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Abstract

This paper studies the problem of partial hedging within the framework of rough volatility models
in an incomplete market setting. We employ a stochastic control problem formulation to minimize the
discrepancy between a stochastic target and the terminal value of a hedging portfolio. As rough volatility
models are neither Markovian nor semi-martingale, stochastic control problems associated to rough models
are quite complex to solve. Therefore, we propose a multifactor approximation of the rough volatility
model and introduce the associated Markov stochastic control problem. We establish the convergence of
the optimal solution for the Markov partial hedging problem to the optimal solution of the original problem
as the number of factors tends to infinity. Furthermore, the optimal solution of the Markov problem can
be derived solving a Hamilton-Jacobi-Bellman (HJB) equation and more precisely a nonlinear partial
differential equation (PDE). Due to the inherent complexity of this nonlinear PDE, an explicit formula
for the optimal solution is generally unattainable. By introducing the dual solution of the Markov problem
and expressing the primal solution as a function of the dual solution, we derive approximate solutions to
the Markov problem using a dual control method. This method enables for sub-optimal choices of dual
control to deduce lower and upper bounds on the optimal solution as well as sub-optimal hedging ratios.
In particular, explicit formulas for partial hedging strategies in rough Heston model are derived.

KEYWORDS: Partial hedging, rough volatility, rough Heston, stochastic control, Hamilton-Jacobi-Bellman,
Markov approximation, dual control method.

1 Introduction

Rough volatility models have gained significant popularity in quantitative finance since the pioneering work of
Gatheral et al. [22]. These models incorporate long-range dependence, capturing important empirical stylized
facts such as volatility clustering and roughness, which are often neglected in classical volatility models. In
option pricing, rough volatility models generate implied volatility surfaces that are consistent with observed
volatility surfaces, as shown in subsequent papers [7, 14, 20, 22, 28]. With only few parameters, they can
effectively capture implied volatility smile as well as at-the-money skew overcoming stochastic volatility
models that produce inconsistent volatility surfaces. In addition, we observe that the interest in rough
processes extends to other domains such as insurance, whether in terms of their impact on pricing and
insurance portfolios [11, 12] or on claims modelling [26].

In this paper, we investigate the problem of hedging in rough volatility models. While previous research
[13, 21] have explored this matter in the context of complete market, where the volatility risk can be hedged
either by trading forward variance curve or variance swap, our paper takes a different approach. We relax
the complete market assumption and focus on an incomplete market, considering only underlying assets as
hedging instruments. Since the market is incomplete, a perfect hedging strategy cannot be implemented,
this is why we are interested in partial hedging strategies. Partial hedging strategies introduced by Follmer
and Leukert [15, 16], are powerful techniques for minimizing hedging losses at a fixed cost lower than the
super-replication price. Their results have next been applied to various markets and various risk processes,
we can mention among others [9, 10, 23, 29, 30, 33]. Notably, [29] extend the theory of partial hedging to
stochastic volatility environment by formulating the problem as a stochastic control problem. However, the
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problem of partial hedging in rough volatility models has not yet been investigated, so this article aims to
fill this gap.

To this end, we introduce a stochastic control problem under rough volatility models. While the literature
has studied stochastic control problems in rough volatility models primarily focusing on portfolio optimization,
see [3, 4, 6, 18, 19, 24, 32], problems involving hedging or stochastic targets have received less attention.
The non-Markovian nature of rough volatility processes poses significant challenges in solving these control
problems. In portfolio optimization problem, [4, 18, 19] propose first order approximate solutions by relying
on martingale distortion transformation of the value function while [6, 32] employ a Markov approximation
of the rough volatility models. It is the latter technique that is developed in this paper to solve the control
problem. Relying on several papers [1, 2, 5, 8, 26], we introduce a Markov multifactor approximation of
rough volatility models based on the representation of the kernel function in terms of a Laplace transform.
Then, we consider the Markov control problem associated with the approximate volatility model and show,
with the help of convergence results stated in [2], that instead of solving the initial non-Markovian problem,
we can solve the Markovian problem with negligible error.

The introduced Markov stochastic control problem is similar to a stochastic control problem associated
to a partial hedging problem in multivariate stochastic volatility. Previous studies [17, 29, 31] have shown
that the optimal value function for such problems satisfies a nonlinear partial differential equation that
cannot be completely linearized, even by switching to the dual formulation of the problem. There are mainly
two techniques developed in the literature to overcome this nonlinearity issue. [17, 29] consider fast-mean
reverting volatility models to propose asymptotic solutions while [31] consider a dual control method to
provide approximate solutions of the optimal solution. In this paper, we adopt a similar approach to the dual
control method introduced by [31] to propose approximate solutions of the Markov problem for sub-optimal
choices of dual control. Our approach has several advantages: it works with general classes of volatility
models, gives lower and upper bounds to the optimal solution and allows to deduce convergence results
toward the optimal solution.

The paper is outlined as follows. First, in Section 2, the mathematical framework is presented. We
introduce the class of rough volatility models studied and we formulate the partial hedging problem. Next,
in Sections 3 and 4, we discuss the multifactor approximation of the rough volatility model and introduce
the associated Markov stochastic control problem. Moreover, we demonstrate the convergence of the optimal
solution of the Markov problem to the optimal solution of the original problem. Then, in Section 5, we
solve the Markov problem by introducing the Hamilton-Jacobi-Bellman (HJB) equation and deduce that the
optimal solution satisfies a nonlinear PDE. Consequently, by expressing the primal solution in terms of the
dual solution, we derive approximate solutions using a dual control method. Notably, we provide explicit
formulas for sub-optimal partial hedging strategies in the rough Heston model. Finally, in Section 6, we
conclude the paper by presenting a numerical application that focuses on the partial hedging of linear and
vanilla options within the rough Heston model.

2 Statement of the problem

Consider a finite horizon T > 0 and a probability space (Q, F, (Ft)o<i<r,P) where P stands for the real
measure and the filtration (F;)o<i<7 denotes all information known over time. Assume an arbitrage-free
financial market in which we have a cash-account and a risky asset denoted respectively by (S7)o<t<7 and
(St)o<i<r. We suppose that those processes have the following dynamics

ds? =r SOt

and
dSt = utStdt + \/EStdWS (t)

where r is the risk-free interest rate, Wy is a standard brownian motion, p; :=r+ A, A € R and (v4)o<i<r
a rough volatility process. The rough volatility satisfies a stochastic Volterra equation of the form

vy = vy + /0 G(t — s)b(vs)ds + /0 G(t — s)o(vs)dW,(s) (1)

where v € Ry, b: R — R and ¢ : R — R are Lipschitz continuous, W, is a standard brownian motion such
that d < W, (t), Ws(t) >= pdt and G a kernel assumed to be completely monotone. The rough volatility



model (1) is a general model that incorporates well known rough models such for example the rough Heston
model introduced in [13] with volatility process given by

ut:uo—i—/o G(t—s) H(G—Vs)ds—i—/o G(t — 8) C/VsdW,(s).

In the following, we consider the fractional kernel defined by
(H=1/2

where H is the Hurst coeficient such that H € (0,1/2) in order to consider rough volatility models. Note
that using Corollary B.2. in [2], we can prove the existence of an unconstrained weak solution of the stochas-
tic differention equation (1) when o(.) is continuous with linear growth and the fractional kernel satisfies
(2). Moreover, the existence of a non-negative solution can be obtained by relying on Theorem B.4 in [2] if
a(0) =0.

In this financial market with rough volatility, we are concerned with the hedging of contingent claims of
maturity 7" > 0 of the form
HT = h(ST)>

with h(.) a continous function. El Euch and Rosenbaum [13] already tackle the question of hedging in rough
volatility environment. They prove that perfect hedging is possible in rough Heston model provided that the
forward variance curve can be taken as hedging instrument. However, this assumption is quite strong, which
is why we are interested in the question of hedging in a financial market with only underlying assets as hedging
instruments. As the market is incomplete, we already know that perfect hedging is not more possible, but
we can still stay on the safe size by super-hedging the contingent claims. However, super-hedging strategies
lead generally to super-hedging prices that are too high to be considered in practice. In the case where the
initial capital available is smaller than the super-hedging prices, we know that we are not hedged in 100%
of the cases. We can nevertheless define hedging strategies that aim at minimizing a loss arising from the
hedging operation. This type of hedging strategy is called partial hedging strategy and was introduced in
[15, 16]. It is this kind of strategy that we consider in the following. In this perspective, we consider a
self-financing hedging portfolio denoted by (V;)o<i<r and defined by investment in the assets available in
the market (cash-account and the risky asset). The amount invested at time ¢ € [0,77] in the risky asset is
denoted by &, and the portfolio evolves according to the following SDE

dVy = r (Vi — &Sp)dt + & dSy,
Vo = .

The hedging ratio process (&;)o<i<7 is admissible if (£;)o<;<7 is a progressively measurable process in regards

to F; such that E( fOT £2S2v,dt) < +oo. Similarly, we can also define the Profit and Loss (P&L) at maturity
T denoted by 7 and defined by
T = VT - HT.

Let R be the set of all progressively measurable processes (§;)o<i<r valued in R such that E(fOT £2S2udt) <
400, since we already mentionned that perfect hedging is not possible in our market, we have that

ﬂ(&t)OStST € R s.t.mr =0 a.s.

We thus consider the partial hedging problem and define in this sense an optimal hedging strategy satisfying
the following optimization problem

l(t,S, V7U) = glrel%E(L(h(ST)a VT)‘St =SVt =V, ‘/t = 1}>, (3)

where L(.) is a continuous proper convex loss function satisfying quadratic growth condition. As example of
loss function, we have the power loss function of the form

1
Lpou)er(x,y) = 5(50 - y)pv b= 2”7 n e NO7 (4)



but other types of loss functions can be considered such as exponential or shortfall losses. At this stage, the
main problem in solving the introduced stochastic control problem is that the rough volatility model (1) is
neither Markovian nor a semi-martingale. Thus, the principle of dynamic programming cannot be applied to
solve the stochastic control problem. To overcome this problem, and following the idea of [6], we will consider
a Markovian approximation of our initial problem and then solve the Markovian problem using the principle
of dynamic programming.

3 Markov approximation

The non-Markovian structure of the rough volatility prevents from directly solving the partial hedging problem
using classical stochastic control techniques. However, as shown in [6] in the case of portfolio optimization, the
problem can be solved with a small error by considering a Markov approximation of the volatility process.
As shown in several papers [2, 5, 8, 26, 27|, the starting point of the Markovian approximation is the
representation of the kernel G(¢) in terms of a Laplace transform such that

+oo
Glt) = /0 e~ \(da),

where \ is a measure on R,. In the case of fractional kernel, we have that
(H=1/2

D(H +1/2)

_ 1 /+Oo o—tr—H—=1/2 4,
I'H+1/2)T(1/2-H) J,

=Cy

+o00
:CH/ e—tacac—H—l/2dglj7
0

G(t) =

where for x > 0,
w(x) = Cra~ 1124y,

Then, we approximate the integral by a finite sum and consider the approximate kernel G defined by
Gt) =D _wie™ " = G(1), (5)
i=1

where (w;);=1,.. are the weights and (z;);=1,.., the mean reversion terms that should be appropriately
defined, we discuss later on the choice of these parameters. In this way, we can approximate the rough
volatility process by defining a new stochastic process denoted by (#;)o<i<7 satisfying for t € [0,T],

B = vo + /0 Gt — s)b(is)ds + /0 Gt — 5)o ()W, (s). (6)

The following proposition states that the stochastic Volterra equation (6) can reduced to a n—dimensional
stochastic differential equation.

