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Abstract

This paper studies the estimation of Gaussian graphical models in the
unbalanced distributed framework. It provides an effective approach
when the available machines are of different powers or when the existing
dataset comes from different sources with different sizes and cannot be
aggregated in one single machine. In this paper, we propose a new aggre-
gated estimator of the precision matrix and justify such an approach
by both theoretical and practical arguments. The limit distribution and
convergence rate for this estimator are provided under sparsity condi-
tions on the true precision matrix and controlling for the number of
machines. Furthermore, a procedure for performing statistical inference
is proposed. On the practical side, using a simulation study and a real
data example, we show that the performance of the distributed estimator
is similar to that of the non-distributed estimator that uses the full data.

Keywords: Gaussian graphical models, Precision matrix, Lasso penalization,
Unbalanced distributed setting, De-biased estimator, Pseudo log-likelihood.

1 Introduction

Precision matrix estimation plays an important role in statistical and machine
learning, especially in the framework of probabilistic graphical modeling. A
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large body of literature studied the estimation problem of the precision matrix
for Gaussian graphical models. We refer to Meinshausen and Bühlmann [2006],
Friedman et al. [2008], Cai et al. [2011], Wang [2014] and Wang et al. [2016]
among many others for a treatment on the subject.

Many datasets nowadays may be too large to fit and be read efficiently
into a single ordinary machine. Moreover, sometimes datasets from different
sources are private and due to security and privacy concerns, one is not allowed
to aggregate all the data at one location. For instance, in Federated machine
learning (McMahan et al. [2017]), different datasets with different sizes are
used for training across multiple local machines without any exchanging and
sharing. As such, estimation of the precision matrix via decentralized, unbal-
anced machines is of contemporary interest. Much attention in distributed
estimation has focused on the setting where the sample size n is large and most
approaches propose splitting the observations into K independent sub-samples
that are analyzed in parallel. Once the analysis is performed, estimates are
combined together into a final estimate that is treated as the final output of
the method. In this paper we focus on the case where the number of variables
p can grow with n, the total sample size, such that plog pq{nk Ñ 0, where nk

is the sample size at the level of the k-th machine with k � 1, . . . ,K. As a
consequence, a sparsity assumption is imposed on the true precision matrix as
a function of sub-sample sizes nk and p.

A wide range of literature studied combination methods for parallel esti-
mators in the context of linear, generalized linear models, kernel and Bayesian
estimators, see for instance Zhang et al. [2015], Lee et al. [2017], Battey et al.
[2018], Xu et al. [2019] and Xue and Liang [2019] among many others. Regard-
ing the estimation of the precision matrix, there is limited literature using
parallel analysis. Arroyo and Hou [2016] studied the problem of estimating
the precision matrix for Gaussian graphical models from a set of K balanced
distributed sub-samples via a simple average method. They performed an addi-
tional local thresholding step on each machine, in order to obtain a sparse
estimator. Wang and Cui [2021] proposed a distributed estimator of the sparse
precision matrix in Transelliptical graphical models by debiasing a D-trace
Lasso-type estimator and then by applying a hard threshold on the aggregated
estimator which is obtained by simple average. Nevertheless, in some recent
approaches like Federated learning, when some of the available machines are
more powerful than others, it is not efficient to distribute a dataset on dif-
ferent machines with equal sizes. Instead, one could place larger datasets on
the powerful machines and smaller datasets on the others. In this case, one
deals with unbalanced sub-samples and just taking a simple average is not an
optimal approach for aggregating estimators.

Meta-analysis is also a known method for combining summary statistics
from independent studies. Xie et al. [2011] and Liu et al. [2015] developed
general meta-analysis frameworks using confidence distributions to combine
multiple heterogeneous estimators derived from individual studies. Since split-
ting a dataset incurs some efficiency loss, deriving an upper bound on the
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number of machines is of interest to exhibit the efficiency of the model.
Recently, Tang et al. [2020] developed a strategy using an aggregating method
based on confidence distributions to combine de-biased Lasso-type estimators
in generalized linear models. In their framework, the number of machines can
also diverge with n. They showed that as K increases at the rate of Opn1{2�ϵq,
ϵ P p0, 1{2s, the combined estimator achieves the same estimation efficiency as
the centralized maximum likelihood estimator. In this paper, a pseudo like-
lihood is constructed based on the asymptotic distribution of the de-biased
estimators to aggregate the unbalanced estimators of the precision matrix for
Gaussian graphical models. An upper bound on K is derived to guarantee the
consistency and asymptotic normality of the estimator. It is shown that this
upper bound is of order Opn1{2�ϵ{pd log pqq, ϵ P r1{6, 1{2q, which is a function
of the total sample size, the sparsity d and the number of variables, p.

The rest of the paper is organized as follows. In Section 2, notation and
preliminaries are introduced. A methodology for performing distributed esti-
mation based on sub-samples is presented in Section 3. We continue in Section
4 by proposing a final estimator that pools together separate estimators. The-
oretical properties of this estimator are also investigated in this section. In
Section 5, the performance of the estimator is evaluated at the hand of a con-
trolled simulation study and in Section 6, the performance on a real data set
is illustrated. We close with a discussion on the method and possible exten-
sions in Section 7. Auxiliary proofs and more simulation results can be found
in the Supplementary materials. An R-package, called DistributedGGL, is also
provided on the website of the corresponding author for general use.

2 Notation and preliminaries

The model in this paper is defined under the sub-Gaussianity assumption. A
zero-mean random variable X is sub-Gaussian if there exists a constant γ such
that E

�
expptXq� ¤ exppγ2t2{2q for all t P R. This upper bound on the moment

generating function implies the tail bound Pp|X| ¡ xq ¤ 2 expp�x2{2γ2q for all
x ¡ 0. Similarly, a zero-mean random vector 9X � pX1, . . . , XpqJ with covari-
ance matrix Σ is sub-Gaussian if all normalized components Xa{?Σaa, a �
1, . . . , p, are sub-Gaussian random variables with a common parameter γ ¡ 0,
where by Σaa we denote the a-th diagonal element of Σ. A prime example of
a sub-Gaussian random vector is a multivariate zero-mean Gaussian vector.
Consider the Gaussian graphical model, where a p-dimensional random vec-
tor 9X � pX1, . . . , XpqJ follows a multivariate Gaussian distribution Npp0,Σq
with mean vector zero and covariance matrix Σ. The components of 9X cor-
respond to the vertex set V � t1, . . . , pu of an undirected graph G � pV, Eq,
where the edge set E describes the conditional dependence between every pair
of components X1, . . . , Xp. A pair pa, bq is included in the edge set E if and
only if the variables Xa and Xb are dependent given all remaining variables.
Under the multivariate Gaussian distribution, a pair of variables is condition-
ally independent given all remaining variables if and only if the corresponding
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entry in the precision matrix Θ � Σ�1 is zero. Elements of the precision
matrix may thus be interpreted as edge weights. Denote the maximum num-
ber of non-zero (active) off-diagonal entries of Θ per row, i.e., the maximal
node degree, with d and the index set of non-zero off-diagonal entries of Θ
with S, formally, S � tpa, bq | Θab � 0, a � bu, having cardinality s. The set
of non-active components is denoted by Sc.

