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Abstract

The Lorenz regression procedure quantifies the inequality of a response ex-
plained by a set of covariates. Formally, it gives a weight to each covariate
to maximize the concentration index between the response and a weighted
average of the covariates. The obtained index is called the explained Gini
coefficient. Unlike methods based on decompositions of inequality measures,
the procedure does not assume a linear relationship between the response
and the covariates. Inference can be performed by noticing a similarity with
the monotone rank estimator, introduced in the context of the single-index
model. A continuity correction is presented in the presence of discrete covari-
ates. The Lorenz-R2 is a goodness-of-fit measure evaluating the proportion of
explained inequality and is used to build a test of joint significance of several
covariates. Monte-Carlo simulations and a real-data example are presented.

Keywords: Single-index model, Monotone rank estimator, Lorenz curve,
Income inequality

1. Introduction

In the eighth of his Ten Short Reflections on the Future of Income Inequal-
ity, Milanovic (2016) expresses the idea that economics has methodologically
shifted from a concern with representative agents and averages to a concern
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with heterogeneity and inequality. This academic focus is paralleled with ris-
ing voices among social observers concerning increasing inequalities all over
the world. In this context, it is of prime importance to understand what fac-
tors can explain the inequality pattern observed in, say, an income or wealth
distribution. Practically speaking, we have in mind a microeconomist fac-
ing a cross-sectional dataset, with information on incomes, along with many
other variables. She would like to determine to what extent income inequality
is attributable to, say, gender, age or education.

Available tools to address such a challenge are mainly decomposition
methods, where the observed income inequality is divided into the contribu-
tions of each of the explanatory variables. However, these procedures require
to assume a linear model between income and the explanatory variables. To
bypass this restrictive assumption, we set the problem differently. We pro-
pose the Lorenz regression, in which each explanatory variable is given a
weight in order to maximize a measure of explained inequality. On a more
statistical aspect, we show that the obtained optimization programme con-
sists in a special case of the monotone rank estimator developed by Cavanagh
and Sherman (1998) in the context of single-index models. This link will en-
able us to use existing results concerning this estimator to perform inference
on the weight vector mentioned above.

In this paper, we view inequality as a statistical measure of relative dis-
persion of a random variable, where relative means that it is independent of
the scale of the variable. It is interesting to see that a similar relative dis-
persion exists in risk analysis in finance, see for example Shalit and Yitzhaki
(1984). Consequently, while we build interpretations in a context of inequal-
ity measurement, these could easily be translated to the risk of a financial
asset. We close this introduction by a brief review of the existing literature.

1.1. Inference about inequality

The measurement of inequality has long been related to the well-known
Lorenz curve and the Gini coefficient. Considering an income distribution,
the Lorenz curve evaluated at p provides the share of total income owned by
the p×100%-poorest individuals. The Gini coefficient is a summary measure
of it. Both objects are precisely defined in Section 2, see (3) and (4). Several
papers have used these tools to determine how the inequality of a variable
of interest can be explained by some other variables. In what follows, we
will call response the variable of interest, typically income, and covariates
the explanatory variables.
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Some decomposition ideas proved to be useful when the response can
be exactly decomposed as a linear index of different sources. Lerman and
Yitzhaki (1985) introduced a decomposition of the Gini coefficient of income
in the contributions of various income sources. Using such methodology,
Garner (1993) assessed the role of different household budget components
in total expenditure inequality. Yitzhaki (1994) analysed the distributional
effects of commodity taxations.

Another stream of research generalized the Lorenz curve with the con-
cept of concentration curve. Introduced by Blitz and Brittain (1964), the
concentration curve evaluated at p of, say, income with respect to education
gives the share of total income owned by the p×100%-least educated individ-
uals, see also Fei et al. (1978). A decomposition of its summary measure, the
concentration index, can be found in health economics. The idea has been in-
troduced in Wagstaff et al. (2003), and then used in Jones and Nicolás (2004)
and van Doorslaer and Koolman (2004). Importantly, all these procedures
require to assume a linear regression model between the response and the
explanatory variables. It is also interesting to mention that decompositions
of the concentration curve have been used outside the realm of inequality
measurement. Shalit and Yitzhaki (2003) and Denuit et al. (2014) used a
decomposition of the concentration curve itself to check the efficiency of a
portfolio.

In order to analyze the impact of several covariates, Aaberge et al. (2005)
introduced the pseudo-Lorenz regression curve. This curve is obtained by
replacing the expected value in the numerator of (3) by a conditional expec-
tation. The impact of the covariates is obtained by marginal changes in the
pseudo-Lorenz curves or in pseudo-Gini coefficients. However, this approach
requires to estimate curves in a nonparametric setup and, hence, will suffer
from the curse of dimensionality.

In Section 2, we will illustrate the interest of our procedure in the mea-
surement of inequality of opportunity (IOP). The concept of equality of op-
portunity, developped by Roemer (1998), considers that inequalities in some
economic advantage are unjustified when they are the product of circum-
stances, i.e. variables over which individuals have no control. IOP will thus
measure the extent of inequality which is related to circumstances. One
difficulty arises when balancing the interpretability of the inequality mea-
sure with the statistical modelling of the advantage variable. As we have
already stated, decompositions of inequality measures call for linear decom-
positions. Another strand of the literature uses log-linear regressions of the
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advantage on the circumstances, see for example Bourguignon et al. (2007).
Because a restrictive statistical model is imposed, these approaches “clip the
wings of the econometricians” to borrow the expression used in Fleurbaey
and Schokkaert (2009).

1.2. The semiparametric single-index model

In many applications, parametric models seem not robust enough to cap-
ture the relationship between variables. However, while offering more flexibil-
ity, nonparametric methods have also their own drawbacks such as the curse
of dimensionality. In that sense, semiparametric models stand as appropri-
ate compromises. A famous example of such method lies in the single-index
model proposed by Ichimura (1993).

Let (X, Y ) be an observation point in Rp×R with joint cumulative distri-
bution function (CDF) FX,Y , where Y is the response and X = (X1, . . . , Xp)

⊺

a vector gathering the p covariates. Besides, let E[Y |X = x] denote the con-
ditional expectation of Y given that X takes the value x. Horowitz (2009)
defines the single-index model as

E[Y |X = x] = H(x⊺θ0), (1)

where H is left unspecified and θ0 = (θ0,1, . . . , θ0,p)
⊺ is a vector of param-

eters. In the context of this paper, we will furthermore assume that H is
strictly increasing. Some conditions on θ0 are needed in order to ensure the
identifiability of the model. Here, we will set ||θ0|| = 1, where || · || denotes
the L1-norm.

At first sight, the estimation of θ0 seems to be contingent to that of H.
Most estimation methods, such as those proposed by Ichimura (1993) and
Powell et al. (1989) require to replace H, or its first derivative, by a suitable
kernel estimator. In practice, the price to pay translates into the choice
of some smoothing parameter. Cavanagh and Sherman (1998) exploit the
monotonicity of H to escape this problem. Facing an i.i.d sample (Xi, Yi),
i = 1, . . . , n from FX,Y , they propose the monotone rank estimator (MRE)
of θ0, which solves the following maximization programme

max
θ

n∑
i=1

M(Yi)Rn(X
⊺
i θ) s.t. ||θ|| = 1, (2)

where M is an increasing function, Rn(X
⊺
i θ) :=

∑n
j=1 1{X

⊺
j θ < X⊺

i θ} is the
rank of X⊺

i θ in the vector X⊺θ, and 1{·} is the indicator function. Under
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some regularity conditions, Theorem 1 in Cavanagh and Sherman (1998)
proves the consistency of the MRE when there is at least one continuous
covariate. The situation where all covariates are discrete is discussed in Sec-
tion 3. Given two supplementary regularity conditions, Theorem 2 from the
same source proves the asymptotic normality of the estimator and proposes
methods for the estimation of the covariance matrix.