Proposition 1. The solution of (6) is given by Uy = vo+Y ., w;v; where (V¢)o<i<T = ((Z/tl, vE, .., yg‘))
0<t<T
is solution of the n-dimensional SDE defined by

t t t

1/;' = —/ ;yiy;ds —|—/ b(Ds)ds —|—/ o(Us)dWy(s),i=1,..,n, (7
0 0 0

yé =0.

Proof. We refer the reader to the proof of Proposition 2.1. in [5]. O



Based on the approximate volatility process (6) and its Markov representation induced by SDEs (7),
we can define the Markovian approximation of the stochastic control problem introduced in (3). First,
we consider the approximate processes (S7")o<i<7 for which its SDE can either be written in terms of the
approximate volatility process (;)o<i<7 or in terms of its Markov representation. Thus, for ¢t € [0,T], the
dynamic of (S7')o<i<r is given by

ST = i SPdt + \/D,S[dWs (1), (8)
but also by

Vo + Z w;vi Sy dWs(t), 9)
i=1

dSP = ju,Srdt +

with iy =r+ Ay, =r+ A <1/0 + 3, wlutz) In the same way, denoting the approximate hedging process
by (&}")o<t<T, We define the associated hedging portfolio (V;*)o<i<r satisfying the following SDE

AVt =r(Vi" = &5y )dt + §dSy, (10)
VOn =,

where (£]')o<i<r is admissible if (£])o<i<r is a progressively measurable process in regards to F; such that
E( [y (€7)2(Sp)?04dt) < +oo. The approximate P&L is defined by

= V[ — Hfp, (11)
and as the market is incomplete,
E(f?)ogtﬁT € R, s.t. 71'?1 =0a.s.,

where R, the set of all progressively measurable processes (£')o<t<r with regards to F; valued in R such
that E(fOT(ff)Q(S{L)Qﬁtdt) < +4o00. Thus, we introduce the approximate partial hedging problem that can
be written either by considering the dependence on the approximate volatility process (©;)o<i<r or the
dependence on its Markovian representation. In fact, by considering the dynamic (8) of (S})o<i<r written
in terms of (#;)o<¢<T, we define the stochastic control problem

L (t,s,v,0) == ) in7f2 E(L(h(Sgi),Vfl)Sf =s,0=v, V= U). (12)
tne n

Considering now the dynamic (9) of (S}")o<t<r written in terms of (v¢)o<i<r, we have the Markovian
stochastic control problem

Ia(t, s,v,v) = ) in7f2 E(L(I"L(S%)7 VIISE = s,y =v, V' = v) (13)
FTERR
such that
ln(t7 87 V7 v) = ln(t7 8) V7 U)'

Thanks to the approximation of the volatility process (6) and its Markov representation, we obtain a Marko-
vian framework in which we solve the stochastic control problem (13) using the principle of dynamic pro-
gramming. Nevertheless, before solving the control problem, it is interesting to consider the question of
convergence of the approximate solution I, (.) toward I(.). Indeed, without proof of convergence, solving the
approximate problem would be pointless, this is why we dedicate a section to this issue.

4 Convergence results

In this section, we prove a convergence between the approximate solution I,(.) and I(.). The first step is
to prove the almost sure convergence of the approximate volatility process (24)o<i<r to (v¢)o<t<T, t0 prove
it we rely on [2]. First, under specific assumptions on the weights (w;);=1,., and mean reversion terms
(2:)i=1,... n, We can prove that G converges to G in L2.



Assumption 2. Suppose that the weights (w;);=1,..» and mean reversion terms (x;);=1,.., are given by

i 1 74
w; = / A(dzx), z; = — zAdz), i=1,..,n,
Ni—1 Wi sy

with (;)i=1,...» auxiliary mean reversion terms such that
O=no<z1 <m Sx2 <12 < ... < Ty <y

and as n goes to infinity

n N3
N, — +00, Z/ (z; — )% X(dx) — 0.

i=1 Y MNi—1

Remark. As shown in [2], Assumption 2 is satisfied if we consider auxiliary mean reversion terms (1;)i=1,....n

of the form ) )
n=s (\/10(1 - 2H)> il

=Xy 5 2H

Therefore, without loss of generality, we consider this form of auxiliary mean reversion terms in the numerical
results.

Proposition 3. (Proposition 3.3 in [2]) Suppose that for all n > 1, (w;)i=1,...n and (x;)i=1,.. n Satisfy
Assumption 2 and that G is defined by (5). Then G converges in L?[0,T] to G when n goes to infinity i.e.

|G — G|z — 0.
Proof. We refer to [2] for the proof. O

Based on this proposition, we now establish a convergence of the approximate volatility process vy toward
Vg.

Theorem 4. Assume that n > 1, (w;)i=1,....n and (x;)i=1,...n satisfy Assumption 2, G is defined by (5) and
that there exists positive constant 6 and C such that

h T—h
sup </ |G(s)|2ds +/ \é(h +5) — G(s)|2d5) < Ch%,
n>1 \ Jo 0

for any t,h >0 witht + h < T, then
V,\t a.s. Vt

as n goes to infinity.

Proof. The proof is an immediate consequence of Theorem 3.6. in [2] for one dimension. We just need to
check that

T
/ |G(s) — G(s)|?ds — 0, 7y — 1
0

as n goes to infinity. The first convergence is obtained by Proposition 3 since assumptions of this proposition
are fullfilled, we know that G converges in L2[0,7] to G, therefore, we have that

T
/ G(s) — C(s)[2ds — 0.
0
Similarly, the second convergence is direct since, by definition, we consider for all n > 1,
ﬁo = 1.

As the assumption of Theorem 3.6 in [2] are valid for one dimension, we can conclude that & is tight for the
uniform topology and any point v is solution of the Voltera equation (1) and thus

~ L
V¢ — V¢,

as n goes to infinity. Moreover, by the Skorokhod representation theorem, as convergence in law implies
almost sure convergence on a suitable probability space, we finally obtain that

~ a.s.
Vy — Vg,

as n goes to infinity. O



Now that we establish a convergence for the volatility process, we can go a step further and show that
the approximate processes (S}")o<i<r and (V;*)o<i<r converge almost surely respectively toward (S¢)o<i<r
and (‘/t)OStST-

Proposition 5. Assume that assumptions of Therorem 4 are fulfilled and consider the approximate processes
(SMo<i<r and (Vi*)o<i<r satisfying SDEs (8) and (10) such that ¥t € [0,T], & = &; a.s., then we have the
following convergence results

Sp 225 Sy,
ViP5 W,
as n goes to infinity.
Proof. The proof is provided in Appendix. O

With Proposition 5, we have shown that approximate processes converge to the rough volatility dependent
processes. Using these results, we are now able to show the convergence of the approximate solution to the
solution of the control problem under rough volatility. To do so, inspired by [6], we define (¢, s,v,v) and
18" (t,s,v,v) by

16(t,8,1,0) = Ey g0 (L(h(ST), VT(é)))
((h( ).V <>>|st—svt—vvt—v)
1 t5000) = BrL(SPL V(D)

= 5 (L. VREISE =500 =0V =)
such that
lt,s,v,v) = 51252 15(t, 5,v,0),
In(t, s, v,v) = §flg7f€n 15" (t,s,v,v).

We first consider a lemma before before stating the convergence result we wish to achieve.
Lemma 6. Assume that assumptions of Therorem 4 are fulfilled and fix admissible hedging strategies (§:)o<t<T,
(&M o<t<T such that ¥Vt € [0,T), & = & a.s., if the sequence <L(h(S§E),V{J)> is uniformly integrable,

n>1
then

15(t,s,v,0) = I5(t,s,v,0),
as n goes to infinity.

Proof. Using Proposition 5, since we assume that V¢t € [0,T], &' = & a.s., we have that
S22 S,
Vn a.s. V;t

as the loss function L(.) and h(.) are continous, we deduce that

L(h(S7), V1) == L(h(S1), V1),

and the uniform integrability of (L(h(S%)7 VT")> implies that

n>1

Eisow (L(h(S%), V{f)) — Bt svw <L(h(ST), VT)>.
Therefore, we have proved the statement

15 (t,s,v,0) = I5(t,5,v,0).



We are now able to consider the statement of desired convergence result.

Theorem 7. Let (£ *)o<i<T be the optimal hedging ratio associated to the n—approximate stochastic control
problem (18). ¥t € [0,T], for every e > 0, AN € N, such that ¥Vn > N,

|Z(t’ S’ V’ v) - lé’n *(t’ 57 I/’ ,U)| < 67

i.€.
) et _
ngrfool (t,s,v,v) =1(t, s,v,v).
Moreover
nEIqILloo In(t,s,v,v) = nEIJIrloo In(t,s,v,v) =1(t,s,v,0).

Proof. Let fix ¢ > 0 and t € [0,T]. Suppose that (' *)o<t<r is the optimal hedging ratio associated to the
n—approximate stochastic control problem (13), as Vn € N,

ln(t,S,V7’U) = ln(ta 87V7U)7

then we have that
In(t,s,v,0) =18 (t,s,v,0).

Using Lemma 6, we have that

. L g
nh_)n;o ln(t, s, v,v) = 7”1%11)100 5 (t,s,v,v)
= lim ¢ (t,s,v,0)
n—oo
or equivalently
lim <ln(t, S, U, v) — ZE"*(t, s, u,v)> =0. (14)
n—oo

Therefore by definition of the limit, 3N; € N, such that ¥n > Ny,
n * E
[ln(t,5,0,0) — 18" " (t,5,0,0)| < 7 (15)
Moreover, considering (¢, s, v,v) defined by

— . — . . 5”
l(t,S,I/, U) . nll)nc}o ln(t,S,V, U) nh~>nc}o 5,5"127%71 ln (t,S7I/’ U)a

thus 3N € N, such that Vn > No,
|L(t, s,v,0) = 1n(t, s,v,0)| <

| ™

Note that since
l(t,s,v,v) = inf lim E(L(h(S%),VT"NSt" =35, =v,V'= v),

£ER n—o0

we have that
l(t,s,v,v) > U(t,s,v,v).

By choosing N := max(N;, N2), we have that for n > N inequalities (15) and (16) are satisfied. In this case,
we have that

1t s,v,0) — 18" (t, s,0,0)] < |UE, s,v,0) — 18 (8, 8,0,0)]
< U(ta 877/71}) - ln(tasayvv” + |ln(t,8,l/,1}) - lEn*(taSJ/)'U)'

< <

o
[SI[L)

Therefore, AN € N such that Vn > N,

(t, s,v,0) — 18 (L, 5,0,0)] <&



or equivalently

. e _
nll)rfool (t,s,v,v) =1(t, s,v,v).

