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Abstract

This paper studies the problem of partial hedging within the framework of rough volatility models
in an incomplete market setting. We employ a stochastic control problem formulation to minimize the
discrepancy between a stochastic target and the terminal value of a hedging portfolio. As rough volatility
models are neither Markovian nor semi-martingale, stochastic control problems associated to rough models
are quite complex to solve. Therefore, we propose a multifactor approximation of the rough volatility
model and introduce the associated Markov stochastic control problem. We establish the convergence of
the optimal solution for the Markov partial hedging problem to the optimal solution of the original problem
as the number of factors tends to in�nity. Furthermore, the optimal solution of the Markov problem can
be derived solving a Hamilton-Jacobi-Bellman (HJB) equation and more precisely a nonlinear partial
di�erential equation (PDE). Due to the inherent complexity of this nonlinear PDE, an explicit formula
for the optimal solution is generally unattainable. By introducing the dual solution of the Markov problem
and expressing the primal solution as a function of the dual solution, we derive approximate solutions to
the Markov problem using a dual control method. This method enables for sub-optimal choices of dual
control to deduce lower and upper bounds on the optimal solution as well as sub-optimal hedging ratios.
In particular, explicit formulas for partial hedging strategies in rough Heston model are derived.

Keywords: Partial hedging, rough volatility, rough Heston, stochastic control, Hamilton-Jacobi-Bellman,
Markov approximation, dual control method.

1 Introduction

Rough volatility models have gained signi�cant popularity in quantitative �nance since the pioneering work of
Gatheral et al. [22]. These models incorporate long-range dependence, capturing important empirical stylized
facts such as volatility clustering and roughness, which are often neglected in classical volatility models. In
option pricing, rough volatility models generate implied volatility surfaces that are consistent with observed
volatility surfaces, as shown in subsequent papers [7, 14, 20, 22, 28]. With only few parameters, they can
e�ectively capture implied volatility smile as well as at-the-money skew overcoming stochastic volatility
models that produce inconsistent volatility surfaces. In addition, we observe that the interest in rough
processes extends to other domains such as insurance, whether in terms of their impact on pricing and
insurance portfolios [11, 12] or on claims modelling [26].

In this paper, we investigate the problem of hedging in rough volatility models. While previous research
[13, 21] have explored this matter in the context of complete market, where the volatility risk can be hedged
either by trading forward variance curve or variance swap, our paper takes a di�erent approach. We relax
the complete market assumption and focus on an incomplete market, considering only underlying assets as
hedging instruments. Since the market is incomplete, a perfect hedging strategy cannot be implemented,
this is why we are interested in partial hedging strategies. Partial hedging strategies introduced by Föllmer
and Leukert [15, 16], are powerful techniques for minimizing hedging losses at a �xed cost lower than the
super-replication price. Their results have next been applied to various markets and various risk processes,
we can mention among others [9, 10, 23, 29, 30, 33]. Notably, [29] extend the theory of partial hedging to
stochastic volatility environment by formulating the problem as a stochastic control problem. However, the
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problem of partial hedging in rough volatility models has not yet been investigated, so this article aims to
�ll this gap.

To this end, we introduce a stochastic control problem under rough volatility models. While the literature
has studied stochastic control problems in rough volatility models primarily focusing on portfolio optimization,
see [3, 4, 6, 18, 19, 24, 32], problems involving hedging or stochastic targets have received less attention.
The non-Markovian nature of rough volatility processes poses signi�cant challenges in solving these control
problems. In portfolio optimization problem, [4, 18, 19] propose �rst order approximate solutions by relying
on martingale distortion transformation of the value function while [6, 32] employ a Markov approximation
of the rough volatility models. It is the latter technique that is developed in this paper to solve the control
problem. Relying on several papers [1, 2, 5, 8, 26], we introduce a Markov multifactor approximation of
rough volatility models based on the representation of the kernel function in terms of a Laplace transform.
Then, we consider the Markov control problem associated with the approximate volatility model and show,
with the help of convergence results stated in [2], that instead of solving the initial non-Markovian problem,
we can solve the Markovian problem with negligible error.

The introduced Markov stochastic control problem is similar to a stochastic control problem associated
to a partial hedging problem in multivariate stochastic volatility. Previous studies [17, 29, 31] have shown
that the optimal value function for such problems satis�es a nonlinear partial di�erential equation that
cannot be completely linearized, even by switching to the dual formulation of the problem. There are mainly
two techniques developed in the literature to overcome this nonlinearity issue. [17, 29] consider fast-mean
reverting volatility models to propose asymptotic solutions while [31] consider a dual control method to
provide approximate solutions of the optimal solution. In this paper, we adopt a similar approach to the dual
control method introduced by [31] to propose approximate solutions of the Markov problem for sub-optimal
choices of dual control. Our approach has several advantages: it works with general classes of volatility
models, gives lower and upper bounds to the optimal solution and allows to deduce convergence results
toward the optimal solution.

The paper is outlined as follows. First, in Section 2, the mathematical framework is presented. We
introduce the class of rough volatility models studied and we formulate the partial hedging problem. Next,
in Sections 3 and 4, we discuss the multifactor approximation of the rough volatility model and introduce
the associated Markov stochastic control problem. Moreover, we demonstrate the convergence of the optimal
solution of the Markov problem to the optimal solution of the original problem. Then, in Section 5, we
solve the Markov problem by introducing the Hamilton-Jacobi-Bellman (HJB) equation and deduce that the
optimal solution satis�es a nonlinear PDE. Consequently, by expressing the primal solution in terms of the
dual solution, we derive approximate solutions using a dual control method. Notably, we provide explicit
formulas for sub-optimal partial hedging strategies in the rough Heston model. Finally, in Section 6, we
conclude the paper by presenting a numerical application that focuses on the partial hedging of linear and
vanilla options within the rough Heston model.

2 Statement of the problem

Consider a �nite horizon T > 0 and a probability space (Ω,F , (Ft)0≤t≤T ,P) where P stands for the real
measure and the �ltration (Ft)0≤t≤T denotes all information known over time. Assume an arbitrage-free
�nancial market in which we have a cash-account and a risky asset denoted respectively by (S0

t )0≤t≤T and
(St)0≤t≤T . We suppose that those processes have the following dynamics

dS0
t = r S0

t dt

and
dSt = µtStdt+

√
νtStdWS(t)

where r is the risk-free interest rate, WS is a standard brownian motion, µt := r+Aνt, A ∈ R and (νt)0≤t≤T

a rough volatility process. The rough volatility satis�es a stochastic Volterra equation of the form

νt = ν0 +

∫ t

0

G(t− s)b(νs)ds+

∫ t

0

G(t− s)σ(νs)dWv(s) (1)

where ν0 ∈ R+, b : R → R and σ : R → R are Lipschitz continuous, Wv is a standard brownian motion such
that d < Wv(t),Ws(t) >= ρ dt and G a kernel assumed to be completely monotone. The rough volatility
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model (1) is a general model that incorporates well known rough models such for example the rough Heston
model introduced in [13] with volatility process given by

νt = ν0 +

∫ t

0

G(t− s) κ(θ − νs)ds+

∫ t

0

G(t− s) ζ
√
νsdWv(s).

In the following, we consider the fractional kernel de�ned by

G(t) :=
tH−1/2

Γ(H + 1/2)
(2)

where H is the Hurst coe�cient such that H ∈ (0, 1/2) in order to consider rough volatility models. Note
that using Corollary B.2. in [2], we can prove the existence of an unconstrained weak solution of the stochas-
tic di�erention equation (1) when σ(.) is continuous with linear growth and the fractional kernel satis�es
(2). Moreover, the existence of a non-negative solution can be obtained by relying on Theorem B.4 in [2] if
σ(0) = 0.

In this �nancial market with rough volatility, we are concerned with the hedging of contingent claims of
maturity T > 0 of the form

HT = h(ST ),

with h(.) a continous function. El Euch and Rosenbaum [13] already tackle the question of hedging in rough
volatility environment. They prove that perfect hedging is possible in rough Heston model provided that the
forward variance curve can be taken as hedging instrument. However, this assumption is quite strong, which
is why we are interested in the question of hedging in a �nancial market with only underlying assets as hedging
instruments. As the market is incomplete, we already know that perfect hedging is not more possible, but
we can still stay on the safe size by super-hedging the contingent claims. However, super-hedging strategies
lead generally to super-hedging prices that are too high to be considered in practice. In the case where the
initial capital available is smaller than the super-hedging prices, we know that we are not hedged in 100%
of the cases. We can nevertheless de�ne hedging strategies that aim at minimizing a loss arising from the
hedging operation. This type of hedging strategy is called partial hedging strategy and was introduced in
[15, 16]. It is this kind of strategy that we consider in the following. In this perspective, we consider a
self-�nancing hedging portfolio denoted by (Vt)0≤t≤T and de�ned by investment in the assets available in
the market (cash-account and the risky asset). The amount invested at time t ∈ [0, T ] in the risky asset is
denoted by ξt and the portfolio evolves according to the following SDE

dVt = r (Vt − ξtSt)dt+ ξt dSt,

V0 = v.

The hedging ratio process (ξt)0≤t≤T is admissible if (ξt)0≤t≤T is a progressively measurable process in regards

to Ft such that E(
∫ T

0
ξ2t S

2
t νtdt) < +∞. Similarly, we can also de�ne the Pro�t and Loss (P&L) at maturity

T denoted by πT and de�ned by
πT := VT −HT .

Let R be the set of all progressively measurable processes (ξt)0≤t≤T valued in R such that E(
∫ T

0
ξ2t S

2
t νtdt) <

+∞, since we already mentionned that perfect hedging is not possible in our market, we have that

∄(ξt)0≤t≤T ∈ R s.t. πT = 0 a.s.

We thus consider the partial hedging problem and de�ne in this sense an optimal hedging strategy satisfying
the following optimization problem

l(t, s, ν, v) := inf
ξt∈R

E

(
L(h(ST ), VT )|St = s, νt = ν, Vt = v

)
, (3)

where L(.) is a continuous proper convex loss function satisfying quadratic growth condition. As example of
loss function, we have the power loss function of the form

Lpower(x, y) :=
1

p
(x− y)p, p = 2n, n ∈ N0, (4)
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but other types of loss functions can be considered such as exponential or shortfall losses. At this stage, the
main problem in solving the introduced stochastic control problem is that the rough volatility model (1) is
neither Markovian nor a semi-martingale. Thus, the principle of dynamic programming cannot be applied to
solve the stochastic control problem. To overcome this problem, and following the idea of [6], we will consider
a Markovian approximation of our initial problem and then solve the Markovian problem using the principle
of dynamic programming.

3 Markov approximation

The non-Markovian structure of the rough volatility prevents from directly solving the partial hedging problem
using classical stochastic control techniques. However, as shown in [6] in the case of portfolio optimization, the
problem can be solved with a small error by considering a Markov approximation of the volatility process.
As shown in several papers [2, 5, 8, 26, 27], the starting point of the Markovian approximation is the
representation of the kernel G(t) in terms of a Laplace transform such that

G(t) =

∫ +∞

0

e−txλ(dx),

where λ is a measure on R+. In the case of fractional kernel, we have that

G(t) =
tH−1/2

Γ(H + 1/2)

=
1

Γ(H + 1/2)Γ(1/2−H)︸ ︷︷ ︸
:=CH

∫ +∞

0

e−txx−H−1/2dx

=CH

∫ +∞

0

e−txx−H−1/2dx,

where for x > 0,
µ(x) = CHx−H−1/2dx.

Then, we approximate the integral by a �nite sum and consider the approximate kernel Ĝ de�ned by

Ĝ(t) :=
n∑

i=1

wie
−txi ≈ G(t), (5)

where (wi)i=1,...,n are the weights and (xi)i=1,...,n the mean reversion terms that should be appropriately
de�ned, we discuss later on the choice of these parameters. In this way, we can approximate the rough
volatility process by de�ning a new stochastic process denoted by (ν̂t)0≤t≤T satisfying for t ∈ [0, T ],

ν̂t = ν0 +

∫ t

0

Ĝ(t− s)b(ν̂s)ds+

∫ t

0

Ĝ(t− s)σ(ν̂s)dWv(s). (6)

The following proposition states that the stochastic Volterra equation (6) can reduced to a n−dimensional
stochastic di�erential equation.

Proposition 1. The solution of (6) is given by ν̂t = ν0+
∑n

i=1 wiν
i
t where (νt)0≤t≤T :=

(
(ν1t , ν

2
t , ..., ν

n
t )

)
0≤t≤T

is solution of the n-dimensional SDE de�ned by

νit = −
∫ t

0

xiν
i
sds+

∫ t

0

b(ν̂s)ds+

∫ t

0

σ(ν̂s)dWv(s), i = 1, ..., n, (7)

νi0 = 0.