The rest of this paper is organized as follows. In Section 2, we introduce
our procedure in the continuous case. The central notion is the explained
Gini coefficient, for which we show the linkage with the MRE and provide in-
terpretations in the context of IOP. We then notice that an estimator for this
coefficient can be easily built on that basis. In Section 3, we highlight issues
arising when all covariates are discrete and propose a continuity correction
to address them. We discuss the asymptotic properties of this solution as
well as its practical relevance. Section 4 discusses the inference about the
procedure. Among others, we present a bootstrap test of joint significance
of multiple covariates. Section 5 addresses the actual performance of our
procedure through a series of Monte-Carlo simulations. The estimation pro-
cedure is compared to the semiparametric least squares estimator defined
in Ichimura (1993). We also display power curves of the testing procedure.
Finally, Section 6 presents an application on wages data.

2. The Lorenz regression methodology

We start with some notations and definitions. Let (X, Y ) ∈ Rp ×R with
continuous joint CDF FX,Y and 0 < E[Y ] < ∞, where E[·] is the expected
value. The case −∞ < E[Y ] < 0 can be dealt with by analysing the random
variable −Y instead. We define the Lorenz curve of Y at p as

LCY (p) :=
E[Y 1{FY (Y ) ≤ p}]

E[Y ]
, (3)

where 1{·} denotes the indicator function and FY the marginal CDF of Y .
The LC passes through (0, 0) and (1, 1), and is always convex. Perfect equal-
ity is pictured by the 45◦ line. If Y ∈ R+, perfect inequality is displayed by
the right-angle situation. For more intuitions underlying the use of Lorenz
curves, we refer to Yitzhaki and Schechtman (2013).

While the Lorenz curve pictures inequality in a disaggregated way, the
Gini coefficient summarizes this information in an index. The lower bound
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of 0 is attained in situation of perfect equality. The upper bound is attained
when perfect inequality occurs, at a value of 1 if Y ∈ R+. It is formally
defined as

GiY := 2

∫ 1

0

[p− LCY (p)]dp =
2C[Y, FY (Y )]

E[Y ]
,

where C[·, ·] denotes the covariance operator. Introducing a second variable
Xk with marginal CDF Fk, we define the concentration curve of Y with
respect to Xk as

CCY,Xk
(p) :=

E[Y 1{Fk(Xk) ≤ p}]
E[Y ]

. (4)

The CC goes through (0, 0) and (1, 1) but is no longer necessarily convex.
Intuitively, it pictures the inequality of Y that we can reproduce if we rank
individuals in terms of Xk instead of ordering them with respect to Y . For
illustration purposes, consider that Xk represent education and Y ∈ R+

is income. The 45◦ line still pictures a situation of perfect equality in the
sense that, for all p, the p×100% least-educated accumulate p×100% of the
total income. However, we may now face two different right-angle shaped
situations, each corresponding to a situation of extreme inequality. It may
now occur because all the income rests in the hands of the most educated
individual (bottom right), or because it is concentrated at the least educated
(top left). For more information, the reader is again referred to Yitzhaki and
Schechtman (2013).

Similarly to the Gini coefficient, the concentration index summarizes the
information of the curve in an index. If Y ∈ R+, it ranges from −1 to 1.
A value of 1 or −1 indicates a situation of extreme inequality. It reaches 1
when the most-educated individual owns all the income and -1 if this occurs
for the least-educated one. As before, a value of 0 indicates perfect equality.
Formally, it is defined as

CiY,Xk
:= 2

∫ 1

0

[p− CCY,Xk
(p)]dp =

2C[Y, Fk(Xk)]

E[Y ]
.

In the Lorenz regression procedure, we will focus on a linear index X⊺θ of
the covariates, where θ = (θ1, . . . , θp)

⊺, ||θ|| = 1 is a vector of weights. The
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concentration index of Y with respect to X⊺θ is given by

CiY,X⊺θ =
2C[Y, Fθ(X

⊺θ)]

E[Y ]
, (5)

where Fθ denotes the CDF of X⊺θ. It represents the inequality of Y obtained
when individuals are ranked in terms of X⊺θ. Our objective consists in
finding the vector of weights θ∗ which maximizes (5). We call the obtained
concentration index the explained Gini coefficient. Formally, it is given by

GiY,X := max
θ

2C[Y, Fθ(X
⊺θ)]

E[Y ]
=

2C[Y, Fθ∗(X
⊺θ∗)]

E[Y ]
.

We also define the proportion of explained inequality (PEI) as the ratio
between the explained Gini coefficient and the acual one, i.e.

PEIY,X :=
GiY,X
GiY

.

In the interpretations, it will be useful to have PEIY,X ∈ [0, 1]. This result is
a direct consequence of Theorem 3.1 and Remark 6.2 in Das Gupta (1999),
which shows that, at any point, the concentration curve of Y with respect to
Xk lies above the Lorenz curve of Y .

Proposition 1 establishes the connection between θ∗, the weight vector char-
acterizing the explained Gini coefficient, and θ0, the true parameter vector
of the single-index model. For simplicity, we assume that all components of
X are continuous. The situation where discrete covariates are introduced is
discussed in Section 3.

Proposition 1. Let (Y,X) ∈ R × Rp, with 0 < E[Y ] < ∞, be continuous
random variables satifsfying (1) with H strictly increasing. Then (i) θ∗ = θ0
is unique and (ii) the explained Gini coefficient is given by

GiY,X =
2C[Y, Fθ0(X

⊺θ0)]

E[Y ]
=

2C[H(X⊺θ0), Fθ0(X
⊺θ0)]

E[H(X⊺θ0)]
.

(i) can be easily derived from the proof of Theorem 1 in Cavanagh and
Sherman (1998). The connection arises because finding θ∗ boils down to
maximizing G(θ) := E[Y Fθ(X

⊺θ)], which is the population version of (2)
when M(Yi) = Yi. (ii) is a direct consequence of the first result and of the
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single-index model. It indicates that the explained Gini coefficient is the Gini
coefficient of H(X⊺θ0), the explained part of the single-index model.

In the following paragraphs, we turn to the intepretation of our procedure
in the field of socioeconomic inequality. As an illustration, we consider the
case of equality of opportunity. First, the explained Gini coefficient is an
appropriate measure of IOP. In this application, Y is an economic advantage
and X a vector of circumstances. As shown in Proposition 1, the explained
Gini coefficient is the Gini coefficient of H(X⊺θ0) in the single-index model
(1). It measures the inequality of the economic advantage predicted by the
circumstances. Hence, we benefit from a natural measure of IOP while, at
the same time, enjoying the statistical flexibility of a semiparametric model.
As we will observe at the end of this section, the estimation of this measure
does not entail an estimation of the link function H. Since the PEI always
lies between 0 and 1, it can be interpreted as the proportion of inequality
which corresponds to inequality of opportunity. We close this discussion with
a fictitious example. Consider two countries A and B. We run a Lorenz re-
gression on the same set of circumstances for each country. Assume that we
obtain the results displayed in Table 1. Even though the Gini coefficient is

Table 1: (Explained) Gini coefficients in A and B

A B

ĜiY 0.5 0.4

ĜiY,X 0.3 0.35

larger in country A, the IOP captured by the explained Gini coefficient is
higher in country B. To put this differently, while there is more inequality
in the distribution of the advantage variable in country A, there is more un-
justified inequality (in the IOP sense) in country B.

