
The Guizmo Framework for Generating Final User Interfaces

fromWireframes

Óscar Sánchez Ramón
University of Murcia

Faculty of Computer Science
Murcia, Spain

osanchez@um.es

Jesús García Molina
University of Murcia

Faculty of Computer Science
Murcia, Spain
jmolina@um.es

Nicolas Burny
Université catholique de Louvain
Louvain Research Institute in

Management and Organizations
Louvain-la-Neuve, Belgium
nicolas.burny@uclouvain.be

 Design a concrete user interface
in a wireframe tool
(here, WireframeSketcher)

 Generation of a
wireframe model

 Segment in
region model

 Position in
a tile model  Generate layout model

 Generate code of
final user interface
(here, Java GUI)

TestWindow
Label
EditField
Label
PasswordField
PushButton

TestWindow
Label
EditField
Label
PasswordField
PushButton

Normalize Segment Position Infer

TestWindow
Group1
Label
EditField

Group2
Label
PasswordField

Group3
PushButton

TestWindow
Group1
Label
EditField

Group2
Label
PasswordField

Group3
PushButton

GUIZMO

Generate

Figure 1: Overview of generation process with Guizmo.

ABSTRACT

We demonstrate Guizmo, a model-driven engineering framework
aimed at generating final graphical user interfaces from wireframes
according to the following process: (1) design a concrete user inter-
face in a wireframe tool, (2) export/import the wireframe definition
into Guizmo for generation of a wireframe model, (3) for segment-
ing the wireframe into regions by region detection, (4) for inferring
positions and dimensions of individual interface elements, (5) in
order to obtain a complete layout model that is used for generating
the code of a final user interface by model-to-code generation.

CCS CONCEPTS

• Software and its engineering→ Graphical user interface lan-
guages; System modeling languages; Source code generation;
Model-driven software engineering; • Computing method-

ologies→ Image segmentation; • Human-centered computing

→ Interaction design process and methods.

KEYWORDS

Model-based user interface design;model-driven engineering;model-
to-model transformation; model-to-code generation; wireframes

ACM Reference Format:

Óscar Sánchez Ramón, Jesús García Molina, and Nicolas Burny. 2023. The
Guizmo Framework for Generating Final User Interfaces from Wireframes.
InCompanion of the ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS ’23 Companion), June 27–30, 2023, Swansea, United King-
dom. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3596454.
3597189

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0206-8/23/06.
https://doi.org/10.1145/3596454.3597189

1 MOTIVATIONS

For a long time, significant efforts have been made to optimize
the development life cycle of a graphical user interface (GUI), in
particular by ensuring the best possible continuity between the
artifacts produced in the preliminary stages of development and the
final stage of coding [8] so as not to lose the effort produced during
the design phase, which is known to be highly iterative, but also
not to introduce a break. At the level of the concrete user interface,
these artifacts include sketches [7], screenshots [9], mock-ups [8],
textual descriptions [2], and wireframes [11] that are designed with
different levels of fidelity [7] depending on the resources available
in the project. A systematic literature review of strategies to au-
tomatically generate web sites identified three categories based
on the dominant strategy used for automatic generation [10]: ex-
amples based [11], mock-up-driven [7]), and artificial intelligence
(AI)-driven generation [8] (for example, Sketch2Code uses AI to
convert hand-drawn wireframes of websites into working HTML
code and MetaMorph does this from sketches [11]). Furthermore,
much progress has been made in determining the layout of user
interfaces using classical [5] and AI-based techniques [12].

2 AIMS AND GOALS OF GUIZMO

GUIZMO (GUIs by Models) consists of a software environment
aimed at supporting the migration of legacy interactive systems,
particularly applications created with Rapid Application Develop-
ment Environments (RAD), based on the principles of Model-Driven
Engineering (MDE). MDE has been proven effective for generat-
ing a single user interface [11] (e.g., from business processes [13])
or many interfaces [2], for reverse engineering of user interfaces
(e.g., by transformations [4]), and for automatic analysis [3]. When
facing the modernization of GUIs of applications developed with
these applications, developers must deal with two non-trivial is-
sues: (1) the GUI layout is implicitly provided by the position of
the GUI elements [8] while taking advantage of current features
of GUI technologies often requires an explicit, high-level layout

https://orcid.org/0000-0001-8681-2664
https://orcid.org/0000-0003-4685-6659
https://orcid.org/0000-0003-4994-9746
https://doi.org/10.1145/3596454.3597189
https://doi.org/10.1145/3596454.3597189
https://doi.org/10.1145/3596454.3597189
https://www.microsoft.com/en-us/ai/ai-lab-sketch2code


EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom Óscar Sánchez Ramón, Jesús García Molina, & Nicolas Burny

WidgetContainer
Widget

x: int
y: int
width: int
height: int
text: boolean

Screen

name: string

Window

closeButton: boolean
minimizeButton: boolean
maximizeButton: boolean

Panel TextField Button Checkbox

«enum»
State

NORMAL
DISABLED
SELECTED
FOCUSED

StateSupport

state: State

VerticalScrollbarSupport

verticalScrollbar: boolean

ColorBackgroundSupport

background: ColorDataType

BooleanSelectionSupport

selected: boolean

0..n

Figure 2: Metamodel of GUI elements in WireframeSketcher.

model [12]; (2) we must deal with event handling code that typically
mixes concerns such as GUI and business logic. Tackling a man-
ual migration of the GUI of a legacy system, i.e., re-programming
the GUI, is time-consuming and costly for businesses [4]. Guizmo
generates final GUIs from wireframes as follows (Fig. 1): (1) design
a concrete GUI in a wireframe tool – for the time being, we se-
lected the WireFrameSketcher software because it natively offers
an Eclipse plug-in that (2) exports/imports the wireframe defini-
tion into Guizmo for generation of a wireframe model by model
injection via Gra2MoL [6], (3) segment the wireframe into regions
by region identification and explicit containment (i.e., every GUI
element is represented by a region, that is a rectangular area defined
by its coordinates), (4) infer positions and dimensions of individual
GUI elements, (5) obtain a complete layout model that is used for
generating the source code of a final GUI. WireframeSketcher was
selected as a wireframing tool that helps designers quickly create
wireframes, mockups and prototypes for desktop, web and mobile
applications. It can be executed as a desktop application as well as
a plug-in for any Eclipse IDE. WireframeSketcher outputs an Ecore
model conforming to a predefined metamodel that is available in
the distribution. The Guizmo pattern matching engine matches
layout patterns to create a tree of GUI elements augmented by
relationships between them. Four GUI layout patterns are used:

• horizontal/vertical flow: select the nodes connected by one
outgoing edge with the xInterval/yInterval equals to Before

orMeets, two relationships between from the 2D Allen in-
terval algebra [1], which is captured in the tile model (Fig. 3).

• gridLayout: searches recursively for 2×2 node-subgraphs
connected among them to form a rectangular grid of 𝑛×𝑚
nodes. The nodes inside the grid cannot contain edges that
point to nodes outside the grid, only the border nodes of the
grid are allowed to have connections to the nodes outside.

• BorderLayout: analyses the graph looking for subgraphs con-
taining some of the following areas: North, South, East, West,
and Center. For example, a left-aligned part (East) and a right-
aligned part (West) of a subgraph should match.

TileNode

name: String
xMinPos: int
yMinPos: int
xMaxPos: int
yMaxPos: int

Relation

name: String
xRelation: AllenRelationType
yRelation: AllenRelationType
closeness: int

1
source

0..n
outgoing

1
target

0..n

incoming

1 0..n
relations

0..n
children

«from Structure Model»
Widget 1

widget

«enum»
AllenRelationType

BEFORE        AFTER
MEETS          MET_BY
STARTS        STARTED_BY
FINISHED      FINISHED_BY
DURING        CONTAINS
OVERLAPS   OVERLAPPED_BY
EQUAL

WidgetNode LayoutNode

type: LayoutType

«enum»
LayoutType

HFLOW       VFLOW
BORDER     GRID
FORM          CUSTOM

1

Figure 3: Metamodel of the Tile model with Allen algebra.

AbstractView

ViewExternalViewRef

AbstractPanel

PanelPanelRef

PlainPanelTabbedPanel ArrangedPanel

1  

1  

     0..n

1..n         1..n         

GraphicalStyle

    1

   1

Layout

Widget

FlowLayout StackLayout BorderLayout

LayoutConnection
      1..n

PanelConnection WidgetConnectionInnerConnection  1 

    1

1    

        0..n

  1

  1

GridLayout

0..n

Figure 4: Metamodel of Concrete User Interface for M2M.