Proof. We refer the reader to the proof of Proposition 2.1. in [5].
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Based on the approximate volatility process (6) and its Markov representation induced by SDEs (7),
we can de�ne the Markovian approximation of the stochastic control problem introduced in (3). First,
we consider the approximate processes (Sn

t )0≤t≤T for which its SDE can either be written in terms of the
approximate volatility process (ν̂t)0≤t≤T or in terms of its Markov representation. Thus, for t ∈ [0, T ], the
dynamic of (Sn

t )0≤t≤T is given by

dSn
t = µ̂tS

n
t dt+

√
ν̂tS

n
t dWS(t), (8)

but also by

dSn
t = µ̂tS

n
t dt+

√√√√ν0 +
n∑

i=1

wiνitS
n
t dWS(t), (9)

with µ̂t = r + Aν̂t = r + A

(
ν0 +

∑n
i=1 wiν

i
t

)
. In the same way, denoting the approximate hedging process

by (ξnt )0≤t≤T , we de�ne the associated hedging portfolio (V n
t )0≤t≤T satisfying the following SDE

dV n
t = r(V n

t − ξnt S
n
t )dt+ ξnt dS

n
t , (10)

V n
0 = v,

where (ξnt )0≤t≤T is admissible if (ξnt )0≤t≤T is a progressively measurable process in regards to Ft such that

E(
∫ T

0
(ξnt )

2(Sn
t )

2ν̂tdt) < +∞. The approximate P&L is de�ned by

πn
T := V n

T −Hn
T , (11)

and as the market is incomplete,

∄(ξnt )0≤t≤T ∈ Rn s.t. πn
T = 0 a.s. ,

where Rn the set of all progressively measurable processes (ξnt )0≤t≤T with regards to Ft valued in R such

that E(
∫ T

0
(ξnt )

2(Sn
t )

2ν̂tdt) < +∞. Thus, we introduce the approximate partial hedging problem that can
be written either by considering the dependence on the approximate volatility process (ν̂t)0≤t≤T or the
dependence on its Markovian representation. In fact, by considering the dynamic (8) of (Sn

t )0≤t≤T written
in terms of (ν̂t)0≤t≤T , we de�ne the stochastic control problem

ln(t, s, ν, v) := inf
ξnt ∈Rn

E

(
L(h(Sn

T ), V
n
T )|Sn

t = s, ν̂t = ν, V n
t = v

)
. (12)

Considering now the dynamic (9) of (Sn
t )0≤t≤T written in terms of (νt)0≤t≤T , we have the Markovian

stochastic control problem

ln(t, s,ν, v) := inf
ξnt ∈Rn

E

(
L(h(Sn

T ), V
n
T )|Sn

t = s,νt = ν, V n
t = v

)
(13)

such that
ln(t, s, ν, v) = ln(t, s,ν, v).

Thanks to the approximation of the volatility process (6) and its Markov representation, we obtain a Marko-
vian framework in which we solve the stochastic control problem (13) using the principle of dynamic pro-
gramming. Nevertheless, before solving the control problem, it is interesting to consider the question of
convergence of the approximate solution ln(.) toward l(.). Indeed, without proof of convergence, solving the
approximate problem would be pointless, this is why we dedicate a section to this issue.

4 Convergence results

In this section, we prove a convergence between the approximate solution ln(.) and l(.). The �rst step is
to prove the almost sure convergence of the approximate volatility process (ν̂t)0≤t≤T to (νt)0≤t≤T , to prove
it we rely on [2]. First, under speci�c assumptions on the weights (wi)i=1,...,n and mean reversion terms

(xi)i=1,...,n, we can prove that Ĝ converges to G in L2.
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Assumption 2. Suppose that the weights (wi)i=1,...,n and mean reversion terms (xi)i=1,...,n are given by

wi =

∫ ηi

ηi−1

λ(dx), xi =
1

wi

∫ ηi

ηi−1

x λ(dx), i = 1, ..., n,

with (ηi)i=1,...,n auxiliary mean reversion terms such that

0 = η0 ≤ x1 ≤ η1 ≤ x2 ≤ η2 < ... < xn ≤ ηn,

and as n goes to in�nity

ηn → +∞,
n∑

i=1

∫ ηi

ηi−1

(xi − x)2 λ(dx) → 0.

Remark. As shown in [2], Assumption 2 is satis�ed if we consider auxiliary mean reversion terms (ηi)i=1,...,n

of the form

ηi = i× n− 1
5

T

(√
10(1− 2H)

5− 2H

)
, i = 1, ..., n.

Therefore, without loss of generality, we consider this form of auxiliary mean reversion terms in the numerical
results.

Proposition 3. (Proposition 3.3 in [2]) Suppose that for all n ≥ 1, (wi)i=1,...,n and (xi)i=1,...,n satisfy

Assumption 2 and that Ĝ is de�ned by (5). Then Ĝ converges in L2[0, T ] to G when n goes to in�nity i.e.

||Ĝ−G||L2 → 0.

Proof. We refer to [2] for the proof.

Based on this proposition, we now establish a convergence of the approximate volatility process ν̂t toward
νt.

Theorem 4. Assume that n ≥ 1, (wi)i=1,...,n and (xi)i=1,...,n satisfy Assumption 2, Ĝ is de�ned by (5) and
that there exists positive constant δ and C such that

sup
n≥1

(∫ h

0

|Ĝ(s)|2ds+
∫ T−h

0

|Ĝ(h+ s)− Ĝ(s)|2ds
)

≤ Ch2δ,

for any t, h ≥ 0 with t+ h ≤ T, then
ν̂t

a.s.−−→ νt

as n goes to in�nity.

Proof. The proof is an immediate consequence of Theorem 3.6. in [2] for one dimension. We just need to
check that ∫ T

0

|G(s)− Ĝ(s)|2ds → 0, ν̂0 → ν0

as n goes to in�nity. The �rst convergence is obtained by Proposition 3 since assumptions of this proposition
are full�lled, we know that Ĝ converges in L2[0, T ] to G, therefore, we have that∫ T

0

|G(s)− Ĝ(s)|2ds → 0.

Similarly, the second convergence is direct since, by de�nition, we consider for all n ≥ 1,

ν̂0 = ν0.

As the assumption of Theorem 3.6 in [2] are valid for one dimension, we can conclude that ν̂ is tight for the
uniform topology and any point ν is solution of the Voltera equation (1) and thus

ν̂t
L−→ νt,

as n goes to in�nity. Moreover, by the Skorokhod representation theorem, as convergence in law implies
almost sure convergence on a suitable probability space, we �nally obtain that

ν̂t
a.s.−−→ νt,

as n goes to in�nity.
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Now that we establish a convergence for the volatility process, we can go a step further and show that
the approximate processes (Sn

t )0≤t≤T and (V n
t )0≤t≤T converge almost surely respectively toward (St)0≤t≤T

and (Vt)0≤t≤T .

Proposition 5. Assume that assumptions of Therorem 4 are ful�lled and consider the approximate processes
(Sn

t )0≤t≤T and (V n
t )0≤t≤T satisfying SDEs (8) and (10) such that ∀t ∈ [0, T ], ξnt = ξt a.s., then we have the

following convergence results
Sn
t

a.s.−−→ St,

V n
t

a.s.−−→ Vt,

as n goes to in�nity.

Proof. The proof is provided in Appendix.

With Proposition 5, we have shown that approximate processes converge to the rough volatility dependent
processes. Using these results, we are now able to show the convergence of the approximate solution to the
solution of the control problem under rough volatility. To do so, inspired by [6], we de�ne lξ(t, s, ν, v) and
lξ

n

n (t, s, ν, v) by

lξ(t, s, ν, v) := Et,s,ν,v

(
L(h(ST ), VT (ξ))

)
:= E

(
L(h(ST ), VT (ξ))|St = s, νt = ν, Vt = v

)
,

lξ
n

n (t, s, ν, v) := Et,s,ν,v

(
L(h(Sn

T ), V
n
T (ξn))

)
:= E

(
L(h(Sn

T ), V
n
T (ξn))|Sn

t = s, ν̂t = ν, V n
t = v

)
,

such that

l(t, s, ν, v) = inf
ξt∈R

lξ(t, s, ν, v),

ln(t, s, ν, v) = inf
ξnt ∈Rn

lξ
n

n (t, s, ν, v).

We �rst consider a lemma before before stating the convergence result we wish to achieve.

Lemma 6. Assume that assumptions of Therorem 4 are ful�lled and �x admissible hedging strategies (ξt)0≤t≤T ,

(ξnt )0≤t≤T such that ∀t ∈ [0, T ], ξnt = ξt a.s., if the sequence

(
L(h(Sn

T ), V
n
T )

)
n≥1

is uniformly integrable,

then
lξn(t, s, ν, v) −→ lξ(t, s, ν, v),

as n goes to in�nity.

Proof. Using Proposition 5, since we assume that ∀t ∈ [0, T ], ξnt = ξt a.s., we have that

Sn
t

a.s.−−→ St,

V n
t

a.s.−−→ Vt,

as the loss function L(.) and h(.) are continous, we deduce that

L(h(Sn
T ), V

n
T )

a.s.−−→ L(h(ST ), VT ),

and the uniform integrability of

(
L(h(Sn

T ), V
n
T )

)
n≥1

implies that

Et,s,ν̂,v

(
L(h(Sn

T ), V
n
T )

)
−→ Et,s,ν,v

(
L(h(ST ), VT )

)
.

Therefore, we have proved the statement

lξn(t, s, ν, v) −→ lξ(t, s, ν, v).
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We are now able to consider the statement of desired convergence result.

Theorem 7. Let (ξn ∗
t )0≤t≤T be the optimal hedging ratio associated to the n−approximate stochastic control

problem (13). ∀t ∈ [0, T ], for every ε > 0, ∃N ∈ N, such that ∀n ≥ N,

|l(t, s, ν, v)− lξ
n ∗

(t, s, ν, v)| < ε,

i.e.
lim

n→+∞
lξ

n ∗
(t, s, ν, v) = l(t, s, ν, v).

Moreover
lim

n→+∞
ln(t, s, ν, v) = lim

n→+∞
ln(t, s,ν, v) = l(t, s, ν, v).

Proof. Let �x ε > 0 and t ∈ [0, T ]. Suppose that (ξn ∗
t )0≤t≤T is the optimal hedging ratio associated to the

n−approximate stochastic control problem (13), as ∀n ∈ N,

ln(t, s, ν, v) = ln(t, s,ν, v),

then we have that
ln(t, s, ν, v) = lξ

n ∗

n (t, s, ν, v).

Using Lemma 6, we have that

lim
n→∞

ln(t, s, ν, v) = lim
n,m→∞

lξ
n ∗

m (t, s, ν, v)

= lim
n→∞

lξ
n ∗

(t, s, ν, v)

or equivalently

lim
n→∞

(
ln(t, s, ν, v)− lξ

n ∗
(t, s, ν, v)

)
= 0. (14)

Therefore by de�nition of the limit, ∃N1 ∈ N, such that ∀n ≥ N1,

|ln(t, s, ν, v)− lξ
n ∗

(t, s, ν, v)| < ε

2
. (15)

Moreover, considering l(t, s, ν, v) de�ned by

l(t, s, ν, v) := lim
n→∞

ln(t, s, ν, v) = lim
n→∞

inf
ξnt ∈Rn

lξ
n

n (t, s, ν, v),

thus ∃N2 ∈ N, such that ∀n ≥ N2,

|l(t, s, ν, v)− ln(t, s, ν, v)| ≤
ε

2
(16)

Note that since

l(t, s, ν, v) = inf
ξt∈R

lim
n→∞

E

(
L(h(Sn

T ), V
n
T )|Sn

t = s, ν̂t = ν, V n
t = v

)
,

we have that
l(t, s, ν, v) ≥ l(t, s, ν, v).

By choosing N := max(N1, N2), we have that for n ≥ N inequalities (15) and (16) are satis�ed. In this case,
we have that

|l(t, s, ν, v)− lξ
n ∗

(t, s, ν, v)| ≤ |l(t, s, ν, v)− lξ
n ∗

(t, s, ν, v)|
≤ |l(t, s, ν, v)− ln(t, s, ν, v)|︸ ︷︷ ︸

< ε
2

+ |ln(t, s, ν, v)− lξ
n ∗

(t, s, ν, v)|︸ ︷︷ ︸
< ε

2

< ε.

Therefore, ∃N ∈ N such that ∀n ≥ N ,

|l(t, s, ν, v)− lξ
n ∗

(t, s, ν, v)| < ε

8



or equivalently
lim

n→+∞
lξ

n ∗
(t, s, ν, v) = l(t, s, ν, v).

Moreover, using (14), we deduce that ∀t ∈ [0, T ],

lim
n→+∞

ln(t, s,ν, v) = lim
n→+∞

ln(t, s, ν, v) = lim
n→+∞

lξ
n ∗

(t, s, ν, v)

= l(t, s, ν, v).

This completes the proof as we have proved the two stated convergence results.

These convergence results are crucial for the following. On the one hand, it means that the optimal
hedging ratio (ξn ∗

t )0≤t≤T associated to the n−approximate stochastic control problem (13) is ε−optimal for
the original problem. One the other hand, we know that the solution of the approximate control problem
ln(.) converges toward the solution of the initial control problem l(.). Therefore, thanks to these results, we
know that instead of solving the original non-Markovian problem, we can solve the approximate Markovian
problem with an error that can be relatively small if n is large enough.

5 Solution of the approximate Markovian problem

We have just shown that we can solve the optimal problem with a small error by solving the Markovian
problem. In this section, we thus solve this problem using classical dynamic programming techniques and
more precisely the Hamilton-Jacobi-Bellman (HJB) equation. The Markovian problem is equivalent to solving
a partial hedging problem in a multidimensional stochastic volatility environment. The partial hedging
problem under stochastic (one dimensional) volatility model has already been investigated in the literature
by [29]. It follows that the problem requires solving a nonlinear partial di�erential equation and therefore
the solution cannot be reduced to an expectation by the Feynman-Kac theorem. In our multidimensional
volatility case, we will also observe that the control problem involves solving a nonlinear PDE making it quite
complex and not allowing to deduce an explicit form of the optimal solution. Inspired by [31], we propose a
dual control method to obtain approximate solutions of the problem.