Before starting the discussion, we introduce some notation which is needed
later in the paper. For two matrices A and B of dimensions m� n and p� q,
we denote AbB as the Kronecker product of A and B which is defined as a
pm� qn block matrix with AabB for the block pa, bq, where Aab is the pa, bq-
th element of matrix A, a � 1, . . . ,m and b � 1, . . . , n. For two sequences
tan; n ¥ 1u and tbn; n ¥ 1u, bn � Opanq if there exist positive numbers M0

and N0 such that | bnan
| ¤ M0 for all n ¥ N0. We write bn � an if both bn �

Opanq and an � Opbnq hold. Similarly, for a random sequence tXn; n ¥ 1u, we
write Xn � Oppanq if for every ϵ ¡ 0, there exist finite numbers M0 ¡ 0 and
N0 ¡ 0 such that Pp|Xn

an
| ¡ M0q   ϵ for all n ¥ N0. Furthermore, bn � opanq

if limnÑ8 bn
an

� 0. In the case of a random sequence tXn; n ¥ 1u, we write

Xn � oppanq if Xn

an

pÝÑ 0, as nÑ8, where the notation
pÝÑ denotes convergence

in probability. For a matrixA, we use the notation ~A~8 � maxa
°

b|Aab| and
∥A∥8 � maxa,b|Aab| for the matrix and elementwise ℓ8 norms, respectively.
The same symbol ∥x∥8 � maxb|xb| is used for the ℓ8 norm of a vector x.
Moreover, ∥A∥1 �

°
a,b|Aab| and ∥x∥1 �

°
b|xb| are used for the ℓ1 norm of a

matrixA and of a vector x, respectively. Finally, we use ∥A∥F �
b°

a,b A
2
ab �a

tracepAAJq for the Frobenius norm of a matrix and ∥x∥2 �
a°

b x
2
b for the

ℓ2 norm of a vector x.

3 Distributed penalized estimation

In this section, we propose distributed estimators of the precision matrix Θ
using only sub-sample information. First, denote the Hessian of the nega-
tive log-likelihood function ℓpΘq � tracepΣ̂kΘq � log detpΘq, where Σ̂k �
XJ

kXk{nk is the sample covariance in the k-th sub-sample (properly defined
later in the section), evaluated at the true precision matrix Θ by Γ, which
can be shown to be Γ � Σ b Σ (see Ravikumar et al. [2011]). By def-
inition, Γ is a p2 � p2 matrix indexed by the pair of elements from the
vertex set, such that Γ � rΓpa,bq,pc,dqs, where pa, bq, pc, dq P V � V. Let

S1 �  
S Y tp1, 1q, p2, 2q, . . . , pp, pqu( with cardinality s1, which is equal to

s1 � s� p, and its complement set with Sc
1. The following regularity assump-

tions (see for example, Ravikumar et al. [2011], Jankova and van de Geer
[2015]) are considered for the theoretical guarantees in estimating Θ:

(A1) The irrepresentability condition holds for the true precision matrix Θ,

i.e., there exists α P p0, 1s such that maxePSc
1
∥ΓeS1

�
ΓS1S1

��1∥1 ¤ 1 � α,
where ΓS1S1

P Rs1�s1 is a sub-matrix of Γ whose rows and columns are
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indexed by the elements of S1. Moreover, e is a pair pa, bq P Sc
1 such that ΓeS1

is an s1-dimensional column vector with elements Γe,pc,dq, where pc, dq P S1.

Assumption (A1) is necessary and sufficient for the graphical Lasso estimator
to exhibit model selection consistency.

(A2) The eigenvalues of the precision matrixΘ are bounded, i.e., there exists
a constant Λ ¥ 1 such that 1

Λ ¤ ΛminpΘq ¤ ΛmaxpΘq ¤ Λ, where ΛminpΘq
and ΛmaxpΘq are the minimum and maximum eigenvalues ofΘ, respectively.

Assumption (A2) is needed to control the convergence rate of the de-biased
estimator via controlling the magnitude of the elements of Θ.

Without loss of generality, suppose that Ep 9Xq � 0. Consider now an
i.i.d. sample of size n from 9X and suppose that it is divided randomly into
K non-overlapping sub-samples each with size nk for the k-th sub-sample,
k � 1, . . . ,K. Consider the i-th row of the k-th sub-sample as 9Xi,k �
pX1

i,k, . . . , X
p
i,kqJ, i � 1, . . . , nk, and denote the k-th sub-sample in matrix

form as Xk � �
9X1,k, 9X2,k, . . . , 9Xnk,k

�J
, which is of dimension nk � p and

obtained by appending column vectors 9X1,k, . . . , 9Xnk,k one after another and
then transposing. By splitting the sample data into K disjoint sub-samples,
one can analyze each sub-sample per machine in parallel. The goal is to esti-
mate the structure of the graph G, or equivalently, find the zero pattern of Θ,
by combining K estimators, each obtained on a particular sub-sample. The
usual assumption in this context is that the underlying graph is sparse, which
means that a certain bound is imposed on the maximum node degree of the
precision matrix. Due to the relation between the graph edges and the entries
of the precision matrix in Gaussian graphical models, this sparsity reflects that
the related graph has a rather low number of edges. To impose this sparsity
condition on the estimation, one common approach is to add an ℓ1 penalty to
the log-likelihood function. This kind of regularization effectively forces some
of the elements of Θ to zero, thus resulting in sparse solutions. There exists a
wide variety of methods making use of ℓ1 regularization, see for example Fried-
man et al. [2008], Hsieh et al. [2014], Cai et al. [2016], etc. For each sub-matrix
Xk pk � 1, . . . ,Kq, the graphical Lasso estimator Θ̂k, defined by Friedman
et al. [2008], is the solution to the optimization problem

Θ̂k � arg min
ΘPSp

��

"
trace

�
Σ̂kΘ

�� log detpΘq � λk∥Θ∥1,off
*
, (1)

where λk ¡ 0 is the penalty term, Σ̂k � XJ
kXk{nk is the sample covariance

in the k-th sub-sample, ∥�∥1,off is the ℓ1 off-diagonal penalty of the matrix
defined as ∥Θ∥1,off �

°
a�b|Θab|, the quantity Θab is the pa, bq-th element of

Θ and Sp
�� is the space of positive definite matrices of dimension p� p. The

graphical Lasso estimator (1) is biased due to the ℓ1 penalty which is added
to the loss function. This estimator satisfies the Karush-Kuhn-Tucker (KKT)
condition (see for example, Ravikumar et al. [2011]) as Σ̂k�Θ̂�1

k �λkD̂k � 0,
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where the matrix D̂k belongs to the sub-differential of the off-diagonal norm
∥�∥1,off evaluated at Θ̂k. Jankova and van de Geer [2015] proposed the de-
biased graphical Lasso estimator to correct the bias, which for our setting can
be constructed using the k-th sub-sample as

Θ̂d
k � 2Θ̂k � Θ̂kΣ̂kΘ̂k. (2)

This de-biased estimator has the appealing property that each entry of the
matrix is asymptotically normal and one can easily construct confidence
intervals for the entries of Θ.