The sign of each weight θ0,k is easy to interpret. A value of zero indicates
that the circumstance does not contribute to the inequality of the advan-
tage, i.e. it does not create inequality of opportunity. A positive (negative)
weight rather refers to a notion of concordance (discordance). In order to
understand what it entails, consider that the associated covariate represents
the number of siblings. A positive weight corresponds to a situation where a
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bigger share of advantage is amassed by the individuals with bigger families.
If, instead, more advantage is gathered in the hands of individuals with less
siblings, the weight would then exhibit a negative value.

Assuming (1), the ratio between two weights compares the relative impact
of two circumstances on the advantage variable. Formally, we define the
marginal rate of substitution (MRS) of Xk for Xl, all other things being
equal, by

MRSk,l :=
∂E[Y |X = x]

∂xk

/
∂E[Y |X = x]

∂xl

=
θ0,k
θ0,l

.

Again, this quantity can be consistently estimated without the need to esti-
mate the link function H.

We close this section by presenting an estimator of the explained Gini co-
efficient and by introducing the Lorenz-R2. Concerning the estimation, the
difficulty lies in estimating θ∗. An estimator θ̂ for this weight vector is ob-
tained by maximizing Gn(θ) :=

∑
i YiRn(X

⊺
i θ). Again by Theorem 1 from

Cavanagh and Sherman (1998), θ̂ is a consistent estimator for θ∗, for which
asymptotic properties have been derived. We estimate the explained Gini
coefficient GiY,X with

ĜiY,X := ĈiY,X⊺θ̂ =
2

n2

n∑
i=1

Yi

Y
Rn(X

⊺
i θ̂)−

n+ 1

n
. (6)

The consistency of this estimator follows trivially from Theorem 1 from Ca-
vanagh and Sherman (1998). These results open the door to inference ex-
ercises, both on θ∗ and on GiY,X . In linear regression, the R2 measures the
proportion of variance which is explained by our covariates. Here, we are
rather interested in comparing the inequality reproduced by our covariates
with the total inequality, as pictured by the Gini coefficient of the outcome.
The PEI, introduced previously precisely does that in the population. Ac-
cordingly, we build the Lorenz-R2 as a simple translation in the sample.
Formally, it is defined as

LR2 :=
ĜiY,X

ĜiY
=

1
n2

∑n
i=1 YiRn(X

⊺
i θ̂)− n+1

n
Y
2

1
n2

∑n
i=1 YiRn(Yi)− n+1

n
Y
2

.

Note that this measure always lies between 0 and 1.
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3. Accommodating for discrete covariates

The issues brought about by the introduction of discrete covariates can
be viewed from two different angles. First, when all covariates are discrete,
the single-index model is not identified, see Horowitz (2009) for a thorough
discussion. However, when the link function is increasing, some information
can still be extracted. In our context, we will be able to identify θ0 up to a
pre-specified region, see Theorem 1 for the resulting specific consistency. The
main message is that the more covariates we introduce, or similarly, the more
categories the covariates have, the closer we will get to identifiability. When
the total number of categories is low, other methods could be used, e.g. the
pseudo-Lorenz approach of Aaberge et al. (2005). Second, the computation
of the explained Gini coefficient requires that we are able to rank observa-
tions. But the presence of discrete covariates creates ties in the index, which
raises the question of how ranks are defined. In essence, the CDF deals with
this issue by giving the highest rank to all the ties. However, other options
could be proposed. From Schechtman and Zitikis (2006), we know that keep-
ing the CDF in the definition of the Gini coefficient leads to an inconsistency
between its interpretation as a covariance on one side and a surface between
the egalitarian line and the Lorenz curve on the other side. In order to re-
store the concordance between these two perspectives, it is enough to replace
the CDF by a suitable alternative. One of such alternatives, presented in
Lerman and Yitzhaki (1989), amounts to giving the average rank in every
situation where ties occur. In this section, we propose another solution. It
consists in a random assignment of the ranks affected by a situation of ties.
We provide some arguments in favor of this choice.

We start by noticing that the concordance between deriving θ∗ and maxi-
mizing E[Y Fθ(X

⊺θ)] is compromised in the discrete case. Essentially, this
is due to the fact that Fθ(X

⊺θ) ∼ U [0, 1] no longer holds. The following
continuity correction restores this property.

Proposition 2. Let Z be a non-continuous random variable with CDF F
having a finite number of discontinuities, and define F (z−) := P (Z < z).
Also, let V ∼ U [0, 1] independent of Z. Finally, F̃ (Z) := F (Z−)+V (F (Z)−
F (Z−)). Then, F̃ (Z) ∼ U [0, 1].

Proof : We need to show that P (F̃ (Z) ≤ q) = q for q ∈ [0, 1]. Let F−1(q) :=
inf{z ∈ R : F (z) ≥ q}. In absence of discontinuity, it holds F (F−1(q)) = q.

10



When a discontinuity occurs, F (z) experiences a jump. Hence, it might
also be that F (F−1(q)−) = q when q is located at the start of a jump, or
F (F−1(q)−) < q < F (F−1(q)) when q is located in the middle of a jump. We
focus here on this last case and treat the remaining two in Section 1 of the
Online Supplement. We have

P (F̃ (Z) ≤ q) = P
(
F̃ (Z) ≤ F (F−1(q)−)

)
+ P

(
F (F−1(q)−) < F̃ (Z) ≤ q

)
.

Regardless of the value of V , F̃ (Z) ≤ F (F−1(q)−) occurs when Z < F−1(q).
Hence, the first piece boils down to F (F−1(q)−). After conditioning on Z =
F−1(q) and using the definition of F̃ (·), the second piece becomes

P
(
F (F−1(q)−) < F (F−1(q)−) + V

[
F (F−1(q))− F (F−1(q)−)

]
≤ q

∣∣∣Z = F−1(q)
)

× P (Z = F−1(q))

= P

(
0 < V ≤ q − F (F−1(q)−)

F (F−1(q))− F (F−1(q)−)

∣∣∣∣Z = F−1(q)

)
× (F (F−1(q))− F (F−1(q)−)).

Using the independence and uniformity of V , we obtain the desired result.
□

The idea is then to replace the discontinuous Fθ by F̃θ, where the latter is
defined as in Proposition 2. We are now maximizing G̃(θ) := E[Y F̃θ(X

⊺θ)],
which, by Proposition 2, is equivalent to maximizing the following corrected
concentration index

C̃iY,X⊺θ :=
2C[Y, F̃θ(X

⊺θ)]

E[Y ]
.

In the sample, the corrected optimization programme becomes

max
θ

G̃n(θ) :=
n∑

i=1

YiR̃
V
n (X

⊺
i θ) s.t. ||θ|| = 1, (7)

where the corrected rank vector R̃V
n is obtained as

R̃V
n (X

⊺
i θ) =

n∑
j=1

1[X⊺
j θ < X⊺

i θ] + 1[X⊺
j θ = X⊺

i θ, Vj < Vi],
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and V = (V1, . . . , Vn)
⊺ where Vi

i.i.d∼ U [0, 1]. Equipped of our continuity
correction, the modified MRE is obtained as a solution to (7). As in the con-
tinuous case, we denote it by θ̂. The explained Gini coefficient is estimated
using (6) by replacing Rn(X

⊺
i θ̂) with R̃V

n (X
⊺
i θ̂).