Recall that we de�ne the approximate partial hedging problem by a Markovian stochastic control problem
of the form:

ln(t, s,ν, v) = inf
ξnt ∈Rn

E

(
L(h(Sn

T ), V
n
T )|Sn

t = s,νt = ν, V n
t = v

)
, (17)

where Rn the set of all progressively measurable processes (ξnt )0≤t≤T with regards to Ft valued in R such

that E(
∫ T

0
(ξnt )

2(Sn
t )

2ν̂tdt) < +∞. As the stochastic control problem (17) is Markovian, we can solve it
using the HJB equation. Assuming that ln(t, s,ν, v) is locally bounded on [0, T )×R2+n and the hamiltonian
associated to the problem (17) is �nite and upper semicontinous on [0, T ) × R2+n × R2+n × S2+n, classic
results from dynamic programming (see Theorem 7.4. in [35]) imply that ln(t, s,ν, v) is the viscosity solution
of the following HJB1:

−∂tln− inf
ξn∈R

{
∂sln µ̂s+

n∑
i=1

∂νi ln

(
− xiνi + b(ν̂)

)
+ ∂vln

(
rv + (µ̂− r) ξns

)

+
1

2
∂ssln ν̂s2 +

1

2
∂vvln (ξn)2 ν̂s2 +

1

2

n∑
i=1

n∑
j=1

∂νiνj
ln σ2(ν̂) + ∂svln ξn ν̂s2

+ρ

n∑
i=1

∂νisln
√
ν̂s σ(ν̂) + ρ

n∑
i=1

∂νivln ξn
√
ν̂s σ(ν̂)

}
= 0,

ln(T, s, ν, v) = L

(
h(s), v

)
. (18)

Proposition 8. The primal optimal control (ξn ∗
t )0≤t≤T is given by

ξn ∗
t = −

∂vln (µ̂t − r)Sn
t + ∂svln ν̂t(S

n
t )

2 + ρ
∑n

i=1 ∂νivln
√
ν̂tS

n
t σ(ν̂t)

∂vvln ν̂t(Sn
t )

2

1For the sake of clarity, we write ln instead of ln(t, s,ν, v) and ν̂ instead of ν0 +
∑n

i=1 wiνi

9



with ν̂t = ν0 +
∑n

i=1 wiν
i
t and the associated solution ln(.) solves a nonlinear PDE of the form

∂tln + Ls,ν ln −

(
∂vln (µ̂− r)s+ ∂svln ν̂s2 + ρ

∑n
i=1 ∂νivln

√
ν̂s σ(ν̂)

)2

2∂vvln ν̂s2
= 0, (19)

with Ls,ν the generator associated to Sn and ν.

Proof. To deduce the optimal control associated to the Markovian control problem, we solve the HJB equation
(18). The HJB equation has a solution if the in�mum is di�erent from −∞, it is the case if ∂vvln ≥ 0. In
this case, assuming that ∂vvln ≥ 0, the in�mum is obtained by the �rst order condition i.e. by cancelling the
derivative of the function with respect to ξn. Therefore, the optimal ξn denoted by ξn ∗ is such that

∂vvln ξnν̂s2 + ∂vln (µ̂− r)s+ ∂svln ν̂s2 + ρ
n∑

i=1

∂νivln
√
ν̂s σ(ν̂) = 0,

we deduce that

ξn ∗ = −
∂vln (µ̂− r)s+ ∂svln ν̂s2 + ρ

∑n
i=1 ∂νivln

√
ν̂s σ(ν̂)

∂vvln ν̂s2
.

Plugging the optimal control into the HJB equation and consider the generator Ls,ν de�ned by

Ls,ν := ∂s µ̂s+
n∑

i=1

∂νi

(
− xiνi + b(ν̂)

)
+

1

2
∂ss ν̂s

2 +
1

2

n∑
i=1

n∑
j=1

∂νiνj
σ2(ν̂) + ρ

n∑
i=1

∂νis

√
ν̂s σ(ν̂),

the optimal solution satis�es the nonlinear PDE given by

∂tln + Ls,ν ln −

(
∂vln (µ̂− r)s+ ∂svln ν̂s2 + ρ

∑n
i=1 ∂νivln

√
ν̂s σ(ν̂)

)2

2∂vvln ν̂s2
= 0.

The PDE satis�ed by the optimal solution is nonlinear, therefore we cannot reduce ln as an expectation
using Feynman-Kac theorem. The dual problem is a way to overcome this nonlinearity problem as it usually
allows to transform a nonlinear PDE into a linear one. In our problem, the dual transformation does not
allow to obtain a linear PDE. Nevertheless, we still consider the dual approach as it will allow to deduce
approximate solutions to our problem by applying a dual control method. To this end, we apply the Legendre-
Fenchel transform to the problem (17) and consider the concave dual l̂n(.) of ln(.) with respect to the variable
v as the opposite of the Legendre-Fenchel transform, such that

l̂n(t, s,ν, z) :=− sup
v
{zv − ln(t, s,ν, v)},

= inf
v
{ln(t, s,ν, v)− zv}.

We observe that as ln(t, s,ν, v) is convex in v then l̂n(t, s,ν, z) is concave in z. We also associate the terminal

value to the dual solution l̂n given by

l̂n(T, s,ν, z) = L̂(h(s), z).

Based on the PDE satis�ed by the primal solution ln(t, s,ν, v), we deduce the PDE satis�ed by l̂n(t, s,ν, z).

Proposition 9. The dual solution l̂n(t, s,ν, z) satis�es the nonlinear PDE

0 =∂t l̂n + Ls,ν l̂n − zr∂z l̂n +
1

2ν̂s2
z2 (µ̂− r)2s2∂zz l̂n − z (µ̂− r)s∂sz l̂n,

− 1√
ν̂
ρ

n∑
i=1

∂νiz l̂n z (µ̂− r)σ(ν̂)− 1

2∂zz l̂n
σ(ν̂)2(1− ρ2)

n∑
i=1

n∑
j=1

∂νiz l̂n∂νjz l̂n, (20)

with the associated terminal value l̂n(T, s,ν, z) = L̂(h(s), z). Moreover, the optimal primal control (ξn ∗
t )0≤t≤T

can be expressed in term of dual solution as, for t ∈ [0, T ],

ξn ∗
t =

Zt ∂zz l̂n (µ̂t − r)Sn
t − ∂sz l̂n ν̂t(S

n
t )

2 − ρ
∑n

i=1 ∂νiz l̂n
√
ν̂tS

n
t σ(ν̂t)

ν̂t(Sn
t )

2
. (21)

10



Proof. The proof is provided in Appendix.

Actually, the dual solution is the solution of a new stochastic control problem. To prove it, we introduce
the dual process (Zt)0≤t≤T controlled by the dual control process (γt)0≤t≤T and de�ned, for t ∈ [0, T ], by
the following SDE

dZt = −rZtdt− Zt
(µ̂t − r)√

ν̂t
dWS(t) + γtdBv(t),

where Bv is a standard brownian motion, independent from Ws de�ned such that for t ∈ [0, T ],

Wv(t) = ρWs(t) +
√

1− ρ2Bv(t).

The dual control process (γt)0≤t≤T is admissible if (γt)0≤t≤T is a progressively measurable and square inte-
grable process in regards to Ft. We now de�ne the dual stochastic control problem. In addition, we show
that there is no duality gap as the primal solution can be written in terms of the dual solution.

Proposition 10. The dual solution l̂n(t, s,ν, z) is solution of a stochastic control problem such that

l̂n(t, s,ν, z) = sup
γt∈D

Et,s,ν,z

(
L̂(h(Sn

T ), ZT )

)
,

with D be the set of all progressively measurable and square integrable processes in regards to Ft valued in R.
Moreover the optimal dual control (γ∗

t )0≤t≤T is given by

γ∗
t = −σ(ν̂t)

√
1− ρ2

n∑
i=1

∂νiz l̂n

∂zz l̂n
. (22)

Proof. Assume that l̂bisn (t, s, ν, z) is de�ned by

l̂bisn (t, s, ν, z) := sup
γt∈D

Et,s,ν,z

(
L̂(h(Sn

T ), ZT )

)
. (23)

We just have to prove that the HJB equation associated to l̂bisn matches the PDE (20). The HJB equation
associated to the control problem (23) is given by

0 = ∂t l̂
bis
n + Ls,ν̂ l̂

bis
n − zγr∂z l̂

bis
n + sup

γ∈R

{
1

2
∂zz l̂

bis
n

(
z2

(µ̂− r)2

ν̂2
+ γ2

)
−∂zs l̂

bis
n z

(µ̂− r)√
ν̂t

√
v̂s+

n∑
i=1

∂νiz l̂
bis
n

(
ρz

(µ̂− r)√
ν̂t

√
v̂s+

√
1− ρ2γσ(ν̂)

)}
,

l̂bisn (T, s, ν, z) = L̂(h(s), z).

The supremum is di�erent of +∞ if ∂zz l̂
bis
n ≤ 0. In this case, using the �rst order condition, the optimal dual

control (γ∗
t )0≤t≤T is given by

γ∗ = −
√
1− ρ2σ(ν̂)

∑n
i=1 ∂νiz l̂

bis
n

∂zz l̂bisn

.

Thus, the PDE satis�ed by l̂bisn becomes

0 =∂t l̂
bis
n + Ls,ν l̂

bis
n − z r∂z l̂

bis
n +

1

2
∂zz l̂

bis
n z2

(µ̂− r)2

ν̂2
− ∂zs l̂

bis
n z(µ̂− r)s

+
n∑

i=1

∂νiz l̂
bis
n ρ z

(µ̂− r)√
ν̂

σ(ν̂) s− 1

2∂zz l̂bisn

σ2(ν̂)(1− ρ2)
n∑

i=1

n∑
j=1

∂νiz l̂
bis
n ∂νjz l̂

bis
n , (24)

We can observe that (24) is exactly the same PDE as (20) and as the two PDE's have the same terminal
value, we can conclude that

l̂n(t, s,ν, z) = l̂bisn (t, s,ν, z) = sup
γt∈D

Et,s,ν,z

(
L̂(h(Sn

T ), ZT )

)
.

11



In this case, the optimal dual control is given by

γ∗
t = −

√
1− ρ2σ(ν̂t)

∑n
i=1 ∂νiz l̂n

∂zz l̂n
.

Proposition 11. By choosing z(t, s, v) solution of

∂z l̂n(t, s,ν, z) + v = 0, (25)

then
ln(t, s,ν, v) = l̂n(t, s,ν, z) + zv, (26)

with z = z(t, s,ν, v) the value at time t of the dual process (Zt)0≤t≤T .

Proof. Consider lbisn (t, s, ν, v) to be the dual of the dual solution and de�ned by

lbisn (t, s,ν, v) := sup
z

{
l̂n(t, s,ν, z) + zv

}
.

Our goal is to prove that the dual of the dual is the primal. First, using the �rst order condition since
l̂n(t, s,ν, z) is concave in z, we have that z(t, s,ν, v) is solution of

∂z l̂n(t, s,ν, z) + v = 0, (27)

in this case lbisn reduces to

lbisn (t, s,ν, v) = l̂n(t, s,ν, z) + zv

with z satisfying (27). Now, we just have to prove that lbisn (t, s,ν, v) = ln(t, s,ν, v). The proof of this equality
is similar to the proof of Proposition 9 this is why we have decided not to go into detail but it is easy to show
that lbisn (t, s,ν, v) satis�es the same PDE then the primal solution ln(t, s,ν, v) given by (19). Moreover, the
two PDEs have the same terminal value. In fact, we can rewrite the terminal value of lbisn as

Lbis(h(s), v) = sup
z

{
inf
v

(
L(h(s), v)− zv

)
+ zv

}
= sup

z

{
zv − sup

v

(
zv − L(h(s), v)

)}

As supv

(
zv − L(h(s), v)

)
is the Legendre transform of L(h(s), v), Lbis(h(s), v) is the Legendre transform

of the Legendre transform of L(h(s), v). By the Theorem of Fenchel-Moreau, as L(.) is a proper continous
convex function, we obtain that

Lbis(h(s), v) = L(h(s), v).

Therefore, as ln(t, s,ν, v) and lbisn (t, s,ν, v) satisfy the same PDE with the same terminal value, we conclude
that

lbisn (t, s,ν, v) = ln(t, s,ν, v).

Thus we obtain that given z(t, s,ν, v) is solution of

∂z l̂n(t, s,ν, z) + v = 0,

then
ln(t, s,ν, v) = l̂n(t, s,ν, z) + zv.

12



As the primal solution is a function of the dual solution, we can derive the primal solution in the case
where the dual solution admits a closed formula. However, in our case, we observe that by switching to the
dual problem, although the nonlinear term of the PDE is less important, the PDE (20) satis�ed by the dual

solution l̂n remains nonlinear. Thus, as the nonlinearity problem persists, we are not able, in general, to
express the dual solution as an expectation. The partial hedging problem is still complicated to solve. There
is nevertheless a speci�c case for which a closed formula of the dual solution can be obtained. Indeed, if we
consider a linear payo� de�ned as

H linear
T = α+ βST , (28)

a power loss function and a rough Heston model then the solution of the dual problem is obtained by
closed formula. This particular case is a toy case since most of payo�s are generally not linear functions of
the underlyings. However, it will allow to quantify the errors made when considering sub-optimal hedging
strategies deduced by the dual control method and therefore to benchmark this dual control approach.

Lemma 12. Suppose a power loss of the form L(h, v) = 1
p (h− v)p with p = 2n, n ∈ N0, then

L̂(h(s), z) = −1

q
zq − h(s) z,

with q = p
p−1 .

Proof. The proof is provided in Appendix.