It has been shown in Jankova and van de Geer [2015] that for every pa, bq P
V � V,

?
nkpΘ̂d

ab,k �Θabq{σab � ?
nktΘWkΘuab{σab �?

nkRab,k{σab, (3)

where Θ̂d
ab,k and Rab,k are the pa, bq-th element of Θ̂d

k and a remainder term,

called Rk, respectively, and Wk � Σ̂k �Σ. Moreover, σ2
ab � ΘaaΘbb �Θ2

ab,
under the multivariate Gaussian distribution. Theorem 1 of Jankova and van de
Geer [2015] guarantees that under assumptions (A1) and (A2), with tun-
ing parameter λk � aplog pq{nk and under the sparsity condition d3{2 �
o
�?

nk{pC log pq� with

C � max

"
κΓ

α2
,
κ2
Γ

α9{8n
�1{4
k plog pq1{8, maxtκΣκΓ, κ

3
Σκ

2
Γu3{2

α3{2 pnk log pq�1{4
*
,

the random sequence
?
nktΘWkΘuab{σab converges weakly to N p0, 1q, where

κΣ :� ~Σ~8, κΓ :� ~�ΓS1S1

��1~8 and α is defined in (A1). Moreover, the
elementwise ℓ8 norm of Rk is of order

∥Rk∥8 � Op

�
1

α2
κΓ max

 
d3{2plog pq{nk,

1

α
κΓd

2pplog pq{nkq3{2
(


, (4)

and by letting 1{α � Op1q, κΣ � Op1q, κΓ � Op1q, under the mentioned
sparsity condition, Rab,k is opp1{?nkq. Furthermore, it follows that the con-

vergence rate of the de-biased estimator Θ̂d
k is of order

∥Θ̂d
k �Θ∥8 � Op

�
max

 
d
a
plog pq{nk, 1{α2κΓd

3{2plog pq{nk,

1{α3κ2
Γd

2pplog pq{nkq3{2
(


, (5)
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where under the above bounds on κΣ, κΓ and 1{α, it is simplified to

∥Θ̂d
k �Θ∥8 � Op

�
max

 
d
a
plog pq{nk, d

3{2plog pq{nk, d
2pplog pq{nkq3{2

(

.

(6)

A possible consistent estimator for σ2
ab based on the k-th sub-sample can

be also constructed using Lemma 2 of Jankova and van de Geer [2015] as
σ̂2
ab,k � Θ̂aa,kΘ̂bb,k � Θ̂2

ab,k. This estimator will be further used in Section

4, where we leverage the asymptotic distribution of each Θ̂d
k pk � 1, . . . ,Kq

from (3) to construct the aggregated estimator using K estimators from the
sub-samples.

4 Combined estimator across the sub-samples

The estimator in (2) is defined at the level of the k-th sub-sample and as such
one creates a sequence of estimators Θ̂d

k pk � 1, . . . ,Kq. One can envision

multiple ways to combine estimators Θ̂d
k and obtain a pooled, final estima-

tor. One simple, naive method consists in averaging over the sub-samples,
i.e., Θ̂I

naive � p1{Kq°K
k�1 Θ̂

d
k. However, this estimator tends to underperform

severely in unbalanced settings. A slightly more adapted naive estimator would
account for the unbalanced setting by weighting according to the sizes of the
samples on each machine, i.e., Θ̂II

naive �
°K

k�1pnk{nqΘ̂d
k. In practice, as Section

5 shows, this correction might not be enough to guarantee a good perfor-
mance, hence we introduce here an aggregated estimator based on the pseudo
log-likelihood, which is better equipped for unbalanced distributed settings.

Consider f̂ab,kp� | Θab, σ̂ab,kq as the asymptotic normal density of Θ̂d
ab,k

obtained from (3) by substituting the consistent estimator σ̂ab,k for σab. By
similar techniques as Tang et al. [2020] for generalized linear models, we pro-
pose to obtain a combined estimator by maximizing the pseudo log-likelihood
function obtained from the asymptotic densities as

∆̂ab � argmax
Θab

"
log

� K¹
k�1

f̂ab,kp� | Θab, σ̂ab,kq
�*

. (7)

Whenever this estimator is derived, the general theory of maximum likelihood
estimation can be leveraged to produce valid standard statistical tests and
other useful results for statistical inference. By maximizing the pseudo log-
likelihood function (7) with respect to Θab, we obtain the final estimator as

∆̂ab � 1°K
k�1

nk

σ̂2
ab,k

�
Ķ

k�1

nk

σ̂2
ab,k

Θ̂d
ab,k. (8)
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This estimator behaves like a weighted average where the weights are a function
of sub-sample size nk and estimated variance σ̂2

ab,k, constructed as in Jankova
and van de Geer [2015], in each sub-sample. Using (3) and (8), it can be shown
that

gffe Ķ

k�1

nk

σ̂2
ab,k

�
∆̂ab �Θab



�Wab,: �Rab,:, (9)

where

Wab,: �
gffe °K

k�1 nk{σ2
ab°K

k�1 nk{σ̂2
ab,k

�
Ķ

k�1

nķ

l�1

σab?
nσ̂2

ab,k

pΘJ
a

9Xl,k
9XJ
l,kΘb �Θabq

and

Rab,: �
gffe °K

k�1 nk{σ2
ab°K

k�1 nk{σ̂2
ab,k

Ķ

k�1

nkσab?
nσ̂2

ab,k

Rab,k,

where Θa is the a-th column of Θ.
In the following, it is assumed that the precision matrix Θ satisfies the

irrepresentability condition (A1) with a constant α P p0, 1s, where 1{α � Op1q,
and the bounded eigenvalues (A2). The quantities κΣ, κΓ are also considered
bounded as κΣ � Op1q and κΓ � Op1q, respectively. Lemma 1 shows that
by considering an upper bound on K, the remainder term Rab,: is negligible.
Moreover, Theorem 1 states that the term Wab,: converges weakly to N p0, 1q
as K and n: � min1¤k¤K nk grow.