The process of matching the layout patterns of the sequence is
performed according to the closeness levels. The algorithm defines a
current closeness level which is used to limit the relations which the
patterns are matched against, so only the relations with a closeness
level equal to or lower than the current level are candidates to be
matched. Therefore, at first, the current level is the lowest level,
so the layouts in the sequence are applied to the relations with
the lowest level. If there are no matches, then the current level is
increased and the sequence is applied to the relations marked with
the lowest level and the next one. If there are no matches, the and
so forth. Note that this makes a partition of the graph in connected
components, so each connected component is a subgraph of the
original graph where all edges have a closeness level equal to or
less than the limit. When the sequence has been tried with all the
closeness levels and there have been no matches, the algorithm
stops since no solution can be found by applying such a sequence.
As a result of this step, a Layout Model which represents the design
of the views in terms of composite layouts is achieved.

3 GUIZMOWALKTHROUGH

Model-to-model transformations are exploited to ensure stages 2
and 3 (from wireframe model to region model, then from region
model to layout model), while stage 5 is ensured by model-to-code
generation. The layout inference component (LAyout gueSSER)
of the Guizmo framework has been improved to support the gen-
eration of final UIs from wireframes, especially the generation
of Java Swing GUIs for the ZK environment with transition be-
tween them, from wireframes created with WireframeSketcher tool.
While Guizmo has been crafted to remain as independent as pos-
sible from the input model (here, the wireframe model obtained
from WireFrameSketcher) and the target programming language
(here, the Java Swing/Zx environment), it still requires redefining
the transformations for each input/output desired. Although these
transformations are one-to-one mappings, they will change de-
pending on the wireframe tool or sketching input. For example,
any WireFrameSketcher element as specified in the corresponding
metamodel (Fig. 2) can be mapped to one and only one GUI ele-
ment belonging to the Concrete User Interface as specified in the
metamodel (Fig. 4).

OPEN SCIENCE

TheGitHub repository is at https://github.com/osanchezUM/guizmo.

ACKNOWLEDGMENTS

The authors of this paper are very grateful to the anonymous EICS
reviewers and the associate chair for their insightful and construc-
tive comments on earlier versions of this manuscript.

https://wireframesketcher.com/
https://wireframesketcher.com/install_details.html
https://www.eclipse.org/ecoretools/doc/
https://www.eclipse.org/ecoretools/doc/
https://en.wikipedia.org/wiki/Allen%27s_interval_algebra
https://en.wikipedia.org/wiki/Allen%27s_interval_algebra
https://www.javatpoint.com/java-swing
https://www.zkoss.org/wiki/ZK_Developer's_Reference
https://forum.zkoss.org/question/84097/from-java-swing-to-zk-web-app-help-with-knowlege-gap/
https://github.com/osanchezUM/guizmo


Guizmo for Wireframe to GUI Generation EICS ’23 Companion, June 27–30, 2023, Swansea, United Kingdom

REFERENCES

[1] James F. Allen. 1983. Maintaining Knowledge about Temporal Intervals. Commun.
ACM 26, 11 (nov 1983), 832–843. https://doi.org/10.1145/182.358434

[2] Nathalie Aquino, Jean Vanderdonckt, Nelly Condori-Fernández, Óscar Dieste,
and Óscar Pastor. 2010. Usability Evaluation of Multi-Device/Platform User
Interfaces Generated by Model-Driven Engineering. In Proceedings of the ACM-
IEEE International Symposium on Empirical Software Engineering andMeasurement
(Bolzano-Bozen, Italy) (ESEM ’10). Association for Computing Machinery, New
York, NY, USA, Article 30, 10 pages. https://doi.org/10.1145/1852786.1852826

[3] Abdo Beirekdar, Jean Vanderdonckt, and Monique Noirhomme-Fraiture. 2002. A
Framework and a Language for Usability Automatic Evaluation of Web Sites by
Static Analysis of HTML Source Code. In Computer-Aided Design of User Interfaces
III, Proceedings of the Fourth International Conference on Computer-Aided Design
of User Interfaces, May, 15-17, 2002, Valenciennes, France, Christophe Kolski and
Jean Vanderdonckt (Eds.). Kluwer, 337–348.