Proposition 13. Consider a linear payo� H linear
T given by (28), a power loss of the form L(h(s), v) =

1
p (h(s) − v)p, suppose that the volatility is modeled by a rough Heston model such that b(x) = κ(θ − x) and

σ(x) = ζ
√
x . Therefore,

l̂n(t, s,ν, z) = −zq

q
exp

(
Ct +

n∑
i=1

Di
tν

i
t

)
−
(
e−r(T−t)α+ βSn

t

)
z,

where Ct and (Dt)i=1,..,n are time-dependent functions solution of Riccati ODEs given respectively by

∂tCt = rq − 1

2
q(q − 1)A2 ν0 −

n∑
i=1

Di
t

(
κ(θ − ν0)− qρAζ ν0

)
− 1

2

n∑
i=1

n∑
j=1

Di
tD

j
t ζ

2 ν0

(
1− (1− ρ2)

q

q − 1

)
,

CT = 0,

and for i = 1, .., n,

∂tD
i
t =xiD

i
t + wi

n∑
j=1

Dj
t (κ+ qρAζ)− 1

2
ζ2wi

n∑
j=1

n∑
k=1

Dj
tD

k
t

(
1− (1− ρ2)

q

q − 1

)
− 1

2
wi q(q − 1)A2,

Di
T =0.

Moreover, the primal solution is given by

ln(t, s,ν, v) = −Zq
t

q
exp

(
Ct +

n∑
i=1

Di
tν

i
t

)
−

(
e−r(T−t)α+ βSn

t

)
Zt + Zt V

n
t ,

with

Zt =

(
V n
t −

(
e−r(T−t)α+ βSn

t

)) 1
q−1

exp

(
− 1

q − 1
(Ct +

n∑
i=1

Di
tν

i
t)

)
and the associated optimal hedging ratio is such that

ξn ∗
t =

1

ν̂tSn
t

(
e−r(T−t)α+ βSn

t − V n
t

) (
1

p− 1
(µ̂t − r)− ρζν̂t

n∑
i=1

Di
t

)
+ β.

13



Proof. The full proof is in Appendix. Here is a summary of the steps in the proof. Firstly, to obtain the
form of l̂n(.), we just need to consider the following ansatz

l̂n(t, s,ν, z) = −zq

q
exp

(
Ct +

n∑
i=1

Di
tν

i
t

)
+

(
e−r(T−t)α+ βs

)
z,

and plug it into PDE (20). Then using the form of l̂n(.) and the relation (26) between the primal and the
dual, we deduce the form of ln(.). Finally, the form of the optimal heding ratio is deduced using the form
(21) of ξn ∗

t and the closed form of the dual solution.

Remark. Using the same assumptions as Proposition 13 but instead of the rough Heston model, consider the
classical Heston model, i.e. n = 1, then Ct and Dt admit closed formulas.

To approximate the solution of our problem for general payo�s, we rely on the expression of the primal
as a function of the dual. For that, de�ne a set U ⊆ R such that U is a convex compact subset of R with
non-empty interior and denote U a set of progressively measurable and square integrable processes valued in
U such that U ⊆ D. Using the relation between the primal and the dual solution, we deduce that

ln(t, s,ν, v) = sup
z

{
sup
γt∈D

Et,s,ν,z

(
L̂(h(Sn

T ), ZT )

)
+ zv

}
≥ sup

z

{
sup
γt∈U

Et,s,ν,z

(
L̂(h(Sn

T ), ZT )

)
+ zv

}
. (29)

Based on inequality (29) and inspired by the dual control method stated in [31], we will de�ne lower and upper
bounds for the primal solution of the Markov partial hedging problem. For that, for every �xed admissible
dual control (γt)0≤t≤T , we de�ne

Y (t, s,ν, z; γ) := Et,s,ν,z

(
L̂(h(Sn

T ), ZT (γ) )

)
, (30)

We derive now a theorem that states how to deduce upper and lower bounds for the primal solution.

Theorem 14. Let U ⊆ D be a set of admisible dual controls and de�ne l̂
U
n (t, s,ν, z) by

l̂
U
n (t, s,ν, z) := sup

γt∈U
Y (t, s,ν, z; γ) ≤ l̂n(t, s,ν, z).

Therefore, de�ning lUn (t, s,ν, v) by

lUn (t, s,ν, v) := sup
z

{
l̂
U
n (t, s,ν, z) + zv

}
,

we have that
lUn (t, s,ν, v) ≤ ln(t, s,ν, v).

Moreover, suppose that l̂
U
n (t, s,ν, v) is twice continously di�erentiable, stricly concave and z(t, s,ν, v) is the

solution of

∂z l̂
U
n (t, s,ν, z) + v = 0. (31)

We de�ne the primal control by ξ̄Un (t, s,ν, z) such that

ξ̄Un (t, s,ν, z) =
z ∂zz l̂

U
n (µ̂− r)s− ∂sz l̂

U
n ν̂s2 − ρ

∑n
i=1 ∂νiz l̂

U
n

√
ν̂s σ(ν̂)

ν̂s2
, (32)

with z = z(t, s,ν, v) solution of (31) and we consider the associated self-�nancing portfolio denoted by
(V̄ U

t )0≤t≤T . If we de�ne

l̄Un (t, s,ν, v) := Et,s,ν̂,v

(
L(h(Sn

T ), V̄
U
T )

)
,

then the primal solution satis�es
ln(t, s,ν, v) ≤ l̄n(t, s,ν, v).

Therefore, we obtain lower and upper bounds for the primal solution such that

lUn (t, s,ν, v) ≤ ln(t, s,ν, v) ≤ l̄Un (t, s,ν, v).

14



Proof. The proof is almost direct. Fix a set of admissible dual controls U ⊆ D, as

l̂n(t, s,ν, z) = sup
γt∈D

Et,s,ν,z

(
L̂(h(Sn

T ), ZT (γ) )

)
,

= sup
γt∈D

Y (t, s,ν, z; γ),

we immediately obtain that

l̂
U
n (t, s,ν, z) ≤ l̂n(t, s,ν, z).

Moreover, we observe that

ln(t, s,ν, v) = sup
z

{
l̂n(t, s,ν, v) + zv

}
≥ sup

z

{
l̂
U
n (t, s,ν, v) + zv

}
:= lUn (t, s,ν, v).

The inequality of the upper bound is obvious since using the de�nition of the optimal solution,

ln(t, s,ν, v) = inf
ξnt ∈Rn

Et,s,ν,v

(
L(h(Sn

T ), V
n
T )

)
≤ Et,s,ν,v

(
L(h(Sn

T ), V̄
U
T )

)
= l̄Un (t, s,ν, v).

Therefore, we prove
lUn (t, s,ν, v) ≤ ln(t, s,ν, v) ≤ l̄Un (t, s,ν, v).

Remark. The way we de�ne the upper bound is di�erent than in [31], we have made this choice in order
to prove a convergence result of the bounds toward the primal solution when considering large dual control
subsets U . Note also that the approximate hedging ratio ξ̄Un (t, s,ν, z) de�ned by (32) has the same form as
the optimal hedging ratio ξn ∗

t de�ned in (21) with the di�erence that we consider the subset of admissible
dual control U instead of D.

Theorem 14 is important since it allows to approximate the primal by di�erent sub-optimal choices of
dual controls and thus, enables to easily deduce sub-optimal hedging strategies that can be computed relying
on Monte Carlo simulations. Note that there is a wide range of possible subset choices, but depending on
the choice of the subset U , the computation time of the bounds can be quite substantial. We refer to [31] for
the algorithm allowing to compute the bounds via a Monte Carlo approach. In this paper, we decide to only
focus on a particular dual control subset that allows to express explicit formulas for the lower bound and the
approximate hedging ratio. We discuss later the choice of the dual control subset.

Theorem 14 introduces a sub-optimal hedging strategy associated with the approximate hedging ratio ξ̄Un (t, s,ν, z)
and the upper bound l̄Un (t, s,ν, v) that can be implemented in practice and for which we can obtain a bound
on the error made by considering this strategy instead of the optimal since:

|l̄Un (t, s,ν, v)− ln(t, s,ν, v)| ≤ |l̄Un (t, s,ν, v)− lUn (t, s,ν, v)|
:= CU

UL.

Note that CU
UL only depends on the set U and not necessary on n. In practice, by computing upper and

lower bounds, we can deduce an upper bound on the error between the dual control approximate solution
and the optimal solution of the Markov problem. Therefore, it enables to verify that the error is acceptable
and that the proposed dual control method is relevant. Moreover, we show that if we consider a set sequence
of admissible dual control (Ui)i∈N such that Ui ⊆ Ui+1 and limi→+∞ Ui = D then the approximate solution
of the Markov problem also converges to the primal solution.
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Proposition 15. Consider a compact set sequence of admissible dual controls (Ui)i∈N such that Ui ⊆ Ui+1

with limi→+∞ Ui = D and the associated sequence of functions

(
l̂
Ui

n (.)

)
i∈N

twice continously di�erentiable

with second derivatives that converge uniformly in R, then ∀t ∈ [0, T ], ∀n ∈ N,

lim
i→+∞

|l̄Ui
n (t, s,ν, v)− lUi

n (t, s,ν, v)|︸ ︷︷ ︸
=C

Ui
UL

= 0,

i.e.
lim

i→+∞
l̄Ui
n (t, s,ν, v) = ln(t, s,ν, v).

Proof. Consider a compact set sequence of admissible dual controls (Ui)i∈N such that Ui ⊆ Ui+1 and

limi→+∞ Ui = D and �x n ∈ N. First, we can show the convergence of l̂
Ui

n (t, s,ν, v) toward l̂n(t, s,ν, v).
In fact, as for i ∈ N, Ui ⊆ Ui+1, we have that ∀t ∈ [0, T ],

l̂
Ui

n (t, s,ν, z) ≤ l̂
Ui+1

n (t, s,ν, z) ≤ l̂Dn (t, s,ν, z),

and as (Ui)i=1,...,n is a sequence of compact set, the in�mum fonction over Ui is continous for i ∈ N. Thus
taking the limit of i → +∞, we have that ∀t ∈ [0, T ],

lim
i→+∞

l̂
Ui

n (t, s,ν, z) = l̂n(t, s,ν, z).

In this case, we deduce the convergence of the lower bound of the primal solution toward the primal solution
since ∀t ∈ [0, T ],

lim
i→+∞

lUi
n (t, s,ν, v) = lim

i→+∞

(
sup
z

{
l̂
Ui

n (t, s,ν, z) + zv

})
= sup

z

{
lim

i→+∞
l̂
Ui

n (t, s,ν, z) + zv

}
= sup

z

{
l̂n(t, s,ν, z) + zv

}
= ln(t, s,ν, v).

It remains to show the convergence of the upper bound to the primal solution. For this purpose, we need to
show that the approximate hedge ratio converges to the optimal hedge ratio. As the sequence of functions(
l̂
Ui

n (.)

)
i∈N

is twice continously di�erentiable with second derivatives that converge uniformly in R, standard

result in Analysis states that ∀t ∈ [0, T ],

lim
i→+∞

ξ̄Ui
n (t, s,ν, z) = lim

i→+∞

z ∂zz l̂
Ui

n (µ̂− r)s− ∂sz l̂
Ui

n ν̂s2 − ρ
∑n

i=1 ∂νiz l̂
Ui

n

√
ν̂s σ(ν̂)

ν̂s2

=
z ∂zz l̂n (µ̂− r)s− ∂sz l̂n ν̂s2 − ρ

∑n
i=1 ∂νiz l̂n

√
ν̂s σ(ν̂)

ν̂s2

= ξ∗n(t, s,ν, z),

with z = z(t, s,ν, v) solution of

lim
i→∞

∂z l̂
Ui

n (t, s,ν, z)︸ ︷︷ ︸
=∂z l̂n(t,s,ν,z)

+v = 0.

Using similar arguments as for the proof of Proposition 5 and Lemma 6, we deduce that almost surely

V̄ Ui

T → V n ∗
T ,

as i goes to in�nity and then ∀t ∈ [0, T ],

lim
i→+∞

l̄Ui
n (t, s,ν, v) = ln(t, s,ν, v).
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We therefore conclude that ∀t ∈ [0, T ],

lim
n→+∞

(
l̄Ui
n (t, s,ν, v)− lUi

n (t, s,ν, v))

)
= ln(t, s,ν, v)− ln(t, s,ν, v)

= 0.

That concludes the proof since we prove the stated proposition.

The previous proposition shows that if we consider a large enough set of admissible dual controls, the
approximate solution converges to the primal solution of the Markov problem. In practice, we observe that
even if the set of admissible dual controls U is small, the error is small, which seems to show that the choice
of the dual control does not signi�cantly impact the value of the primal solution.

Let's go back to the original hedging problem under rough volatility, the initial control problem posed was

l(t, s, ν, v) = inf
ξt∈R

E

(
L(h(ST ), VT )|St = s, νt = ν, Vt = v

)
.

The proposed approximate solution l̄Un (t, s,ν, v) is a two-fold approximate solution, on the one hand by the
Markov discretization of the volatility process and on the other hand by the sub-optimal choice of the dual
control. However, we can show that the error with respect to the optimal solution of the initial problem can
be small if n and U are large enough, this is the purpose of the following proposition.

Proposition 16. Consider a compact set sequence of admissible dual controls (Ui)i∈N and the associated

sequence of functions

(
l̂
Ui

n (.)

)
i∈N

satisfying assumptions of Proposition 15. ∀t ∈ [0, T ], ∀ε > 0, ∃N ∈ N,

such that ∀ n ≥ N , ∃M ∈ N such that ∀i ≥ M,

|l(t, s, ν, v)− l̄Ui
n (t, s,ν, v)| < ε

and
|l(t, s, ν, v)− lξ̄

Ui
n (t, s,ν, v)| < ε.