Moreover, using (14), we deduce that V¢t € [0, T],

: - . g
ngrfoo ln(t,s,v,v) = ngrfoo Ln(t, s, v,v) = ngrfool (t,s,v,v)
= I(t,s,v,v).
This completes the proof as we have proved the two stated convergence results. O

These convergence results are crucial for the following. On the one hand, it means that the optimal
hedging ratio (£ *)o<t<r associated to the n—approximate stochastic control problem (13) is e—optimal for
the original problem. One the other hand, we know that the solution of the approximate control problem
I,(.) converges toward the solution of the initial control problem [(.). Therefore, thanks to these results, we
know that instead of solving the original non-Markovian problem, we can solve the approximate Markovian
problem with an error that can be relatively small if n is large enough.

5 Solution of the approximate Markovian problem

We have just shown that we can solve the optimal problem with a small error by solving the Markovian
problem. In this section, we thus solve this problem using classical dynamic programming techniques and
more precisely the Hamilton-Jacobi-Bellman (HJB) equation. The Markovian problem is equivalent to solving
a partial hedging problem in a multidimensional stochastic volatility environment. The partial hedging
problem under stochastic (one dimensional) volatility model has already been investigated in the literature
by [29]. It follows that the problem requires solving a nonlinear partial differential equation and therefore
the solution cannot be reduced to an expectation by the Feynman-Kac theorem. In our multidimensional
volatility case, we will also observe that the control problem involves solving a nonlinear PDE making it quite
complex and not allowing to deduce an explicit form of the optimal solution. Inspired by [31], we propose a
dual control method to obtain approximate solutions of the problem.

Recall that we define the approximate partial hedging problem by a Markovian stochastic control problem
of the form:

ln(t,s,v,v) = gniga E(L(h(S%), VIISE = s,y = v, V] = v), (17)

where R,, the set of all progressively measurable processes (}")o<i<7r with regards to F; valued in R such

that E(fOT(S?)Z(Sf)ZI?tdt) < +o0. As the stochastic control problem (17) is Markovian, we can solve it
using the HJB equation. Assuming that [, (¢, s, v, v) is locally bounded on [0, T') x R?*" and the hamiltonian
associated to the problem (17) is finite and upper semicontinous on [0,7) x R*F" x R**" x Sy, classic
results from dynamic programming (see Theorem 7.4. in [35]) imply that 1,,(¢, s, v, v) is the viscosity solution
of the following HJB!:

— Ol — 5lnnefR {8sln s + ; Oy, ln ( — xv + b(l/)) 4 Ouly, <rv +(p—r)¢ s)

1 Lo 1 2.0 I 2/~ . 92
+§asszn s + §8vvln (") Ds® + 3 ZZ Ovviln 0% (D) + Osoln £ Us

i=1 j=1

+pz 8uisln \/ES U(ﬁ) + pz aywln fn \/58 U(ﬁ)} = 0,
=1 =1

(T, s,v,0) = L(h(s), v). (18)
Proposition 8. The primal optimal control (£ *)o<i<r is given by

e Dol (= ISP+ Dol (ST P, Dyl S 0 (1)

K N am)ln VAt(SZl)Q

1For the sake of clarity, we write I, instead of l,,(t, s,v,v) and ¥ instead of vg + Y 1 ; w;v;



with 0y = v+ >, wivi and the associated solution l,(.) solves a nonlinear PDE of the form

2
(avzn (ft = 7)8 4 Ospln 05> + p S| Opivln Vs U(ﬁ))

Ol + Lowln = 20p0ln D52

=0, (19)

with L, ., the generator associated to S™ and v.

Proof. To deduce the optimal control associated to the Markovian control problem, we solve the HJB equation
(18). The HJB equation has a solution if the infimum is different from —oo, it is the case if 9,0, > 0. In
this case, assuming that d,,0,, > 0, the infimum is obtained by the first order condition i.e. by cancelling the
derivative of the function with respect to £”. Therefore, the optimal £ denoted by ™ * is such that

Ol €08 + Oyl (1 — 1)5 + Ol 8% + pz Op,vln Vs o(P) =0,

i=1
we deduce that
. Ouly (1 —1)5 + Osply 052 + p 1| Oyivln Vs a(D)
& == Ouoln D52 '

Plugging the optimal control into the HJB equation and consider the generator L, ,, defined by

Loy =015+ 0y, ( —zv + b(ﬁ)) + 50 0s? + 5 SN 0h, @)+ p Y 0 Visa(D),
=1

i=1

i=1 j=1

the optimal solution satisfies the nonlinear PDE given by

2
(avzn (ft = 1)8 4+ Ospln D82 + p > Oyl \/Esa(ﬁ)>

atln + Ls,uln - 2am)ln ﬁSQ

=0.

O

The PDE satisfied by the optimal solution is nonlinear, therefore we cannot reduce [,, as an expectation
using Feynman-Kac theorem. The dual problem is a way to overcome this nonlinearity problem as it usually
allows to transform a nonlinear PDE into a linear one. In our problem, the dual transformation does not
allow to obtain a linear PDE. Nevertheless, we still consider the dual approach as it will allow to deduce
approximate solutions to our problem by applying a dual control method. To this end, we apply the Legendre-
Fenchel transform to the problem (17) and consider the concave dual [,,(.) of I,,(.) with respect to the variable
v as the opposite of the Legendre-Fenchel transform, such that

Io(t,s,v,z) == —sup{zv — l,,(t, s,v,v)},
:igf{ln(t, $,V,v) — 20}
We observe that as In(, 5,1, v) is convex in v then In(t, s,v, z) is concave in z. We also associate the terminal
value to the dual solution [,, given by
I(T,s,v,2) = L(h(s), 2).
Based on the PDE satisfied by the primal solution I, (¢, s, v, v), we deduce the PDE satisfied by lAn(t7 S,V, 2).

Proposition 9. The dual solution lAn(t7 s,V, z) satisfies the nonlinear PDE

- - ; I o, 224 7 N »
0 =0lp + Lsly — 2r0.1, + wz (b —71)*8°0.20, — 2 (i — 7) 8051,

n n

Oy ol 2 (i — 1Yo (9) — — o(D)?(1 — p? 1S, N 20
pgl (11 )()2azzln()( p)ZZI ; (20)

1
Vi

with the associated terminal value lAn(T7 $,V,2) = ﬁ(h(s), z). Moreover, the optimal primal control (' *)o<i<T
can be expressed in term of dual solution as, for t € [0,T],

nox Zt azzlAn (lat - T)Stn - 8szlAn VAt(SZl)Q - pz?:l 8uizin \/VTtSZL U(ﬁt) (21)
S .




Proof. The proof is provided in Appendix. O

Actually, the dual solution is the solution of a new stochastic control problem. To prove it, we introduce

the dual process (Z;)o<i<r controlled by the dual control process (v;)o<i<7 and defined, for t € [0,T7], by
the following SDE

dZy = —rZydt — (Mi/ITt )dWS( t) + 1dB,(1),

where B, is a standard brownian motion, independent from W, defined such that for ¢ € [0,T],
Wv(t) = pWs(t) +V1- sz'u(t)'

The dual control process (y¢)o<t<r is admissible if (y¢)o<i<r is a progressively measurable and square inte-
grable process in regards to F;. We now define the dual stochastic control problem. In addition, we show
that there is no duality gap as the primal solution can be written in terms of the dual solution.

Proposition 10. The dual solution in(t, s,V, z) is solution of a stochastic control problem such that

in(t,s,u,z) =sup Etsu» (ﬁ(h(S%), ZT)>,

Y+ €D

with D be the set of all progressively measurable and square integrable processes in regards to Fi valued in R.
Moreover the optimal dual control (] )o<i<T is given by

A~ - ayzin
—a(ut)\/1—p22617[. (22)
i=1 Yzzln
Proof. Assume that [%5(t, s, v, z) is defined by

55 (15,0, 2) = Sup Fram s (ﬁ(h(s%), ZT)). (23)

v:E€ED

We just have to prove that the HJB equation associated to lAffS matches the PDE (20). The HJB equation
associated to the control problem (23) is given by

o s . 1 . 0 —7r)2
0= 0% 4 L, 510 — 277,15 + sup {azzzfgé (zQ(“f) - 72)
~er 2 v

_azsif,)js ZL_T)\/%S + 6VzlAIT)Lm (pZ (ﬂ - ’I") \/17}8 + 1— p2,70- U )},
N 2% N )

1%5(T, s,v,z) = L(h(s), 2).

The supremum is different of +o0 if ('“)ZZlAﬁ’fs < 0. In this case, using the first order condition, the optimal dual

control (vf)o<i<7 is given by
* V11— p?o(V) Z?=1 &fizlziS
V= = :
aZZl'ZZS

Thus, the PDE satisfied by /% becomes

. . . 1 . — )2 o
0 =042 + Lo 1 — 2 razzfjs + 5azzzfjszzi(“ ﬁQT) — 0,05 2 (p - r)s

is —-Tr N ~ - - 7bis 1S
+ Zau Y ) = ) o) s — a2(0)(1 — p?) Z > 0,,:0540,, 15, (24)

We can observe that (24) is exactly the same PDE as (20) and as the two PDE’s have the same terminal
value, we can conclude that

In(t,s,v,2) = 1%5(t,s,v,2) = sup Eyep. <z(h(s;z),ZT)>.

v+ €D

11



In this case, the optimal dual control is given by

« _ _V 1- PQU(’)t) Z?:l 8Vizi77f

o 0.1,
O
Proposition 11. By choosing z(t, s,v) solution of
Al (t,s,v,2) +v =0, (25)
then .
Io(t, s,v,v) =1, (t, 8,1, 2) + 2v, (26)

with z = z(t, s,v,v) the value at time t of the dual process (Z;)o<t<T-

Proof. Consider 1%%(t, s, v,v) to be the dual of the dual solution and defined by

1% (t, 5,v,v) 1= sup {[n(t, s,v,z) + zv}.
z

Our goal is to prove that the dual of the dual is the primal. First, using the first order condition since

I.(t,s,v,z) is concave in z, we have that z(t, s, v, v) is solution of
8zin(t, s,v,2)+v=0, (27)

in this case (%" reduces to

1%5(t,5,v,0) = [n(t, s,v,z) + zv

with 2 satisfying (27). Now, we just have to prove that (%%(¢, s,v,v) = 1, (, s, v, v). The proof of this equality
is similar to the proof of Proposition 9 this is why we have decided not to go into detail but it is easy to show
that [%%(¢, s, v, v) satisfies the same PDE then the primal solution I, (, s,v,v) given by (19). Moreover, the
two PDEs have the same terminal value. In fact, we can rewrite the terminal value of 1% as

LY (h(s),v) = sup { inf (L(h(s), v) — zv) + zv}

= sup {zv —sup (ZU — L(h(s), U)) }

As sup, (zv — L(h(s),v) ] is the Legendre transform of L(h(s),v), L***(h(s),v) is the Legendre transform

of the Legendre transform of L(h(s),v). By the Theorem of Fenchel-Moreau, as L(.) is a proper continous
convex function, we obtain that

LY (h(s),v) = L(h(s),v).

Therefore, as 1, (t, s, v,v) and 1%°%(t, s, v, v) satisfy the same PDE with the same terminal value, we conclude
that 4
155 (t, s,v,0) = 1, (t, 5,v,0).