In what follows, we examine the asymptotic properties of the modified MRE.
We start from a construction inspired by that developped in Section 5 of Ca-
vanagh and Sherman (1998). However, we adapt it and argue that it best
characterizes the extent of the identifiability of θ0. Suppose X has possible
values x1, . . . , xN . Let B1, . . . , Bl be open regions where x⊺

jθ ̸= x⊺
kθ for any

k ̸= j and such that any pair of θ share the same ordering of {x⊺
1θ, . . . , x

⊺
Nθ}

if and only if they live in the same region. These regions are bounded by
hyperplanes H1, . . . , Hm where x⊺

jθ = x⊺
kθ for at least one pair k ̸= j. De-

note by I(θ) the subspace defined by the strict inequalities in the ordering of
{x⊺

1θ, . . . , x
⊺
Nθ} implied by θ. Our conceptualization starts from the region

where θ0 falls, whether it’s an open region or an hyperplane. The important
step is the following. We merge all the regions characterized by I(θ) ⊆ I(θ0).
As an illustration, take N = 3 and consider the following situation

B1 = {x⊺
1θ > x⊺

2θ > x⊺
3θ},

H1 = {x⊺
1θ > x⊺

2θ = x⊺
3θ},

B2 = {x⊺
1θ > x⊺

3θ > x⊺
2θ}.

If θ0 ∈ B1, or if θ0 ∈ B2, the set of strict inequalities fully describes the
region and no grouping needs to be made. If θ0 ∈ H1, the set of strict
inequalities is I(θ0) = {x⊺

1θ > x⊺
2θ and x⊺

1θ > x⊺
3θ}. In this case, for any

θ in B1 or B2, we have I(θ) ⊆ I(θ0). Hence, the three regions need to be
merged. This construction formalizes the idea that θ0 can be identified up to
the region defined by the strict inequalities in the ordering of the index. The
resulting regions, as well as the remaining hyperplanes and open regions, are
then summarized by a vector of representatives. The new parameter space
is denoted by Θ∗. Theorem 1 formalizes the consistency result concerning
the estimated parameter vector and implies the consistency of the estimated
explained Gini coefficient.

Theorem 1. Let X be defined as above and Y be a continuous random vari-
able. Also, let V ∼ U [0, 1] independent of (X, Y ). Assume E[Y |X = x] =
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H(x⊺θ0) with H strictly increasing on its points of definition, and E[Y ] <∞.
Besides, let G̃(θ) and G̃n(θ) be defined as above. Then (i) G̃n(θ)→ G̃(θ) al-
most surely for all θ ∈ Θ∗ and (ii) P (θ̂∗ ̸= θ∗0) = O(1/n), where θ̂∗ is the
solution to (7) maximized on Θ∗ and θ∗0 denotes the representative of the
region where θ0 lies.

Proof : The strategy of the proof is exactly similar to that of Theorem 3
in Cavanagh and Sherman (1998). (i) follows from standard results on U-
statistics. (ii) is guaranteed by the almost sure convergence of G̃n(θ), the
continuity of G̃(θ), and the fact that G̃(θ) is uniquely maximized in θ0. Since
all functions are continuous in the discrete topology, we are left with proving
the last point. In order to rewrite G̃(θ), we show that

E
[
Y V

[
Fθ(X

⊺θ)− Fθ(X
⊺θ−)

]]
= E

[
Y1 1[V1 ≥ V2, X

⊺
1θ = X⊺

2θ]
]

(8)

=
1

2
E
[
Y1 1[X

⊺
1θ = X⊺

2θ]
]
, (9)

where (X1, Y1, V1) and (X2, Y2, V2) are i.i.d copies of (X, Y, V ). Let Q(t, v) :=
P (X⊺θ = t, V ≤ v) = v[Fθ(t) − Fθ(t

−)], where the last equality is due
to the independence and uniformity of V . (8) is obtained by noticing that

E
[
Y V

[
Fθ(X

⊺θ)−Fθ(X
⊺θ−)

]]
= E[Y Q(X⊺θ, V )]. (9) is again a consequence

of the independence and uniformity of V . Hence, we can rewrite G̃(θ) as

G̃(θ) = E[Y1 1[X
⊺
1θ > X⊺

2θ]] +
1

2
E[Y1 1[X

⊺
1θ = X⊺

2θ]], (10)

Using the law of total expectation, we have

2G̃(θ) = E[H(X⊺
1θ0)1[X

⊺
1θ > X⊺

2θ]] + E[H(X⊺
2θ0)1[X

⊺
2θ > X⊺

1θ]]

+ E

[
H(X⊺

1θ0) +H(X⊺
2θ0)

2
1[X⊺

1θ = X⊺
2θ]

]
.

If pj := P (X = xj) and pk := P (X = xk), we have

2G̃(θ) =
∑
j,k

[
H(x⊺

jθ0)1[x
⊺
jθ > x⊺

kθ] +H(x⊺
kθ0)1[x

⊺
kθ > x⊺

jθ] (11)

+
H(x⊺

jθ0) +H(x⊺
kθ0)

2
1[x⊺

jθ = x⊺
kθ]

]
pjpk.
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From this equation and by noticing thatH(x⊺
jθ0) > H(x⊺

kθ0) whenever x
⊺
jθ0 >

x⊺
kθ0, it is clear that G̃(θ) is maximized in θ∗0. In order to show that the

maximum is unique, suppose per contra that there exists θ∗1 ̸= θ∗0 which also
maximizes G̃(θ). Then, there must exist at least one pair (xj, xk) such that

x⊺
jθ

∗
0 > x⊺

kθ
∗
0 and x⊺

jθ
∗
1 < x⊺

kθ
∗
1 if θ∗1 ∈ {B1, . . . , Bl}, (12)

or x⊺
jθ

∗
1 = x⊺

kθ
∗
1 if θ∗1 ∈ {H1, . . . , Hm}. (13)

Since x⊺
jθ

∗
0 > x⊺

kθ
∗
0, we have H(x⊺

jθ
∗
0) > H(x⊺

kθ
∗
0). Let us now examine the

contribution of (xj, xk) to (11) for θ∗0 and for θ∗1. It consists of H(x⊺
jθ

∗
0) for

θ∗0. For θ∗1, it amounts either to H(x⊺
kθ

∗
1) in the situation described by (12),

or to
H(x⊺

j θ
∗
1)+H(x⊺

kθ
∗
1)

2
in (13). In any case, this contradicts the fact that G̃(θ)

is maximized in θ1. □

As we have already stated, there exist other solutions to deal with the ties
issue. It is then important to judge the relevance of our proposal compared
to others. From (10), we observe that our random solution and the aver-
age rank method lead to the same objective function in the population. In
practice, however, the two methods are not equivalent. A first argument
in favor of the random solution is illustrated in Appendix B and briefly ex-
plained here. In order to specify the extent of identifiability of our model,
we restricted the parameter space to a vector of representatives. Some of
these are representatives of the open regions B1, . . . , Bl while the others come
from the hyperplanes H1, . . . , Hm. Working with the new parameter space
Θ∗ and θ0 ∈ {B1, . . . , Bl} leads to identifiability up to a specific region while
θ0 ∈ {H1, . . . , Hm} needs a further merging operation to reach such an iden-
tifiability. Even though the situation where θ0 lies in a hyperplane cannot
be identified in the usual sense, we argue in Appendix B that the random
solution has more chance to tend to the exact θ0 in that latter situation than
the average rank solution. A second interest of the random solution consists
in its ability to judge the importance of the ties issue on the value taken by
the explained Gini coefficient. The rest of this section is dedicated to this
question.