It means that the approximate hedging ratio ξ̄n
Ui associated to l̄Ui

n (t, s,ν, v) is ε−optimal for the original
problem.

Proof. The proof is almost direct. Fix ε > 0 and t ∈ [0, T ], from Theorem 7, we know that ∃N ∈ N such
that ∀n ≥ N ,

|l(t, s, ν, v)− ln(t, s,ν, v)| <
ε

2
,

and
|l(t, s, ν, v)− lξn(t, s,ν, v)| < ε

2
.

Moreover, from Proposition 15, we have that ∀n ∈ N, ∃M1 ∈ N such that ∀i ≥ M1,

|ln(t, s,ν, v)− l̄Ui
n (t, s,ν, v)| < ε

2
,

and since almost surely ξ̄Ui
n (t) → ξn(t) as i → +∞, we deduce using a similar argument as in Lemma 6 that

∀t ∈ [0, T ], ∀n ∈ N, ∃M2 ∈ N such that ∀i ≥ M2,

|lξn(t, s,ν, v)− lξ̄
Ui
n (t, s,ν, v)| < ε

2
.

Therefore choosing M := max(M1,M2), we know that ∀n ≥ N , ∃M ∈ N such that ∀i ≥ M,

|l(t, s, ν, v)− l̄Ui
n (t, s,ν, v)| =|l(t, s, ν, v)− ln(t, s,ν, v) + ln(t, s,ν, v)− l̄Ui

n (t, s,ν, v)|
≤|l(t, s, ν, v)− ln(t, s,ν, v)|+ |ln(t, s,ν, v)− l̄Ui

n (t, s,ν, v)|
<ε,

and
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|l(t, s, ν, v)− lξ̄
Ui
n (t, s,ν, v)| = |l(t, s, ν, v)− lξn(t, s,ν, v) + lξn(t, s,ν, v)− lξ̄

Ui
n (t, s,ν, v)|

≤ |l(t, s, ν, v)− lξn(t, s,ν, v)|+ |lξn(t, s,ν, v)− lξ̄
Ui
n (t, s,ν, v)|

< ε.

The result of Proposition 16 is of course a theoretical result. It is not necessarily satis�ed if, for example,
we only consider a single set of dual control U and not a sequence of dual control set. Nevertheless, if n and
the dual control set U are large enough then the error with respect to the original problem should be quite
small. In practice, for a �xed set of dual control U , the error is controlled by the number of factors n and
the gap CU

UL between lower and upper bounds.

Appropriate choice of the dual control subset U ⊆ D
Now, we consider a particular subset of dual controls for which explicit formulas can be obtained. Thus for
the following, the dual control subset considered is de�ned as

U =

{
(γt)0≤t≤T =

(
c× Zt × σ(ν̂t)

)
0≤t≤T

, c ∈ U ⊆ R
}

⊆ D. (33)

We notice that the chosen form of the dual controls belonging to U is similar to the form of the optimal
dual control (22). This particular subset (33) enables to interpret the sub-optimal hedging strategy as well
as obtain closed forms for the lower bound and the approximate hedging ratio. First, assuming this subset
of admissible dual control, we observe that

lUn (t, s,ν, v) = sup
z

{
sup
γt∈U

Y (t, s,ν, z; γ) + zv

}
= sup

z

{
max
c∈U

Y (t, s,ν, z; c) + zv

}
(34)

= max
c∈U

sup
z

{
Y (t, s,ν, z; c) + zv

}
. (35)

De�ning, for c ∈ U , ln(t, s,ν, z; c) by

ln(t, s,ν, v; c) := sup
z

{
Y (t, s,ν, z; c) + zv

}
,

we have that
lUn (t, s,ν, v) = ln(t, s,ν, v; c

∗)

with
c∗ := argmax

c∈U
ln(t, s,ν, v; c).

In this case, the sub-optimal hedging strategy V̄ U
t is easily interpreted as a perfect hedging strategy of a

modi�ed payo�. This is similar to the idea of [15, 16] who present partial hedging strategies as perfect
hedging of knock-out options.

Proposition 17. If we consider a subset of admissible dual control U of the form (33) then

V̄ U
t = E

Q(c∗)
t,s,ν,z

(
e−r(T−t)

(
− ∂ZT

L̂(h(Sn
T ), ZT (c

∗))

) )
,

where (Q(c))c∈U called �risk-neutral� measures are P−equivalent measures such that the processes have the
following dynamics

dSn
t = rSn

t +
√
ν̂tS

n
t dW

Q(c)
s (t),

dνit =

(
− xiν

i
t + b(ν̂t) + σ(ν̂t)

(
− ρ

(µ̂t − r)√
ν̂t

+
√
1− ρ2c σ(ν̂t)

) )
dt+ σ(ν̂t)dW

Q(c)
v (t), i = 1, ..., n,
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dZt = Zt

((
− r +

(µ̂t − r)

ν̂t

2

+ c2σ2(ν̂t)

)
dt− (µ− r)√

ν̂t
dW

Q(c)
S (t) + c σ(ν̂t)dB

Q(c)
v (t)

)
where W

Q(c)
s , W

Q(c)
v are standard brownian motions under Q(c)−measure with d < W

Q(c)
s ,W

Q(c)
v >t= ρ dt

and B
Q(c)
v is a standard brownian motion, independent from W

Q(c)
s de�ned such that for t ∈ [0, T ],

WQ(c)
v (t) = ρWQ(c)

s (t) +
√
1− ρ2BQ(c)

v (t).

In particular, for a power loss function of the form L(h(s), v) = 1
p (h(s)− v)pwith p = 2n, n ∈ N0, the value

sub-optimal hedging portfolio is given by

V̄ U
t = E

Q(c∗)
t,s,ν,z

(
e−r(T−t)

(
Hn

T + Zq−1
T

))
,

with q = p
p−1 .

Proof. From the Theorem 14, we know, using (31), that, at time t, z = z∗ with z∗ solution of

v = −∂z l̂
U
n (t, s,ν, z),

Thus, by (34), we have that
lUn (t, s,ν, v) = Y (t, s,ν, z∗; c∗(z∗)) + z∗v,

with
c∗(z) := argmax

c∈U
Y (t, s,ν, z; c).

But using (35), we also have that

lUn (t, s,ν, v) = Y (t, s,ν, z∗(c∗); c∗) + z∗(c∗)v

with z∗(c) solution of
v = −∂zY (t, s,ν, z; c),

we conclude by unicity that, at time t, z = z∗ = z∗(c∗) and c∗(z∗) = c∗. Therefore, we obtain, at time t, the
following relation

V̄ U
t = −∂zEt,s,ν,z

(
L̂(h(Sn

T ), ZT (c
∗)

)
.

Using the theorem of exchanging expectation and derivative, we have that

V̄ U
t = Et,s,ν,z

(
− ∂Zt

L̂(h(Sn
T ), ZT (c

∗))

)
= Et,s,ν,z

(
− ∂ZT

L̂(h(Sn
T ), ZT (c

∗))× ∂Zt
ZT (c

∗)

)
.

But as, for t ∈ [0, T ], the dual control is given by γt = c× Zt × σ(ν̂t), c ∈ U, we have that

dZt(c) = Zt(c)

(
− rdt− (µ̂t − r)√

ν̂t
dWS(t) + c σ(ν̂t)dBv(t)

)
and therefore, for 0 ≤ t ≤ T,

ZT (c)

Zt(c)
= e−r(T−t) × exp

(
− 1

2

∫ T

t

(
(µ̂s − r)2

ν̂s
+ c2σ2(ν̂s)

)
ds−

∫ T

t

(µ̂s − r)√
ν̂s

dWS(s) +

∫ T

t

c σ(ν̂s)dBv(s)

)
︸ ︷︷ ︸

:=
dQ(c)
dP |Ft

.

Since

(
(µt−r)√

ν̂t
, c σ(ν̂t)

)
0≤t≤T

is a 2 dimensional vector of adapted and square integrable processes, using

Girsanov's Theorem, we can de�ne P−equivalent probability measures (Q(c))c∈U with change of measure

de�ned by dQ(c)
dP |Ft such that

dWQ(c)
s (t) =dWs(t) +

(µ̂t − r)√
ν̂t

dt,

dBQ(c)
v (t) =dBv(t)− c σ(ν̂t)dt.
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Therefore, dynamics of processes under the Q(c)−measure are given by

dSn
t = rSn

t +
√

ν̂tS
n
t dW

Q(c)
s (t),

dνit =

(
− xiν

i
t + b(ν̂t) + σ(ν̂t)

(
− ρ

(µ̂t − r)√
ν̂t

+
√
1− ρ2c σ(ν̂t)

) )
dt+ σ(ν̂t)dW

Q(c)
v (t), i = 1, ..., n,

dZt = Zt

((
− r +

(µ̂t − r)

ν̂t

2

+ c2σ2(ν̂t)

)
dt− (µ̂t − r)√

ν̂t
dWQ

S (t) + c σ(ν̂t)dB
Q(c)
v (t)

)
where W

Q(c)
s , W

Q(c)
v are standard brownian motions under Q(c)−measure with d < W

Q(c)
s ,W

Q(c)
v >t= ρ dt

and B
Q(c)
v is a standard brownian motion, independent from W

Q(c)
s de�ned such that for t ∈ [0, T ],

WQ(c)
v (t) = ρWQ(c)

s (t) +
√
1− ρ2BQ(c)

v (t).

In this case we have that

V̄ U
t = Et,s,ν,z

(
− ∂ZT

L̂(h(Sn
T ), ZT (c

∗))× ∂ZtZT (c
∗)

)
= Et,s,ν,z

(
− ∂ZT

L̂(h(Sn
T ), ZT (c

∗))× ZT (c
∗)

Zt(c∗)

)
= Et,s,ν,z

(
e−r(T−t) − ∂ZT

L̂(h(Sn
T ), ZT (c

∗))× dQ(c∗)

dP
|Ft

)
= E

Q(c∗)
t,s,ν,z(e

−r(T−t)

(
− ∂ZT

L̂(h(Sn
T ), ZT (c

∗))

) )
.

Moreover, if we consider a power loss, we know that

L̂(h(Sn
T ), ZT (c

∗)) = −
Zq
T (c

∗)

q
−Hn

TZT (c
∗),

we deduce that in this case,
∂ZT

L̂(h(Sn
T ), ZT (c

∗)) = −Zq−1
T (c∗)−Hn

T ,

Therefore, we obtain that

V̄ U
t = E

Q(c∗)
t,s,ν,z

(
e−r(T−t)

(
Hn

T + Zq−1
T (c∗)

))
.

Still assuming that the subset of admissible dual controls U has the form (33), we next show that, for
the rough Heston model, the lower bond as well as the approximate hedging ratio associated to a power loss
function have explicit forms.

Proposition 18. Consider a power loss of the form L(h(s), v) = 1
p (h(s)− v)p, suppose that the volatility is

modeled by a rough Heston model such that b(x) = κ(θ − x) and σ(x) = ζ
√
x. Moreover, assume that the

subset of admissible dual control is given by (33). Therefore Y (t, s,ν, z; γ) de�ned by (30) is such that

Y (t, s,ν, z; c) = −1

q
zq exp(Ct(c) +

n∑
i=1

Di
t(c)ν

i
t)− E

Q(c)
t,s,ν(e

−r(T−t)Hn
T ) z,

where Ct(c) and (Dt(c))i=1,..,n are time-dependent functions, solutions of Riccati ODEs given respectively by

∂tCt(c) = r q − 1

2
q(q − 1) (A2 + c2)ν0 −

n∑
i=1

Di
t

(
κ(θ − ν0) + qζ ν0

(
− ρA+

√
1− ρ2c

) )

− 1

2
ν0ζ

2
n∑

i=1

n∑
j=1

Di
tD

j
t ,

CT (c) = 0,
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and for i = 1, ..., n,

∂tD
i
t(c) = xiD

i
t + wi

n∑
j=1

Dj
t

(
κ− q

(
− ρAζ +

√
1− ρ2ζc

))
− 1

2
wiζ

2
n∑

j=1

n∑
k=1

Dj
tD

k
t

− 1

2
wi q(q − 1) (A2 + c2),

Di
T (c) = 0.

In this case, the lower bound satis�es

lUn (t, s,ν, v) = −1

q
Zq
t (c

∗) exp(Ct(c
∗) +

n∑
i=1

Di
t(c

∗)νit)− E
Q(c∗)
t,s,ν (e−r(T−t)Hn

T )Zt(c
∗) + Zt(c

∗)V̄ U
t , (36)

with

Zt(c
∗) = = exp

(
− 1

q − 1
(Ct(c

∗) +
n∑

i=1

Di
t(c

∗)νit)

)
×
(
V̄ U
t − E

Q(c∗)
t,s,ν (e−r(T−t)Hn

T ))

) 1
q−1

.

Moreover, if z = Zt(c
∗),

l̂
U
n (t, s,ν, z) = Y (t, s,ν, z; c∗).

Proof. The proof is similar to the proof of Proposition 13 and is essentially obtained by using the Feynman-
Kac formula. First, using Lemma 12, we have that

Y (t, s,ν, z; c) = Et,s,ν,z

(
L̂(h(Sn

T ), ZT )

)
= Et,s,ν,z

(
− 1

q
Zq
T −Hn

TZT

)
= Et,ν,z

(
− 1

q
Zq
T

)
︸ ︷︷ ︸

:=Y1(t,ν,z)

−Et,sν,z

(
Hn

TZT

)
︸ ︷︷ ︸

:=Y2(t,s,ν,z)

.