Thus we obtain that given z(¢, s, v, v) is solution of

azln(t, SV, Z) tv= 07

then

ln(t,s,v,0) = l,(t, s,v, 2) + 2v.

12



As the primal solution is a function of the dual solution, we can derive the primal solution in the case
where the dual solution admits a closed formula. However, in our case, we observe that by switching to the
dual problem, although the nonlinear term of the PDE is less important, the PDE (20) satisfied by the dual
solution [, remains nonlinear. Thus, as the nonlinearity problem persists, we are not able, in general, to
express the dual solution as an expectation. The partial hedging problem is still complicated to solve. There
is nevertheless a specific case for which a closed formula of the dual solution can be obtained. Indeed, if we
consider a linear payoff defined as

H™" = o + BSr, (28)

a power loss function and a rough Heston model then the solution of the dual problem is obtained by
closed formula. This particular case is a toy case since most of payoffs are generally not linear functions of
the underlyings. However, it will allow to quantify the errors made when considering sub-optimal hedging
strategies deduced by the dual control method and therefore to benchmark this dual control approach.

Lemma 12. Suppose a power loss of the form L(h,v) = %(h — )P with p=2n, n € Ny, then

- 1
L(h(s),z) = —=2z%— h(s) z,
q
with ¢ = %.
Proof. The proof is provided in Appendix. O

Proposition 13. Consider a linear payoff HY"™%" given by (28), a power loss of the form L(h(s),v) =
%(h(s) — )P, suppose that the volatility is modeled by a rough Heston model such that b(x) = k(0 — x) and

o(x) = ¢/ . Therefore,

. a LB
ln(t,s,v,2z) = —% exp (C’t + Z D;w’) — (e_T(T_t)a + BS?) z

i=1
where Cy and (Dy)i=1,..n are time-dependent functions solution of Riccati ODEs given respectively by

n

1
8tCt_rq_§Q(q_l VO_ZDZ( _VO _qu<VO>_2ZZDDJC2V0<1_(1_p)31>7

=1 j=1
Cr =0,
and fori=1,..n

n n

i i - j L ] q
0:D} =2;D} + w; »_ Di(k + qpAC) — §C2wi > > pipf (1 —(1- p2)ql>

j=1 j=1k=1
- Swiala—1) 42
D% =0.
Moreover, the primal solution is given by
ln(t,s,v,v) = —qu exp (C’t + iD;ﬁ) - <er(Tt)a + 5511) Zi+ Z, Vi,
i=1

with

T . [ 1 i
N ) R S )

i=1

and the associated optimal hedging ratio is such that

n * 1 —r(T— n n 1
= s (e T+ BST —V, ) <p (for — 1) — CVtZD>

13



Proof. The full proof is in Appendix. Here is a summary of the steps in the proof. Firstly, to obtain the
form of [,,(.), we just need to consider the following ansatz

. q LI
In(t,s,v,2) = _Z exp (Ct + ZD,?VZ) + (e_r(T_t)a + ﬁs) z,
q

i=1

and plug it into PDE (20). Then using the form of [,,(.) and the relation (26) between the primal and the
dual, we deduce the form of /,,(.). Finally, the form of the optimal heding ratio is deduced using the form
(21) of £ * and the closed form of the dual solution. O

Remark. Using the same assumptions as Proposition 13 but instead of the rough Heston model, consider the
classical Heston model, i.e. n =1, then Cy and D; admit closed formulas.

To approximate the solution of our problem for general payoffs, we rely on the expression of the primal
as a function of the dual. For that, define a set U C R such that U is a convex compact subset of R with
non-empty interior and denote U a set, of progressively measurable and square integrable processes valued in
U such that &/ C D. Using the relation between the primal and the dual solution, we deduce that

Lo(t, ,,v) = sup { Sup Fyons <ﬁ(h(5§3), ZT>> n }

2 Yt €D

> sup{ sup Ej - (i(h(sgi), ZT)> + zv}. (29)

z YeEU

Based on inequality (29) and inspired by the dual control method stated in [31], we will define lower and upper
bounds for the primal solution of the Markov partial hedging problem. For that, for every fixed admissible
dual control (v¢)o<i<T, we define

Y(t,s,v,2;7) == Et 502 (ﬁ( h(S%), Z1(7) )>, (30)
We derive now a theorem that states how to deduce upper and lower bounds for the primal solution.

Theorem 14. Let U C D be a set of admisible dual controls and define f;[(t, s,V,z) by

U .
L, (t,s,v,2) := sup Y(¢,s,v,2;7) < Iln(t s, v, 2).
YyeEU

Therefore, defining I (t,s,v,v) by

U
ll;f(t, $,V,0) := sup {ln (t,s,v,2) + zv},
z

we have that
H(t, s,v,0) < ly(t,s,v,0).

U
Moreover, suppose that [, (t,s,v,v) is twice continously differentiable, stricly concave and z(t,s,v,v) is the
solution of

U
0.1, (t,s,v,z)+v=0. (31)
We define the primal control by £4(t,s,v, z) such that
U . U n U N
77:{(t, 5, v, Z) _ z azzln (/J/ - T)S - aszén V;SQQ_ pZizl al/izln \/;3 U(”) : (32)
Us
with z = z(t,s,v,v) solution of (31) and we consider the associated self-financing porifolio denoted by

(Vtu)ogth. If we define
M(t,s,0,0) := Ft o0 (L(h(S;ﬁ), 1771!))

then the primal solution satisfies B
ln(t7 S? ll? U) S ln(t’ S’ V? v)'

Therefore, we obtain lower and upper bounds for the primal solution such that

lZ;L{(t,S,I/,’U) § ln(t,Sﬂ/,’U) S l—lr;,{(t7sauvv)'

14



Proof. The proof is almost direct. Fix a set of admissible dual controls & C D, as

(b, 5,0, 2) = Sup Eponr. (£< h(S3), Zo(7) >>,
vt €D
- Sup Y(t? s’ V’ Z; ’Y),
vt €D

we immediately obtain that

Moreover, we observe that

Spabl
3
—
=+
»
X
<
S~—"
+
N
<
—

The inequality of the upper bound is obvious since using the definition of the optimal solution,

ln (ta S, V, ’U) = Enig,,fzn Etﬁs”’”” (L(h(s%)7 V#))

t

S Et,s,u,v (L(h(s’?")v ’JZ:{)>
:E/L{(t,s,l/,’lf)-

Therefore, we prove
f;f(t,s,u,v) < ln(t,s,v,v) <Mt s,v,0).

O

Remark. The way we define the upper bound is different than in [31], we have made this choice in order
to prove a convergence result of the bounds toward the primal solution when considering large dual control
subsets U. Note also that the approximate hedging ratio £%(¢,s, v, z) defined by (32) has the same form as
the optimal hedging ratio &' * defined in (21) with the difference that we consider the subset of admissible
dual control U instead of D.

Theorem 14 is important since it allows to approximate the primal by different sub-optimal choices of
dual controls and thus, enables to easily deduce sub-optimal hedging strategies that can be computed relying
on Monte Carlo simulations. Note that there is a wide range of possible subset choices, but depending on
the choice of the subset U, the computation time of the bounds can be quite substantial. We refer to [31] for
the algorithm allowing to compute the bounds via a Monte Carlo approach. In this paper, we decide to only
focus on a particular dual control subset that allows to express explicit formulas for the lower bound and the
approximate hedging ratio. We discuss later the choice of the dual control subset.

Theorem 14 introduces a sub-optimal hedging strategy associated with the approximate hedging ratio &4 (¢, s, v, 2)
and the upper bound Zz;f(t, s,v,v) that can be implemented in practice and for which we can obtain a bound
on the error made by considering this strategy instead of the optimal since:

|l7,f(t,s,u,v) —lu(t, s,v,0)| < \F,f(t,s,u,v) —f;f(t,s,u,vﬂ

U
o CUL.

Note that C4; only depends on the set I and not necessary on n. In practice, by computing upper and
lower bounds, we can deduce an upper bound on the error between the dual control approximate solution
and the optimal solution of the Markov problem. Therefore, it enables to verify that the error is acceptable
and that the proposed dual control method is relevant. Moreover, we show that if we consider a set sequence
of admissible dual control (U;);en such that U; C U;1 and lim;, ;o U; = D then the approximate solution
of the Markov problem also converges to the primal solution.

15



Proposition 15. Consider a compact set sequence of admissible dual controls (U;);en such that U; C Uit

with lim; _,y oo U; = D and the associated sequence of functions (ln ()) twice continously differentiable
ieN

with second derivatives that converge uniformly in R, then Vt € [0,T], Vn € N,

lim \17;: (t,s,v,v) fﬂ?‘(t, s,v,v)| =0,
11— 400

_ Y
=001

i.e.
dim Mi(t,s,v,v) = 1,(t, s,v,0).
1—400
Proof. Consider a compact set sequence of admissible dual controls (U;);eny such that U; C U;+q and

U; ~
lim; , oo U; = D and fix n € N. First, we can show the convergence of [, (¢,s,v,v) toward ,(t, s,v,v).
In fact, as for i € N, U; C U;+1, we have that V¢ € [0,T],

U, U;
L (ts,v,2) <L) (s, v,2) <IP(L, s, v, 2),

and as (U;)i=1,....» is a sequence of compact set, the infimum fonction over f; is continous for ¢ € N. Thus
taking the limit of i — 400, we have that V¢ € [0, T],

. U; A
zl}inooén (ta 871}72) = ln(t,s,u,z).

In this case, we deduce the convergence of the lower bound of the primal solution toward the primal solution
since V¢ € [0, T,

) U;
lim fj{l (t,s,v,v) = lim (sup {Zn (t,s,v,2) + zv})
z

1—+o00 1—~+o00

Ui
= Sup{ lim l, (t,s,v,z2)+ zv}

2 1—+o00

= sup {ln(t, s, v, z) + zv}
=1,(t,s,v,v).

It remains to show the convergence of the upper bound to the primal solution. For this purpose, we need to
show that the approximate hedge ratio converges to the optimal hedge ratio. As the sequence of functions

(ln ()) is twice continously differentiable with second derivatives that converge uniformly in R, standard
€N

result in Analysis states that Vt € [0, 7],

U . U n Ui N
2 0.1, (it —71)s—0s.l, s — pZi=1 Oy, 21, Vis a(v)

lim &% (t,s,v,2) = lim

i—+o00 i—+o0 Us?
_z Ozl (1 —1)s — Dsuly 5% — P, Oy 2l Vs (D)
N 52
= f;;(t, SV, Z),

with z = z(¢t, s, v, v) solution of
U;
lim 0,1, (t,s,v,2z)+v =0.
1—> 00

:azin (t,s,v,2)

Using similar arguments as for the proof of Proposition 5 and Lemma 6, we deduce that almost surely
Vit = Vi
as i goes to infinity and then V¢t € [0, 7],

dim Hi(t,s,v,v) = 1,(t, s,v,0).
1—+00
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We therefore conclude that V¢ € [0, T,

lim (F;f’ (t,s,v,v) — f{ﬁ (t, s, 1/,7)))) =1n(t, s,v,v) — (L, s,v,0)

n—-+oo
=0.
That concludes the proof since we prove the stated proposition. O

The previous proposition shows that if we consider a large enough set of admissible dual controls, the
approximate solution converges to the primal solution of the Markov problem. In practice, we observe that
even if the set of admissible dual controls U is small, the error is small, which seems to show that the choice
of the dual control does not significantly impact the value of the primal solution.

