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 Design a concrete user interface
in a wireframe tool
(here, WireframeSketcher)

 Generation of a
wireframe model

 Segment in
region model

 Position in
a tile model  Generate layout model

 Generate code of
final user interface
(here, Java GUI)
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Figure 1: Overview of generation process with Guizmo.

ABSTRACT

We demonstrate Guizmo, a model-driven engineering framework
aimed at generating final graphical user interfaces from wireframes
according to the following process: (1) design a concrete user inter-
face in a wireframe tool, (2) export/import the wireframe definition
into Guizmo for generation of a wireframe model, (3) for segment-
ing the wireframe into regions by region detection, (4) for inferring
positions and dimensions of individual interface elements, (5) in
order to obtain a complete layout model that is used for generating
the code of a final user interface by model-to-code generation.

CCS CONCEPTS

• Software and its engineering→ Graphical user interface lan-
guages; System modeling languages; Source code generation;
Model-driven software engineering; • Computing method-

ologies→ Image segmentation; • Human-centered computing

→ Interaction design process and methods.
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1 MOTIVATIONS

For a long time, significant efforts have been made to optimize
the development life cycle of a graphical user interface (GUI), in
particular by ensuring the best possible continuity between the
artifacts produced in the preliminary stages of development and the
final stage of coding [8] so as not to lose the effort produced during
the design phase, which is known to be highly iterative, but also
not to introduce a break. At the level of the concrete user interface,
these artifacts include sketches [7], screenshots [9], mock-ups [8],
textual descriptions [2], and wireframes [11] that are designed with
different levels of fidelity [7] depending on the resources available
in the project. A systematic literature review of strategies to au-
tomatically generate web sites identified three categories based
on the dominant strategy used for automatic generation [10]: ex-
amples based [11], mock-up-driven [7]), and artificial intelligence
(AI)-driven generation [8] (for example, Sketch2Code uses AI to
convert hand-drawn wireframes of websites into working HTML
code and MetaMorph does this from sketches [11]). Furthermore,
much progress has been made in determining the layout of user
interfaces using classical [5] and AI-based techniques [12].

2 AIMS AND GOALS OF GUIZMO

GUIZMO (GUIs by Models) consists of a software environment
aimed at supporting the migration of legacy interactive systems,
particularly applications created with Rapid Application Develop-
ment Environments (RAD), based on the principles of Model-Driven
Engineering (MDE). MDE has been proven effective for generat-
ing a single user interface [11] (e.g., from business processes [13])
or many interfaces [2], for reverse engineering of user interfaces
(e.g., by transformations [4]), and for automatic analysis [3]. When
facing the modernization of GUIs of applications developed with
these applications, developers must deal with two non-trivial is-
sues: (1) the GUI layout is implicitly provided by the position of
the GUI elements [8] while taking advantage of current features
of GUI technologies often requires an explicit, high-level layout
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Figure 2: Metamodel of GUI elements in WireframeSketcher.

model [12]; (2) we must deal with event handling code that typically
mixes concerns such as GUI and business logic. Tackling a man-
ual migration of the GUI of a legacy system, i.e., re-programming
the GUI, is time-consuming and costly for businesses [4]. Guizmo
generates final GUIs from wireframes as follows (Fig. 1): (1) design
a concrete GUI in a wireframe tool – for the time being, we se-
lected the WireFrameSketcher software because it natively offers
an Eclipse plug-in that (2) exports/imports the wireframe defini-
tion into Guizmo for generation of a wireframe model by model
injection via Gra2MoL [6], (3) segment the wireframe into regions
by region identification and explicit containment (i.e., every GUI
element is represented by a region, that is a rectangular area defined
by its coordinates), (4) infer positions and dimensions of individual
GUI elements, (5) obtain a complete layout model that is used for
generating the source code of a final GUI. WireframeSketcher was
selected as a wireframing tool that helps designers quickly create
wireframes, mockups and prototypes for desktop, web and mobile
applications. It can be executed as a desktop application as well as
a plug-in for any Eclipse IDE. WireframeSketcher outputs an Ecore
model conforming to a predefined metamodel that is available in
the distribution. The Guizmo pattern matching engine matches
layout patterns to create a tree of GUI elements augmented by
relationships between them. Four GUI layout patterns are used:

• horizontal/vertical flow: select the nodes connected by one
outgoing edge with the xInterval/yInterval equals to Before

orMeets, two relationships between from the 2D Allen in-
terval algebra [1], which is captured in the tile model (Fig. 3).

• gridLayout: searches recursively for 2×2 node-subgraphs
connected among them to form a rectangular grid of 𝑛×𝑚
nodes. The nodes inside the grid cannot contain edges that
point to nodes outside the grid, only the border nodes of the
grid are allowed to have connections to the nodes outside.

• BorderLayout: analyses the graph looking for subgraphs con-
taining some of the following areas: North, South, East, West,
and Center. For example, a left-aligned part (East) and a right-
aligned part (West) of a subgraph should match.
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Figure 3: Metamodel of the Tile model with Allen algebra.
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Figure 4: Metamodel of Concrete User Interface for M2M.

The process of matching the layout patterns of the sequence is
performed according to the closeness levels. The algorithm defines a
current closeness level which is used to limit the relations which the
patterns are matched against, so only the relations with a closeness
level equal to or lower than the current level are candidates to be
matched. Therefore, at first, the current level is the lowest level,
so the layouts in the sequence are applied to the relations with
the lowest level. If there are no matches, then the current level is
increased and the sequence is applied to the relations marked with
the lowest level and the next one. If there are no matches, the and
so forth. Note that this makes a partition of the graph in connected
components, so each connected component is a subgraph of the
original graph where all edges have a closeness level equal to or
less than the limit. When the sequence has been tried with all the
closeness levels and there have been no matches, the algorithm
stops since no solution can be found by applying such a sequence.
As a result of this step, a Layout Model which represents the design
of the views in terms of composite layouts is achieved.

3 GUIZMOWALKTHROUGH

Model-to-model transformations are exploited to ensure stages 2
and 3 (from wireframe model to region model, then from region
model to layout model), while stage 5 is ensured by model-to-code
generation. The layout inference component (LAyout gueSSER)
of the Guizmo framework has been improved to support the gen-
eration of final UIs from wireframes, especially the generation
of Java Swing GUIs for the ZK environment with transition be-
tween them, from wireframes created with WireframeSketcher tool.
While Guizmo has been crafted to remain as independent as pos-
sible from the input model (here, the wireframe model obtained
from WireFrameSketcher) and the target programming language
(here, the Java Swing/Zx environment), it still requires redefining
the transformations for each input/output desired. Although these
transformations are one-to-one mappings, they will change de-
pending on the wireframe tool or sketching input. For example,
any WireFrameSketcher element as specified in the corresponding
metamodel (Fig. 2) can be mapped to one and only one GUI ele-
ment belonging to the Concrete User Interface as specified in the
metamodel (Fig. 4).

OPEN SCIENCE

TheGitHub repository is at https://github.com/osanchezUM/guizmo.
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