Let focus on Y1, using Feynman-Kac formula, we have that

0 =∂tY1 − ∂zY1 rZ +
1

2
∂zzY1 Z

2

(
(µ̂− r)2

ν̂
+ c2ν̂

)
+

n∑
i=1

∂νi
Y1 (−xiνi + κ(θ − ν̂))

+
1

2

n∑
i=1

n∑
j=1

∂νiνj
Y1 ζ

2ν̂ +
n∑

i=1

∂νizY1 Z

(
− ρ

(µ̂− r)√
ν̂

ζ
√
ν̂ +

√
1− ρ2ζν̂c

)
,

Y1(T,Z) = −1

q
Zq.

Suppose that Y1 has the following form

Y1 = −1

q
Zq
t exp(Ct +

n∑
i=1

Di
tν

i
t),

In this case, as we consider that µ̂t = r +Aν̂t, we have that

0 = Y1

(
∂tCt +

n∑
i=1

∂tD
i
tνi +

n∑
i=1

Di
t(−xiνi + κ(θ − ν̂)) + ζ2ν̂

1

2

n∑
i=1

n∑
j=1

Di
tD

j
t

− rq +
1

2
q(q − 1) (A2 + c2)ν̂ + q

(
− ρAν̂ζ +

√
1− ρ2ζν̂c

) n∑
i=1

Di
t

)
,
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as ν̂ = ν0 +
∑n

i=1 wiνi, we have

0 =

(
∂tCt +

n∑
i=1

Di
t

(
κ(θ − ν0) + q

(
− ρAν0ζ +

√
1− ρ2ζν0c

) )
− rq +

1

2
q(q − 1) (A2 + c2)ν0

+
1

2
ζ2ν0

n∑
i=1

n∑
j=1

Di
tD

j
t

)

+
n∑

i=1

νi

(
∂tD

i
t − xiD

i
t − wiκ

n∑
j=1

Dj
t + ζ2wi

1

2

n∑
j=1

n∑
k=1

Dj
tD

k
t

+
1

2
wiq(q − 1) (A2 + c2) + qwi

(
− ρAζ +

√
1− ρ2ζc

) n∑
j=1

Dj
t

) )
.

We obtain that Ct and (Di
t)i=1,...,n solve Riccati type ODEs of the form

∂tCt =rq − 1

2
q(q − 1) (A2 + c2)ν0 −

n∑
i=1

Di
t

(
κ(θ − ν0) + q

(
− ρAν0ζ +

√
1− ρ2ζν0c

) )
(37)

− 1

2
ζ2ν0

n∑
i=1

n∑
j=1

Di
tD

j
t , (38)

CT = 0

and for i = 1, ..., n,

∂tD
i
t =xiD

i
t + wi

n∑
j=1

Dj
t

(
κ− q

(
− ρAζ +

√
1− ρ2ζc

))
− ζ2wi

1

2

n∑
j=1

n∑
k=1

Dj
tD

k
t

− 1

2
wiq(q − 1) (A2 + c2), (39)

Di
T = 0.

Let now consider the second process Y2. Using the Feynman-Kac formula, we obtain that Y2 satis�es

0 =∂tY2 − ∂zY2 rZ +
1

2
∂zzY2 Z

2

(
(µ̂− r)2

ν̂
+ c2ν̂

)
+

n∑
i=1

∂νiY2

(
− xiνi + κ(θ − ν̂)

)

+
1

2

n∑
i=1

n∑
j=1

∂νiνjY2 ζ
2ν̂ +

n∑
i=1

∂νizY2 Z

(
− ρ

(µ̂− r)√
ν̂

ζ
√
ν̂ +

√
1− ρ2ζν̂c

)
,

+ ∂sY2 µ̂s+
1

2
∂ssY2 ν̂s+

n∑
i=1

∂νisY2 sν̂ζρ− ∂szY2 Z
µ̂− r√

ν̂
s
√
ν̂,

Y2(T, s, z) = h(s)z.

Suppose that Y2 has the form
Y2 = g(t, Sn

t ,ν)Zt.

Therefore, we have that

0 = Z

(
∂tg − g r +

n∑
i=1

∂νi
g

(
− xiνi + κ(θ − ν̂)

)
+

1

2

n∑
i=1

n∑
j=1

∂νiνj
g ζ2ν̂

+
n∑

i=1

∂νi
g

(
− ρ(µ̂− r)ζ +

√
1− ρ2ζ2ν̂c

)
+ ∂sg µ̂s+

1

2
∂ssg ν̂s

+
n∑

i=1

∂νisg sν̂ζρ− ∂sg (µ̂− r)s

)
.
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The function g(t, Sn
t ,ν) satis�es the following PDE

0 = ∂tg − g r + ∂sg rs+
n∑

i=1

∂νi
g

(
− xivi + κ(θ − ν̂) + ν̂ζ(−ρA+

√
1− ρ2ζ c)

)

+
1

2

n∑
i=1

n∑
j=1

∂νiνj
g ζ2ν̂ +

1

2
∂ssg ν̂s+

n∑
i=1

∂νisg sν̂σρ,

g(T, s,ν) = h(s).

We deduce, using once again the Feynman-Kac theorem (this time in the other sense), that

g(t, Sn
t , ν̂t) = E

Q(c)
t,s,ν(e

−r(T−t)Hn
T ),

with under Q(c)−measure,
dSn

t = rSn
t +

√
ν̂tS

n
t dW

Q(c)
s (t),

dνit =

(
− xi(ν

i
t − νi0) + κ(θ − ν̂) + ν̂ζ(−ρA+

√
1− ρ2ζ c)

)
dt+ ζ

√
ν̂tdW

Q
v (t), i = 1, ..., n,

where W
Q(c)
s and W

Q(c)
v are standard brownian motions under Q(c)−measure with d < W

Q(c)
s ,W

Q(c)
v >t=

ρ dt.
Finally, combining the di�erent results, we obtain the annonced result

Y (t, s,ν, z; c) = −1

q
zq exp(Ct(c) +

n∑
i=1

Di
t(c)ν

i
t)− E

Q(c)
t,s,ν(e

−r(T−t)Hn
T ) z.

Furthermore, as by de�nition,

ln(t, s,ν, v; c) = sup
z

{
Y (t, s,ν, z; c) + zv

}
,

using the �rst order condition, we obtain that the value at time t of Zt(c) satis�es

Zt(c)= exp

(
− 1

q − 1
(Ct(c) +

n∑
i=1

Di
t(c)ν

i
t)

)
×

(
V̄ U
t − E

Q(c)
t,s,ν(e

−r(T−t)Hn
T ))

) 1
q−1

and then

lUn (t, s,ν, v; c) = −1

q
Zq
t (c) exp(Ct(c) +

n∑
i=1

Di
t(c)ν

i
t)− E

Q(c)
t,s,ν(e

−r(T−t)Hn
T ) Zt(c) + Zt(c) V̄

U
t .

Thus, as
lUn (t, s,ν, v) = lUn (t, s,ν, v; c

∗),

we deduce the annonced result. Finally, as in the proof of Proposition 17 , we show that c∗ = c∗(z∗) and
z∗(c∗) = z∗, we conclude that if z = Zt(c

∗) then

l̂
U
n (t, s,ν, z) = Y (t, s,ν, z; c∗).

Remark. Comparing to the optimal solution in the case of linear payo� (see Proposition 13), we observe
that the form of the solution is the same, the only di�erence lies in the expression of the coe�cients Ct

and(Di
t)i=1,...,n. Moreover, in the classical Heston model, i.e. n = 1, then Ct and Dt admit closed formulas.

Proposition 19. Using the same assumptions as the Proposition 18 and denoting g(t, Sn
t ,νt) = E

Q(c∗)
t,s,ν (e−r(T−t)Hn

T ),

the approximate hedging ratio ξ̄Un (t) de�ned by (32) is such that

ξ̄Un (t) =
1

ν̂tSn
t

(
g(t, Sn

t ,νt)− V̄ U
t

) (
1

p− 1
(µ̂t − r)− ρζν̂t
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i=1

Di
t(c

∗)

)

+ ∂sg(t, S
n
t ,νt) +

ρζ

Sn
t

n∑
i=1

(
∂νig(t, S

n
t ,νt)

)
, (40)

where V̄ U
t is the value at time t of the self-�nancing portfolio.
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Proof. The proof is simple and relies on the de�nition of the approximate hedging ratio and on Proposition
18. By de�nition, we have that

ξ̄Un (t) =
z ∂zz l̂

U
n (µ̂− r)s− ∂sz l̂

U
n ν̂s2 − ρ

∑n
i=1 ∂νiz l̂

U
n

√
ν̂s σ(ν̂)

ν̂s2
,

with z = z∗ = z∗(c∗). With our assumptions, we know, by Proposition 18, that, for z = z∗(c∗),

l̂
U
n (t, s,ν, z) = −1

q
zq exp(Ct(c

∗) +
n∑

i=1

Di
t(c

∗)νit)− E
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T ) z

thus, we can easily deduce the partial derivatives of the process l̂
U
n (.) such that

∂z l̂
U
n = −zq−1(c∗) exp(Ct(c

∗) +
n∑

i=1

Di
t(c

∗)νit)− g(t, Sn
t ,νt),

and

∂zz l̂
U
n =− (q − 1)zq−2 exp(Ct(c

∗) +
n∑

i=1

Di
t(c

∗)νit)

∂zs l̂
U
n =− ∂sg(t, S

n
t ,νt)

∂zνi
l̂
U
n =− zq−1Di

t(c
∗) exp(Ct(c

∗) +
n∑

i=1

Di
t(c

∗)νit)− ∂νi
g(t, Sn

t ,νt),

therefore, the approximate hedging ratio is given by
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The value at time t of the process Zt is given by

Zt(c
∗) = exp

(
− 1

q − 1
(Ct(c
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n∑

i=1

Di
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∗)νit)

)
×
(
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,

plugging Zt(c
∗) in (41), the approximate hedging ratio becomes

ξ̄Un (t) =
1

ν̂tSn
t

(
g(t, Sn

t ,νt)− V̄ U
t

) (
1
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(µ̂t − r)− ρζν̂t
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ρζ
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(
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n
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)
.

That concludes the proof since we proved the di�erent results announced.

For the partial hedging problem in rough Heston model with power loss function, the lower bound lUn (.)
and the approximate hedging ratio ξ̄Un (.) admit closed formulas. In particular, we observe that ξ̄Un (.) is split
into three parts: the �rst part is linked to a sharpe ratio, the second part corresponds to the delta and the
third part is linked to a vega. Moreover, as the approximate rough Heston model allows a closed form for
the characteristic function of the log-price, it enables, using a FFT (Fast Fourier Transform) pricing method,
to e�ciently compute the price but also the Greeks of vanilla options under the approximate rough Heston
model. Thus, for vanilla options, the lower bound as well as the approximate hedging ratio can be quickly
computed. Note that the characteristic function of the log-price is presented in the Appendix.
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6 Numerical results

In this section, we illustrate the partial hedging method discussed in this paper for the rough Heston model.
We �rst present stylized facts about the approximate rough Heston model, then we discuss results for hedging
of linear payo� and �nally we consider vanilla option hedging. For the di�erent numerical results, inspired
by [2], we have decided to consider the following parameters (under the real measure P) for the rough Heston
model:

r = 0.02, A = 1, S0 = 100, ν0 = 0.04, θ = 0.04, λ = 0.3, ζ = 0.3 and ρ = −0.7.

As already mentioned, rough volatility models, including the rough Heston model, allow to better model
stylized facts observed on the �nancial markets. In particular, in option pricing, they allow to better represent
the implied volatility smile as well as the ATM (at-the-money) skew. Using the characteristic function of the
log-price in the approximate rough Heston, we can price vanilla options using a FFT method. From these
prices, we can deduce the implied volatility for several strikes and time-to-maturity but also compute the
ATM skew i.e. the derivative of the ATM implied volatility with respect to the log strikes. Figures 5 and
62 in Appendix represent respectively the implied volatility and the ATM skew. If we compare the Heston
model to the approximate rough Heston model with n = 20, we observe that for the Heston model, the shape
of the implied volatility smile does not change signi�cantly as the time-to-maturity decreases, whereas for
the approximate rough Heston model, the volatility smile becomes more and more pronounced as the time-
to-maturity tends to 0. We also observe that the approximate rough volatility model with n = 20 captures
the ATM skew while the Heston model does not capture this stylized fact at all. Therefore, as already shown
in [1], we see that even with a reduced number of factors (here n = 20), the approximate rough Heston model
allows to better capture stylized e�ects on the �nancial markets and is thus more appropriate to model stocks
dynamics. For more analysis about the rough Heston and its Markov approximation, we refer among others
to [1, 2, 14, 25].

6.1 Partial hedging of linear payo�

In this section, we consider the hedging of a linear payo� with a quadratic loss function. We take this toy
case because we have shown that with a quadratic loss, the approximate partial hedging problem is solved
with a closed formula. Thus, the objective of this paragraph is to check the convergence of the approximate
solution when n → +∞ but also to verify that the lower and upper bounds of the optimal solution deduced
using the dual control method are close enough to this optimal solution. The linear payo� considered for the
following is

H linear
T = α+ βST with α = 0, β = 1,

and its replication price at time t ∈ [0, T ] is

H linear
t = e−r(T−t)α+ βSt.

We will thus consider several initial values of the hedging portfolio such as

V0 ≤ H linear
0 .