Beyond statistical considerations, each procedure to solve the ties issue in-
duces a different definition of the explained Gini coefficient and, hence, a
different value for this quantity. Facing one dataset, it would be interesting
to have an idea of how small or large the coefficient can get. In this respect,
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our random assignment solution offers some help. We express this variability
issue differently. In our case, variability is induced by our further ranking in
terms of a vector of uniform random variables. If we repeat the generation of
V a large number of times in the estimation of the explained Gini coefficient,
the random solution will sweep through the different possibilities of attaching
ranks to the ties. In this way, we internalize the variability related to the
ties issue and are able to assess its influence. We formalize this procedure
in the remaining of this section. Interestingly, we will see that, under mild
assumptions, this variability is independent from the estimation of θ0. As
such, we repeat the generation of V when we are estimating the explained
Gini coefficient, but using a fixed θ̂.

Fix a dataset (xi, yi)i=1,...,n and suppose that ties in the index only happen if
xi = xj. We can write the corrected rank vector as

R̃V
n (x

⊺
i θ) = RM

i (θ) +RD
i (V ), (14)

where RM
i (θ) is the rank of observation i obtained with the average-rank

method and is defined as

RM
i (θ) :=

n∑
j=1

(
1[x⊺

jθ < x⊺
i θ] +

1

2
1[x⊺

jθ = x⊺
i θ]

)
− 1

2
.

This part depends on θ but not on V and is hence deterministic. On the
other hand, RD

i (V ) is the random deviation from the average-rank for obser-
vation i. This part is a random variable with expected value 0 and variance
(n2

i − 1)/12, where ni is the number of observations with the same vector
of covariates as xi. However, this part does not depend on θ thanks to
our simplifying assumption that ties occur independently of θ. We propose
the following procedure. Choose M large. For m = 1, . . . ,M , generate

V m = (V m
1 , . . . , V m

n )⊺, with V m
i

i.i.d∼ U [0, 1]. For each iteration m, estimate
the explained Gini coefficient as

Ĝi
m

Y,X =
2

n2

n∑
i=1

yi
y
R̃V m

n (x⊺
i θ̂)−

n+ 1

n
, (15)

where θ̂ does not depend on m, meaning that θ∗ is estimated only once,
sparing a lot of computation time. This choice is justified by (14), which
entails that we can separate out the impact of V from the impact of θ in the
computation of the rank vector. We illustrate this procedure in Section 5.2.
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4. Inference about the Lorenz regression

In terms of inference, our main objective is twofold. First, we wish to
construct confidence intervals and tests for the explained Gini coefficient.
Second, we wish to test the significance of one or several covariates in ex-
plaining the inequality of the response. Since the explained Gini coefficient
involves θ0, we start by discussing the inference on the latter. Cavanagh and
Sherman (1998) derive the asymptotic normality of the MRE in Theorem 2
and discuss the estimation of the asymptotic covariance matrix. However, as
thoroughly discussed in Subbotin (2007), the proposed solutions have sev-
eral drawbacks. To name one, they all involve crucial choices of smoothing
parameters. This issue undermines the construction of confidence intervals
on that basis and the development of a Wald test. An alternative lies in the
use of bootstrap. The advantage of such method lies in the absence of any
smoothing parameter. Interestingly, Subbotin (2007) thoroughly discusses
the consistency of bootstrap procedures for the MRE. Confidence intervals
and tests may then be constructed either by bootstrapping the asymptotic
covariance matrix only (hybrid bootstrap), or rather by bootstrapping the
distribution of θ̂ directly (basic bootstrap). Theorem 3 in Subbotin (2007)
implies the consistency of the basic bootstrap while Theorem 4 from the same
source guarantees the consistency of the hybrid bootstrap. A third method
to construct confidence intervals consists in directly plugging the quantiles
of the bootstrap distribution of θ̂ (percentile bootstrap). More precisely,
(1− α)-level confidence intervals for θ0,k are given by

CIBasic =
[
2θ̂k − qθ̂∗k;1−

α
2
; 2θ̂k − qθ̂∗k;

α
2

]
,

CIPercentile =
[
qθ̂∗k;

α
2
; qθ̂∗k;1−

α
2

]
,

CIHybrid =

θ̂k ± z1−α
2

√
Σ̂∗

kk√
n

 ,

where θ̂∗ is the MRE in the bootstrap sample. Besides, qθ̂∗k;a
is the bootstrap

estimator of the a-quantile of the distribution of θ̂∗k and Σ̂∗ is the bootstrap

estimator of the asymptotic variance-covariance matrix of θ̂∗. Finally, za is
the a-quantile of the standard normal distribution. With this in mind, it
is easy to obtain bootstrap confidence intervals and to build tests concern-
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ing GiY,X . For example, we could test the equality of the explained Gini
coefficients between two countries.

Central to the motivation of this paper is the idea of assessing whether
a set of covariates explains significantly the inequality of the response. Ac-
cordingly, we develop a bootstrap test for the joint significance of d vari-
ables. Assume Yi = H(X⊺

i θ0) + ϵi, with H increasing, and E[ϵi|Xi] = 0.
Formally, we wish to test H0 : θ0,k, . . . , θ0,k+d−1 = 0 vs. H1 : ∃j ∈ [0, d −
1] such that θ0,k+j ̸= 0. The idea underlying the following testing procedure
lies in comparing the Lorenz-R2 under the null hypothesis with the uncon-
strained one. Accordingly, we will reject H0 if dropping the d variables leads
to a significant decrease in explained inequality. Specifically, we use

U :=
LR2

LR2
H0

=
1
n2

∑n
i=1 YiRn(X

⊺
i θ̂)− Y

2

1
n2

∑n
i=1 YiRn(X

⊺
i θ̂

(0))− Y
2

,

where

θ̂(0) := argmax
θ∈Θ−{k,...,k+d−1}

n∑
i=1

YiRn

(
X

(0)⊺
i θ

)
,

and X
(0)
i is obtained by dropping columns k to k+d−1 from Xi. Intuitively,

we will reject H0 if the observed value of U is sufficiently larger than 1. The
residuals under H0 are obtained as

ϵ̂
(0)
i = Yi − Ĥ(0)

(
X

(0)⊺
i θ̂(0)

)
,

where Ĥ(0) is an estimator of H under H0. Then, ϵ
(0)∗
i is randomly drawn

with replacement from ϵ̂
(0)
1 , . . . , ϵ̂

(0)
n . The bootstrap sample is obtained as

(Xi, Y
∗
i )

n
i=1, where

Y ∗
i = Ĥ(0)

(
X

(0)⊺
i θ̂(0)

)
+ ϵ

(0)∗
i ,

We can then approximate the p-value of our test using p∗ = P (U∗ ≥ Uobs),
where Uobs is the observed value of U in the original sample and U∗ is obtained
as

U∗ =
1
n2

∑n
i=1 Y

∗
i Rn(X

⊺
i θ̂

∗)− Y ∗

2

1
n2

∑n
i=1 Y

∗
i Rn(X

⊺
i θ̂

(0)∗)− Y ∗

2

,
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where θ̂∗ is the unconstrained MRE in the bootstrap sample and θ̂(0)∗ the
constrained one. Finally, p∗ can be estimated via Monte-Carlo simulations.