Let’s go back to the original hedging problem under rough volatility, the initial control problem posed was
It,s,v,v) = £in%E(L(h(ST),VT)|St =s,v,=vV,= U),
t€

The proposed approximate solution [% (¢, s,v,v) is a two-fold approximate solution, on the one hand by the
Markov discretization of the volatility process and on the other hand by the sub-optimal choice of the dual
control. However, we can show that the error with respect to the optimal solution of the initial problem can
be small if n and U are large enough, this is the purpose of the following proposition.

Proposition 16. Consider a compact set sequence of admissible dual controls (U;)ien and the associated
sequence of functions <ln ()) satisfying assumptions of Proposition 15. ¥t € [0,T], Ve > 0, IN € N,
ieN
such that Vn > N, 3M € N such that Vi > M,
U(t, s,v,v) — I4i(t,s,v,0)| < e

and i
|U(t, s,v,v) — 15" (t,5,v,0)| < e.

It means that the approzimate hedging ratio {nui associated to l7,f (t,s,v,v) is e—optimal for the original
problem.

Proof. The proof is almost direct. Fix ¢ > 0 and t € [0,T], from Theorem 7, we know that 3N € N such
that Vn > N,

[1(t,s,v,v) — L, (t,s,v,0)| < %,

and .
I(t, s, v,0) — 15 (t, 5,v,0)| < 5

Moreover, from Proposition 15, we have that Vn € N, dM; € N such that Vi > M,
L (t, s,0,0) — IYi(t,s,v,0)| < %,

and since almost surely &% () — &,(t) as i — +oo, we deduce using a similar argument as in Lemma 6 that
Vt € [0,T], ¥n € N, 3M; € N such that Vi > Mo,

|15 (t, 5,0, v) — 16 (t,s,v,v)| < %
Therefore choosing M := max(M;, M), we know that Vn > N, IM € N such that Vi > M,

[1(t, s, v,v) — 17,{ (t,s,v,0)| =|l(t, s,v,v) = 1, (t, s,v,0) + 1, (L, s,v,0) — F{f (t,s,v,0)|

<|U(t, s, v,0) — L (t, s,0,0)| + |l (t, s,v,0) — i (t, s,v,0)]
<e,

and
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U U
|l(ta S, V,U) - l§n (ta S,V,U)| = |l(t, S, V7U) - lE"(t,s,y’U) + lEn(t’ S,I/,U) - lfn (tﬂ S,I/,U)|

U
<|i(t,s,v,0) = 15 (t, 5,0,0)| + |15 (t, 5, v,0) — 15" (t, 5,0,0)|

<e.
O

The result of Proposition 16 is of course a theoretical result. It is not necessarily satisfied if, for example,
we only consider a single set of dual control ¢/ and not a sequence of dual control set. Nevertheless, if n and
the dual control set U are large enough then the error with respect to the original problem should be quite
small. In practice, for a fixed set of dual control U, the error is controlled by the number of factors n and
the gap CY, between lower and upper bounds.

Appropriate choice of the dual control subset ¢/ C D

Now, we consider a particular subset of dual controls for which explicit formulas can be obtained. Thus for
the following, the dual control subset considered is defined as
U= {(%)ogth = <C X Zt X U(ﬁt)) , CE U Q R} g D. (33)

0<t<T

We notice that the chosen form of the dual controls belonging to U is similar to the form of the optimal
dual control (22). This particular subset (33) enables to interpret the sub-optimal hedging strategy as well
as obtain closed forms for the lower bound and the approximate hedging ratio. First, assuming this subset
of admissible dual control, we observe that

u
Lt s, v,v) = sup{ sup Y (t,s,v,z;7) + zv}

z Yt EU

= sup { max Y (¢, s,v,z;c) + zv} (34)
2 celU

= maxsup {Y(t, s,v,z;¢) + zv}. (35)
ce z

Defining, for c € U, [, (¢, s,v, z;¢) by

L,(t,s,v,v;c) :=sup {Y(t, s,v,z;¢) + zv},

z

we have that
élrf(ta SV, U) = én(t7 $,V,0; C*)
with

¢* :=argmax L, (t,s,v,v;c).
ceU

In this case, the sub-optimal hedging strategy V! is easily interpreted as a perfect hedging strategy of a
modified payoff. This is similar to the idea of [15, 16] who present partial hedging strategies as perfect
hedging of knock-out options.

Proposition 17. If we consider a subset of admissible dual control U of the form (33) then

v = B (0 (- 0z L. 20 ) ).
where (Q(¢))eer called “risk-neutral” measures are P—equivalent measures such that the processes have the
following dynamics

Sy =Sy + /0y S;aw (1),

v = ( — g+ b(n) + o (%) ( - TR awt)) )dt AW, i = 1. o,
147
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defined by 2%

dz, = Zt<(r+ (ﬂtﬁ: T)2+c%2(ﬁt)>dt (n—1)

Q(e) S c
N AW (t) + c o (i)dBX )(t))
where WSQ(C), W;Q(C) are standard brownian motions under Q(c) — measure with d < W;Q(C), Wf,@(c) >;=pdt
and Bg(c) is a standard brownian motion, independent from Wé@(c) defined such that for t € [0,T],

W (1) = pW I 1) + v/ T= 2B ),
In particular, for a power loss function of the form L(h(s),v)

1
sub-optimal hedging portfolio is given by

(h(s) — v)Pwith p =2n, n € Ny, the value

S e )]
with ¢ = p%'
Proof. From the Theorem 14, we know, using (31), that, at time ¢, z = 2* with z* solution of
v= —azf:(t, $,V,2),
Thus, by (34), we have that
Li(t,s,v,0) =Y(t,s,v,2% ¢ (%)) + 2",
with
*(2) = Y (¢ ic).
& (2) = angmax Y (85,1, 75)
But using (35), we also have that

Mt s,v,0) =Y (t,s,v,2%(c); ¢) + 2* (¢*)v
with z*(¢) solution of

v=-0,Y(t, s v,z;c),
we conclude by unicity that, at time ¢, 2 = 2* = 2*(¢*) and ¢*(2*) = ¢*. Therefore, we obtain, at time ¢, the
following relation

V¥ = —0.E 0. (ﬁ(h(s;a), ZT(C*))

Using the theorem of exchanging expectation and derivative, we have that

‘7tu = Et7s,u,z < - 8Zti’(h(s’§'“)7 ZT(C*>))

= Et’s’,j,z ( — 8ZTﬁ(h(S§E)7 ZT(C*)) X aZt ZT(C*)>

But as, for ¢ € [0, T], the dual control is given by v = ¢ X Z; X o (i), ¢ € U, we have that

= o) —r —(ﬂt_r) co(,
dZi(c) = Zy( )( dt N dWs(t) + co( t)dBv(t)>

and therefore, for 0 <t < T,

=2 5,
Since (W\/ZT), CU(ﬁt))

0<t<T

is a 2 dimensional vector of adapted and square integrable processes, using

Girsanov’s Theorem, we can define P—equivalent probability measures (Q(c)).cy with change of measure
<5~ |7, such that

AW (1) —aw (1) + L i/;{)
dBYO(t) =dB,(t) — ¢ o(i4)dt.

dt,
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Therefore, dynamics of processes under the Q(c)—measure are given by

Sy =Sy + /i Spdw O (1),

dvy = ( — xivy + b(ir) + o (i) ( - p(uiﬁ Dois pc 0@)) >dt + o (D) dWEO (1), i =1,...,n,
Ut

dZt:Zt<(—r+M + o (v ))dt U AT)dW (t) + c o(i)dBYe ())

vt Vi
where W;@(C), Wq(,@(c) are standard brownian motions under Q(c) — measure with d < W;@(C), W;@(C) >=pdt
BS*)(C) is a standard brownian motion, independent from Wé@(c) defined such that for ¢ € [0, T7,

W 1) = pWEO(1) + V1= B2 (1)

and

In this case we have that

VY = By = 02y L(W(SE), Zo(c")) az,zT<c*>)

0 — 0, L5, Ze(e)) x ) )

= BAL (0 LS. Zr(c)) ).

Moreover, if we consider a power loss, we know that

Zy(c")

L(h(S}), Zr(c")) = — — HyZr(c"),

we deduce that in this case, .
0z, L(W(SE), Zr(c™)) = =247 (¢") — H,
Therefore, we obtain that
V¥ = EX). <6T<Tt> (H;z + Z%_l(c*)> )
O

Still assuming that the subset of admissible dual controls I/ has the form (33), we next show that, for
the rough Heston model, the lower bond as well as the approximate hedging ratio associated to a power loss
function have explicit forms.

Proposition 18. Consider a power loss of the form L(h(s),v) = %(h(s) v)P, suppose that the volatility is

modeled by a rough Heston model such that b(z) = k(0 — x) and o(x) = (\/x. Moreover, assume that the
subset of admissible dual control is given by (83). Therefore Y (t,s,v,z;7) defined by (30) is such that

1 e)/ —r(T—
Y(t,s,v,z;¢) = —gzqexp (Cy(c —|—2:DZ EQ()( rT=tgny -,

t,s,v

where Cy(c) and (Dy(c))i=1,...n are time-dependent functions, solutions of Riccati ODEs given respectively by

BiCile) =1 q - % ala—1) (42 + Ao —ZDz(fc(e—uo) fac uo(—pA+ Vi —p?c) )
=1
— 7u042 Z Z DiD],

=1 j=1

CT(C) = O,
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and fori=1,...,n
uDi(e) =i + i3 D] (= o = g+ VI= e ) = >3 it
1
—swialg—1) (A% + 2,
Di(c) = 0.