Lemma 1 Suppose that Θ̂k pk � 1, . . . ,Kq is the solution to the optimization prob-
lem (1) with tuning parameter λk �

a
plog pq{nk and ∆̂ab is the pooled estimator as

expressed in (8). Let nk{nÑ ck P p0, 1q as nk Ñ8 such that limKÑ8
°K

k�1 ck � 1.
Then it follows

|Rab,:| � Op
�
K{?nmaxtd3{2 log p, d2plog pq3{2{?n:u

�
, (10)

and under the sparsity condition d3{2 � op?n:{ log pq and K � O
�
n1{2�ϵ{pd log pq�,

ϵ P r1{6, 1{2q, it holds that |Rab,:| � opp1q.

Proof First note that using Lemma 2 of Jankova and van de Geer [2015], under the
multivariate Gaussian distribution, 1{σab � Op1q, and under 1{α � Op1q and κΓ �
Op1q, we get |σ̂2

ab,k �σ2
ab| � Opp

a
plog pq{nkq which is opp1q as nk grows faster than
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log p. Using the continuous map gpxq � 1{x for the consistent estimator σ̂2
ab,k, we get

σ2
ab{σ̂2

ab,k
pÝÑ 1 and since nk

n ÝÝÝÝÝÑ
nkÑ8 ck, then

nk
n � σ2

ab

σ̂2
ab,k

pÝÑ ck, as nk Ñ8. Using the

dominated convergence theorem and the assumption limKÑ8
°K

k�1 ck � 1, we get
°K

k�1
nk

σ̂2
ab,k°K

k�1
nk

σ2
ab

�
Ķ

k�1

" nk

σ̂2
ab,k°K

k�1
nk

σ2
ab

*
�

Ķ

k�1

"
nk

n
� σ2

ab

σ̂2
ab,k

*
pÝÑ 1, (11)

as K Ñ 8 and nk Ñ 8, k � 1, . . . ,K. Again, by considering the continuous map

gpxq � 1{?x, the sequence

c °K
k�1 nk{σ2

ab°K
k�1 nk{σ̂2

ab,k

converges in probability to 1 as K and

nk, k � 1, . . . ,K, grow. As such, due to the definition of Rab,:, it is enough to

show the bound (10) for the term
°K

k�1
nkσab?
nσ̂2

ab,k

Rab,k. Since the graphical Lasso

estimator Θ̂k is positive definite, there exists a positive constant Lk such that with
high probability σ̂2

ab,k � Θ̂aa,kΘ̂bb,k � Θ̂2
ab,k ¥ Λ2

minpΘ̂kq ¡ Lk, where ΛminpΘ̂kq
is the minimum eigenvalue of Θ̂k, and then 1{σ̂2

ab,k � Opp1q. Thus, using (4), with
high probability,

|
Ķ

k�1

nkσab?
nσ̂2

ab,k

Rab,k| ¤
Ķ

k�1

nk?
n
|Rab,k|

� 1?
n

Ķ

k�1

Op
�
maxtd3{2 log p, d2 plog pq

3{2
?
nk

u�

¤ K?
n
Op

�
maxtd3{2 log p, d2plog pq3{2{?n:u

�
,

and the claimed result in (10) follows. By considering K � O
�
n1{2�ϵ{pd log pq� and

the sparsity condition d3{2 � op?n:{ log pq, it can be shown that

|Rab,:| � op

�
max

 n
1{6
:

nϵplog pq1{3 ,
1

pn: log pq1{6nϵ

(

,

which concludes |Rab,:| � opp1q. □

Theorem 1 below proves the asymptotic unbiasedness and normality of
∆̂ab. As such, one can easily construct confidence intervals and statistical tests
based on it.

Theorem 1 Under the assumptions of Lemma 1, Wab,: in (9) converges weakly to
N p0, 1q.

Proof Define

ξab,: �
Ķ

k�1

nķ

l�1

σ2
ab

σ̂2
ab,k

� 1?
nσab

pΘJ
a

9Xl,k
9XJ
l,kΘb �Θabq.
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As

c °K
k�1 nk{σ2

ab°K
k�1 nk{σ̂2

ab,k

pÝÑ 1, using Slutsky’s theorem, it is enough to prove that ξab,:
converges in distribution to N p0, 1q. Defining

ξ
1

ab,: �
Ķ

k�1

nķ

l�1

1?
nσab

pΘJ
a

9Xl,k
9XJ
l,kΘb �Θabq,

we first show that |ξab,: � ξ
1

ab,:|
pÝÑ 0 as K Ñ 8 and nk Ñ 8, k � 1, . . . ,K, and

then convergence in distribution of ξ
1

ab,: results convergence in distribution of ξab,:.
Since 1{σ̂2

ab,k � Opp1q, with high probability,

|ξab,: � ξ
1

ab,:| �
∣∣∣∣ Ķ

k�1

 � σ2
ab

σ̂2
ab,k

� 1
�� 1?

nσab

nķ

l�1

pΘJ
a

9Xl,k
9XJ
l,kΘb �Θabq

(∣∣∣∣
¤ 1?

n

Ķ

k�1

"∣∣σ2
ab � σ̂2

ab,k

∣∣� ∣∣ 1

σab

nķ

l�1

pΘJ
a

9Xl,k
9XJ
l,kΘb �Θabq

∣∣*.(12)
Using the definition of Wk and since 1{σab � Op1q, we get∣∣ 1

σab

nķ

l�1

pΘJ
a

9Xl,k
9XJ
l,kΘb �Θabq

∣∣ � nk

σab

∣∣tΘWkΘuab
∣∣ ¤ nk∥ΘWkΘ∥8.

Under assumption (A2) and using Lemma 8 of Jankova and van de Geer [2015],
it holds that ∥ΘWkΘ∥8 � Oppd

a
plog pq{nkq. Moreover, by Lemma 2 of Jankova

and van de Geer [2015], |σ̂2
ab,k � σ2

ab| � Opp
a
plog pq{nkq. Substituting K �

O
�
n1{2�ϵ{pd log pq� and the mentioned bounds in (12), we get

|ξab,: � ξ
1

ab,:| � OppKdplog pq{?nq � Opp1{nϵq,
which is opp1q as n grows.