The described procedure opens the door to the estimation of the link func-
tion H. Upon estimation of θ0 with the MRE, we have at our disposal an
estimated index X⊺θ̂. In a second stage, we can estimate H as a nonparamet-
ric smoother of Y given X⊺θ̂, subject to the constraint that H is increasing.
To achieve this, we can use the procedure laid down by Chernozhukov et al.
(2009), hereafter called rearrangement method, which starts from an initial
estimator of H and makes it increasing by taking its quantile function. Inter-
estingly, this rearrangement operation weakly reduces the estimation error
of the initial estimator, see Proposition 1 in Chernozhukov et al. (2009).

5. Monte-Carlo simulations

This section is divided into three Monte-Carlo exercises. In the first, we
implement the MRE with a genetic algorithm and compare its performance
with the semiparametric least squares (SLS) estimator defined in Ichimura
(1993). In the second, we illustrate the procedure laid down in Section 3 to
assess the impact of ties on the range of values taken by the explained Gini
coefficient. Finally, we examine the performance of the bootstrap.

5.1. Performance of the estimation

The computation of the MRE requires to solve (7), a discrete and hence
non-convex maximization programme. In this respect, our contribution is
to propose a genetic algorithm with the double advantage of being fast and
reducing the risk of local minima. The detailed functioning of the algorithm
as well as a pseudo code are provided in Appendix C. We judge the quality of
the estimation via three criteria : the mean L2-distance between the true and
the estimated θ, the mean integrated squared error (MISE) of the regression
curve and, most importantly, the mean squared error (MSE) of the explained
Gini coefficient. These last two quantities are given by

MISE.Curve := E

[∫ (
H(x⊺θ̂)−H(x⊺θ0)

)2

dFX(x)

]
,

MSE.Gini := E

[(
ĜiY,X −GiY,X

)2
]
,
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where FX is the joint CDF of the X vector. These criteria are estimated
with 1000 Monte-Carlo replications. We use the following data generating
process (DGP)

Yi = H
(
θ1X

1
i + . . .+ θcX

c
i + θc+1Z

1
i + . . .+ θc+dZ

d
i

)
ϵi, (16)

where i = 1, . . . , n and ||θ|| = 1. The Xi’s are c standard normal variables
while the Zi’s are d Bernoulli variables with 1/2 probability of success. Fi-
nally, ϵi is a lognormal noise with mean 1 and a variance set to ensure a
signal-to-noise ratio of 3. Throughout this section, we consider the following
link function

H(t) = 1000 exp

[
1 +

1

2
(t− 1)3

]
.

Ichimura’s method is available in the R package np. Importantly, this package
uses a different normalization for θ. There, the first element of the vector is
fixed to one, while we rather impose a unit norm. Both setups are compa-
rable if we properly adjust the vector of parameters and the link function.
To see this, consider a dataset generated with the DGP presented at (16).
This exact dataset can be generated with the single-index model using the
other normalization, with vector of parameters θ∗ = θ/θ1 and link function
H∗(t) = H(θ1t).

In what follows, we use 4 continuous and 2 discrete covariates. The pa-
rameter vector is θ = (0.0923,−0.0889, 0.0506, 0.2838,−0.2074, 0.2270)⊺. We
focus first on the explained Gini coefficient. In that respect, it is important
to mention that under the SLS estimator, the link function does not need to
be increasing. This implies that the ordering given by the index X⊺θ̂ does
not necessarily coincide with the ordering implied by the regression curve
Ĥ(X⊺θ̂). Let us illustrate this with a simple example. Assume that the
first covariate X1 has a negative marginal impact on the response. Recalling
that the SLS estimator forces θ1 = 1, we expect the estimated link function
to be decreasing. In this context, we should order individuals in terms of
−X⊺θ̂. To bypass this issue, we rank the observations in terms of Ĥ(X⊺θ̂).
Of course, this issue does not appear in a Lorenz regression since the esti-
mated link function will always preserve the ranking provided by the index.
The boxplot of the explained Gini coefficient estimated with each method is
displayed in Figure 1. The horizontal line corresponds to the actual value
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of the parameter, i.e. around 23.88%. While the distribution of Lorenz esti-
mates is centered on the true value, this is not the case for the SLS estimator.
Since the link function is not restricted to be increasing, the SLS estimator
tends to overfit the data and, hence, to overestimate the explained Gini co-
efficient. Figure 2 reinforces our conclusion that Lorenz regression provides
a better estimator, even though the gap closes down with sample size.

We now compare the two estimators in terms of the other two criteria. Fig-
ure 3 and 4 show their evolution with sample size. They confirm the better
performance of Lorenz regression since the L2-distance is always lower in
comparison with the SLS estimator. A similar pattern emerges for the esti-
mation of the regression curve.

5.2. Range of the Explained Gini coefficient in presence of ties

With this example, we strive first to highlight the definition problem of
the explained Gini coefficient inherent to the discrete case. Second, we wish
to illustrate the procedure explained at the end of Section 3. Note that the
point of the exercise is not to assess the estimation quality of the explained
Gini coefficient. We work on one dataset, generated with the same DGP
and link function as before and concentrate on a pure discrete scenario with
d = 4. We generate M = 1000 uniform random vectors V 1, . . . , V M and use
these to estimate a vector of explained Gini coefficient, following (15). This
computation is undertaken using θ0, i.e. the value we used to generate the
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data, as well as using θ̂. Figure 5 summarizes our results. Both boxplots
display the distribution of the explained Gini coefficient estimated with the
random solution. In the first, we plug the estimated vector of parameters θ̂.
In the second, we rather use θ0. The dashed and dotted lines represent the
explained Gini coefficients obtained with the average-rank method for θ0 and
θ̂ respectively. As expected, the two boxplots are centered on these lines.
On average, the rank-method provides the same explained Gini coefficient
as the average-rank solution. We also observe that the two boxplots display
the same variability. This stems from the fact that the variable part of
the explained Gini coefficient is independent from the value taken by the
parameter vector θ. Finally, the total size of the boxplots indicate that the
ties issue is not too severe. Indeed, their range is only slightly larger than
0.003.

5.3. Performance of the bootstrap

We assess the performance of the bootstrap test of joint significance us-
ing the same DGP as in Section 5.1, again with 4 continuous and 2 discrete
covariates. The bootstrap procedure described in Section 4 can still be used,
by transforming the response Y into log(Y ) before estimation. We test the
joint significance of θ4 and θ5, with a significance level of α = 0.05 and 500
Monte-Carlo replications for the bootstrap. Specifically, we use the following
vector of parameters.
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θ1 θ2 θ3 θ4 θ5 θ6
Under H0 0.5504 0.1790 −0.1724 0 0 0.0982
Under H1 0.44032 0.14320 −0.13792 0.1 0.1 0.07856

In what follows, we quantify the power of our testing procedure. It is in-
teresting to examine the power if we were to know the distribution of the
test statistic, hereafter mentioned as theoretical power, isolating the power
loss due to bootstrapping. Figure 6 displays the power curves estimated on
600 Monte-Carlo replications. As expected, both power curves converge to
1 as the sample size increases. The vertical distance between the two curves
illustrate the power loss related to bootstrapping. Though this difference is
not negligible for small and medium sample sizes, it is never larger than 22%
and it closes down relatively quickly. With a sample of 100 observations, our
procedure already attains a power of 96.5%. In Section 2 of the Online Sup-
plement, we appraise the performance of the bootstrap confidence intervals,
both for one element of θ and for the explained Gini coefficient.