In this case, the lower bound satisfies
1 _
L(t,5,0,0) = = Zi() exp(Cale’) + Z Di(e ) = BE (e TTOHR) Zu(e) + Zu(e )V, (36)

with
1

Zy(c*) = —exp ( = q— (Ci(e ZDl ) (Vf’ - ESSZ)(e-“T-“H%»)

Moreover, if z = Zy(c*),
U
én (t7 s,V, Z) = Y(t7 S5V, 2 C*)'

Proof. The proof is similar to the proof of Proposition 13 and is essentially obtained by using the Feynman-
Kac formula. First, using Lemma 12, we have that

Y(t,s,v,2z;¢) = Ei 502 (ﬁ(h(Sg’«), ZT)>

1
= Et,s,u,z ( - 72'% - H%ZT)
q

1
= EtJAZ ( - Z%) - Et,su,z <H?‘ZT> .
q

=Y (t,v,z) :=Ya(t,s,v,2)

Let focus on Y7, using Feynman-Kac formula, we have that

0=0,Y1 — 0.Y1rZ + azzyl z? <(V) +c y> + Za Y (—zivi + k(0 — D))
i=1

1 n n X n ([L*T) § R
= 8., Y1 (2 9y, Y Z<— Vi 1—p2 >
+2;; v, 14u+; =Y P VI V1= pic

1
Yi(T, Z) = —=Z1.
q

Suppose that Y7 has the following form

Y, = —quexp Cy —|—ZD1 )

=1

In this case, as we consider that fi; = r + Ay, we have that

0=V (atct +Y 0Dy + Y Di(—mivi + k(0 — D)) + (2,95 > > Dip}

i=1 i=1 =1 j=1
1 n )
—rq+ 5q(q —1) (A2 + Ao+ q( — pADC 4+ /1 — pzcac) > D;),
=1
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as U =wvp + Y ., w;v;, we have

:(@Ct + Z Di (ﬁ(@ — 1) + q( — pAvgC + /1 — p2Cyoc) ) —rq+ %q(q —1) (A% + Ay

i=1

c%ozznznz‘)

i=1 j=1

+ En:ui <6tD§ - meDJ + g%l ZZD]Dk
i=1

jlk:l

1 .
+ §wiq(q —1) (A2 + A+ qwz(— PAC+ /1 — p2Cc) ZD§> )
j=1
We obtain that C; and (D});—1 ., solve Riccati type ODEs of the form

Cc =ra = gala ~1) (42 + Ao~ 3 DY (w0~ ) +a( = pw¢ + VI=Fone) ) a1)

i=1
1 n n ) )
— 5 Y DD, (38)
i=1j=1
Cr=0
and fori=1,...,n,

0D} =z;D} +szDJ (n—q<—pAC+\/1—p2CC)> —CQWi%ZZDin

Jj=1 j=1k=1

Let now consider the second process Y3. Using the Feynman-Kac formula, we obtain that Y, satisfies

0=08,Yy —0,YorZ + azzYQ Z2<(V)+c ,,) +Zay1Y2 <:Ei1/i+/<c(01?)>

=1

+35 Zzaulyjiécy_kzal’l}é ( (\/—TT)C\/ZT/_'—Vl_pQCl)C)a
=1 j=1 v

. . . L—T /=
+ 0sYs 1s + 5838Y2 s+ ;:1 Oy,sY2 sUCp — 05, Y2 Zu\/; sﬁ,
Yo(T, s,2) = h(s)z.

Suppose that Y5 has the form
Yo = g(ta S?vV)Zt

Therefore, we have that

_Z<atg_gr+zawg<_x1/z+” ) Zzamu]ggz
i=1 =1 j=1

+Z(9yl (— p—r)C++1—p (2Vc)+asg,us+ —0s5g US

+ Z@Vﬁg svCp — 0sg (1 — r)s).
i=1
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The function g(¢, Sj*, v) satisfies the following PDE

0=0g—gr+0igrs+ Y Oug (_xivi+ﬁ(9_ﬁ)+ﬁC(_pA+ vl—p2CC)>

i=1
+ = Z Z (%ng (21/ + 3999 s+ Z 0y,s9 sbop,
1=1 j=1
9(T,s,v) = h(s).
We deduce, using once again the Feynman-Kac theorem (this time in the other sense), that

gt 57, 0n) = B (e T Hy),

t,s,v

with under Q(c)—measure,
dSP = rS" + /i, SPAW 2 (1),

dvi = ( zi(vf — b)) + k(0 — D) + DC(—pA+ /1 — p2( c))dt + CVodWR(t), i =1,...,n,

where WSQ(C) and Wf,@(c) are standard brownian motions under Q(c) — measure with d < Wé@(c), Wg(c) >
pdt.
Finally, combining the different results, we obtain the annonced result

n

1 )
Y<t7s7u,z;c>:—gzqexp<ct<c>+ZDt<) Vi) — EX (e " TV HE) 2

t,s,v
i=1
Furthermore, as by definition,

1,(t,s,v,v;c) = sup {Y(t, s,v,z;¢) + zv},
z
using the first order condition, we obtain that the value at time ¢ of Z;(c) satisfies

Zt(c)exp<— q— (Cy(e +ZD1 )i ) (vu EXC) (e ‘T(T_t)H%))>

q—1

and then

t,s,v

1 c -
it 5,0,0;¢) = = Zi() exp(C(e) + ZDZ — BEXO(eTTTOHE) Zu(e) + Zule) VY.

Thus, as
f;:(t,s,u,v) = lz;f(t,s,y,v;c*),

we deduce the annonced result. Finally, as in the proof of Proposition 17 , we show that ¢* = ¢*(z*) and
z*(c*) = z*, we conclude that if z = Z;(c*) then
U
L, (t,s,v,2) =Y(t,s,v,2;c").
O

Remark. Comparing to the optimal solution in the case of linear payoff (see Proposition 13), we observe

that the form of the solution is the same, the only difference lies in the expression of the coefficients Cy
and(D});=1,...n- Moreover, in the classical Heston model, i.e. n =1, then C; and D, admit closed formulas.
Proposition 19. Using the same assumptions as the Proposition 18 and denoting g(t, Sf*,v;) = Egé?;)(e’r(T*t)H%),
the approzimate hedging ratio £ (t) defined by (32) is such that

8110 = g (90,5000 = ) (550 =) = i 3 i)

ot St + 5 Y (Buatt st (10)

=1

where VY is the value at time t of the self-financing portfolio.
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Proof. The proof is simple and relies on the definition of the approximate hedging ratio and on Proposition
18. By definition, we have that

oz 8zzf: (i—r)s— 8521 s — PO O Zf: Vs (D)

52

3

with z = z* = 2*(¢*). With our assumptions, we know, by Proposition 18, that, for z = z*(c¢*),

1 c
f:(t, S,v,2) = —;zq exp(Ci(c™) + Z Dj(c (,7U)(6_T(T_t)H%) z

U
thus, we can easily deduce the partial derivatives of the process [, (.) such that

n

U ) )
0.1, = =271 (c") exp(Ci(c*) + > Di(c*)w}) — g(t, S, vy),
i=1
and

n

3zzf: = — (¢ —1)27%exp(Cy(c*) + Z Di(c*)vi)

i=1

3zslu = - 359(@ SZL’ Vt)

n
n

azwln = Zq_lDz(c*) eXp(Ct(C*) + Z D;(C*)Vz) - 81119(1;’ S?a Vt)a

i=1
therefore, the approximate hedging ratio is given by
1 B . e ) R
&)= ——3 ( — (g1 Z{  exp(Cul(e™) + D Di(e)vy) (s — )P + Dsg(t, S7',ve) 1S}
i=1

2
i (St")

e utz(z“ e exp(Cile) + 3 D) + gle. ST ) ) (41)

i=1

The value at time ¢ of the process Z; is given by

1

* 1 * - T ok\, W n a1
2y =esp = (@) + D) ) x (V- atesten)
plugging Z;(c*) in (41), the approximate hedging ratio becomes

810 = gz (o000 = V) (S 2= ) - s iDi(o*))

T 0ug(t, 87 v) + Z (2ustt. st

That concludes the proof since we proved the different results announced. O

For the partial hedging problem in rough Heston model with power loss function, the lower bound I(.)
and the approximate hedging ratio £¢(.) admit closed formulas. In particular, we observe that £/(.) is split
into three parts: the first part is linked to a sharpe ratio, the second part corresponds to the delta and the
third part is linked to a vega. Moreover, as the approximate rough Heston model allows a closed form for
the characteristic function of the log-price, it enables, using a FFT (Fast Fourier Transform) pricing method,
to efficiently compute the price but also the Greeks of vanilla options under the approximate rough Heston
model. Thus, for vanilla options, the lower bound as well as the approximate hedging ratio can be quickly
computed. Note that the characteristic function of the log-price is presented in the Appendix.
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6 Numerical results

In this section, we illustrate the partial hedging method discussed in this paper for the rough Heston model.
We first present stylized facts about the approximate rough Heston model, then we discuss results for hedging
of linear payoff and finally we consider vanilla option hedging. For the different numerical results, inspired
by [2], we have decided to consider the following parameters (under the real measure PP) for the rough Heston
model:

r=20.02, A=1, Sy =100, vy =0.04, 8 =0.04, A=0.3, ( =0.3and p = —0.7.

As already mentioned, rough volatility models, including the rough Heston model, allow to better model
stylized facts observed on the financial markets. In particular, in option pricing, they allow to better represent
the implied volatility smile as well as the ATM (at-the-money) skew. Using the characteristic function of the
log-price in the approximate rough Heston, we can price vanilla options using a FFT method. From these
prices, we can deduce the implied volatility for several strikes and time-to-maturity but also compute the
ATM skew i.e. the derivative of the ATM implied volatility with respect to the log strikes. Figures 5 and
62 in Appendix represent respectively the implied volatility and the ATM skew. If we compare the Heston
model to the approximate rough Heston model with n = 20, we observe that for the Heston model, the shape
of the implied volatility smile does not change significantly as the time-to-maturity decreases, whereas for
the approximate rough Heston model, the volatility smile becomes more and more pronounced as the time-
to-maturity tends to 0. We also observe that the approximate rough volatility model with n = 20 captures
the ATM skew while the Heston model does not capture this stylized fact at all. Therefore, as already shown
in [1], we see that even with a reduced number of factors (here n = 20), the approximate rough Heston model
allows to better capture stylized effects on the financial markets and is thus more appropriate to model stocks
dynamics. For more analysis about the rough Heston and its Markov approximation, we refer among others
to [1, 2, 14, 25].

6.1 Partial hedging of linear payoff

In this section, we consider the hedging of a linear payoff with a quadratic loss function. We take this toy
case because we have shown that with a quadratic loss, the approximate partial hedging problem is solved
with a closed formula. Thus, the objective of this paragraph is to check the convergence of the approximate
solution when n — 400 but also to verify that the lower and upper bounds of the optimal solution deduced
using the dual control method are close enough to this optimal solution. The linear payoff considered for the
following is

Hlnear — o 4 St with a =0, =1,

and its replication price at time ¢ € [0, 7] is
Héinear _ e—r(T—t)a + B‘S’t
We will thus consider several initial values of the hedging portfolio such as
‘/0 < H(l)inear

We first look at the convergence of the approximate optimal solution I, when n — +o0o. Figure 1 and 2
present the evolution of I, and & with respect to n for different values of H and with V = 0.8 x H}imear.
We observe that for different Hurst coefficients, the approximate solution and initial hedging ratio converge
and the convergence is faster the closer the Hurst coefficient is to 0.5. This is logical because the closer H is
to 0.5, the less n factors are needed to model the rough volatility process accurately.