Then to show the asymptotic normal distribution of ξ
1

ab,:, we have

EpZab,l,k{p
?
nσabqq � 0, where Zab,l,k :� ΘJ

a
9Xl,k

9XJ
l,kΘb �Θab. Moreover,

lim
KÑ8

lim
nkÑ8

k�1,...,K

Ķ

k�1

nķ

l�1

EpZ2
ab,l,k{pnσ2

abqq � lim
KÑ8

lim
nkÑ8

k�1,...,K

Ķ

k�1

nk

n
� lim

KÑ8

Ķ

k�1

ck � 1,

where the first equality is deduced based on the definition of VarpZab,l,kq which

is equal to σ2
ab under the multivariate Gaussian distribution of 9Xl,k. Since nk{n

is bounded and limnkÑ8 nk{n � ck, using the dominated convergence theorem,
the second equality also follows. Since Zab,l,k are identical for l � 1, . . . , nk and
k � 1, . . . ,K, we can write

lim
KÑ8

lim
nkÑ8

k�1,...,K

Ķ

k�1

nķ

l�1

1

nσ2
ab

E
�
Z2
ab,l,kIp|Zab,l,k| ¡

?
nσabϵq

�

� lim
KÑ8

lim
nkÑ8

k�1,...,K

Ķ

k�1

nk

nσ2
ab

E
�
Z2
ab,1,1Ip|Zab,1,1| ¡

?
nσabϵq

�

�
�

lim
KÑ8

lim
nkÑ8

k�1,...,K

1

σ2
ab

E
�
Z2
ab,1,1Ip|Zab,1,1| ¡

?
nσabϵq

�
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�
�

lim
KÑ8

lim
nkÑ8

k�1,...,K

Ķ

k�1

nk

n



, (13)

where Ip�q is the indicator function. Under the sparsity condition

d3{2 � op?n:{ log pq, Jankova and van de Geer [2015] showed that

limnÑ8 1
σ2
ab

E
�
Z2
ab,1,1Ip|Zab,1,1| ¡

?
nσabϵq

� � 0. Due to the fact that n � °K
k�1 nk,

the first limit in (13) is zero and using the dominated convergence theorem, the sec-
ond limit is equal to 1. As such, the requirements of the Lindeberg-Feller condition

(see for example, Theorem 4.12 of Kallenberg [1997]) hold and ξ
1

ab,: converges in
distribution to N p0, 1q. □

Remark 1 Based on the asymptotic distribution of ∆̂ab from Theorem 1, one can
construct inferential procedures. Accordingly, the p1�αq100% asymptotic confidence
interval for Θab based on the distributed estimator ∆̂ab is constructed as CIab �
∆̂ab�Φ�1p1�α{2q{

b°K
k�1 nk{σ̂2

ab,k, where Φ
�1p1�α{2q is the p1�α{2q-th quantile

of the standard normal distribution. Moreover, the rejection region at level α for
the hypothesis test H0 : Θab � 0 (which indicates that there is no edge between
nodes corresponding to Xa and Xb) vs H1 : Θab � 0 can be constructed as |∆̂ab| ¡
Φ�1p1� α{2q{

b°K
k�1 nk{σ̂2

ab,k.

The coverage probabilities and the length of the confidence intervals are
investigated via a simulation study in Section 5. To compare the perfor-
mance of the proposed estimator with the naive estimators, we also derived
in Appendix A of the Supplementary materials similar expressions for the
asymptotic distribution of the two naive estimators.

Consider ∆̂ as the matrix form of the pooled final estimator with the
elements ∆̂ab, pa, bq P V � V, derived in (8). Theorem 2 and then Remark 2
provide the convergence rate of the distributed estimator ∆̂ with respect to
the elementwise ℓ8 and Frobenius norms.

Theorem 2 Under assumptions (A1) and (A2) with 1{α � Op1q, κΣ � Op1q, κΓ �
Op1q, the maximal distance of the distributed estimator ∆̂ from the true precision
matrix Θ is of order

∥∆̂�Θ∥8 � Op

�
max

 
d
b
plog pq{n:, d3{2plog pq{n:, d2pplog pq{n:q3{2

(

.

(14)

Moreover, under the sparsity condition d3{2 � op?n:{ log pq, the estimator ∆̂ is
consistent for Θ.

Proof Based on the definition of the elementwise ℓ8 norm and using (6), for every
pa, bq P V � V we have

|∆̂ab �Θab| ¤ 1°K
k�1

nk

σ̂2
ab,k

�
Ķ

k�1

nk

σ̂2
ab,k

|Θ̂d
ab,k �Θab|
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¤ 1°K
k�1

nk

σ̂2
ab,k

�
Ķ

k�1

nk

σ̂2
ab,k

Op

�
max

 
d
a
plog pq{nk, d

3{2plog pq{nk, d
2pplog pq{nkq3{2

(


¤ Op

�
max

 
d
b
plog pq{n:, d3{2plog pq{n:, d2pplog pq{n:q3{2

(

,

and assuming the sparsity condition d3{2 � op?n:{ log pq, the consistency of ∆̂
follows. □

Remark 2 Using the relation between the Frobenius and the elementwise ℓ8 norms,
under the sparsity condition d3{2 � op?nk{ log pq, we obtain

∥∆̂�Θ∥F � Op

�
pmax

 
d
b
plog pq{n:, d3{2plog pq{n:, d2pplog pq{n:q3{2

(

.

Remark 3 When the true precision matrix is block diagonal with M blocks, the
quantities κΣ and κΓ are tractable. Consider dm as the size of block Θm, m �
1, . . . ,M , and the maximum row degree of Θ as d :� maxm�1,...,M dm. Then due to
the relation between the matrix ℓ8 norm and the spectral norm, and the fact that
dm ¤ d,

κΣ � max
m�1,...,M

~pΘmq�1~8 ¤
?
d max
m�1,...,M

∥pΘmq�1∥2,

where ∥�∥2 is the spectral norm of a matrix defined as ∥A∥2 �
a
ΛmaxpAJAq for an

arbitrary real valued matrix A and ΛmaxpAJAq is the maximum eigenvalue of AJA.
Based on the fact that the eigenvalues of Σ are the inverses of the eigenvalues of Θ
and using assumption (A2), it is deduced that κΣ � Op

?
dq. The same argument

can be made for κΓ and it holds that κΓ � Opdq. Then, using (5), the convergence
rate of ∆̂ simplifies to

∥∆̂�Θ∥8 � Op

�
max

 
d
b
plog pq{n:, d5{2plog pq{n:, d4pplog pq{n:q3{2

(

, (15)

and considering the sparsity condition d5{2 � op?n:{ log pq, the consistency of ∆̂
follows.

Note that the convergence rate (15) is valid only for the entries of the
block diagonals in the case when the block structures are known. In practice
however, the block structures are unknown and as such, in the simulation part
of Section 5 corresponding to the block diagonal data generating process, the
errors and confidence intervals are computed for all elements of the matrix.