22



0.5

0.6

0.7

0.8

0.9

1.0

100 200 300 400

Sample size

R
ej

ec
ti

o
n

 p
ro

b
ab

il
it

y

Curve

Bootstraped

Theoretical

Figure 6: Theoretical and bootstrapped power curves

6. Empirical illustration

In economics, attention has often been directed to identify the main de-
terminants of wages. A classical starting point is the wage equation proposed
by Mincer and Polachek (1974) of the form

log(W ) = β0 + β1S + β2E + β3E
2 + ϵ, (17)

where W is the wage, S is schooling, E is professional experience and ϵ is an
unobservable error term. Focusing on these two covariates is of course restric-
tive and many papers went beyond this basic setup. For example, Griliches
(1976) drew attention on a bias which stems from ignoring ability while it is
at the same time expected to be influenced by schooling and to have an effect
on wages. In this section, we apply the Lorenz regression methodology on
such determinants with the objective of visualizing the inequality that they
help to reproduce.

Our discussion is based on data resulting from the Young Men’s Cohort
of the National Longitudinal Survey (NLS-Y), a survey started in 1966 on
individuals of ages 14-24. The excerpt we use is available in the dataset
Griliches contained in the R package Ecdat. Besides wage, schooling and
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experience, we include the following variables in our analysis: age (A), abil-
ity (IQ), marital status (MS) and degree of urbanisation (DU). Ability was
computed as IQ scores collected in a school survey conducted in 1968. All
the remaining variables were observed in 1980. The degree of urbanisation
is a dummy determining whether the individual lives in a metropolitan area.
Before delving into modelling, we note that the considered wage distribution
exhibits a mean of 1000, a median of 948 and a Gini coefficient of 0.222.

We first restrict the attention to schooling and experience, allowing for a
quadratic term on experience. The underlying models are presented in (18)
and (19) and are more general than Mincer and Polachek (1974) equation
since they do not impose a log link function.

E[W |S,E] = H[1]

(
θSS + θEE + θE2E2

)
, (18)

E[W |S,E] = H[2] (θSS + θEE) . (19)

Table 2 displays the estimated parameters, bootstrap standard deviations

Table 2: Lorenz regressions for (18) and (19)

(18) (19)
Estimate Std dev CI Estimate Std dev CI

θS 0.552 0.133 [0.398;0.912] 0.786 0.055 [0.733;0.908]

θE 0.437 0.237 [-0.279;0.584] 0.214 0.055 [0.092;0.267]

θE2 -0.011 0.011 [-0.018;0.020]

and 95% percentile bootstrap confidence intervals corresponding to (18) and
(19). We observe that only schooling is significant when a quadratic expe-
rience term is included. However, experience becomes significant when the
quadratic term is dropped. As expected, the Lorenz-R2 decreases from (18)
to (19) very slightly, from 0.391 to 0.389.

As a second step, we augment our model of several control variables. In
(20), we introduce marital status, degree of urbanisation, age and ability, as
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measured by IQ.

E[W |S,MS,DU,A,E, IQ] = H[4](θSS + θMSMS + θDUDU

+ θAA+ θEE + θIQIQ). (20)

Table 3 displays the output of the Lorenz regression corresponding to (20),

Table 3: Lorenz and log-linear regressions for (20)

Lorenz regression Log-linear regression
Estimate Std dev CI Estimate Std dev CI

Intercept / / / 4.689 0.182 [4.332;5.047]

θS 0.123 0.030 [0.086;0.206] 0.054 0.008 [0.038;0.069]

θMS 0.372 0.117 [0.034;0.490] 0.169 0.044 [0.082;0.255]

θDU 0.429 0.097 [0.344;0.686] 0.202 0.029 [0.145;0.260]

θA 0.029 0.021 [0.002;0.085] 0.014 0.005 [0.004;0.024]

θE 0.037 0.016 [0.008;0.067] 0.016 0.004 [0.008;0.024]

θIQ 0.01 0.005 [0.005;0.024] 0.004 0.001 [0.002;0.007]

as well as the results of a linear regression on log-wages, using the same
covariates. Both methods offer similar conclusions. However, the Lorenz re-
gression provides us with further interpretations. The Lorenz-R2 is of 0.48,
indicating that we can reproduce 48% of the observed inequality with our
covariates. Figure 7 displays the observed and explained Lorenz curves. By
computing marginal rates of substitution, we can also compare the magni-
tude of two weights. For example, the MRS of DU with respect to MS is of
1.153 meaning that, all other things being equal, the degree of urbanisation
has a marginal impact on wages 1.153 times more important than marital
status. Also, the MRS of S with respect to E is of 3.324, meaning that, all
other things being equal, spending one more year of schooling has three-times
more impact than a further year of professional experience.

Interestingly, our dataset contains a variable recording the individual’s resi-
dency. Namely, we know if she lives in a Southern or Northern state. Dividing
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our dataset on the basis of this information and using model (20), we fit two
distinct Lorenz regressions. This allows us to compare the explained Gini
coefficient in Northern and Southern states. Results are gathered in Table 4.
The Gini coefficient obtained when ranking individuals in terms of explained
income is higher in Southern states (13.47% against 9.96% in Northern states.
In some sense, this was expected since the Gini coefficient of wages is higher
in Southern states (25.17% against 20.96% in Northern states). Still, it is
worth mentionning that the unexplained part of inequality, i.e. the difference
between the actual and the explained Gini coefficients, is rather similar be-
tween the two situations (11.17% in Southern states against 11% in Northern
states). This stems from the fact that we explain a larger proportion of the
observed inequality in the Northern states. Indeed, the Lorenz-R2 there is of
53.5% against 47.53% in Southern states.

Having estimated the index using the MRE on (20), we may estimate the link
function using the rearrangement method and compare it with an exponen-
tial fit. The latter is obtained from a classical linear regression of log-wages
on the estimated index. More specifically, we assume log(W ) = α+ βT + ε,
where T is the estimated index, E[ε|T ] = 0 and ε is independent from T .
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Table 4: Lorenz regressions distinguishing between Northern and Southern states

South North South North
θS 0.212 0.097 Lorenz-R2 0.535 0.4753

θMS 0.255 0.253 ĜiY 0.2517 0.2096

θDU 0.431 0.570 ĜiY,X 0.1347 0.0996

θA 0.003 0.056 ĜiY − ĜiY,X 0.117 0.11

θE 0.094 0.011

θIQ 0.006 0.013

Denote by α̂ and β̂ the OLS estimators of α and β. We have E[W |T ] =
exp(α+ βT )E[exp(ε)]. The first piece is estimated using exp(α̂+ β̂T ) while
the second is estimated by the empirical mean of the W/ exp(α̂ + β̂T ) vec-
tor. As we can observe on Figure 8, both curves exhibit the same behaviour.