2Results are generated with real measure parameters
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Figure 1: Convergence analysis of [,, for quadratic loss and linear payoff
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Figure 2: Convergence analysis of £ * for quadratic loss and linear payoff

We next compare the optimal solution with the upper and lower bounds deduced by the dual control
method. As in the theoretical part, we consider dual controls of the form:

e =cx Zy x (\Dy, c€U =R, (42)

because it allows to keep closed forms under the approximate rough Heston model. In this case, the associated
lower bound is given by (36) and the upper bound can be computed with the hedging ratio given by (40).

| Coef | H| 1, | ¥ “ Abs. diff. |1, — | | Abs. diff. [ —1,,| [ Abs. diff. [ — %] |

0.75 | 0.1 | 312.1792 | 312.1786 | 312.1890 6.26 x 1074 9.85 x 1073 1.04 x 1072

0.75 | 0.5 | 312.3396 | 312.3371 | 312.3428 2.51 x 1073 3.23x 1073 5.76 x 1073

0.5 | 0.1 | 1248.7169 | 1248.7145 | 1248.7213 1.66 x 1073 5.26 x 1073 6.87 x 1073

0.5 | 0.5 | 1249.3587 | 1249.3534 | 1249.3654 5.32 x 1073 6.71 x 1073 1.21 x 1072

0.25 | 0.1 | 2809.6131 | 2809.6078 | 2809.6218 5.33 x 1073 8.76 x 1073 1.44 x 1072

0.25 | 0.5 | 2811.0571 | 2811.0530 | 2811.0638 419 x 1073 6.74 x 1073 1.08 x 1072
Table 1: Comparison of the optimal solution, the lower bound and the upper bound for quadratic loss and

linear payoff with n = 20, Vi = Coef x H{™*and T = 0.25
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Table 1 compares the results for different values of V{. Firstly, we observe that the optimal solution,
the lower and upper bounds are very close, as we notice an absolute error that varies between O(10~%) and
0O(1072), this allows to validate the relevance of the bounds deduced by using the dual control method. We
also notice that the closer Vj is to the replication price, the more the quadratic loss decreases and finally
we observe that the quadratic loss is less when considering H = 0.1 compared to H = 0.5. This seems to
indicate that for a linear payoff, the rougher is the volatility, the lower is the quadratic loss. The orders of
the absolute errors between the bounds and the primal solutions are consistent with the order of the absolute
errors made in applying the dual control method to portfolio optimization problems as in [31, 32]. This
can be explained by the fact that the problem reduces to a portfolio optimization problem when considering
partial hedging of linear payoff. Indeed, assuming for simplicity that » = 0, we can easily observe that our
problem has the form of a portfolio optimization problem such that

: 1 r ’
In(t,s,v,0) = E?lg7f2n Eisvo (2 <Sf - Vi+ /t (1- §?)d5?> >
Therefore, we observe that in the case of a linear payoff, there is no stochastic target to reach, which is not
the case if we consider nonlinear payoffs like for example vanilla options.

6.2 Partial hedging of vanilla options

We now focus on more relevant payoff, namely vanilla options. As for the linear case, we take a quadratic
loss function. Notice that we only consider Call options, but similar results can be deduced for Put options.
For this type of payoff, we cannot derive an optimal solution to the partial hedging problem, but by using
the dual control method, we can derive upper and lower bounds. To do this, for the same reasons as in
the previous section, we consider dual controls of the form (42). Moreover, as the characteristic function of
the log-price in the approximate rough Heston model is available, the bounds as well as the approximate
hedge ratio are computed using a FFT method. For our numerical results, we decide to consider an initial
portfolio value V; proportional to the Black-Scholes (BS) price of a Call option with as constant volatility,
the mean-reverting level of the rough model. Thus, we consider that

Vo = Coef X BSequ(o = V0).

Furthermore, as in [29], we benchmark the proposed partial hedging strategy with the optimal strategy
assuming a constant volatility model of the BS type. Notice that for the BS model, the optimal hedge ratio
denoted by ¢2° associated with a quadratic loss has an explicit formula that is presented in the Appendix
(see (50)) and has a similar form to £/ (t) except that it does not depend on the volatility process. Figure 3
presents the initial approximate hedge ratio £/ (0) as function of the number of factors n, for different values
of H. As in the linear payoff case, we notice a convergence of the hedge ratios. The speed of convergence is
higher, the higher is the Hurst coefficient, for the same reason as mentioned previously.

E4(0) for Hy — (S — K) . with Vy = 0.8 x BS,;(V0) (S = 100, K — 100 and 7 0.25)

H=0.1
=02
H=0.3
H=04

|11

40)
/

Figure 3: Convergence analysis for £/ (0) for quadratic loss and ATM call
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Figure 4 compares the sub-optimal strategy linked to the upper bound with the benchmark strategy for
one simulation of (S}")o<i<r. We observe in this case that the sub-optimal strategy performs much better
than the benchmark strategy.

Table 2 compares the results for different values of Vj. In contrast to the linear payoff, the gap between the
upper and lower bounds is more pronounced. There are several reasons explaining this. As the vanilla options
are nonlinear payoffs, the partial hedging problem cannot be reduced to a portfolio optimization problem.
Therefore, we have a stochastic target leading to a more noisy problem. In this case, we notice that the
approximate hedging ratio depends more on the choice of the sub-optimal dual control. In fact, in contrast
with the linear case, we remark that the approximate hedging ratio (40) is affected by the choice of dual
control, notably through the risk-neutral measure Q(c¢*) used to compute the Greeks. The difference between
the bounds can also be explained by the tracking error i.e. the error made by not continuously hedging the
portfolio. Indeed, we observe in Table 3 that by increasing the frequency of portfolio rebalancing, the gap
between the bounds decreases.

Simulation of S/ with H — 0.1 and n — 20

110.0

105.0

102.5 {

100.0

Hedging portfolios for ATM Call (S, — 100, & — 100) with V;, — 0.8 x BS,;(V 0 0.landn —20

—— Sub-optimal partial hedging strategy for .° Loss with //=0.1
—— Benchmark partial hedging strategy for L* Loss
—— Call payoff at maturity (5, - K) , (Target)

)

| \rﬁﬂ A/\ I\

Figure 4: Simulation of hedging strategies with Vy = 0.8 X BScq;(V/0)

Benchmarking the sub-optimal strategy against the Black-Scholes strategy, we observe at Tables 2 and
3 that the hedging strategy associated with the upper bound outperforms the benchmark strategy, and the
gap between the two strategies is much more pronounced when H = 0.1. Thus, the rougher is the volatility
trajectory, the worse the benchmark strategy will perform compared to the sub-optimal strategy. As revealed
by Table 4, this is explained by the fact that the smaller H is, the greater is the impact of the vega term on
the approximate hedging ratio and therefore the bigger is the difference between the approximate hedging
ratio £%(t) and the hedging ratio of the benchmark strategy ¢P°.
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| Coef | H | B | I [lggm | Abs. Diff [IFf — £T| | Abs. Diff. |I5g./5 — 4] |

1 0.1 | 0.1769 | 0.6139 | 0.7893 0.4369 0.1753

1 |05 ]0.0488 | 0.2449 | 0.2791 0.1962 0.0341
0.75 | 0.1 | 0.7781 | 0.9389 | 1.0985 0.1608 0.1596
0.75 | 0.5 | 0.6261 | 0.6851 | 0.7173 0.0588 0.0323

0.5 0.1 | 2.2267 | 2.3112 | 2.4252 0.0844 0.1141

0.5 0.5 | 2.2469 | 2.2704 | 2.3129 0.0235 0.0424

0.25 | 0.1 | 4.7591 | 4.7928 | 4.8965 0.0338 0.1036

0.25 | 0.5 | 4.9814 | 4.9902 | 5.0224 0.0088 0.0322

Table 2: Comparison of the lower bound, the upper bound and the benchmark (ZBS(\/@) with v = 0.2) for
quadratic Loss, ATM Call and hedging once a day with n = 20, Vi = Coef x BScqu(c = v/0) and T = 0.25

| Cocf | Hedging Freq. | L | I [lgg. 5 | Abs. Diff [Iif — Y| [ Abs. Diff. [I55.5 — ] |

1 Once a day | 0.1769 | 0.6139 | 0.7893 0.4369 0.1753

1 Twice a day | 0.1769 | 0.5521 | 0.7206 0.3752 0.1685
0.75 Once a day 0.7781 | 0.9389 | 1.0985 0.1608 0.1596
0.75 | Twice a day | 0.7781 | 0.8774 | 1.0376 0.0993 0.1602
0.5 Once a day 2.2267 | 2.3112 | 2.4252 0.0844 0.1141
0.5 Twice a day 2.2267 | 2.2454 | 2.3701 0.0187 0.1246
0.25 Once a day 4.7591 | 4.7928 | 4.8965 0.0338 0.1036
0.25 Twice a day 4.7591 | 4.7614 | 4.8793 0.0023 0.1176

Table 3: Comparison of the lower bound, the upper bound and the benchmark (ZBS(\@) with V6 = 0.2) for
quadratic Loss, ATM Call for different hedging frenquencies with H = 0.1, n = 20, Vo = Coef X BScau(o =
V) and T = 0.25

’ Model | &(0) [ Vega term |
BS 0.5480 7
Heston 0.4917 —0.1103

Approx. rough Heston (H = 0.3,n = 20) | 0.4704 —0.1571
Approx. rough Heston (H = 0.1,n =20) | 0.4457 | —0.2093

Table 4: Tmpact of Vega term on the hedging ratio with Vega term := &2 37" | 9,, B (e’”T(ST - K)+>
for ATM Call, n = 20, Vy = 0.8 x BS.q;(v6) and T = 0.25

Finally, it is also interesting to study the impact of the correlation p on the hedging strategy. Figure 7 in
Appendix presents the impact of the correlation p < 0 on the bounds. We observe that the loss decreases as
p decreases because the closer the absolute value of the correlation is to 1, the more the volatility risk can be
hedged by taking a hedging strategy on the underlying. We also observe that the relative difference between
the upper bound and the benchmark loss widens as the correlation decreases. This can be explained by the
fact that the closer the absolute value correlation is to 1, the larger is the difference between the approximate
hedging ratio £ (¢) and the Black-Scholes hedging ratio ¢5°.

7 Conclusion

This paper discusses partial hedging strategies in rough volatility models. We formulate the problem as a
stochastic control problem but, due to the non-Markovian nature of the rough volatility models, this problem
is considerably difficult to solve.

Thanks to a Markov multifactor approximation of the volatility process, we introduce a Markov stochastic
control problem. We show, using convergence results, that, instead of solving the original problem, we can
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solve the Markov problem with a small error. The optimal solution to this problem is characterized by
a Hamilton-Jacobi-Bellman (HJB) equation. However, even by switching to the dual formulation of the
problem, we need to solve a nonlinear PDE to obtain the optimal solution. Therefore, in general, we cannot
derive an explicit form of the optimal solution.

In order to obtain explicit hedging strategies, we introduce a dual control method. We derive lower and
upper bounds as well as sub-optimal hedging ratios for sub-optimal choices of dual control. Moreover, if the
subset of admissible dual controls is large enough, we show that the discrepancies between bounds and the
optimal solution are quite small. For a particular subset, explicit formulas for lower bound and sub-optimal
hedging ratio are deduced in rough Heston model with power loss function. Furthermore, in rough Heston
model, the sub-optimal hedging ratio exhibits a meaningful interpretation in term of Greeks and can be
efficiently computed using a FFT method for hedging of vanilla options.

Numerical results show satisfying results especially for linear payoffs hedging since errors between bounds
and optimal solution are of order O(10~3). For vanilla option hedging, the discrepancy between the bounds
is slightly larger, yet remains acceptable. This can be explained by the fact that the nonlinear payoff hedging
problem is noisier and that the sub-optimal choices of the dual control have more influence on the hedging
strategies than in the linear case.