We �rst look at the convergence of the approximate optimal solution ln when n → +∞. Figure 1 and 2
present the evolution of ln and ξn0 with respect to n for di�erent values of H and with V0 = 0.8 ×H linear

0 .
We observe that for di�erent Hurst coe�cients, the approximate solution and initial hedging ratio converge
and the convergence is faster the closer the Hurst coe�cient is to 0.5. This is logical because the closer H is
to 0.5, the less n factors are needed to model the rough volatility process accurately.

2Results are generated with real measure parameters
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Figure 1: Convergence analysis of ln for quadratic loss and linear payo�

Figure 2: Convergence analysis of ξn ∗
0 for quadratic loss and linear payo�

We next compare the optimal solution with the upper and lower bounds deduced by the dual control
method. As in the theoretical part, we consider dual controls of the form:

γt = c× Zt × ζ
√
ν̂t, c ∈ U = R, (42)

because it allows to keep closed forms under the approximate rough Heston model. In this case, the associated
lower bound is given by (36) and the upper bound can be computed with the hedging ratio given by (40).

Coef H ln lUn l̄Un Abs. di�. |ln − lUn | Abs. di�. |l̄Un − ln| Abs. di�. |l̄Un − lUn |
0.75 0.1 312.1792 312.1786 312.1890 6.26× 10−4 9.85× 10−3 1.04× 10−2

0.75 0.5 312.3396 312.3371 312.3428 2.51× 10−3 3.23× 10−3 5.76× 10−3

0.5 0.1 1248.7169 1248.7145 1248.7213 1.66× 10−3 5.26× 10−3 6.87× 10−3

0.5 0.5 1249.3587 1249.3534 1249.3654 5.32× 10−3 6.71× 10−3 1.21× 10−2

0.25 0.1 2809.6131 2809.6078 2809.6218 5.33× 10−3 8.76× 10−3 1.44× 10−2

0.25 0.5 2811.0571 2811.0530 2811.0638 4.19× 10−3 6.74× 10−3 1.08× 10−2

Table 1: Comparison of the optimal solution, the lower bound and the upper bound for quadratic loss and
linear payo� with n = 20, V0 = Coef ×H linear

0 and T = 0.25
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Table 1 compares the results for di�erent values of V0. Firstly, we observe that the optimal solution,
the lower and upper bounds are very close, as we notice an absolute error that varies between O(10−4) and
O(10−2), this allows to validate the relevance of the bounds deduced by using the dual control method. We
also notice that the closer V0 is to the replication price, the more the quadratic loss decreases and �nally
we observe that the quadratic loss is less when considering H = 0.1 compared to H = 0.5. This seems to
indicate that for a linear payo�, the rougher is the volatility, the lower is the quadratic loss. The orders of
the absolute errors between the bounds and the primal solutions are consistent with the order of the absolute
errors made in applying the dual control method to portfolio optimization problems as in [31, 32]. This
can be explained by the fact that the problem reduces to a portfolio optimization problem when considering
partial hedging of linear payo�. Indeed, assuming for simplicity that r = 0, we can easily observe that our
problem has the form of a portfolio optimization problem such that

ln(t, s,ν, v) = inf
ξnt ∈Rn

Et,s,ν,v

(
1

2

(
Sn
t − Vt +

∫ T

t

(1− ξns )dS
n
s

)2)
.

Therefore, we observe that in the case of a linear payo�, there is no stochastic target to reach, which is not
the case if we consider nonlinear payo�s like for example vanilla options.

6.2 Partial hedging of vanilla options

We now focus on more relevant payo�, namely vanilla options. As for the linear case, we take a quadratic
loss function. Notice that we only consider Call options, but similar results can be deduced for Put options.
For this type of payo�, we cannot derive an optimal solution to the partial hedging problem, but by using
the dual control method, we can derive upper and lower bounds. To do this, for the same reasons as in
the previous section, we consider dual controls of the form (42). Moreover, as the characteristic function of
the log-price in the approximate rough Heston model is available, the bounds as well as the approximate
hedge ratio are computed using a FFT method. For our numerical results, we decide to consider an initial
portfolio value V0 proportional to the Black-Scholes (BS) price of a Call option with as constant volatility,
the mean-reverting level of the rough model. Thus, we consider that

V0 = Coef ×BScall(σ =
√
θ).

Furthermore, as in [29], we benchmark the proposed partial hedging strategy with the optimal strategy
assuming a constant volatility model of the BS type. Notice that for the BS model, the optimal hedge ratio
denoted by ξBS

t associated with a quadratic loss has an explicit formula that is presented in the Appendix
(see (50)) and has a similar form to ξ̄Un (t) except that it does not depend on the volatility process. Figure 3
presents the initial approximate hedge ratio ξ̄Un (0) as function of the number of factors n, for di�erent values
of H. As in the linear payo� case, we notice a convergence of the hedge ratios. The speed of convergence is
higher, the higher is the Hurst coe�cient, for the same reason as mentioned previously.

Figure 3: Convergence analysis for ξ̄Un (0) for quadratic loss and ATM call
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Figure 4 compares the sub-optimal strategy linked to the upper bound with the benchmark strategy for
one simulation of (Sn

t )0≤t≤T . We observe in this case that the sub-optimal strategy performs much better
than the benchmark strategy.

Table 2 compares the results for di�erent values of V0. In contrast to the linear payo�, the gap between the
upper and lower bounds is more pronounced. There are several reasons explaining this. As the vanilla options
are nonlinear payo�s, the partial hedging problem cannot be reduced to a portfolio optimization problem.
Therefore, we have a stochastic target leading to a more noisy problem. In this case, we notice that the
approximate hedging ratio depends more on the choice of the sub-optimal dual control. In fact, in contrast
with the linear case, we remark that the approximate hedging ratio (40) is a�ected by the choice of dual
control, notably through the risk-neutral measure Q(c∗) used to compute the Greeks. The di�erence between
the bounds can also be explained by the tracking error i.e. the error made by not continuously hedging the
portfolio. Indeed, we observe in Table 3 that by increasing the frequency of portfolio rebalancing, the gap
between the bounds decreases.

Figure 4: Simulation of hedging strategies with V0 = 0.8×BScall(
√
θ)

Benchmarking the sub-optimal strategy against the Black-Scholes strategy, we observe at Tables 2 and
3 that the hedging strategy associated with the upper bound outperforms the benchmark strategy, and the
gap between the two strategies is much more pronounced when H = 0.1. Thus, the rougher is the volatility
trajectory, the worse the benchmark strategy will perform compared to the sub-optimal strategy. As revealed
by Table 4, this is explained by the fact that the smaller H is, the greater is the impact of the vega term on
the approximate hedging ratio and therefore the bigger is the di�erence between the approximate hedging
ratio ξ̄Un (t) and the hedging ratio of the benchmark strategy ξBS

t .
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Coef H lUn l̄Un lBS(
√
θ) Abs. Di� |l̄Un − lUn | Abs. Di�. |lBS(

√
θ) − l̄Un |

1 0.1 0.1769 0.6139 0.7893 0.4369 0.1753
1 0.5 0.0488 0.2449 0.2791 0.1962 0.0341

0.75 0.1 0.7781 0.9389 1.0985 0.1608 0.1596
0.75 0.5 0.6261 0.6851 0.7173 0.0588 0.0323
0.5 0.1 2.2267 2.3112 2.4252 0.0844 0.1141
0.5 0.5 2.2469 2.2704 2.3129 0.0235 0.0424
0.25 0.1 4.7591 4.7928 4.8965 0.0338 0.1036
0.25 0.5 4.9814 4.9902 5.0224 0.0088 0.0322

Table 2: Comparison of the lower bound, the upper bound and the benchmark (lBS(
√
θ) with

√
θ = 0.2) for

quadratic Loss, ATM Call and hedging once a day with n = 20, V0 = Coef ×BSCall(σ =
√
θ) and T = 0.25

Coef Hedging Freq. lUn l̄Un lBS(
√
θ) Abs. Di� |l̄Un − lUn | Abs. Di�. |lBS(

√
θ) − l̄Un |

1 Once a day 0.1769 0.6139 0.7893 0.4369 0.1753
1 Twice a day 0.1769 0.5521 0.7206 0.3752 0.1685

0.75 Once a day 0.7781 0.9389 1.0985 0.1608 0.1596
0.75 Twice a day 0.7781 0.8774 1.0376 0.0993 0.1602
0.5 Once a day 2.2267 2.3112 2.4252 0.0844 0.1141
0.5 Twice a day 2.2267 2.2454 2.3701 0.0187 0.1246
0.25 Once a day 4.7591 4.7928 4.8965 0.0338 0.1036
0.25 Twice a day 4.7591 4.7614 4.8793 0.0023 0.1176

Table 3: Comparison of the lower bound, the upper bound and the benchmark (lBS(
√
θ) with

√
θ = 0.2) for

quadratic Loss, ATM Call for di�erent hedging frenquencies with H = 0.1, n = 20, V0 = Coef ×BSCall(σ =√
θ) and T = 0.25

Model ξ̄Un (0) V ega term

BS 0.5480 /
Heston 0.4917 −0.1103

Approx. rough Heston (H = 0.3, n = 20) 0.4704 −0.1571
Approx. rough Heston (H = 0.1, n = 20) 0.4457 −0.2093

Table 4: Impact of V ega term on the hedging ratio with V ega term := ρσ
S0

∑n
i=1 ∂νi

EQ(c∗)

(
e−rT (ST −K)+

)
for ATM Call, n = 20, V0 = 0.8×BScall(

√
θ) and T = 0.25

Finally, it is also interesting to study the impact of the correlation ρ on the hedging strategy. Figure 7 in
Appendix presents the impact of the correlation ρ ≤ 0 on the bounds. We observe that the loss decreases as
ρ decreases because the closer the absolute value of the correlation is to 1, the more the volatility risk can be
hedged by taking a hedging strategy on the underlying. We also observe that the relative di�erence between
the upper bound and the benchmark loss widens as the correlation decreases. This can be explained by the
fact that the closer the absolute value correlation is to 1, the larger is the di�erence between the approximate
hedging ratio ξ̄Un (t) and the Black-Scholes hedging ratio ξBS

t .

7 Conclusion

This paper discusses partial hedging strategies in rough volatility models. We formulate the problem as a
stochastic control problem but, due to the non-Markovian nature of the rough volatility models, this problem
is considerably di�cult to solve.

Thanks to a Markov multifactor approximation of the volatility process, we introduce a Markov stochastic
control problem. We show, using convergence results, that, instead of solving the original problem, we can
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solve the Markov problem with a small error. The optimal solution to this problem is characterized by
a Hamilton-Jacobi-Bellman (HJB) equation. However, even by switching to the dual formulation of the
problem, we need to solve a nonlinear PDE to obtain the optimal solution. Therefore, in general, we cannot
derive an explicit form of the optimal solution.

In order to obtain explicit hedging strategies, we introduce a dual control method. We derive lower and
upper bounds as well as sub-optimal hedging ratios for sub-optimal choices of dual control. Moreover, if the
subset of admissible dual controls is large enough, we show that the discrepancies between bounds and the
optimal solution are quite small. For a particular subset, explicit formulas for lower bound and sub-optimal
hedging ratio are deduced in rough Heston model with power loss function. Furthermore, in rough Heston
model, the sub-optimal hedging ratio exhibits a meaningful interpretation in term of Greeks and can be
e�ciently computed using a FFT method for hedging of vanilla options.

Numerical results show satisfying results especially for linear payo�s hedging since errors between bounds
and optimal solution are of order O(10−3). For vanilla option hedging, the discrepancy between the bounds
is slightly larger, yet remains acceptable. This can be explained by the fact that the nonlinear payo� hedging
problem is noisier and that the sub-optimal choices of the dual control have more in�uence on the hedging
strategies than in the linear case.

In terms of future research, several promising avenues can be explored within the context of hedging
in rough volatility models. One potential direction involves investigating a backward stochastic di�erential
equation (BSDE) approach, building upon previous work [3], to obtain the optimal solution of the Markov
problem. Furthermore, considering a deep learning approach for solving the nonlinear partial di�erential
equation arising from the HJB equation, as explored by [34], could provide valuable insights. A comparative
study between the solutions obtained via these alternative methods and those derived from the dual control
method discussed in this paper would be of great interest.
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8 Appendix

Figures

Figure 5: Vanilla implied volatility as a function of the the log-moneyness for di�erent time-to-maturity
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Figure 6: At-the-money skew asa function of time-to-maturity

Figure 7: Impact of the correlation ρ for ATM Call with n = 20, V0 = 0.8×BScall(
√
θ) and T = 0.25

32



Additional proofs.

Proof of Proposition 5.

Proof. First, based on their SDE and provide that (Sn
t )0≤t≤T and (St)0≤t≤T have the same initial value S0

then it can be shown that the processes are solution of

St = S0 × exp

(∫ t

0

(µs −
1

2
νs)ds+

∫ t

0

√
νsdWv(s)

)
Sn
t = S0 × exp

(∫ t

0

(µ̂s −
1

2
ν̂s)ds+

∫ t

0

√
ν̂sdWv(s)

)
.

By Theorem (4), monotone convergence implies that, for t ∈ [0, T ],

lim
n→∞

E

(∫ t

0

(
√

ν̂s −
√
νs)

2ds

)
= 0.

Therefore, by the de�nition of the stochastic Itô integral, we obtain that∫ t

0

√
ν̂sdWv(s)

L2−−→
∫ t

0

√
νsdWv(s)

But since L2 convergence implies convergence in law and, by the Skorokhod representation theorem, that
convergence in law implies almost sure convergence on a suitable probability space, we obtain that∫ t

0

√
ν̂sdWv(s)

a.s.−−→
∫ t

0

√
νsdWv(s).

Moroever, using Theorem (4), we deduce that∫ t

0

(µ̂s −
1

2
ν̂s)ds

a.s.−−→
∫ t

0

(µs −
1

2
νs)ds.