5 Simulation study

In this section, we illustrate the performance of the proposed distributed esti-
mator with a simulation study. To conduct the simulation, we set the total
sample size n � 50000 as fixed and changedK � 5, 10 and 20. To show the per-
formance of the distributed estimator in the unbalanced setting, we considered
the following data splitting procedure.
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Suppose that among all available machines, two of them are powerful.
The first one is the most powerful and p55 � Kq% of the dataset is dis-
tributed on this machine. The second one is less powerful than the first and
p60�Kq% of the remaining dataset is distributed on this one. The remaining
dataset is distributed roughly equally on the remaining machines. To com-
pare the performance of the distributed estimator, we considered the following
competitors:

1) (Full) A de-biased estimator based on the non-distributed, full data given
by the de-biased graphical Lasso (the estimator of Jankova and van de Geer
[2015]), denoted by Θ̂F .

2) (Naive I) An estimator based on splitting data and averaging directly the
de-biased graphical Lasso estimators from each machine i.e., Θ̂I

naive (see
Section 4).

3) (Naive II) An estimator based on splitting data and taking the weighted
average of the de-biased graphical Lasso estimators from each machine, i.e.,
Θ̂II

naive (see Section 4).
4) (Top1) The most powerful machine which took p55 �Kq% of the dataset.

Since estimation on each machine is consistent and asymptotically normal,
investigating the performance on the first machine which takes most of the
dataset is relevant.

5) (Thresholded I) The thresholded distributed estimator introduced by Arroyo
and Hou [2016], which is a sparse estimator built by thresholding de-biased
estimators. To obtain this estimator, a hard threshold ρ is applied on the
de-biased estimator (2) in the k-th sub-sample, such that for every pa, bq P
V � V, a � b,

Θ̂d,ρ
ab,k � Θ̂d

ab,kIp|Θ̂d
ab,k| ¡ ρσ̂ab,kq,

where Ip�q is the indicator function and σ̂2
ab,k � Θ̂aa,kΘ̂bb,k � Θ̂2

ab,k, the
constructed estimator of Jankova and van de Geer [2015] in the k-th sub-
sample. The final aggregated estimator of Arroyo and Hou [2016] is proposed

by taking a simple average over K machines, i.e., Θ̂D
ab � 1

K

°K
k�1 Θ̂

d,ρ
ab,k, and

then applying the final hard threshold τ on Θ̂D
ab for every pa, bq P V�V, a � b,

such that Θ̂D,τ
ab � Θ̂D

abIp|Θ̂D
ab| ¡ τ σ̂abq, where σ̂2

ab � 1
K

°K
k�1 σ̂

2
ab,k.

6) (Thresholded II) The thresholded estimator of Wang and Cui [2021], which is
proposed for Transelliptical graphical models. This estimator is constructed
by obtaining the nonparametric Kendall’s τ statistic as the correlation
matrix estimator in each sub-sample and then plugging it into the Lasso D-
trace optimization procedure (Zhang and Zou [2014]). By debiasing these
estimators in the sub-samples and then taking a simple average over all de-
biased estimators, the aggregated estimator is constructed. A hard threshold
is applied on this estimator to get the final aggregated sparse estimator.
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Fig. 1 Visual representation of three Θ matrices and their graph structures for p � 1000
nodes. From left to right: random, block diagonal with 10 blocks and tridiagonal.

A comparison with the full estimator reveals how much the performance
deteriorates due to splitting the data, while a comparison with the naive esti-
mators has the purpose to evaluate if indeed the proposed estimator is better
equipped to tackle unbalanced settings due to a more appropriate weighting.
A comparison with the Top1 estimator has the purpose to evaluate if the
remaining pK � 1q machines which account for p45�Kq% of the original data
are still able to produce informative estimators even though they receive low
amounts of data. For the data generating process, we fixed the number of vari-
ables (nodes) to p � 1000 and the samples are generated from a multivariate
normal distribution Npp0,Σq such that Θ � Σ�1 is graph structured and has
the following sparse structures:


 random with probability of connection 0.05;

 block diagonal with 10 blocks and 0.2 as the probability of connection in
each block;


 chain or tridiagonal with 1 on the diagonal and 0.2 on the upper and lower
diagonals.

The corresponding graph structures are shown in Fig. 1 for illustration. In
this study, the tuning parameter λk in the graphical Lasso algorithm has been
set to λk � λ � aplog pq{n for all simulation settings like in Jankova and
van de Geer [2015] except for the tridiagonal case. Due to the high sparsity
of the precision matrix in the tridiagonal structure, we increased slightly the
regularization parameter to λk � aplog pq{nk. Moreover, λk � aplog pq{nk

for the thresholded estimator of Wang and Cui [2021] was used to get com-
parable results with the other competitors. Alternatively, λk can be chosen
by K-fold cross validation in each sub-sample. The final threshold τ for the
estimator of Arroyo and Hou [2016] has been set to τ � aplog pq{n as they
proposed this value for the theoretical guarantees. Moreover, as they showed a
communication bandwidth of size B � p2�c, where 0   c ¤ 1 is a constant, is
enough to select the correct set of entries, we considered B � 10p and 50p. To
select the best threshold ρ, we considered 200 candidate values from the inter-
val p0.001, 0.25q and we chose the value of ρ for which the absolute difference
between the number of active components estimated and the bandwidth B is
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minimum. Furthermore, the hard threshold of Wang and Cui [2021] has been
set to 5

aplog pq{n to ensure comparable results with the other estimators. All
simulation results are calculated as averages over R � 500 different repetitions.

To compare the performance of the estimators, we used the Frobenius norm,
elementwise and matrix ℓ8 norms between the estimated precision matrix for
each competitor and the true precision matrix. The results are presented in
Table 1 for the Frobenius norm via the simulation setting explained above
and it is observed that the performance of the proposed estimator is similar
to that of the non-distributed, full estimator in terms of Frobenius norm. The
results for the two other norms lead to similar conclusions and are presented
in Appendix B of the Supplementary materials. The proposed norm is com-
puted for the active set S, which corresponds to the edges of graph, and the
non-active set Sc, separately. By increasing K from 5 to 20, the norm of the
distributed estimator does not increase much and the differences are negligible.
This suggests that by splitting observations in combination with the proposed
aggregation, one might not lose much information. On the other hand, for the
Naive I estimator, by increasing K the norm increases substantially, which
suggests that it is highly sensitive to K, as opposed to the distributed esti-
mator we propose. The Naive II estimator is better performing than Naive I.
However, its performance is not as satisfactory as that of the distributed esti-
mator and it gets far from the full estimator with increasing K. As observed
from Table 1, the Frobenius norm of Top1 is much larger than that of the cen-
tralized full estimator. Moreover, it provides a worse performance compared
to the proposed estimator. As such, by considering just the first machine with
the largest amount of data and disregarding the remaining machines one loses
more information as this strategy does not provide an accurate estimate. The
results of the Thresholded II and the Thresholded I with bandwidth B � 50p
are also reported in this table. The Frobenius norm of these estimators on the
active set increases considerably with increasing K. However, since these esti-
mators are sparse, their errors on the non-active set are much smaller than
those of the (non-sparse) proposed estimators. Moreover, it seems that the
Thresholded I works better than the Thresholded II on the non-active set in
random and block diagonal structures, especially with the smaller final thresh-
old that we considered. However, the results for this estimator are dependent
on the bandwidth to be used. The results with B � 10p were much worse than
the reported ones and they are not mentioned in the table. This behavior holds
on both the active and the non-active sets for all three structures of Θ and
points to the importance of accurately choosing the extra tuning parameters
for this competitor.

