive operations in the implementation of method (5.8).

1. Computation of the gradient VQy m(h). Note that
VQym(h) = V(x) + V2f(x)h+ $D3f (x)[h]%.
In this formula, only the computation of the third derivative may be danger-
ous. However, this difficulty can be resolved using the technique of automatic

differentiation (see, for example, [19]). Indeed, assume we have a sequence of
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operationsfor computing the function value f (x) with computational complexity
T. Letusfix adirection h € E. Then by forward differentiation, we can generate
automatically a sequence of operations for computing the value

gh(X) = (V2f(x)h, h)

with computational complexity O(T). Now, by backward differentiationin x, we
can compute the gradient of this function:

Vg(x) = D3f (x)[h, h]

withcomputational complexity O(T). Thus, theoraclecomplexity of method (5.8)
is proportional to the complexity of computing the function value f (x).
Another example of simple computation of the third derivative is provided by a
separable objective function. Assumethat E = R" and

N
fa>=z%mu—wwx»
=

wherea; € R" and univariate functions f; (-) are three times continuously differ-
entiable,i = 1,..., N. Then vector D® f [h]2 has the following representation:

N
D3f(x)[h)? = — 2 a1 - @ ). h)?.
I=

Thus, for solving the problem (5.4), we need to compute in advance al values
£ (b —(a,x)), i=1...,N

(this needs O(nN) operations). After that, each computation of vector D3
f (x)[h]? € R" also needs O(nNN) operations. This computation will be cheaper
for the sparse data.

2. Solution of the auxiliary problem At all iterations of method (5.8), we need to
solve an auxiliary problem in the following form:

min{(c.h) + 3(Ah, h) + Zlih|*}, (5.10)

where A = 0 and y > 0. Note that at al these iterations only the vector ¢
and coefficients y are changing, and matrix A = V2f (x) remains the same.

Therefore, before the algorithm (5.8) startsworking, it isreasonable to transform
this matrix in atri-diagonal form:

A=UTUT,
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where U € R™" is an orthogonal matrix: UUT = |, and T € R™" s tri-
diagonal.

Denoting now & = U T ¢, we have:

. 1 y
hy+ ZWUTUTh, h)y + Zh)*
gpelg{m )+ 5 )+ 51 ||}

=ﬂ1ei£rp§(>)<{(é,UTh)+%(TUTh,UTh)+gr||UTh||2—%rz}
:maxmin{((:,UTh)+}(TUTh,UTh)+Zr||UTh||2—1'12}
>0 heE 2 2 2
— —min{}r2+ }((yrl +T)te 6)}. (5.11)
>0 | 2 2 ’

Thus, the solution of the primal problem can be retrieved from a solution to the
univariatedual problem. Thecomplexity of computingitsfunctionvalueand derivative
islinear in n. Moreover, since its objective function is strongly convex and infinitely
times differentiable, all reasonable one-dimensional methods have global linear rate
of convergence and the quadratic convergence in the end.

Let us estimate the total computational complexity of the method (5.8), assuming
that the computational time of the value of the objective function is T;. Assume
also that its gradient, the product of its Hessian by a vector, and the value of its
third derivative on two identical vectors can be computed using the fast backward
differentiation (then the complexity of all these operationsis O(Tt)). Then, the most
expensive operations in this method are as follows.

e Computation of theHessian V2 f (x) anditstri-diagonal factorization: O(n T +n3)
operations.

e We need O(In %) iterations of method (5.8), in order to get ¢-solution of the
auxiliary problem. At each iteration of this method we need:

— Compute the gradient VQy m (hi): O(T¢) operations.

— Compute the vector & for the univariate problem in (5.11): O(n?) operations.

— Solvethe dual problemin (5.11) up to accuracy &: O(nln %) operations.

— Compute an approximate solution h = —U(ytl + T)~1¢ of the problem
(5.10), using an approximate solution  of thedual problem: O(n?) operations.

Thus, we come to the following estimate:
O(nTt +nd+ [Tt +n2+nini]inl).

Thisisthe same order of complexity asthat of oneiteration in Trust Region Methods
[15] and usual Cubic Regularization [27,31]. However, we can expect that the third-
order methods converge much faster.

For the readers, which are not interested in al these computational details, we
just mention that the Galahad Optimization Library [16] has specia subroutines for
solving the auxiliary problemsin the form (5.10).
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6 Discussion

In this paper, we did an important step towards practical implementation of tensor
methods in unconstrained convex optimization. We have shown that the auxiliary
optimization problems in these scheme can be reduced to minimization of a convex
multivariate polynomial. In the important case of third-order tensor, we have proved
that this problem can be efficiently solved by a special optimization scheme derived
from the relative smoothness condition.

Our results highlight several interesting questions. One of the direct consequences
of our approach is a systematic way of generating convex multivariate polynomials.
Isit possible to minimize them by some tools of Algebraic Geometry (see [23] for
the related technique like sums of squares, etc.), or we need to treat them using an
appropriate technique from Convex Optimization? The results of Sect. 5 demonstrate
a probably unbeatable superiority of optimization technique for the third-order poly-
nomials. But what happens with polynomials of higher degree?

One of the difficult unsolved problemsin our approach isrelated to dynamic adjust-
ment of the Lipschitz constant for the highest derivative. Thisdynamic estimate should
not bemuch bigger than the actual Lipschitz constant. Onthe other hand, it must ensure
convexity of theauxiliary problem solved at each iteration of thetensor methods. This
question is clearly crucial for the practical efficiency of the high-order schemes.

Simple comparison of the complexity boundsin Sects. 3 and 4 showsthat we failed
to develop an optimal tensor scheme. The missing factor in the complexity estimates

1 2 _p1l
is of the order of O ((%) P+l 3P+1> =0 <(Zl) <P+1>(3P+1>>_ For p = 3, this factor is

1
of the order of O (%) 2 |, Thismeansthat from the viewpoint of practical efficiency,

the cost of oneiteration of the hypothetical optimal scheme must be of the same order
asthat of the accelerated tensor method (3.12). Any additional logarithmic factorsin
the complexity bound of this“optimal” method will definitely kill itstiny superiority
in the convergence rate.

In the last years, we have seen an increasing interest to universal methods, which
can adjust to the best possible Holder condition instead of the Lipschitz one during
the running optimization process (see [14,17,29]). Of course, it is very interesting
to extend this philosophy onto the tensor minimization schemes. Another important
extension could be the treatments of the constraints, either in functional form, or using
the framework of composite minimization [28]. The main difficulty here isrelated to
the complexity of the auxiliary optimization problems.

One of themainrestrictionsfor practical implementation of our resultsisthe neces-
sity to know the Lipschitz constant of the corresponding derivative. If our estimateis
too small, thenthe auxiliary problem (2.6) may loose convexity. Consequently, wewill
loose the fast convergence in the auxiliary process (5.8). However, this observation
gives us a clue how to tune this constant: if we see that this process is too slow, this
meansthat our estimateistoo small. But of courseit isvery interesting to find arecipe
with better theoretical justification.
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