[4] L. Bouillon, Q. Limbourg, J. Vanderdonckt, and B. Michotte. 2005. Reverse engi-
neering of Web pages based on derivations and transformations. In Proceedings
of the Third Latin American Web Congress (Buenos Aires, Argentina) (LA-WEB
2005). 11 pp.–. https://doi.org/10.1109/LAWEB.2005.29

[5] Ahmet Selman Bozkir and EbruAkcapinar Sezer. 2018. Layout-based computation
of web page similarity ranks. International Journal of Human-Computer Studies
110 (2018), 95–114. https://doi.org/10.1016/j.ijhcs.2017.10.008

[6] Javier Luis Cánovas Izquierdo and Jesús García Molina. 2009. A Domain Specific
Language for Extracting Models in Software Modernization. In Model Driven
Architecture - Foundations and Applications, Richard F. Paige, Alan Hartman, and
Arend Rensink (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 82–97.

[7] Adrien Coyette, Sascha Schimke, Jean Vanderdonckt, and Claus Vielhauer. 2007.
Trainable Sketch Recognizer for Graphical User Interface Design. In Human-
Computer Interaction - INTERACT 2007, 11th IFIP TC 13 International Conference,
Rio de Janeiro, Brazil, September 10-14, 2007, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 4662), Maria Cecília Calani Baranauskas, Philippe A.

Palanque, Julio Abascal, and Simone Diniz Junqueira Barbosa (Eds.). Springer,
124–135. https://doi.org/10.1007/978-3-540-74796-3_14

[8] Harsh Dave, Sarah Sonje, Jaswantsingh Pardeshi, Sheetal Chaudhari, and Pooja
Raundale. 2021. A survey on Artificial Intelligence based techniques to convert
User Interface design mock-ups to code. In Proceedings of International Conference
on Artificial Intelligence and Smart Systems (Coimbatore, India) (ICAIS ’21). 28–33.
https://doi.org/10.1109/ICAIS50930.2021.9395994

[9] Abner Augusto Lima de Oliveira and Cidcley Teixeira de Souza. 2017. Paper
Prototyping in a Model-Driven Process for Android Application Simulation
Support. In Proceedings of the XXXI Brazilian Symposium on Software Engineering
(Fortaleza, CE, Brazil) (SBES ’17). Association for Computing Machinery, New
York, NY, USA, 267–272. https://doi.org/10.1145/3131151.3131192

[10] Thisaranie Kaluarachchi and Manjusri Wickramasinghe. 2023. A systematic
literature review on automatic website generation. Journal of Computer Languages
75 (2023), 101202. https://doi.org/10.1016/j.cola.2023.101202

[11] Vinoth Pandian Sermuga Pandian, Sarah Suleri, Christian Beecks, and Matthias
Jarke. 2020. MetaMorph: AI Assistance to Transform Lo-Fi Sketches to Higher
Fidelities. In Proceedings of the 32nd Australian Conference on Human-Computer-
Interaction (Sydney, NSW, Australia) (OzCHI ’20), Naseem Ahmadpour, Tuck Wah
Leong, Bernd Ploderer, Callum Parker, Sarah Webber, Diego Muñoz, Lian Loke,
and Martin Tomitsch (Eds.). ACM, 403–412. https://doi.org/10.1145/3441000.
3441030

[12] Irfan Prazina, Šeila Bećirović, Emir Cogo, and Vensada Okanović. 2023. Methods
for Automatic Web Page Layout Testing and Analysis: A Review. IEEE Access 11
(2023), 13948–13964. https://doi.org/10.1109/ACCESS.2023.3242549

[13] Kênia Soares Sousa, Hildeberto Mendonça Filho, Jean Vanderdonckt, Els Ro-
gier, and Joannes Vandermeulen. 2008. User interface derivation from busi-
ness processes: a model-driven approach for organizational engineering. In
Proceedings of the ACM Symposium on Applied Computing (Fortaleza, Ceara,
Brazil) (SAC ’08), Roger L. Wainwright and Hisham Haddad (Eds.). ACM, 553–560.
https://doi.org/10.1145/1363686.1363821

https://doi.org/10.1145/182.358434
https://doi.org/10.1145/1852786.1852826
https://doi.org/10.1109/LAWEB.2005.29
https://doi.org/10.1016/j.ijhcs.2017.10.008
https://doi.org/10.1007/978-3-540-74796-3_14
https://doi.org/10.1109/ICAIS50930.2021.9395994
https://doi.org/10.1145/3131151.3131192
https://doi.org/10.1016/j.cola.2023.101202
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1109/ACCESS.2023.3242549
https://doi.org/10.1145/1363686.1363821

	Abstract
	1 Motivations
	2 Aims and goals of Guizmo
	3 Guizmo Walkthrough
	Acknowledgments
	References