In addition to error norms, comparing the asymptotic distribution and
inferential properties of the proposed estimator with those of the competitors
is of interest. To this end, histograms of the normalized full and distributed
estimators are reported in Fig. 2 for the random structure. The light gray
histograms correspond to the normalized full estimator and the dark ones cor-
respond to the proposed estimator. The normalized form of the full estimator
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Table 1 Average and standard deviation (between parentheses) of the Frobenius norm
over 500 repetitions on the active and non-active sets, for the proposed estimator and six
competitors when n � 50000 and p � 1000. Three different graph structures are considered.

Active set Non-active set
K K

1 5 10 20 1 5 10 20
Full 1.83 6.14

(.01) (.01)
Distributed 1.85 1.77 2.05 6.19 6.40 6.86

(.01) (.01) (.01) (.01) (.01) (.01)

R
a
n
d
o
m Top1 2.43 2.55 2.86 8.67 9.14 10.37

(.01) (.01) (.01) (.01) (.01) (.02)
Naive I 2.40 3.34 5.67 8.55 11.03 12.25

(.01) (.02) (.02) (.01) (.02) (.01)
Naive II 1.85 1.78 2.47 6.19 6.46 7.19

(.01) (.01) (.01) (.01) (.01) (.01)
Thresholded I 3.48 5.50 6.39 0.20 0.58 0.31

(.03) (.04) (.03) (.02) (.02) (.02)
Thresholded II 3.18 4.65 5.84 0.10 1.22 3.90

(.01) (.02) (.02) (.05) (.04) (.04)

Full 1.37 6.11
(.01) (.01)

Distributed 1.34 1.26 1.84 6.16 6.37 6.82
(.01) (.01) (.01) (.01) (.01) (.01)

B
lo
ck

d
ia
g
. Top1 1.71 1.77 1.95 8.63 9.10 10.32

(.02) (.02) (.02) (.01) (.01) (.02)
Naive I 1.62 2.89 6.14 8.51 10.99 12.20

(.01) (.02) (.02) (.01) (.01) (.01)
Naive II 1.34 1.30 2.50 6.17 6.43 7.16

(.01) (.01) (.01) (.01) (.01) (.01)
Thresholded I 1.62 2.90 5.82 0.95 1.01 0.67

(.01) (.02) (.02) (.02) (.02) (.03)
Thresholded II 3.41 5.29 6.83 0.52 2.48 5.02

(.02) (.02) (.02) (.04) (.03) (.02)

Full 0.21 5.07
(.00) (.01)

Distributed 0.22 0.21 0.21 4.85 4.73 4.54
(.01) (.01) (.01) (.01) (.01) (.01)

T
ri
d
ia
g
. Top1 0.30 0.31 0.36 7.04 7.40 8.32

(.01) (.01) (.01) (.01) (.01) (.01)
Naive I 0.29 0.31 0.33 6.21 6.63 5.92

(.01) (.01) (.01) (.01) (.01) (.01)
Naive II 0.22 0.21 0.21 4.86 4.76 4.60

(.01) (.01) (.01) (.01) (.01) (.01)
Thresholded I 0.29 0.31 0.33 1.21 1.07 0.50

(.01) (.01) (.01) (.01) (.01) (.01)
Thresholded II 0.82 0.82 0.80 0.00 0.00 0.00

(.01) (.01) (.01) (.00) (.00) (.00)

is obtained using the technique proposed in Jankova and van de Geer [2015] as?
n
�
Θ̂F

ab �Θab

�{σ̂ab, where Θ̂F
ab is the pa, bq-th element of Θ̂F , while the nor-

malized distributed estimator is obtained as
b°K

k�1 nk{σ̂2
ab,k

�
∆̂ab�Θab

�
. As

an illustrative example, the figures are reported for pa, bq � p1, 3q and p1, 10q
although similar conclusions hold also for other couples pa, bq P V � V. We
conclude that both distributions are close to the reference N p0, 1q.

The coverage probability and the lengths of the confidence intervals are
also obtained for the proposed estimator and competitors at significance level
α � .05 except for the thresholded estimators which are not asymptotically
normally distributed. To this end, we estimated the coverage probability of the



Springer Nature 2021 LATEX template

Distributed analysis 17

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K=5

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K=10

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K=20

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K=5

D
en

si
ty

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

K=10

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K=20

Fig. 2 Histograms of normalized full and distributed estimators corresponding to pair
pa, bq � p1, 3q on the top row and pa, bq � p1, 10q on the bottom row for random graph
structure when n � 50000, p � 1000 and the number of machines is K � 5, 10 or 20.

confidence intervals by computing their empirical version. The empirical prob-
ability that the true value Θab is included in the confidence interval is defined

as P̂ab � #tΘabPCIab,ru
R , where R is the number of simulation repetitions, CIab,r

is the confidence interval for Θab at the r-th repetition, and # denotes the
number of times that Θab belongs to the confidence interval. After obtaining
P̂ab for all pa, bq P V � V, the average coverage probability on the active set S

was obtained as Avg.CovS � 1
s

°
pa,bqPS P̂ab, where s is the number of active

components. Similar computations have been implemented for obtaining the
estimated coverage probability over the non-active set Sc.

The obtained results are reported in Table 2 for the random and block
diagonal structures. The results of tridiagonal were close to the random one
and they are reported in Appendix B of the Supplementary materials, due to
the space constraints. The proposed estimator performs similarly to the non-
distributed one on both the active and the non-active sets, as the coverage
probabilities are close to the nominal level of 95%. Moreover, the average
lengths are relatively low and are stable with increasing K. The coverage
probability of Top1 is also close to the nominal level, but its length is slightly
larger than the length of the full and of the distributed estimator. The coverage
probability of Naive I on the active set is low and it gets worse with increasing
K. Moreover, the length of its confidence interval gets larger with increasing
K. The performance of Naive II is generally better than that of Naive I, but
it is still worse than the performance of the distributed estimator.

Another quantity which is important to keep track of, is the running time.
In this paper, the running time is defined as the sum of the maximum time
among all parallel jobs and the time to combine the results. These results
are shown in Fig. 3 for the three graph structures. The symbols for the case
K � 1 represent the full estimator for different sample sizes ranging from
n � 50000 to 200000 and the remaining symbols represent the distributed
estimator for different sample sizes and K � 5, 10, 20. For any fixed sample
size, the computation time of the distributed estimator is less than the full one
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and as expected it decreases with increasing K. This behavior is the same for
all three graph structures and shows the efficiency of the proposed estimator
in terms of computation time.