The purpose of this empirical example was to provide a first illustration
of the Lorenz regression and the interpretations that can be build upon. In
this case, this methodology yields quite similar results to a linear regression
on log-wages. This provides some evidence supporting the logarithm as link
function in the wage equation proposed by Mincer and Polachek (1974). This
closeness is also attributable to the low inequality present in the wage distri-
bution. Facing a distribution with more inequality, typically containing a few
very rich individuals, we can expect linear and Lorenz regressions to yield
quite different results. Because of its sensitivity to outliers, linear regression
would be greatly driven by the richest individuals. With its part reliance on
ranks, we can expect Lorenz regression to be less affected by such outliers.
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Figure 8: Nonparametric and parametric fit of the wage equation
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Appendix A. The genetic algorithm

The genetic algorithm iteratively proposes solution candidates and as-
sesses their score through a fitness function. Convergence is met when the
fitness has not improved for a sufficiently large number of generations. The
R library GA (Scrucca, 2013) allows us to build such algorithm. The only
technical difficulty lies in the incorporation of the unit-norm constraint. To
address this issue, we propose the following principles.

(a) We ensure that the initial population of candidates satisfies the unit-
norm constraint.
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(b) Candidates γ are vectors of size p − 1 defining two possible solutions
θ̃1 and θ̃2, where the last element is either −(1− ||γ||) or (1− ||γ||).

(c) The fitness function exhibits a penalty to ensure that candidates unable
to satisfy the unit-norm constraint are discarded. Formally, the fitness
function is defined by

f(θ) :=
n∑

i=1

YiRn(X
⊺
i θ)−K| ||θ|| − 1 |,

where K is a sufficiently large constant. Figure A.9 presents the pseudo-
code of the algorithm. We use the notation α for a scalar, α[] for a vec-
tor, α[, ] for a matrix and α[, , ] for a three-dimensional array. The function
NextGeneration describes the passage from one generation to another using
the default choices of the package, i.e. arithmetical crossover and uniform
mutation. Finally, run is the number of consecutive run without improve-
ment triggering the algorithm to stop and ϵ is a tolerance level based on
machine precision.

Appendix B. An advantage of the random-rank method

In this appendix, we provide an example illustrating the better perfor-
mance of the random solution compared to the average-rank method.

Consider data generated from the DGP used in Section 5.1, with only two
discrete covariates and using parameter vector θ0 = (1

2
, 1
2
)⊺. In such a setup,

the number of bounding regions is quite low and a discrete algorithm could
be used to estimate the parameter vector. Besides θ0, we consider two alter-
native vectors of parameters

θ1 :=

(
3

4
,
1

4

)⊺

,

θ2 :=

(
1

4
,
3

4

)⊺

,

which, without loss of generality, are the representatives of their regions.
Finally, we suppose that our sample is made of n = 20 observations and con-
sists in a balanced design, i.e. 5 observations in each of the 4 possible values
of X. In what follows, we focus on observations for which X = (1, 0)⊺ =: x1
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Input : A vector Y [] of size n and a matrix X of size n× p
Output: A solution vector θ̂∗[] of size p

1 Initial population of S candidates, gathered in γ[0, , ];
2 for s← 1 to S do
3 for j ← 1 to p do
4 u[s, j] ∼ U [−1, 1];
5 v[s, j]← u[s,j]

||u[s,.]|| ;

6 end
7 γ[0, s, ]← (v[s, 1], v[s, 2], . . . , v[s, p− 1]);

8 end
9 The algorithm goes on until convergence is met ;

10 for k ≥ 1 do
11 γ[k, , ]← NextGeneration(γ[k − 1, , ]);

12 θ̃1[k, , ]← (γ[k, , 1], γ[k, , 2], . . . , γ[k, , p− 1], 1− ||γ[k, , j]||);
13 θ̃2[k, , ]← (γ[k, , 1], γ[k, , 2], . . . , γ[k, , p− 1],− (1− ||γ[k, , j]||));
14 The fitness of the candidate is given by ;

15 Fit[k, ]← max(f(θ̃1[k, , ]), f(θ̃2[k, , ]));
16 The algorithm stops if there are enough consecutive runs

without improvement ;
17 Fit.max[k]← maxs(Fit[k, s]);
18 run.attained←

∑
l≤k 1{Fit.max[l] ≥ maxm(Fit.max[m])− ϵ};

19 if run.attained ≥ run then
20 break;
21 end

22 end
23 Denote by γ∗[] the solution given by the algorithm;
24 θ∗1[]← (γ∗[1], γ∗[2], . . . , γ∗[p− 1], 1− ||γ∗[]||);
25 θ∗2[]← (γ∗[1], γ∗[2], . . . , γ∗[p− 1],−(1− ||γ∗[]||));
26 θ̂∗[]← argmax (θ∗1[], θ

∗
2[]);

Figure A.9: Pseudo code of the genetic algorithm used to find the MRE
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and those for which X = (0, 1)⊺ =: x2. In this way, x⊺
1θ0 = x⊺

2θ0, while
x⊺
1θ1 > x⊺

2θ1 and x⊺
1θ2 < x⊺

2θ2. Table B.5 shows the ranks that each method
attaches to those observations if the index is built upon either θ0, θ1 or θ2.
Note that U{., .} denotes the discrete uniform distribution. For example,
each observation with value x1 is given a rank of 10.5 if we are considering
θ0 and the average-rank solution. On the other hand, they have a rank ran-
domly drawn between 6 and 15 if we are using the random solution.

Table B.5: Rank granted to each group of observations

Average rank Random rank
x1 x2 x1 x2

θ0 10.5 10.5 U{6, 15} U{6, 15}

θ1 13 8 U{11, 15} U{6, 10}

θ2 8 13 U{6, 10} U{11, 15}

The derivation of the MRE requires to maximize the scalar product between
the response and the vector of index ranks. Denote by y1 (y2) the mean
response for observations with covariate vector x1 (x2). From the table, it
is clear that θ0 will never be chosen by the average-rank solution, unless
y1 = y2. Indeed, if y1 > y2, we would pick θ1. Conversely, if y1 < y2, we
would pick θ2. This is not the case with the random rank solution since it de-
pends on the generation of the uniform random variables. We performed 1000
Monte-Carlo simulations to confirm this intuition, using the aforementioned
DGP but relaxing the assumption of balanced design. In each iteration, we
recorded the maximizer(s) of the objective function. Table B.6 counts the
number of times θ0, θ1 and θ2 maximize the objective function.

As we can observe, θ0 is almost never chosen with the average-rank solu-
tion. The 8 instances where θ0 maximizes the objective function correspond
to situations where there is no observation either in x1 or x2. In this case,
the three values of θ provide the same value for the objective function. This
is not the case for the random solution. In total, θ0 maximizes the objective
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Table B.6: Number of times each parameter vector maximizes the objective function

θ0 θ1 θ2

Average rank 8 505 503

Random rank 177 435 420

function in 177 instances. Beyond the same 8 instances where θ0, θ1 and θ2
all reach the optimum, there are 16 instances where θ0 and one of either θ1 or
θ2 maximize the objective function. This situation occurs when the genera-
tion of the uniform random variables ends up yielding the same rank vectors
for θ0 and for either θ1 or θ2. Hence, the 153 remaining instances correspond
to situations where θ0 is the sole maximizer of the objective function. Recall
that it never occurs with the average rank method. The overall conclusion of
this exercise runs as follows: the average-rank solution discriminates against
certain types of solutions. These solutions are characterized by equal values
of the index but made up with different values of the covariates. While the
random solution remains neutral about this, the average-rank solution tries
to disaggregate the index as much as possible.
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