In terms of future research, several promising avenues can be explored within the context of hedging
in rough volatility models. One potential direction involves investigating a backward stochastic differential
equation (BSDE) approach, building upon previous work [3], to obtain the optimal solution of the Markov
problem. Furthermore, considering a deep learning approach for solving the nonlinear partial differential
equation arising from the HJB equation, as explored by [34], could provide valuable insights. A comparative
study between the solutions obtained via these alternative methods and those derived from the dual control
method discussed in this paper would be of great interest.
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8 Appendix

Figures
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Figure 5: Vanilla implied volatility as a function of the the log-moneyness for different time-to-maturity
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At-the-money skew as a function of time-to-maturity
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Figure 7: Impact of the correlation p for ATM Call with n = 20, V5 = 0.8 x B.S'call(\/é) and T'=0.25
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Additional proofs.
Proof of Proposition 5.

Proof. First, based on their SDE and provide that (S]')o<:<7 and (S;)o<¢<r have the same initial value S
then it can be shown that the processes are solution of

t t
5= Sux e ([ ne = Jrads + [ vmawiis))
0 0
t 1 t
St = Sp x exp (/ (f1s — iﬁs)ds +/ \/;dev(5)>'
0 0

By Theorem (4), monotone convergence implies that, for ¢ € [0, T],

lim E(/Ot(\/zZ— \/Z.)st> ~0.

n—oo

Therefore, by the definition of the stochastic It6 integral, we obtain that

/0 W, (s) /0 AW, (s)

But since L? convergence implies convergence in law and, by the Skorokhod representation theorem, that
convergence in law implies almost sure convergence on a suitable probability space, we obtain that

/ B (s) / AW (s)

Moroever, using Theorem (4), we deduce that

t
1 a.s.
[ = 5ods <2 [, = Guds.
0 2 0 2

Finally as the exponential function is continuous, we conclude that

exp ( / (i~ 2ods + / t ﬂdwv<s>) 22, exp ( / 1= Svds + / t mdvms))

and then
S:L a.s. St’

as n goes to infinity.

The proof of the convergence of (V{")o<i<r is similar. For sake of simplicity, we only consider the case
where r = 0. In this case, as we assume V¢ € [0, T, £ = &, we have that

t t
V=Vt / utiaSads + / £o/TaS AW, (5)
0 0

t t
V=V + / EuiaSTds + / Eor/DaST AW (5)
0 0

By Theorem (4) and Proposition (5), monotone convergence implies that, for ¢ € [0, T,

n—o0

lim E</t €2(\/0,87 — \/ZSs)zds> =0.
0

Therefore, by the definition of the stochastic It6 integral, we obtain that

t t
/58\/ﬁssgdwy(s)£>/ oV SsdWo(5).
0 0
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But since L? convergence implies convergence in law and, by the Skorokhod representation theorem, that
convergence in law implies almost sure convergence on a suitable probability space, we obtain that

t t
/ £/ STAW, (5) =2 / €/ S5 d W, (s).
0 0

Finally, as
t t
/gsﬂssgds%/ EopisSsds,
0 0

we conclude that
VSV,

as n goes to infinity. O

Proof of Proposition 9

Proof. To deduce the PDE of [,, (t, s, v, z) using the PDE of [,, (¢, s, v, v), we use the following relations between
the primal and dual solution. We can remark that

a’l)l’rL = Z, avvln = — 1A
azz n
P sl
Ol,, = O ln, Osply = — szin
t t aZZ n
Osly, = 8S[n7 6V1vln — _aViZAn
822177,
Oy;ln = 0y, ln,
and
[ - 7 )2
Oualyy = 022ln0ssly - (8szln)
8ZZZ7Z
al/i”i ln azzznaylyz ln _ (?”izl")(avzzln)
8ZZZ7Z
81/1-3[” _ azzlnal/7sln - (a‘ﬁzln)(au,zln)

Using now the PDE (19) satisfied by ,,(.), we can easily derive that the PDE satisfied by [,(.) is given by

- - ; I 5. 224 7 N »
0 =0, + Ls 1, — 20,1, + wz (b —71)*8°0.20 — 2 (i — 7)80s,1p,

1 n n

—%pzayizin 2 (i= )0 (D) = —— 021 =) 33 Ounalnt .

20:21n i=1j=1
Thus we just have shown that [, satisfies the announed PDE. Concerning the optimal primal control £™*,
we have that

n* Opln, (ft = 7)SE + Osuln ’/At(SZL)2 + pZ?:l yvln \/VTtS? o(vy)

¢ B avvln I/At(S{l)Q
_ Zy azz[n (fp—17)Sp — asz[n VAt(S;L)2 - PZL aViZZn \/VTtStn a(v)
Uy (S7)? ’
that concludes the proof. O
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Proof of Lemma 12.

Proof. The proof is simple and involves the first order condition since L(h,v) is convex with respect to the
variable v. By definition, the dual terminal value is such that

L(h(s),z) := iI&f{L(h(s), v) — zv},

in our case, it reduces to

1
L(h(s), z) = inf{=(h(s) — v)? — zv}. (43)
v.p
Using the first order condition, we have that the optimal v is such that
—(h(s) =v)P~t =z =0,

we easily deduce that

A 1 p_ 1
L(h(s),z) = 2;(—2)"*1 — 2(h(s) = (=2)771)
1 »
= —zp1 — 221 — 2z h(s
) (s)
p—1
=— zp=1 — 2z h(s
) (s)
=—=z9—2zh(s
. ()
O
Proof of Proposition 13
Proof. From (9), we know that [,, satisfies the PDE (20). Let consider the ansatz
. q LIS
i) = =2 exp (00 300 ) (Va4 s ) - (44)
q _f_/

—
! =g(t,s)

=I1

with
Cr =0,
Dh=0,i=1,..,n
9(t, S1) = Himeor
such that

i ; 1 ,
In(T, 5,0, 2) = L(h(s), z) = —=27 — h(s)"mear,
q

Plugging (44) in the PDE (20), we obtain
. n . n . A 1 n o n o
0=1. <8tC’t + ; O Dyv; + ; Di(—zv; + k(0 — D)) + C2V§ ;; D;D;

1 . T R | 0 N
—rq+ galg = 1) A% — gpA¢ Yy Dy — (1~ pQ)CQVﬁ > > Dpip]
=1

i=1 j=1

N———

1
—z ((%g + 0sg 1s + 58589 vs® —rg— (1 — r)sﬁsg>,
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equivalently, we have

. n . 1™ o q 1
_ 11 7 7 2 2 2
0=1, (&C’t + g Dy (K(G — ) — quV0C> +3 ;,1 ]E,l D;D] (v (1 —(1-p )7(1 = 1) —rq+ iq(q -1 A V0>

i=1

+Z7llzn:Vi(8tDi—$iD§—’wi<l€—qu<>zn:Dg—F w1< —(1- )izn:DJDk

i=1 j=1 j=1k=1
1 2
+ iwiq(q -1)A
1 . 9 .
— 2z 6tg+3sgus+§5ssg vs® —rg— (ft—r)sdsg ).

Using the definition of g(¢, s),we observe that

1
Org + 0sg s + §Gssg vs® —rg— (fi — r)s0sg = 0.

In this case, the PDE reduces to

_ 11 7 7 2 2 2
=1 <8tC’t + E Dy (n(@ —1p) — quVOC> t3 ZE_I jg_l D;D] (v (1 —(1-p )q—1> —rq+ iq(q -1)A 1/0)

=1
+Z,£Zui(atD;; — ;D —wi<n—quC> > Dl + w< —(1-p% ) SN pipk
i=1 j=1 Jj=1k=1
1 2
+ iwiq(q —1)A4%).

We obtain that C; and (Dz)zzln solve Riccati type ODEs of the form

O4Ce =ra = gata ~ 1) Ay~ 30 D} (0~ )~ apAnc) = 5 33 DiDic(1- (1= )L,
i=1 i=1 j=1
Cr=0
and fori=1,...,n,

8y Dy =D, +szD3<%—q<—pAC+(1—p2)620)> ; (C (I—p C) > DiDt

j=1 j=1k=1

Moreover, we know that the value at time ¢ of the process Z; should satisfy
azlAn +V = 07
we easily deduce that
n

Vit =g(t, S7) + Z§ " exp(Cy + Y D)),

i=1

1 noo [
Ze=esp (= Ly Sopih) x (Vi-atesn) (47)
=1

Therefore, using the relation between the primal and the dual, we conclude that the primal solution is given
by

and

z] L
I(t,s,v,v) = —?t exp <C’t + ZD}}/Z) - <e_T(T_t)a + BS?) Zy+ Zy V",

i=1
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with Z,; satisfying (47). Let now focus on the expression of the optimal hedging ratio. For that, we need to
compute partial derivatives of [,,. Using the closed form of [,,, we deduce that

Ouln = —ZF Lexp(Cy + Y Div}) — g(t, SP),

i=1

and
Dyly = — (¢ — 1)Zq exp(Cy —I—Z:DZ )
=1
Ozsln =— B
Ol = — ZT ' Dl exp(Cy + iD’ :

1=1

Plugging now these values in the expression of the optimal hedging ratio leads to

1 — = 1.1 ~ n “ n
¢ ( —(¢=1)Z{  exp(Cr+ Y D) (jie — 7)S7 + B S}
()
+pCSin Y (Zlez’ exp(Cr + Dz‘uz))) : (48)
i=1 i=1
Finally, using the value of Z; (47), we conclude that the optimal hedging ratio is given by
n % 1 —r(T—t) n n 1 %
t :VAtStn € a+ﬂst _‘/t p— 1(/“1“t_rr CVI‘ZD +ﬁ
That concludes the proof as we have shown all the stated results. O

Characteristic function of the log-price in approximate rough Heston

Remember that the approximate rough Heston volatility model is given by 0y = vy + Y i, w;v} where
(v}, ...,vl) is solution of the n dimensionnal SDE defined by

t t
vi = —/ zivids —|—/ k(0 — Us)ds —I—/ C\/DsdW,y (s s T, (49)
0 0

i
vy =0,

Proposition. The characteristic function of the log-price in approzimate rough Heston is given by, for
tel0,T],

(T z) =FEy s, (exp(i x log(ST) )) = exp (Ct + Z Divi+ix log(Sf)),

i=1
with for 0 <t <T, C; and (D})i=1,..n solve Riccati type ODEs of the form

. 1
atCt_—rzx—H/O(Qx _(A_, > ZD (plvp iz + k(0 —1p) —*C I/okz:”z;DD
Cr=0

and fork=1,...n
1, 1. —~ i .. L R ey
Oy DF =2, DF + wy, 5% —(A—i)zx —wkZDt pliz—kK —§C wkZZDtDt
j=1 j=11=1
Dk =0.

Proof. The proof is a direct application of Feynman-Kac theorem to Ey s, (exp(ix log(S%) )) with SDEs
(9) and (49). O

37



Partial Hedging under Black and Scholes

Proposition. Suppose that the risky asset (S;)o<t<r has the following Black-Scholes dynamic under the real
measure P
dSt = ,LLStdt + O'StdWS(t),

the optimal hedging ratio associated to a power loss (£tBs)0§t§T 18 given by
1 -7
s o L (poim) - vi) Y s ospR (iR, (50)
p— 1 O'St

with the “classical” risk-neutral measure Q such that under this measure
dS; = rSydt + oS dW(t).

Proof. 1t is sufficient to solve the dual problem and use the closed form of the dual solution to get the form
the optimal hedge ratio (50). O
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