Finally as the exponential function is continuous, we conclude that

exp

(∫ t

0

(µ̂s −
1

2
ν̂s)ds+

∫ t

0

√
ν̂sdWv(s)

)
a.s.−−→ exp

(∫ t

0

(µs −
1

2
νs)ds+

∫ t

0

√
νsdWv(s)

)
and then

Sn
t

a.s.−−→ St,

as n goes to in�nity.

The proof of the convergence of (V n
t )0≤t≤T is similar. For sake of simplicity, we only consider the case

where r = 0. In this case, as we assume ∀t ∈ [0, T ], ξnt = ξt, we have that

Vt = V0 +

∫ t

0

ξsµsSsds+

∫ t

0

ξs
√
νsSsdWs(s)

V n
t = V0 +

∫ t

0

ξsµ̂sS
n
s ds+

∫ t

0

ξs
√
ν̂sS

n
s dWs(s)

By Theorem (4) and Proposition (5), monotone convergence implies that, for t ∈ [0, T ],

lim
n→∞

E

(∫ t

0

ξ2s (
√

ν̂sS
n
s −

√
νsSs)

2ds

)
= 0.

Therefore, by the de�nition of the stochastic Itô integral, we obtain that∫ t

0

ξs
√

ν̂sS
n
s dWv(s)

L2−−→
∫ t

0

ξs
√
νsSsdWv(s).
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But since L2 convergence implies convergence in law and, by the Skorokhod representation theorem, that
convergence in law implies almost sure convergence on a suitable probability space, we obtain that∫ t

0

ξs
√

ν̂sS
n
s dWv(s)

a.s.−−→
∫ t

0

ξs
√
νsSsdWv(s).

Finally, as ∫ t

0

ξsµ̂sS
n
s ds

a.s.−−→
∫ t

0

ξsµsSsds,

we conclude that
V n
t

a.s.−−→ Vt,

as n goes to in�nity.

Proof of Proposition 9

Proof. To deduce the PDE of l̂n(t, s, ν, z) using the PDE of ln(t, s, ν, v), we use the following relations between
the primal and dual solution. We can remark that

∂vln = z, ∂vvln = − 1

∂zz l̂n

∂tln = ∂t l̂n, ∂svln = −∂sz l̂n

∂zz l̂n

∂sln = ∂s l̂n, ∂νivln = −∂νiz l̂n

∂zz l̂n

∂νi ln = ∂νi l̂n,

and

∂ssln =
∂zz l̂n∂ss l̂n − (∂sz l̂n)

2

∂zz l̂n

∂νiνi
ln =

∂zz l̂n∂νiνi
l̂n − (∂νiz l̂n)(∂νiz l̂n)

∂zz l̂n

∂νisln =
∂zz l̂n∂νis l̂n − (∂sz l̂n)(∂νiz l̂n)

∂zz l̂n
.

Using now the PDE (19) satis�ed by ln(.), we can easily derive that the PDE satis�ed by l̂n(.) is given by

0 =∂t l̂n + Ls,ν l̂n − zr∂z l̂n +
1

2ν̂s2
z2 (µ̂− r)2s2∂zz l̂n − z (µ̂− r)s∂sz l̂n

− 1√
ν̂
ρ

n∑
i=1

∂νiz l̂n z (µ̂− r)σ(ν̂)− 1

2∂zz l̂n
σ(ν̂)2(1− ρ2)

n∑
i=1

n∑
j=1

∂νiz l̂n∂νjz l̂n.

Thus we just have shown that l̂n satis�es the announed PDE. Concerning the optimal primal control ξn,∗,
we have that

ξn∗t = −
∂vln (µ̂− r)Sn

t + ∂svln ν̂t(S
n
t )

2 + ρ
∑n

i=1 ∂νivln
√
ν̂tS

n
t σ(ν̂t)

∂vvln ν̂t(Sn
t )

2

=
Zt ∂zz l̂n (µ̂− r)Sn

t − ∂sz l̂n ν̂t(S
n
t )

2 − ρ
∑n

i=1 ∂νiz l̂n
√
ν̂tS

n
t σ(ν̂t)

ν̂t(Sn
t )

2
,

that concludes the proof.
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Proof of Lemma 12.

Proof. The proof is simple and involves the �rst order condition since L(h, v) is convex with respect to the
variable v. By de�nition, the dual terminal value is such that

L̂(h(s), z) := inf
v
{L(h(s), v)− zv},

in our case, it reduces to

L̂(h(s), z) = inf
v
{1
p
(h(s)− v)p − zv}. (43)

Using the �rst order condition, we have that the optimal v is such that

−(h(s)− v)p−1 − z = 0,

we easily deduce that

v = h(s)− (−z)
1

p−1 .

Plugging this value in (43), we have that

L̂(h(s), z) =
1

p
(−z)

p
p−1 − z(h(s)− (−z)

1
p−1 )

=
1

p
z

p
p−1 − z

p
p−1 − z h(s)

= −p− 1

p
z

p
p−1 − z h(s)

= −1

q
zq − z h(s).

Proof of Proposition 13

Proof. From (9), we know that l̂n satis�es the PDE (20). Let consider the ansatz

l̂n(t, s, ν, z) = −zq

q
exp

(
Ct +

n∑
i=1

Di
tν

i
t

)
︸ ︷︷ ︸

:=l̂1n

−
(
e−r(T−t)α+ βs︸ ︷︷ ︸

:=g(t,s)

)
z, (44)

with

CT = 0,

Di
T = 0, i = 1, ..., n

g(t, St) = H linear
T

such that

l̂n(T, s, ν, z) = L̂(h(s), z) = −1

q
zq − h(s)linearz.

Plugging (44) in the PDE (20), we obtain

0 = l̂1n

(
∂tCt +

n∑
i=1

∂tD
i
tνi +

n∑
i=1

Di
t(−xiνi + κ(θ − ν̂)) + ζ2ν̂

1

2

n∑
i=1

n∑
j=1

Di
tD

j
t

− rq +
1

2
q(q − 1)A2ν̂ − qρAν̂ζ

n∑
i=1

Di
t −

1

2
(1− ρ2)ζ2ν̂

q

q − 1

n∑
i=1

n∑
j=1

Di
tD

j
t

)

− z

(
∂tg + ∂sg µ̂s+

1

2
∂ssg ν̂s

2 − rg − (µ̂− r)s∂sg

)
,
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equivalently, we have

0 = l̂1n

(
∂tCt +

n∑
i=1

Di
t

(
κ(θ − ν0)− qρAν0ζ

)
+

1

2

n∑
i=1

n∑
j=1

Di
tD

j
t ζ

2ν0

(
1− (1− ρ2)

q

q − 1

)
− rq +

1

2
q(q − 1)A2ν0

)

+ l̂1n

n∑
i=1

νi

(
∂tD

i
t − xiD

i
t − wi

(
κ− qρAζ

) n∑
j=1

Dj
t +

1

2
wi

(
ζ2 − (1− ρ2)ζ2

q

q − 1

) n∑
j=1

n∑
k=1

Dj
tD

k
t

+
1

2
wiq(q − 1)A2

)
− z

(
∂tg + ∂sg µs+

1

2
∂ssg ν̂s

2 − rg − (µ̂− r)s∂sg

)
.

Using the de�nition of g(t, s),we observe that

∂tg + ∂sg µs+
1

2
∂ssg νs

2 − rg − (µ̂− r)s∂sg = 0.

In this case, the PDE reduces to

0 = l̂1n

(
∂tCt +

n∑
i=1

Di
t

(
κ(θ − ν0)− qρAν0ζ

)
+

1

2

n∑
i=1

n∑
j=1

Di
tD

j
t ζ

2ν0

(
1− (1− ρ2)

q

q − 1

)
− rq +

1

2
q(q − 1)A2ν0

)

+ l̂1n

n∑
i=1

νi

(
∂tD

i
t − xiD

i
t − wi

(
κ− qρAζ

) n∑
j=1

Dj
t +

1

2
wi

(
ζ2 − (1− ρ2)ζ2

q

q − 1

) n∑
j=1

n∑
k=1

Dj
tD

k
t

+
1

2
wiq(q − 1)A2

)
.

We obtain that Ct and (Di
t)i=1,...,n solve Riccati type ODEs of the form

∂tCt =rq − 1

2
q(q − 1)A2ν0 −

n∑
i=1

Di
t

(
κ(θ − ν0)− qρAν0ζ

)
− 1

2

n∑
i=1

n∑
j=1

Di
tD

j
t ζ

2ν0

(
1− (1− ρ2)

q

q − 1

)
,

(45)

CT = 0

and for i = 1, ..., n,

∂tD
i
t =xiD

i
t + wi

n∑
j=1

Dj
t

(
κ− q

(
− ρAζ + (1− ρ2)ζ2c

))
− 1

2
wi

(
ζ2 − (1− ρ2)ζ2

q

q − 1

) n∑
j=1

n∑
k=1

Dj
tD

k
t

− 1

2
wiq(q − 1)A2, (46)

Di
T = 0.

Moreover, we know that the value at time t of the process Zt should satisfy

∂z l̂n + Vt = 0,

we easily deduce that

V n
t = g(t, Sn

t ) + Zq−1
t exp(Ct +

n∑
i=1

Di
tν

i
t),

and

Zt = exp

(
− 1

q − 1
(Ct +

n∑
i=1

Di
tν

i
t)

)
×
(
Vt − g(t, Sn

t )

) 1
q−1

. (47)

Therefore, using the relation between the primal and the dual, we conclude that the primal solution is given
by

ln(t, s,ν, v) = −Zq
t

q
exp

(
Ct +

n∑
i=1

Di
tν

i
t

)
−

(
e−r(T−t)α+ βSn

t

)
Zt + Zt V

n
t ,
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with Zt satisfying (47). Let now focus on the expression of the optimal hedging ratio. For that, we need to

compute partial derivatives of l̂n. Using the closed form of l̂n, we deduce that

∂z l̂n = −Zq−1
t exp(Ct +

n∑
i=1

Di
tν

i
t)− g(t, Sn

t ),

and

∂zz l̂n =− (q − 1)Zq−2
t exp(Ct +

n∑
i=1

Di
tν

i
t)

∂zs l̂n =− β

∂zνi l̂n =− Zq−1
t Di

t exp(Ct +
n∑

i=1

Di
tν

i
t),

Plugging now these values in the expression of the optimal hedging ratio leads to

ξn ∗
t =

1

ν̂t

(
Sn
t

)2

(
− (q − 1)Zq−1

t exp(Ct +
n∑

i=1

Di
tν

i
t) (µ̂t − r)Sn

t + β ν̂tS
n
t
2

+ ρζSn
t ν̂t

n∑
i=1

(
Zq−1
t Di

t exp(Ct +
n∑

i=1

Di
tν

i
t)

))
. (48)

Finally, using the value of Zt (47), we conclude that the optimal hedging ratio is given by

ξn ∗
t =

1

ν̂tSn
t

(
e−r(T−t)α+ βSn

t − V n
t

) (
1

p− 1
(µ̂t − r)− ρζν̂t

n∑
i=1

Di
t

)
+ β.

That concludes the proof as we have shown all the stated results.

Characteristic function of the log-price in approximate rough Heston

Remember that the approximate rough Heston volatility model is given by ν̂t = ν0 +
∑n

i=1 wiν
i
t where

(ν1t , ..., ν
n
t ) is solution of the n dimensionnal SDE de�ned by

νit = −
∫ t

0

xiν
i
sds+

∫ t

0

κ(θ − ν̂s)ds+

∫ t

0

ζ
√
ν̂sdWv(s), i = 1, ..., n, (49)

νi0 = 0,

Proposition. The characteristic function of the log-price in approximate rough Heston is given by, for
t ∈ [0, T ],

ϕt(T, x) := Et,s,ν

(
exp(i x log(Sn

T ) )

)
= exp

(
Ct +

n∑
i=1

Di
tν

i
t + i x log(Sn

t )

)
,

with for 0 ≤ t ≤ T, Ct and (Di
t)i=1,...,n solve Riccati type ODEs of the form

∂tCt = −r i x+ ν0

(
1

2
x2 − (A− 1

2
) i x

)
−

n∑
k=1

Dk
t (ρζν0 i x+ κ(θ − ν0))−

1

2
ζ2ν0

n∑
k=1

n∑
l=1

Dk
t D

l
t,

CT = 0

and for k = 1, ..., n,

∂tD
k
t =xkD

k
t + ωk

(
1

2
x2 − (A− 1

2
) i x

)
− wk

n∑
j=1

Dj
t

(
ρζ i x− κ

)
− 1

2
ζ2wk

n∑
j=1

n∑
l=1

Dj
tD

l
t

Dk
T =0.

Proof. The proof is a direct application of Feynman-Kac theorem to Et,s,ν

(
exp(ix log(Sn

T ) )

)
with SDEs

(9) and (49).
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Partial Hedging under Black and Scholes

Proposition. Suppose that the risky asset (St)0≤t≤T has the following Black-Scholes dynamic under the real
measure P

dSt = µStdt+ σStdWS(t),

the optimal hedging ratio associated to a power loss (ξBS
t )0≤t≤T is given by

ξBS
t :=

1

p− 1

(
EQ(HT |Ft)− Vt

)
(µ− r)

σSt
+ ∂SE

Q(HT |Ft), (50)

with the �classical� risk-neutral measure Q such that under this measure

dSt = rStdt+ σStdW
Q
S (t).

Proof. It is su�cient to solve the dual problem and use the closed form of the dual solution to get the form
the optimal hedge ratio (50).
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