Table 2 Average coverage probability and average length of the confidence interval over
500 repetitions for the proposed estimator and competitors when n � 50000 and p � 1000
for random and block diagonal graphs.

Avg.Cov Avg.Len

K K
1 5 10 20 1 5 10 20

A
ct
iv
e
se
t Full .92 .03

Distributed .91 .93 .90 .03 .03 .03
Top1 .93 .93 .94 .04 .04 .05

R
a
n
d
o
m

Naive I .93 .89 .62 .04 .05 .05
Naive II .92 .95 .88 .03 .03 .03

N
o
n
-a
ct
iv
e

se
t

Full .97 .03
Distributed .97 .97 .97 .03 .03 .03

Top1 .97 .97 .97 .04 .04 .05
Naive I .97 .96 .95 .04 .05 .05
Naive II .97 .98 .98 .03 .03 .03

A
ct
iv
e
se
t Full .85 .03

Distributed .86 .89 .72 .03 .03 .03
Top1 .90 .90 .91 .04 .04 .05

B
lo
ck

d
ia
g
.

Naive I .91 .72 .24 .04 .05 .05
Naive II .87 .90 .60 .03 .03 .03

N
o
n
-a
ct
iv
e

se
t

Full .97 .03
Distributed .97 .97 .96 .03 .03 .03

Top1 .97 .97 .97 .04 .04 .04
Naive I .96 .96 .95 .04 .04 .05
Naive II .97 .97 .98 .03 .03 .03

6 Real data example

To explore the performance of our proposed estimator on real data, we used
the publicly available “4 university web-pages” dataset which was collected in
January 1997 by the World Wide Knowledge Base project of the CMU text
learning group. The original dataset had been pre-processed by standard text
mining methods and it is available in Cardoso-Cachopo [2007]. This dataset
contains web-pages collected from computer science departments of four US
universities Cornell, Texas, Washington and Wisconsin for seven categories:
student, faculty, staff, department, course, project and other. The “other”
category is a collection of web-pages that were not considered in the six main
categories. In this study, we considered the four largest categories which are
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Fig. 3 Running time in seconds for the full and proposed estimator for the random graph
structure, when p � 1000. The regularization parameter for the distributed estimator is
considered as λk �

a
plog pq{nk.

Table 3 Significant and common edges between four competitors and the estimator using
the full dataset. For all methods a Bonferroni correction is applied.

Significant edges Common edges
with Full

K K
1 3 4 5 3 4 5

Full 1072
Distributed 855 835 818 811 789 751

Top1 569 561 569 482 477 478
Naive I 720 547 418 646 478 360
Naive II 821 671 515 783 657 512

student, faculty, course and project containing 1641, 1124, 930 and 504 web-
pages, respectively. To calculate the term-document matrix X, we used the
log-entropy weighting method of Dumais [1991] which was also implemented
in Guo et al. [2011]. The final dataset contains n � 4199 web-pages as the
observations and 7686 distinct terms as variables. We considered p � 500 terms
with the highest log-entropy weights for the analysis.

We compared next Top1, Naive I and II, the proposed distributed esti-
mator with K � 3, 4, 5 and the de-biased full estimator. The splitting
setting is considered the same as for the simulation study. For all proce-
dures λ � aplog pq{n, α � 5% and a Bonferroni correction is applied for
multiple testing. The rejection region for the naive estimators is provided in
Appendix A of the Supplementary materials and for the non-distributed esti-
mator (that uses the full data) of Jankova and van de Geer [2015] it is defined
as |Θ̂F

ab| ¡ Φ�1p1 � α
ppp�1q qσ̂ab{

?
n with Bonferroni correction. The obtained

results are presented in Table 3. Relative to the competitors, there are more
common edges between the graphs estimated by the distributed estimator and
the full one, while the least similar competitor is Naive I. By increasing K,
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Fig. 4 The first 10 terms with the highest node degrees, identified by different estimators.

the number of common edges tends to decrease for all competitors (except for
Top1) due to the loss of information by splitting data on more machines.

The first ten terms with the highest node degrees based on the considered
estimators are presented in Fig. 4. The term “course” is identified as the term
with the highest node degree by all estimators except Top1 and Naive I when
K � 5. Moreover, some terms like “parallel” and “faculty”” are common
among all estimators. Additionally, the sparse graphical Lasso estimator is
considered as a competitor and with this method we identified 18228 edges
suggesting that many estimated edges might in fact be false positive edges.

Afterwards, to investigate the performance of the estimators for completely
independent variables, we permuted randomly sample data for each variable,
thus breaking up the correlation structure in order to construct a dataset
with mutually independent variables. As such, all the off-diagonal elements of
the precision matrix should be estimated as zero. By implementing separately
the de-biased estimator using the full data, the Top1, the Naive II and the
distributed estimator with K � 3, 4, 5 machines on this randomly permuted
dataset, we identified zero significant edges which confirms this assertion.
However, by implementing the sparse graphical Lasso estimator on this inde-
pendent dataset we identified 1647 edges which confirms the large amount of
false positive edges that are identified by this procedure. Also, Naive I identi-
fied wrongly between 2 and 19 false positive edges, which confirms the weak
performance of this estimator.

7 Conclusion

In this paper, we proposed a new distributed estimator of the precision matrix
in the Gaussian graphical models framework. The estimator is constructed
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to tackle an unbalanced split of the sample data as input. To improve mis-
aligned selection of non-zero estimated entries on different sub-samples, a
bias correction was performed in each sub-sample. Finally, all estimators
were pooled together into a composite estimator using a pseudo log-likelihood
function. Then, statistical guarantees for the distributed estimator were pro-
vided. Its tractable limit distribution was derived and it was shown that
under the sparsity condition d3{2 � op?n:{ log pq and the upper bound

K � Opn1{2�ϵ{pd log pqq, ϵ P r1{6, 1{2q, for the number of machines, it follows
an asymptotic normal distribution. Moreover, the convergence rate of this con-
sistent estimator was provided. The finite sample performance of the proposed
estimator was evaluated with a simulation study where it was observed that
the estimator produced competitive results relative to a non-distributed esti-
mator that uses the entire data. Since we perform estimation by distributing
the computational load across multiple machines, not surprisingly the compu-
tational time comparison favors our novel estimator. Moreover, this estimator
performed substantially better than the naive, average-based estimators in
terms of accuracy. It was also observed that the coverage probability of the dis-
tributed estimator is close to that of the non-distributed estimator. This points
to the fact that in practice, performing distributed estimation across multiple
machines in our unbalanced framework induces a minimal loss in performance
relative to models using all the data in a centralized location.
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